

TITLE PAGE

Title: Global MEG Resting State Functional Connectivity in Children with Autism and Sensory Processing Dysfunction

Running Title: MEG Functional Connectivity in ASD & SPD

Authors: Carly Demopoulos, Ph.D. (1, 2), Xuan Jesson, Ph.D. (3), Molly Rae Gerdes, B.S. (4), Barbora G. Jurigova, M.S. (4), Leighton B. Hinkley, Ph.D. (2), Kamalini G. Ranasinghe, Ph.D. (5), Shivani Desai, Ph.D. (5), Susanne Honma, R.T. (2), Danielle Mizuiri, B.S. (2), Anne Findlay, M.S. (2), Srikantan S. Nagarajan, Ph.D. (2), and Elysa J. Marco, M.D. (4)

(1) Department of Psychiatry, University of California San Francisco, 675 18th Street, San Francisco, CA 94107

(2) Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143

(3) Department of Psychology, Palo Alto University, 1791 Arastradero Road, Palo Alto, CA 94304

(4) Cortica Healthcare, Department of Neurodevelopmental Medicine, 4000 Civic Center Drive, San Rafael, CA 94903

(5) University of California-San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94143

Corresponding Author: Carly Demopoulos, Ph.D.

Department of Psychiatry and Behavioral Sciences

Department of Radiology & Biomedical Imaging

University of California-San Francisco

675 18th Street, Box 3130

San Francisco, CA 94107

Carly.Demopoulos@ucsf.edu

708-691-1436

Acknowledgments: CD was funded in part by National Institutes of Health grants (K23DC016637-01A1, R01DC019167-01A1) Autism Speaks CAPD Pilot award 11637, and UCSF Weill Institute for Neurosciences Weill Award for Clinical Neuroscience Research (2016038). EJM was funded by NIH grant K23MH083890, the Wallace Research Foundation and crowdfunding support to the UCSF Sensory Neurodevelopment & Autism Program. SSN was funded in part by National Institutes of Health grants (R01NS100440, R01DC176960, R01DC017091, R01AG062196), UCOP-MRP-17-454755, and the US Department of Defense grant (W81XWH-13-1-0494).

46

47

48

49

50

Abstract

51 Sensory processing dysfunction not only affects most individuals with autism spectrum
52 disorder (ASD), but at least 5% of children without ASD also experience dysfunctional sensory
53 processing. Our understanding of the relationship between sensory dysfunction and resting state
54 brain activity is still emerging. This study compared long-range resting state functional
55 connectivity of neural oscillatory behavior in children aged 8-12 years with autism spectrum
56 disorder (ASD; N=18), those with sensory processing dysfunction (SPD; N=18) who do not meet
57 ASD criteria, and typically developing control participants (TDC; N=24) using
58 magnetoencephalography (MEG). Functional connectivity analyses were performed in the alpha
59 and beta frequency bands, which are known to be implicated in sensory information processing.
60 Group differences in functional connectivity and associations between sensory abilities and
61 functional connectivity were examined. Distinct patterns of functional connectivity differences
62 between ASD and SPD groups were found only in the beta band, but not in the alpha band. In
63 both alpha and beta bands, ASD and SPD cohorts differed from the TDC cohort. Somatosensory
64 cortical beta-band functional connectivity was associated with tactile processing abilities, while
65 higher-order auditory cortical alpha-band functional connectivity was associated with auditory
66 processing abilities. These findings demonstrate distinct long-range neural synchrony alterations
67 in SPD and ASD that are associated with sensory processing abilities. Neural synchrony
68 measures could serve as potential sensitive biomarkers for ASD and SPD.

69

71
72
73

Introduction

74 Sensory dysfunction is estimated to impact at least 70% of individuals with Autism
75 Spectrum Disorders (ASD; Adamson, Hare, & Graham, 2006; Al-Heizan, AlAbdulwahab,
76 Kachanathu, & Natho, 2015; Greenspan & Wieder, 1997; Mayes & Calhoun, 1999; Tomcheck &
77 Dunn, 2007), and with its recognition as a core symptom in DSM-5 (American Psychiatric
78 Association 2013), there is a rapidly growing body of research focused on understanding the
79 causes and impact of sensory dysfunction in ASD. This line of research can be advanced not
80 only by studying sensory dysfunction in individuals with ASD and other clinical populations, but
81 also through examination of the estimated >5% of non-autistic individuals who experience
82 clinically significant sensory processing dysfunction (SPD) (Ahn et al. 2004). Yet, despite the
83 impairment in adaptive functioning associated with SPD, the absence of a recognized categorical
84 diagnosis limits access to resources for research and treatment in affected individuals.

85 Nevertheless, biological differences, such as white matter abnormalities (Chang et al. 2014;
86 Owen et al. 2013) and cortical response latencies (Demopoulos et al. 2017), have been identified
87 in children with SPD and these measurable structural and physiologic differences have been
88 associated with sensory processing behaviors (Chang et al., 2016). While some features of
89 sensory dysfunction may be shared among children with SPD and those with ASD, such as
90 tactile processing deficits (Demopoulos, Brandes-Aitken, et al. 2015), some domains of sensory
91 dysfunction may identify important distinctions between these populations. For example,
92 auditory processing abnormalities have been identified as distinguishing ASD from SPD groups
93 in both behavioral tasks and neural response latencies (Demopoulos et al. 2017; Demopoulos,
94 Brandes-Aitken, et al. 2015). Understanding these similarities and differences in sensory
95 processing dysfunction among children with and without ASD can not only help delineate the

96 sensory dysfunction that is specific to ASD, but it can also heighten our understanding of sensory
97 information processing more broadly and guide treatment strategies.

98 Because differences in resting state oscillatory activity can be indicative of functional
99 pathology (Papanicolaou 2009), there has been extensive research examining differences in
100 resting state brain activity in individuals with and without ASD diagnoses. While previous
101 sensory processing research has focused on differences in performance-based measures of, and
102 neural responses to, sensory processing (Chang et al., 2014; Demopoulos et al., 2015, 2017), our
103 understanding of the relationship between sensory dysfunction and resting state brain activity is
104 still emerging. This study will be the first to use using silently acquired recording via
105 magnetoencephalography (MEG) to examine whole brain functional connectivity during rest in
106 participants with ASD, SPD, and typically developing children (TDC). The goal of this study is
107 to identify relevant differences in whole brain functional connectivity that may be associated
108 with sensory dysfunction. Concurrent examination of these three groups offers two key benefits.
109 First, it will add to the emerging literature identifying the shared and distinct patterns of neural
110 activity in children with ASD and SPD. Second, it will allow us to examine differences in
111 functional connectivity and behavioral measures of sensory discrimination in affected children.
112 Prior research has suggested that auditory and tactile processing are particularly impacted in
113 children with ASD (Fernandez-Andres et al. 2015), and that auditory processing has been
114 associated with the communication impairments that are core to ASD (Demopoulos et al. 2017;
115 Demopoulos, Brandes-Aitken, et al. 2015; Demopoulos, Hopkins, et al. 2015; Edgar et al. 2013,
116 2014; Lerner, McPartland, and Morris 2013; Oram-Cardy et al. 2005; Oram Cardy et al. 2008;
117 Roberts et al. 2011, 2012, 2019, 2008, 2010). As such, we also examine associations between

118 functional connectivity and performance-based measures of auditory and tactile processing and
119 verbal abilities.

120 Our functional connectivity analyses were performed in the alpha and beta frequency
121 bands, which are known to be implicated in sensory information processing. Specifically, these
122 frequency bands have been associated with sensory gating (Buchholz, Jensen, and Medendorp
123 2014) and direction of sensory attention in the auditory and visual cortex for alpha (Foxe and
124 Snyder 2011) and in the somatosensory cortex for beta (Bauer, Kennett, and Driver 2012; van
125 Ede, Jensen, and Maris 2010). Further, the role of alpha activity in states of psychological
126 distress has been widely studied (Adolph and Margraf 2017; Bouthcher and Landers 1998;
127 Demerdzieva and Pop-Jordanova 2015; Fingelkurts et al. 2007; Knyazev, Savostyanov, and
128 Levin 2006; Mennella, Patron, and Palomba 2017; Smith, Zambrano-Vazquez, and Allen 2016),
129 and may be relevant to differences in psychological response to sensory input in our clinical
130 groups.

131 Prior research has demonstrated that both children with SPD and ASD were impaired on
132 behavioral and neural measures of tactile processing, but only the ASD group demonstrated
133 auditory dysfunction (Demopoulos et al. 2017; Demopoulos, Brandes-Aitken, et al. 2015). This
134 work is consistent with structural findings that children with ASD and SPD demonstrate
135 decreased connectivity in parieto-occipital tracts, but connectivity in temporal tracts was only
136 reduced in the ASD group (Chang et al., 2014). Thus, given these shared and divergent sensory
137 findings between children with ASD and SPD, and given that alpha and beta connectivity has
138 been associated with sensory gating and sensory attention in these frequency bands (Buchholz et
139 al. 2014; Foxe and Snyder 2011), we hypothesize that similar shared and divergent MEG-derived
140 findings of resting state functional connectivity in the alpha and beta ranges will be identified

141 between children with ASD, SPD, and TDC participants. In addition, based on work implicating
142 alpha oscillations in the direction of auditory attention (Bauer et al. 2012) and evidence of
143 somatosensory cortex beta band modulation in advance of tactile stimuli (van Ede et al. 2010),
144 we also hypothesize that alpha connectivity will be associated with auditory processing and beta
145 connectivity will be associated with tactile processing. To test these hypotheses, these frequency
146 bands were subjected to source space reconstruction for analysis of differences in long-range
147 neural synchrony and associations with sensory processing abilities.

Methods

149 Participants

150 Participants were 60 boys aged 8-12 years (ASD N=18; SPD N=18; typically developing
151 controls (TDC) N=24) who were recruited from the UCSF Sensory Neurodevelopmental and
152 Autism Program (SNAP) participant registry and website, UCSF SNAP clinic, and local online
153 parent groups. Experimental protocols were approved by the UCSF IRB and carried out in
154 accordance with those approved procedures. Participants provided their written assent and
155 written informed consent was obtained from parents or legal guardians prior to enrollment.
156 Consent and assent procedures were witnessed by a member of the study team. Participants were
157 recruited between 5/22/2003 and 10/26/2015. All participants who were taking medication were
158 on a stable dose for at least six weeks prior to testing as reported in our previously published
159 studies that recruited from this pool of participants (Demopoulos et al. 2017; Demopoulos,
160 Brandes-Aitken, et al. 2015). Specifically, in the TDC group one participant regularly used an
161 antihistamine and a leukotriene inhibitor for seasonal allergies as well as melatonin for sleep.
162 Another TDC participant regularly used steroid medications paired with a bronchodilator as
163 needed for asthma and allergies and omeprazole for reflux. A third TDC participant regularly

164 used methylphenidate for attention. In the SPD group, one participant was prescribed
165 lisdexamfetamine, sertraline, and valproic acid for inattention and challenging behavior, and four
166 others were taking stimulants (amphetamine/dextroamphetamine and methylphenidate) for
167 inattention. One additional SPD participant was taking nonstimulant medication (atomoxetine)
168 for inattention and montelukast for allergies, and another was taking steroid medication for
169 asthma. In the ASD group, one participant was taking a chelation agent (DMSA), another
170 participant was taking escitalopram for anxiety, and a third was taking guanfacine and
171 methylphenidate for calming and inattention.

172 Inclusion/exclusion criteria and diagnostic classification followed the criteria utilized in
173 previous studies (Demopoulos et al. 2017; Demopoulos, Brandes-Aitken, et al. 2015).

174 Specifically, exclusion criteria included (1) bipolar disorder, psychotic disorder, or other
175 neurological disorder or injury, and (2) a score of 70 or below on the Wechsler Intelligence Scale
176 for Children-Fourth Edition (WISC-IV; Wechsler, 2003) Perceptual Reasoning Index (PRI). The
177 PRI rather than the Full Scale Intelligence Quotient (FSIQ) was utilized for exclusion criteria
178 because verbal abilities (represented in the Verbal Comprehension Index and incorporated into
179 the FSIQ) were examined as an outcome measure in this study. Specifically, those with prior
180 clinical diagnosis of ASD and those scoring ≥ 15 on the Social Communication Questionnaire
181 (SCQ; Rutter, Bailey, & Lord, 2003), regardless of previous diagnostic status, were evaluated
182 with the Autism Diagnostic Inventory-Revised (ADI-R; Lord, Rutter, & Le Couteur, 1994) and
183 the Autism Diagnostic Observation Schedule (ADOS; Lord et al., 1989). Diagnostic cutoffs on
184 both of these measures were met for participants in the ASD group, who also met DSM-IV-TR
185 criteria for Autistic Disorder, confirmed by a pediatric neurologist (EJM). SPD participants were
186 previously diagnosed with SPD by a community occupational therapist. Inclusion criteria for this

187 group were included (1) SCQ score <15 and (2) a score in the “Definite Difference” range in one
188 or more of the auditory, visual, oral/olfactory, tactile, vestibular, or multisensory processing
189 domains of the Sensory Profile (Dunn 1999). All SCQ and Sensory Profile scores for the TDC
190 group were not in clinical ranges. Demographic characteristics of the study sample are presented
191 in Table 1.

