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Abstract

Sensory processing dysfunction not only affects most individuals with autism spectrum
disorder (ASD), but at least 5% of children without ASD also experience dysfunctional sensory
processing. Our understanding of the relationship between sensory dysfunction and resting state
brain activity is still emerging. This study compared long-range resting state functional
connectivity of neural oscillatory behavior in children aged 8-12 years with autism spectrum
disorder (ASD; N=18), those with sensory processing dysfunction (SPD; N=18) who do not meet
ASD criteria, and typically developing control participants (TDC; N=24) using
magnetoencephalography (MEG). Functional connectivity analyses were performed in the alpha
and beta frequency bands, which are known to be implicated in sensory information processing.
Group differences in functional connectivity and associations between sensory abilities and
functional connectivity were examined. Distinct patterns of functional connectivity differences
between ASD and SPD groups were found only in the beta band, but not in the alpha band. In
both alpha and beta bands, ASD and SPD cohorts differed from the TDC cohort. Somatosensory
cortical beta-band functional connectivity was associated with tactile processing abilities, while
higher-order auditory cortical alpha-band functional connectivity was associated with auditory
processing abilities. These findings demonstrate distinct long-range neural synchrony alterations
in SPD and ASD that are associated with sensory processing abilities. Neural synchrony

measures could serve as potential sensitive biomarkers for ASD and SPD.
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Introduction

Sensory dysfunction is estimated to impact at least 70% of individuals with Autism
Spectrum Disorders (ASD; Adamson, Hare, & Graham, 2006; Al-Heizan, AlAbdulwahab,
Kachanathu, & Natho, 2015; Greenspan & Wieder, 1997; Mayes & Calhoun, 1999; Tomcheck &
Dunn, 2007), and with its recognition as a core symptom in DSM-5 (American Psychiatric
Association 2013), there is a rapidly growing body of research focused on understanding the
causes and impact of sensory dysfunction in ASD. This line of research can be advanced not
only by studying sensory dysfunction in individuals with ASD and other clinical populations, but
also through examination of the estimated >5% of non-autistic individuals who experience
clinically significant sensory processing dysfunction (SPD) (Ahn et al. 2004). Yet, despite the
impairment in adaptive functioning associated with SPD, the absence of a recognized categorical
diagnosis limits access to resources for research and treatment in affected individuals.
Nevertheless, biological differences, such as white matter abnormalities (Chang et al. 2014;
Owen et al. 2013) and cortical response latencies (Demopoulos et al. 2017), have been identified
in children with SPD and these measurable structural and physiologic differences have been
associated with sensory processing behaviors (Chang et al., 2016). While some features of
sensory dysfunction may be shared among children with SPD and those with ASD, such as
tactile processing deficits (Demopoulos, Brandes-Aitken, et al. 2015), some domains of sensory
dysfunction may identify important distinctions between these populations. For example,
auditory processing abnormalities have been identified as distinguishing ASD from SPD groups
in both behavioral tasks and neural response latencies (Demopoulos et al. 2017; Demopoulos,
Brandes-Aitken, et al. 2015). Understanding these similarities and differences in sensory

processing dysfunction among children with and without ASD can not only help delineate the
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96  sensory dysfunction that is specific to ASD, but it can also heighten our understanding of sensory
97  information processing more broadly and guide treatment strategies.
98 Because differences in resting state oscillatory activity can be indicative of functional
99  pathology (Papanicolaou 2009), there has been extensive research examining differences in
100  resting state brain activity in individuals with and without ASD diagnoses. While previous
101  sensory processing research has focused on differences in performance-based measures of, and
102  neural responses to, sensory processing (Chang et al., 2014; Demopoulos et al., 2015, 2017), our
103  understanding of the relationship between sensory dysfunction and resting state brain activity is
104  still emerging. This study will be the first to use using silently acquired recording via
105 magnetoencephalography (MEG) to examine whole brain functional connectivity during rest in
106  participants with ASD, SPD, and typically developing children (TDC). The goal of this study is
107  to identify relevant differences in whole brain functional connectivity that may be associated
108  with sensory dysfunction. Concurrent examination of these three groups offers two key benefits.
109  First, it will add to the emerging literature identifying the shared and distinct patterns of neural
110  activity in children with ASD and SPD. Second, it will allow us to examine differences in
111  functional connectivity and behavioral measures of sensory discrimination in affected children.
112  Prior research has suggested that auditory and tactile processing are particularly impacted in
113  children with ASD (Fernandez-Andres et al. 2015), and that auditory processing has been
114  associated with the communication impairments that are core to ASD (Demopoulos et al. 2017;
115 Demopoulos, Brandes-Aitken, et al. 2015; Demopoulos, Hopkins, et al. 2015; Edgar et al. 2013,
116  2014; Lerner, McPartland, and Morris 2013; Oram-Cardy et al. 2005; Oram Cardy et al. 2008;

117  Roberts et al. 2011, 2012, 2019, 2008, 2010). As such, we also examine associations between
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118  functional connectivity and performance-based measures of auditory and tactile processing and
119  verbal abilities.

