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Abstract

Unraveling the cellular signaling remodeling upon a perturbation is a fundamental challenge
to understand disease mechanisms and to identify potential drug targets. In this pursuit,
computational tools that generate mechanistic hypotheses from multi-omics data have
invaluable potential. Here we present SignalingProfiler 2.0, a multi-step pipeline to
systematically derive context-specific signaling models by integrating proteogenomic data
with prior knowledge-causal networks. This is a freely accessible and flexible tool that
incorporates statistical, footprint-based, and graph algorithms to accelerate the integration and
interpretation of multi-omics data. Through benchmarking and rigorous parameter selection on
a proof-of-concept study, performed in metformin-treated breast cancer cells, we demonstrate
the tool's ability to generate a hierarchical mechanistic network that recapitulates novel and
known drug-perturbed signaling and phenotypic outcomes. In summary, SignalingProfiler 2.0
addresses the emergent need to derive biologically relevant information from complex multi-

omics data by extracting interpretable networks.

Introduction

Intracellular signaling pathways, marked by molecular interactions and post-translational
modifications like phosphorylation, mediate the ability of cells to translate signals into
observable changes in phenotypic traits. Numerous pathways (e.g., MAPKs, EGFR, ...) have

been extensively studied and it is now evident that these linear cascades are not isolated entities,


https://doi.org/10.1101/2024.01.25.577229
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577229; this version posted January 29, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

but rather components of a large and complex network that impact physiological and
pathological processes (Jordan et al, 2013).
To understand the intricate nature of such a human naive signaling network it is crucial to grasp
the cross-talk among diverse signaling cascades and elucidate how they collectively impact

key cellular phenotypes.

In this scenario, the recent tremendous technological advances have enabled the cost-effective
generation of large-scale -omics datasets, providing a systematic description of different
regulatory layers (e.g., DNA, RNA, and protein levels) in various pathophysiological
conditions. The simultaneous exploration of different omics layers (the so-called, “trans-omics
analysis”) is indeed gaining popularity (Wu et al, 2021b; Terakawa et al, 2022; Wu et al,
2021a) to obtain a holistic picture of the cell state (Mohammadi-Shemirani et al, 2023).
However, extracting biological information from such complex omics data remains a major

challenge and demands computational interventions.

Among the different methods developed (Reimand et al, 2019; Cantini et al, 2017), footprint-
based techniques (Dugourd & Saez-Rodriguez, 2019; Schubert et al, 2018) generate lists of
kinases and transcription factors characterized by an activity score derived from the
phosphorylation or expression level of their known targets (Mercatelli et al, 2020; Beekhof et
al, 2019; Mischnik et al, 2016; Badia-I-Mompel et al, 2022; Sousa et al, 2023). However, how
and if these kinases and transcription factors are connected within the human naive
phosphorylation network and impact biological processes remain open questions that need to
be addressed by additional computational approaches. Over the past decade, numerous
mechanistic modeling approaches primed by prior knowledge emerged as robust aids in
comprehending the complexities of the cell signaling (Garrido-Rodriguez et al, 2022). These
approaches use pre-existing information, annotated in public repositories (Tiirei et al, 2016;
Lo Surdo et al, 2023; Hornbeck et al, 2012), about regulatory interactions among proteins, to
establish a ground structure of the signaling network. Subsequently, they incorporate (multi)-
omics data to generate a static representation of a specific condition (mechanistic model).
Mechanistic models have been shown to be highly effective for studying cancer progression or
drug response and for discovering novel biomarkers (Liu ef al, 2019; Hidalgo et al; Massacci
et al, 2023; Pugliese et al, 2023). For instance, the COSMOS pipeline has been used to generate
mechanistic hypotheses from multi-omics data, including metabolomics, in patients with clear

cell renal cell carcinoma (ccRCC) (Dugourd et al, 2021). In general, mechanistic models aim
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to bridge the gap between the vast omics datasets and the phenotypic outcomes observed in
biological systems. However, models usually contain many nodes and edges, and this
complexity hampers their functional interpretation. To tackle this issue, most of the methods
use the manual exploration of the model guided by the functional enrichment analysis
(Dugourd et al, 2021; Liu et al, 2019); as an alternative, other tools, such as HiPathia (Pefa-
Chilet et al, 2019), decompose pathways into functional circuits ending on phenotypes. Finally,
we recently developed ProxPath (Iannuccelli et al, 2023), a graph-based tool designed to
estimate the regulatory impact of proteins on phenotypes annotated in SIGNOR (Lo Surdo et
al, 2023).

In this landscape, what is still missing is a strategy that integrates all these procedures (protein
activity estimation, network reconstruction, and phenotypic interpretation) in a unified pipeline
capable of drawing from multi-omics data a coherent picture depicting the signaling events that

eventually impact hallmark phenotypes.

To fill this gap, here we present a newly implemented version (2.0) of SignalingProfiler

(https://github.com/SaccoPerfettolab/SignalingProfiler/), a generally applicable strategy

designed to unbiasedly building mechanistic models that capture from multi-omics data signal
remodeling in response to perturbations (e.g., diseases, drug treatments, etc.). Signaling Profiler
integrates transcriptomics, proteomics, and phosphoproteomics data with the existing
knowledge of molecular interactions sourced from databases such as SIGNOR (Lo Surdo et al,
2023) and PhosphoSitePlus (Hornbeck et al, 2012). The resulting model connects perturbed
proteins (e.g., receptors) to effector proteins, ultimately regulating phenotypes relevant to the

user’s biological context (Figure 1).

