

1 **Title: Efficient enzyme-free isolation of brain-derived extracellular vesicles**

2 **Authors:**

4 Matamoros-Angles, A.* [1], Karadjuzovic, E.* [1], Mohammadi, B. [1], Song, F. [1], Brenna, S.
5 [2], Siebels, B. [3], Voß, H. [3], Seuring, C. [4][5], Ferrer, I. [6], Schlüter, H. [3], Kneussel M.
6 [7], Altmeppen, HC. [1], Schweizer M. [8], Puig, B. [2], Shafiq, M.* [1], Glatzel, M.* [1]

7 *These authors contributed equally

8 #Co-corresponding authors

9 **Affiliations:**

10 [1] Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg,
11 Germany.

12 [2] Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI),
13 University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

14 [3] Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf,
15 Hamburg, Germany.

16 [4] Centre for Structural Systems Biology, Multi-User-CryoEM-Facility, Hamburg, Germany.

17 [5] Department of Chemistry, Universität Hamburg, Hamburg, Germany. Leibniz Institute of
18 Virology, Hamburg, Germany.

19 [6] University of Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain.

20 [7] Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg
21 (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

22 [8] Electron Microscopy Core Facility, Center for Molecular Neurobiology (ZMNH),
23 University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

24 **Abstract**

25

26 Extracellular vesicles (EVs) have gained significant attention as pathology mediators and
27 potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived
28 EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that
29 may compromise the integrity of EV proteins and overall functionality.

30 Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces
31 undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-
32 derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a
33 reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs
34 revealed their characteristic morphology and size distribution with both approaches. However,

35 we revealed that even minor enzymatic digestion induces ‘artificial’ proteolytic processing in key
36 BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrP^C), whereas avoiding
37 enzymatic treatment completely preserves their integrity. We found no differences in mRNA and
38 protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that
39 we are purifying the same BDEV populations with both approaches. Intriguingly, the lack of
40 Golgi marker GM130 signal, often referred to as contamination contamination-negative marker
41 in EV preparations, seems to result from enzymatic digestion rather than from its actual absence
42 in BDEV samples.

43 Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids
44 artificial pruning of proteins while achieving a high BDEV yield and purity. This protocol will
45 help to understand the functions of BDEV in a near-physiological setting, thus opening new
46 research approaches.

47 **Keywords**

48 Brain-derived EVs, BDEVs, collagenase-free, EV corona, GM130, prion protein, proteomics

49 **Introduction**

50
51 Extracellular vesicles (EVs) are a heterogenous family of nanosized lipid bilayer-enclosed
52 vesicular structures, which virtually all cell types secrete by evolutionarily conserved processes
53 (Van Niel *et al*, 2018; De Sousa *et al*, 2023). The term EVs includes all currently known
54 subpopulations such as exosomes, microvesicles (MVs), apoptotic EVs, and the more recently
55 described ones such as mitovesicles or migrasomes (Ma *et al*, 2015; Poon *et al*, 2019; D’Acunzo
56 *et al*, 2022). These subpopulations differ in their composition/cargo and biogenesis but are largely
57 indistinguishable by most used isolation methods unless a further specific affinity-based method
58 is used to isolate them from the bulk (Théry *et al*, 2018). EVs contain tissue- and cell-specific
59 cargo composed of proteins (membrane-associated or intraluminal/cytosolic), lipids, and nucleic
60 acids such as DNA (mitochondrial DNA, single- and double-stranded DNA) and RNA (mRNA
61 and diverse non-coding RNAs). By transferring their incorporated and exposed molecules, they
62 elicit biological effects in (targeted) recipient cells (Valadi *et al*, 2007; Van Niel *et al*, 2018;
63 O’Brien *et al*, 2022). Moreover, EVs are naturally surrounded by a corona of attached/associated
64 proteins and other biomolecules that may exert some functions, such as regulating interaction and
65 effects in their target cells (Tóth *et al*, 2021; Wolf *et al*, 2022).

66 In the central nervous system (CNS), EVs have been highlighted as relevant actors in the complex
67 intercellular communication regulating diverse aspects such as synaptic activity, circuit
68 connectivity, and neuronal differentiation (Antoniou *et al*, 2023; Solana-Balaguer *et al*, 2023;

69 Song *et al*, 2023). However, the transfer of proteins and genetic information between brain cells
70 via EVs is not only relevant in physiology but also in various pathological conditions, such as
71 after ischemic insult (Guitart *et al*, 2016) and in neurodegenerative diseases (ND) (Vassileff *et al*,
72 2020). A shared feature of ND ((e.g., Alzheimer's disease (AD), Parkinson's disease (PD), and
73 prion-diseases (PrD)) is the aggregation and deposition of characteristic misfolded proteins in
74 distinct areas of the brain, which propagate during the disease course (Hill, 2019; Rastogi *et al*,
75 2021). Numerous studies have shown that EVs carry and accumulate these pathological proteins
76 (such as amyloid-beta (A β) and tau in AD, alpha-synuclein in PD, or transmissible prions in PrD),
77 either inside or at the EV surface/corona, and mediate their propagation (Fevrier *et al*, 2004;
78 Mattei *et al*, 2009; Perez-Gonzalez *et al*, 2012; Ruan *et al*, 2020; Howitt *et al*, 2021). Given the
79 EV capability to cross the blood-brain-barrier (BBB) (Ramos-Zaldívar *et al*, 2022), there is a
80 growing interest in defining their cargo in different biofluids, as brain-derived EVs (BDEVs) may
81 provide valuable information about the (patho)physiology of the brain and serve as disease
82 indicators and biomarkers (Vassileff *et al*, 2020). However, despite their promising potential,
83 further research is needed to understand the complete role of BDEVs in ND pathophysiology.

84 Given the growing interest in and the relevance of isolating EVs from complex tissues such as the
85 brain, the number of protocols is increasing (Vella *et al*, 2017; Hurwitz *et al*, 2018; Brenna *et al*,
86 2020; Huang *et al*, 2020; Su *et al*, 2021; D'Acunzo *et al*, 2021; Gomes *et al*, 2023; Huang *et al*,
87 2023; Pait *et al*, 2024). Brain EVs isolation is challenging since BDEVs need to be released from
88 the extracellular matrix (ECM), which consists of an intricate meshwork of (glyco-)proteins, large
89 proteoglycans, and other molecules. In the current EV isolation methods, different approaches,
90 including enzymatic treatment and gentle mechanical dissociation, are employed to address this
91 challenge (Brenna *et al*, 2021). However, the commonly used enzymes like papain and
92 collagenase have already been shown that can alter the protein landscape by introducing unwanted
93 cleavages of proteins present at the EV membrane as the cellular prion protein (PrP C) (Brenna *et*
94 *al*, 2020), which has an important role in the pathophysiology of several ND (Prusiner, 1982;
95 Laurén *et al*, 2009; Urrea *et al*, 2018) and may be relevant in BDEV uptake, trafficking, and
96 function in brain pathologies (Guitart *et al*, 2016; Falker *et al*, 2016; Heisler *et al*, 2018; Brenna
97 *et al*, 2020; D'Arrigo *et al*, 2021). This 'artificial' and unintended modification of proteins may
98 be particularly relevant for EV membrane proteins and the EV-corona content and may introduce
99 artifacts that interfere with the study of EV biology (Wolf *et al*, 2022; Tóth *et al*, 2021).

100 The present study describes the effect of collagenase digestion used during BDEV isolation,
101 which produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates
102 and cell-derived EVs. In order to avoid this effect, we explored the possibility of isolating BDEV
103 with either a reduced amount of collagenase or entirely excluding collagenase from the process.

104 The BDEVs isolated with both approaches were characterized by nanoparticle tracking analysis
105 (NTA), transmission electron microscopy (TEM), western blot, multiplexed mRNA panels, and
106 mass spectrometry, showing no main differences. However, even this minor collagenase-
107 treatment still produces the pruning of some EV proteins. We show that the non-enzymatically-
108 based method allows the preservation of membrane proteins while yielding high quantities of
109 BDEVs. This method provides more reliable BDEV samples for diagnosis and research.
110 Intriguingly, our results also show the presence of the Golgi protein GM130 in non-enzymatically
111 isolated BDEVs, therefore questioning its use as a suitable negative marker for EV validation.

112 **Materials and Methods**

113 **Biological samples and respective ethics statements**

114 ***Human samples***

115 The use of patient specimens for research after completed diagnosis and upon anonymization was
116 in accordance with local ethical standards and regulations at the University Medical Center
117 Hamburg-Eppendorf (UKE, Germany). Autopsy samples of the frontal cortex from non-demented
118 male controls (n = 6) were donated from the brain bank of the Institute of Neuropathology, HUB-
119 ICO-IDIBELL Biobank, Hospitalet de Llobregat, Barcelona, Spain, in compliance with the
120 Spanish biomedical research regulations, including Ley de la Investigación Biomédica 2013 and
121 Real Decreto de Biobancos 2014, and approval of the Ethics Committee of the Bellvitge
122 University Hospital (HUB). Additional information, including age, post-mortem intervals (PMI),
123 neuropathological evaluation, and National Institute of Aging (NIA) staging, are shown in Table
124 1.

125 **Table 1: Frontal cortex autopsy tissues used for different BDEV preparations with collagenase-
126 assisted and collagenase-free methods.**

No.	IDs	Gender	Age	PMI	NIA scoring	Neuropathological findings
1	PO1	M	78	2 h 15 min	A0, B0, C0	Lacunar infarcts
2	PO2	M	67	5 h	A0, B0, C0	Lacunar infarcts
3	PO3	M	71	12 h	A0, B0, C0	No neuropathological findings
4	PO4	M	61	3 h 55 min	A0, B0, C0	Metabolic encephalopathy
5	PO5	M	85	5 h 45 min	A0, B0, C0	Lacunar infarcts in striatum
6	PO6	M	64	3 h 30 min	A0, B0, C0	Mesial sclerosis

127 * BDEVs were isolated twice from the PO1, PO2, and PO3 samples for TEM, WB, NTA,
128 proteomics, and nCounter® panels. BDEVs isolated from the PO4, PO5, and PO6 samples were
129 used for the NTA and nCounter® panels. Brain homogenates from PO1, PO2, and PO3 samples
130 were prepared for collagenase digestion and as loading controls for the WBs.

132 ***Mice***

133 In this study, we performed no experiments with living animals. Breeding and the euthanasia
134 procedure to obtain brain tissue were approved by the ethical research committees of respective
135 national/local authorities: Freie und Hansestadt Hamburg, Behörde für Gesundheit und
136 Verbraucherschutz, Hamburg, Germany (ORG1023). Adult C57BL/6J mice (35-50 weeks old)
137 were purchased from Charles River Laboratories (Paris, France). All experiments were performed
138 following the protocols and guidelines of the Ethical Committee and the directives of the
139 European Union Council 86/609 and 2010/63.

140 ***Cell lines***

141 Neuro-2a cells (N2a) were ordered via DSMZ (ACC 148) in the Institute of Neuropathology,
142 UKE, Hamburg (ATCC: CCL-131). Cells were maintained in DMEM (Gibco) supplemented with
143 10% FBS (Invitrogen) at 37°C and 5% CO₂ atmosphere.

144 **Homogenization and collagenase digestion of total brain tissue**

145 20% (w/v) homogenates (200 mg/1mL) of C57BL/6J mouse forebrain or human frontal cortex
146 were prepared with a manual dounce homogenizer (with PBS). A control homogenated with PBS
147 and protease inhibitor (PI) cocktail (complete EDTA-free tablet, Roche) was included to assess
148 the role of endogenous proteases. 100 µL of homogenate were treated with (i) collagenase D
149 (Roche) high (40U/mL, 2 mg/mL); (ii) collagenase D low (10U/mL, 0.5 mg/mL); (iii) collagenase
150 type III high (40 U/mL, 1.5 mg/mL) and (iv) collagenase Type III low (10 U/mL, 0.38 mg/mL).
151 One tube was left without enzymes as a control (with and without PI). Samples were then
152 incubated for 30 min at 37°C in a thermomixer at 500 rpm. The reaction was stopped by adding
153 200 µL of a stop solution of 2× RIPA (100 mM Tris Base, 300 mM NaCl, 2% NP40, 1% Na-
154 Deoxycholate and 0.2% SDS at pH = 8) with 0.1 M EDTA and freshly added PI. Tubes were
155 vortexed and left on ice for 10 min to ensure the activity of inhibitors and detergent, then
156 centrifuged at 12,000xg for 10 min at 4°C. The supernatant was collected, 4× sample buffer (SB,
157 240mM Tris Base, 8% SDS, 40% glycerol, and 0.2% bromophenol blue at pH = 6.8), containing
158 5% β-mercaptoethanol (to a final concentration of 1×) was added, and the samples were boiled at
159 95°C for 10 min. The remaining sample was stored at -80°C for further western blotting analysis
160 (see below).

161 **Isolation of cell culture supernatant EVs**

162 Cells were cultured to approximately 80% confluence in T175 cell culture flasks in DMEM
163 (Gibco) with 10% FBS (Gibco). 18-24 h before EV isolation, cells were washed with PBS, and
164 the medium was changed to the same DMEM but supplemented with 10% exosome-depleted FBS

165 (EXO-FBS-50A-1, System Bioscience). The media was collected on the day of isolation, and
166 differential centrifugation was performed to remove cell debris from the culture medium (200xg
167 for 5 min and 7,000xg for 20 min). The whole procedure was conducted on ice, and
168 centrifugations were performed at 4°C to avoid degradation. Subsequently, the supernatant was
169 passed through a 0.22 µm filter using the SteriFlip filter system (Merck) and a PVDF 0.1 µm filter
170 (Merck). The flow-through was then transferred into 12 mL polypropylene tubes (Beckman
171 Coulter) and centrifuged at 140,000xg (Beckman Coulter Optima L100 XP, SW40Ti, Swing
172 bucket rotor) for 70 min. The final pellet was resuspended in 90 µL PBS containing PI. See Figure
173 1d for a scheme of the isolation process.

174 **Isolation of brain-derived EVs (BDEVs)**

175 All brain tissues used here were previously stored at -80°C. During all procedures, protein low-
176 binding tubes (Eppendorf) were used. PBS used in all EV-related experiments was prefiltered
177 through a 0.1 µm filter to avoid impurities. For all the EV resuspensions, a protease inhibitor
178 cocktail at 1× was freshly added to it. Initially, BDEVs were isolated from mouse brain tissues
179 (C57BL/6J, 35-50 weeks old, female) or human brain tissues (see human samples section for
180 details) as follows. The protocol used is based on the one published by Crescitelli *et al.* (Crescitelli
181 *et al*, 2021), where we added some minor modifications to adapt it to our equipment, reduce the
182 protease activity (i.e., including PI in several steps and excluding or decreasing the amount of
183 collagenase D). The adapted protocol (Protocol A) was as follows:

184 The tissue dissection and the rest of the procedure were performed on ice to protect samples from
185 degradation. 100-200 mg of frozen brain tissue was minced with a scalpel in a glass petri dish
186 with cold RPMI media (Gibco). 0.55 mL of media was added to each 100 mg of tissue to
187 normalize the media/tissue ratio in all the samples. The mixture was transferred into a 1.5 mL
188 tube (with a cut 1 mL tip), and DNase I (Roche) was added to a final concentration of 40 U/mL.
189 Collagenase D at low concentration (10U/mL, 0.5 mg/mL) or any collagenase (without, w/o) was
190 added to the samples. Tubes were incubated in a thermomixer at 37°C for 20 min at 500 rpm, and
191 the mixture was pipetted up and down 15 times every 5 min. To stop the endogenous protease
192 activity, RPMI media with 10× concentrated PI (1/10 of the initial volume) was added to the
193 tubes. Subsequently, samples were centrifuged at 300xg (5 min), 2,000xg (10 min), and 10,000xg
194 (10 min). The 10,000xg pellet containing large BDEV was not further included in the isolation
195 process and kept as a “10K control” to avoid the larger vesicles and debris. Afterward, the
196 supernatant was transferred into a 5 mL polypropylene tube (Beckman Coulter), and PBS was
197 added to reach a 4.5 mL tube filling and centrifuged at 120,000xg for 100 min at 4°C in the L-60
198 Optima Ultracentrifuge (Beckman Coulter, SW55 TI rotor, Swing bucket rotor). Then, the

199 supernatant was discarded, and the pellet was resuspended with 300 μ L PBS (+PI). 240 μ L of
200 resuspended BDEVs were mixed with 60% OptiPrep at the bottom of the same tube, while 60 μ L
201 were stored at -80°C as the “pre-gradient control” in western blotting analysis. To set up the
202 gradient, 1.3 mL of 30% and 10% OptiPrep (Stemcell) densities (prepared as described in
203 (Crescitelli *et al*, 2021) were layered on top. Finally, 400 μ L of PBS was added on top, and the
204 gradient was centrifuged at 185,500xg for 120 min at 4°C. Four fractions were collected (F1: 1
205 mL, F2: 1.3 mL, F3: 0.65 mL, F4: 1.3 mL) into 1.5 mL tubes. BDEVs were expected to mainly
206 concentrate between the 10% and 30% interface. Fractions were then further diluted with PBS,
207 stored at 4°C overnight, and centrifuged at 120,000xg for 80 min at 4°C the next day to pellet the
208 EVs and wash out the OptiPrep. After carefully removing the supernatant, the BDEVs were
209 resuspended gently with 60-90 μ L of PBS (+PI). Samples were transferred to 1.5 mL tubes, stored
210 at 4°C (if downstream NTA analysis was performed within one week), prepared for further
211 biochemical and imaging analysis (see below), or frozen directly at -80°C.

