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Abstract 

Unraveling the cellular signaling remodeling upon a perturbation is a fundamental challenge 

to understand disease mechanisms and to identify potential drug targets. In this pursuit, 

computational tools that generate mechanistic hypotheses from multi-omics data have 

invaluable potential. Here we present SignalingProfiler 2.0, a multi-step pipeline to 

systematically derive context-specific signaling models by integrating proteogenomic data 

with prior knowledge-causal networks. This is a freely accessible and flexible tool that 

incorporates statistical, footprint-based, and graph algorithms to accelerate the integration and 

interpretation of multi-omics data. Through benchmarking and rigorous parameter selection on 

a proof-of-concept study, performed in metformin-treated breast cancer cells, we demonstrate 

the tool's ability to generate a hierarchical mechanistic network that recapitulates novel and 

known drug-perturbed signaling and phenotypic outcomes. In summary, SignalingProfiler 2.0 

addresses the emergent need to derive biologically relevant information from complex multi-

omics data by extracting interpretable networks. 

 

Introduction 

Intracellular signaling pathways, marked by molecular interactions and post-translational 

modifications like phosphorylation, mediate the ability of cells to translate signals into 

observable changes in phenotypic traits. Numerous pathways (e.g., MAPKs, EGFR, …) have 

been extensively studied and it is now evident that these linear cascades are not isolated entities, 
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but rather components of a large and complex network that impact physiological and 

pathological processes  (Jordan et al, 2013).  

To understand the intricate nature of such a human naïve signaling network it is crucial to grasp 

the cross-talk among diverse signaling cascades and elucidate how they collectively impact 

key cellular phenotypes. 

In this scenario, the recent tremendous technological advances have enabled the cost-effective 

generation of large-scale -omics datasets, providing a systematic description of different 

regulatory layers (e.g., DNA, RNA, and protein levels) in various pathophysiological 

conditions. The simultaneous exploration of different omics layers (the so-called, <trans-omics 

analysis=) is indeed gaining popularity (Wu et al, 2021b; Terakawa et al, 2022; Wu et al, 

2021a) to obtain a holistic picture of the cell state (Mohammadi-Shemirani et al, 2023). 

However, extracting biological information from such complex omics data remains a major 

challenge and demands computational interventions.  

Among the different methods developed (Reimand et al, 2019; Cantini et al, 2017), footprint-

based techniques  (Dugourd & Saez-Rodriguez, 2019; Schubert et al, 2018) generate lists of 

kinases and transcription factors characterized by an activity score derived from the 

phosphorylation or expression level of their known targets (Mercatelli et al, 2020; Beekhof et 

al, 2019; Mischnik et al, 2016; Badia-I-Mompel et al, 2022; Sousa et al, 2023). However, how 

and if these kinases and transcription factors are connected within the human naïve 

phosphorylation network and impact biological processes remain open questions that need to 

be addressed by additional computational approaches. Over the past decade, numerous 

mechanistic modeling approaches primed by prior knowledge emerged as robust aids in 

comprehending the complexities of the cell signaling (Garrido‐Rodriguez et al, 2022). These 

approaches use pre-existing information, annotated in public repositories (Türei et al, 2016; 

Lo Surdo et al, 2023; Hornbeck et al, 2012), about regulatory interactions among proteins, to 

establish a ground structure of the signaling network. Subsequently, they incorporate (multi)-

omics data to generate a static representation of a specific condition (mechanistic model). 

Mechanistic models have been shown to be highly effective for studying cancer progression or 

drug response and for discovering novel biomarkers (Liu et al, 2019; Hidalgo et al; Massacci 

et al, 2023; Pugliese et al, 2023). For instance, the COSMOS pipeline has been used to generate 

mechanistic hypotheses from multi-omics data, including metabolomics, in patients with clear 

cell renal cell carcinoma (ccRCC) (Dugourd et al, 2021). In general, mechanistic models aim 
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to bridge the gap between the vast omics datasets and the phenotypic outcomes observed in 

biological systems. However, models usually contain many nodes and edges, and this 

complexity hampers their functional interpretation. To tackle this issue, most of the methods 

use the manual exploration of the model guided by the functional enrichment analysis 

(Dugourd et al, 2021; Liu et al, 2019); as an alternative, other tools, such as HiPathia (Peña-

Chilet et al, 2019), decompose pathways into functional circuits ending on phenotypes. Finally, 

we recently developed ProxPath (Iannuccelli et al, 2023), a graph-based tool designed to 

estimate the regulatory impact of proteins on phenotypes annotated in SIGNOR (Lo Surdo et 

al, 2023).  

In this landscape, what is still missing is a strategy that integrates all these procedures (protein 

activity estimation, network reconstruction, and phenotypic interpretation) in a unified pipeline 

capable of drawing from multi-omics data a coherent picture depicting the signaling events that 

eventually impact hallmark phenotypes. 

To fill this gap, here we present a newly implemented version (2.0) of SignalingProfiler 

(https://github.com/SaccoPerfettoLab/SignalingProfiler/), a generally applicable strategy 

designed to unbiasedly building mechanistic models that capture from multi-omics data signal 

remodeling in response to perturbations (e.g., diseases, drug treatments, etc.). SignalingProfiler 

integrates transcriptomics, proteomics, and phosphoproteomics data with the existing 

knowledge of molecular interactions sourced from databases such as SIGNOR (Lo Surdo et al, 

2023) and PhosphoSitePlus (Hornbeck et al, 2012). The resulting model connects perturbed 

proteins (e.g., receptors) to effector proteins, ultimately regulating phenotypes relevant to the 

user9s biological context (Figure 1). 