120 Our functional connectivity analyses were performed in the alpha and beta frequency
121  bands, which are known to be implicated in sensory information processing. Specifically, these
122 frequency bands have been associated with sensory gating (Buchholz, Jensen, and Medendorp
123 2014) and direction of sensory attention in the auditory and visual cortex for alpha (Foxe and
124  Snyder 2011) and in the somatosensory cortex for beta (Bauer, Kennett, and Driver 2012; van
125  Ede, Jensen, and Maris 2010). Further, the role of alpha activity in states of psychological

126  distress has been widely studied (Adolph and Margraf 2017; Boutcher and Landers 1998;

127  Demerdzieva and Pop-Jordanova 2015; Fingelkurts et al. 2007; Knyazev, Savostyanov, and

128  Levin 2006; Mennella, Patron, and Palomba 2017; Smith, Zambrano-Vazquez, and Allen 2016),
129  and may be relevant to differences in psychological response to sensory input in our clinical
130  groups.

131 Prior research has demonstrated that both children with SPD and ASD were impaired on
132 behavioral and neural measures of tactile processing, but only the ASD group demonstrated

133  auditory dysfunction (Demopoulos et al. 2017; Demopoulos, Brandes-Aitken, et al. 2015). This
134  work is consistent with structural findings that children with ASD and SPD demonstrate

135  decreased connectivity in parieto-occipital tracts, but connectivity in temporal tracts was only
136  reduced in the ASD group (Chang et al., 2014). Thus, given these shared and divergent sensory
137  findings between children with ASD and SPD, and given that alpha and beta connectivity has
138  been associated with sensory gating and sensory attention in these frequency bands (Buchholz et
139  al. 2014; Foxe and Snyder 2011), we hypothesize that similar shared and divergent MEG-derived

140 findings of resting state functional connectivity in the alpha and beta ranges will be identified
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141  between children with ASD, SPD, and TDC participants. In addition, based on work implicating
142  alpha oscillations in the direction of auditory attention (Bauer et al. 2012) and evidence of

143  somatosensory cortex beta band modulation in advance of tactile stimuli (van Ede et al. 2010),
144  we also hypothesize that alpha connectivity will be associated with auditory processing and beta
145  connectivity will be associated with tactile processing. To test these hypotheses, these frequency
146  bands were subjected to source space reconstruction for analysis of differences in long-range
147  neural synchrony and associations with sensory processing abilities.

148 Methods

149  Participants

150 Participants were 60 boys aged 8-12 years (ASD N=18; SPD N=18; typically developing
151  controls (TDC) N=24) who were recruited from the UCSF Sensory Neurodevelopmental and
152  Autism Program (SNAP) participant registry and website, UCSF SNAP clinic, and local online
153  parent groups. Experimental protocols were approved by the UCSF IRB and carried out in

154  accordance with those approved procedures. Participants provided their written assent and

155  written informed consent was obtained from parents or legal guardians prior to enrollment.

156  Consent and assent procedures were witnessed by a member of the study team. Participants were
157  recruited between 5/22/2003 and 10/26/2015. All participants who were taking medication were
158 on a stable dose for at least six weeks prior to testing as reported in our previously published
159  studies that recruited from this pool of participants (Demopoulos et al. 2017; Demopoulos,

160  Brandes-Aitken, et al. 2015). Specifically, in the TDC group one participant regularly used an
161  antihistamine and a leukotriene inhibitor for seasonal allergies as well as melatonin for sleep.
162  Another TDC participant regularly used steroid medications paired with a bronchodilator as

163  needed for asthma and allergies and omeprazole for reflux. A third TDC participant regularly
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164  used methylphenidate for attention. In the SPD group, one participant was prescribed

165 lisdexamfetamine, sertraline, and valproic acid for inattention and challenging behavior, and four
166  others were taking stimulants (amphetamine/dextroamphetamine and methylphenidate) for

167 inattention. One additional SPD participant was taking nonstimulant medication (atomoxetine)
168 for inattention and montelukast for allergies, and another was taking steroid medication for

169  asthma. In the ASD group, one participant was taking a chelation agent (DMSA), another

170  participant was taking escitalopram for anxiety, and a third was taking guanfacine and

171  methylphenidate for calming and inattention.

172 Inclusion/exclusion criteria and diagnostic classification followed the criteria utilized in
173  previous studies (Demopoulos et al. 2017; Demopoulos, Brandes-Aitken, et al. 2015).

174  Specifically, exclusion criteria included (1) bipolar disorder, psychotic disorder, or other

175  neurological disorder or injury, and (2) a score of 70 or below on the Wechsler Intelligence Scale
176  for Children-Fourth Edition (WISC-1V; Wechsler, 2003) Perceptual Reasoning Index (PRI). The
177 PRI rather than the Full Scale Intelligence Quotient (FSIQ) was utilized for exclusion criteria
178  because verbal abilities (represented in the Verbal Comprehension Index and incorporated into
179  the FSIQ) were examined as an outcome measure in this study. Specifically, those with prior
180  clinical diagnosis of ASD and those scoring >15 on the Social Communication Questionnaire
181  (SCQ; Rutter, Bailey, & Lord, 2003), regardless of previous diagnostic status, were evaluated
182  with the Autism Diagnostic Inventory-Revised (ADI-R; Lord, Rutter, & Le Couteur, 1994) and
183  the Autism Diagnostic Observation Schedule (ADOS; Lord et al., 1989). Diagnostic cutoffs on
184  both of these measures were met for participants in the ASD group, who also met DSM-IV-TR
185  criteria for Autistic Disorder, confirmed by a pediatric neurologist (EJM). SPD participants were

