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Abstract

Macrophages play a pivotal role in immune responses, particularly in the context of combating microbial
threats within tissues. The identification of reliable biomarkers associated with macrophage function is
essential for understanding their diverse roles in host defense. This study investigates the potential of CLQA as
an invariant biomarker for tissue macrophages, focusing on its correlation with the anti-microbial pathway.
C1QA, a component of the complement system, has been previously implicated in various immune functions.
Our research delves into the specific association of C1QA with tissue-resident macrophages and its
implications in the context of anti-microbial responses. Through comprehensive systems biology and Boolean
analysis of gene expression, we aim to establish C1QA as a consistent and reliable marker for identifying
tissue macrophages. Furthermore, we explore the functional significance of C1QA in the anti-microbial
pathway. This research seeks to provide valuable insights into the molecular mechanisms underlying the anti-
microbial functions of tissue macrophages, with C1QA emerging as a potential key player in this intricate
regulatory network. Understanding the relationship between C1QA, tissue macrophages, and the anti-microbial
pathway could pave the way for the development of targeted therapeutic strategies aimed at enhancing the
host's ability to combat infections. Ultimately, our findings contribute to the expanding knowledge of
macrophage biology and may have implications for the diagnosis and treatment of infectious diseases.
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Introduction

Macrophages are integral components of the immune system, orchestrating a diverse array of functions crucial
for host defense against microbial threats. The identification and characterization of reliable biomarkers
associated with macrophage activation and function are essential for a comprehensive understanding of their
roles in maintaining tissue homeostasis and combating infections. Among the numerous molecules involved in
immune responses, C1QA, a component of the complement system, has garnered attention for its potential as
an invariant biomarker specifically linked to tissue-resident macrophages.

The complement system, a fundamental part of the innate immune system, plays a pivotal role in recognizing
and eliminating pathogens. C1QA, as part of the C1 complex, has been implicated in various immune
processes, yet its specific association with tissue macrophages remains a subject of investigation. This study
aims to unravel the potential of C1QA as a consistent and reliable biomarker for identifying and characterizing
tissue macrophages, with a particular focus on its relevance in the context of the anti-microbial pathway.

As macrophages exhibit remarkable phenotypic and functional heterogeneity depending on their tissue
microenvironment, establishing a robust and invariant biomarker is critical for accurately identifying and
studying these immune cells across diverse physiological and pathological conditions. The present research
seeks to fill this gap by examining the expression patterns of C1QA in various tissues and conditions, aiming to
validate its candidacy as a universal marker for tissue-resident macrophages.

Moreover, beyond its use as a biomarker, we explore the functional significance of C1QA in the anti-microbial
responses of tissue macrophages. Through systems biology, Boolean analysis of gene expression data, we
aim to elucidate the role of C1QA in modulating macrophage activities against microbial challenges. Unraveling
the molecular mechanisms underlying the association between C1QA, tissue macrophages, and the anti-
microbial pathway holds promise for advancing our understanding of macrophage biology and may have
therapeutic implications for infectious diseases. This investigation thus contributes to the broader landscape of
immunological research, offering new insights into the intricate interplay between macrophages and the
complement system.
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Materials and Methods

Data collection and annotation

Publicly available microarray and RNASeq databases were downloaded from the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) website. Gene expression summarization
was performed by normalizing Affymetrix platforms by RMA (Robust Multichip Average) and RNASeq platforms
by normalized counts. We used log2(normalized counts + 1) as the final gene expression value for analyses.

Computational Approaches

StepMiner Analysis

StepMiner is a computational tool that identifies step-wise transitions in a time-series data *. StepMiner
performs an adaptive regression scheme to identify the best possible step up or down based on sum-of-square
errors. The steps are placed between time points at the sharpest change between low expression and high
expression levels, which gives insight into the timing of the gene expression-switching event. To fit a step
function, the algorithm evaluates all possible step positions, and for each position, it computes the average of
the values on both sides of the step for the constant segments. An adaptive regression scheme is used that
chooses the step positions that minimize the square error with the fitted data. Finally, a regression test statistic
is computed as follows:
(X, = X)?/(m-1)

R Pa(Xi — £)?/(n—m)
Where X; fori = 1 ton are the values, X, fori = 1ton are fitted values. m is the degrees of freedom used for
the adaptive regression analysis. X is the average of all the values: X = %* Z}l:lX]-. For a step position at kK,

(nik) * YigmXjfori=k+1ton.