The prototype of SignalingProfiler allowed us to uncover mechanisms of drug resistance in 

drug-resistant leukemia cells (Massacci et al, 2023; Pugliese et al, 2023). The current version 

of SignalingProfiler extends its utility to broader contexts, includes advanced functionalities, 

and incorporates expanded databases, making it a valuable resource for omics data 

interpretation and hypothesis generation (Figure 1). Here we carry out a systematic 

benchmarking of SignalingProfiler 2.0, emphasizing its advanced capabilities and broader 

applicability in the systems biology and network modeling fields.  
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Results 

Pipeline overview 

SignalingProfiler is an R workflow designed to unbiasedly integrate literature-derived causal 

networks with multi-omics data to deliver context-specific signed and oriented graphs 

connecting molecular entities (e.g. proteins, complexes, metabolites) and ending up on 

functional traits (phenotypes) (Figure 1A-C).  

Here we provide a step-by-step description of the method. 

Step 1. Find the activity of key signaling proteins 

In this step, SignalingProfiler derives the activity of key signaling proteins by systematically 

analyzing transcriptomic and (phospho)proteomic data derived from human and mouse 

samples. Protein activity estimation includes two main methods: 

 

Footprint-based approach.  Here, SignalingProfiler determines the activity of transcription 

factors, kinases, and phosphatases based on the abundance of their targets (transcripts or 

phosphopeptides) by integrating our newly developed algorithms and statistical tests (see 

Supplementary Material) with the VIPER inference method (Alvarez et al, 2016). This process 

is often referred to as Transcription Factor or Kinase Substrate Enrichment Analysis (TFEA 

and KSEA, respectively) (Figure 1D, Step 1). 

The relationship between a TF/kinase/phosphatase and its specific set of 

transcripts/phosphopeptides is referred to as <regulon= and is extracted from public repositories 

(Türei et al, 2016; Garcia-Alonso et al, 2019; Lo Surdo et al, 2023; Müller-Dott et al, 2023; 

Johnson et al, 2023). A major implementation in SignalingProfiler 2.0 is the import of novel 

regulons, such as the CollecTRI resource (Müller-Dott et al, 2023) and the Serine Threonine 

Kinome Atlas (Johnson et al, 2023) (Figure S1A-B). 

 

PhosphoScore. This method exploits the modulation of phosphosites in phosphoproteomics 

data with their impact on protein activity or stability as annotated in PhosphoSitePlus and 

SIGNOR (Figure S1C-D). Importantly, the PhosphoScore methodology allows us to extend 

our analysis to distinct types of molecular entities: 30% of the proteins with a regulatory 

phosphosite available in SignalingProfiler are TF/kinase/phosphatase, the remaining 70% 
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exhibit different GO molecular functions, including, but not limited to, ubiquitin-ligase, GTP-

ase, and membrane transporter activities (Figure S1E). 

 

Thanks to the integration of multiple resources and the combination of PhosphoScore and 

footprint-based methods, the coverage of SignalingProfiler 2.0 is greatly expanded: a user can 

potentially infer nearly the entire kinome (519 and 480 kinases for human and mouse), 62 

phosphatases, and over one thousand transcription factors and other signaling proteins (Figure 

1B). Remarkably, the modular nature of the pipeline allows users to feed SignalingProfiler 

with the three datasets simultaneously (transcriptomics, proteomics, and phosphoproteomics) 

or with only a selection of them.    

 

Step 2. Connect signaling proteins in a causal network 

The next step of the pipeline is the reconstruction of the molecular interactions between the 

modulated signaling proteins, by accessing literature-derived causal networks (Figure 1D, 

Step 2). This step includes i) the search for connections between modulated molecules detected 

in Step 1 within a compendium of available interactions in a prior knowledge network (PKN) 

and ii) the optimization of the final model.  

 

The PKNs. SignalingProfiler 2.0 offers six categories of prior knowledge networks (PKNs), 

organized by organism (human or mouse) and covering signaling pathways and post-

translational modifications (direct interactions) as well as gene regulation (mostly indirect 

interactions) derived from public resources (Lo Surdo et al, 2023; Hornbeck et al, 2012) 

(Figure S2 and Figure S3A). Every PKN is a graph built of causal interactions represented 

according to the activity-flow model. Briefly, every interaction is binary, directed (has a 

regulator and a target of the regulation), and signed (representing either an up- or a down-

regulation). The PKNs contain up to 60,807 connections (Figure S3A) linking a wide range of 

molecular entities, including proteins, fusion proteins, metabolites, and complexes (Figure 

S2). 

 

The naïve network. SignalingProfiler allows to progressively make the PKNs context-

specific, retaining only interactions in the current knowledge that are responsible for the 

modulation of TFs, kinases, phosphatases, and other signaling proteins (Step 1). Users have 
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the possibility to embed in the network a set of starting perturbed nodes, which can be proteins 

whose activity is impacted upon genetic or pharmacological perturbation (e.g., a drug-target, a 

mutated protein, or ligand-stimulated receptor) (Figure 1D, Step 2). 

First, we allow the user the possibility to remove the interactions that do not involve genes or 

proteins expressed in the samples (PKN preprocessing). Subsequently, we provide a modular 

framework to identify the regulatory paths linking the perturbed nodes to transcription factors, 

resulting in three distinct layouts. These layouts are distinguished by the number of layers, 

where a layer is defined by the connection of two different molecular functions: perturbed node 

to kinase/phosphatase, kinase/phosphatase to other signaling protein, and other signaling 

protein to transcription factor (Figure S3B) (further details are provided in Supplementary 

Material). 

