

Tracing 600 years of long-distance Atlantic cod trade in medieval and post-medieval Oslo using stable isotopes and ancient DNA

Lourdes Martínez-García^{1*}+, Angélica Pulido^{1,2*}+, Giada Ferrari¹, Anne Karin

Hufthammer³, Marianne Vedeler⁴, Alex Hirons⁵, Catherine Kneale⁵, James H. Barrett^{6*},
Bastiaan Star^{1*}

¹Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway

²Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland

³Department of Natural History, The University Museum, University of Bergen, Bergen, Norway

⁴Museum of Cultural History, University of Oslo, Oslo, Norway

⁵McDonald Institute for Archaeological Research, Department of Archaeology, University of Cambridge, Cambridge, United Kingdom

⁶Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway

*Corresponding authors:

Lourdes Martínez-García: lourdes.martinez.garcia@umu.se

Angélica Pulido: angelica.cuevas@evobio.eu

Bastiaan Star: bastiaan.star@ibv.uio.no

James H. Barrett: james.barrett@ntnu.no

+These authors contributed equally.

ORCID

Lourdes Martínez-García: 0000-0002-1582-3611

Angélica Pulido: 0000-0003-0862-4582

Giada Ferrari: 0000-0002-0850-1518

James H. Barrett: 0000-0002-6683-9891

Bastiaan Star: 0000-0003-0235-9810

35 **Abstract**

36 Marine resources have been important for the survival and economic development of coastal
37 human communities across northern Europe for centuries. Knowledge of the origin of such
38 historic resources can provide key insights into fishing practices and the spatial extent of trade
39 networks. Here, we combine ancient DNA and stable isotopes ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$, non-exchangeable
40 $\delta^2\text{H}$ and $\delta^{34}\text{S}$) to investigate the geographical origin of archaeological cod remains in Oslo from
41 the eleventh to seventeenth centuries CE. Our findings provide genetic evidence that Atlantic
42 cod was obtained from different sources, including a variety of distant-water populations like
43 northern Norway and possibly Iceland. Evidence for such long-distance cod trade is already
44 observed from the eleventh century, contrasting with archaeological and historical evidence
45 from Britain and other areas of Continental Europe around the North and Baltic Seas, where
46 such trade developed in a later period. Diverse biological origins are further supported by
47 significant differences of a range of isotopes, indicating that multiple populations living in
48 different environments were exploited. This research highlights the utility of combining ancient
49 DNA methods and stable isotope analysis to describe the development of marine fisheries
50 during the medieval and post-medieval period.

51 **Key words:** cod-trade, historical fisheries, aDNA, stable isotopes, long-distance fish trade.

52

53 **1. Introduction**

54 Understanding the extent of historic Atlantic fisheries reveals the importance of marine
55 resource exploitation for medieval and post-medieval European societies [1]. For instance,
56 long-distance fish trade from production sites in the north (e.g., northern Norway and/or
57 Iceland) to urban centres in Britain and mainland Europe is well-documented by historical and
58 archaeological sources for medieval and early modern times, being especially evident by the
59 thirteenth and fourteenth centuries [2-4]. Nonetheless, for the earlier Middle Ages, temporal
60 and spatial patterns of exploitation and long-distance trade remain poorly documented. While
61 the earliest known example of long-distance trade of Atlantic cod (*Gadus morhua*) presently
62 has a *terminus ante quem* of ca. 1066 CE (by which date northern Norwegian cod was brought
63 to Haithabu in what is now Schleswig-Holstein) [5], the species was predominantly locally
64 acquired in England and Flanders during the tenth to twelfth centuries [6-8]. Thereafter, an
65 increasingly commercialized long-range trade of air-dried Atlantic cod (*stockfish*) only
66 appeared from the thirteenth to fourteenth century onwards, around the southern North Sea and
67 the eastern Baltic Sea [6-8]. This dried fish was likely traded via Bergen to medieval centres
68 across Europe (Germany, Sweden, Poland, Estonia, England) [3, 6, 7, 9-12]. Nonetheless, the

