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Antimicrobial peptides (AMPs) are of growing interest as
potential candidates for antibiotics to which antimicrobial
resistance increases slowly. In this article, we perform the
first in silico study of the synthetic 8 sheet-forming AMP
GL13K. Through atomistic simulations of single and multi-
peptide systems under different charge conditions, we are
able to shine a light on the short timescales of early ag-
gregation. We find that isolated peptide conformations are
primarily dictated by sequence rather than charge, whereas
changing charge has a significant impact on the conforma-
tional free energy landscape of multi-peptide systems. We
demonstrate that the lack of charge-charge repulsion is a
sufficient minimal model for experimentally observed aggre-
gation. Overall, our work explores the molecular biophysical
underpinnings of the first stages of aggregation of a unique
AMP, laying necessary groundwork for its further develop-
ment as an antibiotic candidate.

1. Introduction

In the past decade, antimicrobial resistance (AMR), or a
lack of response to traditional antibiotics, has been on the
rise. In response, major health organizations such as the
World Health Organization (WHO), have declared it one of
the top ten threats to global health™. At the same time,
the drug delivery industry has been slow to deliver new an-
tibiotics, especially those with new mechanisms of action, or
those to which the build-up of AMR is expected to be com-
paratively slow. One reason for the difficulty in developing
drugs with more complex modes of action is a lack of un-
derstanding of the molecular-level mechanisms contributing
to various stages of activity in bacteria.

A good source of potential new antibiotics to which a
comparatively slow build-up of resistance is observed are
antimicrobial peptides (AMPs) 21, AMPs are short pro-
teins that form an essential part of the nonspecific immune
system in many organisms. Most are positively charged,
which confers on them their ability to strongly interact with
negatively-charged prokaryotic cell membranes in compari-
son with the neutral membranes of eukaryotic cells. AMPs
are also typically amphipathic, which enhances their ability
to interact as well with the strongly hydrophobic interior

[a] M.N. Hamidabad, N.A. Watson, L.N. Wright, R.A. Mansbach*
Physics Department, Concordia University, Montréal, QC, H4B
1R6, Canada
E-mail: re.mansbach@concordia.ca

of the bacterial cell membrane bilayer 3l Many of them

act against bacteria through disrupting the bacterial mem-
branes, and many types of mechanisms have been proposed
and reported in the literature!®?®. The most commonly
studied AMPs are amphiphilic helix-formers that act via
pore formation 6121,

A less well-studied group of AMPs is those that form
sheet-like structures at the bacterial membrane surface. The
peptide GL13K (Fig. 1) is one of these and is believed to
act through a carpet-like mechanism, involving micellization
of the membrane and possibly the formation of transient
pores 3. Tt has demonstrated promising applications to the
development of antimicrobial surfaces[ufw], as well as the
ability to bind the bacterial endotoxin LPS, in addition to
its membrane-disruptive ability. GL13K was derived from
the Human salivary protein (BPIFA2), a lipopolysaccharide-
binding protein that is considered to be an oral host-defense
protein. It was created by isolating residues 141 to 153
in this peptide (named GL13NH2) and replacing the glu-
tamine, asparagine, and aspartic acid residues in positions
2, 5, and 11 with lysines*7].

GL13K has been well-characterized experimentally on long
time-scales. It is known to interact with both bacterial
membranes in general and the bacterial endotoxin LPS in
specific. Near bacterial-like membranes and in solution at
high pH, it undergoes aggregation into large non-amyloidogenic
aggregates with high 3 sheet content on time-scales of days,
but near eukaryotic membranes and in solution at closer to
neutral pH it is primarily unstructured in solution. Mod-
ification of the sequence, particularly replacement of any
of the positively-charged lysine residues, has a significant
impact on the rate of aggregation and the observed mor-
phology of the resulting aggregates and may even prevent
self-assembly entirely [13:17:21-24],

Despite the comparatively numerous experimental stud-
ies that have been performed on GL13K, there have been no
computational studies, and understanding of the molecular-
level drivers of single-peptide conformations and the early
stages of aggregation remains limited. In this work, we em-
ploy atomistic molecular dynamics to characterize single-
peptide conformations and early-stage aggregation of GL13K.
We investigate the role of charge, sequence, and multi-body
effects and demonstrate that the mechanism of aggrega-
tion under high pH conditions can be explained primar-
ily through loss of charge-charge repulsion between peptide
monomers. In the first part of the results and discussion
section (Sec. 2.1), we discuss simulations of isolated pep-
tides in water and probe the effects of charge and sequence
via assessment of the secondary structure, radius of gyra-
tion, and contact maps. Next, we simulate charged and
uncharged systems of eight GL13K peptides and assess the
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Figure 1. GL13K sequence and initial modeling structure. (a) A helical wheel representation of GL13K sequence is depicted, created using
the NetWheels interface[18]. The sequence contains four charged (basic) residues, eight nonpolar residues, and one polar residue (SER9).
(b) Initial secondary structure of GL13K predicted by PEP-FOLD 3 web-server [19 is visualized by Chimera package [20].

properties of early-stage aggregation through comparison of
cluster size and f sheet content over time (Sec. 2.2). Fi-
nally, we compare the conformational landscapes of single
and multi-peptide GL13K via hydrogen-bonding and free
energy surface analysis (Sec. 2.3). Overall our work provides
an initial microscopic analysis of the detailed molecular-level
contributions to early-stage assembly of GL13K.