192 [Table 1]

193 Table 1

194
195 *Group Characteristics (M ± SD [range])*

	ASD	SPD	TDC	Statistics	
200					
201	Age	9.88 ± 1.32 [8.13-12.00]	9.94 ± 1.29 [8.28-12.08]	$10.18 \pm .1.13$ [8.18-11.94]	$F(2,57) = .36$
202					
203					
204	FSIQ	$96.94 \pm 13.54^{\text{ac}}$ [71-121]	109.39 ± 11.35 [89-131]	114.92 ± 9.31 [97-135]	$F(2,57)=13.20^{***}$
205					
206					
207	PRI	$103.17 \pm 8.56^{\text{d}}$ [94-123]	113.11 ± 11.63 [92-131]	111.00 ± 12.29 [89-129]	$F(2,57)=4.09^*$
208					
209					
210	VCI	$98.56 \pm 21.81^{\text{bd}}$ [59-140]	113.11 ± 14.63 [83-136]	118.46 ± 13.08 [93-144]	$F(2,57)=7.65^{**}$
211					
212					
213	Sensory Profile Total Score	$135.78 \pm 16.92^{\text{ac}}$ [102-160]	$119.11 \pm 17.38^{\text{a}}$ [74-145]	172.04 ± 10.38 [145-187]	$F(2,57)=71.12^{***}$
214					
215					
216	Ethnicity (N)				
217	Caucasian	10	12	17	
218					
219	Asian	4	1	1	
220					
221	Multiracial	4	3	4	
222					
223	Hispanic	0	1	0	
224					
225	Unknown	0	1	2	
226					
227	Handedness				
228	Right	15	17	20	
229					
230	Left	1	1	2	
231					
232	Ambidextrous	2	0	1	
233					

234 Unknown 0 0 1

236 *p < .05

237 **p < .01

238 ***p < .001

239 a Significantly different from TDC at p<.001 following Bonferroni correction for multiple comparisons

240 b Significantly different from TDC at p<.01 following Bonferroni correction for multiple comparisons

241 c Significantly different from SPD at p<.01 following Bonferroni correction for multiple comparisons

242 d Significantly different from SPD at p<.05 following Bonferroni correction for multiple comparisons

243

244 Measures

245 *Tactile Processing.* Tactile processing measures were assessed according to previously
246 published procedures (Demopoulos et al. 2017; Demopoulos, Brandes-Aitken, et al. 2015).

247 Tactile form discrimination was assessed using the Van Boven Domes task (Van Boven &
248 Johnson, 1994) and quantified by the lowest grating size of passed trials. Tactile proprioception
249 was measured according to the total score of the right and left hand scores of the graphesthesia
250 subtest of the Sensory Integration Praxis Tests (Ayres 1989).

251 *Auditory Processing.* Auditory processing also was assessed according to previously
252 published procedures (Demopoulos, Brandes-Aitken, et al. 2015; Demopoulos et al., 2017) via
253 the Acoustic (AI) and Acoustic-Linguistic Index (ALI) of the Differential Screening Test for
254 Processing (DSTP; Richard & Ferre, 2006). The AI is derived from performance on measures of
255 dichotic listening, temporal sequencing, and auditory filtering skills. The ALI assesses auditory
256 processing skills associated with language via tasks focused on phonic and phonemic
257 manipulation.

258 *Verbal Abilities.* Because auditory processing dysfunction has been repeatedly associated
259 with weaker verbal abilities in children with ASD (Demopoulos et al. 2017; Edgar et al. 2013;
260 Oram-Cardy et al. 2005; Roberts et al. 2011; Russo et al. 2009; Schmidt et al. 2009), we also
261 assessed for associations between functional connectivity and verbal abilities in the ASD group
262 using established protocols for our assessment of verbal abilities (Demopoulos et al. 2017;

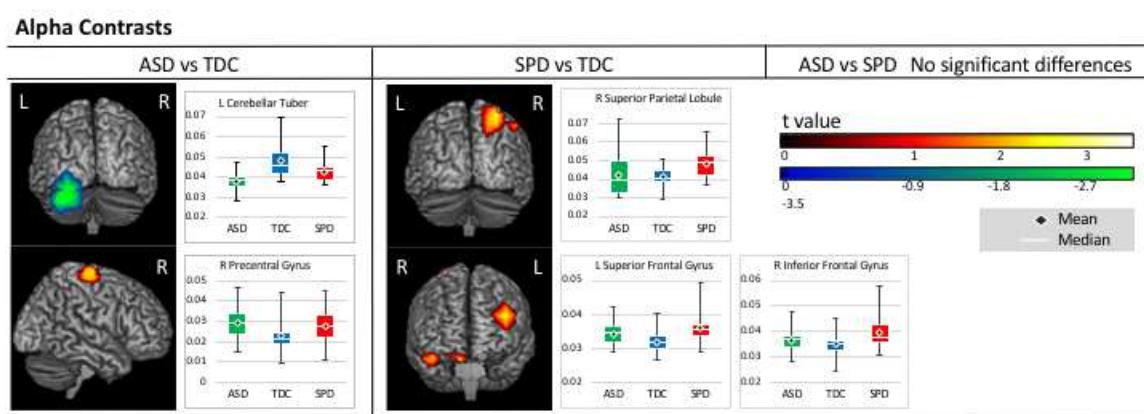
263 Demopoulos, Brandes-Aitken, et al. 2015). The Linguistic Index (LI) of the DSTP was used to
264 evaluate semantic and pragmatic aspects of language. The VCI of the WISC-IV (Wechsler,
265 2003) was used to index verbal intellectual abilities.

266 *Magnetic Resonance Image (MRI) Acquisition and Processing.* Structural MRIs were
267 acquired for co-registration with MEG functional data on a 3T Siemens MRI scanner at the
268 UCSF Neuroscience Imaging Center. T1-weighted images were spatially normalized to the
269 standard Montreal Neurological Institute template brain using 5mm voxels in SPM8
270 (<http://www.fil.ion.ucl.ac.uk/spm/software/spm8/>). Normalization results were manually verified
271 in all participants.

272 *Magnetoencephalographic Image Acquisition and Processing.* Methods for acquisition
273 and processing of MEG data follow protocols similar to those used in prior research employing
274 these imaginary coherence metrics (Demopoulos et al. 2020; Ranasinghe et al. 2017).
275 Specifically, MEG data were acquired at a 1200 Hz sampling rate using a 275-channel CTF
276 System whole-head biomagnetometer (MEG International Services Ltd., Coquitlam, BC,
277 Canada). Fiducial coils were placed at the nasion and bilateral peri-auricular points to localize
278 the head to the sensor array. These localizations were utilized for coregistration to the T1-
279 weighted MRI and generation of a head shape. Four minutes of continuous recording was
280 collected from each subject while awake with eyes closed in a supine position. While keeping
281 eyes closed can increase alpha in resting state activity, it also serves to control visual stimulation
282 and because this procedure was implemented for all participants, this would not confound group
283 contrasts. As such, we elected to use an eyes closed approach, as has been used in many previous
284 studies of resting state activity in children with ASD (Berman et al. 2015; Brodski-Guerniero et
285 al. 2018; Cornew et al. 2012; Edgar et al. 2019; Edgar, Heiken, et al. 2015; Green et al. 2020,

286 2022; Port et al. 2019). Based on previous studies demonstrating reliable results from 60 second
287 segments of MEG resting state data (Guggisberg et al. 2008; Hinkley 2010; Hinkley et al. 2011),
288 we selected a 60-second artifact-free epoch. Artifact rejection criteria were signal amplitude
289 >10pT or visual evidence of movement or muscle contractions.

290 A whole brain lead field was computed according to a spatially normalized MRI with a
291 10mm voxel size. The Neurodynamic Utility Tool for MEG (NUTMEG;
292 <http://nutmeg.berkeley.edu>; Dalal et al., 2011) was used for source-space reconstruction and
293 functional connectivity analyses. Source-space was reconstructed from filtered sensor (fourth-
294 order Butterworth filter of 1–20 Hz). A linear combination of spatial weighting and sensor data
295 matrices were used to estimate each voxel's amplitudes (Hinkley et al., 2011).


296 Following source space reconstruction, functional connectivity analysis was performed
297 by computing imaginary coherence. The imaginary coherence approach excludes zero- or π -
298 phase-lag-connectivity to eliminate neural synchrony attributable to volume spread (Nolte et al.
299 2004). This approach has been documented as a reliable method for estimating long-range neural
300 synchrony (Engel et al. 2013; Guggisberg et al. 2008; Martino et al. 2011; Nolte et al. 2004), and
301 has been shown to reduce overestimation (Guggisberg et al. 2008; Martino et al. 2011; Nolte et
302 al. 2004). Imaginary coherence values were transformed to Fisher's Z prior to calculating
303 associations between each voxel and all other voxels. These associations were averaged within
304 each voxel to derive voxel wise global connectivity values for group contrasts in the alpha and
305 beta frequency bands. Correlations also were performed between behavioral measures and global
306 connectivity values at each voxel for the combined group study sample. All voxel-wise results
307 with uncorrected $p < 0.05$ were further subjected to a 5% False Discovery Rate multiple
308 comparisons correction (Benjamini and Hochberg 1995) and a 5-voxel cluster correction.

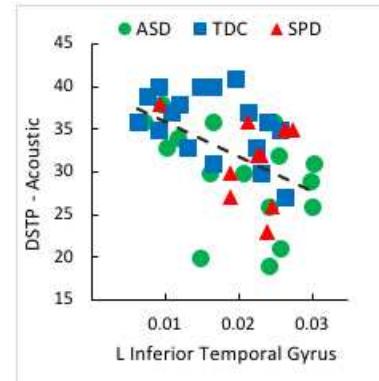
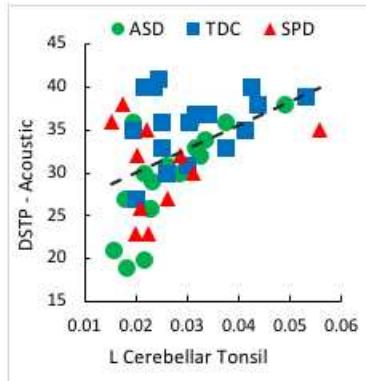
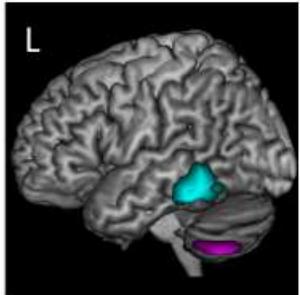
309 *Missing Data.* Data from the sensory battery tasks are missing for some participants
310 because these tasks were added to the protocol after these participants were enrolled. Thus, these
311 data can be considered missing at random. DSTP data was available for 17 ASD participants, 17
312 TDC participants, and 11 SPD participants. Van Boven Domes were administered to 16
313 participants in the ASD group, 16 in the TDC group, and 11 in the SPD group. Graphesthesia
314 was administered to 17 ASD participants, 15 TDC participants, and 11 SPD participants.

315 Results

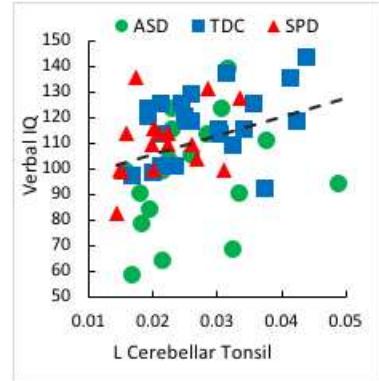
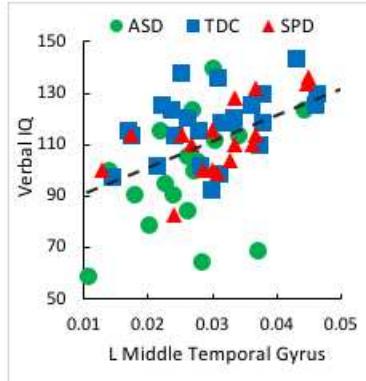
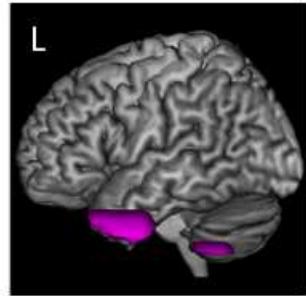
316 *Group Contrasts in Alpha Connectivity.* Group contrasts in alpha coherence indicated
317 that, relative to TDC participants, the ASD group showed reduced connectivity in the left
318 fusiform and inferior occipital gyri and cerebellum and increased connectivity in the right pre-
319 and postcentral gyri. No significant differences were identified between the ASD and SPD
320 groups; however, the SPD group showed increased connectivity compared to TDC participants
321 in the left middle and superior frontal gyri and in the right inferior frontal gyrus, precuneus, and
322 inferior and superior parietal lobules. Alpha contrast results are presented in Figure 1 and
323 summarized in Table 2.

324 [Figure 1]

325

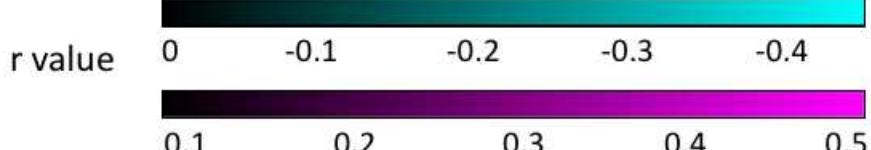



326 Figure 1. Alpha Contrasts. Areas of significantly increased (warm) and reduced (cool) alpha
327 connectivity are presented on figures for each pairwise contrast. Accompanying boxplots are
328 presented for each cluster showing imaginary coherence values for all groups at the voxel within
329 that cluster that demonstrated the greatest pairwise difference.