186  previously diagnosed with SPD by a community occupational therapist. Inclusion criteria for this


https://doi.org/10.1101/2024.01.26.577499
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577499; this version posted January 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

187  group were included (1) SCQ score <15 and (2) a score in the “Definite Difference” range in one
188  or more of the auditory, visual, oral/olfactory, tactile, vestibular, or multisensory processing

189  domains of the Sensory Profile (Dunn 1999). All SCQ and Sensory Profile scores for the TDC
190  group were not in clinical ranges. Demographic characteristics of the study sample are presented
191 in Table 1.

192  [Table 1]

193 Table 1

194

195  Group Characteristics (M + SD [range))

196

197

198 ASD SPD TDC Statistics

199

200

201 Age 9.88 +£1.32 994 +1.29 10.18 +£.1.13 F(2,57)= .36
202 [8.13-12.00]  [8.28-12.08]  [8.18-11.94]

203

204 FSIQ 96.94 £ 13.542 109.39+11.35 114.92+9.31 F(2,57)=13.20%**
205 [71-121] [89-131] [97-135]

206

207 PRI 103.17+8.5649 113.11+11.63 111.00+12.29 F(2,57)=4.09*
208 [94-123] [92-131] [89-129]

209

210 VCI 98.56+21.81bd 113.11+14.63 118.46+13.08 F(2,57)=7.65**
211 [59-140] [83-136] [93-144]

212

213 Sensory Profile 135.78 +16.922% 119.11 £17.383 172.04 +10.38 F(2,57)=71.12%**
21451 Total Score  [102-160] [74-145] [145-187]

21

216  Ethnicity (N)

217 Caucasian 10 12 17

218

219 Asian 4 1 1

220

221 Multiracial 4 3 4

222

223 Hispanic 0 1 0

224

225 Unknown 0 1 2

226

227  Handedness

228 Right 15 17 20

229

230 Left 1 1 2

231

232 Ambidextrous 2 0 1
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234 Unknown 0 0 1
235
236 *p < .05

237 **p <.01

238 ***p <.001

239 2 Significantly different from TDC at p<.001 following Bonferroni correction for multiple comparisons
240  * Significantly different from TDC at p<.01 following Bonferroni correction for multiple comparisons
241 < Significantly different from SPD at p<.01 following Bonferroni correction for multiple comparisons
242 4 Significantly different from SPD at p<.05 following Bonferroni correction for multiple comparisons

244  Measures

245 Tactile Processing. Tactile processing measures were assessed according to previously
246  published procedures (Demopoulos et al. 2017; Demopoulos, Brandes-Aitken, et al. 2015).

247  Tactile form discrimination was assessed using the Van Boven Domes task (Van Boven &

248  Johnson, 1994) and quantified by the lowest grating size of passed trials. Tactile proprioception
249  was measured according to the total score of the right and left hand scores of the graphesthesia
250  subtest of the Sensory Integration Praxis Tests (Ayres 1989).

251 Auditory Processing. Auditory processing also was assessed according to previously

252 published procedures (Demopoulos, Brandes-Aitken, et al. 2015; Demopoulos et al., 2017) via
253  the Acoustic (Al) and Acoustic-Linguistic Index (ALI) of the Differential Screening Test for
254  Processing (DSTP; Richard & Ferre, 2006). The Al is derived from performance on measures of
255  dichotic listening, temporal sequencing, and auditory filtering skills. The ALI assesses auditory
256  processing skills associated with language via tasks focused on phonic and phonemic

257  manipulation.

258 Verbal Abilities. Because auditory processing dysfunction has been repeatedly associated
259  with weaker verbal abilities in children with ASD (Demopoulos et al. 2017; Edgar et al. 2013;
260  Oram-Cardy et al. 2005; Roberts et al. 2011; Russo et al. 2009; Schmidt et al. 2009), we also
261  assessed for associations between functional connectivity and verbal abilities in the ASD group

262  using established protocols for our assessment of verbal abilities (Demopoulos et al. 2017;
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263  Demopoulos, Brandes-Aitken, et al. 2015). The Linguistic Index (LI) of the DSTP was used to
264  evaluate semantic and pragmatic aspects of language. The VCI of the WISC-IV (Wechsler,

265  2003) was used to index verbal intellectual abilities.

266 Magnetic Resonance Image (MRI) Acquisition and Processing. Structural MRIs were
267  acquired for co-registration with MEG functional data on a 3T Siemens MRI scanner at the

268  UCSF Neuroscience Imaging Center. T1-weighted images were spatially normalized to the

269  standard Montreal Neurological Institute template brain using Smm voxels in SPM8

270  (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Normalization results were manually verified
271  in all participants.