F stat =

the fitted values X; are computed by using %* Z}LIXJ- fori=1tok and

Boolean Analysis

Boolean logic is a simple mathematic relationship of two values, i.e., high/low, 1/0, or positive/negative. The
Boolean analysis of gene expression data requires the conversion of expression levels into two possible
values. The StepMiner algorithm is reused to perform Boolean analysis of gene expression data 2. The
Boolean analysis is a statistical approach which creates binary logical inferences that explain the
relationships between phenomena. Boolean analysis is performed to determine the relationship between the
expression levels of pairs of genes. The StepMiner algorithm is applied to gene expression levels to convert
them into Boolean values (high and low). In this algorithm, first the expression values are sorted from low to
high and a rising step function is fitted to the series to identify the threshold. Middle of the step is used as the
StepMiner threshold. This threshold is used to convert gene expression values into Boolean values. A noise
margin of 2-fold change is applied around the threshold to determine intermediate values, and these values are
ignored during Boolean analysis. In a scatter plot, there are four possible quadrants based on Boolean values:
(low, low), (low, high), (high, low), (high, high). A Boolean implication relationship is observed if any one of the
four possible quadrants or two diagonally opposite quadrants are sparsely populated. Based on this rule, there
are six kinds of Boolean implication relationships. Two of them are symmetric: equivalent (corresponding to the
positively correlated genes), opposite (corresponding to the highly negatively correlated genes). Four of the
Boolean relationships are asymmetric, and each corresponds to one sparse quadrant: (low => low), (high =>
low), (low => high), (high => high). BooleanNet statistics is used to assess the sparsity of a quadrant and the
significance of the Boolean implication relationships * 3. Given a pair of genes A and B, four quadrants are
identified by using the StepMiner thresholds on A and B by ignoring the Intermediate values defined by the
noise margin of 2 fold change (+/- 0.5 around StepMiner threshold). Number of samples in each quadrant are
defined as aq, ao1, 810, and ay; which is different from X in the previous equation of F stat. Total number of
samples where gene expression values for A and B are low is computed using the following equations.

Ao = (oo + Ag1),nBioy, = (ago + a49),

Total number of samples considered is computed using following equation.
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total = aOO + aOl + a’lO + all

Expected number of samples in each quadrant is computed by assuming independence between A and B. For
example, expected number of samples in the bottom left quadrant eqo = 72 is computed as probability of A low
((ago + aos)/total) multiplied by probability of B low ((ag + aio)/total) multiplied by total number of samples.
Following equation is used to compute the expected number of samples.

n= a;;, A = (ndy/total * nBy,,/total) * total

To check whether a quadrant is sparse, a statistical test for (eqgo > ago) or (2 > n) is performed by computing Sgo
and poo using following equations. A quadrant is considered sparse if Sog is high (i > n) and pgo is small.
n—n
S = ——
tj \/%

Poo = 1 ( Qoo " Qoo )
%7 2 \(ago + ao1)  (@go + a10)
A suitable threshold is chosen for Sgo > sThr and pgo < pThr to check sparse quadrant. A Boolean implication

relationship is identified when a sparse quadrant is discovered using following equation.

Boolean Implication = (S; > sThr, p; < pThr)

A relationship is called Boolean equivalent if top-left and bottom-right quadrants are sparse.

Equivalent = (Sy; > sThr, Py, < pThr,S;y > sThr,Py, < pThr)

Boolean opposite relationships have sparse top-right (a;1) and bottom-left (age) quadrants.

Opposite = (Syg > sThr, Py < pThr,S;; > sThr,P;; < pThr)

Boolean equivalent and opposite are symmetric relationship because the relationship from A to B is same as
from B to A. Asymmetric relationship forms when there is only one quadrant sparse (A low => B low: top-left; A
low => B high: bottom-left; A high=> B high: bottom-right; A high => B low: top-right). These relationships are
asymmetric because the relationship from A to B is different from B to A. For example, A low => B low and B
low => A low are two different relationships.

Alow => B high is discovered if the bottom-left (ago) quadrant is sparse and this relationship satisfies following
conditions.