330 *Correlations Between Alpha Connectivity and Sensory Processing/Verbal Abilities.*




331 Correlation analyses were performed on all study participants combined across groups to
332 examine the relations between functional connectivity and the range of sensory processing and
333 verbal abilities in our sample. No significant associations were identified between tactile
334 processing performance and measures of alpha coherence; however, significant associations
335 were identified between measures of alpha coherence and auditory processing performance.
336 Specifically, scores on the DSTP Acoustic scale were positively associated with alpha coherence
337 in the left cerebellar tonsil and negatively associated with alpha coherence in the left inferior and
338 middle temporal gyri. A significant positive association also was identified between VIQ and
339 alpha coherence in the left uncus, cerebellar tonsil, and anterior superior, middle, and inferior
340 temporal gyri (Figure 2). A summary of correlation results is presented in Table 3.
341 [Figure 2]

Alpha Connectivity Correlations: Combined Sample

Auditory Processing



Verbal Abilities

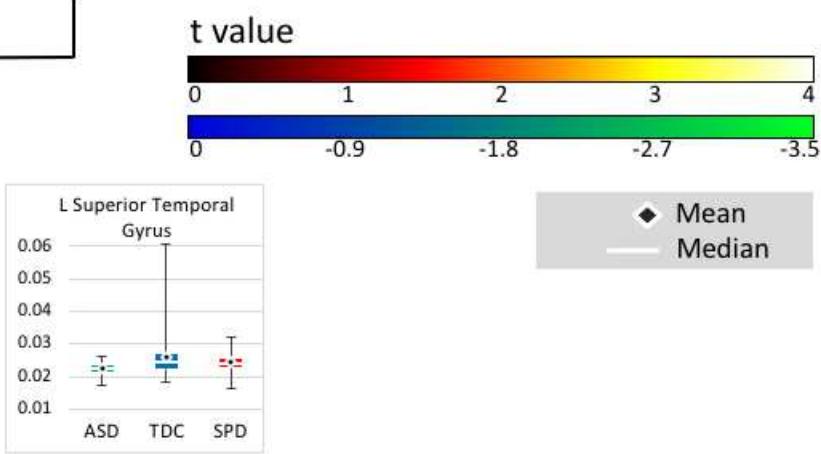
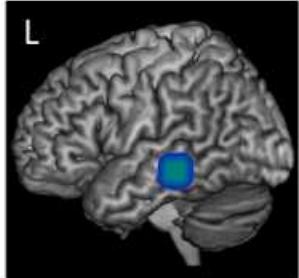
Tactile Processing

No Significant Associations

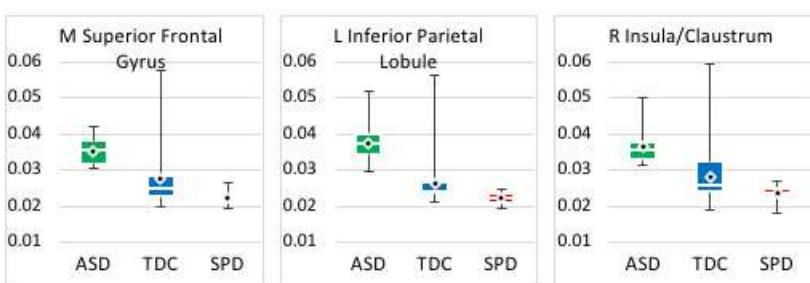
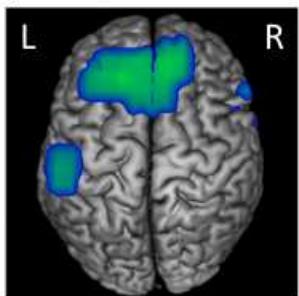
342

343 Figure 2. Alpha Correlations in the Combined Participant Sample. Positive associations between
344 auditory processing/verbal abilities and alpha connectivity values are identified in magenta
345 clusters for the sample of all participants in the study. Negative associations between auditory
346 processing and imaginary coherence values are identified in cyan clusters. Corresponding
347 scatterplots are presented for the voxel with the greatest correlation value within each cluster,

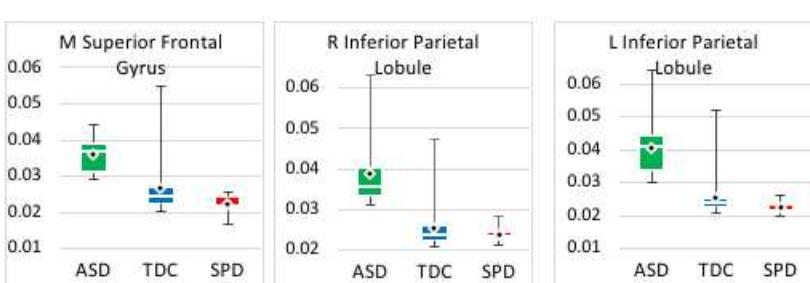
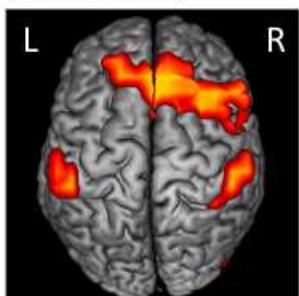
348 with groups identified by color and shape (ASD group = yellow circle, SPD group = green
349 triangle, and TDC group = grey square).



350

351 *Group Contrasts in Beta Connectivity.* Group contrasts in beta coherence indicated that,
352 relative to TDC participants, the ASD group showed reduced connectivity in the left middle and
353 inferior temporal gyri. Relative to SPD participants, however, the ASD group showed a pattern
354 of increased beta connectivity in the right cingulate, middle frontal, and precentral gyri, and
355 bilaterally in the superior and medial frontal gyri, the postcentral gyrus, the inferior parietal
356 lobule, and in the supramarginal gyrus. Finally, when compared to TDC participants, the SPD
357 group demonstrated a pattern of reduced beta connectivity bilaterally in the superior and middle
358 frontal gyri, insula and putamen, as well as in the left inferior frontal gyrus, cingulate gyrus,
359 caudate body, pre- and postcentral gyri, and inferior parietal lobule, and in the right superior
360 temporal gyrus, lentiform nucleus, globus pallidus, and caudate. Beta contrasts are presented in
361 Figure 3 and summarized in Table 2.



362 [Figure 3]

Beta Contrasts

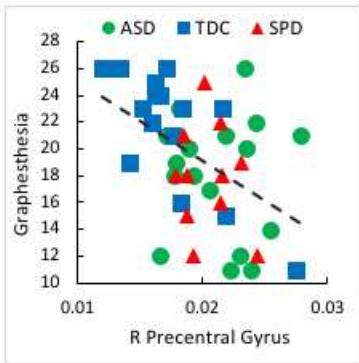
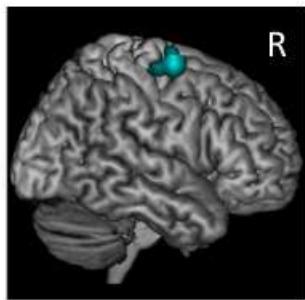


ASD vs TDC

SPD vs TDC

ASD vs SPD

363

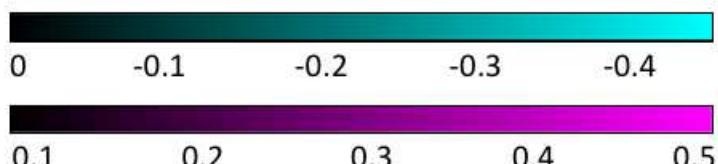
364 Figure 3. Beta Contrasts. Areas of significantly increased (warm) and reduced (cool) beta
365 connectivity are presented on figures for each pairwise contrast. Accompanying boxplots are
366 presented for each cluster showing imaginary coherence values for all groups at the voxel within
367 that cluster that demonstrated the greatest pairwise difference.



368

369 *Correlations Between Beta Connectivity and Sensory Processing.* A significant negative
370 association was identified between beta coherence in the right precentral gyrus and performance
371 on the graphesthesia task (Figure 4). No significant associations were identified between beta
372 coherence and measures of auditory processing or verbal abilities in the combined groups
373 sample. A summary of correlation results is presented in Table 3.

374 [Figure 4]

Beta Connectivity Correlations: Combined Sample


Tactile Processing

Auditory Processing & Verbal Abilities

No Significant Associations

375 r value

375

376 Figure 4. Beta Correlations in the Combined Participant Sample. Negative associations between
377 tactile processing abilities and beta connectivity values are identified in the cyan cluster for the
378 sample of all participants in the study. The corresponding scatterplot is presented for the voxel
379 with the greatest correlation value within each cluster, with groups identified by color and shape
380 (ASD group = yellow circle, SPD group = green triangle, and TDC group = grey square).

381

382 [Table 2]

383 Table 2. Summary of Group Contrast Results

Group	Band	Regions	Direction of Difference
ASD vs. TDC	α	left fusiform and inferior occipital gyri and cerebellum	Decreased
		right pre- and postcentral gyri	Increased
	β	left middle and inferior temporal gyri	Decreased
SPD vs. TDC	α	left middle and superior frontal gyri and in the right inferior frontal gyrus, precuneus, and inferior and superior parietal lobules	Increased
	β	bilaterally in the superior and middle frontal gyri, insula and putamen, as well as in the left inferior frontal gyrus, cingulate gyrus, caudate body, pre- and postcentral gyri, and inferior parietal lobule, and the right superior temporal gyrus, lentiform nucleus, globus pallidus, and caudate	Decreased
ASD vs. SPD	α	no significant differences	N/A
	β	right cingulate, middle frontal, and precentral gyri, and bilaterally in the superior and medial frontal gyri, the postcentral gyrus, the inferior parietal lobule, and in the supramarginal gyrus	Increased

384

385 [Table 3]

386 Table 3. Summary of Correlation Results for the Combine Groups Sample

Band	Domain	Task	Regions	Direction of Correlation
α	tactile		no significant associations	N/A
	auditory	DSTP Acoustic Scale	left cerebellar tonsil	+
			left inferior and middle temporal gyri	-
	verbal	VIQ	left uncus, cerebellar tonsil, and anterior superior, middle, and inferior temporal gyri	+
β	tactile	Graphesthesia	right precentral gyrus	-
	auditory		no significant associations	N/A
	verbal		no significant associations	N/A

387

388

Discussion

389 This study used two methods to investigate associations between direct assessment of
390 auditory and tactile sensory processing and resting state functional connectivity in the brain.
391 First, we examined differences between groups that would allow us to isolate the sensory
392 processing dysfunction that presents as part of an ASD from that which manifests in the absence
393 of the other defining features of ASD. Second, we directly examined associations between
394 functional connectivity and auditory and tactile processing and verbal abilities in a combined
395 participant sample including all three groups, allowing us to examine the distribution of these
396 variables across children with a range of sensory functioning.

397 *Group Contrasts in Functional Connectivity*

398 *ASD vs TDC Contrasts.* Relative to the TDC group, participants with ASD showed
399 increased alpha connectivity in the right sensorimotor cortex and decreased connectivity in left
400 posterior fusiform, occipital, and cerebellar regions. Notably, increased alpha power (Edgar,
401 Heiken, et al. 2015) in a similar region in the right medial sensorimotor cortex, and increased
402 alpha to low-gamma phase amplitude coupling in this central midline region (Port et al. 2019)
403 has been reported in prior ASD samples. The present results also recapitulate our previous
404 structural findings in children with ASD, in which we reported decreased structural connectivity
405 in the inferior fronto-occipital fasciculus and the fusiform-hippocampus and fusiform-amygdala
406 tracts (Chang et al., 2014). Our findings of increased cerebellar connectivity are also consistent
407 with considerable prior research implicating the cerebellum in the pathology of ASD.
408 Specifically, cerebellar anomalies, including abnormal anatomy, neurotransmission, oxidative
409 stress, neuroinflammation, and cerebellar motor and cognitive deficits are among the most
410 replicated findings in individuals with ASD (Fatemi et al. 2012).

411 In the beta range, the ASD group demonstrated decreased beta connectivity in left
412 temporal regions relative to TDC participants. Stronger beta connectivity in TDC relative to
413 ASD participants in temporal regions has been demonstrated in prior work (Kitzbichler et al.
414 2015). Beta power in the auditory cortex has been hypothesized to be involved in auditory-motor
415 communication (Fujioka et al. 2009) and recent work has demonstrated increases in sensorimotor
416 low beta power in response to perceived self-produced vocal errors on an altered auditory
417 feedback speech paradigm (Franken et al. 2018). The decreased beta connectivity in the left
418 auditory cortex demonstrated in the present study may reflect under-recruitment of this area
419 needed for auditory processing and auditory motor communication in participants with ASD.

420 *SPD vs TDC Contrasts.* The SPD group differed from the TDC group via increased alpha
421 connectivity in bilateral frontal and right posterior parietal regions and reduced beta connectivity
422 in left parietal and medial and right frontal regions. These differences in functional connectivity
423 identified in these regions may be associated with the impairments in visuomotor skills and
424 attention previously reported in the SPD population (Brandes-Aitken et al., 2018). In fact, prior
425 work examining diffusion imaging in children with SPD identified associations between
426 visuomotor and cognitive control abilities and structural connectivity in regions of the superior
427 longitudinal fasciculus that run adjacent to the parietal regions identified in this study (Brandes-
428 Aitken et al., 2019).