The optimization. The naïve network undergoes optimization upon protein activity through 

the application of the Integer Linear Programming (ILP). Within the SignalingProfiler 

framework, we have incorporated two flavors of the CARNIVAL algorithm, namely Vanilla 

or Standard CARNIVAL (StdCARNIVAL) and Inverse CARNIVAL (InvCARNIVAL) (Liu et 

al, 2019). The CARNIVAL algorithm is developed to identify the smallest sign-coherent 

subnetwork, connecting as many deregulated proteins as possible. To enhance the 

comprehensiveness of the generated model, we have implemented a novel optimization feature 

that entails the execution of multiple CARNIVAL optimizations (multi-shot) for each layer of 

the model, producing subparts of the final model. Subsequently, these subparts are combined 

to form a more expansive and richer representation (Figure S3C-F). 

The result of these steps is a mechanistic model that can be explored at the phosphorylation-

resolution level (Figure 1C). 

Step3. Hallmark phenotypes inference for functional interpretation 

An important novelty of SignalingProfiler 2.0 is the implementation of the PhenoScore 

algorithm that infers from the model the regulation of hallmark phenotypes (Figure 1D, Step 

3). Specifically, it incorporates and adapts our in-house ProxPath method (Iannuccelli et al, 

2023) (see Supplementary Material), a graph-based algorithm designed to measure the 

functional proximity of a list of gene products to target pathways and phenotypes, using causal 

interactions annotated in SIGNOR. The PhenoScore algorithm averages the activity of 
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phenotype upstream regulators in the model and uses this value as a proxy of the activation 

level of phenotypes.   

In summary, SignalingProfiler offers information on approx. 200 distinct phenotypes (e.g., 

Proliferation, Apoptosis, G2/M phase transition, etc.) that can be incorporated into the model 

(Figure 1C).  

 

 

Use Case 

To showcase the potential of SignalingProfiler, we took advantage of our previously published 

transcriptome, proteome, and phosphoproteome dataset of breast cancer cells upon treatment 

with metformin (Sacco et al, 2016), whose molecular targets (the mammalian target of 

rapamycin, mTOR, and the AMP-activated protein kinase, AMPK) and phenotypic impact are 

well characterized (Keerthana et al, 2023; Garcia & Shaw, 2017; Salminen & Kaarniranta, 

2012; Saxton & Sabatini, 2017; Gao et al, 2020; Madsen et al, 2015; Salani et al, 2014) (Figure 

2A). Here we aim to validate whether SignalingProfiler can unbiasedly and systematically 

recapitulate from multi-omics data the metformin-induced signaling rewiring.  

To this aim, we first manually compiled a literature-derived list of known downstream effectors 

and phenotypes impacted by metformin and annotated their expected activity. The so-generated 

protein and phenotype gold standard accounts for 74 proteins, including 17 transcription 

factors and 20 kinases, and 10 phenotypes (Figure 2B, Table S1).  

This enables us to develop a standardized evaluation process, testing any possible combination 

of functional parameters of SignalingProfiler (3524 conditions), thus identifying the best 

parameters to set as defaults (Figure 2C) (see Supplementary Material).  

 

Protein activity inference use case (Step 1).  

Here, we inferred protein activity from experimental data of our use case (Step 1) using all 

possible reference databases (as sources of regulons, and of regulatory phosphosites) (Figure 

S1A) and different technical parameters.  

This process yielded 100 distinct combinations of input settings and relative resulting sets of 

predicted protein activities (Table S2). Subsequently, by comparing these results with the 

protein gold standard, we systematically assessed the precision, recall, and Root Mean Squared 
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Error (RMSE) associated with each combination (see Methods), to ultimately choose the most 

accurate and complete list of modulated proteins (Figure 2C, panel a, and Table S3). 

 

Transcription factors. The procedure enabled us to infer the activity of up to 7 out of 17 (40%) 

transcription factors in the protein gold standard (Figure 3A). The selection of the reference 

database is the most impactful parameter in this task. Using combined resources like CollecTRI 

+ SIGNOR led to a two-fold increase in the predicted TFs (Figure 3B). Nevertheless, when 

we focused on the gold standard, we observed that the regulon source maximizing both quality 

and coverage was Dorothea + SIGNOR (Figure 3A). Additionally, utilizing the 

hypergeometric test, which gives priority to TFs with regulons containing a high number of 

significantly modulated targets, tends to strengthen the signal. 

 

Kinases. The process of inferring kinases resulted in the identification of up to 8 out of 20 

(40%) kinases from the gold standard (Figure S4A). In general, the Omnipath and Ser/Thr 

Kinome Atlas integration increased the number of predicted proteins from 26 to 43, while still 

upholding a high level of consistency with the gold standard (Figure 3B and S4A). Moreover, 

the normalization of the phosphoproteomic data over proteomics (see Methods) was found to 

be the most influential parameter (Figure S4A).  

 

Other signaling proteins. Among 30 of the non-TFs/kinases in the gold standard, eight were 

identified (27%) (Figure S4B). This benchmarking underscores the importance of the 

normalization parameter and utilization of phosphosites that regulate activity rather than 

quantity to guarantee minimal RMSE and enhanced precision when using the PhosphoScore 

algorithm (Figure S4B). 