Alow => B high = (5o > sThr, Py, < pThr)

Similarly, A low => B low is identified if the top-left (ag;) quadrant is sparse.

Alow =>B low = (Sy; > sThr, Py; < pThr)

A high => B high Boolean implication is established if the bottom-right (a;o) quadrant is sparse as described
below.

A high => B high = (S;¢g > sThr, Pyy < pThr)

Boolean implication A high => B low is found if the top-right (a;;) quadrant is sparse using following equation.
A high => B low = (S;; > sThr, P;; < pThr)

For each quadrant a statistic S;; and an error rate p; is computed. S; > sThr and p; < pThr are the thresholds
used on the BooleanNet statistics to identify Boolean implication relationships.

Boolean analyses use a threshold of sThr = 3 and pThr = 0.1. False discovery rate is computed for these
thresholds (FDR < 0.000001) by using randomly permuting gene expression data.

SMaRT analysis

The Signatures of Macrophage Reactivity and Tolerance (SMaRT) offer a comprehensive quantitative and
gualitative framework for evaluating macrophage polarization across various tissues and conditions. This study
unveils a gene signature remarkably conserved across diverse tissues and conditions, comprising a set of 338
genes derived from a Boolean Implication Network model of macrophages. This model effectively identifies
macrophage polarization states at the single-cell level, encompassing a spectrum of physiological, tissue-
specific, and disease contexts. Remarkably, this signature demonstrates robust associations with outcomes in
several diseases, underscoring its potential as a valuable predictive tool.
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The algorithm uses three clusters C#13, C#14, C#3 from the published macrophage network and uses
composite scores of C#13, C#14-3, and C#13-14-3 to identify macrophage polarization states (See function
getCls13, getClsl4a3, getClsl3ald4a3, and order Data in github codebase BoNE/SMaRT/MacUltils.py and the
outputs in BoONE/SMaRT/macrophage.ipynb). To compute the composite score, first the genes present in each
cluster were normalized and averaged. Gene expression values were normalized according to a modified Z-
score approach centered around StepMiner threshold (formula = (expr — SThr — 0.5)/3+stddev). Weighted
linear combination of the averages from the clusters of a Boolean path was used to create a score for each
sample. The weights along the path either monotonically increased or decreased to make the sample order
consistent with the logical order based on Boolean Implication relationships. The samples were ordered based
on the final weighted (-1 for C#13, 1 for C#14 and 2 for C#3) and linearly combined score. Performance is
measured by computing ROC-AUC. Bar plots show the ranking order of different sample types based on the
composite scores of C#13, path C#14-3, or C#13-14-3. Violin plots shows the distribution of scores in different
groups. P values are computed with Welch's Two Sample t-test (unpaired, unequal variance (equal_var =
False), and unequal sample size) parameters.

Statistical analyses

Gene signature is used to classify sample categories and the performance of the multi-class classification is
measured by ROC-AUC (Receiver Operating Characteristics Area Under The Curve) values. A color-coded bar
plot is combined with a density or violin + swarm plot to visualize the gene signature-based classification. All
statistical tests were performed using R version 3.2.3 (2015-12-10). Standard t-tests were performed using
python scipy.stats.ttest_ind package (version 0.19.0) with Welch’'s Two Sample t-test (unpaired, unequal
variance (equal_var = False), and unequal sample size) parameters. Multiple hypothesis corrections were
performed by adjusting p values with statsmodels.stats.multitest.multipletests (fdr_bh: Benjamini/Hochberg
principles). The results were independently validated with R statistical software (R version 3.6.1; 2019-07-05).
Pathway analysis of gene lists were carried out via the Reactome database and algorithm.32 Reactome
identifies signalling and metabolic molecules and organizes their relations into biological pathways and
processes. Kaplan—Meier analysis is performed using lifelines python package version 0.14.6.
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Results
C1QA s identified as an invariant biomarker of tissue macrophages