429 *ASD vs SPD Alpha and Beta Contrasts.* Notably, the ASD and SPD groups did not show
430 significant differences in alpha connectivity. In fact, it was beta connectivity that distinguished
431 these two groups. Specifically, the SPD group showed a pattern of reduced beta connectivity
432 relative to both the TDC and ASD groups in bilateral and medial frontal and left parietal regions.
433 Taken together, these findings suggest that decreased beta connectivity in medial frontal and

434 parietal regions may be involved in, or a response to, the sensory disturbance experienced by
435 children with SPD. Beta activity has been previously reported to be associated with
436 somatosensory gating and attention (Bauer et al. 2012; Buchholz et al. 2014; van Ede et al.
437 2010). Our previous work has demonstrated common tactile processing deficits in both ASD and
438 SPD groups (Demopoulos, Brandes-Aitken, et al. 2015), although when MEG-acquired
439 somatosensory latencies were compared between these groups, the SPD group demonstrated an
440 intermediate latency and did not significantly differ from TDC or ASD participants (Demopoulos
441 et al. 2017). These previous results, in conjunction with the present finding that beta activity
442 distinguished the ASD and SPD groups in the bilateral somatosensory cortex, may suggest that
443 the pathology underlying tactile dysfunction in these two groups is divergent.

444 *Combined Groups Correlation Results.* When correlation analyses were performed on all
445 participants combined into one group, alpha connectivity was positively associated with auditory
446 and verbal abilities, whereas beta connectivity was negatively associated with tactile processing.
447 Specifically, there was a common area of positive correlation between left cerebellar alpha
448 connectivity and both auditory processing and verbal abilities; however, an additional positive
449 association was identified between left anterior temporal alpha connectivity and verbal abilities.
450 Previous work has identified an association between increased anterior temporal alpha power and
451 autism symptomatology measured via the SRS total score (Cornew et al. 2012), whereas an
452 additional negative association was identified between posterior temporal alpha connectivity and
453 auditory processing. Taken together, these findings may suggest that increased cerebellar alpha
454 recruitment may be utilized to address auditory processing weakness that affects not only basic
455 auditory processing abilities, a deficit that is common in individuals with ASD (Abdeltawwab
456 and Baz 2015; Alcántara et al. 2004; Demopoulos et al. 2017; Demopoulos, Hopkins, et al. 2015;

457 Demopoulos and Lewine 2016; DePape et al. 2012; Edgar et al. 2013, 2014; Edgar, Fisk IV, et
458 al. 2015; Gage, Siegel, Callen, et al. 2003; Gage, Siegel, and Roberts 2003; Hitoglou et al. 2010;
459 Järvinen-Pasley and Heaton 2007; Kargas et al. 2015; Oram-Cardy et al. 2005; Oram Cardy et al.
460 2005; Tecchio et al. 2003; Tomcheck and Dunn 2007), but also verbal abilities. Indeed, prior
461 work has demonstrated links between cortical auditory processing abnormalities and verbal
462 abilities (Berman et al. 2016; Demopoulos et al. 2017; Edgar et al. 2013; Oram-Cardy et al.
463 2005; Oram Cardy et al. 2008; Roberts et al. 2011, 2012; Schmidt et al. 2009). With regard to
464 beta connectivity, increases in the right somatosensory cortex were associated with poorer
465 performance on the graphesthesia task. Examination of the scatterplot distribution suggests that
466 somatosensory processing limitations may drive the graphesthesia impairments demonstrated in
467 the two clinical groups. Correlation results were consistent with our hypothesis that beta
468 connectivity would be associated with tactile processing and alpha connectivity would be
469 associated with auditory processing. This is consistent with prior work in which alpha
470 oscillations were associated with direction of auditory attention (Bauer et al. 2012) and
471 somatosensory cortex beta band modulation was reported in advance of tactile stimuli (van Ede
472 et al. 2010).

473

474 *Limitations and Future Directions*

475 Several limitations of the present study must be acknowledged. First, the participant
476 sample was restricted to males between the ages of 8-12 years. Prior studies examining resting
477 state neural oscillatory behavior have also restricted analyses to males given the high prevalence
478 of ASD in males and sex differences in peak alpha frequency (Edgar et al. 2019; Green et al.
479 2022; Manyukhina et al. 2022). While these restrictions result in more homogenous groups and

480 minimize confounds of sex and age differences in neurobiology, they also create limitations for
481 the generalizability of these results to females and children and adolescents outside the age range
482 studies. Future research is necessary to understand the applicability of these findings across ages
483 and sexes. This study also included only children with a nonverbal IQ>70, which limits the
484 generalizability of these results to lower functioning individuals. Further, this study focused on
485 only two frequency bands (alpha and beta) and only two sensory domains, auditory and tactile
486 processing. While prior research suggests that these domains may be the most severely impacted
487 in individuals with ASD (Fernandez-Andres et al. 2015), sensory dysfunction is heterogeneous in
488 its presentation among individuals with and without ASD, and understanding neurobiological
489 factors associated with dysfunction in other sensory domains also will be important to inform
490 treatment development. Finally, this study focused on specific aspects of sensory processing
491 (e.g., discrimination, temporal processing, etc.), but did not incorporate measures of sensory
492 responsivity or sensory seeking behavior. Further, this work only focused on two frequency
493 bands, alpha and beta. Future studies could expand upon this work to examine relations between
494 sensory processing dysfunction and functional connectivity in other frequency bands, as gamma
495 oscillatory behavior has been associated with multisensory communication (Misselhorn et al.
496 2019) and sensory sensitivity (Manyukhina et al. 2021). Future studies are needed to characterize
497 differences in functional connectivity that may account for these heterogeneous sensory
498 responses or behaviors in children with ASD and SPD.

499 *Conclusions*

500 This study was the first to use MEG to examine participants with ASD and SPD in
501 relation to neurotypical children to identify relevant differences in resting state whole brain
502 functional connectivity that may be associated with sensory dysfunction. This study design

503 allowed us to identify both shared and distinct patterns of neural activity in two groups affected
504 by sensory dysfunction. Specifically, both clinical groups were distinguished from the TDC
505 group by patterns of functional connectivity differences in the alpha and beta bands, whereas the
506 clinical groups were only distinguished from each other on measures of beta connectivity.
507 Associations between functional connectivity and behavior identified that sensorimotor regions
508 were associated with tactile processing performance and temporal and cerebellar regions were
509 associated with auditory processing and language abilities. These results suggest that resting
510 state differences in oscillatory brain activity in the alpha and beta frequencies is associated with
511 the sensory dysfunction that characterizes children with ASD and SPD.

512

513

514

515

References

- 516 Abdeltawwab, Mohamed Moustafa, and Hemmat Baz. 2015. "Automatic Pre-Attentive Auditory
517 Responses: MMN to Tone Burst Frequency Changes in Autistic School-Age Children." *The
518 Journal of International Advanced Otology* 11(1):36–41. doi: 10.5152/iao.2014.438.
- 519 Adamson, Amanda, Anne O. Hare, and Catriona Graham. 2006. "Impairments in Sensory
520 Modulation in Children with Autistic Spectrum Disorder." *British Journal of Occupational
521 Therapy* 69(8):357–64.
- 522 Adolph, Dirk, and Jürgen Margraf. 2017. "The Differential Relationship between Trait Anxiety,
523 Depression, and Resting Frontal α -Asymmetry." *Journal of Neural Transmission*
524 124(3):379–86. doi: 10.1007/s00702-016-1664-9.
- 525 Ahn, R. R., L. J. Miller, S. Milberger, and D. N. McIntosh. 2004. "Prevalence of Parents'
526 Perceptions of Sensory Processing Disorders among Kindergarten Children." *Am J Occup
527 Ther* 58(3):287–93.
- 528 Al-Heizan, Mohammed O., Sami S. AlAbdulwahab, Shaji John Kachanathu, and Mohan Natho.
529 2015. "Sensory Processing Dysfunction among Saudi Children with and without Autism."
530 *Journal of Physical Therapy Science* 27(5):1313–16. doi: 10.1589/jpts.27.1313.
- 531 Alcántara, José I., Emma J. L. Weisblatt, Brian C. J. Moore, and Patrick F. Bolton. 2004.
532 "Speech-in-Noise Perception in High-Functioning Individuals with Autism or Asperger's
533 Syndrome." *Journal of Child Psychology and Psychiatry, and Allied Disciplines*
534 45(6):1107–14. doi: 10.1111/j.1469-7610.2004.t01-1-00303.x.
- 535 American Psychiatric Association. 2013. *Diagnostic and Statistical Manual of Mental Disorders,
536 5th Edition (DSM-5)*. American Psychiatric Association.
- 537 Anon. n.d. "Van Boven Domes."

- 538 Ayres, Jean. 1989. *Sensory Integration and Praxis Tests (SIPT)*. Los Angeles: Western
539 Psychological Services.
- 540 Bauer, M., S. Kennett, and J. Driver. 2012. “Attentional Selection of Location and Modality in
541 Vision and Touch Modulates Low-Frequency Activity in Associated Sensory Cortices.”
542 *Journal of Neurophysiology* 107(9):2342–51. doi: 10.1152/jn.00973.2011.
- 543 Benjamini, Y., and Y. Hochberg. 1995. “Controlling the False Discovery Rate: A Practical and
544 Powerful Approach to Multiple Testing.” *Journal of Royal Statistical Society* 57:289–300.
- 545 Berman, Jeffrey I., James C. Edgar, Lisa Blaskey, Emily S. Kuschner, Susan E. Levy, Matthew
546 Ku, John Dell, and Timothy P. L. Roberts. 2016. “Multimodal Diffusion-MRI and MEG
547 Assessment of Auditory and Language System Development in Autism Spectrum
548 Disorder.” *Frontiers in Neuroanatomy* 10(March). doi: 10.3389/fnana.2016.00030.
- 549 Berman, JI, S. Liu, L. Bloy, L. Blaskey, T. Roberts, and JC Edgar. 2015. “Alpha-to-Gamma
550 Phase-Amplitude Coupling Methods and Application to Autism Spectrum Disorder.” *Brain
551 Connectivity* 5(2):89–90.
- 552 Bouthcher, S. H., and D. M. Landers. 1998. “The Effects of Vigorous Exercise on Anxiety, Heart
553 Rate, and Alpha Activity of Runners and Nonrunners.” *Psychophysiology* 25(6):696–702.
- 554 Van Boven, R. W., and K. O. Johnson. 1994. “The Limit of Tactile Spatial Resolution in
555 Humans: Grating Orientation Discrimination at the Lip, Tongue, and Finger.” *Neurology*
556 44(12):2361–66.
- 557 Brandes-Aitken, A., J. A. Anguera, C. E. Rolle, S. S. Desai, C. Demopoulos, S. N. Skinner, A.
558 Gazzaley, and E. J. Marco. 2018. “Characterizing Cognitive and Visuomotor Control in
559 Children With Sensory Processing Dysfunction and Autism Spectrum Disorders.”
560 *Neuropsychology* 32(2):148–60. doi: 10.1037/neu0000404.

- 561 Brandes-Aitken, A., Anguera, J.A., Chang, Y., Demopoulos, C., Owen, J.P., Gazzaley, A.,
- 562 Mukherjee, P., and Marco, E.J. 2019. “White Matter Microstructure Associations of
- 563 Cognitive and Visuomotor Control in Children : A Sensory Processing Perspective.”
- 564 *Frontiers in Integrative Neuroscience* 12(January):1–12. doi: 10.3389/fnint.2018.00065.
- 565 Brodski-Guerniero, A., MJ Naumer, V. Moliadze, J. Chan, H. Althen, F. Ferreira-Santos, JT
- 566 Lizier, S. Schlitt, J. Kitzrow, M. Schütz, A. Langer, J. Kaiser, CM Freitag, and M. Wibral.
- 567 2018. “Predictable Information in Neural Signals during Resting State Is Reduced in
- 568 Autism Spectrum Disorder.” *Human Brain Mapping* 39(8):3227–40.
- 569 Buchholz, Verena N., Ole Jensen, and W. Pieter Medendorp. 2014. “Different Roles of Alpha
- 570 and Beta Band Oscillations in Anticipatory Sensorimotor Gating.” *Frontiers in Human*
- 571 *Neuroscience* 8(June):1–9. doi: 10.3389/fnhum.2014.00446.
- 572 Chang, Yi-Shin, Julia P. Owen, Shivani S. Desai, Susanna S. Hill, Anne B. Arnett, Julia Harris,
- 573 Elysa J. Marco, and Pratik Mukherjee. 2014. “Autism and Sensory Processing Disorders:
- 574 Shared White Matter Disruption in Sensory Pathways but Divergent Connectivity in Social-
- 575 Emotional Pathways.” *PLoS One* 9(7):e103038. doi: 10.1371/journal.pone.0103038.
- 576 Chang, Yi Shin, Mathilde Gratiot, Julia P. Owen, Anne Brandes-Aitken, Shivani S. Desai,
- 577 Susanna S. Hill, Anne B. Arnett, Julia Harris, Elysa J. Marco, and Pratik Mukherjee. 2016.
- 578 “White Matter Microstructure Is Associated with Auditory and Tactile Processing in
- 579 Children with and without Sensory Processing Disorder.” *Frontiers in Neuroanatomy* 9:1–
- 580 16. doi: 10.3389/fnana.2015.00169.
- 581 Cornew, Lauren, Timothy P. L. Roberts, Lisa Blaskey, and J. Christopher Edgar. 2012. “Resting-
- 582 State Oscillatory Activity in Autism Spectrum Disorders.” *Journal of Autism and*
- 583 *Developmental Disorders* 42(9):1884–94. doi: 10.1007/s10803-011-1431-6.