212 We also isolated BDEVs from mouse brains (see Supplementary Figure S7) using the protocol
213 previously described by Crescitelli *et al*. (with small modifications to adapt the procedure to our
214 available equipment) (Crescitelli *et al*, 2021) with the collagenase D usual concentration (2
215 mg/mL). The resulting protocol, Protocol B, shares the same structure as Protocol A besides what
216 is listed below:

- 217 i) The tissue was minced with 2 mL of RPMI media, independently of the amount of tissue.
- 218 ii) Collagenase D was added to a concentration of 2 mg/mL (40 U/mL).
- 219 iii) Tubes were incubated at 37°C for 30 min, not 20 min.
- 220 iv) RPMI media with 10× concentrated PI (1/10 of the initial volume) was not added to the tubes.
- 221 v) The 10,000xg pellet containing large BDEVs was recovered with 200 μ L of PBS (+PI).
- 222 vi) The 120,000xg pellet containing small BDEVs was recovered with 200 μ L of PBS (+PI).
- 223 vii) A 1:1 mixture of the large and small BDEV (150 μ L of each) was mixed with 1ml of 60%
- 224 OptiPrep and included in the gradient.

225

226 **Nanoparticle tracking analysis (NTA)**

227 Samples were diluted in PBS depending on estimated EV concentrations. Cell culture-derived
228 EVs were diluted with PBS 1:500 or 1:1,000, while tissue-derived samples were diluted 1:125,
229 1:250, or 1:500. Before dilution, human BDEVs were treated with 4% paraformaldehyde (PFA)
230 for biosafety reasons. Five videos of 30 seconds duration were recorded (settings: camera level =
231 16, screen gain = 2) with the NanoSight microscope (LM14, Malvern). The processing function
232 of NanoSight NTA 3.0 software was used to analyze the recordings (settings: detection threshold

233 = 6 and screen gain = 10). PBS (with or without PFA traces mimicking the final concentration in
234 the BDEV samples) was also analyzed as background control and showed almost no signal.

235 **Negative staining and transmission electron microscopy (TEM)**

236 5 μ L of BDEVs were fixed with 16% PFA to a final concentration of 4%. 5 μ L of the fixed sample
237 were then added to a formvar/carbon-coated 200 mesh copper grid (#ECF200-Cu-50, Science
238 Services) and left for 20 min in a dry environment. Thereafter, samples were transferred to drops
239 of PBS (3 times for 2 min each). The samples were further stained with 2% methylcellulose-
240 uranyl acetate on ice and looped out on a filter paper after 10 minutes. EVs were analyzed and
241 imaged with a transmission electron microscope (Jeol JEM2100Plus) equipped with a XAROSA
242 CMOS camera (Emsis).

243 **Collagenase treatment of cell-derived EVs**

244 3×10^{10} particles of N2a-EVs (measured by NTA) were either incubated with or without 2 mg/mL
245 collagenase D at 37°C for 20 min in a thermomixer at 500 rpm. The reaction was stopped by
246 adding 1/8 of RIPA 8 \times buffer supplemented with an 8 \times PI to reach a 1 \times concentration. Samples
247 were left on ice for 10 min for EV lysis and prepared for western blot by adding 4 \times SB (with 5%
248 β -mercaptoethanol), followed by boiling at 95°C for 10 min.

249 **Protein quantification**

250 BCA Assay Kit (Pierce) was used according to its manual. The extinction of the bicinchoninic
251 acid (BCA) was measured at 562 nm utilizing the μ Quant spectrometer (BioTek). A standard
252 curve was set up using albumin to determine the protein concentration of each sample.

253 **Protein deglycosylation**

254 Deglycosylation of total brain homogenates was performed according to the PNGase F kit
255 instruction manual (#P0704S, New England Biolabs). 40 μ g of protein were digested with 1,000
256 U of PNGase F enzyme.

257 **Sample preparation for SDS-PAGE**

258 Brain lysates from mouse or human tissues were prepared as a 10% homogenate with RIPA buffer
259 (50 mM Tris Base, 150 mM NaCl, 1% NP40, 0.5% Na-Deoxycholate and 0.1% SDS at pH = 8)
260 with freshly added PI for being used as brain homogenate (BH) controls. N2a cell lysates were
261 prepared using the same buffer. After brain or cell lysis for 10 min on ice, protein lysates were
262 obtained in the supernatants after a 12,000 \times g centrifugation for 10 minutes. EV samples (in PBS,

263 see below) were prepared by adding 8× RIPA buffer (400 mM Tris Base, 1.2 M NaCl, 8% NP40,
264 4% Na-Deoxycholate and 0.8% SDS at pH = 8) to a final concentration of 1× to not excessively
265 increase the sample volume. Gentle pipetting and a 10-minute incubation were done to guarantee
266 the EV lysis. Finally, in all the cases, 4× SB (containing 5% β -mercaptoethanol) to a final
267 concentration of 1× was added, and the samples were boiled at 95°C for 10 min.

268 **SDS-PAGE and western blot analysis**

269 BDEV samples were normalized by the weight of the tissue they were obtained from (BDEV
270 from 25-30 mg of tissue were loaded per lane) and cell-derived EVs by the particle number
271 (measured by NTA). Normalized samples were loaded on pre-casted 4-12% Bis-Tris protein gels
272 (Invitrogen) with a suitable molecular weight marker (10-180 kDa) and loading controls, i.e.,
273 either BH or cell lysate. After the electrophoretic separation in MES/SDS buffer (0.5 M MES, 0,5
274 M Tris base, 1% SDS, and 9.6 mM EDTA), proteins were transferred by wet-blotting with Tris-
275 Glycine buffer (250 mM Tris base, 1.92 M Glycine and 10% methanol) onto a nitrocellulose
276 membrane (BioRad). After completion of the transfer, the total amount of protein was detected
277 using the RevertTM 700 Total Protein Stain Kit (LI-COR) and the Odyssey DLx imaging system
278 (LI-COR) according to the manufacturer's manual. Subsequently, membranes were blocked for
279 1 h at room temperature (RT) with 5% non-fat dry milk diluted in TBS-T buffer (100 mM Tris
280 base, 1.4 M NaCl, and 1% Tween-20 at pH = 7.4). Membranes were incubated overnight with
281 primary antibodies at 4°C on a shaking platform. These primary antibodies in a dilution of 1:1,000
282 were used: 14-3-3 (#9636S, Cell Signaling), ADAM10 (#ab124695, Abcam), Alix (#92880S, Cell
283 Signaling), CD81 human-specific (D3N2D) (#56039S, Cell Signaling) and mouse-specific
284 (D502Q) (#10037S, Cell Signaling), CD9 (#13403S, Cell Signaling or #ab92726, Abcam),
285 Flotillin-1 (#610820, BD Biosciences), Flotillin-2 (#ab96507, Abcam), GM130 (#610822, BD
286 Biosciences or #ab52649, Abcam), Laminin A/C (#SAB4200236, Merck or #ab108595, Abcam),
287 LRP-1 (#ab92544, Abcam), PrP clone POM1 (#MABN2285, Merck), PrP clone EP1802Y
288 (#ab52604, Abcam), PrP clone 6D11 (#808002, BioLegend) and PrP clone 3F4 (#MAB1562,
289 Merck). The next day, corresponding HRP-conjugated secondary antibodies (Anti-Rabbit,
290 #W4011 and Anti-Mouse #W4021, both from Promega) were incubated (1:4,000) for 1 h at RT
291 in 5% non-fat dry milk (in TBS-T buffer). Detection was performed with Pierce ECL Pico or
292 Femto substrate (Thermo Fisher Scientific) using the Chemidoc XRS+ imaging system (BioRad).

293 **Protein extraction and tryptic digestion of EVs for mass spectrometry analysis**

294 EV samples were diluted 1:1 in 100 mM triethyl ammonium bicarbonate (TEAB), and 1% w/v
295 sodium deoxycholate (NaDoC) and dissolved to a concentration of 70% Acetonitrile (ACN). 2
296 μ g carboxylate modified magnetic beads (GE Healthcare Sera-MagTM) at 1:1

297 (hydrophilic/hydrophobic) in methanol were added following the SP3-protocol workflow
298 (Hughes *et al*, 2019). Samples were shaken at 1,400 rpm for 18 min at RT and placed on a
299 magnetic rack. The supernatant was removed, and magnetic beads were washed two times with
300 100% ACN and two times with 70% Ethanol. After resuspension in 50 mM ammonium
301 bicarbonate, disulfide bonds were reduced in 10 mM dithiothreitol for 30 min, alkylated in the
302 presence of 20 mM iodoacetamide for 30 min in the dark, and digested with trypsin (sequencing
303 grade, Promega) at 1:100 (enzyme: protein ratio) at 37°C overnight while shaking at 1,400 rpm.
304 Beads were dissolved in 95% ACN and shaken at 1,400 rpm for 10 min at RT to bind tryptic
305 peptides to the beads. On the magnetic rack, the supernatant was removed, and beads were washed
306 two times with 100% ACN. Elution was performed with 2% DMSO in 1% formic acid. The
307 supernatant was dried in a vacuum centrifuge and stored at -20 °C until further use.

308 **Peptide library generation with high pH fractionation**

309 Three human and three mouse brain homogenates were used for library generation. Protein
310 extraction was performed with 7 M urea, 2 M Thiourea, 4% CHAPS, 150 mM DTT, and 0.5%
311 Ampholyte. Lysates were concentrated to a final concentration of 4 mg/mL. For each sample, 50
312 µg of protein was subjected to tryptic digestion, following the SP3 protocol (Hughes *et al*, 2019).
313 Digests from different samples were combined before fractionation. In total, 50 µg of tryptic
314 peptides were used for High pH RP-HPLC using a 25 cm ProSwift™ RP-4H capillary monolithic
315 column (Thermo Scientific) on an Agilent 1200 series HPLC (high-pressure liquid
316 chromatography) system. A gradient was applied for a total of 45 min with a flow rate of 0.2
317 mL/min starting at 96.7% eluent A (10 mM NH₄HCO₃) and 3.3% eluent B (10 mM NH₄HCO₃ in
318 90% acetonitrile) for 5 min, rising to 38.5% B in 20 min and increasing to 95.0% in 1 min for 10
319 min and re-equilibrated to 3.3% B for 8 min. Thirty fractions were collected on an Äkta Prime
320 Plus fraction collector, pooled into 13 peptide library fractions, and dried in the vacuum
321 centrifuge.

322 **Liquid-chromatography-coupled tandem mass spectrometry (LC-MS/MS)**

323 Prior to LC-MS/MS analysis, EV samples and peptide library fractions were dissolved in 0.1%
324 FA to a final concentration of 1 µg/µL. For LC-MS/MS measurements, 1 µg tryptic peptides were
325 injected. Measurements of EV samples were performed on an orbitrap MS (QExactive, Thermo
326 Fisher) coupled to a nano-UPLC (Dionex Ultimate 3000 ultra-performance liquid
327 chromatography system, Thermo Fisher Scientific). Measurements of peptide library fractions
328 were performed on a quadrupole-ion-trap-orbitrap MS (Orbitrap Fusion, Thermo Fisher
329 Scientific) in orbitrap-orbitrap configuration. Chromatographic separation of peptides was
330 achieved with a two-buffer system (buffer A: 0.1% FA in ultrapure H₂O, buffer B: 0.1% FA in

331 ACN). Attached to the UPLC was a peptide trap (100 μ m \times 200 mm, 100 \AA pore size, 5 μ m
332 particle size, C18, Thermo Fisher Scientific) for online desalting and purification followed by a
333 25 cm C18 reversed-phase column (75 μ m \times 250 mm, 130 \AA pore size, 1.7 μ m particle size,
334 Peptide BEH C18, Waters). Peptides were separated using an 80-min gradient with linearly
335 increasing ACN concentration from 2% to 30% ACN in 65 minutes. Eluting peptides were ionized
336 using a nano-electrospray ionization source (nano-ESI) with a spray voltage of 1800 V,
337 transferred into the MS, and analyzed in data-dependent acquisition (DDA) mode. For each MS1
338 scan, ions were accumulated for a maximum of 240 ms or until a charge density of 1×10^6 ions
339 (AGC Target) was reached. Fourier-transformation-based mass analysis of the data from the
340 orbitrap mass analyzer was performed, covering a mass range of 400-1,200 m/z with a resolution
341 of 70,000 (at m/z = 200) for EV samples on the orbitrap MS and a resolution of 60,000 for peptide
342 library on the quadrupole-ion-trap-orbitrap MS in orbitrap-orbitrap configuration. Peptides with
343 charge states between 2+ and 5+ above an intensity threshold of 1×10^5 were isolated within a 2
344 m/z isolation window from each precursor scan and fragmented with a normalized collision
345 energy of 25% using higher energy collisional dissociation (HCD). MS2 scanning was performed
346 at a resolution of 15,000 for EV samples on the orbitrap MS and a resolution of 17,500 for peptide
347 library on the quadrupole-ion-trap-orbitrap MS in orbitrap-orbitrap configuration, covering a
348 mass range from 100 m/z and accumulated for 50 ms or to an AGC target of 1×10^5 . Already
349 fragmented peptides were excluded for 15 seconds.

350 **Raw data processing**

351 LC-MS/MS from DDA were searched with the Sequest algorithm integrated into the Proteome
352 Discoverer software (Version 2.4.1.15, Thermo Fisher Scientific) against a reviewed mouse
353 database obtained in October 2020, containing 17,053 entries and a reviewed human database,
354 obtained in June 2021, containing 20,386 entries. Carbamidomethylation was set as a fixed
355 modification for cysteine residues, and the oxidation of methionine and pyro-glutamate formation
356 at glutamine residues at the peptide N-terminus, as well as acetylation of the protein N-terminus,
357 were allowed as variable modifications. A maximum number of two missing tryptic cleavages
358 was set. Peptides between 6 and 144 amino acids were considered. A strict cutoff (FDR < 0.01)
359 was set for peptide and protein identification. LC-MS/MS from peptide library fractions were
360 handled in a separate processing step within the software. A multi-consensus workflow was
361 applied to sample and library files (.mgf) to generate a combined output and increase the protein
362 identification rate for individual samples through the feature mapper. Normalization was
363 performed in specific protein amount mode based on the EV marker proteins FLOT1, FLOT2,
364 CD9, CD63, CD37, CD81, CD82, CD151, PDCD6IP, TSG101, RAB1A, RAB1B, RAB2A,
365 RAB2B, RAB3A, RAB3B, RAB4A, RAB4B, RAB5A, RAB5B, RAB6A, RAB6B, RAB7A,

366 RAB7B, RAB8A, RAB8B, RAB9A, RAB9B, RAB10, RAB11B, ANXA1, ANXA2, ANXA3,
367 ANXA4, ANXA5, ANXA6, ANXA7, ANXA11. Protein abundances for individual samples were
368 exported and submitted to subsequent statistical analysis. Protein abundances for library fractions
369 were discarded. Data is available via ProteomeXchange with the identifier PXD045737.

370 **mRNA content analysis with nCounter® panels (Nanostring)**

371 Samples were processed in the panel without a previous RNA isolation, as published previously
372 (Bub *et al*, 2022). Briefly, BDEVs were isolated from human brain tissues, as explained before
373 (with and without collagenase), and fractions F1 and F2 of the same sample were pooled. PBS
374 was added to the pooled samples and pelleted again for 2 h at 120,000xg. After discarding the
375 PBS completely, the BDEVs were resuspended in 10 µL of RTL Lysis Buffer (Qiagen) diluted
376 1:3 in RNAse-free H₂O. 5 µL were loaded from each sample in the NanoString nCounter®
377 Neuropathology panel (#XT-CSO-HNROP1-12, NanoString Technologies).