Macrophages and the complement system are intricately interconnected components of the immune response
and inflammation. It is crucial to comprehend the process by which monocytes in the blood undergo
differentiation into macrophages within solid tissues (Fig 1a). Utilizing the universally expressed seed gene
TYROBP in monocytes and macrophages, we identify candidate genes exclusive to macrophages. This
involves identifying genes analogous to TYROBP in solid tissues and ranking them based on correlation (Fig
1b). Furthermore, we assess the differential expression between solid tissue and blood to gain insights into this
differentiation process (Fig 1c). C1Q genes are highly ranked. We discovered a fundamental Boolean
implication relationship between TYROBP (universal biomarker of macrophages) and C1QA (part of the
complex that binds to antibodies, Fig 1d). This relationship was conserved in human, mouse, rat, baboon,
monkey, and dog. Datasets were derived from diverse tissue types profiled in human microarray (n = 25,955,
GSE119087, Affymetrix U133 Plus 2.0) and mouse microarray (n = 11,758, GSE119085, Affymetrix Mouse 430
2.0), rat microarray (n = 11,599, Pooled GEO, Rat 230 2.0), baboon RNAseq (n = 767, GSE98965), monkey
RNASeq (n = 288, GSE219045), and dog RNASeq (n = 300, GSE219045). The tissue types were carefully
annotated and categorized into three different states: blood (liquid), solid tissue (colon, lung, brain etc.), and
cell line. Detailed analysis in each tissue type revealed that the Boolean implication relationship is tissue
specific: C1QA Equivalent TYROBP (solid), C1QA high => TYROBP high (liquid), C1QA low (cell line). Each of
these relationships was also conserved across species (Fig 1e). Such strong relationships are called invariant
because the Boolean formula always evaluates to true. The asymmetric invariant Boolean relationships
provide a computational platform to define a continuum of biological states. Previously, we used these
approaches to characterize B cell differentiation® “, colon differentiation® °, inflammatory bowel disease
spectrum’, macrophage polarization states®.

Boolean analysis reveals a continuum of monocyte to macrophage differentiation

Monocytes, classified as phagocytic cells and integral members of the mononuclear phagocyte system, initially
circulate in the bloodstream. Subsequently, they migrate into tissues, where they transform into macrophages.
Although there has been extensive research into the differentiation of monocytes into macrophages, identifying
the precise intermediate states has proven challenging due to the absence of suitable biomarkers. To address
this issue, the MiDReG analysis approach was devised within the context of systems biology. This method
seeks to elucidate these intermediate states by capitalizing on the strong symmetric Boolean implication
relationship observed between TYROBP and C1QA in solid tissues, as well as the asymmetrical Boolean
implication found in blood. These findings have motivated the development of a model for macrophage
differentiation centered around the expression of C1QA (Fig 2a). The level of CLQA in monocytes is similar to
B, T, and NK cells and elevated in macrophages and dendritic cells (GSE46903, n=384, Fig 2b). In addition, a
sequential increase in C1QA expression is discovered with the three well-defined classes of monocytes
derived from the umbilical cord blood (GSE195727, n = 151, 25-41 GA, Fig 2c). The differential expression of
C1QA is validated in six additional datasets (4 human and 2 mice, Fig 2d). Comprehensive analysis of CLQA
in mononuclear phagocytes (MNP-VERSE,? GSE178209) demonstrated high expression in diverse solid tissue
types (Fig 2e). Together, the data suggests that C1LQA expression is critical for the differentiation of monocytes
into macrophages.

Solid tissue CD16 expression is invariantly linked to the negative regulation of classical complement
activation and promoting immune tolerance through LAIR1 expression.