2. Results and Discussion

We studied seven different single-peptide systems and two
different multi-peptide systems to understand the effects of
sequence and charge on peptide conformation and early-
stage aggregation. The sequences of the single-peptide sys-
tems studied are shown in Table 1, with changes from the
original GL13K system highlighted in red: they include
three alanine substitution variants previously studied exper-
imentally [25]; GL13K with its lysines charged, to model its
behavior in a neutral pH; GL13K-neutral with its lysines de-
protonated (uncharged), to model its behavior in a high pH
environment; GL13K-R1, a peptide with the same amino
acid composition as GL13K but a different sequence[®!;

GL13K-R1-neutral, employing the R1 sequence with its lysines

deprotonated. GL13K-R1 functions as a demonstration of
the importance of specific sequence, rather than solely com-
position as well as a validation of the computational model.
We also use it to assess the validity of the computational
model.

Although lysine is deprotonated at a sufficiently high pH,
to more accurately assess the direct effect of changing pH
on a molecular system, it is also possible to employ tech-
niques such as constant-pH molecular dynamics 261 We do
not do so for several reasons. Firstly, this allows us to di-
rectly test a simpler hypothesis: that observed aggregation
and secondary structure change can result primarily from
the amount of average charge on the peptide. Second, for
the more computationally intensive simulations of aggrega-
tion, it allows us to ameliorate the requisite computational
resources, and we have previously demonstrated that al-
though it is a simple approximation, it is sufficient to model
the effects of pH on aggregation in other systems of aggre-

gating short peptides (271,

Table 1. Systems studied: list of amino acid sequences for all
different systems studied in this article, with naming conventions
indicated on the left, sequence differences from the original GL13K
highlighted in red, and asterisk indicating deprotonation of an amino
acid.

Peptide name Sequence
GL13K GKIIKLKASLKLL
GL13K Neutral | GK*IIK*LK*ASLK*LL
A5 GKITALKASLKLL
AT GKIIKLAASLKLL
All GKIIKLKASLALL
R1 IGIKLLKSKLKAL
R1 Neutral IGIK*LLK*SK*LK*AL

2.1. Charge and sequence effects in
single-peptide systems are responsible
for alpha helices but not beta sheets

To understand the conformation and the shape of a sin-
gle peptide in solution, we calculated shape parameters and
contact maps. Using the MDTraj scientific package. [28], we
computed the radius of gyration (Ry), acylindricity (acyi),
and asphericity(aspr ), which are all quantities derived from

the principal moments )\i,)\;ﬁ of the gyration tensor of

the peptide 291

Radius of gyration is defined as,
Ry =X+ M)+ %, 1)

and it is a measure of how extended or compact the peptide
is.
Asphericity is calculated as,

(A2 +A)) (2)

2
Asph = )\z -

N | =

and it is a measure of how symmetrically the peptides’
residues are positioned about all three axes. A larger value
of asphericity corresponds to a less spherical or less sym-
metric arrangement, while a value of zero corresponds to
spherical symmetry or similar.
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Acylindricity is calculated as,
Aeyl = )\5 - )\ga (3)

and it is similarly a measure of the deviation from cylindrical
symmetry, with a zero value corresponding to equal values
of the two shorter coordinate axes.

In Fig. 2, we illustrate the (a) the per-system average
radius of gyration (Rg), (b) per-system average aspheric-
ity (aspn), and (c) per-system average acylindricity (acy1).
We observe that the average radius of gyration (a) ranges
from 1.02 £ 0.02 nm for GL13K to 0.74 + 0.01 nm for R1-
neutral and we note significant differences between the Ry
of different systems (Anova test, significance level=0.05 and
p-value=1.37E-08). In addition, the two neutral systems
demonstrate overall lower gyration radii than their charged
counterparts visually, though only the difference between
GL13K and GL13K-neutral is significant (¢-test, significance
level=0.05 and p-value=1.12E-02). As might be expected,
greater charge-charge repulsion leads to more extended con-
formations. Finally, we note that the A7 (0.98 & 0.03 nm)
and A1l (0.98 £ 0.01 nm) variants have the most similar
gyration radii to the GL13K system, whereas the A5 vari-
ant (0.90 £ 0.03 nm) tends to be somewhat more collapsed.
We note similar trends in the asphericity of the system,
where systems with higher radii of gyration tend also to
be more aspherical, as their conformations tend to be more
extended and thus one moment of the gyration tensor is
longer than the other two. Asphericity values range from
0.30 £ 0.05 nm, for the most spherical R1 and 0.24 4+ 0.01
nm for R1-neutral systems, to 0.58+0.02 nm for the GL13K-
neutral and 0.51 £+ 0.05 nm for A5 systems, to nearly 0.75
nm (0.74 £ 0.04 nm for GL13K, 0.70 = 0.04 nm for A7, and
0.66 £ 0.01 nm for A11). Finally, acylindricities tend to be
rather low across the board, suggesting all peptides take on
comparatively cylindrically symmetric shapes.