378 **Statistical and bioinformatics analyses**

379 Statistical analysis was performed with GraphPad PRISM 8 (GraphPad Software, USA) or R.
380 Unless otherwise stated, data are plotted as the mean ± SEM. The normality of the distributions
381 in the NTA-derived results was checked using the Shapiro-Wilk test. If all the samples passed the
382 normality test, the Ordinary one-way ANOVA test and Bonferroni's multiple comparisons test
383 were performed to validate the statistical differences; if not, the non-parametrical Kruskal-Wallis
384 test was used.

385 For the statistical and bioinformatics analyses of the proteomics data sets, we mainly relied on
386 Perseus software (Max Planck Institute of Biochemistry, Martinsried, Germany) and various
387 packages in R. Proteins which had at least two valid values in at least one of the groups were kept
388 for further analysis. Initially, proteins with missing values were excluded from the Principal
389 component analyses and heatmaps. Each sample was then normalized by the median protein area
390 per sample, and paired comparisons using Student's *t*-test were performed using Perseus. Proteins
391 were considered to be significantly different in abundance if the Student's *t*-test-based *p*-value
392 was ≤ 0.05 and at least a 1.5-fold change in either direction was observed. Proteins were
393 considered uniquely present in a certain group when they were expressed in at least two out of
394 three replicates for that particular group and were simultaneously absent in the other group during
395 pairwise comparison.

396 Principal component analysis (PCA) was carried out using the prcomp function of the base R.
397 Resultant PCA plots were composed utilizing the ggplot2 (version 3.3.3; Wickham, H. 2016).

398 Hierarchical clustering and heatmaps were prepared using heatmap.2 function in the gplot package
399 (version 3.1.1. Warnes, G.R. et al, 2021). Correlation plots were prepared using ggcorrplot
400 package (version 0.1.4.; Kassambara, A. 2021). Pearson's coefficient values were obtained using
401 base R.

402 Gene ontology (GO) analyses were performed utilizing the clusterProfiler, enrichR, org.Hs.eg.db,
403 org.Mm.eg.db, and topGO packages. Overrepresentation analysis (ORA) was performed to find
404 associations of differentially upregulated proteins along with proteins uniquely detected in F1 (+
405 and -) and F2 (+ and -) individually with the GO category 'Cellular Components' with the
406 following analysis parameters: $p\text{-valueCutoff} = 0.05$, $q\text{-valueCutoff} = 0.2$, $\text{minGSSize} = 5$, and
407 $\text{maxGSSize} = 500$.

408 Proteins constituting the EV preparations were checked for their presence in the Vesiclepedia
409 database (Kalra *et al*, 2012; Pathan *et al*, 2019), using FunRich enrichment software (Pathan *et*
410 *al*, 2015) on 10th December 2023. Mouse proteins were compared to the human Vesiclepedia
411 database, as the corresponding mouse database was not supported on the FunRich platform.

412 For the nCounter[®] panel analysis, all initial statistical work-up was performed using nSolver
413 analysis software (version 4.0.70). For the downstream analyses of mRNA expression profiles,
414 genes with raw expression scores not exceeding the average plus two standard deviations of all
415 corresponding negative control probes were removed from the analysis. All expression values
416 below the 20 reads threshold were imputed to 20. Normalization was based on the tetraspanin
417 mRNAs present on the panel i.e. *CD14*, *CD33*, *CD34*, *CD4*, *CD40*, *CD44*, *CD68*, *CD8A*, and
418 *CD9*. All genes with no detection in any of the samples were excluded from the analysis. An
419 mRNA was considered differentially expressed if the corresponding absolute log2-fold change
420 ($\log_2\text{FC}$) was ≥ 0.584 and the $p\text{-value} \leq 0.05$. PCA, heatmaps, and correlation plots were prepared
421 as those for proteomics, as described above.

422 **Results**

423 **Collagenase treatment of brain homogenates impact on key BDEV proteins, including PrP^C**

424 In a previous study, our groups reported the enrichment of the proteolytically truncated PrP^C-C1
425 fragment (generated by physiological α -cleavage (Linsenmeier *et al*, 2017)) in BDEVs and
426 highlighted the proteolytic impact of the enzymatic tissue digestion (employed during BDEV
427 isolation) on the PrP^C-C1/f1PrP^C ratio (Brenna *et al*, 2020). In order to further examine this effect
428 we first digested mouse brain tissue with collagenase D and collagenase III, (both widely used in
429 EV isolation protocols from tissue e.g. (Su *et al*, 2021; Crescitelli *et al*, 2021)) (Figure 1a). Tissue
430 was lysed with PBS, and both low and high doses of collagenase D and III (high dose = 40 U/mL,

431 low dose = 10 U/mL) were used. As a control, we included non-digested homogenate with and
432 without the addition of protease inhibitors to exclude endogenous protease activity. The results
433 indicated that the enzymes cleaved the EV-related proteins Alix, CD9, and CD81, while 14-3-3,
434 ADAM10, LRP1, and Flotillin-1 remained unaffected (Figure 1b). Interestingly, GM130 clearly
435 disappeared in all the enzymatic treatments, highlighting its sensitivity to collagenase digestion.
436 We also conducted the same experiment using human brain tissue, which also demonstrated
437 protein pattern modifications in CD81 and Alix but not CD9, suggesting different effects of the
438 collagenases depending on the protein sequence variability among species (Supplementary Figure
439 S1a). We then specifically examined the effect of collagenase on PrP^C cleavage due to the
440 relevance of the different PrP^C forms in its physiological functions (reviewed in (Linsenmeier *et*
441 *al*, 2017; Mohammadi *et al*, 2023). After digestion, the homogenate was treated with PNGase to
442 remove the glycans and enable more clear distinctions in PrP^C patterns. Western blotting analysis
443 using two anti-PrP^C antibodies revealed two cleavage sites: one comparable to the physiological
444 α -cleavage and another artificially generated by collagenase in the N-terminal region (Figure 1c).
445 The same protein digestion pattern was observed when human brain homogenate was tested
446 (Supplementary Figure S1b). Uncropped blots and corresponding total protein staining are
447 included in Supplementary Figure S2a-b.

448 **Unlocking collagenase's impact on EVs: membrane EV proteins are Cleaved, whereas
449 intraluminal ones are spared**

450 To discard the possibility of artifact generation resulting from EVs isolation from a complex
451 system such as brain tissue, we examined the effect of collagenase D on isolated EVs from
452 cultured N2a cells (N2a-EVs). The N2a-EVs were isolated by filtration and ultracentrifugation
453 (Figure 1d). NTA analysis showed the usual size distribution with a concentration of $9.17 \times 10^{11} \pm$
454 1.54×10^{11} particles per mL with a mode size of 139.6 ± 2.13 nm (Figure 1e-f). The typical cup
455 shape of N2a-EVs was confirmed using TEM (Figure 1g).

456 N2a-EVs (3×10^{10}) were incubated with collagenase D (2 mg/mL, equivalent to 40 U/mL) for 30
457 min, and the resulting samples were subjected to western blot analysis. CD81 and PrP^C were found
458 to be clearly cleaved, generating “artificial” protein fragments, whereas the EV-luminal proteins
459 Alix and Flotillin-1 remained much less affected. These proteins, along with ADAM10, just
460 showed slightly lower levels due to either the disruption of EVs during isolation and the
461 collagenase digestion or the digestion continuing after the EV lysis for western blotting. In line
462 with this, we have previously observed that even a high concentration of protease inhibitors
463 cannot effectively prevent collagenase activity (unpublished data). The Golgi protein GM130 was
464 absent in all N2A-EV samples (Figure 1h). For uncropped blots and corresponding total protein
465 staining, see Supplementary Figure S2c.

467 These results highlight the effect of collagenase on unspecific trimming and degradation of EV-
468 associated and ND-related proteins, which could drastically affect downstream analyses and
469 functionality of isolated BDEVs.

470 **Characterization of a simplified and non-enzymatic BDEV isolation protocol**

471
472 In order to mitigate the protein cleavage effect of collagenase digestion, we tested the possibility
473 of isolating BDEVs with a reduced amount of collagenase D (0.5 mg/mL) and without
474 collagenase. Moreover, to reduce the protease activity, we also reduced the enzymatic digestion
475 time and included the addition of PI. We performed the BDEV isolation by slightly modifying a
476 previously published protocol to isolate EVs from tumor tissues (Crescitelli *et al*, 2021) as
477 schematically shown in Figure 2.

478 To evaluate the efficiency of our protocol in different systems, we isolated EVs from mouse and
479 human brain tissues. Each brain tissue sample was cut into two pieces (100-180 mg per piece):
480 one piece was isolated without the addition of collagenase (w/o), while the other underwent
481 isolation with collagenase (0.5 mg/mL). The BDEV characterization yielded consistent results in
482 both mouse and human samples (Figures 3 and 4). A clear expression of the positive EV markers
483 (EV+) Alix, CD81, and Flotillin-1 was observed with both protocols. However, CD81 and
484 Flotillin-1, as observed in Figure 1, exhibited distinct patterns in the presence of collagenase.
485 Moreover, the EV-negative marker Lamin A/C was not detected in any fraction, but GM130 was
486 present in F2 of the BDEVs isolated without collagenase, suggesting that its absence in the
487 collagenase-treated samples is due to digestion (as observed in Figure 1 for tissue homogenates).
488 Notably, PrP^C was predominantly found in F2 of mouse-derived BDEVs but distributed across
489 both fractions of the human BDEVs. Regardless of the source, PrP^C exhibited cleaved patterns in
490 the enzyme-based BDEVs samples, indicating an enriched PrP-C1-like fragment (Figures 4a and
491 5a) consistent with our observations in the brain homogenate digestion (Figure 1c). To determine
492 whether the proteolytic changes observed were directly linked to the enzymatic isolation, we
493 checked protein levels in the 10K pellet and the Pre-gradient BDEVs (Supplementary Figures S3a
494 and S4a). The PrP^C pattern was similar to the one observed in F1 and F2, with an enriched PrP-
495 C1-like fraction in the collagenase-based BDEVs. GM130 was observed in the enzyme-free
496 BDEVs samples, but not in the enzyme-based ones, again suggesting that the absence of GM130
497 in these samples is due to digestion (Supplementary Figures S3a and S4a). As expected, no EV
498 markers were detectable in the F3 and F4 fractions, and only a weak GM130 signal in the mouse
499 BDEV was observed (Supplementary Figures S3b and S4b). Uncropped blots and corresponding
500 total protein staining are presented in Supplementary Figure S5.

501 NTA revealed particle counts between $0.3\text{-}2.8 \times 10^8$ particles/mg of tissue in both mouse and
502 human isolates, indicating a comparable BDEV isolation yield (Figures 3b and 4b). In the case of
503 mouse BDEV, there were significantly more particles/mg in the F1 of collagenase samples ($F1^+$)
504 compared to the F1 enzyme-free samples ($F1^-$), while all other fractions had a very similar number
505 of particles ($F1^+ = 1.54 \times 10^8 \pm 2.06 \times 10^7$ part./mg; $F2^+ = 9.1 \times 10^7 \pm 1.52 \times 10^7$ part./mg; $F1^- = 6.4 \times 10^7$
506 $\pm 1.68 \times 10^7$ part./mg; and $F2^- = 9.9 \times 10^7 \pm 1.21 \times 10^7$ part./mg - $F1^+$ vs $F2^+$: $p = 0.201$; $F1^+$ vs $F1^-$: $**p$
507 $= 0.004$; $F1^+$ vs $F2^-$: $p = 0.46$; $F1^-$ vs $F2^+$: $p > 0.99$; $F1^-$ vs $F2^-$: $p = 0.61$; $F2^+$ vs $F2^-$: $p > 0.99$, Kruskal-
508 Wallis test) (Figure 3b). The NTA analysis also revealed no difference when comparing the same
509 fractions in terms of the size of the particles, exhibiting the usual size distribution (Figure 3d).
510 The only significant difference in particle size was detected between $F1^+$ and $F2^-$, which is
511 expected since the EVs are collected from different density fractions ($F1^+ = 149.1 \pm 3.7$ nm; $F2^+ =$
512 155.6 ± 4.8 nm; $F1^- = 153.4 \pm 8.5$ nm; $F2^- = 163.1 \pm 3.9$ nm - $F1^+$ vs $F2^+$: $p > 0.99$; $F1^+$ vs $F1^-$: $p =$
513 0.70 ; $F1^+$ vs $F2^-$: $*p = 0.043$; $F1^-$ vs $F2^+$: $p > 0.99$; $F1^-$ vs $F2^-$: $p > 0.99$; $F2^+$ vs $F2^-$: $p = 0.76$, Kruskal-
514 Wallis test) (Figure 3c).

515 Likewise, no differences were observed in terms of particle concentration of the human BDEVs
516 in any fraction ($F1^+ = 1.31 \times 10^8 \pm 2.78 \times 10^7$ part./mg; $F2^+ = 8.15 \times 10^7 \pm 1.68 \times 10^7$ part./mg; $F1^- =$
517 $6.55 \times 10^7 \pm 1.45 \times 10^7$ part./mg; and $F2^- = 9.77 \times 10^7 \pm 2.30 \times 10^7$ part./mg - $F1^+$ vs $F2^+$: $p = 0.66$; $F1^+$ vs
518 $F1^-$: $p = 0.22$; $F1^+$ vs $F2^-$: $p > 0.99$; $F1^-$ vs $F2^+$: $p > 0.99$; $F1^-$ vs $F2^-$: $p > 0.99$; $F2^+$ vs $F2^-$: $p > 0.99$,
519 Bonferroni's multiple comparison tests, Ordinary one-way ANOVA) (Figure 4b). Furthermore,
520 NTA revealed the usual size distribution of the human BDEV (Figure 4d), with a mode size just
521 significantly different between the $F2^+$ and the $F1^-$, which, is likely since they come from different
522 density fractions ($F1^+ = 148.6 \pm 5.9$ nm; $F2^+ = 131.4 \pm 5.0$ nm; $F1^- = 166.8 \pm 7.4$ nm; $F2^- = 152.0 \pm$
523 3.5 nm - $F1^+$ vs $F2^+$: $p = 0.37$; $F1^+$ vs $F1^-$: $p = 0.11$; $F1^+$ vs $F2^-$: $p > 0.99$; $F1^-$ vs $F2^+$: $***p = 0.0006$;
524 $F1^-$ vs $F2^-$: $p = 0.44$; $F2^+$ vs $F2^-$: $p = 0.09$, Bonferroni's multiple comparison tests, Ordinary one-
525 way ANOVA) (Figure 4c).

526 Overall, the NTA results demonstrated that using the collagenase-free protocol yields particles
527 with size distribution and concentration of particles per tissue weight similar to the samples
528 isolated with 0.5 mg/mL of collagenase D (Figure 4d).

529 Lastly, we characterized BDEVs by labeling them with negative staining (uranyl acetate) and
530 imaged them with TEM (Figures 3e and 4e). We observed the characteristic cup-shaped and
531 membranous EV structures in both fractions (F1 and F2), with no discernible differences between
532 the protocols or tissue origins. For a comprehensive illustration of the variety of BDEVs obtained
533 across fractions and protocols, please refer to Supplementary Figure S6, which presents a detailed
534 compilation of TEM images.

535 In order to assess if our protocols (with reduced collagenase or without any protease added)
536 obtained a different concentration of BDEV due to their reduced enzyme treatment, we compared
537 BDEVs (from mouse tissue) isolated with the reference protocol described by Crescitelli *et al*
538 with 2 mg/mL of collagenase D (with some minor modifications to adapt it to our equipment)
539 (Crescitelli *et al*, 2021). The isolated BDEVs expressed the EV markers Alix, CD81, and Flotillin-
540 1 but not the nuclear and Golgi markers Lamin A/C and GM130, respectively. However, as
541 described in Figure 3, CD81, Flotillin-1, and PrP^C showed clear cleaved protein patterns again
542 (Supplementary Figure S7a). The NTA analysis showed the characteristic size distribution in both
543 fractions (Supplementary Figure S7b), but no differences in concentration or size compared to
544 BDEVs isolated with less (0.5 mg/mL) or without collagenase (Supplementary Figure S7c-d).
545 These results demonstrate that our approaches do not result in a reduced BDEV yield.

546 **The non-enzymatic BDEV isolation protocol minimally impacts the EV-related proteome
547 but alters some proteins that may be associated with the EV membrane and corona**

548 To assess whether a different population of EVs was being isolated with and without collagenase,
549 we conducted a proteomic analysis of BDEVs from both mouse and human brain tissue samples
550 either isolated with 0.5 mg/mL of collagenase D or without enzymatic treatment. For the analysis,
551 we paid special attention to proteins known to be in the EV membrane and corona. Overall, the
552 major differences were observed between the F1 and F2 fractions in both instances, isolated with
553 the collagenase-free (F1⁻ and F2⁻) and with collagenase-based (F1⁺ and F2⁺) protocols, in both
554 mouse and human BDEVs (Figures 5, 6, 7, and 8).