The prototype of SignalingProfiler allowed us to uncover mechanisms of drug resistance in
drug-resistant leukemia cells (Massacci et al, 2023; Pugliese et al, 2023). The current version
of SignalingProfiler extends its utility to broader contexts, includes advanced functionalities,
and incorporates expanded databases, making it a valuable resource for omics data
interpretation and hypothesis generation (Figure 1). Here we carry out a systematic
benchmarking of SignalingProfiler 2.0, emphasizing its advanced capabilities and broader

applicability in the systems biology and network modeling fields.
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Results

Pipeline overview

SignalingProfiler is an R workflow designed to unbiasedly integrate literature-derived causal
networks with multi-omics data to deliver context-specific signed and oriented graphs
connecting molecular entities (e.g. proteins, complexes, metabolites) and ending up on
functional traits (phenotypes) (Figure 1A-C).

Here we provide a step-by-step description of the method.
Step 1. Find the activity of key signaling proteins

In this step, Signaling Profiler derives the activity of key signaling proteins by systematically
analyzing transcriptomic and (phospho)proteomic data derived from human and mouse

samples. Protein activity estimation includes two main methods:

Footprint-based approach. Here, SignalingProfiler determines the activity of transcription
factors, kinases, and phosphatases based on the abundance of their targets (transcripts or
phosphopeptides) by integrating our newly developed algorithms and statistical tests (see
Supplementary Material) with the VIPER inference method (Alvarez et al, 2016). This process
is often referred to as Transcription Factor or Kinase Substrate Enrichment Analysis (TFEA
and KSEA, respectively) (Figure 1D, Step 1).

The relationship between a TF/kinase/phosphatase and its specific set of
transcripts/phosphopeptides is referred to as “regulon” and is extracted from public repositories
(Tiirei et al, 2016; Garcia-Alonso et al, 2019; Lo Surdo et al, 2023; Miiller-Dott et al, 2023;
Johnson et al, 2023). A major implementation in SignalingProfiler 2.0 is the import of novel
regulons, such as the CollecTRI resource (Miiller-Dott et al, 2023) and the Serine Threonine
Kinome Atlas (Johnson et al, 2023) (Figure S1A-B).

PhosphoScore. This method exploits the modulation of phosphosites in phosphoproteomics
data with their impact on protein activity or stability as annotated in PhosphoSitePlus and
SIGNOR (Figure S1C-D). Importantly, the PhosphoScore methodology allows us to extend
our analysis to distinct types of molecular entities: 30% of the proteins with a regulatory

phosphosite available in Signaling Profiler are TF/kinase/phosphatase, the remaining 70%
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exhibit different GO molecular functions, including, but not limited to, ubiquitin-ligase, GTP-

ase, and membrane transporter activities (Figure S1E).

Thanks to the integration of multiple resources and the combination of PhosphoScore and
footprint-based methods, the coverage of SignalingProfiler 2.0 is greatly expanded: a user can
potentially infer nearly the entire kinome (519 and 480 kinases for human and mouse), 62
phosphatases, and over one thousand transcription factors and other signaling proteins (Figure
1B). Remarkably, the modular nature of the pipeline allows users to feed SignalingProfiler
with the three datasets simultaneously (transcriptomics, proteomics, and phosphoproteomics)

or with only a selection of them.

Step 2. Connect signaling proteins in a causal network

The next step of the pipeline is the reconstruction of the molecular interactions between the
modulated signaling proteins, by accessing literature-derived causal networks (Figure 1D,
Step 2). This step includes i) the search for connections between modulated molecules detected
in Step 1 within a compendium of available interactions in a prior knowledge network (PKN)

and 11) the optimization of the final model.

The PKNs. Signaling Profiler 2.0 offers six categories of prior knowledge networks (PKNs),
organized by organism (human or mouse) and covering signaling pathways and post-
translational modifications (direct interactions) as well as gene regulation (mostly indirect
interactions) derived from public resources (Lo Surdo et al, 2023; Hornbeck et al, 2012)
(Figure S2 and Figure S3A). Every PKN is a graph built of causal interactions represented
according to the activity-flow model. Briefly, every interaction is binary, directed (has a
regulator and a target of the regulation), and signed (representing either an up- or a down-
regulation). The PKNs contain up to 60,807 connections (Figure S3A) linking a wide range of
molecular entities, including proteins, fusion proteins, metabolites, and complexes (Figure

S2).

The naive network. SignalingProfiler allows to progressively make the PKNs context-
specific, retaining only interactions in the current knowledge that are responsible for the

modulation of TFs, kinases, phosphatases, and other signaling proteins (Step 1). Users have
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the possibility to embed in the network a set of starting perturbed nodes, which can be proteins
whose activity is impacted upon genetic or pharmacological perturbation (e.g., a drug-target, a
mutated protein, or ligand-stimulated receptor) (Figure 1D, Step 2).