- 584 Dalal, Sarang S., Johanna M. Zumer, Adrian G. Guggisberg, Michael Trumpis, Daniel D. E.
585 Wong, Kensuke Sekihara, and Srikantan S. Nagarajan. 2011. “MEG/EEG Source
586 Reconstruction, Statistical Evaluation, and Visualization with NUTMEG.” *Computational
587 Intelligence and Neuroscience* 2011. doi: 10.1155/2011/758973.
- 588 Demerdzieva, A., and N. Pop-Jordanova. 2015. “Relation between Frontal Alpha Asymmetry
589 and Anxiety in Young Patients with Generalized Anxiety Disorder.” *Pril (Makedon Akad
590 Nauk Umet Odd Med Nauki)* 36(2):157–77.
- 591 Demopoulos, C., A. Aitkens, A. Findley, D. Mizuiri, S. Honma, S. S. Desai, A. D. Antovich, N.
592 Yu, S. S. Hill, S. Nagarajan, and E. J. Marco. 2017. “Magnetoencephalographic Imaging of
593 Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory
594 Processing Dysfunction.” *Frontiers in Human Neuroscience* 11.
- 595 Demopoulos, Carly, Annie N. Brandes-Aitken, Shivani S. Desai, Susanna S. Hill, Ashley D.
596 Antovich, Julia Harris, and Elysa J. Marco. 2015. “Shared and Divergent Auditory and
597 Tactile Processing in Children with Autism and Children with Sensory Processing
598 Dysfunction Relative to Typically Developing Peers.” *Journal of the International
599 Neuropsychological Society* 21(6):444–54. doi: 10.1017/S1355617715000387.
- 600 Demopoulos, Carly, Xuan Duong, Leighton B. Hinkley, Kamalini G. Ranasinghe, Danielle
601 Mizuiri, Coleman Garrett, Susanne Honma, Jennifer Henderson-Sabes, Anne Findlay,
602 Caroline Racine-Belkoura, Steven W. Cheung, and Srikantan S. Nagarajan. 2020. “Global
603 Resting-State Functional Connectivity of Neural Oscillations in Tinnitus with and without
604 Hearing Loss.” *Human Brain Mapping* 41(10):2846–61. doi: 10.1002/hbm.24981.
- 605 Demopoulos, Carly, Joyce Hopkins, Brandon E. B. E. Kopald, Kim Paulson, Lauren Doyle, W.
606 E. Whitney E. Andrews, and Jeffrey David J. D. Lewine. 2015. “Deficits in Auditory

- 607 Processing Contribute to Impairments in Vocal Affect Recognition in Autism Spectrum
608 Disorders: A MEG Study.” *Neuropsychology* 29(6):895–908. doi: 10.1037/neu0000209.
- 609 Demopoulos, Carly, and Jeffrey David J. D. Lewine. 2016. “Audiometric Profiles in Autism
610 Spectrum Disorders: Does Subclinical Hearing Loss Impact Communication?” *Autism*
611 *Research* 9(1):107–20. doi: 10.1002/aur.1495.
- 612 Demopoulos, Carly, Nina Yu, Jennifer Tripp, Nayara Mota, Anne N. Brandes-Aitken, S. S.
613 Shivani S. Desai, Susanna S. Hill, A. D. Ashley D. Antovich, Julia Harris, Susanne Honma,
614 Danielle Mizuiri, Srikantan S. Nagarajan, E. J. Elysa J. Marco, A. Aitkens, A. Findley,
615 Danielle Mizuiri, Susanne Honma, S. S. Shivani S. Desai, A. D. Ashley D. Antovich, Nina
616 Yu, Susanna S. Hill, Srikantan S. Nagarajan, and E. J. Elysa J. Marco. 2017.
617 “Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in
618 Children with Autism and Sensory Processing Dysfunction.” *Frontiers in Human*
619 *Neuroscience* 11(May):1–15. doi: 10.3389/fnhum.2017.00259.
- 620 DePape, Anne-Marie R., Geoffrey B. C. Hall, Barbara Tillmann, and Laurel J. Trainor. 2012.
621 “Auditory Processing in High-Functioning Adolescents with Autism Spectrum Disorder.”
622 *PLoS ONE* 7(9):e44084.
- 623 Dunn, Winifred. 1999. *Sensory Profile User’s Manual*. San Antonio, TX: Psychological
624 Corporation.
- 625 van Ede, Freek, Ole Jensen, and Eric Maris. 2010. “Tactile Expectation Modulates Pre-Stimulus
626 A-Band Oscillations in Human Sensorimotor Cortex.” *NeuroImage* 51(2):867–76. doi:
627 10.1016/j.neuroimage.2010.02.053.
- 628 Edgar, J. Christopher, Marissa Dipiero, Emma McBride, Heather L. Green, Jeffrey Berman,
629 Matthew Ku, Song Liu, Lisa Blaskey, Emily Kuschner, Megan Airey, Judith L. Ross, Luke

- 630 Bloy, Mina Kim, Simon Koppers, William Gaetz, Robert T. Schultz, and Timothy P. L.
631 Roberts. 2019. “Abnormal Maturation of the Resting-State Peak Alpha Frequency in
632 Children with Autism Spectrum Disorder.” *Human Brain Mapping* 40(11):3288–98. doi:
633 10.1002/hbm.24598.
- 634 Edgar, J. Christopher, Charles L. Fisk IV, Jeffrey I. Berman, Darina Chudnovskaya, Song Liu,
635 Juhi Pandey, John D. Herrington, Russell G. Port, Robert T. Schultz, and Timothy P. L.
636 Roberts. 2015. “Auditory Encoding Abnormalities in Children with Autism Spectrum
637 Disorder Suggest Delayed Development of Auditory Cortex.” *Molecular Autism* 6(1):69.
638 doi: 10.1186/s13229-015-0065-5.
- 639 Edgar, J. Christopher, Kory Heiken, Yu Han Chen, John D. Herrington, Vivian Chow, Song Liu,
640 Luke Bloy, Mingxiong Huang, Juhi Pandey, Katelyn M. Cannon, Saba Qasmieh, Susan E.
641 Levy, Robert T. Schultz, and Timothy P. L. Roberts. 2015. “Resting-State Alpha in Autism
642 Spectrum Disorder and Alpha Associations with Thalamic Volume.” *Journal of Autism and*
643 *Developmental Disorders* 45(3):795–804. doi: 10.1007/s10803-014-2236-1.
- 644 Edgar, J. Christopher, Sarah Y. Khan, Lisa Blaskey, Vivian Y. Chow, Michael Rey, William
645 Gaetz, Katelyn M. Cannon, Justin F. Monroe, Lauren Cornew, Saba Qasmieh, Song Liu,
646 John P. Welsh, Susan E. Levy, and Timothy P. L. Roberts. 2013. “Neuromagnetic
647 Oscillations Predict Evoked-Response Latency Delays and Core Language Deficits in
648 Autism Spectrum Disorders.” *Journal of Autism and Developmental Disorders*. doi:
649 10.1007/s10803-013-1904-x.
- 650 Edgar, J. Christopher, Matthew R. Lanza, Aleksandra B. Daina, Justin F. Monroe, Sarah Y.
651 Khan, Lisa Blaskey, Katelyn M. Cannon, Julian Jenkins, Saba Qasmieh, Susan E. Levy, and
652 Timothy P. L. Roberts. 2014. “Missing and Delayed Auditory Responses in Young and

- 653 Older Children with Autism Spectrum Disorders.” *Frontiers in Human Neuroscience*
654 8(June):1–13. doi: 10.3389/fnhum.2014.00417.
- 655 Engel, Andreas K., Christian Gerloff, Claus C. Hilgetag, and Guido Nolte. 2013. “Intrinsic
656 Coupling Modes: Multiscale Interactions in Ongoing Brain Activity.” *Neuron* 80(4):867–
657 86. doi: 10.1016/j.neuron.2013.09.038.
- 658 Fatemi, S. Hossein, Kimberly A. Aldinger, Paul Ashwood, Margaret L. Bauman, Charles D.
659 Blaha, Gene J. Blatt, Abha Chauhan, Ved Chauhan, Stephen R. Dager, Price E. Dickson,
660 Annette M. Estes, Dan Goldowitz, Detlef H. Heck, Thomas L. Kemper, Bryan H. King,
661 Loren A. Martin, Kathleen J. Millen, Guy Mittleman, Matthew W. Mosconi, Antonio M.
662 Persico, John A. Sweeney, Sara J. Webb, and John P. Welsh. 2012. “Consensus Paper:
663 Pathological Role of the Cerebellum in Autism.” *Cerebellum* 11(3):777–807. doi:
664 10.1007/s12311-012-0355-9.
- 665 Fernandez-Andres, M. Inmaculada, Gemma Pastor-Cerezuela, Pilar Sanz-Cervera, and Raul
666 Tarraga-Mingues. 2015. “A Comparative Study of Sensory Processing in Children with and
667 without Autism Spectrum Disorder in the Home and Classroom Environments.” *Research*
668 in *Developmental Disabilities* 38:202–12. doi: 10.1016/j.ridd.2014.12.034.
- 669 Fingelkurts, Andrew A., Alexander A. Fingelkurts, Heikki Rytsälä, Kirsi Suominen, Erkki
670 Isometsä, and Seppo Kähkönen. 2007. “Impaired Functional Connectivity at EEG Alpha
671 and Theta Frequency Bands in Major Depression.” *Human Brain Mapping* 28(3):247–61.
672 doi: 10.1002/hbm.20275.
- 673 Foxe, John J., and Adam C. Snyder. 2011. “The Role of Alpha-Band Brain Oscillations as a
674 Sensory Suppression Mechanism during Selective Attention.” *Frontiers in Psychology*
675 2(JUL):1–13. doi: 10.3389/fpsyg.2011.00154.

- 676 Franken, Matthias K., Frank Eisner, Daniel J. Acheson, James M. McQueen, Peter Hagoort, and
677 Jan Mathijs Schoffelen. 2018. “Self-Monitoring in the Cerebral Cortex: Neural Responses
678 to Small Pitch Shifts in Auditory Feedback during Speech Production.” *NeuroImage*
679 179(January):326–36. doi: 10.1016/j.neuroimage.2018.06.061.
- 680 Fujioka, Takako, Laurel J. Trainor, Edward W. Large, and Bernhard Ross. 2009. “Beta and
681 Gamma Rhythms in Human Auditory Cortex during Musical Beat Processing.” *Annals of*
682 *the New York Academy of Sciences* 1169:89–92. doi: 10.1111/j.1749-6632.2009.04779.x.
- 683 Gage, Nicole M., Bryna Siegel, Melanie Callen, and Timothy Roberts. 2003. “Cortical Sound
684 Processing in Children with Autism Disorder : An MEG Investigation.” *Neuroreport*
685 14(16):2047–51. doi: 10.1097/01.wnr.0000090030.46087.
- 686 Gage, Nicole M., Bryna Siegel, and Timothy P. L. Roberts. 2003. “Cortical Auditory System
687 Maturational Abnormalities in Children with Autism Disorder: An MEG Investigation.”
688 *Developmental Brain Research* 144(2):201–9.
- 689 Green, Heather L., Marissa Dipiero, Simon Koppers, Jeffrey I. Berman, Luke Bloy, Song Liu,
690 Emma McBride, Matthew Ku, Lisa Blaskey, Emily Kuschner, Megan Airey, Mina Kim,
691 Kimberly Konka, Timothy P. L. Roberts, and J. Christopher Edgar. 2022. “Peak Alpha
692 Frequency and Thalamic Structure in Children with Typical Development and Autism
693 Spectrum Disorder.” *Journal of Autism and Developmental Disorders* 52(1):103–12. doi:
694 10.1007/s10803-021-04926-9.
- 695 Green, Heather L., J. Christopher Edgar, Junko Matsuzaki, and Timothy P. L. Roberts. 2020.
696 “Magnetoencephalography Research in Pediatric Autism Spectrum Disorder.”
697 *Neuroimaging Clinics of North America* 30(2):193–203. doi: 10.1016/j.nic.2020.01.001.
- 698 Greenspan, Stanley I., and Serena Wieder. 1997. “Developmental Patterns and Outcomes in

- 699 Infants and Children with Disorders in Relating and Communicating: A Chart Review of
700 200 Cases of Children with Autistic Spectrum Diagnoses.” *The Journal of Developmental*
701 *and Learning Disorders* 1(1):1–38.
- 702 Guggisberg, Adrian G., Susanne M. Honma, Anne M. Findlay, Sarang S. Dalal, Heidi E. Kirsch,
703 Mitchel S. Berger, and Srikantan S. Nagarajan. 2008. “Mapping Functional Connectivity in
704 Patients with Brain Lesions.” *Annals of Neurology* 63(2):193–203. doi: 10.1002/ana.21224.
- 705 Hinkley, Leighton. 2010. “Cognitive Impairments in Schizophrenia as Assessed through
706 Activation and Connectivity Measures of Magnetoencephalography (MEG) Data.”
707 *Frontiers in Human Neuroscience* 3(November). doi: 10.3389/neuro.09.073.2009.
- 708 Hinkley, Leighton, Sophia Vinogradov, Adrian G. Guggisberg, Melissa Fisher, Anne M.
709 Findlay, and Srikantan S. Nagarajan. 2011. “Clinical Symptoms and Alpha Band Resting-
710 State Functional Connectivity Imaging in Patients with Schizophrenia: Implications for
711 Novel Approaches to Treatment.” *Biological Psychiatry* 70(12):1134–42. doi:
712 10.1016/j.biopsych.2011.06.029.
- 713 Hitoglou, Magdalini, Athina Ververi, Alexandros Antoniadis, and Dimitrios I. Zafeiriou. 2010.
714 “Childhood Autism and Auditory System Abnormalities.” *Pediatric Neurology* 42(5):309–
715 14. doi: 10.1016/j.pediatrneurol.2009.10.009.
- 716 Järvinen-Pasley, Anna, and Pamela Heaton. 2007. “Evidence for Reduced Domain-Specificity in
717 Auditory Processing in Autism.” *Developmental Science* 10(6):786–93. doi:
718 10.1111/j.1467-7687.2007.00637.x.
- 719 Kargas, Niko, Beatriz Lopez, Vasudevi Reddy, Paul Morris, Beatriz López, Vasudevi Reddy,
720 and Paul Morris. 2015. “The Relationship between Auditory Processing and Restricted,
721 Repetitive Behaviors in Adults with Autism Spectrum Disorders.” *Journal of Autism and*