555 No major differences were observed for the mouse BDEV (both F1 and F2) prepared with or
556 without collagenase, displaying high inter-group similarities in the proteomic profiles, as depicted
557 by protein abundance heatmaps and associated hierarchical clustering (Figures 5b and 5c). Out of
558 1,512 proteins found in F1⁻ and 1,893 found in F1⁺, 1,409 were common in both F1 samples, 103
559 were just found on the F1⁻, and 484 were unique for F1⁺. In the case of F2, from 2,139 proteins
560 found on F2⁻ and 1,843 in F2⁺, 1,726 were commonly found, 413 were just found in F2⁻, and 117
561 in F2⁺ (Figure 5a), thus following a similar pattern as F1.

562 PCA plots of commonly expressed proteins for F1⁻ and F1⁺ (principal component (PC)-1 and PC-
563 2 representing 75.4% and 13.2% of data variances, respectively) and correlation plots with high
564 Pearson's coefficient values highlight a high degree of overlap between their proteomic
565 compositions (Figures 5d and 5f). However, one F1⁻ sample behaved as an outlier, as depicted by
566 lower Pearson coefficient values (Figure 5f). Related to F2⁻ and F2⁺ (with PC-1 and PC-2
567 representing 86.1% and 7.5% of data variances, respectively), the correlation plot also displayed
568 resemblances in the proteomic profiles (Figures 5e and 5g).

569 When checked for bona fide EV marker proteins (defined by literature) between both F1 and F2
570 preparations no substantial changes between collagenase-free and collagenase-based methods
571 were observed, showing that the BDEV populations isolated were similar (Figures 6a and 6e). In
572 pairwise comparisons, 84 proteins were found to be relatively enriched in F1⁻, while 94 proteins
573 displayed lower expression in the F1⁻ samples (Figure 6b). The proteins with increased abundance
574 in the F1⁻ were strongly associated with the following GO terms (cell components): neuron to
575 neuron synapse (GO:0098984), postsynaptic density (GO:0014069), asymmetric synapse
576 (GO:0032279), postsynaptic specialization (GO:0099572), cytoplasmic region (GO:0099568),
577 synaptic vesicle membrane (GO:0030672), exocytic vesicle membrane (GO:0099501), synaptic
578 vesicle (GO:0008021), endoplasmic reticulum tubular network membrane (GO:0098826), and
579 transport vesicle membrane (GO:0030658) (Figure 6c); whereas proteins comparatively less
580 expressed in the F1⁻, were found associated with synaptic vesicle membrane (GO:0030672),
581 exocytic vesicle membrane (GO:0099501), coated vesicle (GO:0030135), proton-transporting V-
582 type ATPase complex (GO:0033176), transport vesicle membrane (GO:0030658), synaptic
583 vesicle (GO:0008021), clathrin-coated vesicle membrane (GO:0030665), transport vesicle
584 (GO:0030133), exocytic vesicle (GO:0070382), and vacuolar proton-transporting V-type ATPase
585 complex (GO:0016471) (Figure 6d).

586 In the context of F2⁻ versus F2⁺ comparison, 166 proteins were identified to be significantly more
587 abundant in F2⁻, and 336 proteins were found to be significantly under-represented in F2⁻
588 compared to F2⁺ BDEVs (Figure 6f). GO analysis revealed that the upregulated proteins in the
589 F2⁻ (and F2⁻ unique proteins) were highly associated with transport vesicle (GO:0030133),
590 synaptic vesicle (GO:0008021), SNARE complex (GO:0031201), transport vesicle membrane
591 (GO:0030658), exocytic vesicle (GO:0070382), spliceosomal complex (GO:0005681), catalytic
592 step 2 spliceosome (GO:0071013), synaptic vesicle membrane (GO:0030672), exocytic vesicle
593 membrane (GO:0099501), and endocytic vesicle membrane (GO:0030666); where the down-
594 regulated proteins were majorly associated with vacuolar membrane (GO:0005774), lysosomal
595 membrane (GO:0005765), lytic vacuole membrane (GO:0098852), endoplasmic reticulum
596 protein-containing complex (GO:0140534), focal adhesion (GO:0005925), cell-substrate junction
597 (GO:0030055), melanosome (GO:0042470), pigment granule (GO:0048770), dendritic spine
598 (GO:0043197), and neuron spine (GO:0044309) (Figures 6g and 6h).

599 In the case of human BDEVs, hierarchical clustering of the proteomic profiles of the BDEV
600 isolated with the two methods and in both F1 and F2, described a close inter-group similarity, as
601 shown in the protein abundance heatmaps (Figures 7b and 7c). Out of 1,899 proteins identified in
602 F1⁻ and 2,204 found in F1⁺, 1,794 were common in both F1 samples, 105 were exclusively found
603 in F1⁻, and 410 were unique for F1⁺. In the case of F2, similar trends were found: from 1,905

604 detected proteins in F2⁻ and 2,158 in F2⁺, 1,754 were commonly found, 151 were just in F2⁻, and
605 404 in F2⁺ (Figure 7a). In the PCA, BDEVs from F1 (F1⁻ and F1⁺) and F2 (F2⁻ and F2⁺) exhibited
606 close clustering (Figures 7d and 7e) along with high Pearson's correlation coefficient values
607 (Figures 7f and 7g), highlighting that only subtle differences could be observed among the
608 collagenase-free and collagenase-based preparations.

609 As observed with the mouse-derived BDEVs, no expression variations for the bona fide EV were
610 found between the collagenase-free and collagenase-based human BDEV in both the F1 and the
611 F2, validating again the isolation of similar BDEV populations (Figures 8a and 8e). We found
612 that there were 191 proteins relatively more abundant in the F1⁻, and 38 were relatively
613 downregulated in F1⁻ compared with the F1⁺ samples (Figure 8b). Related to gene ontology
614 analysis, we found that proteins abundant in the F1⁻ were associated prominently with the
615 postsynaptic specialization (GO:0099572), postsynaptic density (GO:0014069), transport vesicle
616 (GO:0030133), asymmetric synapse (GO:0032279), synaptic vesicle (GO:0008021), cell cortex
617 (GO:0005938), neuron to neuron synapse (GO:0098984), exocytic vesicle (GO:0070382),
618 microtubule (GO:0005874), transport vesicle membrane (GO:0030658) (Figure 8c). Whereas the
619 proteins that were abundantly present in the F1⁺ samples were associated majorly with the inner
620 mitochondrial membrane protein complex (GO:0098800), mitochondrial protein-containing
621 complex (GO:0098798), mitochondrial inner membrane (GO:0005743), respiratory chain
622 complex (GO:0098803), mitochondrial respirasome (GO:0005746), respirasome (GO:0070469),
623 mitochondrial respiratory chain complex I (GO:0005747), NADH dehydrogenase complex
624 (GO:0030964), respiratory chain complex I (GO:0045271), oxidoreductase complex
625 (GO:1990204) (Figure 8d).

626 Likewise, 192 proteins were significantly upregulated in F2⁻, and 68 proteins were downregulated
627 in F2⁻ compared to F2⁺ BDEVs (Figure 8f). For F2⁻ BDEVs associations with postsynaptic
628 specialization (GO:0099572), postsynaptic density (GO:0014069), asymmetric synapse
629 (GO:0032279), synaptic vesicle (GO:0008021), neuron to neuron synapse (GO:0098984),
630 exocytic vesicle (GO:0070382), cell cortex (GO:0005938), neuron projection cytoplasm
631 (GO:0120111), synaptic vesicle membrane (GO:0030672), and exocytic vesicle membrane
632 (GO:0099501) were observed (Figures 8g). Proteins relatively enriched in the F2⁺ were
633 prominently associated with mitochondria i.e., inner mitochondrial membrane protein complex
634 (GO:0098800), mitochondrial inner membrane (GO:0005743), mitochondrial protein-containing
635 complex (GO:0098798), respiratory chain complex (GO:0098803), mitochondrial respirasome
636 (GO:0005746), respirasome (GO:0070469), oxidoreductase complex (GO:1990204),
637 mitochondrial respiratory chain complex I (GO:0005747), NADH dehydrogenase complex
638 (GO:0030964), and respiratory chain complex I (GO:0045271) (Figures 8h).

639 To further validate our method and assess the concordance with known EV-associated proteins,
640 we compared the proteins detected in the F1 and F2 BDEVs samples (both +/- and human/mouse-
641 derived) with protein entries of the Vesiclepedia database (Kalra *et al*, 2012; Pathan *et al*, 2019).
642 For mouse BDEVs, the protein make-up (both F1 and F2) showed around 90% overlap (i.e. F1⁻:
643 91.69%; F1⁺: 89.89%; F2⁻: 92.24%; and F2⁺: 90.50%), with the Vesiclepedia database protein
644 entries (Supplementary Figure S8a). Similarly, for human BDEVs, we found that over 90% of the
645 proteins detected in F1⁻ (91.83%) and F1⁺ (90.89%) as well as F2⁻ (91.82%) and F2⁺ (91.30%),
646 have been previously reported to be associated with EVs (Supplementary Figure S8b).

647 **The mRNA analysis showed no differential expression comparing protocols, indicating a
648 comparable mRNA BDEV content.**

649 With the previous experiments, we demonstrated that the isolated BDEV populations with and
650 without collagenase were similar in terms of protein composition. To investigate
651 similarities/differences among the BDEV preparations further, we then employed the Nanostring
652 nCounter® Neurodegeneration panel to assess mRNA composition using the same protocol as
653 previously described (Bub *et al.*, 2022). For the analysis, we pooled F1 and F2 human BDEVs in
654 both instances, isolated with (0.5 mg/mL) and without collagenase. Heatmaps and correlation plot
655 analysis show no significant differences in mRNA expression profiles between collagenase-free
656 and collagenase-based BDEVs since they did not cluster following the procedure used to isolate
657 them (Figures 9a and 9b). The PCA plot indicates an overall similarity in the mRNA expression
658 profiles of the data, although one of the collagenase-free samples was considered an outlier
659 (Figure 9c). In essence, only two mRNA transcripts, *INA* and *SYT1*, were overrepresented, while
660 three transcripts, *MOG*, *RING1*, and *PARP1*, were found to be deficient in the BDEV⁻, as depicted
661 by the volcano plot (Figure 9d). In sum, these mRNA profiles further validate the similarities of
662 the BDEV content isolated using both methods.

663 **Discussion**

664 In this study, we further investigated our observation that collagenase-based BDEV isolation
665 leads to artificial cleavage of PrP^C (Brenna *et al*, 2020), to other EV markers such as CD81 and
666 Flotillin-1. Our experiments involving collagenase treatment on mouse and human brain
667 homogenates, on BDEVs, and on N2a-EVs confirm that the altered protein cleavage can be
668 directly attributed to collagenase treatment. Our approach was to use a recently published protocol
669 to isolate BDEVs from tissue with some modifications (Crescitelli *et al*, 2021) and compare
670 samples isolated with a lower amount of enzymatic digestion with collagenase D (0.5 mg/mL) or
671 no enzymatic digestion at all. We could demonstrate that without using collagenase D, we could
672 still isolate BDEVs with high yield and purity, with the advantage of preserving protein integrity

673 on the membrane. Our proteomic and mRNA expression analysis further validated that the new
674 approach yields the same BDEV population as with the low collagenase-based isolation.

675 One of the initial interactions that EVs engage in after biogenesis is with the extracellular matrix
676 (ECM), where EVs gain additional surface proteins (the so-called corona) through various
677 chemical and biophysical mechanisms, including hydrogen and covalent bonding (Debnath *et al*,
678 2023). This corona bestows EVs with different biological properties (Tóth *et al*, 2021; Wolf *et al*,
679 2022). One of the key considerations in EV isolation from tissue is the trade-off between efficient
680 releasing EVs from the ECM while avoiding intense cell and EV breakage, which can contaminate
681 the EV preparations with cell debris and intracellular vesicles, and vesicle-like structures such as
682 endosomes, lysosomes, Golgi-derived vesicles, and nuclear fractions. For this reason, it is crucial
683 not to use a harsh tissue homogenization process and a specific separation procedure to separate
684 the EVs from the cell debris (e.g., density-based gradients and differential centrifugation). The
685 EV isolation from brain tissues includes the use of proteases of different types to help in this
686 process, such as collagenases and papain (Vella *et al*, 2017; Cheng *et al*, 2018; Su *et al*, 2021;
687 D'Acunzo *et al*, 2021), to break down the associations of EVs with the ECM and release them
688 (Debnath *et al*, 2023). However, these proteases, due to their exo-proteolytic activity, could also
689 induce unwanted protein cleavages (Duarte *et al*, 2016), leading to unwanted degradation or
690 trimming of EVs-associated proteins possibly affecting both their experimental analysis and
691 physiological behavior.

692 Enzymatic dissociation is the method of choice for preparing primary cultures from tissue and
693 has been studied in detail to ensure the perfect balance between the optimal isolation of cells and
694 minimal artificial modification. For instance, previous studies have explored the effects of such
695 enzymatic-based isolation protocols in various cell types and tissues: satellite stem cells from
696 muscle tissue (Miersch *et al*, 2018), mesenchymal stem/stromal cell isolation from umbilical cord
697 tissue (Taghizadeh *et al*, 2018), adipose-derived stem cells (Koellensperger *et al*, 2022),
698 chondrocytes from cartilage (Hidvegi *et al*, 2006), T cells from spleen and lung tissue (Liu *et al*,
699 2018) and neurons and glial cells from brain cortex (Panchision *et al*, 2007; Mattei *et al*, 2020;
700 Hu *et al*, 2022). Similarly, O'Flanagan *et al*. reported that the collagenase digestion for
701 dissociating solid tumor tissues triggers a stress response that alters the transcriptome of the
702 isolated cancer cells (O'Flanagan *et al*, 2019). In line with this, Mattei *et al*. described that the
703 enzymatic digestion of fresh brain tissue induces critical and consistent alterations in the proteome
704 and transcriptome of neuronal and glial cells (Mattei *et al*, 2020). These studies highlight the
705 impact of diverse enzyme-based cell isolation protocols on surface proteins that critically affect
706 downstream flow cytometry analysis (Taghizadeh *et al*, 2018; Liu *et al*, 2018; O'Flanagan *et al*,

707 2019; Mattei *et al*, 2020). This relates to our findings concerning EV-membrane proteins such as
708 CD81 and PrP^C and demonstrates the relevance of enzyme-free isolation.

709 Among the proteins that are altered with the collagenase D treatment we found CD81, which
710 shows two bands after enzyme-based isolation, which disappear when using the enzyme-free
711 protocol. The concrete role of CD81 on EVs is still not fully understood, and it seems to be
712 dependent on the cell origin of the vesicles. However, CD81 has been related to crucial
713 intracellular processes such as immune activation (e.g., CD81 forms a complex with the receptor
714 CD9 that is critical for B cell development and activation) (Susa *et al*, 2021; Toribio & Yáñez-
715 Mó, 2022; Fan *et al*, 2023), functions that could be affected by its pruning when isolating the EVs
716 with enzymes. Similarly, the enzymatic digestion could also explain the double band observed
717 for Flotillin-1, although we did not observe this effect in the digested brain homogenate. This may
718 suggest a lower affinity of the collagenase D to digest this protein in a highly concentrated sample
719 as the brain homogenates compared to the EV fraction, where Flotillin-1 is highly enriched.