To gain a greater understanding of the individual residue
contributions to the changing shapes of the system, we also
investigated the average per-residue contact maps (Fig. 3)
demonstrating the intramolecular residue-residue distances.
GL13K and its A7 and A1l variant are the most extended,
as also measured by the radius of gyration. On average,
they also demonstrate a linear increase in the physical dis-
tances of residues that are further apart in the sequence, up
to a maximum end-to-end distance of 2.54+0.1 nm. GL13K-
neutral demonstrates a very similar contact map, with the
same linear increase, but up to a smaller maximum end-to-
end distance of 1.6+£0.1 nm. R1 and R1l-neutral are far more
compact and demonstrate equidistant blocks (which in the
next paragraph we associate with residues equidistant due
to being on the same helical twist); R1-neutral has a longer
such block. Finally, A5 is the most collapsed, with most of
its C-terminus being roughly the same distance from the N-
terminus, concomitant with its lower R, and corresponding
to the repeated sampling of a folded-over S-hairpin-like con-
figuration. Evidently, the mutation of LYS5 in ALA results
in collapse of the N-terminal tail over the peptide, whereas
this does not occur when all lysines are neutralized, sug-
gesting that either ALA may play a role in stabilizing this
conformation or that charge asymmetry does.

To investigate the effect of charge and peptide sequence
on the secondary structure of the peptide, we calculated the
per-residue average secondary structure over all time, using
compute dssp tool of MDTraj package!?®l. We plot average
secondary structure and its error in Fig. 4 and Fig. S1 re-
spectively. (In Fig. S2 in the Supplementary Information,
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we also show the average secondary structure of each pep-
tide over time, averaged across all residues.) We observe in
GL13K (Fig.4a) primarily extended-loop conformations of
all residues (92.92+4.05%), with some slight (0.14£0.03 of
the time) bend and turn primarily localized around LYS7,
ALAS, and SER9. ILE4, LYS5, and LEU6 and LEU10,
LYS11, LEU12 all demonstrate a small amount S-ladder
content, probably corresponding to a rare folded-over con-
formation with short intra-molecular S sheets (cf. confor-
mation illustrated in Fig. 9a, bottom left). Overall, how-
ever, GL13K primarily retains an extended structure with
all residues in random coil conformations. GL13K-neutral
(Fig. 4b) likewise demonstrates primarily extended random-
coil structure for most of the residues. There is a slightly
lower preponderance towards random coil for ALAS, SER9,
and LYS11 ( 46.2 £ 4.3%, 51.7 + 3.9%, and 47.7 + 2.7%,
respectively), with a concomitant marginal increase in a-
helical content centered on these three residues, but overall
both GL13K and GL13K-neutral sample random-coil con-
formations the bulk of the time, demonstrating little change
in their secondary structure with charge neutralization. The
A5, A7, and All variants (Fig. 4 e-g, all charged), sample
similar configurational space. A5 has a slight enhancement
in helix and turn content, centered around ALAS, presum-
ably due to its preference for the S-hairpin-like configura-
tion. In comparison, R1 and Rl-neutral (Fig. 4c-d) both
demonstrate comparatively extended helical structures from
residues ~ 3 — 10 (R1) and residues ~ 2 — 10 (R1-neutral),
with R1l-neutral displaying heightened helical content in the
N-terminal half and slightly heightened turn content near
SERS.

Our simulation results are generally in accord with exper-
imental observations, providing a posteriori evidence for our
modelling procedure. In addition, there are some points of
interest that we can use to understand molecular-level ori-
gins of fB-sheet aggregation. Previous circular dichroism ex-
periments (211 ynder changing pH conditions reported some
a-helical content in GL13K, which we do not observe at
our proxy neutral pH; however, their experiments start at
pH 8.5. Additionally, they observed ~ 25% [-sheet con-
tent at pH 8.5, increasing to ~ 45% at pH 10.6, whereas
we observe < 10% S bridge content in GL13K and none in
GL13K-neutral. They did, however, observe a-helical con-
tent in R1, increasing with increasing pH (lowered charge),
as do we. We also observe that GL13K at pH 7 takes on
primarily random-coil structure as expected (21,31 Apart
from some slight collapse, likely due to the loss of charge
repulsion in the system, we do not observe significant con-
formational change when the lysines are neutralized, un-
like what is observed experimentally. Thus, we demonstrate
that the preponderance of observed (8 sheet content arises
from inter-molecular peptide interactions, with potentially
some slight contributions from intra-molecular interactions
between residues 4-6 and residues 10-12 at pH levels close
to neutral.

Finally, it was observed that beginning at pH 9.5, where
we expect fewer charges on the lysines, aggregation took
place into twisted S-sheets in the GL13K and A7 systems,
with slower formation of similar structures in A5 and more
helical content in aggregates in A112% Our results agree
in the sense that A7 behaves similarly to GL13K at pH 7,
suggesting that the lysine at position 7 does not strongly
impact its conformation one way or the other. Presumably,
the removal of the charge at A5 is responsible for its greater
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Figure 2. Average shape parameters of different single-peptide systems. (a) Radius of gyration Ry, (b) asphericity aspn, () acylindricity
acyl. Averages are taken across the final 400 ns of five different replicas. Standard error indicates the standard error in the means of the
five different replicas.
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Figure 4. Average secondary structure of single-peptide systems in solution
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collapse, since residues 5 and 11 will no longer repel one an-
other. Apparently, the repulsion between LYS7 and LYS11
is sufficient to keep A1l in a somewhat more extended con-
formation.