Classical complement activation is triggered by C1q recognition of IgG, IgM, CRP/Pentraxins. Specific to IgG,
human C1q binds to higG1 and hlgG3, the same isotypes as human CD16 (FGCR3A)™. Mouse C1q binds to
mlgG2a and mlgG2b, the same as murine CD16 (FCGR3). Strikingly, our Boolean network models revealed
an invariant dependency of FCGR3A on C1q co-expression (in both mice and humans) (Fig 3c), suggesting
that C1q is always present to compete with CD16 for IgG in solid tissues. C1q is thought to bind IgG with
significantly greater affinity compared to CD16; thus, how would it be possible for Ab-mediated CD16 signaling
to ever play out?
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The C1-inhibitor (SERPING1) competes with the C1r and C1s proteases for binding the C1q molecule,
whereby the C1r and C1s proteases are displaced and can no longer cleave complement C2 and C4 proteins
to allow formation of C3 convertase™ ™. As a direct consequence, lack of C3 convertase prevents the
formation of C3a, and induction of C3aR-mediated inflammation as well as C3b and induction of CD11b/CD18
(CR3) and CD11c¢/CD18 (CR4) mediated phagocytosis as well as C5 convertase and formation of the
membrane attack complex (MAC) that induces apoptosis. Thus, if FCGR3A is expressed in solid tissues
(regardless if by NK, myeloid, or granulocyte subsets), C1q may be invariantly inhibited and unable to bind IgG
(but also IgM and CRP) and the complement system is shut down. Of great importance, our analyses also
revealed that the inhibitory LAIR1 receptor, which recognizes the C1 complex (C1QA/B/C, C1r, C1s)** when
bound to antigen (IgG,IgM,CRP), is also invariantly linked to FCGR3A expression in solid tissues. To the best
of our knowledge, this is the first ever example of a direct inhibitory counterpart to CD16-mediated activation.
Stated differently, LAIR1 is inhibitory and can be induced on most immune cells. Thus, if allowed to interact
with C1 complex, this would promote inhibition and immune tolerance. Conversely, if CD16 binds IgG instead
of C1q, this leads to direct activation, and when expressed by NK cells, CD16 is the only known activating
receptor that does not require any co-stimulation.*®
Additionally, we had access to human and mouse datasets of single-cell RNA sequencing of decidual and
placental tissues from early pregnancy where the physical trophoblast barrier separating placenta from decidua
is still intact (Fig 3d). Data were transformed into a pseudobulk format and we observed near identical
relationships between CD16 and C1q, LAIR1 and C1l-inhibitor. The data fundamentally indicates that C1q in
solid tissues serves a predominantly tolerogenic role, where CD16 regulates and modulates C1q functionality
based on CD16 expression abundance affording itself to rapid response against invading pathogens.

L. monocytogenes infection of human placental Hofbauer cells and E-coli infection of monkey decidual
macrophages differently regulates expression of C1lg and CD16 but promotes polarization into M1
reactive macrophages.

Cumulatively, the data unveil novel insights into the regulatory role of C1q in immune tolerance within solid
tissues, and how bloodborne microbial infections influence Clq expression to orchestrate antimicrobial
immunity (Fig 4a). If our initial interpretations hold true, the suppression of C1q expression and the
complement system in the fetal/placental microenvironment during early pregnancy may confer advantages for
fetal development. To test this hypothesis, we examined publicly available microarray and RNA-seq datasets
encompassing human peripheral blood from diverse groups, including healthy controls, patients with bacterial
infections/sepsis, RSV and influenza patients, and malaria-infected placenta (Fig 4b-c). Our findings indicate a
general trend of increased C1QA expression and M1 macrophage polarization in response to infections, with
sepsis patients and malaria-infected placenta showing significantly elevated C1QA expression—validated
across 14 original datasets (Fig 4d).

RNA sequencing data from publicly available human studies of Listeria infection in cells isolated from healthy
pregnant women were used to evaluate how C1qg and CD16 are differently modulated if an infection is within
the fetal or maternal microenvironment. Hofbauer cells (HBCs) are eosinophilic histiocytes believed to be of
macrophage origin, restricted to the placenta, heavily enriched during early pregnancy and most likely involved
in the vertical transmission of pathogens from mother to fetus and are highly susceptible to Listeria infection.
Our Boolean network analyses identified five critical genes required for expression of C1q, all of which play
important roles in anti-microbial immunity and macrophage polarization (Fig 4e). SMaRT predicts pro-
inflammatory states in both HBCs and Decidua (Fig 4e). Anti-microbial protection from infectious pathogens is
critical for successful organogenesis and fetal development. Our data suggests a pro-tolerogenic role for C1q,
we hypothesized that C1q expression (and perhaps its driver genes) would be suppressed upon infection.
Indeed, both C1q and CD16 were significantly diminished on infected HBCs along with expression of CSF1R,
MAFB, CD14, and CD163 compared to uninfected controls (Fig 4f). Conversely, E. coli infection had the
opposite effect on monkey decidual macrophages whereby C1q and CD16 are strongly upregulated as well as
the driver genes for C1q, suggesting a hierarchy in importance to promote immune tolerance in the decidua,
even at the cost of infection, and possibly revealing therapeutic pathways that can be exploited in the clinic

(Fig 4f-g).
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C1QAis associated with severe sepsis and flu