 

Overall, we inferred 30-40% of the protein gold standard. Our inability to infer the remaining 

60-70% may be attributed either to limitations in the experimental setting (e.g., drug 

concentration, time of treatment, choice of the breast cancer cell line) or in the pipeline itself 

(e.g., limited coverage in public repositories).  

 

In summary, the best combination of parameters (Figure S4C) led to the inference of 23 

transcription factors, 41 kinases, 3 phosphatases, and 25 other signaling proteins (Figure 3C 

and Table S4) and was used as an input for Step 2 (Figure 2C, panel a). As expected, 

integrating the PhosphoScore method with footprint-based analyses expanded the number of 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.25.577229doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577229
http://creativecommons.org/licenses/by-nc-nd/4.0/


inferred proteins (Figure 3D) while maintaining a high level of agreement with the gold 

standard (Figure S4D). 

 

Remarkably, our pipeline enabled us to catch among the most highly modulated proteins many 

members of the gold standard (Figure 3C, starred proteins).  In fact, among the top highly 

active transcription factors there is the Forkhead box O family (FOXO family) which is directly 

affected by the metformin-activation of AMPK complex (Queiroz et al, 2014; Greer et al, 

2009). Coherently, Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A), an indicator of 

hypoxia, was among the top down-regulated TFs (Zhou et al) along with N-myc proto-

oncogene (MYCN), a marker for cell proliferation (Wang et al, 2014) (Figure 3C, transcription 

factors panel). Furthermore, the PhosphoScore algorithm allowed us to observe the inhibition 

of Insulin Receptor Substrate 1 and 2 (IRS1 and IRS2), a phenomenon already associated with 

metformin-induced AMPK activation (Zakikhani et al, 2010) (Figure 3C, other signaling 

proteins panel). 

 

Network construction use case (Step 2).  

A key challenge in multi-omics data integration is extracting the cause-effect relationships 

underlying the experimental data. Translated to our use case, this task attempts to address the 

specific molecular events triggered by metformin treatment. To this aim, we extracted the direct 

and indirect connections linking the mTOR protein and AMPK complex to the proteins 

modulated in their activities through any possible framework in Step 2 of SignalingProfiler 

(Figure S3). This process involved the screening and the evaluation of 3328 possible resulting 

networks, by ranking them according to a combined score, that considers elements such as the 

consistency with the protein gold standard and topological graph metrics (see Methods) 

(Figure 2C, panel b, S5, S6, and Table S5). 

 

Overall, the average computation time of the analyses was 200 seconds (Figure S5A). The 

networks were obtained from 2989 runs over 3328, with most models consisting of only one 

component (Figure S5B) and demonstrating a strong fit to the power law (Figure S5C). As 

shown, the integration of the Ser/Thr Kinome Atlas into the prior knowledge network (see 

Methods), as well as the usage of two- and three-layer naïve network types, led to an increased 

computation time and dimensionality and, as expected, an increased coverage of metformin-

dependent phosphorylation events (Figure S6A-L). Unexpectedly, we found out that no major 

differences were detected between the two- and the three-layered networks, as revealed by the 
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evaluation of the path length from mTOR and AMPK to endpoints in the signaling cascade 

(Figure S6N, Q).  

 

We also benchmarked the two types of CARNIVAL differentiated by the usage of starting 

perturbed nodes as constraints. The invCARNIVAL requires increased computational time 

(Figure S6C) and returns smaller networks (Figure S6F, I). Moreover, due to the limited 

constraints and the complexity of the basic network, only 3% of the models generated by 

invCARNIVAL correctly inferred both mTOR and AMPK, whereas 55% of them inferred only 

one of them. 

On the other hand, the stdCARNIVAL returns larger networks with the two-shot optimization 

outperforming the one- and three-shot ones, in the number of nodes and phosphorylation events 

(Figure S6F, I, L), without increasing the computation time (Figure S6C). 

 

Overall, the quality of the models with respect to the gold standard was satisfactory, with an 

average precision (or specificity) and recall (or sensitivity) of 0.75 and 0.35, respectively 

(Figure S5D, E).  

 

We ranked the models according to the combined score (Figure S5F and Table S5) and set as 

default the most frequent values of parameters in the top 100 models (Figure S7A). The top-

quality network (Network1554) accounts for 99 nodes and 219 edges, which include new 

proteins of the gold standard (Figure 3E) and recapitulates the expected mTOR pathway 

inactivation and AMPK pathway activation upon metformin treatment (Figure 4A). The gold 

standard proteins form a highly interconnected submodule within the final network (Figure 

S7B), however accounting for only 22% of its nodes. This indicates that the model not only 

recapitulates known mechanisms but also proposes new ones, including the modulation of 

MAPK and CDK pathways (Figure 4A).  

 

Phenotype inference use case (Step 3).  

Finally, we used the top-quality network derived from Step 2 as input for the inference of 

phenotypic outcomes. To note, the PhenoScore algorithm considers various modalities, 

resulting in a total of 96 potential outcomes (Figure 2C, panel c, S8A, and Table S6). We 

developed an aggregated score to quantify the accuracy of prediction with respect to the 

phenotypic gold standard and ranked the results accordingly. The top 10 parameters were set 

as default for the PhenoScore algorithm (Figure S8B). Then, we selected the most accurate 
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prediction of the phenotypic gold standard (Figure S8C), and we created a final model (109 

nodes and 298 edges, Figure S9, and Table S7) depicting the metformin-induced signaling 

axes impacting the selected phenotypes (Figure 4B). Interestingly, in this final model, 

metformin results in the activation of death-associated pathways (e.g., apoptosis and cell death) 

and autophagy (the most characterized phenotypic hallmark of mTOR inhibition (Gao et al, 

2020) (Figure S8D), and in the inhibition of proliferation and biosynthetic pathways (e.g., 

protein synthesis) (Figure 4B and S9).  