2.2. Peptide aggregation is seeded by
multimeric dynamic equilibrium in
the charged state

In this section, we investigate the aggregation behavior of
GL13K by studying eight peptides in the charged (proto-
nated, proxy for neutral pH) and uncharged (deprotonated,
proxy for high pH) states. To understand the general be-
havior of multi-peptide systems, we have plotted the aver-
age system cluster size (Nave) (average taken across all clus-
ters across all replicas) and average maximum cluster size
(Nmax) (average of maximum cluster size in each replica)
over time for both uncharged and charged peptides (Fig. 5).
Two peptides are defined to be in the same cluster if the dis-
tance between two non-hydrogen atoms from different pep-
tides is less than or equal to a cut-off distance. We define
our cutoff distance to be 5 A, as has been used previously,
because this value is close to the minimum of the Lennard-
Jones potential [32-35]  We observe aggregate formation in
both charged and uncharged systems, but aggregation pro-
ceeds to a greater extent in the uncharged system, presum-
ably due to repulsion of the lysine residues in the charged
system. In the charged system, the average cluster size re-
mains close to monomeric (1.5 £ 0.2), but semi-persistent
dimers and transient clusters up to size six are observed
(cf. 5a,c). The overall system appears to rapidly attain
a dynamic equilibrium. The uncharged system undergoes
non-equilibrium irreversible aggregation to the maximum
possible size of eight peptides (cf. 5a,b,d) in a cluster on
a timescale of 431 + 28 nanoseconds, with error estimated
from five independent replicas.

In Fig. 6, we present the average [ sheet content of the
multi-peptide systems with respect to time and cluster size.
B sheet content was calculated by using the DSSP pack-
age from the mdtraj Python package [?®! to identify the sec-
ondary structure of each residue at each timestep according
to backbone angles and sidechain positions. Due to the ev-
idence of non-equilibrium afforded by a changing radius of
gyration, the first 100 ns simulation time of both charged
and uncharged systems was not considered for this calcula-
tion. At each timestep, the fraction of 3 sheet content Brac
was defined as the number of residues out of the 8 x 13 = 104
total in which the ‘E’ identifier appeared. We observe an
increase over time of 8 sheet content for both charged and
uncharged systems, and a consistently higher amount of 8
sheet content in the uncharged system. The uncharged sys-
tem appears to reach an equilibrium value of 0.35+£0.05 af-
ter 1100 ns of growth, while the charged system appears to
reach an equilibrium value of 0.1240.04 after 425 ns. Based
on the relationship between cluster size and S sheet con-
tent, we note heightened 8 sheet content in the uncharged
system for aggregates as small as size 3, but we also note an
increase in the percentage of 8 sheet content with increas-
ing aggregate size, up to about size 5, after which it levels
off. In addition, only for clusters of size greater than 3 in
the uncharged system is there significant S-sheet content in
excess of 10%. Since, in the uncharged system, the max-
imum cluster size is attained on timescales of 500-600 ns,
concomitant with an initial steep increase in [Bfac, followed
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by a slower continued increase in [gac, this suggests that
aggregates form rapidly with a bulk of the 8 sheets formed
on initial aggregation and rearrange on longer time-scales in
ways that moderately increase 8 sheet content. This is also
supported by the comparatively broad distributions of Bfrac
with respect to cluster size and by the initial increase in 8
sheet content in the uncharged system despite its rapidly
attaining a dynamic equilibrium in terms of cluster forma-
tion.

Qualitatively, our observations are consistent with exper-
imental ones, which saw an increase from about 25% /3
sheet content at pH 8.5 to about 45% [ sheet content at
pH 10.621. Quantitatively it is 5-10% lower at neutral pH
and 5-10% lower at pH > 10.6. This, particularly the lat-
ter, suggests modest long-timescale rearrangements of large-
scale aggregates towards increasing /3 sheet content. Since
our results already suggest longer time-scale aggregate re-
laxation and experimentally observed large-scale aggregate
growth is quite slow (on the order of days), this hypothesis
seems well-supported.

In Fig. 7, we illustrate the primary locations of 3 sheet
formation via a per-residue secondary structure map, where
the percentage of secondary structure is measured over the
final 500 ns of all simulations under consideration, with
standard error as computed across five replicates demon-
strated in Fig S4. We observe primary formation of the
sheets in the aggregating, uncharged system near the N-
terminus, particularly in residues 4-6, all of which have
~ 40% B sheet content. Appreciable 3 sheet content is
also found in residues 7-12, which contain 20 — 30% £ sheet
content at equilibrium. The terminal residues largely do
not participate in 8 sheet formation on the timescale of our
simulations. The residues that demonstrate lower 5 sheet
content (7-12) in the uncharged system are those demon-
strating appreciable (roughly similar content) in the charged
system, suggesting transient aggregates are stabilized by
hydrogen-bonding near the C-terminal end, likely because
of the lower density of charged residues. Thus the increase
in (8 sheet content with increasing pH (decreasing charge)
largely comes from enhanced interaction of the residues on
the N-terminal side of the peptide.