First, we allow the user the possibility to remove the interactions that do not involve genes or
proteins expressed in the samples (PKN preprocessing). Subsequently, we provide a modular
framework to identify the regulatory paths linking the perturbed nodes to transcription factors,
resulting in three distinct layouts. These layouts are distinguished by the number of layers,
where a layer is defined by the connection of two different molecular functions: perturbed node
to kinase/phosphatase, kinase/phosphatase to other signaling protein, and other signaling
protein to transcription factor (Figure S3B) (further details are provided in Supplementary

Material).

The optimization. The naive network undergoes optimization upon protein activity through
the application of the Integer Linear Programming (ILP). Within the SignalingProfiler
framework, we have incorporated two flavors of the CARNIVAL algorithm, namely Vanilla
or Standard CARNIVAL (StdCARNIVAL) and Inverse CARNIVAL (InvCARNIVAL) (Liu et
al, 2019). The CARNIVAL algorithm is developed to identify the smallest sign-coherent
subnetwork, connecting as many deregulated proteins as possible. To enhance the
comprehensiveness of the generated model, we have implemented a novel optimization feature
that entails the execution of multiple CARNIV AL optimizations (multi-shot) for each layer of
the model, producing subparts of the final model. Subsequently, these subparts are combined

to form a more expansive and richer representation (Figure S3C-F).

The result of these steps is a mechanistic model that can be explored at the phosphorylation-

resolution level (Figure 1C).

Step3. Hallmark phenotypes inference for functional interpretation

An important novelty of SignalingProfiler 2.0 is the implementation of the PhenoScore
algorithm that infers from the model the regulation of hallmark phenotypes (Figure 1D, Step
3). Specifically, it incorporates and adapts our in-house ProxPath method (Iannuccelli et al,
2023) (see Supplementary Material), a graph-based algorithm designed to measure the
functional proximity of a list of gene products to target pathways and phenotypes, using causal

interactions annotated in SIGNOR. The PhenoScore algorithm averages the activity of
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phenotype upstream regulators in the model and uses this value as a proxy of the activation
level of phenotypes.

In summary, SignalingProfiler offers information on approx. 200 distinct phenotypes (e.g.,
Proliferation, Apoptosis, G2/M phase transition, etc.) that can be incorporated into the model

(Figure 1C).

Use Case

To showcase the potential of SignalingProfiler, we took advantage of our previously published
transcriptome, proteome, and phosphoproteome dataset of breast cancer cells upon treatment
with metformin (Sacco et al, 2016), whose molecular targets (the mammalian target of
rapamycin, mTOR, and the AMP-activated protein kinase, AMPK) and phenotypic impact are
well characterized (Keerthana et al, 2023; Garcia & Shaw, 2017; Salminen & Kaarniranta,
2012; Saxton & Sabatini, 2017; Gao et al, 2020; Madsen et al, 2015; Salani et al, 2014) (Figure
2A). Here we aim to validate whether SignalingProfiler can unbiasedly and systematically

recapitulate from multi-omics data the metformin-induced signaling rewiring.

To this aim, we first manually compiled a literature-derived list of known downstream effectors
and phenotypes impacted by metformin and annotated their expected activity. The so-generated
protein and phenotype gold standard accounts for 74 proteins, including 17 transcription
factors and 20 kinases, and 10 phenotypes (Figure 2B, Table S1).

This enables us to develop a standardized evaluation process, testing any possible combination
of functional parameters of SignalingProfiler (3524 conditions), thus identifying the best
parameters to set as defaults (Figure 2C) (see Supplementary Material).

Protein activity inference use case (Step 1).

Here, we inferred protein activity from experimental data of our use case (Step 1) using all
possible reference databases (as sources of regulons, and of regulatory phosphosites) (Figure
S1A) and different technical parameters.

This process yielded 100 distinct combinations of input settings and relative resulting sets of
predicted protein activities (Table S2). Subsequently, by comparing these results with the

protein gold standard, we systematically assessed the precision, recall, and Root Mean Squared
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Error (RMSE) associated with each combination (see Methods), to ultimately choose the most

accurate and complete list of modulated proteins (Figure 2C, panel a, and Table S3).

Transcription factors. The procedure enabled us to infer the activity of up to 7 out of 17 (40%)
transcription factors in the protein gold standard (Figure 3A). The selection of the reference
database is the most impactful parameter in this task. Using combined resources like CollecTRI
+ SIGNOR led to a two-fold increase in the predicted TFs (Figure 3B). Nevertheless, when
we focused on the gold standard, we observed that the regulon source maximizing both quality
and coverage was Dorothea + SIGNOR (Figure 3A). Additionally, utilizing the
hypergeometric test, which gives priority to TFs with regulons containing a high number of

significantly modulated targets, tends to strengthen the signal.

Kinases. The process of inferring kinases resulted in the identification of up to 8 out of 20
(40%) kinases from the gold standard (Figure S4A). In general, the Omnipath and Ser/Thr
Kinome Atlas integration increased the number of predicted proteins from 26 to 43, while still
upholding a high level of consistency with the gold standard (Figure 3B and S4A). Moreover,
the normalization of the phosphoproteomic data over proteomics (see Methods) was found to

be the most influential parameter (Figure S4A).