 

In summary, the findings from this study demonstrate that SignalingProfiler is a powerful tool 

for extracting molecular hypotheses from multi-omics data upon a perturbation (Figure 4A) 

and identifying functional circuits that impact phenotypes (Figure 4B).  

Discussion 

In this paper, we thoroughly present SignalingProfiler 2.0, a method to systematically create 

mechanistic context-specific networks of signaling remodeling and to identify functional 

circuits impacting phenotypes.  

Here, we show that SignalingProfiler 2.0 is a modular pipeline that allows users (i) to 

unbiasedly derive the activity of proteins from the integration of proteogenomic data with prior 

knowledge information deposited in public repositories; (ii) to connect the identified proteins 

to generate a coherent network that explains nodes9 change in activity; (iii) to estimate the 

activation level of hallmark phenotypes and integrate them in the final model. With respect to 

the first prototype (Massacci et al, 2023), SignalingProfiler 2.0 now incorporates extended 

background databases, such as CollectTRI (Müller-Dott et al, 2023) and Ser/Thr Kinome Atlas 

(Johnson et al, 2023), increasing the coverage and the accuracy of protein activities9 prediction. 

Indeed, it is possible to estimate the activity of more than 3300 proteins, including, but not 

limited to, kinases, phosphatases, and transcription factors. Novel implementations of 

SignalingProfiler 2.0 include PKN browsing methods, optimization strategies, and PhenoScore 

inference with ProxPath (Iannuccelli et al, 2023). In particular, the PhenoScore makes it 

possible to map up to 200 cellular phenotypes onto the final model. This represents an effective 

strategy of feature reduction and a valuable resource for omics data interpretation and 

hypothesis generation in diverse biological contexts. 
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To systematically benchmark the ability of SignalingProfiler 2.0 to recapitulate the effect of a 

well-characterized drug on signaling rewiring, we took advantage of a multi-omics dataset 

derived from metformin-treated breast cancer cells. The result is a hierarchical mechanistic 

network, accounting for 109 nodes and 309 edges, and incorporating mTOR and AMPK known 

down-stream effectors (e.g., FOXOs, PRKs) as well as novel promising signaling axes (e.g., 

AKT1-WEE1 axis) by which metformin can exert its anti-cancer activity. In this analysis, we 

assess the performance and the robustness of our approach, and we set the default parameters 

by prioritizing quality rather than quantity. Importantly, we observe that different parameter 

selections might change the coverage and the strength of the solutions predicted by the 

approach, but this never leads to an opposite estimated activity (Figure 4A and S4), thereby 

demonstrating the overall robustness of the method.  

An important feature of SignalingProfiler 2.0 is its flexibility. Flexibility on available multi-

omics data (e.g. users can employ only transcriptomic or phosphoproteomic data); flexibility 

on the organism choice (mouse and human data are accepted) and flexibility on the type of 

perturbed nodes, since we include relations that are both signaling or transcriptional. 

Importantly, thanks to its modular structure, users have the possibility to use only a limited 

number of steps of the pipeline and, possibly, to integrate SignalingProfiler 2.0 with other 

methods for protein activity estimation and network optimization. 

Indeed, SignalingProfiler 2.0 is not the sole method to generate a mechanistic network from 

omics data. Here, we report a systematic comparison of SignalingProfiler 2.0 with a panel of 

similar methods, released from 2017 to 2022 (Dugourd et al, 2021; Liu et al, 2019; Köksal et 

al, 2018; Babur et al, 2021; Bradley & Barrett, 2017; Browaeys et al, 2020; Fortelny & Bock, 

2020; Peña-Chilet et al, 2019) (Table 1). Our analysis reveals that SignalingProfiler 2.0 is: (i) 

one of the few techniques directly annotating meta-information about the molecular function 

at node/protein levels, (ii) is the sole tool capable of estimating the activity of proteins, aside 

from kinases and phosphatases, from the phosphoproteomic data and (iii) is the sole approach 

together with CausalPath (Babur et al, 2021)combining proteomics in the analysis and, apart 

from HiPathia (Peña-Chilet et al, 2019), integrating phenotypes with their activation status into 

the ultimate model to unbiasedly derive functional circuits. 

Finally, the comparison with other methods highlights some of the limitations of our pipeline. 

As compared to tools such as COSMOS (Dugourd et al, 2021), SignalingProfiler 2.0 does not 

include metabolomic data. At the present state, additional types of regulation such as epigenetic 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.25.577229doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577229
http://creativecommons.org/licenses/by-nc-nd/4.0/


acetylomic and ubiquitylomic data, which are becoming more popular (Li et al, 2022; Aslanyan 

et al, 2023) cannot be integrated into the signaling and represent a future challenge to face. 

Also, as for all the methods that base their prediction on prior knowledge, SignalingProfiler 

2.0 suffers from the limited coverage of available information in public repositories: either 

regulon databases and causal interaction resources are incomplete and offer information for 

less than 50% (about 9,000 proteins) of the Uniprot-SwissProt proteome. 