2.3. Changes to conformational ensemble
in single and multi-peptide systems

In this section, we focus on the different conformations taken
on by single and multi-peptide GL13K in charged (proxy for
neutral pH) and uncharged (proxy for high pH) conditions.
We compare the systems that do and do not involve multi-
body interactions through investigating the locations and
extent of hydrogen bonding and through visualization of
the overall free energy landscapes.

In Fig. 8, we present an analysis of the hydrogen bonding
networks of the charged and uncharged single and multi-
peptide systems. We compute h-bonds using the gmx hbond
command of the Gromacs package with the following crite-
ria defining an h-bond: Cutoff radius and Cutoff angle 0.35
nm and 30 degrees between Hydrogen-Donor-Acceptor, re-
spectively. For single peptide systems, we show the average
number of intra-molecular hydrogen bonds (h-bonds) that
are present in at least 10% of the post-equilibration simula-
tion time (Fig. 8a,d). For multi-peptide systems, we show
the average number of intra-molecular and inter-molecular
h-bonds that are present in at least 10% of the final 500
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ns of simulation (Fig. 8b,e) and those that are present in
at least 40% of the final 500 ns of simulation (Fig. 8c,f).
We note that intra-molecular hydrogen bonds in the single
peptide systems are quite transient and none of them are
present in at least 40% of the simulation time. Standard
errors are computed from the standard error of the means
of five independent simulations.

We observe in single-peptide systems an elevation in tran-
sient h-bonds, particularly in residues 7-13 on the C-terminal
side of the peptide for the uncharged versus the charged sys-
tem. There are few even transient h-bonds in the charged
system, presumably due to electrostatic repulsion, but there
is some small h-bonding present on the N-terminal end, for
residues LYS2, and ILE4. Particularly notable increases
(from < 1 in the charged system to almost 2 h-bonds that
form transiently in the uncharged system) occur for SER9
and LEU13, the C-terminus. Of note, it is residues 4-6 and
10-12 that participate in the 8 ladder occasionally observed
in the charged system (cf. Fig. 4), and ILE4 is one of the
only residues to show higher h-bonding in the charged sys-
tem over the uncharged one.

In the multi-peptide simulations, transient (> 10% for-
mation) intra-molecular h-bonds are still observed for SER9
and LEU13, but there is no significant change between the
charged and uncharged systems in this case. ILE4 partici-
pates in a very small amount of transient h-bonding in the
charged system, but the primary intramolecular h-bonding
near residues 4-6 occurs for 5-6 in the uncharged system.
Overall, the largest pattern in intra-molecular h-bonding
is a small increase of semi-persistent (> 40% formation) for
residues 5-13. We note also, as expected, an increase in both
transient (> 10% lifetime) and semi-persistent (> 40% life-
time) inter-molecular h-bond interactions in the uncharged
system compared to the charged one. A significant increase
in inter-molecular h-bonding near the N-terminal end for
the uncharged system is consistent with the formation of S
sheet aggregates stabilized on that side. The most persis-
tent h-bond is formed for ILE4. Residues 9 and 11 demon-
strate a larger increase in semi-persistent than in transient
h-bonding patterns, corresponding to the observed forma-
tion of transient aggregates with minor -sheet content near
the C-terminus in the charged system. SERY, in specific,
is probably the residue that most consistently, regardless
of charge, participates in both intra-molecular and inter-
molecular hydrogen bonding, though the inter-molecular hy-
drogen bonding in which it participates is more persistent.

As a final step to investigate the overall impact of ag-
gregation on the system, in Fig. 9, we compute free en-
ergy changes of single peptide and multi-peptide systems of
charged and uncharged GL13K as a function of the first and
second moments of the gyration tensor G1, G2 and the end-
to-end distance Re2.. We represent these computations as
two-dimensional free energy surfaces (FESes). Although it
is possible to perform more sophisticated analyses to iden-
tify relevant (typically slowest-evolving) shared collective
variables (CVs) in which to construct FESes, we do not
do so here. It has been previously demonstrated that for
short, partially-disordered peptides, the three variables we
have chosen are commonly related to the slower CVs of the
system. In addition, from the previous analysis in this arti-
cle, we believe that the ease of interpretation, in this case,
outweighs the need to identify the single slowest or most
representative variables. Finally, the identification of uni-
fied multi-system CVs—in other words, the CVs most broadly
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relevant to multiple systems under different conditions such
as these—is still an area of active research 267401,

Free energy surfaces are computed and visualized using
the plot_free_energy function of the PyEmma package [41]
with the lowest and highest free energy values of 0.0 and
10.0 kT respectively, meaning that the minimum is set ar-
bitrarily to zero for each separate computation. Free energy
is computed as AF = kT In P, where k; is Boltzmann’s
constant, T' is the temperature of the simulation, and P is
the probability of the relevant macrostate typically approx-
imated as the number of times a certain set of values are
visited within a simulation divided by the total number of
timesteps. We also indicate on the free energy plots repre-
sentative conformations from visually-identified free energy
basins. For the single-peptide systems, FESes are computed
from the single-peptide conformations of the last 400 ns.
For the multi-peptide systems, FESes are computed from
all single-peptide conformations from the last 500 ns. This
results in slightly over eight times as much data for the
multi-peptide systems, but the multi-peptide ones are still
assessed in terms of single-peptide conformational ensem-
bles.