Other signaling proteins. Among 30 of the non-TFs/kinases in the gold standard, eight were
identified (27%) (Figure S4B). This benchmarking underscores the importance of the
normalization parameter and utilization of phosphosites that regulate activity rather than
quantity to guarantee minimal RMSE and enhanced precision when using the PhosphoScore

algorithm (Figure S4B).

Overall, we inferred 30-40% of the protein gold standard. Our inability to infer the remaining
60-70% may be attributed either to limitations in the experimental setting (e.g., drug
concentration, time of treatment, choice of the breast cancer cell line) or in the pipeline itself

(e.g., limited coverage in public repositories).

In summary, the best combination of parameters (Figure S4C) led to the inference of 23
transcription factors, 41 kinases, 3 phosphatases, and 25 other signaling proteins (Figure 3C
and Table S4) and was used as an input for Step 2 (Figure 2C, panel a). As expected,

integrating the PhosphoScore method with footprint-based analyses expanded the number of
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inferred proteins (Figure 3D) while maintaining a high level of agreement with the gold

standard (Figure S4D).

Remarkably, our pipeline enabled us to catch among the most highly modulated proteins many
members of the gold standard (Figure 3C, starred proteins). In fact, among the top highly
active transcription factors there is the Forkhead box O family (FOXO family) which is directly
affected by the metformin-activation of AMPK complex (Queiroz et al, 2014; Greer et al,
2009). Coherently, Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A), an indicator of
hypoxia, was among the top down-regulated TFs (Zhou et al) along with N-myc proto-
oncogene (MYCN), a marker for cell proliferation (Wang et al, 2014) (Figure 3C, transcription
factors panel). Furthermore, the PhosphoScore algorithm allowed us to observe the inhibition
of Insulin Receptor Substrate 1 and 2 (IRS1 and IRS2), a phenomenon already associated with
metformin-induced AMPK activation (Zakikhani et al, 2010) (Figure 3C, other signaling

proteins panel).

Network construction use case (Step 2).

A key challenge in multi-omics data integration is extracting the cause-effect relationships
underlying the experimental data. Translated to our use case, this task attempts to address the
specific molecular events triggered by metformin treatment. To this aim, we extracted the direct
and indirect connections linking the mTOR protein and AMPK complex to the proteins
modulated in their activities through any possible framework in Step 2 of Signaling Profiler
(Figure S3). This process involved the screening and the evaluation of 3328 possible resulting
networks, by ranking them according to a combined score, that considers elements such as the
consistency with the protein gold standard and topological graph metrics (see Methods)

(Figure 2C, panel b, S5, S6, and Table S5).

Overall, the average computation time of the analyses was 200 seconds (Figure S5A). The
networks were obtained from 2989 runs over 3328, with most models consisting of only one
component (Figure S5B) and demonstrating a strong fit to the power law (Figure S5C). As
shown, the integration of the Ser/Thr Kinome Atlas into the prior knowledge network (see
Methods), as well as the usage of two- and three-layer naive network types, led to an increased
computation time and dimensionality and, as expected, an increased coverage of metformin-
dependent phosphorylation events (Figure S6A-L). Unexpectedly, we found out that no major

differences were detected between the two- and the three-layered networks, as revealed by the
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evaluation of the path length from mTOR and AMPK to endpoints in the signaling cascade
(Figure S6N, Q).

We also benchmarked the two types of CARNIVAL differentiated by the usage of starting
perturbed nodes as constraints. The invCARNIVAL requires increased computational time
(Figure S6C) and returns smaller networks (Figure S6F, I). Moreover, due to the limited
constraints and the complexity of the basic network, only 3% of the models generated by
invCARNIVAL correctly inferred both mTOR and AMPK, whereas 55% of them inferred only
one of them.

On the other hand, the stdCARNIVAL returns larger networks with the two-shot optimization
outperforming the one- and three-shot ones, in the number of nodes and phosphorylation events

(Figure S6F, 1, L), without increasing the computation time (Figure S6C).

Overall, the quality of the models with respect to the gold standard was satisfactory, with an
average precision (or specificity) and recall (or sensitivity) of 0.75 and 0.35, respectively

(Figure S5D, E).

We ranked the models according to the combined score (Figure SSF and Table S5) and set as
default the most frequent values of parameters in the top 100 models (Figure S7A). The top-
quality network (Network1554) accounts for 99 nodes and 219 edges, which include new
proteins of the gold standard (Figure 3E) and recapitulates the expected mTOR pathway
inactivation and AMPK pathway activation upon metformin treatment (Figure 4A). The gold
standard proteins form a highly interconnected submodule within the final network (Figure
S7B), however accounting for only 22% of its nodes. This indicates that the model not only
recapitulates known mechanisms but also proposes new ones, including the modulation of

MAPK and CDK pathways (Figure 4A).

Phenotype inference use case (Step 3).