- 722 *Developmental Disorders* 45(3):658–68. doi: 10.1007/s10803-014-2219-2.
- 723 Kitzbichler, Manfred G., Sheraz Khan, Santosh Ganesan, Mark G. Vangel, Martha R. Herbert,
- 724 Matti S. Hämäläinen, and Tal Kenet. 2015. “Altered Development and Multifaceted Band-
- 725 Specific Abnormalities of Resting State Networks in Autism.” *Biological Psychiatry*
- 726 77(9):794–804. doi: 10.1016/j.biopsych.2014.05.012.
- 727 Knyazev, Gennady G., Alexander N. Savostyanov, and Evgenij A. Levin. 2006. “Alpha
- 728 Synchronization and Anxiety: Implications for Inhibition vs. Alertness Hypotheses.”
- 729 *International Journal of Psychophysiology* 59(2):151–58. doi:
- 730 10.1016/j.ijpsycho.2005.03.025.
- 731 Lerner, Matthew D., James C. McPartland, and James P. Morris. 2013. “Multimodal Emotion
- 732 Processing in Autism Spectrum Disorders: An Event-Related Potential Study.”
- 733 *Developmental Cognitive Neuroscience* 3:11–21. doi: 10.1016/j.dcn.2012.08.005.
- 734 Lord, C., M. Rutter, and A. Le Couteur. 1994. “Autism Diagnostic Interview-Revised: A
- 735 Revised Version of a Diagnostic Interview for Caregivers of Individuals with Possible
- 736 Pervasive Developmental Disorders.” *Journal of Autism and Developmental Disorders*
- 737 24(5):659–85.
- 738 Lord, C., M. Rutter, S. Goode, J. Heemsbergen, H. Jordan, L. Mawhood, and E. Schopler. 1989.
- 739 “Autism Diagnostic Observation Schedule: A Standardized Observation of Communicative
- 740 and Social Behavior.” *Journal of Autism and Developmental Disorders* 19(2):185–212.
- 741 Manyukhina, Viktoriya O., Andrey O. Prokofyev, Ilia A. Galuta, Dzerassa E. Goiaeva, Tatiana
- 742 S. Obukhova, Justin F. Schneiderman, Dmitrii I. Altukhov, Tatiana A. Stroganova, and
- 743 Elena V. Orekhova. 2022. “Globally Elevated Excitation–Inhibition Ratio in Children with
- 744 Autism Spectrum Disorder and below-Average Intelligence.” *Molecular Autism* 13(1):1–14.

- 745 doi: 10.1186/s13229-022-00498-2.
- 746 Manyukhina, Viktoriya O., Ekaterina N. Rostovtseva, Andrey O. Prokofyev, Tatiana S.
- 747 Obukhova, Justin F. Schneiderman, Tatiana A. Stroganova, and Elena V. Orekhova. 2021.
- 748 “Visual Gamma Oscillations Predict Sensory Sensitivity in Females as They Do in Males.”
- 749 *Scientific Reports* 11(1):1–10. doi: 10.1038/s41598-021-91381-2.
- 750 Martino, Juan, Susanne M. Honma, Anne M. Findlay, Adrian G. Guggisberg, Julia P. Owen,
- 751 Heidi E. Kirsch, Mitchel S. Berger, and Srikantan S. Nagarajan. 2011. “Resting Functional
- 752 Connectivity in Patients with Brain Tumors in Eloquent Areas.” *Annals of Neurology*
- 753 69(3):521–32. doi: 10.1002/ana.22167.
- 754 Mayes, Susan Dickerson, and Susan L. Calhoun. 1999. “Symptoms of Autism in Young Children
- 755 and Correspondence with the DSM.” *Infants and Young Children* 12(2):90–97.
- 756 Mennella, Rocco, Elisabetta Patron, and Daniela Palomba. 2017. “Frontal Alpha Asymmetry
- 757 Neurofeedback for the Reduction of Negative Affect and Anxiety.” *Behaviour Research*
- 758 and Therapy 92:32–40. doi: 10.1016/j.brat.2017.02.002.
- 759 Misselhorn, Jonas, Bettina C. Schwab, Till R. Schneider, and Andreas K. Engel. 2019.
- 760 “Synchronization of Sensory Gamma Oscillations Promotes Multisensory Communication.”
- 761 *ENeuro* 6(5). doi: 10.1523/ENEURO.0101-19.2019.
- 762 Nolte, Guido, Ou Bai, Lewis Wheaton, Zoltan Mari, Sherry Vorbach, and Mark Hallett. 2004.
- 763 “Identifying True Brain Interaction from EEG Data Using the Imaginary Part of
- 764 Coherency.” *Clinical Neurophysiology* 115(10):2292–2307. doi:
- 765 10.1016/j.clinph.2004.04.029.
- 766 Oram-Cardy, Janis E., C. A. Elissa J. Flagg, Wendy Roberts, Jessica Brian, and Timothy P. L.
- 767 Roberts. 2005. “Magnetoencephalography Identifies Rapid Temporal Processing Deficit in

- 768 Autism and Language Impairment.” *Neuroreport* 16(4):329–32.
- 769 Oram Cardy, Janis E., Elissa J. Flagg, Wendy Roberts, and Timothy P. L. Roberts. 2005.
- 770 “Delayed Mismatch Field for Speech and Non-Speech Sounds in Children with Autism.”
- 771 *Neuroreport* 16(5):521–25.
- 772 Oram Cardy, Janis E., Elissa J. Flagg, Wendy Roberts, and Timothy P. L. Roberts. 2008.
- 773 “Auditory Evoked Fields Predict Language Ability and Impairment in Children.”
- 774 *International Journal of Psychophysiology : Official Journal of the International*
- 775 *Organization of Psychophysiology* 68(2):170–75. doi: 10.1016/j.ijpsycho.2007.10.015.
- 776 Owen, Julia P., Elysa J. Marco, Shivani Desai, Emily Fourie, Julia Harris, Susanna S. Hill, Anne
- 777 B. Arnett, and Pratik Mukherjee. 2013. “Abnormal White Matter Microstructure in Children
- 778 with Sensory Processing Disorders.” *NeuroImage. Clinical* 2:844–53. doi:
- 779 10.1016/j.nicl.2013.06.009.
- 780 Papanicolaou, Andrew C. 2009. *Clinical Magnetoencephalography and Magnetic Source*
- 781 *Imaging*. New York: Cambridge University Press.
- 782 Port, Russell G., Marissa A. Dipiero, Matthew Ku, Song Liu, Lisa Blaskey, Emily S. Kuschner,
- 783 J. Christopher Edgar, Timothy P. L. Roberts, and Jeffrey I. Berman. 2019. “Children with
- 784 Autism Spectrum Disorder Demonstrate Regionally Specific Altered Resting-State Phase-
- 785 Amplitude Coupling.” *Brain Connectivity* 9(5):425–36. doi: 10.1089/brain.2018.0653.
- 786 Ranasinghe, Kamalini G., Leighton B. Hinkley, Alexander J. Beagle, Danielle Mizuiri, Susanne
- 787 M. Honma, Ariane E. Welch, Isabel Hubbard, Maria Luisa Mandelli, Zachary A. Miller,
- 788 Coleman Garrett, Alice La, Adam L. Boxer, John F. Houde, Bruce L. Miller, Keith A.
- 789 Vossel, Maria Luisa Gorno-tempini, and Srikantan S. Nagarajan. 2017. “Distinct
- 790 Spatiotemporal Patterns of Neuronal Functional Connectivity in Primary Progressive

- 791 Aphasia Variants.” *Brain* 140:2737–51. doi: 10.1093/brain/awx217.
- 792 Richard, G. J., and J. M. Ferre. 2006. *Differential Screening Test for Processing*. East Moline,
793 IL: Linguisystems, Inc.
- 794 Roberts, Timothy P. L., Katelyn M. Cannon, Kambiz Tavabi, Lisa Blaskey, Sarah Y. Khan,
795 Justin F. Monroe, Saba Qasmieh, Susan E. Levy, and J. Christopher Edgar. 2011. “Auditory
796 Magnetic Mismatch Field Latency: A Biomarker for Language Impairment in Autism.”
797 *Biological Psychiatry* 70(3):263–69. doi: 10.1016/j.biopsych.2011.01.015.
- 798 Roberts, Timothy P. L., Kory Heiken, Sarah Y. Kahn, Saba Qasmieh, Lisa Blaskey, Cynthia
799 Solot, William Andrew Parker, Ragini Verma, and James Christopher Edgar. 2012.
800 “Delayed Magnetic Mismatch Negativity Field, but Not Auditory M100 Response, in
801 Specific Language Impairment.” *Neuroreport* 23(8):463–68. doi:
802 10.1097/WNR.0b013e32835202b6.
- 803 Roberts, Timothy P. L., Sarah Y. Khan, Mike Rey, Justin F. Monroe, Katelyn Cannon, Sarah
804 Woldoff, Saba Qasmieh, Mike Gandal, Gwen L. Schmidt, M. Deborah, Susan E. Levy, and
805 J. Christopher Edgar. 2010. “MEG Detection of Delayed Auditory Evoked Responses in
806 Autism Spectrum Disorders: Towards an Imaging Biomarker for Autism.” *Autism Research*
807 3(1):8–18. doi: 10.1002/aur.111.MEG.
- 808 Roberts, Timothy P. L., Junko Matsuzaki, Lisa Blaskey, Luke Bloy, J. Christopher Edgar, Mina
809 Kim, Matthew Ku, Emily S. Kuschner, and David Embick. 2019. “Delayed M50/M100
810 Evoked Response Component Latency in Minimally Verbal/Nonverbal Children Who Have
811 Autism Spectrum Disorder.” *Molecular Autism* 10(1):1–11. doi: 10.1186/s13229-019-0283-
812 3.
- 813 Roberts, Timothy P. L., Gwen L. Schmidt, Marc Egeth, Lisa Blaskey, Michael M. Rey, J.

- 814 Christopher Edgar, and Susan E. Levy. 2008. "Electrophysiological Signatures:
815 Magnetoencephalographic Studies of the Neural Correlates of Language Impairment in
816 Autism Spectrum Disorders." *International Journal of Psychophysiology : Official Journal*
817 *of the International Organization of Psychophysiology* 68(2):149–60. doi:
818 10.1016/j.ijpsycho.2008.01.012.
- 819 Russo, Nicole, Steven Zecker, Barbara Trommer, Julia Chen, and Nina Kraus. 2009. "Effects of
820 Background Noise on Cortical Encoding of Speech in Autism Spectrum Disorders." *Journal*
821 *of Autism and Developmental Disorders* 39:1185–96. doi: 10.1007/s10803-009-0737-0.
- 822 Rutter, M., A. Bailey, and C. Lord. 2003. *SCQ: Social Communication Questionnaire*. Los
823 Angeles: Western Psychological Services.
- 824 Schmidt, Gwenda L., Michael M. Rey, Janis E. Oram Cardy, and Timothy P. L. Roberts. 2009.
825 "Absence of M100 Source Asymmetry in Autism Associated with Language Functioning."
826 *Neuroreport* 20(11):1037–41. doi: 10.1097/WNR.0b013e32832e0ca7.
- 827 Smith, Ezra E., Laura Zambrano-Vazquez, and John J. B. Allen. 2016. "Patterns of Alpha
828 Asymmetry in Those with Elevated Worry, Trait Anxiety, and Obsessive-Compulsive
829 Symptoms: A Test of the Worry and Avoidance Models of Alpha Asymmetry."
830 *Neuropsychologia* 85:118–26. doi: 10.1016/j.neuropsychologia.2016.03.010.
- 831 Tecchio, Franca, Francesca Benassi, Filippo Zappasodi, Leonardo Emberti Gialloreti, Mark
832 Palermo, Stefano Seri, and Paolo Maria Rossini. 2003. "Auditory Sensory Processing in
833 Autism: A Magnetoencephalographic Study." *Biological Psychiatry* 54(6):647–54. doi:
834 10.1016/S0006-3223(03)00295-6.
- 835 Tomcheck, S., and W. Dunn. 2007. "Sensory Processing in Children with and without Autism: A
836 Comparative Study Using the Short Sensory Profile." *The American Journal of*

- 837 *Occupational Therapy* 61(2):190–200.
- 838 Wechsler, David. 2003. *Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV)*. San
- 839 Antonio, TX: Pearson Assessments.
- 840
- 841

842

Author Contribution Statement

843

844 C.D., E.J.M., and S.S.N. conceived the project and methodological approach. S.D., S.H., A.F.,
845 and D.M. participated in data acquisition. C.D. and X.D. performed data analysis with
846 consultation from A.F., L.B.H. and K.G.R. C.D., X.D., and B.G.J. created the figures. C.D. and
847 M.R.G. created the tables. C.D. wrote the manuscript in consultation with E.J.M. and S.S.N.

848

849

850

Data Availability Statement

851

852 The data that support the findings of this study are available on request from the corresponding
853 author. The data are not publicly available due to privacy or ethical restrictions.

854

855

856

Additional Information

857

858

The authors have no competing interests to declare.