For the single-peptide system, we observe that the charged
system has two distinct free energy basins separated by
~ 3kpT, whereas the uncharged system has only a single,
more extended basin. The first free energy minimum occurs
for G1 =~ 0.6, G2 ~ 0.3, Re2e ~ 0.5 nm and appears to corre-
spond to a folded-over state that may evince intramolecular
(B-sheet characteristics at times, though based on the pre-
vious analysis, the formation of a true 8 sheet is compar-
atively rare. The second free energy minimum occurs for
Gi1 ~ 1.0,G2 = 0.3, Re2e =~ 3.5 nm and appears to corre-
spond to a primarily extended conformation, concomitant
with the higher end to end distance and first gyration mo-
ment. When the system becomes uncharged, the free energy
increases in the area of the first basin, but more collapsed
states become more favorable overall, primarily those with
slightly higher second moments. The barrier between states
presumably occurs due to charge-charge repulsion between
the lysines but evidently it is possible for a collapsed state
to be stabilized, potentially due to the observed transient
intramolecular hydrogen bonds (cf. Fig. 8a,d). Thus in the
uncharged system we observe indiscriminate sampling of col-
lapsed and extended states, whereas in the charged system
we observe their separation by a modest free energy barrier.

Introducing multiple peptides to the system results in the
resolution of more free energy minima separated by com-
paratively small barriers, primarily on the order of 2k,T,
although the extent of the surface sampled is quite simi-
lar. We note also that the number of minima and the bar-
rier heights tend to increase when the system becomes un-
charged, rather than decrease as in the single-peptide case.
We may rationalize this as the presence of larger aggregates
in the uncharged system imposing heightened steric con-
straints on the peptides, which clearly has a greater effect in
restricting the potential conformations than does the charge
repulsion of the charged system. We note also the presence
in both systems of a basin corresponding to extended states
(G1 > 1.0, Reze > 3 nm) which may most easily partici-
pate in inter-molecular g sheets, although the extent of the
basin is greater in the charged system and it appears to
almost split into two in the uncharged system, potentially
corresponding to differences in the arrangements of the two
primary sites of 3 sheet (residues 3-6 versus 9-12, cf. snap-
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shots in Fig. 91, bottom right). One reason for the restric-
tion of available conformational states may be that in the
uncharged system the extended conformations are primarily
stabilized by inter-molecular hydrogen bonding, whereas in
the charged system, there is also an intra-molecular charge-
charge repulsion component favoring more indiscriminate
extended conformations. We note also 3-5 energy minima
corresponding to collapsed states (G1 < 0.7, G2 =~ 0.35,
Reze < 2.0 nm), including folded-over conformations like the
single-peptide charged one in both charged and uncharged
systems. These appear to be stabilized by both transient «
helices and transient intra-molecular (3 sheets.

Overall, from these multi-peptide simulations we demon-
strate the existence of an equilibrium of disparately-sized
aggregates at neutral pH (charged system) that undergoes
rapid aggregation when the pH is significantly increased (un-
charged system) along with concomitant rapid formation of
intermolecular 8 sheets in aggregates of size four and larger
on similar timescales. It is possible that longer timescale
rearrangements may lead to further enhancement in 3 sheet
content, but it is unlikely to be by more than about 10%,
according to experimental observations. Thus most 3 sheet
formation occurs rapidly as part of aggregation. It appears
to be seeded by transient aggregate formation in the charged
system, which occurs primarily through C-terminal interac-
tions, where the lower charge density is found, but charge
neutralization leads to heightened N-terminal interactions,
which appear to comprise the bulk of inter-molecular [3-
sheet content in the high-pH system. Our observations are
consistent with a comparatively simple picture in which the
loss of charge-charge repulsion between monomers is the
primary force driving both aggregation and conformational
change in the system, as it allows for heightened peptide-
peptide interaction that substantially restricts the confor-
mational free energy landscape.

We note also the repeated motif of a folded-over collapsed
hairpin-like structure, which in GL13K appears to be par-
tially stabilized via intra-molecular hydrogen bonding and
B sheet formation. In the A5 system, which experimen-
tally demonstrates a slower aggregation rate, we observe a
more consistent sampling of this folded-over state, poten-
tially partially stabilized by a 8 bridge between ALA5 and
LEU12 (cf. 4e). Since we observe the formation of S-sheet
dimerization and transient larger aggregate formation even
under charged conditions, we may explain A5’s slower aggre-
gation by appealing to this in combination with the single-
peptide simulations showing its heightened tendency to take
on the collapsed hairpin-like state. In such a conformation,
it would be unable to form dimers in the charged state; thus
aggregation would become slower due to the lack of pre-
formed dimers as nucleation sites. This provides further ev-
idence for the picture of aggregation that we have presented
and suggests that one avenue of future work might involve
applying kinetic growth models to the non-equilibrium sys-
tem, such as the Smoluchowski aggregation model, which
has recently been generalized for small finite-size systems
such as those observed in MD contexts*?].