272 Magnetoencephalographic Image Acquisition and Processing. Methods for acquisition
273  and processing of MEG data follow protocols similar to those used in prior research employing
274  these imaginary coherence metrics (Demopoulos et al. 2020; Ranasinghe et al. 2017).

275  Specifically, MEG data were acquired at a 1200 Hz sampling rate using a 275-channel CTF

276  System whole-head biomagnetometer (MEG International Services Ltd., Cogiotlam, BC,

277  Canada). Fiducial coils were placed at the nasion and bilateral peri-auricular points to localize
278  the head to the sensor array. These localizations were utilized for coregistration to the T1-

279  weighted MRI and generation of a head shape. Four minutes of continuous recording was

280  collected from each subject while awake with eyes closed in a supine position. While keeping
281  eyes closed can increase alpha in resting state activity, it also serves to control visual stimulation
282  and because this procedure was implemented for all participants, this would not confound group
283  contrasts. As such, we elected to use an eyes closed approach, as has been used in many previous
284  studies of resting state activity in children with ASD (Berman et al. 2015; Brodski-Guerniero et

285 al. 2018; Cornew et al. 2012; Edgar et al. 2019; Edgar, Heiken, et al. 2015; Green et al. 2020,
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286  2022; Port et al. 2019). Based on previous studies demonstrating reliable results from 60 second
287  segments of MEG resting state data (Guggisberg et al. 2008; Hinkley 2010; Hinkley et al. 2011),
288  we selected a 60-second artifact-free epoch. Artifact rejection criteria were signal amplitude

289  >10pT or visual evidence of movement or muscle contractions.

290 A whole brain lead field was computed according to a spatially normalized MRI with a
291  10mm voxel size. The Neurodynamic Utility Tool for MEG (NUTMEG;

292  http://nutmeg.berkeley.edu; Dalal et al., 2011) was used for source-space reconstruction and

293  functional connectivity analyses. Source-space was reconstructed from filtered sensor (fourth-
294  order Butterworth filter of 1-20 Hz). A linear combination of spatial weighting and sensor data
295  matrices were used to estimate each voxel’s amplitudes (Hinkley et al., 2011).

296 Following source space reconstruction, functional connectivity analysis was performed
297 by computing imaginary coherence. The imaginary coherence approach excludes zero- or 7-

298  phase-lag-connectivity to eliminate neural synchrony attributable to volume spread (Nolte et al.
299  2004). This approach has been documented as a reliable method for estimating long-range neural
300 synchrony (Engel et al. 2013; Guggisberg et al. 2008; Martino et al. 2011; Nolte et al. 2004), and
301  has been shown to reduce overestimation (Guggisberg et al. 2008; Martino et al. 2011; Nolte et
302  al. 2004). Imaginary coherence values were transformed to Fisher’s Z prior to calculating

303 associations between each voxel and all other voxels. These associations were averaged within
304 each voxel to derive voxel wise global connectivity values for group contrasts in the alpha and
305  beta frequency bands. Correlations also were performed between behavioral measures and global
306  connectivity values at each voxel for the combined group study sample. All voxel-wise results
307  with uncorrected p < 0.05 were further subjected to a 5% False Discovery Rate multiple

308 comparisons correction (Benjamini and Hochberg 1995) and a 5-voxel cluster correction.
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309 Missing Data. Data from the sensory battery tasks are missing for some participants

310  because these tasks were added to the protocol after these participants were enrolled. Thus, these
311  data can be considered missing at random. DSTP data was available for 17 ASD participants, 17
312  TDC participants, and 11 SPD participants. Van Boven Domes were administered to 16

313  participants in the ASD group, 16 in the TDC group, and 11 in the SPD group. Graphesthesia
314  was administered to 17 ASD participants, 15 TDC participants, and 11 SPD participants.

315 Results

316 Group Contrasts in Alpha Connectivity. Group contrasts in alpha coherence indicated
317  that, relative to TDC participants, the ASD group showed reduced connectivity in the left

318 fusiform and inferior occipital gyri and cerebellum and increased connectivity in the right pre-
319 and postcentral gyri. No significant differences were identified between the ASD and SPD

320  groups; however, the SPD group showed increased connectivity compared to TDC participants
321 in the left middle and superior frontal gyri and in the right inferior frontal gyrus, precuneus, and
322  inferior and superior parietal lobules. Alpha contrast results are presented in Figure 1 and

323  summarized in Table 2.

324  [Figure 1]
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326  Figure 1. Alpha Contrasts. Areas of significantly increased (warm) and reduced (cool) alpha
327  connectivity are presented on figures for each pairwise contrast. Accompanying boxplots are
328  presented for each cluster showing imaginary coherence values for all groups at the voxel within
329  that cluster that demonstrated the greatest pairwise difference.

330 Correlations Between Alpha Connectivity and Sensory Processing/Verbal Abilities.

331  Correlation analyses were performed on all study participants combined across groups to

332  examine the relations between functional connectivity and the range of sensory processing and
333  verbal abilities in our sample. No significant associations were identified between tactile

334  processing performance and measures of alpha coherence; however, significant associations

335  were identified between measures of alpha coherence and auditory processing performance.