Finally, we used the top-quality network derived from Step 2 as input for the inference of
phenotypic outcomes. To note, the PhenoScore algorithm considers various modalities,
resulting in a total of 96 potential outcomes (Figure 2C, panel ¢, S8A, and Table S6). We
developed an aggregated score to quantify the accuracy of prediction with respect to the
phenotypic gold standard and ranked the results accordingly. The top 10 parameters were set

as default for the PhenoScore algorithm (Figure S8B). Then, we selected the most accurate
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prediction of the phenotypic gold standard (Figure S8C), and we created a final model (109
nodes and 298 edges, Figure S9, and Table S7) depicting the metformin-induced signaling
axes impacting the selected phenotypes (Figure 4B). Interestingly, in this final model,
metformin results in the activation of death-associated pathways (e.g., apoptosis and cell death)
and autophagy (the most characterized phenotypic hallmark of mTOR inhibition (Gao et al,
2020) (Figure S8D), and in the inhibition of proliferation and biosynthetic pathways (e.g.,
protein synthesis) (Figure 4B and S9).

In summary, the findings from this study demonstrate that SignalingProfiler is a powerful tool
for extracting molecular hypotheses from multi-omics data upon a perturbation (Figure 4A)

and identifying functional circuits that impact phenotypes (Figure 4B).

Discussion

In this paper, we thoroughly present Signaling Profiler 2.0, a method to systematically create
mechanistic context-specific networks of signaling remodeling and to identify functional

circuits impacting phenotypes.

Here, we show that SignalingProfiler 2.0 is a modular pipeline that allows users (i) to
unbiasedly derive the activity of proteins from the integration of proteogenomic data with prior
knowledge information deposited in public repositories; (i) to connect the identified proteins
to generate a coherent network that explains nodes’ change in activity; (iii) to estimate the
activation level of hallmark phenotypes and integrate them in the final model. With respect to
the first prototype (Massacci et al, 2023), SignalingProfiler 2.0 now incorporates extended
background databases, such as CollectTRI (Miiller-Dott et al, 2023) and Ser/Thr Kinome Atlas
(Johnson et al, 2023), increasing the coverage and the accuracy of protein activities’ prediction.
Indeed, it is possible to estimate the activity of more than 3300 proteins, including, but not
limited to, kinases, phosphatases, and transcription factors. Novel implementations of
SignalingProfiler 2.0 include PKN browsing methods, optimization strategies, and PhenoScore
inference with ProxPath (Iannuccelli et al, 2023). In particular, the PhenoScore makes it
possible to map up to 200 cellular phenotypes onto the final model. This represents an effective
strategy of feature reduction and a valuable resource for omics data interpretation and

hypothesis generation in diverse biological contexts.
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To systematically benchmark the ability of Signaling Profiler 2.0 to recapitulate the effect of a
well-characterized drug on signaling rewiring, we took advantage of a multi-omics dataset
derived from metformin-treated breast cancer cells. The result is a hierarchical mechanistic
network, accounting for 109 nodes and 309 edges, and incorporating mTOR and AMPK known
down-stream effectors (e.g., FOXOs, PRKs) as well as novel promising signaling axes (e.g.,
AKT1-WEEI axis) by which metformin can exert its anti-cancer activity. In this analysis, we
assess the performance and the robustness of our approach, and we set the default parameters
by prioritizing quality rather than quantity. Importantly, we observe that different parameter
selections might change the coverage and the strength of the solutions predicted by the
approach, but this never leads to an opposite estimated activity (Figure 4A and S4), thereby

demonstrating the overall robustness of the method.

An important feature of SignalingProfiler 2.0 is its flexibility. Flexibility on available multi-
omics data (e.g. users can employ only transcriptomic or phosphoproteomic data); flexibility
on the organism choice (mouse and human data are accepted) and flexibility on the type of
perturbed nodes, since we include relations that are both signaling or transcriptional.
Importantly, thanks to its modular structure, users have the possibility to use only a limited
number of steps of the pipeline and, possibly, to integrate SignalingProfiler 2.0 with other

methods for protein activity estimation and network optimization.

Indeed, SignalingProfiler 2.0 is not the sole method to generate a mechanistic network from
omics data. Here, we report a systematic comparison of SignalingProfiler 2.0 with a panel of
similar methods, released from 2017 to 2022 (Dugourd et al, 2021; Liu et al, 2019; Koksal et
al, 2018; Babur et al, 2021; Bradley & Barrett, 2017; Browaeys et al, 2020; Fortelny & Bock,
2020; Pefia-Chilet et al, 2019) (Table 1). Our analysis reveals that SignalingProfiler 2.0 is: (i)
one of the few techniques directly annotating meta-information about the molecular function
at node/protein levels, (ii) is the sole tool capable of estimating the activity of proteins, aside
from kinases and phosphatases, from the phosphoproteomic data and (iii) is the sole approach
together with CausalPath (Babur et al, 2021)combining proteomics in the analysis and, apart
from HiPathia (Pefia-Chilet ez al, 2019), integrating phenotypes with their activation status into

the ultimate model to unbiasedly derive functional circuits.

Finally, the comparison with other methods highlights some of the limitations of our pipeline.
As compared to tools such as COSMOS (Dugourd et al, 2021), SignalingProfiler 2.0 does not

include metabolomic data. At the present state, additional types of regulation such as epigenetic
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acetylomic and ubiquitylomic data, which are becoming more popular (Li ez al, 2022; Aslanyan
et al, 2023) cannot be integrated into the signaling and represent a future challenge to face.
Also, as for all the methods that base their prediction on prior knowledge, SignalingProfiler
2.0 suffers from the limited coverage of available information in public repositories: either
regulon databases and causal interaction resources are incomplete and offer information for

less than 50% (about 9,000 proteins) of the Uniprot-SwissProt proteome.