Another point of interest is SER9. Replacement of SER9
with an ALA residue did not impact GL13K antibacterial
activity but did impact its activity against the bacterial
endotoxin LPS!7. 1In this context, we find it interesting
to consider that SER9, in addition to being the only po-
lar amino acid, is positioned centrally in the “hinge” of the
collapsed conformation (cf. its participation in turn/bend
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secondary structure content, Figs 4, 7), as well as its com-
paratively elevated participation in both intra- and inter-
molecular h-bonding. This suggests the possibility that in
addition to the likelihood that SER9 controls interaction
with LPS that the folded-over conformation may be rele-
vant for LPS-GL13K interaction in specific. Since an in-
crease in folded-over content can impact 8 sheet formation
through removal of nucleation sites, it is of great interest
to determine whether this conformation is indeed relevant
to LPS binding and suggests that an important avenue of
future work will involve simulations of these interactions.

3. Conclusion

We have performed the first in silico study of single-peptide
and multi-peptide systems of the synthetic S-sheet forming
peptide GL13K and its variants. We investigate systems
with lysines charged, as they would be in neutral pH, such
as in solution or in the proximity of a typical eukaryotic cell
membrane, and with lysines uncharged (deprotonated), as
they would be in high pH, such as in a high pH solution
or possibly in the proximity of a typical negatively-charged
prokaryotic cell membrane. We also simulate three alanine-
scan variants where the fifth, the seventh, and the eleventh
lysine are replaced with alanines, as well as two variants with
the same amino acid composition but different sequences.

Our results match with experimental observations and
allow us to go further by rationalizing the molecular-level
underpinnings of those observations, localizing the stabi-
lizing interactions along the peptide backbone, determining
that the timescales for aggregation and primary (-sheet for-
mation are commensurate, and providing a holistic illustra-
tion of the conformational free energy landscape and how it
changes under different conditions that highlights the poten-
tial role of the equilibrium between collapsed and extended
states.

An important area of future work includes investigation
of GL13K in combination with different membrane variants.
From this study, we have determined that at high-pH, it
is sufficient to model aggregation according to deprotona-
tion of the lysine residues via a simple neutral lysine model.
It remains unclear, however, whether mitigation of charge-
charge repulsion via electrostatic screening would have a
similar effect. Thus, two possible pictures of aggregation at
a bacterial membrane emerge, depending on the local pKa,
which is notoriously difficult to model or measure. Either
the local pKa is sufficiently modified to result in total depro-
tonation of lysine residues, or the electrostatic shielding of
the positively charged lysines by the negatively charged bac-
terial membranes is sufficient to allow aggregation. Coarse-
grained simulations under charged and uncharged condi-
tions may be able to answer this question, as constant-pH
simulations of fully atomistic membranes would be compu-
tationally prohibitive.

4. Experimental

We performed all-atom simulations of single and multi-peptide
systems to investigate the effects of charge and sequence on
conformation and aggregation of the peptide GL13K and
related systems.
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Figure 5. Growth of clusters in multi-peptide systems. (a) Average cluster size Naye versus time. (b) Maximum cluster size Nax versus
time. For (a)-(b) we display the average and standard error across five independent replicas for both charged and uncharged peptides.
(c)-(d) Sampling of clusters of individual sizes Sciyster =1-8 with time for (c) charged and (d) uncharged systems.
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Figure 6. Average [(3-sheet content versus time of multi-peptide
charged (in red) and uncharged (in blue) systems. We plot the
fraction of residues in the system that demonstrate [3-sheet content
Btrac (a) versus time and (b) versus cluster size Scyster. Distribu-
tions in (b) are normalized to the same maximum value. Averages
and standard error are taken across five independent replicas. The
uncharged system was run for 500 ns longer than the charged one
to ensure it was equilibrated.

4.1. Single-peptide simulations

We conducted molecular dynamics simulations of GL13K,

neutral GL13K, GL13KA5, GL13KA7, GL13KA11, GL13KRI1,

and neutral GL13KR1 using GROMACS version 2021.21431,
Starting configurations for GL13K and GL13K-R1 were com-
puted using Pepfold-3 [44] and employed as rough initial struc-
tures for all other peptides. GL13K, GL13K-neutral, GL13K-
A5, GL13K-A7, and GL13K-All were all started in the
same configuration, and GL13K-R1 and GL13K-R1-neutral
were both started in the same configuration.

Initial configurations were patched for C-terminal amida-
tion and N-terminal protonated glycine using CHARMM-
GUI version 3.514°1, We cap the termini rather than simu-
lating the zwitterionic form to match previous experimen-
tal studies®"2%); it has been shown that differing terminal
states can impact the conformations taken on by AMPs [46]
We used the CHARMMS36m force field version February
2021 in GROMACs "3 supplemented with an LSN residue
(charge 0) parameterized by analogy with LYS (charge +1).
The simulation environment is comprised of each AMP sol-
vated using the TIP3P model for water in a cubic water
box with sufficient counter-ions added to neutralize the sys-
tem. The box dimensions extend 1.2 nm further than the di-
mensions of the AMP to prevent intermolecular interactions
across periodic boundary conditions. Newton’s equations of
motion were solved using a leap-frog algorithm ", Van der
Waals forces were truncated at 1.2 nm with a force switch
smoothing function applied from 1.1-1.2 nm. Electrostatic
interactions were calculated according to the smooth Parti-
cle Mesh Ewald method*® with a real-space cutoff of 1.2
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nm and a 0.12 nm Fourier grid spacing with a 4th order
spline. The list of non-bonded (neighbour) particles was
updated at least every ten steps and was generated with a
Verlet scheme with a cutoff set to 1.2 nm. Hydrogen cova-
lent bonds were constrained by LINCS to 4th order and a
single correction iteration %,