To check if CLQA expression is relevant for human diseased, we analyzed sepsis (GSE65682, GSE224146)
and flu datasets (GSE101702, GSE61821, GSE21802, GSE42641) that are annotated with severity of the
disease. C1QA high expression was associated with 28-days mortality in a sepsis study (GSE65682, n = 479,
p = 0.032, Fig 5a). To study the organism-wide response to sepsis, we analyzed C1QA gene expression
across tissues in a model leading to sepsis using cecal ligation and puncture (CLP).*® We examined C1QA
gene expression changes in 13 tissues including bone marrow, brain, colon, heart, inguinal lymph nodes
(iLNs), kidney, liver, lung, peripheral blood mononuclear cells (PBMCs), skin, small intestine, spleen and
thymus covering early and late effects—and from untreated control mice (Fig 5b). As shown in the figure,
C1QA expression consistently upregulated in moderate cases of sepsis from Day 0.5 to Day 1. Whereas in
severe cases, the difference is observed only in spleen, thymus and lung samples (Fig 5b). Examination of
peripheral blood mononuclear cell (PBMC) datasets from individuals with severe influenza revealed an
elevated expression of CLQA in severe cases (GSE101702, GSE61821, GSE21802, Fig 5c-e). The analysis of
C1QA expression encompasses five distinct cell types—Alveolar Macrophages, Lymphocytes, Monocytes,
Neutrophils, and epithelial cells—in mice subjected to sublethal and lethal doses of HIN1 (GSE42641, Fig 5f).
Notably, differential expression of C1QA is observed exclusively within Monocyte populations (Fig 5f).

Conclusion

In conclusion, this study sheds light on the potential of CLQA as an invariant biomarker for tissue macrophages
and its association with the anti-microbial pathway. Through comprehensive analyses of C1LQA expression
patterns in various tissues and under different conditions, we have provided evidence supporting its candidacy
as a reliable marker for identifying and characterizing tissue-resident macrophages. The establishment of such
a marker is crucial for advancing our understanding of macrophage biology, allowing for more accurate and
consistent identification across diverse physiological contexts.

Furthermore, our investigation into the functional significance of C1QA in the anti-microbial pathway has
uncovered intriguing insights into the role of this complement component in modulating macrophage responses
to microbial challenges. The intricate interplay between C1QA and tissue macrophages suggests a potential
regulatory mechanism that warrants further exploration. Understanding these molecular mechanisms not only
enhances our comprehension of macrophage biology but also opens avenues for developing targeted
therapeutic strategies aimed at bolstering the host's immune defense against infections.

As the field of immunology continues to evolve, the identification of reliable biomarkers and the elucidation of
their functional relevance become paramount for advancing diagnostic and therapeutic approaches. C1QA,
with its dual role as a potential biomarker and participant in the anti-microbial response, emerges as a key
player in this intricate network. The findings presented in this study contribute valuable knowledge to the
ongoing discourse on macrophage biology and complement-mediated immunity.

In summary, the exploration of CLQA as a biomarker for tissue macrophages and its involvement in the anti-
microbial pathway underscores its significance in the broader landscape of immune responses. Further
research and translational efforts in this direction may lead to innovative strategies for diagnosing and treating
infectious diseases, ultimately benefiting human health.
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Figure 1: TYROBP and C1QA are associated with tissue specific invariant Boolean Implication