720 Our focus of research is on the role of PrP^C on EVs in the context of neurodegenerative diseases
721 (Falker *et al*, 2016; Heisler *et al*, 2018). Therefore, it was crucial for us to study how to preserve
722 PrP^C's integrity in BDEVs. PrP^C is a GPI-anchored membrane protein, but it is also found in the
723 extracellular space as soluble forms and on EVs (Matamoros-Angles *et al*, 2023). The first
724 evidence of the PrP^C's presence on EVs was described almost two decades ago (Fevrier *et al*,
725 2004). After that, several publications have shown the important role of the EV-PrP^C in many
726 functions related to brain pathophysiology, such as neuroprotection after ischemic conditions
727 (Guitart *et al*, 2016), lysosomal-exosomal trafficking in neurons (Heisler *et al*, 2018), EV uptake
728 (Brenna *et al*, 2020; D'Arrigo *et al*, 2021), and neurite outgrowth (Gonias *et al*, 2022). PrP^C
729 experiences endogenous post-translational modifications and cleavages that generate several
730 physiological PrP isoforms, both, membrane-anchored and released to the extracellular space that
731 exert different functions. The two most frequent processes are the α -cleavage, produced by a still
732 unknown protease, in the central part of the protein, generating two structurally different parts,
733 and the shedding of PrP^C, which is mediated by ADAM10 (see (Linsenmeier *et al*, 2017;
734 Mohammadi *et al*, 2023). The enzymatic digestion induced by the collagenase in brain
735 homogenates is similar but not identical to the naturally occurring alpha-cleavage since an
736 additional larger fragment is formed in the case of collagenase treatment. However, we cannot
737 exclude that this observed additional fragment is an intermediate form generated in a two-step
738 process, and, therefore. The latter increases the α -cleavage-like processing of PrP^C on EVs
739 (therefore increasing the amount of C1 fragment attached to the EVs, although they are already
740 physiologically enriched in PrP-C1 as shown (Brenna *et al*, 2020). Moreover, this artificial
741 modification observed here would induce the release of the N-terminal part of PrP^C, which

742 typically interacts with diverse ligands, potentially modulating their functions (see (Shafiq *et al*,
743 2022)), such as synaptic receptors in epilepsy (Carulla *et al*, 2011), the beta-amyloid in
744 Alzheimer's disease (Laurén *et al*, 2009; Resenberger *et al*, 2011; Falker *et al*, 2016), the α -
745 synuclein in Parkinson models (Urrea *et al*, 2018) or the misfolded PrP in Prion diseases
746 (Turnbaugh *et al*, 2011). Moreover, the lack of this N-terminal part could also affect the
747 interaction of EVs with recipient cells and their uptake since it has been shown that PrP^C
748 expression modulates the EV uptake (Brenna *et al*, 2020). Therefore, any functional analysis
749 aiming to study PrP^C on EVs needs to ensure the physiological composition of the various PrP
750 forms, avoiding any undesired proteolytic processes to preserve their function completely and
751 prevent any bias in the downstream experiments.

752 Surprisingly, we observed a GM130 positive signal when BDEVs were isolated without enzymes.
753 Our results with brain homogenates treated with collagenases (III and D) demonstrate that the
754 GM130 “disappearance” is directly connected to collagenase digestion. Moreover, in our isolation
755 controls, the 10K pellet (containing large EVs) and the pre-gradient BDEVs, already show a
756 negative signal, highlighting that the digestion is previous to the small BDEV purification.
757 However, GM130 was not detectable in the isolation of EVs from cell culture media of N2a cells.
758 One possibility is that, on some occasions, GM130 is present in some BDEV subpopulations.
759 However, our proteomic data contradicted this idea as it showed that the EV populations that we
760 isolated with and without collagenase are quite similar. Another possibility is that GM130 is
761 released during the tissue preparation from disrupted cells, sticking to the EV corona and that
762 collagenase is degrading this extracellularly released GM130. The fact that we do not see it in the
763 isolation of EVs from media (without significant cell disruption and not using collagenase) or in
764 the isolation of EVs from blood (data not shown), would speak more in this direction. However,
765 given the fact that the presence of GM130 has been described in at least 20 entries of mass
766 spectrometry data in Vesiclepedia (Kalra *et al*, 2012; Pathan *et al*, 2019), we cannot completely
767 rule out the possibility that, in some instances, GM130 can be present in EVs.

768 In conclusion, our results show that collagenase D treatment leads to the degradation of specific
769 membrane proteins in BDEVs and suggest that caution should be taken into account when using
770 enzymes for EV isolation from complex tissue such as the brain. Overall, BDEVs isolated without
771 collagenase show a comparable purity compared to the ones isolated with a lower amount of
772 collagenase. Moreover, isolation approaches obtained a similar EV population enrichment with
773 just some minor proteomic and mRNA differences. The relevant advantage of this approach is
774 that some key proteins at the EV membrane are not artificially cleaved, allowing more
775 physiological functional EV studies. However, further studies are needed to fully characterize the

776 isolated BDEVs to understand the biological implications of our findings and to explore their
777 potential applications in various disease contexts.

778 **Acknowledgments**

779
780 The authors would like to thank Prof. Dr. Lucie Carrier, Saskia Schlossarek, and Elisabeth Krämer
781 from the Nanostring Core Facility of the University Medical Center Hamburg-Eppendorf (UKE)
782 for their help and sample analysis with the nCounter® panel. Figures 1 and 2 were created with
783 BioRender.com.

784 **Authors' contributions**

785
786 AM-A, EK, and MS performed most of the experiments and data collection and wrote the original
787 draft. MS did the bioinformatic analysis of all Proteomics and nCounter® data. The BDEV
788 isolation, protocol optimization, and BDEV characterization, N2a-derived experiments were done
789 mainly by AM-A and EK, with the technical help of FS, BM, and MS. HCA, SB, and BP provided
790 advice and expertise about the BDEV isolation protocol and derived techniques, being
791 indispensable for starting the project. The TEM was performed by MSc and CS, together with the
792 hands-on of EK, AM-A, and MS. IF provided the human samples included in this project. BS,
793 HV, and HS performed the biochemical processing of the proteomic analysis and provided the
794 proteomic raw data. AM-A, MS, and MG designed and supervised the project. BP, MK, SB,
795 HCA, BM, and MG provided critical feedback during the entire project development and edited
796 the manuscript. All authors reviewed the manuscript and read and approved the final version.

797 **Declaration of Interest Statement**

798 The authors declare no conflict of interest.

799 **Funding**

800 AM-A's contributions are supported by the European Union's Horizon 2020 research and
801 innovation program through the Marie Skłodowska-Curie grant agreement N° 101030402. FS is
802 supported by the China Scholarship Council (No. 202108080249). Additionally, MS and MG
803 express their gratitude for financial support from various sources: the Joachim Herz Stiftung in
804 Hamburg, Germany; the PIER Hamburg/Boston seed grant (PHM-2019-03) and PIER seed grant
805 (PIF 2020-10) from the University of Hamburg, Germany, for MS; and the
806 Forschungsförderungsfonds der Medizinischen Fakultät grant (NWF-20/10) from the University
807 Medical Center Hamburg-Eppendorf, Germany, for MS. HCA was supported by the CJD
808 Foundation (USA) and the Alzheimer Forschung Initiative e.V. (AFI, Germany).

809 **Figure Captions**

810 **Figure 1: Collagenase digestion induces undesired cleavage of EV-relevant proteins in both**
811 **brain tissue and cell-derived EVs.**

812 (a) Schematic drawing depicting the collagenase treatment in brain tissue. One mouse hemisphere
813 was dissected and homogenized manually in PBS. Subsequently, 100 μ L of homogenate
814 underwent treatment with collagenase D and collagenase III at either high (40 U/mL) or low (10
815 U/mL) concentrations and was then incubated for 30 min at 37°C before being subject to western
816 blotting analysis. (b) Representative western blots of relevant proteins used as EV markers after
817 collagenase treatment. In the left panel, LRP1, Flotillin-1, and 14-3-3 remained unaffected by
818 both collagenase treatments, but ADAM10 amounts were diminished with collagenase III.
819 However, in the right panel, Alix, CD9, and CD81 are visibly cut, producing lower fragments
820 (indicated by green arrowheads). Likewise, GM130 (purple arrowhead) was also found to be
821 digested by collagenase treatments. Non-digested samples with protease inhibitors (PI) and
822 without were used as controls. (c) PrP^C patterns after collagenase treatment with and without
823 PNGase digestion were detected by POM1 and 6D11 antibodies. The N-glycan removal shows
824 exacerbated PrP-C1-like (blue arrowhead) and PrP-N1-like (purple arrowhead) fragments, and an
825 artificially generated shorter full-length PrP^C (green arrowheads). (d) Schematic drawing
826 depicting the isolation and collagenase treatment of N2a-EVs. EVs were isolated by differential
827 centrifugation and filtration ($n = 9$). Then, the samples were divided into two tubes, each
828 containing 3.0×10^6 EVs, and treated with collagenase D (2 mg/mL, 40 U/mL) or untreated before
829 30 min incubation at 37°C followed by western blotting analysis. (e) Representative size
830 distribution graph from NTA analysis before treatment. (f) The concentration of particles per mL
831 and mode size analysis (in nm) of N2a-EVs were measured with NTA ($n = 9$). (g) Representative
832 TEM images of N2a-EVs. (h) Representative western blotting of N2a-EVs ($n = 3$ each) treated
833 with collagenase D. N2a cell lysate was used as a loading control. The outer-membrane proteins
834 CD81 and PrP^C are altered, but not ADAM10, and the luminal markers Flotillin-1 and Alix. Data
835 are presented as mean \pm S.E.M. in (f). Figure created with BioRender.com.

836 **Figure 2: Simplified non-enzymatic BDEV isolation protocol.**

837 Schematic representation of the new enzyme-free BDEVs isolation protocol: the brain tissue was
838 manually minced in RPMI media and transferred to a new tube where a DNase I treatment was
839 carried out at 37°C for 30 min. The reaction was stopped by adding a protease inhibitor cocktail.
840 Then differential centrifugation was applied (200xg, 2,000xg, and 10,000xg), and the BDEV-
841 containing supernatant was diluted in PBS. The BDEVs were pelleted and washed at 120,000xg
842 before being separated in an iodixanol-based gradient at 185,000xg. Fractions were collected, and

843 the F1 and F2 (which mainly contained the BDEVs) were washed in PBS and pelleted at
844 120,000xg. Figure created with BioRender.com.

845 **Figure 3: BDEV isolation from mouse brain tissue without enzymatic digestion maintains**
846 **BDEV purity and prevents artificial proteolytic processes.**

847 (a) Western blots of F1 and F2 BDEVs samples isolated from mouse brain tissue, with or without
848 the addition of 0.5 mg/mL of collagenase D ($n = 3$ for each condition), were labeled for PrP^C, the
849 EV positive markers Alix, Flotillin-1, and CD81 as well as for the Golgi and nucleus markers,
850 GM130 and Lamin A/C as EV negative markers. The green arrowheads indicate the artificial
851 cleavage observed in the proteins PrP^C, CD81, and Flotillin-1, while the purple arrowhead denotes
852 the unexpected presence of GM130. A total mouse brain homogenate (BH) served as a control.
853 The concentration of particles per mg of initial tissue (b) and mode size analysis in nm (c) of
854 BDEVs obtained with both protocols were measured with NTA ($n = 9$ for each condition). No
855 differences in the particle mode size were observed between the same fraction in both protocols
856 (just the F1⁺ has smaller EVs than F2⁻), but the F1⁻ displayed significantly fewer particles/mg of
857 tissue than the F1⁺. (d) Representative size distribution graphs from NTA analysis of F1 and F2
858 BDEVs show the expected normal-like distribution. (e) TEM images of negative stained BDEV
859 showing the typical double membrane and cup shape. Small BDEVs are indicated with
860 arrowheads, while larger vesicles are marked with asterisks (*). Scale bar = 500 nm. Data are
861 presented as mean \pm S.E.M. in (b) and (c).

862 **Figure 4: BDEV isolation from human brain tissue without enzymatic digestion maintains**
863 **BDEV purity and prevents artificial proteolytic processing.**

864 (a) Representative western blots of F1 and F2 BDEVs samples isolated from human brain tissue,
865 with or without the addition of 0.5 mg/mL of collagenase D ($n = 3$ for each condition), for PrP^C,
866 the EV positive markers Alix, Flotillin-1, and CD81 and the Golgi and nucleus markers, GM130
867 and Lamin A/C, as EV negative markers. The green arrowheads indicate the artificial cleavage
868 observed in the proteins PrP^C, CD81, and Flotillin-1, and the “unexpected” bands for GM130
869 (indicated by purple arrowhead). A total human brain homogenate (BH) was used as a loading
870 control. The concentration of particles per mg of initial tissue (b) and mode size analysis in nm
871 (c) of BDEVs obtained with both protocols were measured with NTA ($n = 9$ for each condition).
872 No differences were observed in the particle concentration between both protocols, however, the
873 F2⁺ has a significantly larger particle size than the F1⁻. (d) Representative size distribution graphs
874 from NTA analysis of F1 and F2 BDEVs show the expected normal-like distribution. (e) TEM
875 images of negative stained BDEV illustrating the typical double membrane and cup shape. Small

876 BDEVs are indicated with arrowheads, and larger vesicles are marked by the asterisks (*). Scale
877 bar = 500 nm. Data are presented as mean \pm S.E.M. in (b) and (c).

878 **Figure 5: Systematic analysis of mouse BDEV proteomes: no major differences are observed**
879 **between BDEVs isolated enzyme-free or with collagenase D.**

880 The proteomes of mouse BDEVs isolated using the collagenase-free method (indicated with ‘-’)
881 and those with the collagenase-based protocol (labeled as ‘+’) were analyzed systematically (n =
882 3 for each condition). (a) Venn diagrams display a high compositional overlap between F1⁻ and
883 F1⁺ as well as between F2⁻ and F2⁺. 1,512 proteins were found in F1⁻, 1,893 in F1⁺, 2,139 in F2⁻
884 and 1,843 in F2⁺. A total number of 1409 proteins were found common between F1⁻ and F1⁺,
885 where 103 proteins were uniquely present in F1⁻ and 484 proteins were uniquely found in F1⁺. In
886 the case of F2, 1,726 were found to be common, 413 proteins were found uniquely in F2⁻ and 117
887 proteins were only present in F2⁺. Heatmaps displaying protein abundances (column z-score) of
888 F1⁻ compared to F1⁺ (b) and F2⁻ versus F2⁺ (c). Scatter plots showing principal component
889 analysis (PCA) of the proteomic composition of mouse BDEVs prepared using the two protocols
890 for F1 (d) and F2 (e). Correlation plots highlighting the similarities between F1 (- vs +) (f) and
891 F2 (- vs +) (g). The color key represents variations in Pearson’s correlation coefficient values.

892 **Figure 6: No significant differences in bona fide EV marker proteins were observed when**
893 **comparing the proteomic profiling of BDEVs isolated from mouse brain tissue in density**
894 **fractions 1 and 2 prepared with or without collagenase.**

895 (a) Plot showing normalized expression values of 21 bona fide EV marker proteins. No significant
896 differences were found between the col+ or col- samples. (b) Volcano plot showing proteins
897 relatively down (shown in blue) and up-regulated (shown in yellow) in F1⁻ compared to F1⁺. 84
898 proteins were found to be overexpressed, and 94 proteins were found to be downregulated in F1⁻
899 compared to F1⁺, as shown in the column graph associated with the volcano plot. The intercepts
900 on the x-axis indicate the cut-offs for expression changes, set at -1.5 fold for down-regulation and
901 +1.5 fold for up-regulation. The intercept on the y-axis marks the cut-off set for a *p*-value of 0.05.
902 (c and d) Dot plots depicting the top 10 cellular component categories linked to proteins up (c)
903 and downregulated (d) in F1⁻. These categories are based on gene ontology terms, and the color
904 key indicates the adjusted *p*-values resulting from the over-representation analysis. (e)
905 Normalized expression values of the bona fide EV marker proteins. (f) Volcano plot showing
906 proteins relatively under-represented (shown in blue) and up-regulated protein (shown in yellow)
907 in F2⁻. 166 proteins were found to be more abundant, and 336 proteins were found to be less
908 expressed in F2⁻ when compared to F2⁺. The intercepts along the x-axis represent the thresholds
909 for expression changes: -1.5 fold for down-regulation and +1.5 fold for up-regulation. Meanwhile,

910 the intercept on the y-axis indicates the threshold set for a p-value of 0.05. (g and h) Dot plots
911 depicting the top 10 cellular component categories linked to proteins up (g) and downregulated
912 (h) in F2⁻. These categories are based on gene ontology terms, and the color key indicates the
913 adjusted p-values resulting from the over-representation analysis.

914 **Figure 7: No major differences in the proteomic analysis of BDEVs from human samples**
915 **comparing isolation with and without collagenase.**

916 The proteomes of human-BDEVs isolated using the collagenase-free method (indicated with ‘-’)
917 and those with the collagenase-based protocol (labeled as ‘+’) were analyzed systematically (n =
918 3 for each condition). (a) Venn diagrams display a high compositional overlap between F1⁻ and
919 F1⁺ as well as between F2⁻ and F2⁺. A total of 1,794 proteins were found common between F1⁻
920 and F1⁺, where 105 proteins were uniquely present in F1⁻ samples and 410 proteins were uniquely
921 found in F1⁺. In the case of F2, 1754 were found common between F2⁻ and F2⁺. 151 proteins were
922 found uniquely in the F2⁻ group and 404 proteins were only present in the F2⁺. Heatmaps
923 displaying protein abundances (column z-score) of F1⁻ compared to F1⁺ (b) and F2⁻ versus F2⁺
924 (c). Scatter plots showing principal component analysis (PCA) of the proteomic composition of
925 mouse-derived BDEVs prepared using the two protocols for F1 (d) and F2 (e). The correlation
926 plots highlight the similarities between F1 (- vs +) (f) and F2 (- vs +) samples (g). The color key
927 represents variations in Pearson’s correlation coefficient values.