A steepest descent algorithm was used for energy min-
imization with a 0.01 step size and tolerance of < 1000.0
kJ/mol/nm to a maximum of 50 000 steps. A 100 ps NVT
canonical equilibration was then conducted using a Nosé-
Hoover thermostat [50’51]7 a bath with temperature 300 K,
time constant 0.4 ps, and with protein and non-protein
groups coupled separately. This was followed by a 100 ps
NPT isothermal-isobaric equilibration using a Parrinello-
Rahman barostat %% with isotropic pressure coupling, a 1.0
bar reference pressure, a 2.0 ps time constant, and the com-
pressibility of water set as 4.5 x 107° bar~!. The initial
production run for each AMP was 30 ns with 2 fs time
steps. The coordinates and energies were saved every 10
ps. We equilibrated each AMP for 200 ps followed by 500
ns of production.

4.2. Multi-peptide simulations

For both the GL13K and GL13K-neutral systems, we sim-
ulated eight peptides in a simulation box. Initial configu-
rations for both charged and uncharged systems were taken
from random configurations of the single-peptide simulation
and solvated together. A summary of simulation time and
setup can be found in tables S1 and S2. Simulations were
run long enough to allow both cluster size and cluster (-
sheet content to reach steady-state values.

All MD simulations were performed with Lennard-Jones
interaction cutoffs of 1.2 nm. Long-range electrostatic in-
teractions were calculated using the particle-mesh Ewald
method %! with conducting boundary conditions and a di-
rect space cutoff of 1.2 nm. Simulations were performed in
an isobaric-isothermal ensemble (NPT). The system pres-
sure was maintained at 1 atmosphere with the Parrinello-
Rahman barostat®*%%! using a 2.0 ps coupling time. The
temperature was maintained at 300 K through a Nosé-Hoover
thermostat ®**! with 0.4 ps coupling frequency. All bonds
between hydrogen and heavy atoms were constrained us-
ing the SHAKE algorithm 1561 which permitted a 2.0 fs time
step.
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Figure 7. Average secondary structure per residue of multi-peptide systems: (a) charged system; (b) uncharged system. Averages are taken
over the last 500 ns of all five simulations [after the 3-sheet percentage has reached an equilibrium value (approximately 550 ns for charged,
1100 ns for uncharged systems), see Fig. 6]. Percent error is shown in Supplementary Figure S4.
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Figure 8. Hydrogen bonding patterns for single and multi-peptide systems. a),d) Single peptide systems, a) charged, d) uncharged. Average
number of h-bonds per residue found in at least 10% of the final 400 ns of simulation time. b-c),e-f) Multi-peptide systems, b-c) charged,
e-f) uncharged. b),e) depict the average number of h-bonds per residue found in at least 10% of the final 500 ns of simulation time. c),f)
depict the average number of h-bonds per residue found in at least 40% of the final 500 ns of simulation time. Averages and standard error
are taken over five independent replicas.
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Figure 9. Comparison of two-dimensional free energy surfaces of (a-c) single peptide charged systems, (d-f) single peptide uncharged
systems, (g-i) multi-peptide charged systems, and (j-I) multi-peptide uncharged systems. We choose to project into three collective variables
known to be relevant to the systems of short, partially disordered peptides: the end-to-end distance in nanometers (Re2e), the 1st, and 2nd
moment of the gyration tensor G1andG2. Free energy surfaces are computed over the final 400 ns of simulation for the single-peptide systems
and for t[he] final 500 ns of simulation for the multi-peptide systems. Surfaces constructed using the PyEmma package's plot_free_energy
function 41,
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Table S1. Summary of simulation setup for single-peptide in solution.

# replicas | sim. time (ns) | box type
R1-neutral 5 500 Cubic
R1 5 500 Cubic
GL13K 5 500 Cubic
GL13K-neutral 5 500 Cubic
A5 ) 500 Cubic
AT 5 500 Cubic
All 5 500 Cubic

Table S2. Summary of simulation setup for multi-peptides in solution.

# of peptides / replica | # of replicas | sim. time (ns) box type
Charged system 8 5 1000 Cubic
Uncharged system 8 5 1500 rhombic dodecahedron

Table S3. Pairwise t-test of single peptide in solution on the radius of gyration data set. The upper triangle and lower triangle show

p-values and T-values respectively.

R1-neutral R1 GL13K | GL13K-neutral
Rl1-neutral - 0.18233
RI 746030 -
GL13K -10.21573 | -4.78965 -
GL13K-neutral | -12.67658 | -3.48707 | 2.78353 - 0.23103 | 0.18986
A5 -5.28985 -2.10335 | 3.14305 1.29625 - 0.0665
A7 -8.41608 -3.91546 | 0.98501 -1.43261 -2.12328 - 0.87404
All -18.96114 | -4.56676 | 1.53007 -2.47147 -2.65269 | 0.16368 -
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Figure S1. Average Secondary structure error for single-peptide systems in solution.
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