336  Specifically, scores on the DSTP Acoustic scale were positively associated with alpha coherence
337 in the left cerebellar tonsil and negatively associated with alpha coherence in the left inferior and
338  middle temporal gyri. A significant positive association also was identified between VIQ and
339  alpha coherence in the left uncus, cerebellar tonsil, and anterior superior, middle, and inferior
340 temporal gyri (Figure 2). A summary of correlation results is presented in Table 3.

341  [Figure 2]


https://doi.org/10.1101/2024.01.26.577499
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577499; this version posted January 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Alpha Connectivity Correlations: Combined Sample

Audltorv Processing 45 . ®ASD ETDC ASPD 45 . ®ASD BTDC ASPD
40 = P o 40 | mE
A
23 | AfE A 235 | ® l‘.
i . 3 'h-
=
230 A Su ¢ f_:
o -
o | Heh a2 | ‘ e
& Ad & A
= @ a i
20 o® 20 ® @
i5 I I I I i 15 i i i
001 002 003 004 D05 D06 001 002 003
L Cerebeliar Tonsil L Inferior Temporal Gyrus
®@ASD ETDC ASPD ®ASD ETDC ASPD
150 150 - s
uo R g
130 130 | . _
o o120 b L S g
—1o | Z1u0 | A [
£ 2100 [ e A
= a0 > 90 | 1 ol ®
.‘. BO | A
o | FY 0 @
r @ 0l @ ®
50 i i i 50 i i I i
001 002 003 004 005 0.01 002 003 004 005
L Middle Temporal Gyrus L Cerebellar Tonsil
Tactile Processing No Significant Associations
rvalue 0 -0.1 -0.2 -0.3 -0.4
0.1 0.2 0.3 0.4 0.5

342

343  Figure 2. Alpha Correlations in the Combined Participant Sample. Positive associations between
344  auditory processing/verbal abilities and alpha connectivity values are identified in magenta

345  clusters for the sample of all participants in the study. Negative associations between auditory
346  processing and imaginary coherence values are identified in cyan clusters. Corresponding

347  scatterplots are presented for the voxel with the greatest correlation value within each cluster,
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348  with groups identified by color and shape (ASD group = yellow circle, SPD group = green

349 triangle, and TDC group = grey square).

350

351 Group Contrasts in Beta Connectivity. Group contrasts in beta coherence indicated that,
352  relative to TDC participants, the ASD group showed reduced connectivity in the left middle and
353 inferior temporal gyri. Relative to SPD participants, however, the ASD group showed a pattern
354  of increased beta connectivity in the right cingulate, middle frontal, and precentral gyri, and
355  bilaterally in the superior and medial frontal gyri, the postcentral gyrus, the inferior parietal
356 lobule, and in the supramarginal gyrus. Finally, when compared to TDC participants, the SPD
357  group demonstrated a pattern of reduced beta connectivity bilaterally in the superior and middle
358 frontal gyri, insula and putamen, as well as in the left inferior frontal gyrus, cingulate gyrus,
359  caudate body, pre- and postcentral gyri, and inferior parietal lobule, and in the right superior
360 temporal gyrus, lentiform nucleus, globus pallidus, and caudate. Beta contrasts are presented in
361  Figure 3 and summarized in Table 2.

362  [Figure 3]
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364  Figure 3. Beta Contrasts. Areas of significantly increased (warm) and reduced (cool) beta

365  connectivity are presented on figures for each pairwise contrast. Accompanying boxplots are
366 presented for each cluster showing imaginary coherence values for all groups at the voxel within
367 that cluster that demonstrated the greatest pairwise difference.

368
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Correlations Between Beta Connectivity and Sensory Processing. A significant negative
association was identified between beta coherence in the right precentral gyrus and performance
on the graphesthesia task (Figure 4). No significant associations were identified between beta
coherence and measures of auditory processing or verbal abilities in the combined groups
sample. A summary of correlation results is presented in Table 3.

[Figure 4]

Beta Connectivity Correlations: Combined Sample
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Figure 4. Beta Correlations in the Combined Participant Sample. Negative associations between
tactile processing abilities and beta connectivity values are identified in the cyan cluster for the
sample of all participants in the study. The corresponding scatterplot is presented for the voxel
with the greatest correlation value within each cluster, with groups identified by color and shape

(ASD group = yellow circle, SPD group = green triangle, and TDC group = grey square).

[Table 2]

Table 2. Summary of Group Contrast Results


https://doi.org/10.1101/2024.01.26.577499
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577499; this version posted January 29, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

384

385

386

387

388

available under aCC-BY 4.0 International license.