In summary, SignalingProfiler 2.0 is a versatile and flexible pipeline that efficiently generates 

mechanistic networks from multi-omics data hierarchically bridging signaling molecules to 

phenotypic traits. As such, it addresses the emergent need to extract interpretable networks and 

derive biologically relevant information from complex multi-omics data. We expect that in the 

multi-omics era, where the proteogenomic characterization of human samples and biopsies are 

becoming increasingly more available to the public (Ng et al, 2022; Rudnick et al, 2016), 

SignalingProfiler 2.0 could pave the way to the development of personalized medicine 

strategies. 

Recommendation for use: SignalingProfiler can be applied to the results of any experiments 

having at least transcriptomics or phosphoproteomics to identify signaling rewiring that is 

supported by literature knowledge. To use SignalingProfiler, the user has to provide a fold-

change between the conditions under investigation, and measurement values need to be 

associated with related primary gene symbols and UniProt ID. Moreover, the phosphopeptide 

measurements need to specify the phosphorylation site with respect to their canonical UniProt 

sequence, in a specific format described in the GitHub page. The user can choose to visualize 

the whole network, the network focused on the significant phosphorylation events (phospho-

layout) or given one or more phenotypes the impacting functional circuits (pheno-layout).  
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Material and Methods 

PKNs creation 

We downloaded all causal interactions available for Mus musculus (TaxID = 10090) and Homo 

sapiens (TaxID = 9606) from the SIGNOR and PhosphoSitePlus® resources. SIGNOR 3.0 

datasets, retrieved via the REST API, are based on information up to November 2023. 

Interactions labeled 'down-regulates,' 'up-regulates,' and 'form complex' in SIGNOR were 

assigned values of -1, 1, and 1, respectively. Interactions involving entities with the TYPE 

'protein family' in SIGNOR were excluded. Causal phosphorylations from PhosphoSitePlus® 

were obtained by manually downloading and combining two independent tables: kinase-

phosphosite interactions ('Kinase_Substrate_Dataset.gz') and the regulatory role of 

phosphosites on proteins ('Regulatory_sites.gz'). The tables were joined using the UniProt ID 

and modified residue as keys. The content of the 'ON_FUNCTION' column in 

PhosphoSitePlus® representing the regulatory role of phosphosites was mapped to values of 1, 

-1, or 0. These manipulated datasets were merged and filtered to retain interactions with a 

defined regulatory effect (-1 or 1). For Homo sapiens, causal interactions derived from the 

Ser/Thr Kinome Atlas were added to SIGNOR and PhosphositePlus datasets (see Methods 

8Ser/Thr Kinome Atlas parsing9). UniProt IDs were updated, and primary Gene Names were 

retrieved using the UniProt database's REST API. The primary Gene Names of the involved 

entities were used as keys for each interaction, and multiple UniProt IDs and attributes (e.g., 

TYPE, DATABASE field of SIGNOR) were collapsed into a single string. We created six Prior 

Knowledge Networks (PKNs) adding increasingly exclusive filtering criteria: no filtering 

(PKN2 for human and PKN6 for mouse), removal of indirect interactions representing 

'transcriptional regulations' (PKN1 for human and PKN5 for mouse), removal of Kinome Atlas 
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interactions (PKN4), and removal of direct interactions not involving proteins (PKN3). The 

number of nodes and edges of each PKN is shown in Figure S2 and S3. 

 

Ser/Thr Kinome Atlas parsing 

We obtained Supplementary Table 3 from the work of (Johnson et al, 2023), containing 

information on 89752 serine (Ser) and threonine (Thr) sites and their probabilities (or 

percentile) of being phosphorylated by 303 Ser/Thr kinases. We kept phosphosite-kinase 

relations with a percentile higher than 88 (<regulon threshold”) and 99 (<PKN threshold”), 

retaining 3,134,109 and 291,682 relations, respectively.  

The <regulon threshold” of 88 was determined as the median value from the distribution of 

percentiles of phosphosite-kinase relations documented in SIGNOR or PhosphoSitePlus®. 

These relations were incorporated into the regulons for kinase inference analysis, with weights 

assigned proportionally to the percentiles within the range of 0.5 to 0.9. 

The <PKN threshold” of 99 was chosen to keep only the most accurate relationships. We joined 

this table with the PhosphoSitePlus table on the regulatory role of phosphosites 

('Regulatory_sites.gz') using the phosphosite as key. As a result, we included 28,012 

interactions in the prior knowledge networks, representing relationships between kinases from 

the Atlas and proteins for which the regulatory phosphosite is known.  

Each kinase was annotated with its UniProt ID. 

 

Benchmarking strategy  

Metformin multi-omics dataset preparation 

We downloaded relevant tables from our work as published in (Sacco et al, 2016) to build 

transcriptomic, proteomic, and phosphoproteomic data tables. The so-obtained information 

was parsed and adapted to make it SignalingProfiler compliant. 

Briefly, the dataset accounted for 9591, 7974, and 15812 quantified transcripts, proteins, and 

phosphosites. These tables included computed fold-change values among three replicates of 

both the control and metformin conditions. 

 

Normalization of phosphoproteomics over proteomic data 

We created a normalized phosphoproteomic dataset by adjusting the fold-change in 

phosphorylation in response to metformin treatment based on the corresponding fold-change 

in protein abundance. To achieve this, we calculated the difference between the 

phosphorylation level of the phosphosite and its associated fold-change in protein abundance. 
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The phosphorylation levels of phosphosites that showed modulation in proteomics with the 

same direction were reduced, while those with opposite phosphorylation and protein abundance 

changes were increased. We then computed the Z-score for the new distribution of 

phosphorylation fold-changes using their mean and we defined corrected fold-changes with an 

absolute value higher than 1.96 (i.e., p-value < 0.05) significant. 