69 development of the early medieval Atlantic cod trade remains to be discovered, between the
70 early outlier of *ca.* 1066 CE at Haithabu, and the more widespread boom of the thirteenth and
71 fourteenth centuries. A promising location to do so is within the milieu of medieval
72 Scandinavia, where processed fish, in particular *stockfish* was produced and found a ready
73 cultural reception within local foodways [13]. For instance, Oslo, in Norway, emerged as a
74 town during the tenth to eleventh centuries [14, 15]. Large numbers of fish remains (especially
75 of Atlantic cod) [4] have been found during archaeological excavation of Oslo's urban
76 settlement layers [16, 17]. By the fourteenth century, Oslo had become an important town and
77 centre of consumption, although not a major hub for the transhipment of processed fish. By
78 that time, participation in long-range fish-trade is likely to be present. However, earlier
79 patterns, and trends of trade through time, remain poorly understood.

80

81 Recent advances in ancient DNA (aDNA) approaches have provided insights about the usage
82 of fish across time [18], its historical declines [19] and distributional fluctuations [20], and
83 offer opportunities to investigate the biological origin of archaeological fish bones [5, 8].
84 Similarly, stable isotopes represent a complementary method to aDNA for such purposes, as
85 isotopes can record information about diet and habitat use and/or environmental conditions of
86 different species, including fish [6, 21-23]. Therefore, determining the biological origin of
87 economically important species like Atlantic cod using the combined inference of aDNA and
88 stable isotope methods can provide novel evidence of the expansion of medieval marine
89 fisheries and explores the potential increase in the exploitation of targeted populations, beyond
90 what is needed for local subsistence. Here, we use such a multidisciplinary approach,
91 combining genome-wide aDNA and stable isotopes to describe the development of long-
92 distance Norwegian trade to Oslo, over a period of approximately 600 years during the
93 medieval and post-medieval periods, starting *ca.* 1000 CE.

94

95 To investigate the biological origin of Atlantic cod from medieval Oslo, we analyzed a total of
96 106 archaeological specimens using low-coverage whole-genome aDNA approaches (50 out
97 of the 106 specimens) and/or stable carbon ($\delta^{13}\text{C}$), nitrogen ($\delta^{15}\text{N}$), non-exchangable hydrogen
98 ($\delta^2\text{H}$) and sulphur ($\delta^{34}\text{S}$) isotope values (100 out of the 106 specimens). We aim to identify
99 biological differences within these specimens (given their isotopic signatures, bone element
100 and estimates of fish size), and to determine their geographical source based on genome-wide
101 sequencing. Integrating both approaches, our observations support a diverse origin of Atlantic

102 cod specimens in this assemblage, including specimens obtained through long-distance trade
103 since *ca.* 1000 CE.

104

105 **2. Material and methods**

106 Sample collection

107 We analysed 106 Atlantic cod bone samples collected from two archaeological sites: Oslogate
108 6 ($n = 100$) and Oslo Mindets tomt ($n = 6$; Table S1). The zooarchaeological assemblages
109 (bones) from both sites are stored in the osteological collections at the University Museum,
110 University of Bergen. Oslo was one of the first Norwegian towns, founded in the tenth to
111 eleventh centuries. Oslogate 6 (59.91°N – 10.77°E) was located in the northern part of
112 medieval Oslo [17]. This site was excavated during 1987-1989, while Oslo Mindets tomt
113 (59.90°N – 10.76°E) was excavated in 1973 (Figure 1). Findings in these archaeological sites
114 highlighted agriculture, fishing and metalworking as common activities in the area [24-28].
115 Remains of barley, fish-bones and animal dung (likely from livestock) have been found in the
116 area, while increases in large leather deposits by the late twelfth century in Oslogate 6 are
117 indicative of the development of trading activities (i.e., shoemaking) in the town [17, 24].