Table 3. Summary of Correlation Results for the Combine Groups Sample

Band

Domain Task Regions Direction of
Correlation

tactile no significant N/A
associations

auditory DSTP Acoustic left cerebellar +
Scale tonsil

left inferior and -
middle temporal
gyri

verbal vIiQ left uncus, +
cerebellar tonsil,
and anterior
superior, middle,
and inferior
temporal gyri

tactile Graphesthesia right precentral -
gyrus

auditory no significant N/A
associations

verbal no significant N/A
associations

Discussion

Group | Band Regions Direction of
Difference
ASD vs. a left fusiform and inferior occipital gyri and cerebellum Decreased
TDC
right pre- and postcentral gyri Increased
B left middle and inferior temporal gyri Decreased
SPD vs. a left middle and superior frontal gyri and in the right inferior frontal gyrus, Increased
TDC precuneus, and inferior and superior parietal lobules
B bilaterally in the superior and middle frontal gyri, insula and putamen, as well as in Decreased
the left inferior frontal gyrus, cingulate gyrus, caudate body, pre- and postcentral
gyri, and inferior parietal lobule, and the right superior temporal gyrus, lentiform
nucleus, globus pallidus, and caudate
ASD vs. a no significant differences N/A
SPD
B right cingulate, middle frontal, and precentral gyri, and bilaterally in the superior Increased
and medial frontal gyri, the postcentral gyrus, the inferior parietal lobule, and in the
supramarginal gyrus
[Table 3]
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389 This study used two methods to investigate associations between direct assessment of
390 auditory and tactile sensory processing and resting state functional connectivity in the brain.
391  First, we examined differences between groups that would allow us to isolate the sensory

392  processing dysfunction that presents as part of an ASD from that which manifests in the absence
393  of the other defining features of ASD. Second, we directly examined associations between

394  functional connectivity and auditory and tactile processing and verbal abilities in a combined
395  participant sample including all three groups, allowing us to examine the distribution of these
396  variables across children with a range of sensory functioning.

397  Group Contrasts in Functional Connectivity

398 ASD vs TDC Contrasts. Relative to the TDC group, participants with ASD showed

399 increased alpha connectivity in the right sensorimotor cortex and decreased connectivity in left
400 posterior fusiform, occipital, and cerebellar regions. Notably, increased alpha power (Edgar,
401  Heiken, et al. 2015) in a similar region in the right medial sensorimotor cortex, and increased
402  alpha to low-gamma phase amplitude coupling in this central midline region (Port et al. 2019)
403  has been reported in prior ASD samples. The present results also recapitulate our previous

404  structural findings in children with ASD, in which we reported decreased structural connectivity
405 in the inferior fronto-occipital fasciculus and the fusiform-hippocampus and fusiform-amygdala
406 tracts (Chang et al., 2014). Our findings of increased cerebellar connectivity are also consistent
407  with considerable prior research implicating the cerebellum in the pathology of ASD.

408  Specifically, cerebellar anomalies, including abnormal anatomy, neurotransmission, oxidative
409  stress, neuroinflammation, and cerebellar motor and cognitive deficits are among the most

410  replicated findings in individuals with ASD (Fatemi et al. 2012).
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411 In the beta range, the ASD group demonstrated decreased beta connectivity in left

412  temporal regions relative to TDC participants. Stronger beta connectivity in TDC relative to

413  ASD participants in temporal regions has been demonstrated in prior work (Kitzbichler et al.
414  2015). Beta power in the auditory cortex has been hypothesized to be involved in auditory-motor
415 communication (Fujioka et al. 2009) and recent work has demonstrated increases in sensorimotor
416  low beta power in response to perceived self-produced vocal errors on an altered auditory

417  feedback speech paradigm (Franken et al. 2018). The decreased beta connectivity in the left

418 auditory cortex demonstrated in the present study may reflect under-recruitment of this area

419 needed for auditory processing and auditory motor communication in participants with ASD.
420 SPD vs TDC Contrasts. The SPD group differed from the TDC group via increased alpha
421  connectivity in bilateral frontal and right posterior parietal regions and reduced beta connectivity
422  in left parietal and medial and right frontal regions. These differences in functional connectivity
423  identified in these regions may be associated with the impairments in visuomotor skills and

424  attention previously reported in the SPD population (Brandes-Aitken et al., 2018). In fact, prior
425  work examining diffusion imaging in children with SPD identified associations between

426  visuomotor and cognitive control abilities and structural connectivity in regions of the superior
427  longitudinal fasciculus that run adjacent to the parietal regions identified in this study (Brandes-
428  Aitken et al., 2019).

429 ASD vs SPD Alpha and Beta Contrasts. Notably, the ASD and SPD groups did not show
430  significant differences in alpha connectivity. In fact, it was beta connectivity that distinguished
431 these two groups. Specifically, the SPD group showed a pattern of reduced beta connectivity
432  relative to both the TDC and ASD groups in bilateral and medial frontal and left parietal regions.

433  Taken together, these findings suggest that decreased beta connectivity in medial frontal and
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434  parietal regions may be involved in, or a response to, the sensory disturbance experienced by
435  children with SPD. Beta activity has been previously reported to be associated with

436  somatosensory gating and attention (Bauer et al. 2012; Buchholz et al. 2014; van Ede et al.

437  2010). Our previous work has demonstrated common tactile processing deficits in both ASD and
438  SPD groups (Demopoulos, Brandes-Aitken, et al. 2015), although when MEG-acquired

439  somatosensory latencies were compared between these groups, the SPD group demonstrated an
440 intermediate latency and did not significantly differ from TDC or ASD participants (Demopoulos
441  etal. 2017). These previous results, in conjunction with the present finding that beta activity

442  distinguished the ASD and SPD groups in the bilateral somatosensory cortex, may suggest that
443  the pathology underlying tactile dysfunction in these two groups is divergent.