928 **Figure 8: No significant differences in bona fide EV marker proteins were observed when**
929 **comparing the proteomic profiling of human BDEVs in density fractions 1 and 2 isolated**
930 **with or without collagenase.**

931 Normalized expression values of 21 bona fide EV marker proteins showed no significant
932 differences between col+ or col- samples on F1 (a) or F2 (e) comparisons. (b) Volcano plot
933 showing proteins relatively under-represented (displayed in blue) and up-regulated in F1⁻
934 (displayed in yellow). 191 proteins were found to be more abundant, and 37 proteins were found
935 to be less expressed in F1⁻, as shown in the column graph associated with the volcano plot. Cut-
936 offs were set at -1.5 fold for down-regulation and +1.5 fold for up-regulation. The intercept on
937 the y-axis marks the cut-off set for a p-value of 0.05. (c and d) Dotplots displaying the top 10
938 categories of cellular components associated with the proteins abundant in F1⁻ abundant and
939 deficient in F1⁻, respectively (gene ontology terms, the color key represents the adjusted p-values
940 from over-representation analysis). (f) Volcano plot showing proteins relatively down (displayed
941 in blue) and up-regulated in F2⁻ EVs (displayed in yellow). The intercepts along the x-axis
942 represent the thresholds for expression changes: -1.5 fold for down-regulation and +1.5 fold for
943 up-regulation. Meanwhile, the intercept on the y-axis indicates the threshold set for a p-value of

944 0.05. 192 proteins were found to be increased, and 68 proteins were found to be decreased in F2-
945 , shown in the column graph associated with the volcano plot. (g and h) Dotplots displaying the
946 top 10 categories of cellular components associated with the proteins abundant and deficient in
947 F2-, respectively (gene ontology terms, color key represents the adjusted *p*-values from over-
948 representation analysis).

949 **Figure 9: mRNA composition of the BDEVs isolated from human tissues displayed no**
950 **differences between the collagenase-free and collagenase-based isolation protocols.**

951 (a) Heatmap displaying mRNA expressions (z-score) of BDEV- (n = 3) and of BDEV+ (n = 4).
952 (b) Correlation plot highlighting the similarities between collagenase-free and collagenase-based
953 samples. The color key represents the variation in Pearson's correlation coefficient values. (c)
954 Scatter plots showing principal component analysis (PCA) of mRNA expression profiles of
955 BDEV- and BDEV+ EVs. (d) Volcano plot highlighting the downregulated (shown in blue) and
956 upregulated (shown in yellow) mRNAs in the BDEV preparations. The x-axis intercepts denote
957 the thresholds for expression changes, established at -1.5 fold for down-regulation and +1.5 fold
958 for up-regulation. Meanwhile, the y-axis intercept signifies the threshold set for a *p*-value of 0.05.

959 **References**

960

961 Antoniou A, Auderset L, Kaurani L, Sebastian E, Zeng Y, Allahham M, Cases-Cunillera S,
962 Schoch S, Gründemann J, Fischer A, *et al* (2023) Neuronal extracellular vesicles and
963 associated microRNAs induce circuit connectivity downstream BDNF. *Cell Rep* 42:
964 112063

965 Brenna S, Altmeppen HC, Mohammadi B, Rissiek B, Schlink F, Ludewig P, Krisp C, Schlüter
966 H, Failla AV, Schneider C, *et al* (2020) Characterization of brain-derived extracellular
967 vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein
968 with a potential role in cellular uptake. *J Extracell Vesicles* 9

969 Brenna S, Krisp C, Altmeppen HC, Magnus T & Puig B (2021) Brain-Derived Extracellular
970 Vesicles in Health and Disease: A Methodological Perspective. *Int J Mol Sci* 22: 1–16

971 Bub A, Brenna S, Alawi M, Kügler P, Gui Y, Kretz O, Altmeppen H, Magnus T & Puig B
972 (2022) Multiplexed mRNA analysis of brain-derived extracellular vesicles upon
973 experimental stroke in mice reveals increased mRNA content with potential relevance to
974 inflammation and recovery processes. *Cell Mol Life Sci* 79

975 Carulla P, Bribian A, Rangel A, Gavín R, Ferrer I, Caelles C, del Río JA & Llorens F (2011)
976 Neuroprotective role of PrP^C against kainate-induced epileptic seizures and cell death
977 depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. *Mol Biol
978 Cell* 22: 3041–3054

979 Cheng L, Zhao W & Hill AF (2018) Exosomes and their role in the intercellular trafficking of
980 normal and disease associated prion proteins. *Mol Aspects Med* 60: 62–68

981 Crescitelli R, Lässer C & Lötvall J (2021) Isolation and characterization of extracellular vesicle
982 subpopulations from tissues. *Nature Protocols* 2021 16:3 16: 1548–1580

983 D'Acunzo P, Kim Y, Ungania JM, Pérez-González R, Goulbourne CN & Levy E (2022)
984 Isolation of mitochondria-derived mitovesicles and subpopulations of microvesicles and
985 exosomes from brain tissues. *Nat Protoc* 17: 2517–2549

986 D'Acunzo P, Pérez-González R, Kim Y, Hargash T, Miller C, Alldred MJ, Erdjument-Bromage
987 H, Penikalapati SC, Pawlik M, Saito M, *et al* (2021) Mitovesicles are a novel population

988 of extracellular vesicles of mitochondrial origin altered in down syndrome. *Sci Adv* 7:
989 5085–5097

990 D'Arrigo G, Gabrielli M, Scaroni F, Swuec P, Amin L, Pegoraro A, Adinolfi E, Di Virgilio F,
991 Cojoc D, Legname G, *et al* (2021) Astrocytes-derived extracellular vesicles in motion at
992 the neuron surface: Involvement of the prion protein. *J Extracell Vesicles* 10

993 Debnath K, Las Heras K, Rivera A, Lenzini S & Shin J-W (2023) Extracellular vesicle–matrix
994 interactions. *Nat Rev Mater* 8: 390–402

995 Duarte AS, Correia A & Esteves AC (2016) Bacterial collagenases – A review. *Crit Rev
996 Microbiol* 42: 106–126

997 Falker C, Hartmann A, Guett I, Dohler F, Altmeppen H, Betzel C, Schubert R, Thurm D,
998 Wegwitz F, Joshi P, *et al* (2016) Exosomal cellular prion protein drives fibrillization of
999 amyloid beta and counteracts amyloid beta-mediated neurotoxicity. *J Neurochem* 137: 88–
1000 100

1001 Fan Y, Pionneau C, Cocozza F, Boëlle P, Chardonnet S, Charrin S, Théry C, Zimmermann P &
1002 Rubinstein E (2023) Differential proteomics argues against a general role for CD9, CD81
1003 or CD63 in the sorting of proteins into extracellular vesicles. *J Extracell Vesicles* 12

1004 Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H & Raposo G (2004) Cells
1005 release prions in association with exosomes. *Proceedings of the National Academy of
1006 Sciences* 101: 9683–9688

1007 Gomes PA, Bodo C, Nogueras-Ortiz C, Samiotaki M, Chen M, Soares-Cunha C, Silva JM,
1008 Coimbra B, Stamatakis G, Santos L, *et al* (2023) A novel isolation method for
1009 spontaneously released extracellular vesicles from brain tissue and its implications for
1010 stress-driven brain pathology. *Cell Communication and Signaling* 21: 35

1011 Gonias SL, Banki MA, Azmoon P, Romero HK, Sigurdson CJ, Mantuano E & Campana WM
1012 (2022) Cellular prion protein in human plasma–derived extracellular vesicles promotes
1013 neurite outgrowth via the NMDA receptor–LRP1 receptor system. *Journal of Biological
1014 Chemistry* 298: 101642

1015 Guitart K, Loers G, Buck F, Bork U, Schachner M & Kleene R (2016) Improvement of
1016 neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic
1017 conditions depends on prion protein. *Glia*: n/a-n/a

1018 Heisler FF, Pechmann Y, Wieser I, Altmeppen HC, Veenendaal L, Muñia M, Schweizer M,
1019 Glatzel M, Krasemann S & Kneussel M (2018) Muskelin Coordinates PrPC Lysosome
1020 versus Exosome Targeting and Impacts Prion Disease Progression. *Neuron* 99: 1155–
1021 1169.e9

1022 Hidvegi NC, Sales KM, Izadi D, Ong J, Kellam P, Eastwood D & Butler PEM (2006) A low
1023 temperature method of isolating normal human articular chondrocytes. *Osteoarthritis
1024 and Cartilage* 14: 89–93

1025 Hill AF (2019) Extracellular Vesicles and Neurodegenerative Diseases. *The Journal of
1026 Neuroscience* 39: 9269–9273

1027 Howitt J, Low LH, Bouman M, Yang J, Gordon S, Hill A & Tan S-S (2021) Exosomal
1028 transmission of α -synuclein initiates Parkinson's disease-like pathology.

1029 Hu C, Du R, Xiao Q & Geng M (2022) Differences between cultured cortical neurons by
1030 trypsin and papain digestion. *Ibrain* 8: 93–99

1031 Huang Y, Arab T, Russell AE, Mallick ER, Nagaraj R, Gizzie E, Redding-Ochoa J, Troncoso
1032 JC, Pletnikova O, Turchinovich A, *et al* (2023) Toward a human brain extracellular vesicle
1033 atlas: Characteristics of extracellular vesicles from different brain regions, including small
1034 RNA and protein profiles. *Interdisciplinary Medicine* 1

1035 Huang Y, Cheng L, Turchinovich A, Mahairaki V, Troncoso JC, Pletniková O, Haughey NJ,
1036 Vella LJ, Hill AF, Zheng L, *et al* (2020) Influence of species and processing parameters on
1037 recovery and content of brain tissue-derived extracellular vesicles. *J Extracell Vesicles* 9:
1038 1785746

1039 Hughes CS, Moggridge S, Müller T, Sorensen PH, Morin GB & Krijgsveld J (2019) Single-pot,
1040 solid-phase-enhanced sample preparation for proteomics experiments. *Nat Protoc* 14: 68–
1041 85

1042 Hurwitz SN, Sun L, Cole KY, Ford CR, Olcese JM & Meckes DG (2018) An optimized method
1043 for enrichment of whole brain-derived extracellular vesicles reveals insight into
1044 neurodegenerative processes in a mouse model of Alzheimer's disease. *J Neurosci
1045 Methods* 307: 210–220

1046 Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE,
1047 Breakefield X, Budnik V, *et al* (2012) Vesiclepedia: A Compendium for Extracellular
1048 Vesicles with Continuous Community Annotation. *PLoS Biol* 10: e1001450

1049 Koellensperger E, Gramley F, Germann G & Leimer U (2022) Use of collagenase to isolate
1050 adipose tissue-derived stem cells – substantial manipulation or not? *J Stem Cell Ther
1051 Transplant* 6: 008–018

1052 Laurén J, Gimbel DA, Nygaard HB, Gilbert JW & Strittmatter SM (2009) Cellular prion protein
1053 mediates impairment of synaptic plasticity by amyloid- β oligomers.

1054 Linsenmeier L, Altmeppen HC, Wetzel S, Mohammadi B, Saftig P & Glatzel M (2017) Diverse
1055 functions of the prion protein – Does proteolytic processing hold the key? *Biochimica et
1056 Biophysica Acta (BBA) - Molecular Cell Research* 1864: 2128–2137

1057 Liu Q, Zhao R, Huang C, Zhou KL, Zhang XL & Pan Q (2018) Effects of enzymatic digestion,
1058 cell culture and preservation conditions on surface CD62L expression of primary murine
1059 CD3+CD4+ T cells. *Biomedical Research* 29

1060 Ma L, Li Y, Peng J, Wu D, Zhao X, Cui Y, Chen L, Yan X, Du Y & Yu L (2015) Discovery of
1061 the migrasome, an organelle mediating release of cytoplasmic contents during cell
1062 migration. *Cell Res* 25: 24–38

1063 Matamoros-Angles A, Mohammadi B, Song F, Shafiq M, Brenna S, Puig B, Glatzel M &
1064 Altmeppen HC (2023) Inducing prion protein shedding as a neuroprotective and
1065 regenerative approach in pathological conditions of the brain: from theory to facts. *Neural
1066 Regen Res* 18: 1869–1875

1067 Mattei D, Ivanov A, van Oostrum M, Pantelyushin S, Richetto J, Mueller F, Beffinger M,
1068 Schellhammer L, vom Berg J, Wollscheid B, *et al* (2020) Enzymatic Dissociation Induces
1069 Transcriptional and Proteotype Bias in Brain Cell Populations. *Int J Mol Sci* 21: 7944

1070 Mattei V, Barenco MG, Tasciotti V, Garofalo T, Longo A, Boller K, Löwer J, Misasi R,
1071 Montrasio F & Sorice M (2009) Paracrine Diffusion of PrPC and Propagation of Prion
1072 Infectivity by Plasma Membrane-Derived Microvesicles. *PLoS One* 4: e5057

1073 Miersch C, Stange K & Röntgen M (2018) Effects of trypsinization and of a combined trypsin,
1074 collagenase, and DNase digestion on liberation and in vitro function of satellite cells
1075 isolated from juvenile porcine muscles. *In Vitro Cell Dev Biol Anim* 54: 406–412

1076 Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M &
1077 Altmeppen HC (2023) Anchorless risk or released benefit? An updated view on the
1078 ADAM10-mediated shedding of the prion protein. *Cell Tissue Res* 392: 215–234

1079 Van Niel G, D'Angelo G & Raposo G (2018) Shedding light on the cell biology of extracellular
1080 vesicles. *Nat Rev Mol Cell Biol* 19: 213–228

1081 O'Brien K, Ughetto S, Mahjoum S, Nair A V. & Breakefield XO (2022) Uptake, functionality,
1082 and re-release of extracellular vesicle-encapsulated cargo. *Cell Rep* 39: 110651

1083 O'Flanagan CH, Campbell KR, Zhang AW, Kabeer F, Lim JLP, Biele J, Eirew P, Lai D,
1084 McPherson A, Kong E, *et al* (2019) Dissociation of solid tumor tissues with cold active
1085 protease for single-cell RNA-seq minimizes conserved collagenase-associated stress
1086 responses. *Genome Biol* 20: 210

1087 Pait MC, Kaye SD, Su Y, Kumar A, Singh S, Gironda SC, Vincent S, Anwar M, Carroll CM,
1088 Snipes JA, *et al* (2024) Novel method for collecting hippocampal interstitial fluid
1089 extracellular vesicles (EV^{ISF}) reveals sex-dependent changes in microglial EV proteome
1090 in response to A β pathology. *J Extracell Vesicles* 13

1091 Panchision DM, Chen H-L, Pistollato F, Papini D, Ni H-T & Hawley TS (2007) Optimized
1092 Flow Cytometric Analysis of Central Nervous System Tissue Reveals Novel Functional
1093 Relationships Among Cells Expressing CD133, CD15, and CD24. *Stem Cells* 25: 1560–
1094 1570

1095 Pathan M, Fonseka P, Chitti S V, Kang T, Sanwlani R, Van Deun J, Hendrix A & Mathivanan S
1096 (2019) Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in
1097 extracellular vesicles. *Nucleic Acids Res* 47: D516–D519

1098 Pathan M, Keerthikumar S, Ang C, Gangoda L, Quek CYJ, Williamson NA, Mouradov D,
1099 Sieber OM, Simpson RJ, Salim A, *et al* (2015) FunRich: An open access standalone
1100 functional enrichment and interaction network analysis tool. *Proteomics* 15: 2597–2601

1101 Perez-Gonzalez R, Gauthier SA, Kumar A & Levy E (2012) The Exosome Secretory Pathway
1102 Transports Amyloid Precursor Protein Carboxyl-terminal Fragments from the Cell into the
1103 Brain Extracellular Space. *Journal of Biological Chemistry* 287: 43108–43115

1104 Poon IKH, Parkes MAF, Jiang L, Atkin-Smith GK, Tixeira R, Gregory CD, Ozkocak DC,
1105 Rutter SF, Caruso S, Santavanond JP, *et al* (2019) Moving beyond size and
1106 phosphatidylserine exposure: evidence for a diversity of apoptotic cell-derived
1107 extracellular vesicles *in vitro*. *J Extracell Vesicles* 8

1108 Prusiner SB (1982) Novel Proteinaceous Infectious Particles Cause Scrapie. *Science* (1979)
1109 216: 136–144

1110 Ramos-Zaldívar HM, Polakovicova I, Salas-Huenuleo E, Corvalán AH, Kogan MJ, Yefi CP &
1111 Andia ME (2022) Extracellular vesicles through the blood–brain barrier: a review. *Fluids*
1112 *Barriers CNS* 19: 60