In summary, SignalingProfiler 2.0 is a versatile and flexible pipeline that efficiently generates
mechanistic networks from multi-omics data hierarchically bridging signaling molecules to
phenotypic traits. As such, it addresses the emergent need to extract interpretable networks and
derive biologically relevant information from complex multi-omics data. We expect that in the
multi-omics era, where the proteogenomic characterization of human samples and biopsies are
becoming increasingly more available to the public (Ng et al, 2022; Rudnick et al, 2016),
SignalingProfiler 2.0 could pave the way to the development of personalized medicine

strategies.

Recommendation for use: SignalingProfiler can be applied to the results of any experiments
having at least transcriptomics or phosphoproteomics to identify signaling rewiring that is
supported by literature knowledge. To use SignalingProfiler, the user has to provide a fold-
change between the conditions under investigation, and measurement values need to be
associated with related primary gene symbols and UniProt ID. Moreover, the phosphopeptide
measurements need to specify the phosphorylation site with respect to their canonical UniProt
sequence, in a specific format described in the GitHub page. The user can choose to visualize
the whole network, the network focused on the significant phosphorylation events (phospho-

layout) or given one or more phenotypes the impacting functional circuits (pheno-layout).
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Material and Methods

PKNs creation

We downloaded all causal interactions available for Mus musculus (TaxID = 10090) and Homo
sapiens (TaxID = 9606) from the SIGNOR and PhosphoSitePlus® resources. SIGNOR 3.0
datasets, retrieved via the REST API, are based on information up to November 2023.
Interactions labeled 'down-regulates,' 'up-regulates,'" and 'form complex' in SIGNOR were
assigned values of -1, 1, and 1, respectively. Interactions involving entities with the TYPE
‘protein family' in SIGNOR were excluded. Causal phosphorylations from PhosphoSitePlus®
were obtained by manually downloading and combining two independent tables: kinase-
phosphosite interactions ('Kinase_Substrate_Dataset.gz’) and the regulatory role of
phosphosites on proteins ('Regulatory_sites.gz'). The tables were joined using the UniProt ID
and modified residue as keys. The content of the 'ON_FUNCTION' column in
PhosphoSitePlus® representing the regulatory role of phosphosites was mapped to values of 1,
-1, or 0. These manipulated datasets were merged and filtered to retain interactions with a
defined regulatory effect (-1 or 1). For Homo sapiens, causal interactions derived from the
Ser/Thr Kinome Atlas were added to SIGNOR and PhosphositePlus datasets (see Methods
‘Ser/Thr Kinome Atlas parsing’). UniProt IDs were updated, and primary Gene Names were
retrieved using the UniProt database's REST API. The primary Gene Names of the involved
entities were used as keys for each interaction, and multiple UniProt IDs and attributes (e.g.,
TYPE, DATABASE field of SIGNOR) were collapsed into a single string. We created six Prior
Knowledge Networks (PKNs) adding increasingly exclusive filtering criteria: no filtering
(PKN2 for human and PKN6 for mouse), removal of indirect interactions representing

'transcriptional regulations' (PKN1 for human and PKNS5 for mouse), removal of Kinome Atlas
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interactions (PKN4), and removal of direct interactions not involving proteins (PKN3). The

number of nodes and edges of each PKN is shown in Figure S2 and S3.

Ser/Thr Kinome Atlas parsing

We obtained Supplementary Table 3 from the work of (Johnson et al, 2023), containing
information on 89752 serine (Ser) and threonine (Thr) sites and their probabilities (or
percentile) of being phosphorylated by 303 Ser/Thr kinases. We kept phosphosite-kinase
relations with a percentile higher than 88 (“regulon threshold’’) and 99 (“PKN threshold”),
retaining 3,134,109 and 291,682 relations, respectively.

The “regulon threshold” of 88 was determined as the median value from the distribution of
percentiles of phosphosite-kinase relations documented in SIGNOR or PhosphoSitePlus®.
These relations were incorporated into the regulons for kinase inference analysis, with weights
assigned proportionally to the percentiles within the range of 0.5 to 0.9.

The “PKN threshold” of 99 was chosen to keep only the most accurate relationships. We joined
this table with the PhosphoSitePlus table on the regulatory role of phosphosites
('Regulatory_sites.gz') using the phosphosite as key. As a result, we included 28,012
interactions in the prior knowledge networks, representing relationships between kinases from
the Atlas and proteins for which the regulatory phosphosite is known.

Each kinase was annotated with its UniProt ID.

Benchmarking strategy

Metformin multi-omics dataset preparation

We downloaded relevant tables from our work as published in (Sacco et al, 2016) to build
transcriptomic, proteomic, and phosphoproteomic data tables. The so-obtained information
was parsed and adapted to make it Signaling Profiler compliant.

Briefly, the dataset accounted for 9591, 7974, and 15812 quantified transcripts, proteins, and
phosphosites. These tables included computed fold-change values among three replicates of

both the control and metformin conditions.