118 Samples –cranial and postcranial elements– were stored dry and unfrozen after field collection.
119 All specimens were morphologically and genetically identified as Atlantic cod. Samples are
120 dated based on archaeological context (e.g., fire layer). Specifically, samples at Oslogate 6 are
121 distributed between distinct fire layers (*Branntinn*) that have been dated using archaeological
122 methods (across the eleventh to seventeenth centuries). A total of 7 main fire stages (Brann1-
123 7) have been found in the excavation area and are used to described the stratigraphy and
124 constructions in the urban development (i.e., waste layers) [for details about the fire layers see
125 17]. An eighth-layer (Brann 8) has been described for Oslogate 6, which includes an uppermost
126 layer that is associated with modern times. Samples across the fire layers at Oslogate 6 are
127 distributed as follows (Table S1): Brann1 (oldest) (where 12 out of 14 samples were processed
128 for genomic analysis), Brann2 ($n = 7/30$), Brann3 ($n = 8/27$), Brann4 ($n = 10/22$), Brann5 ($n =$
129 5/5), Brann6 ($n = 2/2$), Brann7 ($n = 4/4$), and Brann8 ($n = 2/2$). Oslo Mindets tomt samples are
130 dated by archaeological context [26] and are analysed together with those specimens from
131 Oslogate 6 with which they co-occur in time. Three specimens (COD082, COD086, COD092)
132 co-occur in time with Brann1, one specimen (COD091) co-occurs with Brann2, and two
133 specimens (COD084, COD089) co-occur with Brann 4.

134

135 *aDNA extraction, library preparation and sequencing*

136 A total of 50 samples were processed in the aDNA laboratory at the University of Oslo [29,
137 30] (Table S1, S2). Samples were treated as per Ferrari, Cuevas [31] and Martínez-García,
138 Ferrari [32] before DNA extraction. In short, fish-bones were UV-treated for 10 minutes per
139 side and milled with a stainless-steel mortar [33]. Starting material for DNA extraction
140 consisted of two aliquots of fish-bone powder per specimen (150-200 mg per aliquot). Genomic
141 DNA was extracted using a mild bleach treatment and pre-digestion step (BleDD) protocol
142 [34]. Double-indexed blunt-end sequencing libraries were built from 15 or 20 µl of DNA
143 extract using either the Meyer-Kircher protocol [35, 36] with modifications by Schroeder,
144 Ávila-Arcos [37], or the single-stranded Santa Cruz Reaction (SCR) protocol (tier 4) [38]
145 (Table S1). Library quality and concentration were examined with a High Sensitivity NGS
146 Fragment Analysis Kit on the Fragment AnalyzerTM (Advanced Analytical). Libraries were
147 sequenced on the Illumina HiSeq 4000 or on the Novaseq 6000 platform at the Norwegian
148 Sequencing Centre (Table S1) and demultiplexed allowing zero mismatches in the index tag.
149 Sequencing reads were processed using PALEOMIX v1.2.13 [39] and AdapterRemoval v.2.1.7
150 [40] to trim residual adapter contamination, filter and collapse of reads. Filtered reads were
151 aligned using the gadMor2 genome as reference [41, 42] using BWA v.0.7.12 [43] with the
152 *backtrack* algorithm, disabled seeding and minimum quality score of 25. aDNA deamination
153 patterns were characterized using MapDamage v.2.0.9 [44].

154

155 *Genomic analysis*

156 To determine the biological origin of 50 Atlantic cod specimens, we followed the hierarchical
157 approach described in Martínez-García, Ferrari [8]. First, we used the genome-wide approach
158 in the BAMscorer pipeline [45] to assign ancient cod specimens to the eastern Atlantic or the
159 western Atlantic Ocean. Second, amongst those specimens with an eastern Atlantic origin, we
160 use a similar approach to identify any specimen with a Baltic Sea origin. These assignments
161 can be performed with high confidence (100% probability), given minimal data requirements
162 (i.e, *ca.* 1000 reads that map towards the reference genome). Third, we used the chromosomal
163 inversion approach in the BAMscorer pipeline [45] to determine the individual haplotypes of
164 the four major chromosomal inversions in Atlantic cod (LG1, LG2, LG7 and LG12) [46]. The
165 chromosomal inversions in Atlantic cod are associated with migratory behaviour and
166 temperature clines [46-50]. Therefore, their combined genotype distributions can indicate their
167 affinity towards a particular ecotype [5, 8]. Specifically, the probability of obtaining an