1113 Rastogi S, Sharma V, Bharti PS, Rani K, Modi GP, Nikolajeff F & Kumar S (2021) The
1114 Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes
1115 Characteristics and a Promising Role in Early Diagnosis. *Int J Mol Sci* 22

1116 Resenberger UK, Harmeier A, Woerner AC, Goodman JL, Müller V, Krishnan R, Vabulas RM,
1117 Kretzschmar HA, Lindquist S, Hartl FU, *et al* (2011) The cellular prion protein mediates
1118 neurotoxic signalling of β -sheet-rich conformers independent of prion replication. *EMBO J*
1119 30: 2057–2070

1120 Ruan Z, Delpech J-C, Venkatesan Kalavai S, Van Enoo AA, Hu J, Ikezu S & Ikezu T (2020)
1121 P2RX7 inhibitor suppresses exosome secretion and disease phenotype in P301S tau
1122 transgenic mice. *Mol Neurodegener* 15: 47

1123 Shafiq M, Da Vela S, Amin L, Younas N, Harris DA, Zerr I, Altmeppen HC, Svergun D &
1124 Glatzel M (2022) The prion protein and its ligands: Insights into structure-function
1125 relationships. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research* 1869:
1126 119240

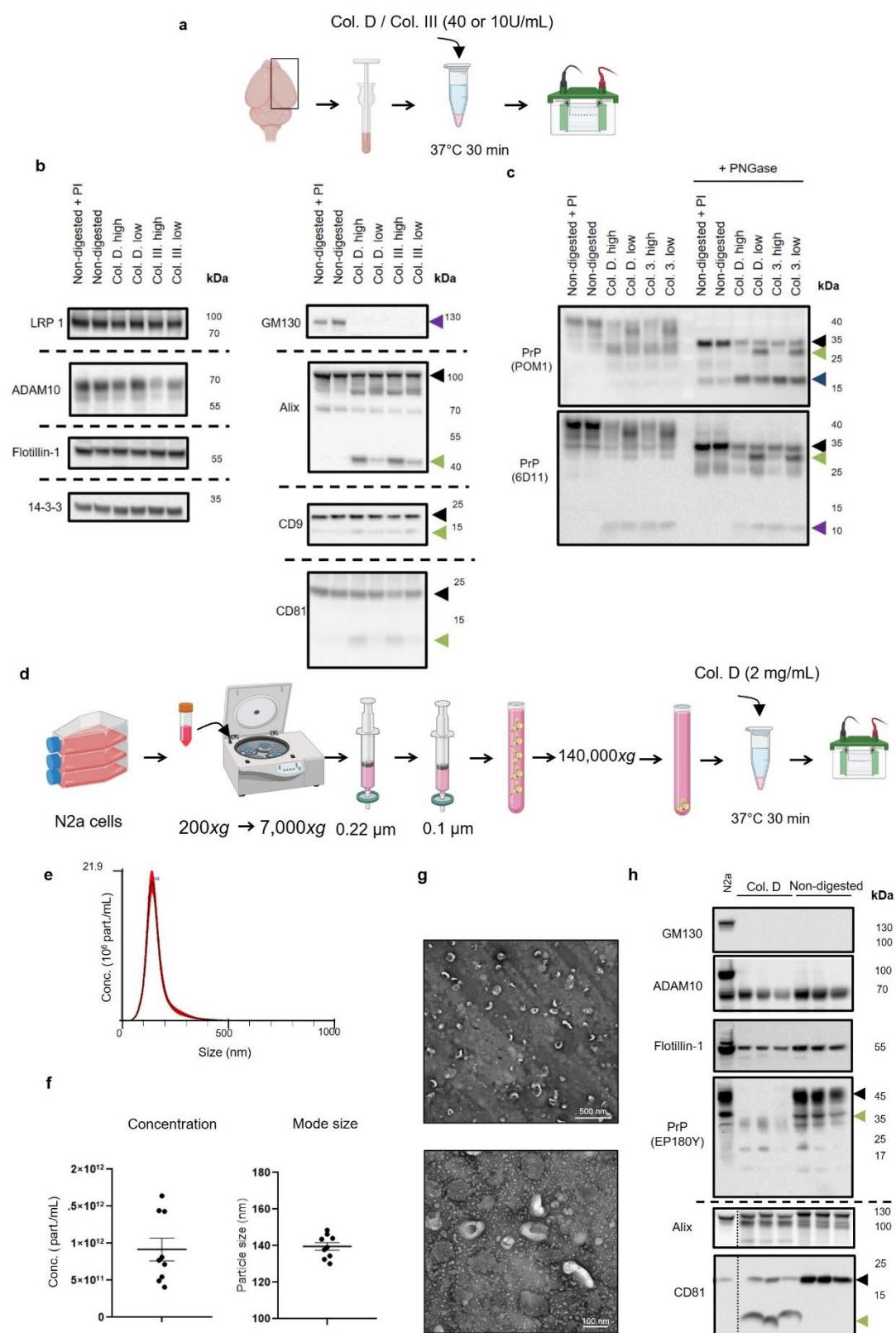
1127 Solana-Balaguer J, Campoy-Campos G, Martín-Flores N, Pérez-Sisqués L, Sitjà-Roqueta L,
1128 Kucukerden M, Gámez-Valero A, Coll-Manzano A, Martí E, Pérez-Navarro E, *et al*
1129 (2023) Neuron-derived extracellular vesicles contain synaptic proteins, promote spine
1130 formation, activate TrkB-mediated signalling and preserve neuronal complexity. *J*
1131 *Extracell Vesicles* 12

1132 Song Y, Shi R, Liu Y, Cui F, Han L, Wang C, Chen T, Li Z, Zhang Z, Tang Y, *et al* (2023) M2
1133 Microglia Extracellular Vesicle miR-124 Regulates Neural Stem Cell Differentiation in
1134 Ischemic Stroke via AAK1/NOTCH. *Stroke* 54: 2629–2639

1135 De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D & Inal JM (2023) Isolation and
1136 characterization of extracellular vesicles and future directions in diagnosis and therapy.
1137 *WIREs Nanomedicine and Nanobiotechnology* 15

1138 Su H, Rustam YH, Masters CL, Makalic E, McLean CA, Hill AF, Barnham KJ, Reid GE &
1139 Vella LJ (2021) Characterization of brain-derived extracellular vesicle lipids in
1140 Alzheimer's disease. *J Extracell Vesicles* 10: e12089

1141 Susa KJ, Rawson S, Kruse AC & Blacklow SC (2021) Cryo-EM structure of the B cell co-
1142 receptor CD19 bound to the tetraspanin CD81. *Science* (1979) 371: 300–305


1143 Taghizadeh RR, Cetrulo KJ & Cetrulo CL (2018) Collagenase Impacts the Quantity and Quality
1144 of Native Mesenchymal Stem/Stromal Cells Derived during Processing of Umbilical Cord
1145 Tissue. *Cell Transplant* 27: 181–193

1146 Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A,
1147 Arab T, Archer F, Atkin-Smith GK, *et al* (2018) Minimal information for studies of
1148 extracellular vesicles 2018 (MISEV2018): a position statement of the International Society
1149 for Extracellular Vesicles and update of the MISEV2014 guidelines. *J Extracell Vesicles* 7

1150 Toribio V & Yáñez-Mó M (2022) Tetraspanins interweave EV secretion, endosomal network
1151 dynamics and cellular metabolism. *Eur J Cell Biol* 101: 151229
1152 Tóth EÁ, Turiák L, Visnovitz T, Cserép C, Mázló A, Sódar BW, Försönits AI, Petővári G,
1153 Sebestyén A, Komlósi Z, *et al* (2021) Formation of a protein corona on the surface of
1154 extracellular vesicles in blood plasma. *J Extracell Vesicles* 10: e12140
1155 Turnbaugh JA, Westergard L, Unterberger U, Biasini E & Harris DA (2011) The N-Terminal,
1156 Polybasic Region Is Critical for Prion Protein Neuroprotective Activity. *PLoS One* 6:
1157 e25675
1158 Urrea L, Segura-Feliu M, Masuda-Suzukake M, Hervera A, Pedraz L, García Aznar JM, Vila
1159 M, Samitier J, Torrents E, Ferrer I, *et al* (2018) Involvement of Cellular Prion Protein in α -
1160 Synuclein Transport in Neurons. *Mol Neurobiol* 55: 1847–1860
1161 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ & Lötvall JO (2007) Exosome-mediated
1162 transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between
1163 cells. *Nat Cell Biol* 9: 654–659
1164 Vassileff N, Cheng L & Hill AF (2020) Extracellular vesicles – propagators of neuropathology
1165 and sources of potential biomarkers and therapeutics for neurodegenerative diseases. *J
1166 Cell Sci* 133
1167 Vella LJ, Scicluna BJ, Cheng L, Bawden EG, Masters CL, Ang C, Williamson N, McLean C,
1168 Barnham KJ & Hill AF (2017) A rigorous method to enrich for exosomes from brain
1169 tissue. *J Extracell Vesicles* 6
1170 Wolf M, Poupardin RW, Ebner-Peking P, Cronemberger Andrade A, Blöchl C, Obermayer A,
1171 Gueths Gomes F, Vari B, Maeding N, Eminger E, *et al* (2022) A functional corona around
1172 extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation.
1173
1174
1175

1176 **Figures**

Figure 1: Collagenase digestion induces undesired clearance of EV-relevant proteins in both brain tissue and cell-derived EVs.

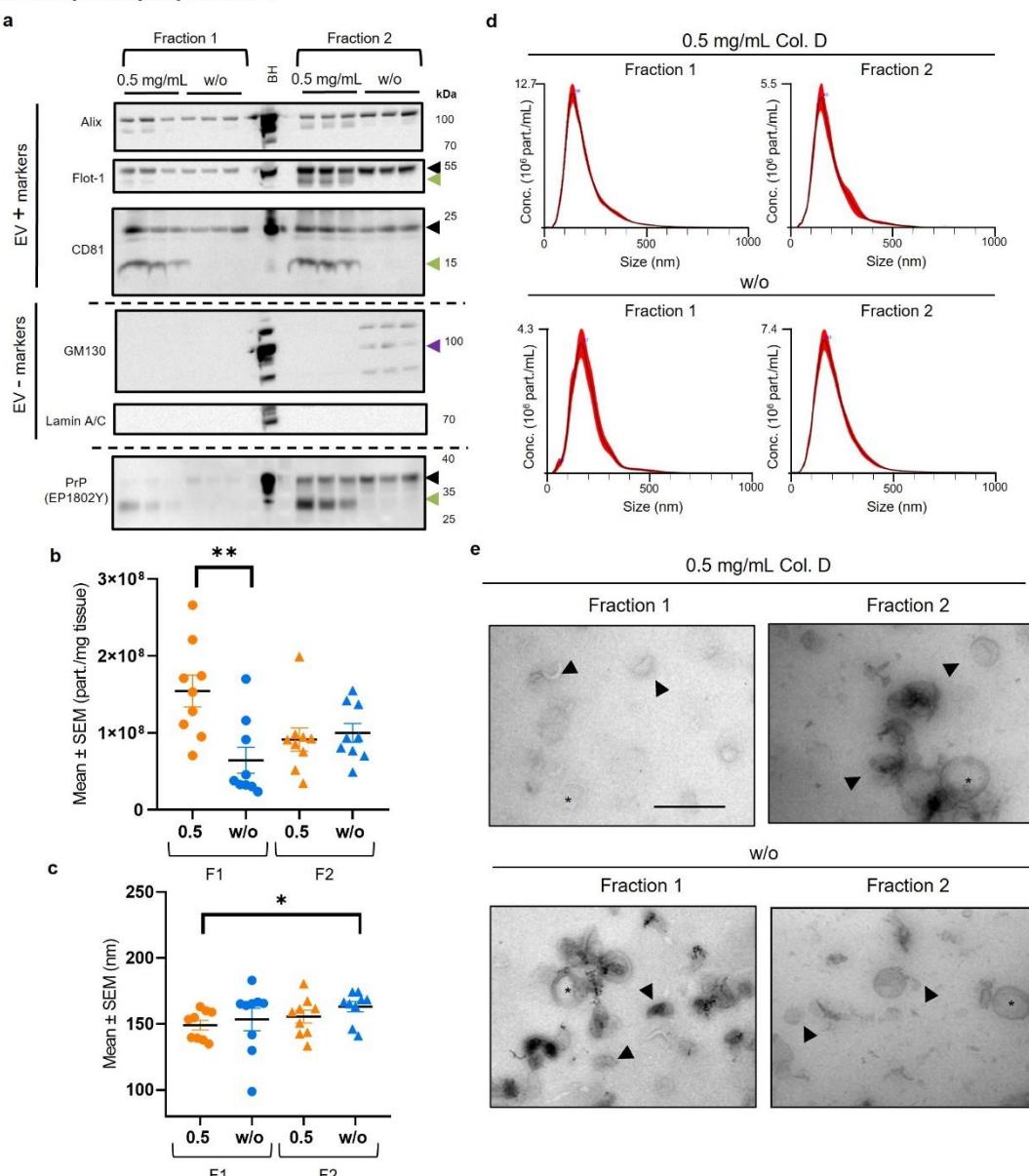


Figure 2: Simplified non-enzymatic BDEV isolation protocol.

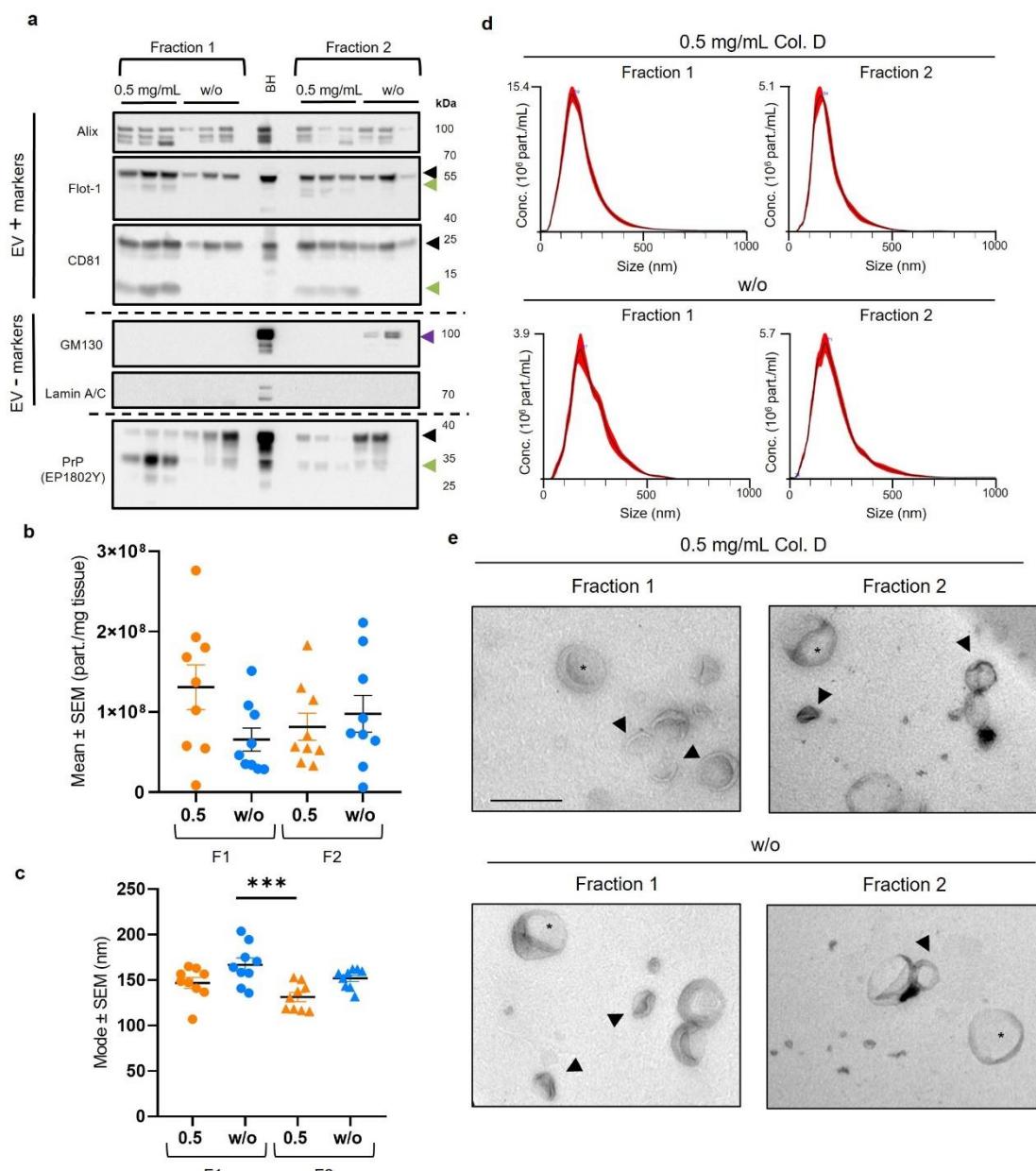

1178

Figure 3: BDEV isolation from mouse brain tissue without enzymatic digestion maintains BDEV purity and prevents artificial proteolytic processes.