859

860

861
862
863

Figure Legends

864 Figure 1. Alpha Contrasts. Areas of significantly increased (warm) and reduced (cool) alpha
865 connectivity are presented on figures for each pairwise contrast. Accompanying boxplots are
866 presented for each cluster showing imaginary coherence values for all groups at the voxel within
867 that cluster that demonstrated the greatest pairwise difference.

868

Figure 2. Alpha Correlations in the Combined Participant Sample. Positive associations between auditory processing/verbal abilities and alpha connectivity values are identified in magenta clusters for the sample of all participants in the study. Negative associations between auditory processing and imaginary coherence values are identified in cyan clusters. Corresponding scatterplots are presented for the voxel with the greatest correlation value within each cluster, with groups identified by color and shape (ASD group = yellow circle, SPD group = green triangle, and TDC group = grey square).

876

Figure 3. Beta Contrasts. Areas of significantly increased (warm) and reduced (cool) beta connectivity are presented on figures for each pairwise contrast. Accompanying boxplots are presented for each cluster showing imaginary coherence values for all groups at the voxel within that cluster that demonstrated the greatest pairwise difference.

881

882 Figure 4. Beta Correlations in the Combined Participant Sample. Negative associations between
883 tactile processing abilities and beta connectivity values are identified in the cyan cluster for the
884 sample of all participants in the study. The corresponding scatterplot is presented for the voxel

885 with the greatest correlation value within each cluster, with groups identified by color and shape

886 (ASD group = yellow circle, SPD group = green triangle, and TDC group = grey square).

887

888

889

890

891

892

893 Table 1

894

895 *Group Characteristics (M ± SD [range])*

896

897

898

899

900

901

	ASD	SPD	TDC	Statistics
Age	9.88 ± 1.32 [8.13-12.00]	9.94 ± 1.29 [8.28-12.08]	10.18 ± 1.13 [8.18-11.94]	F(2,57) = .36
FSIQ	96.94 ± 13.54 ^{ac} [71-121]	109.39 ± 11.35 [89-131]	114.92 ± 9.31 [97-135]	F(2,57)=13.20***
PRI	103.17 ± 8.56 ^d [94-123]	113.11 ± 11.63 [92-131]	111.00 ± 12.29 [89-129]	F(2,57)=4.09*
VCI	98.56 ± 21.81 ^{bd} [59-140]	113.11 ± 14.63 [83-136]	118.46 ± 13.08 [93-144]	F(2,57)=7.65**
Ethnicity (N)				
Caucasian	10	12	17	
Asian	4	1	1	
Multiracial	4	3	4	
Hispanic	0	1	0	
Unknown	0	1	2	
Handedness				
Right	15	17	20	
Left	1	1	2	
Ambidextrous	2	0	1	
Unknown	0	0	1	

933 *p < .05

934 **p < .01

935 ***p < .001

936 ^a Significantly different from TDC at p<.001 following Bonferroni correction for multiple comparisons

937 ^b Significantly different from TDC at p<.01 following Bonferroni correction for multiple comparisons

938 ^c Significantly different from SPD at p<.01 following Bonferroni correction for multiple comparisons

939 ^d Significantly different from SPD at p<.05 following Bonferroni correction for multiple comparisons

940

941

942 Table 2. Summary of Group Contrast Results

Group	Band	Regions	Direction of Difference
ASD vs. TDC	α	left fusiform and inferior occipital gyri and cerebellum	Decreased
		right pre- and postcentral gyri	Increased
	β	left middle and inferior temporal gyri	Decreased
SPD vs. TDC	α	left middle and superior frontal gyri and in the right inferior frontal gyrus, precuneus, and inferior and superior parietal lobules	Increased
	β	bilaterally in the superior and middle frontal gyri, insula and putamen, as well as in the left inferior frontal gyrus, cingulate gyrus, caudate body, pre- and postcentral gyri, and inferior parietal lobule, and the right superior temporal gyrus, lentiform nucleus, globus pallidus, and caudate	Decreased
ASD vs. SPD	α	no significant differences	N/A
	β	right cingulate, middle frontal, and precentral gyri, and bilaterally in the superior and medial frontal gyri, the postcentral gyrus, the inferior parietal lobule, and in the supramarginal gyrus	Increased

943

944

945

946 [Table 3]

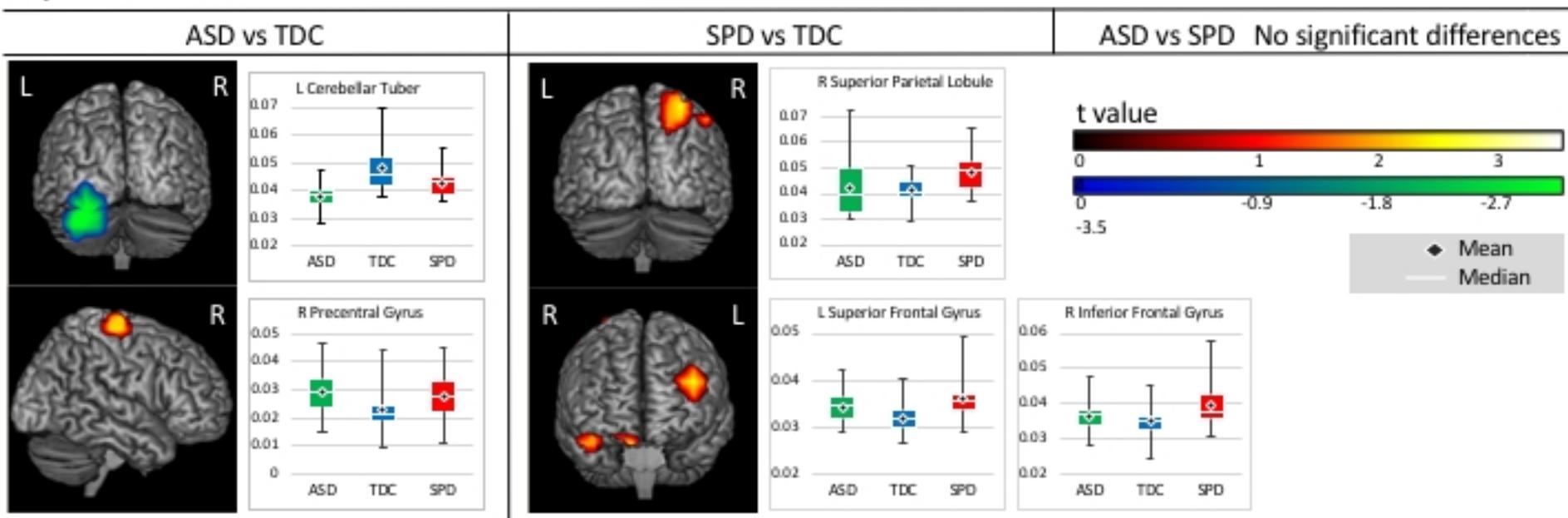
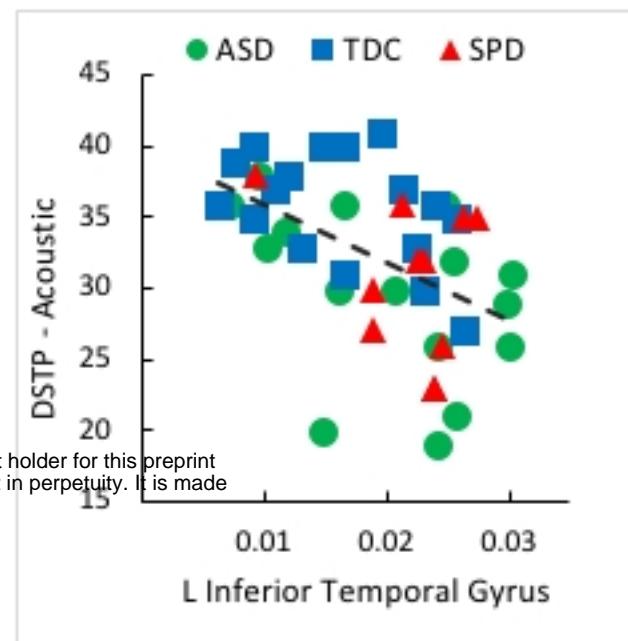
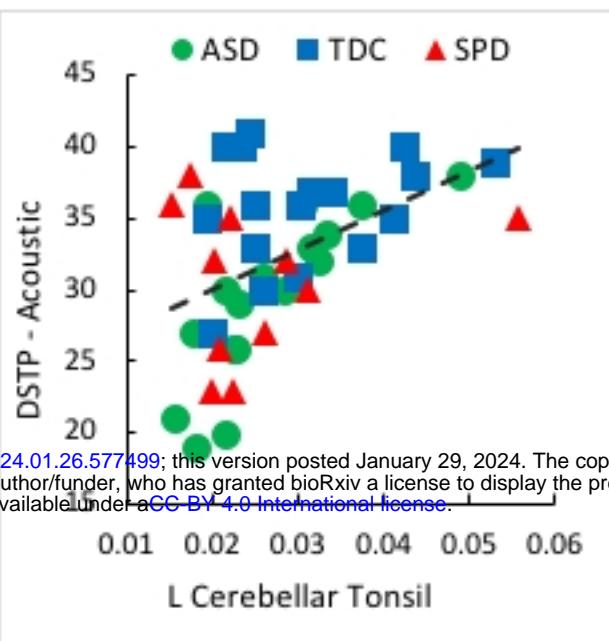
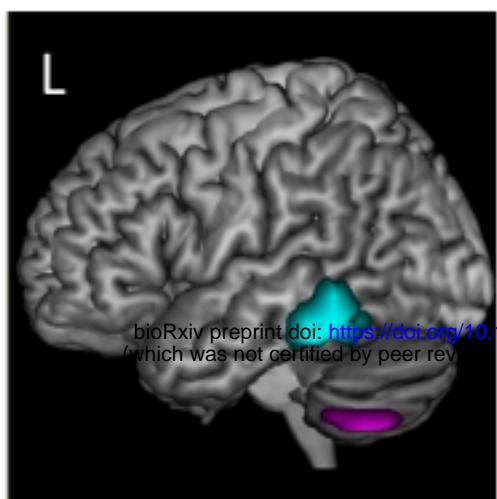
947 Table 3. Summary of Correlation Results for the Combine Groups Sample

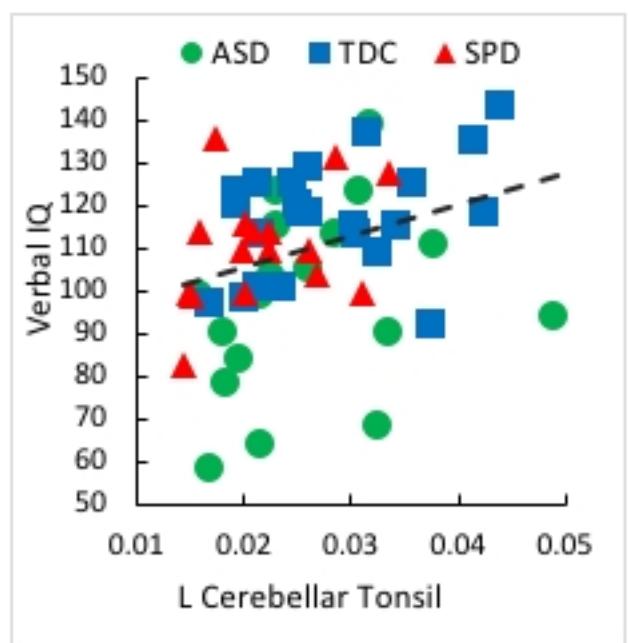
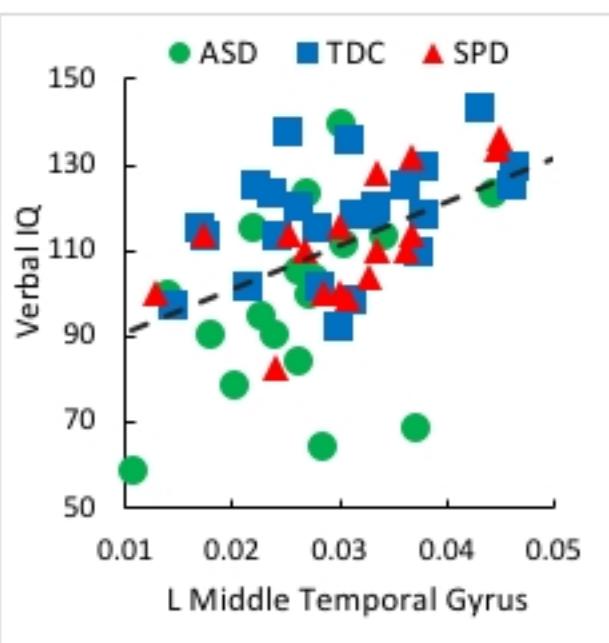
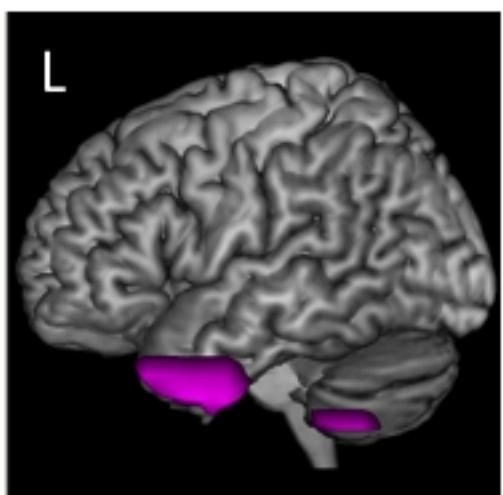
Band	Domain	Task	Regions	Direction of Correlation
α	tactile		no significant associations	N/A
	auditory	DSTP Acoustic Scale	left cerebellar tonsil	+
			left inferior and middle temporal gyri	-
	verbal	VIQ	left uncus, cerebellar tonsil, and anterior superior, middle, and inferior temporal gyri	+
β	tactile	Graphesthesia	right precentral gyrus	-
	auditory		no significant associations	N/A
	verbal		no significant associations	N/A