Normalization of phosphoproteomics over proteomic data

We created a normalized phosphoproteomic dataset by adjusting the fold-change in
phosphorylation in response to metformin treatment based on the corresponding fold-change
in protein abundance. To achieve this, we calculated the difference between the

phosphorylation level of the phosphosite and its associated fold-change in protein abundance.
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The phosphorylation levels of phosphosites that showed modulation in proteomics with the
same direction were reduced, while those with opposite phosphorylation and protein abundance
changes were increased. We then computed the Z-score for the new distribution of
phosphorylation fold-changes using their mean and we defined corrected fold-changes with an

absolute value higher than 1.96 (i.e., p-value < 0.05) significant.

Protein and phenotypic gold standard creation

A list of 74 proteins with their expected activity modulation to metformin treatment (protein
gold standard) was compiled from three recent papers (Keerthana et al, 2023; Garcia & Shaw,
2017; Salminen & Kaarniranta, 2012; Saxton & Sabatini, 2017) focusing on mTOR and AMPK
pathways. Since metformin inhibits mTOR (and activates AMPK), negative and positive
targets of mTOR (and AMPK) were set to active and inactive (inactive and active),
respectively. Each protein was manually cross-referenced and converted to its primary gene
name. The molecular function of each protein was annotated using SignalingProfiler. The
resulting gold standard protein list was compared with proteins in Signaling Profiler databases,
including TFEA or KSEA regulons and the PhosphoScore database. Notably, eight proteins
were not found in the databases and were consequently labeled as 'not inferable' proteins.
Additionally, a list of 10 phenotypic traits with their expected modulations upon metformin
treatment (phenotypic gold standard) was compiled, based on the phenotypic readout from our
previous work (Sacco et al, 2016) and three referenced papers (Gao et al, 2020; Madsen et al,
2015; Salani et al, 2014).

The complete gold standard dataset is available in Supplementary Table 1.

SignalingProfiler benchmarking

We ran the SignalingProfiler pipeline with all technical parameter combinations. A detailed
explanation of SignalingProfiler functions and parameters is provided in Supplementary
materials. Briefly, any test combination of parameters was evaluated by measuring precision,

recall, and Root Mean Squared Error (RMSE) using protein and phenotypic gold standard lists.

Precision, recall, and RMSE definition. We defined an inferred protein matching and diverging
the expected value, as frue and false positive, respectively. False negatives were proteins
present in the gold standard but not inferred. We calculated as quality metrics (i) precision, the
ratio of true positives to the sum of true and false positives, (ii) recall, the ratio of true positives

to the sum of true positives and false negatives, and (iii) RMSE, the squared mean difference
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between predicted and expected values. The eight ‘not inferable’ gold standard proteins were

not considered in the quality metrics computation.

Step 1 benchmarking. SignalingProfiler independently infers the activity of transcription
factors, kinases/phosphatases, and phosphorylated proteins. Transcription
factors/kinases/phosphatases can be inferred with footprint-based methods, PhosphoScore, or
a combination of both. The parameter combinations for the inference of transcription factors,
kinases/phosphatases, and phosphorylated yielded 64, 32, and 4 results, respectively
(Supplementary Table 2). Each result referred to a unique selection of parameters for the type
of regulons/phosphosites database, the usage of the Hypergeometric Test, VIPER correction
with proteomics; and correction of phosphoproteomics over proteomics.

The default setting for Step 1 was determined by selecting the result for each molecular
function that maximizes precision and recall while minimizing RMSE (Supplementary Table

3 and 4).

Step 2 benchmarking. The network construction step involves 10 parameters (see
Supplementary Material for details). All combinations resulted in 3328 possible results, but
only 2989 combinations yielded actual networks. Each model was annotated with computation
time (sum of naive network computation and CARNIVAL optimization time); topological
metrics (nodes, edges and components, clustering coefficient, diameter, fit to the power law,
maximum path length between end nodes and AMPK, mTOR and Perturbation node created
by Inverse CARNIVAL); biological metrics, such as the precision, recall and RMSE with
respect to the gold standard, and the number of interactions validated by quantified or
significant experimental phosphorylations (Supplementary Table 5). We developed a Step 2

combined score defined as follows:

Combined scoregp,, = (precision * 0.5 + recall * 0.5 + SignRatio = 0.5 +

ClusteringCoefficient x 0.5) — (NormTime * 0.2 + PowerLawFit)

where SignRatio is the ratio between the number of edges that are validated by significant
phosphorylation events over the total and the NormTime is the ratio between each computation

time and its maximum. The best model was selected based on the highest aggregate score
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(Network1554 with 99 nodes and 219 edges). We set the default parameters for Step 2 by

choosing the most frequent parameters’ values among the top 100 models.

Step 3 benchmarking. The benchmarking of phenotypic traits inference considered 6 different
parameters (see Supplementary Material for details). The ten phenotypes of the phenotypic
gold standard were selected, including apoptosis, autophagy, adipogenesis, biosynthesis of
fatty acids, glycogen and proteins, proliferation, and glycolysis. We obtained 96 results that
were compared to the phenotypic gold standard, and we annotated precision, recall, RMSE,

and computation time (Supplementary Table 6). We formulated a Step 3 combined score:

Combined scoreg.,; = (precision + recall) — (normRMSE + normTime x 0.5)

where normRMSE and normTime are the ratio of its value and its maximum.