relationship. (a) Schematic experimental design to study monocyte to macrophage differentiation. (b) The
search for potential candidates meeting the criteria of TYROBP Equivalent X in solid tissue, as annotated in
GSE119087, involves ranking them based on their correlation coefficients within solid tissue, concurrently
evaluating their correlation coefficients in blood tissue. (c) The gene candidates are ranked based on the
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difference in mRNA expression between solid and blood tissue, while concurrently satisfying the criteria of
TYROBP Equivalent X in solid tissue as annotated in GSE119087. (d) Boolean implication relationship C1QA
high => TYROBP high is conserved in human (GSE119087; n = 25,955), mouse (GSE119085; n = 11,758) and
rat (Pooled GEO samples from platform GPL1355, n = 21,925) datasets. (e) Scatterplots depicting the
relationship between C1QA and TYROBP, with blood samples in red, solid tissue samples in green, and cell-
line samples in blue, across various species including human (GSE119087), mouse (GSE119085), rat (pooled
GEO samples from platform GPL1355), baboon (GSE98965), monkey (GSE219045), and dog (GSE219045)
datasets.
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Figure 2: Validation of the Consistent Boolean Model for Monocyte to Macrophage Differentiation. (a)
Schematic diagram to study monocyte to macrophage differentiation. (b) C1QA expression pattern in
monocyte, macrophages, B cell, T cells, NK cells and DC cells in GSE46903 (n = 384). (c) Expression
patterns of C1QA across three different subsets of monocytes in cord blood (GSE195727): classical (n = 70),
intermediate (n = 70) and non-classical (n = 11). (d) C1QA expression Is ordered from low to high from left to
right highlighting the sample annotation from monocytes and macrophages in four human (GSE89953,
GSE35495, GSE11430, GSE117970) and two mouse datasets (GSE82158). (e) C1QA expression patterns in
mononuclear phagocytes in diverse tissues (MNP-VERSE, GSE178209, Blood, Spleen, Tonsil, Kidney, Breast,
Stomach, Colon, Liver, Lung, Pancreas, Skin, and Ascites).
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Figure 3: Identification of Activator of CLQA using MiDReG analysis. (a) Study design and identification of
activators of C1QA in solid, and blood tissues. (b) Scatterplots of selected genes with C1QA highlighting blood
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in red, solid in green and cell-line in blue in GSE119087. (c) Scatterplots of genes associated with classical
complement activation pathway with CD16 (FCGR3A, Fcgr3) highlighting blood in red, solid in green and cell-
line in blue in human (GSE119087) and mouse (GSE119085). (d) Scatterplots of genes associated with
classical complement activation pathway with CD16 (FCGR3A, Fcgr3) in human (E-MTAB-6701) and mouse
(GSE226417) placenta single cell dataset (pseudo-bulk of different clusters of cells).
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Figure 4: The role of CLQA in anti-microbial pathway. (a) Schematic study of CLQA expression in microbe
infection datasets. (b) Violin plots of C1QA expression during bacterial, RSV, and Influenza infection
(GSE42026). (c) Violin plots of CLQA expression during placental malaria (GSE7586). (d) Bar plots depicting
C1QA expression ordered from low to high, arranged from left to right, with emphasis on sample annotations
(Healthy vs Infected). (e) C#13 based SMaRT model of macrophage polarization during infection. (f) Heatmaps
of selected genes (C1QA activators, CD16 and the complement pathway) in Hofbauer cells (GSE174689) and
Decidua (GSE181054) in non-infected and infected settings. (g) Violin plots of C1QA expression in Hofbauer
cells (GSE174689) and Decidua (GSE181054) in non-infected and infected settings. (h) Violin plots of CLQA
expression in Peyer’s patches datasets (GSE231451, GSE188714, GSE188474) in uninfected and infected
settings. (i) Heatmaps of selected genes (C1QA activators, CD16 and the complement pathway) and Violin
plots of C1QA expression in Csflr knockout hippocampus and Payer’s patches. (j) Heatmaps of selected
genes (C1QA activators, CD16 and the complement pathway) and Violin plots of CLQA expression in DC2.4
cell-line (GSE29584, uninfected vs Infected).
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Figure 5: C1QA expression is associated with severe sepsis and flu. (a) C1QA high expression predicts
28-days mortality in sepsis patients (GSE65682). (b) C1QA high expression predicts moderate and severe
sepsis in different mouse tissues (GSE224146, Day 0.5 vs Day 1). (c) Violin plots of C1QA expression in

healthy (C, n=52), moderate (M, n=63) and severe (S, n=44) influenza (GSE101702). (d) Violin plots of CLQA
expression in other febrile illness (OFI, n=82), mild (n=104) and severe (n=17) HLN1 infection (GSE61821). (e)
Violin plots of C1QA expression in healthy controls (C, n=4), alive (A, n=27) and dead (D, n=9) H1N1 infected
patients (GSE21802). (f) Comparison of C1QA expression in different cell types (Alveolar Macrophages,
Lymphocytes, Monocytes, Neutrophils, and Epithelial cells) from mice infected with sub lethal and lethal dose
of HIN1 infection. Red line refers to the pvalue threshold of 0.05.
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