444 Combined Groups Correlation Results. When correlation analyses were performed on all
445  participants combined into one group, alpha connectivity was positively associated with auditory
446  and verbal abilities, whereas beta connectivity was negatively associated with tactile processing.
447  Specifically, there was a common area of positive correlation between left cerebellar alpha

448  connectivity and both auditory processing and verbal abilities; however, an additional positive
449  association was identified between left anterior temporal alpha connectivity and verbal abilities.
450  Previous work has identified an association between increased anterior temporal alpha power and
451  autism symptomatology measured via the SRS total score (Cornew et al. 2012). whereas an

452  additional negative association was identified between posterior temporal alpha connectivity and
453 auditory processing. Taken together, these findings may suggest that increased cerebellar alpha
454  recruitment may be utilized to address auditory processing weakness that affects not only basic
455  auditory processing abilities, a deficit that is common in individuals with ASD (Abdeltawwab

456  and Baz 2015; Alcantara et al. 2004; Demopoulos et al. 2017; Demopoulos, Hopkins, et al. 2015;
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457  Demopoulos and Lewine 2016; DePape et al. 2012; Edgar et al. 2013, 2014; Edgar, Fisk IV, et
458  al. 2015; Gage, Siegel, Callen, et al. 2003; Gage, Siegel, and Roberts 2003; Hitoglou et al. 2010;
459  Jarvinen-Pasley and Heaton 2007; Kargas et al. 2015; Oram-Cardy et al. 2005; Oram Cardy et al.
460  2005; Tecchio et al. 2003; Tomcheck and Dunn 2007), but also verbal abilities. Indeed, prior
461  work has demonstrated links between cortical auditory processing abnormalities and verbal

462  abilities (Berman et al. 2016; Demopoulos et al. 2017; Edgar et al. 2013; Oram-Cardy et al.

463  2005; Oram Cardy et al. 2008; Roberts et al. 2011, 2012; Schmidt et al. 2009). With regard to
464  Dbeta connectivity, increases in the right somatosensory cortex were associated with poorer

465  performance on the graphesthesia task. Examination of the scatterplot distribution suggests that
466  somatosensory processing limitations may drive the graphesthesia impairments demonstrated in
467  the two clinical groups. Correlation results were consistent with our hypothesis that beta

468  connectivity would be associated with tactile processing and alpha connectivity would be

469  associated with auditory processing. This is consistent with prior work in which alpha

470  oscillations were associated with direction of auditory attention (Bauer et al. 2012) and

471  somatosensory cortex beta band modulation was reported in advance of tactile stimuli (van Ede
472  etal. 2010).

473

474  Limitations and Future Directions

475 Several limitations of the present study must be acknowledged. First, the participant

476  sample was restricted to males between the ages of 8-12 years. Prior studies examining resting
477  state neural oscillatory behavior have also restricted analyses to males given the high prevalence
478  of ASD in males and sex differences in peak alpha frequency (Edgar et al. 2019; Green et al.

479  2022; Manyukhina et al. 2022). While these restrictions result in more homogenous groups and
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minimize confounds of sex and age differences in neurobiology, they also create limitations for
the generalizability of these results to females and children and adolescents outside the age range
studies. Future research is necessary to understand the applicability of these findings across ages
and sexes. This study also included only children with a nonverbal 1Q>70, which limits the
generalizability of these results to lower functioning individuals. Further, this study focused on
only two frequency bands (alpha and beta) and only two sensory domains, auditory and tactile
processing. While prior research suggests that these domains may be the most severely impacted
in individuals with ASD (Fernandez-Andres et al. 2015), sensory dysfunction is heterogeneous in
its presentation among individuals with and without ASD, and understanding neurobiological
factors associated with dysfunction in other sensory domains also will be important to inform
treatment development. Finally, this study focused on specific aspects of sensory processing
(e.g., discrimination, temporal processing, etc.), but did not incorporate measures of sensory
responsivity or sensory seeking behavior. Further, this work only focused on two frequency
bands, alpha and beta. Future studies could expand upon this work to examine relations between
sensory processing dysfunction and functional connectivity in other frequency bands, as gamma
oscillatory behavior has been associated with multisensory communication (Misselhorn et al.
2019) and sensory sensitivity (Manyukhina et al. 2021). Future studies are needed to characterize
differences in functional connectivity that may account for these heterogeneous sensory
responses or behaviors in children with ASD and SPD.
Conclusions

This study was the first to use MEG to examine participants with ASD and SPD in
relation to neurotypical children to identify relevant differences in resting state whole brain

functional connectivity that may be associated with sensory dysfunction. This study design
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allowed us to identify both shared and distinct patterns of neural activity in two groups affected
by sensory dysfunction. Specifically, both clinical groups were distinguished from the TDC
group by patterns of functional connectivity differences in the alpha and beta bands, whereas the
clinical groups were only distinguished from each other on measures of beta connectivity.
Associations between functional connectivity and behavior identified that sensorimotor regions
were associated with tactile processing performance and temporal and cerebellar regions were
associated with auditory processing and language abilities. These results suggest that resting
state differences in oscillatory brain activity in the alpha and beta frequencies is associated with

the sensory dysfunction that characterizes children with ASD and SPD.
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861

862 Figure Legends

863

864  Figure 1. Alpha Contrasts. Areas of significantly increased (warm) and reduced (cool) alpha
865  connectivity are presented on figures for each pairwise contrast. Accompanying boxplots are
866  presented for each cluster showing imaginary coherence values for all groups at the voxel within
867  that cluster that demonstrated the greatest pairwise difference.