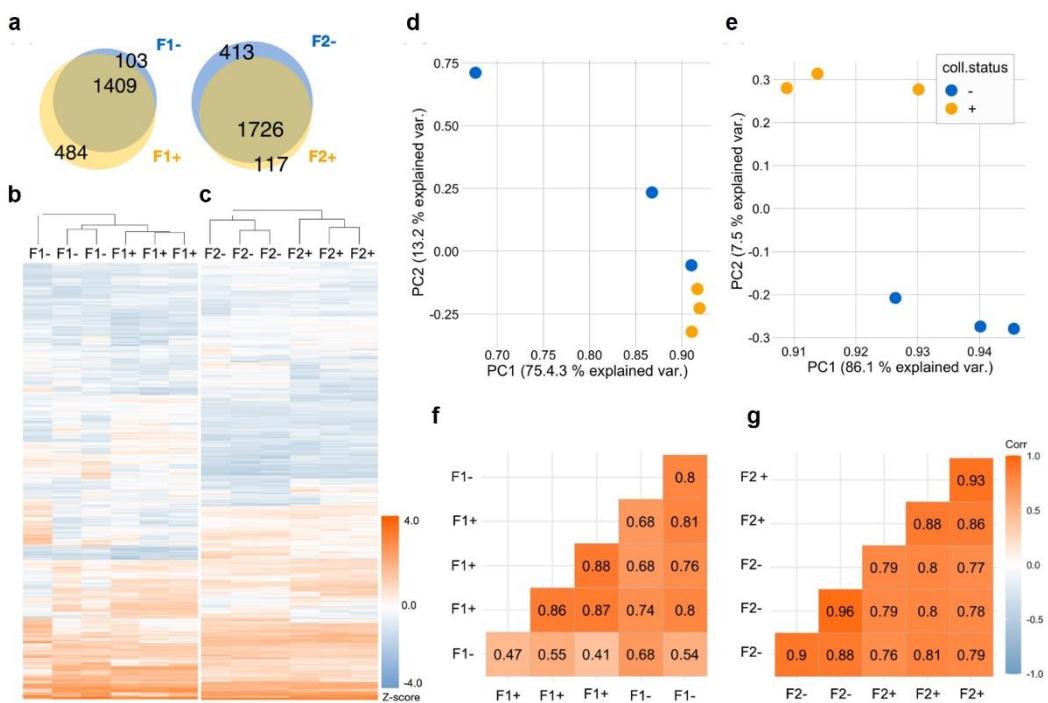

1179

Figure 4: BDEV isolation from human brain tissue without enzymatic digestion maintains BDEV purity and prevents artificial proteolytic processing.

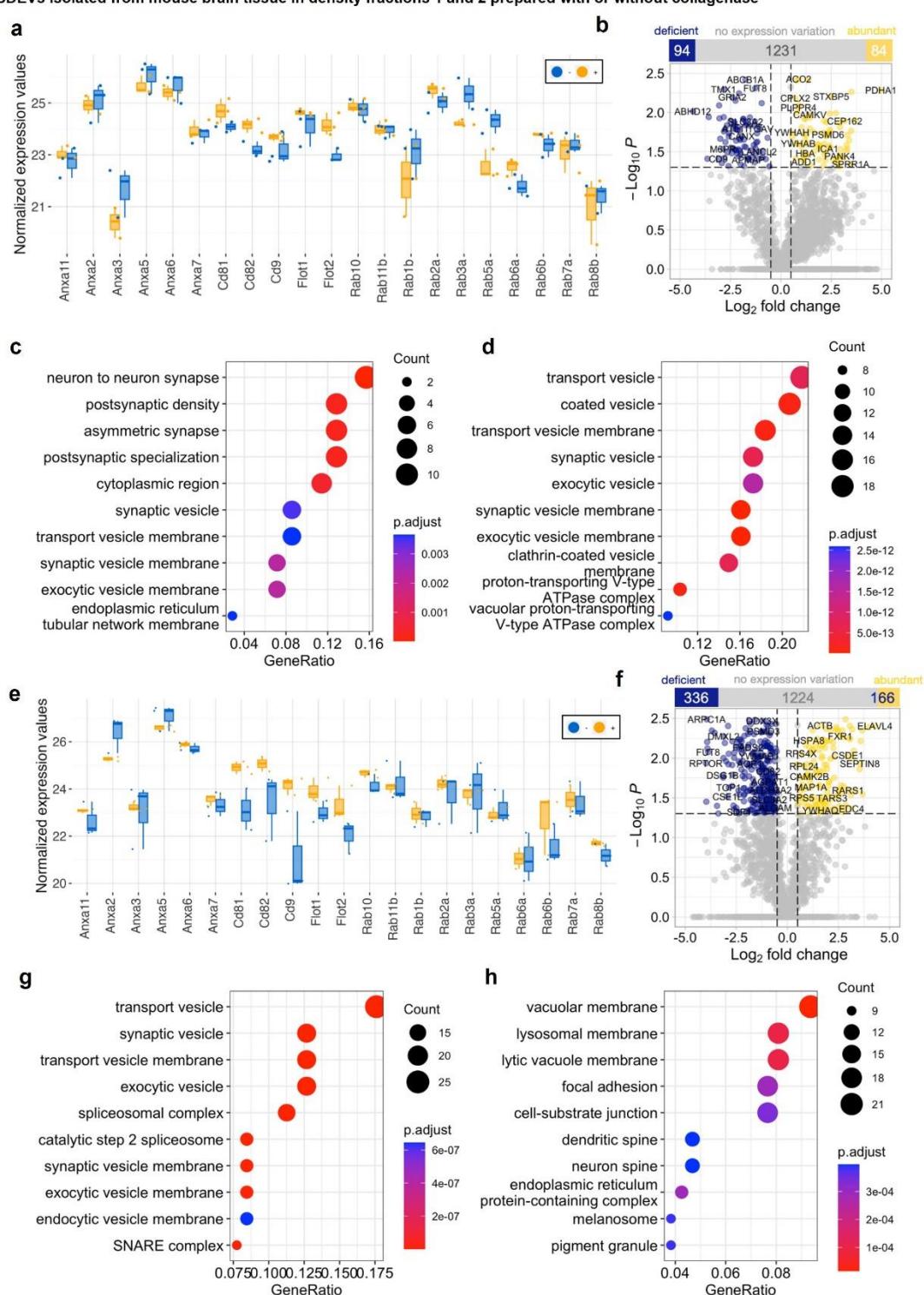
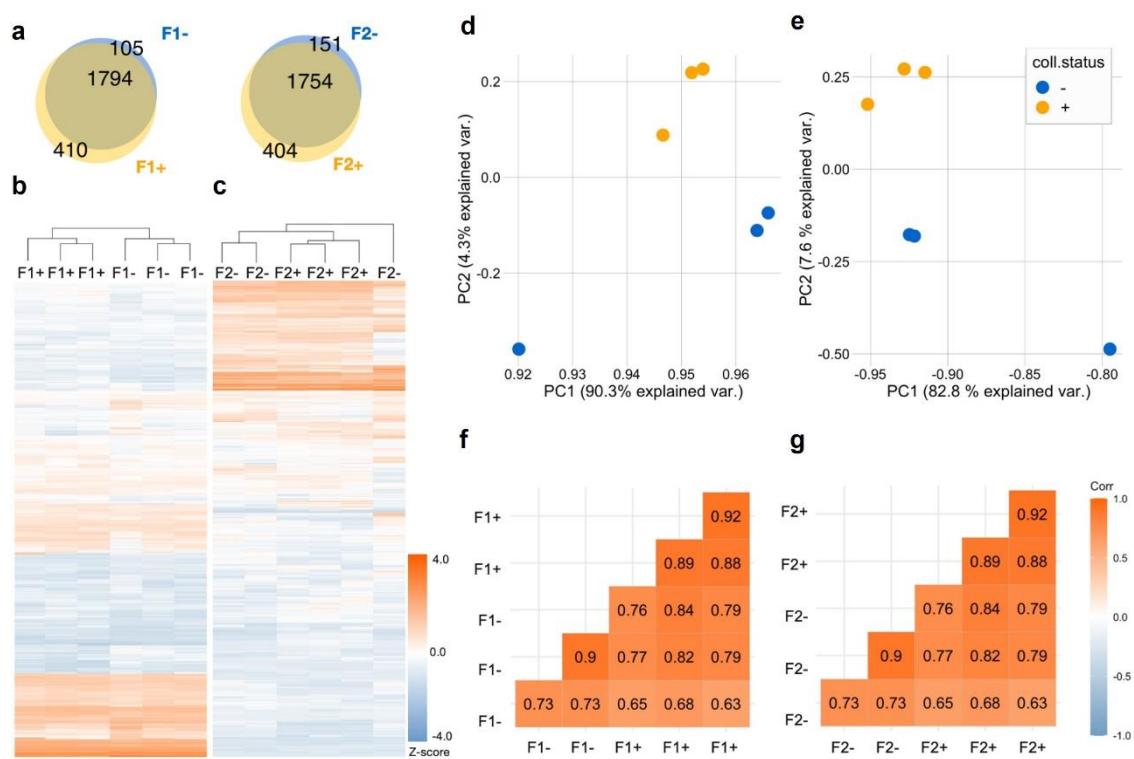

1180

Figure 5: Systematic analysis of mouse BDEV proteomes: no major differences are observed between BDEVs isolated enzyme-free or with collagenase D.



1181

Figure 6: No significant differences in bona fide EV marker proteins were observed when comparing the proteomic profiling of BDEVs isolated from mouse brain tissue in density fractions 1 and 2 prepared with or without collagenase

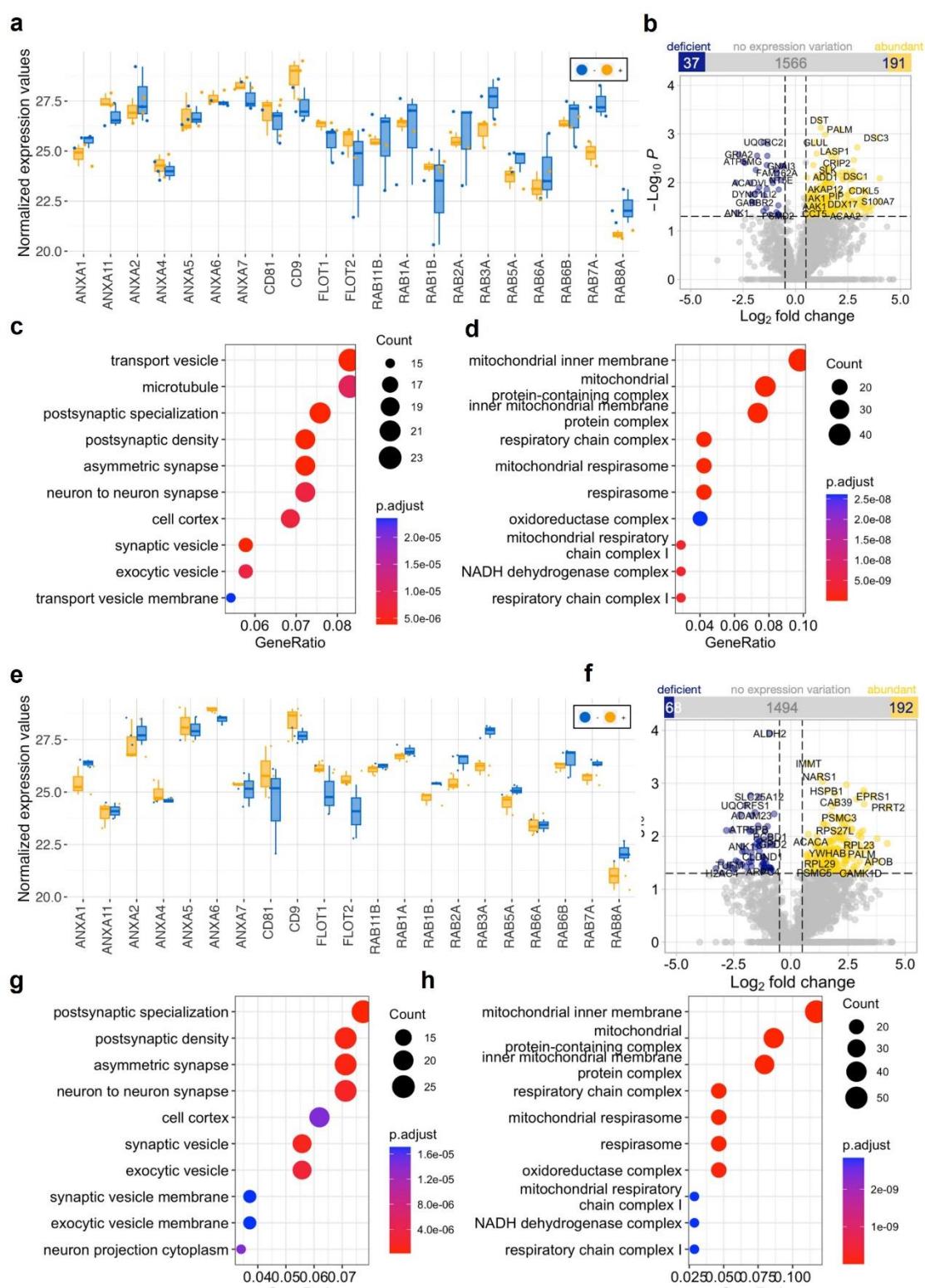
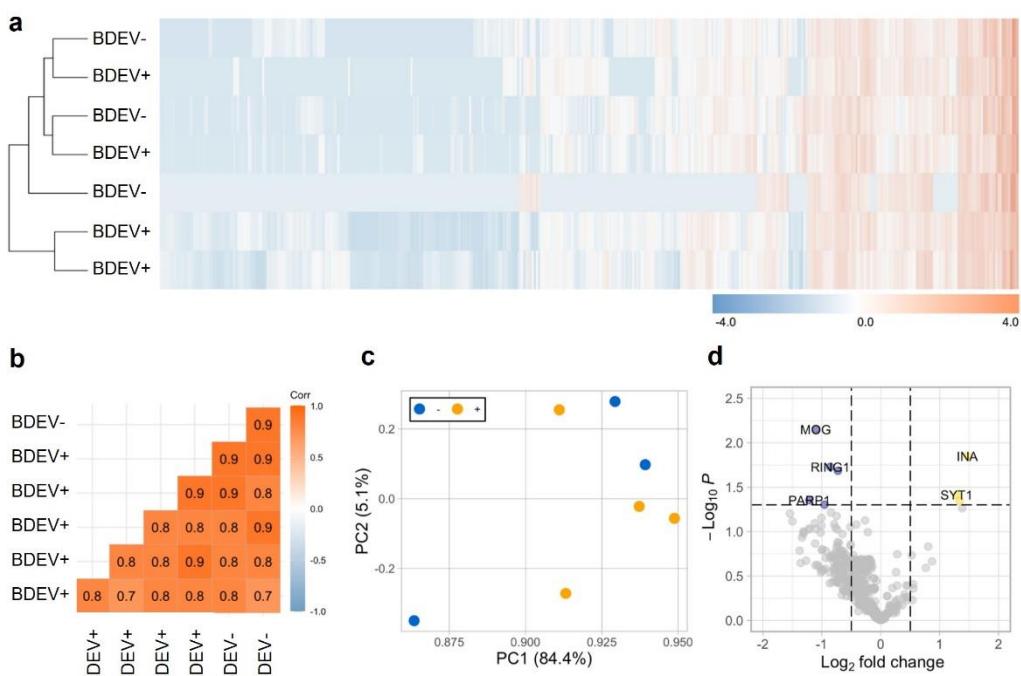


Figure 7: No major differences in the proteomic analysis of BDEVs from human samples comparing isolation with and without collagenase



1183

Figure 8: No significant differences in bona fide EV marker proteins were observed when comparing the proteomic profiling of human BDEVs in density fractions 1 and 2 isolated with or without collagenase.

Figure 9: mRNA composition of the BDEVs isolated from human tissues displayed no differences between the collagenase-free and collagenase-based isolation protocols.