 

Protein and phenotypic gold standard creation 

A list of 74 proteins with their expected activity modulation to metformin treatment (protein 

gold standard) was compiled from three recent papers (Keerthana et al, 2023; Garcia & Shaw, 

2017; Salminen & Kaarniranta, 2012; Saxton & Sabatini, 2017) focusing on mTOR and AMPK 

pathways. Since metformin inhibits mTOR (and activates AMPK), negative and positive 

targets of mTOR (and AMPK) were set to active and inactive (inactive and active), 

respectively. Each protein was manually cross-referenced and converted to its primary gene 

name. The molecular function of each protein was annotated using SignalingProfiler. The 

resulting gold standard protein list was compared with proteins in SignalingProfiler databases, 

including TFEA or KSEA regulons and the PhosphoScore database. Notably, eight proteins 

were not found in the databases and were consequently labeled as 'not inferable' proteins. 

Additionally, a list of 10 phenotypic traits with their expected modulations upon metformin 

treatment (phenotypic gold standard) was compiled, based on the phenotypic readout from our 

previous work (Sacco et al, 2016) and three referenced papers (Gao et al, 2020; Madsen et al, 

2015; Salani et al, 2014). 

The complete gold standard dataset is available in Supplementary Table 1. 

 

SignalingProfiler benchmarking 

We ran the SignalingProfiler pipeline with all technical parameter combinations.  A detailed 

explanation of SignalingProfiler functions and parameters is provided in Supplementary 

materials. Briefly, any test combination of parameters was evaluated by measuring precision, 

recall, and Root Mean Squared Error (RMSE) using protein and phenotypic gold standard lists. 

 

Precision, recall, and RMSE definition. We defined an inferred protein matching and diverging 

the expected value, as true and false positive, respectively. False negatives were proteins 

present in the gold standard but not inferred. We calculated as quality metrics (i) precision, the 

ratio of true positives to the sum of true and false positives, (ii) recall, the ratio of true positives 

to the sum of true positives and false negatives, and (iii) RMSE, the squared mean difference 
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between predicted and expected values. The eight 8not inferable9 gold standard proteins were 

not considered in the quality metrics computation.  

 

Step 1 benchmarking. SignalingProfiler independently infers the activity of transcription 

factors, kinases/phosphatases, and phosphorylated proteins. Transcription 

factors/kinases/phosphatases can be inferred with footprint-based methods, PhosphoScore, or 

a combination of both. The parameter combinations for the inference of transcription factors, 

kinases/phosphatases, and phosphorylated yielded 64, 32, and 4 results, respectively 

(Supplementary Table 2). Each result referred to a unique selection of parameters for the type 

of regulons/phosphosites database, the usage of the Hypergeometric Test, VIPER correction 

with proteomics; and correction of phosphoproteomics over proteomics.  

The default setting for Step 1 was determined by selecting the result for each molecular 

function that maximizes precision and recall while minimizing RMSE (Supplementary Table 

3 and 4). 

 

Step 2 benchmarking. The network construction step involves 10 parameters (see 

Supplementary Material for details). All combinations resulted in 3328 possible results, but 

only 2989 combinations yielded actual networks. Each model was annotated with computation 

time (sum of naïve network computation and CARNIVAL optimization time); topological 

metrics (nodes, edges and components, clustering coefficient, diameter, fit to the power law, 

maximum path length between end nodes and AMPK, mTOR and Perturbation node created 

by Inverse CARNIVAL); biological metrics, such as the precision, recall and RMSE with 

respect to the gold standard, and the number of interactions validated by quantified or 

significant experimental phosphorylations (Supplementary Table 5). We developed a Step 2 

combined score defined as follows:  

 �ĀþĀ�ÿăĂ ĀāĀÿăýþ��2 = (āÿăā�Ā�Āÿ ∗ 0.5 + ÿăāÿýý ∗ 0.5 +  þ�ąÿýÿā�Ā ∗ 0.5 +�ýĂĀāăÿ�ÿą�ĀăĄĄ�ā�ăÿā ∗ 0.5) 2 (āĀÿþÿ�þă ∗ 0.2 + �Ā�ăÿÿÿ�þ�ā)  

 

where SignRatio is the ratio between the number of edges that are validated by significant 

phosphorylation events over the total and the NormTime is the ratio between each computation 

time and its maximum. The best model was selected based on the highest aggregate score 
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(Network1554 with 99 nodes and 219 edges). We set the default parameters for Step 2 by 

choosing the most frequent parameters9 values among the top 100 models.   

 

Step 3 benchmarking. The benchmarking of phenotypic traits inference considered 6 different 

parameters (see Supplementary Material for details). The ten phenotypes of the phenotypic 

gold standard were selected, including apoptosis, autophagy, adipogenesis, biosynthesis of 

fatty acids, glycogen and proteins, proliferation, and glycolysis. We obtained 96 results that 

were compared to the phenotypic gold standard, and we annotated precision, recall, RMSE, 

and computation time (Supplementary Table 6). We formulated a Step 3 combined score: 

 �ĀþĀ�ÿăĂ ĀāĀÿăýþ��3 = (āÿăā�Ā�Āÿ + ÿăāÿýý) 2 (ÿĀÿþýĀþý + ÿĀÿþÿ�þă ∗ 0.5)  

 

where normRMSE and normTime are the ratio of its value and its maximum.  