We linked the phenotypes’ values with the highest combined score to their regulators in the
Step 2 model, resulting in a final optimized network of 109 nodes and 309 edges
(Supplementary Table 7).

The network is publicly available for browsing at:

https://www.ndexbio.org/viewer/networks/fa22e724-b54b-11ee-8a13-005056ae23aa. The

Step 3 default was set by considering the most represented parameters’ values among the top

10 results.

SignalingProfiler output visualization

The optimized network generated by SignalingProfiler was displayed on Cytoscape using the
RCy3 package (v. 2.14.2). Two XML files provided within the SignalingProfiler R package
were used to visualize the network in Cytoscape.

The "SignalingProfiler layout” provides users with a clear and intuitive visual representation
of the entire model (used in Figure 4B, S7B, and S9). On the other hand, the "Phosphorylation
layout” (used in Figure 4A) allows users to focus specifically on proteins involved in

experimentally confirmed phosphorylation events.

Code availability
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All code used for  SignalingProfiler  benchmarking is available at

https://github.com/SaccoPerfettol.ab/SignalingProfiler Benchmarking/. Signaling Profiler 2.0

R package code is available at https://github.com/SaccoPerfettoLab/SignalingProfiler.

Figure Legends
Figure 1. SignalingProfiler pipeline.

A. SignalingProfiler input consists of multi-omic data collected from perturbed and control
conditions (e.g., disease/ treated vs control).

B. Coverage of SignalingProfiler inferable signaling proteins in human and mouse datasets,
categorized by molecular function (TF transcription factors, KIN kinases, PP phosphatases,
and OTHER other molecular functions).

C. SignalingProfiler final output illustrates the remodeling of the signal, linking user-defined
perturbed nodes (optional) with inferred proteins, and ultimately leading to relevant
phenotypes. Node activities are coherent with the sign of the edges (red and blue are active and
inactive proteins, respectively). Phosphoproteomics is mapped onto edges (validated
interactions with phosphoproteomics).

D. SignalingProfiler is a three-step modular pipeline. Step 1 derives the activity of signaling
proteins  from  regulatory  phosphosites  (PhosphoScore  method) and  direct
transcripts/phosphopeptides using the VIPER algorithm (footprint-based methods) (Alvarez et
al, 2016). Step 2. A user-defined set of perturbed molecules/receptors (e.g., targets of a
treatment or mutated genes in a disease) is connected to the inferred proteins using a prior
knowledge network (PKN) exploiting: (i) a shortest-path algorithm to reduce the dimension of
the PKN to the neighborhood of the inferred proteins (naive network); (ii) the CARNIVAL
optimization strategy (Liu et al, 2019) that retains only the sign-coherent interactions between
proteins (context-specific network). Step 3. The context-specific network is connected to
cellular phenotypes using the ProxPath algorithm (Iannuccelli ef al, 2023) and the phenotype

activity is obtained by integrating upstream protein activities.

Figure 2. Proof-of-concept strategy.

A. Multi-omics datasets of breast cancer cells before or after metformin treatment (Sacco et
al, 2016).

B. Manually curated list of 74 proteins of AMPK (blue), mTOR (green) pathways, or both

(dark blue) with their expected activity after metformin treatment (protein gold standard).
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C. Benchmarking of the three steps of SignalingProfiler by testing any possible technical

parameters and choosing the best result as input for the following step.

Figure 3. SignalingProfiler proteins’ activity inference benchmark and best result.

A-B. Results of the benchmarking of Step 1.

A. Heatmap reporting the inferred activity (final score) of gold standard transcription factors
using both footprint-based and PhosphoScore methods across 64 technical conditions (see
Supplementary Material). Precision, recall, and Root Mean Squared Error (RMSE) are reported
for each condition by comparison with the gold standard (see Methods). The black box
highlights the best technical condition set as default in SignalingProfiler and used in Step 2.
Blue and red represent inactive and active proteins, respectively.

B. Number of inferred proteins in KSEA or TFEA based on regulon background resources.

C. Bar plot displaying the activity modulation (metformin-treated vs control condition) for
transcription factors, kinases, phosphatases, and other signaling proteins in the top result from
Step 1. Blue and red represent inactive and active proteins, respectively.

D. Bar plot representing the proportion of transcription factors, kinases, phosphatases, and
other signaling proteins identified using PhosphoScore (orange) or footprint-based methods
(blue).

E. Bar plot showing the number of proteins with inferred activity before (Step 1) and after

network construction (Step 2) among the 66 inferable proteins of the gold standard.

Figure 4. Optimal SignalingProfiler result of metformin-induced signaling rewiring
reconstruction and its phenotypic impact.

A. Visualization of the best model (Figure S9) of the benchmarking of Step 2 focused on
proteins involved in phosphorylation events significantly deregulated between metformin and
control. Nodes and edges are displayed according to the legend. Blue and red nodes represent
inactive and active proteins, respectively. Background areas highlight subnetworks associated
with known signaling pathways.

B. Bar plot reporting the inferred modulation of phenotypes upon metformin treatment after
Step 3 of SignalingProfiler (activation in red, inhibition in blue), and the functional circuits

extracted from the final model connecting AMPK and mTOR to apoptosis and proliferation.

Table 1. Qualitative comparison of SignalingProfiler and existing methods.
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