948

949

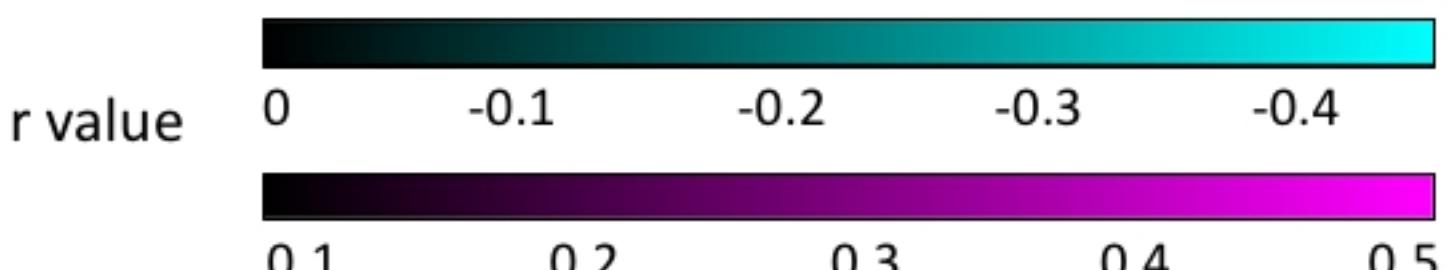
Alpha Contrasts

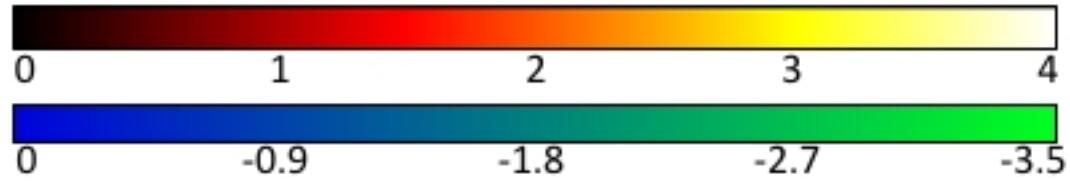



Figure 1

Alpha Connectivity Correlations: Combined Sample

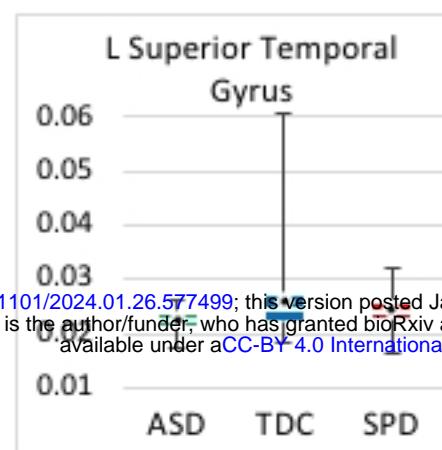
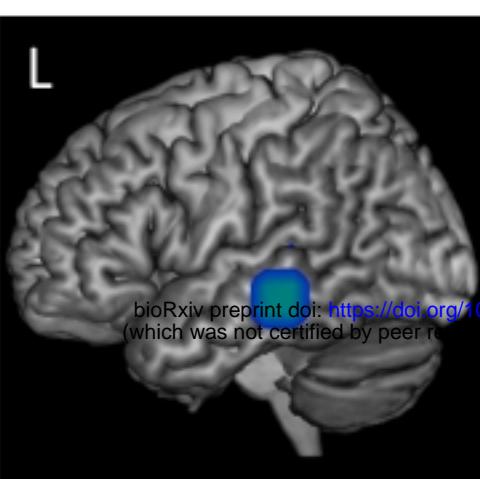
Auditory Processing



Verbal Abilities

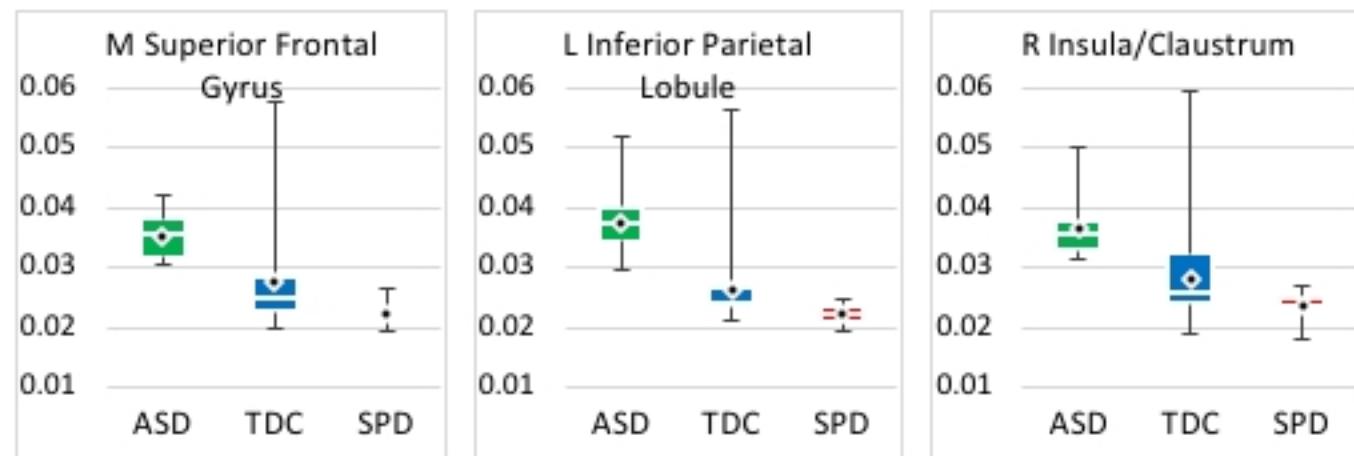
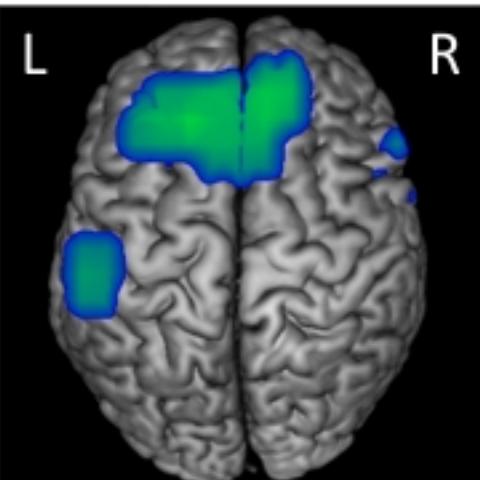

Tactile Processing

No Significant Associations

Beta Contrasts

t value

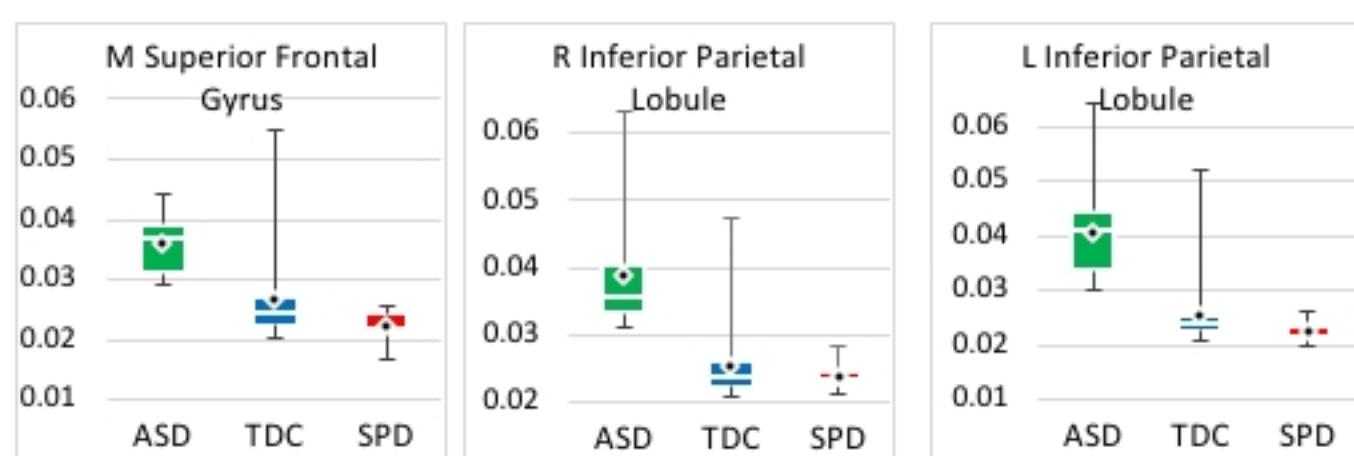
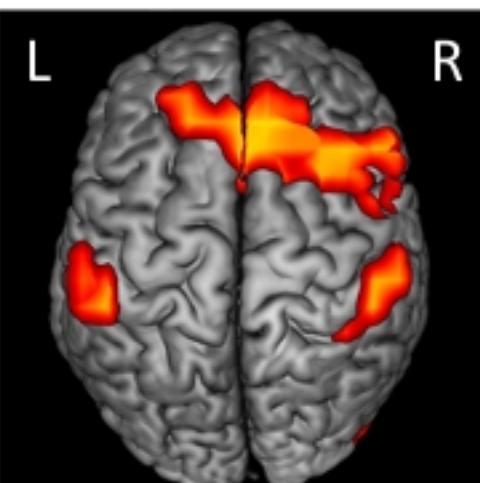
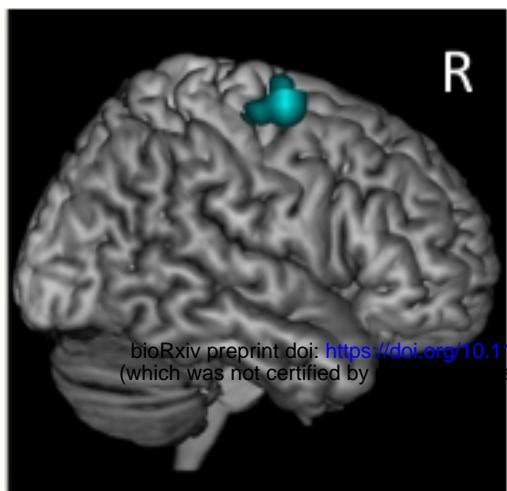



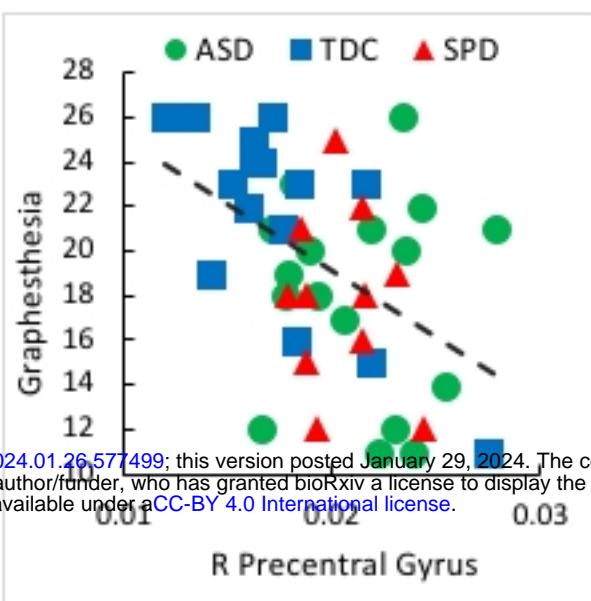
ASD vs TDC

◆ Mean
— Median

SPD vs TDC

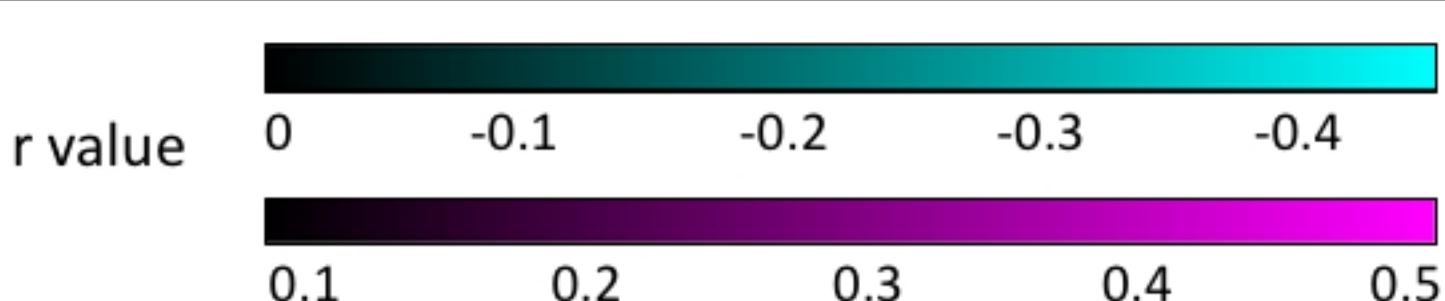
ASD vs SPD


Figure 3

Beta Connectivity Correlations: Combined Sample

Tactile Processing



bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.26.577499>; this version posted January 29, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Auditory Processing & Verbal Abilities

No Significant Associations