We linked the phenotypes9 values with the highest combined score to their regulators in the 

Step 2 model, resulting in a final optimized network of 109 nodes and 309 edges 

(Supplementary Table 7).  

The network is publicly available for browsing at: 

https://www.ndexbio.org/viewer/networks/fa22e724-b54b-11ee-8a13-005056ae23aa.  The 

Step 3 default was set by considering the most represented parameters9 values among the top 

10 results.  

 

SignalingProfiler output visualization 

The optimized network generated by SignalingProfiler was displayed on Cytoscape using the 

RCy3 package (v. 2.14.2). Two XML files provided within the SignalingProfiler R package 

were used to visualize the network in Cytoscape.  

The "SignalingProfiler layout" provides users with a clear and intuitive visual representation 

of the entire model (used in Figure 4B, S7B, and S9). On the other hand, the "Phosphorylation 

layout" (used in Figure 4A) allows users to focus specifically on proteins involved in 

experimentally confirmed phosphorylation events. 

 

Code availability  
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All code used for SignalingProfiler benchmarking is available at 

https://github.com/SaccoPerfettoLab/SignalingProfiler_Benchmarking/. SignalingProfiler 2.0 

R package code is available at https://github.com/SaccoPerfettoLab/SignalingProfiler.  

 

Figure Legends 

Figure 1. SignalingProfiler pipeline.  

A. SignalingProfiler input consists of multi-omic data collected from perturbed and control 

conditions (e.g., disease/ treated vs control). 

B. Coverage of SignalingProfiler inferable signaling proteins in human and mouse datasets, 

categorized by molecular function (TF transcription factors, KIN kinases, PP phosphatases, 

and OTHER other molecular functions).  

C. SignalingProfiler final output illustrates the remodeling of the signal, linking user-defined 

perturbed nodes (optional) with inferred proteins, and ultimately leading to relevant 

phenotypes. Node activities are coherent with the sign of the edges (red and blue are active and 

inactive proteins, respectively). Phosphoproteomics is mapped onto edges (validated 

interactions with phosphoproteomics). 

D. SignalingProfiler is a three-step modular pipeline. Step 1 derives the activity of signaling 

proteins from regulatory phosphosites (PhosphoScore method) and direct 

transcripts/phosphopeptides using the VIPER algorithm (footprint-based methods) (Alvarez et 

al, 2016). Step 2. A user-defined set of perturbed molecules/receptors (e.g., targets of a 

treatment or mutated genes in a disease) is connected to the inferred proteins using a prior 

knowledge network (PKN) exploiting: (i) a shortest-path algorithm to reduce the dimension of 

the PKN to the neighborhood of the inferred proteins (naïve network); (ii) the CARNIVAL 

optimization strategy (Liu et al, 2019) that retains only the sign-coherent interactions between 

proteins (context-specific network). Step 3. The context-specific network is connected to 

cellular phenotypes using the ProxPath algorithm (Iannuccelli et al, 2023) and the phenotype 

activity is obtained by integrating upstream protein activities.  

 

Figure 2.  Proof-of-concept strategy.  

A. Multi-omics datasets of breast cancer cells before or after metformin treatment (Sacco et 

al, 2016). 

B. Manually curated list of 74 proteins of AMPK (blue), mTOR (green) pathways, or both 

(dark blue) with their expected activity after metformin treatment (protein gold standard).  
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C. Benchmarking of the three steps of SignalingProfiler by testing any possible technical 

parameters and choosing the best result as input for the following step.  

 

Figure 3. SignalingProfiler proteins’ activity inference benchmark and best result. 

A-B. Results of the benchmarking of Step 1.  

A. Heatmap reporting the inferred activity (final score) of gold standard transcription factors 

using both footprint-based and PhosphoScore methods across 64 technical conditions (see 

Supplementary Material). Precision, recall, and Root Mean Squared Error (RMSE) are reported 

for each condition by comparison with the gold standard (see Methods). The black box 

highlights the best technical condition set as default in SignalingProfiler and used in Step 2. 

Blue and red represent inactive and active proteins, respectively. 

B. Number of inferred proteins in KSEA or TFEA based on regulon background resources.  

C. Bar plot displaying the activity modulation (metformin-treated vs control condition) for 

transcription factors, kinases, phosphatases, and other signaling proteins in the top result from 

Step 1. Blue and red represent inactive and active proteins, respectively. 

D. Bar plot representing the proportion of transcription factors, kinases, phosphatases, and 

other signaling proteins identified using PhosphoScore (orange) or footprint-based methods 

(blue). 

E. Bar plot showing the number of proteins with inferred activity before (Step 1) and after 

network construction (Step 2) among the 66 inferable proteins of the gold standard.  

 

Figure 4. Optimal SignalingProfiler result of metformin-induced signaling rewiring 

reconstruction and its phenotypic impact. 

A.  Visualization of the best model (Figure S9) of the benchmarking of Step 2 focused on 

proteins involved in phosphorylation events significantly deregulated between metformin and 

control. Nodes and edges are displayed according to the legend. Blue and red nodes represent 

inactive and active proteins, respectively. Background areas highlight subnetworks associated 

with known signaling pathways. 

B. Bar plot reporting the inferred modulation of phenotypes upon metformin treatment after 

Step 3 of SignalingProfiler (activation in red, inhibition in blue), and the functional circuits 

extracted from the final model connecting AMPK and mTOR to apoptosis and proliferation. 

 

Table 1. Qualitative comparison of SignalingProfiler and existing methods.  
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