868

869  Figure 2. Alpha Correlations in the Combined Participant Sample. Positive associations between
870 auditory processing/verbal abilities and alpha connectivity values are identified in magenta

871  clusters for the sample of all participants in the study. Negative associations between auditory
872  processing and imaginary coherence values are identified in cyan clusters. Corresponding

873  scatterplots are presented for the voxel with the greatest correlation value within each cluster,
874  with groups identified by color and shape (ASD group = yellow circle, SPD group = green

875  triangle, and TDC group = grey square).

876

877  Figure 3. Beta Contrasts. Areas of significantly increased (warm) and reduced (cool) beta

878  connectivity are presented on figures for each pairwise contrast. Accompanying boxplots are
879  presented for each cluster showing imaginary coherence values for all groups at the voxel within
880 that cluster that demonstrated the greatest pairwise difference.

881

882  Figure 4. Beta Correlations in the Combined Participant Sample. Negative associations between

883 tactile processing abilities and beta connectivity values are identified in the cyan cluster for the

884  sample of all participants in the study. The corresponding scatterplot is presented for the voxel


https://doi.org/10.1101/2024.01.26.577499
http://creativecommons.org/licenses/by/4.0/

885

886

887

888

889

890

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577499; this version posted January 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

with the greatest correlation value within each cluster, with groups identified by color and shape

(ASD group = yellow circle, SPD group = green triangle, and TDC group = grey square).


https://doi.org/10.1101/2024.01.26.577499
http://creativecommons.org/licenses/by/4.0/

923
924
925
926
927
928
929
930
931
932

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577499; this version posted January 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Table 1
Group Characteristics (M = SD [range])
ASD SPD TDC Statistics
Age 9.88 £1.32 9.94+1.29 10.18 +.1.13 F(2,57)= .36
[8.13-12.00] [8.28-12.08] [8.18-11.94]
FSIQ 96.94 + 13.542¢ 109.39+11.35 114.92+9.31 F(2,57)=13.20***
[71-121] [89-131] [97-135]
PRI 103.17+8.564 113.11+11.63 111.00+12.29 F(2,57)=4.09*
[94-123] [92-131] [89-129]
VCI 98.56 +21.81% 113.11+14.63 118.46+13.08 F(2,57)=7.65**
[59-140] [83-136] [93-144]
Ethnicity (N)
Caucasian 10 12 17
Asian 4 1 1
Multiracial 4 3 4
Hispanic 0 1 0
Unknown 0 1 2
Handedness
Right 15 17 20
Left 1 1 2
Ambidextrous 2 0 1
Unknown 0 0 1
*p <.05
**p <.01
***p <.001

2 Significantly different from TDC at p<.001 following Bonferroni correction for multiple comparisons
b Significantly different from TDC at p<.01 following Bonferroni correction for multiple comparisons
¢ Significantly different from SPD at p<.01 following Bonferroni correction for multiple comparisons
4 Significantly different from SPD at p<.05 following Bonferroni correction for multiple comparisons
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942  Table 2. Summary of Group Contrast Results

Group | Band Regions Direction of
Difference
ASD vs. a left fusiform and inferior occipital gyri and cerebellum Decreased
TDC
right pre- and postcentral gyri Increased
B left middle and inferior temporal gyri Decreased
SPD vs. a left middle and superior frontal gyri and in the right inferior frontal gyrus, Increased
TDC precuneus, and inferior and superior parietal lobules
B bilaterally in the superior and middle frontal gyri, insula and putamen, as well as in Decreased
the left inferior frontal gyrus, cingulate gyrus, caudate body, pre- and postcentral
gyri, and inferior parietal lobule, and the right superior temporal gyrus, lentiform
nucleus, globus pallidus, and caudate
ASD vs. a no significant differences N/A
SPD
B right cingulate, middle frontal, and precentral gyri, and bilaterally in the superior Increased
and medial frontal gyri, the postcentral gyrus, the inferior parietal lobule, and in the
supramarginal gyrus

943

944
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945
946  [Table 3]

947  Table 3. Summary of Correlation Results for the Combine Groups Sample

Band Domain Task Regions Direction of
Correlation
o tactile no significant N/A
associations
auditory DSTP Acoustic left cerebellar +
Scale tonsil

left inferior and -
middle temporal
gyri

verbal viQ left uncus, +
cerebellar tonsil,
and anterior
superior, middle,
and inferior
temporal gyri

B tactile Graphesthesia right precentral -
gyrus
auditory no significant N/A
associations
verbal no significant N/A
associations

948

949
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Alpha Connectivity Correlations: Combined Sample
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