168 inversion genotype follows a binomial distribution given the underlying allele frequency in a
169 population. It is therefore possible to calculate the overall probability of obtaining a composite
170 ancient inversion genotype—based on modern populations’ respective allele frequencies—as
171 a measure of an individual’s affinity toward a specific population [5]. We included comparative
172 (modern) inversion frequencies from the following populations: the Northeast Arctic (NEA),
173 Iceland (frontal and coastal ecotypes, which differ in their tendency for long-distance
174 migration), Norwegian Coast (Lofoten and southwest), the North Sea, the Irish Sea and
175 Øresund (Figure 2a) [5, 50, 51]. We consider the possible uncertainty associated with sampling
176 fixed alleles by re-calculating those allele frequencies where 1.0 and 0.0 frequencies were
177 given to any of the chromosomal inversion genotypes. Thus, following the approach in the
178 BAMscorer pipeline [45], we calculated a minimum expected frequency of $(1/((2*N)+1))$ for
179 the minor allele, where N is the number of individuals in any population sample where alleles
180 were fixed [5, 50, 51]. Samples with >0.1% endogenous DNA and an average of >50 single
181 nucleotide polymorphisms (SNPs) across all four chromosomal inversions have been included
182 for specific genomic assignments (Table S1). For each individual specimen, the source
183 population with the highest percentage (%) has been considered as its most likely biological
184 origin, although such assignment probabilities may remain low overall (Table S2, S3).
185 Specimens with equal or similar assignment probabilities for two populations (e.g., 33% and
186 33%), have both populations as their putative origin (Table S2, S3). Finally, we recognized
187 two spatially distinct groups (northernmost and north-central) as described in Martínez-García,
188 Ferrari [8], that can be assigned with high and near bimodal probability. These groups are
189 associated with population structure on a spatially larger scale (i.e., region). The northernmost
190 group included NEA and Iceland (adding the probabilities of both Icelandic ecotypes), while
191 the north-central group included the Norwegian Coast (coastal Atlantic cod from Lofoten and
192 southwest Norway), the North Sea, the Irish Sea and Øresund [8]. While our ability to obtain
193 high affinities of ancient specimens to specific populations within these two distinct regions is
194 often low, we consider those that fall within the northernmost group (NEA and Iceland) with
195 high probability (see below) as specimens that must have been obtained through long-distance
196 trade following Martínez-García, Ferrari [8]. In contrast, we cannot exclude a putatively local
197 biological origin (i.e., near Oslo) for those specimens belonging to the north-central group.

198

199 Furthermore, we investigated possible associations between cranial [premaxilla, articular,
200 dentary, maxilla] or postcranial [vertebra and cleithrum] bone elements and the putatively
201 local (north-central group) or long-distance (northernmost group) origin of the specimen using

202 a Fisher's exact test. The test was implemented using the *stats* and *ggstatsplot* packages in R
203 [52] for 27 specimens that have been assigned with a >70% probability to a northernmost or
204 north-central genotype composite (Table S2). We excluded samples that have not been
205 confidently assigned to a source population (COD082, COD084, COD339, COD356,
206 COD398, COD405) and samples with an indistinguishable origin (low probability assignment
207 to a northernmost or north-central genotype composite; COD408 and COD421) as per
208 Martínez-García, Ferrari [8] (Table S2).

209

210 Additionally, we investigated if the proportion of specimens coming putatively either from the
211 north-central or the northernmost group, and northern Norway or Iceland as individual
212 locations (both locations were centres for *stockfish* production) changed over time. We used a
213 Fisher's exact test to evaluate the binary genetic assignment to the north-central or
214 northernmost groups across time (>70% probability); while we evaluated if the probability –
215 scaled from 0 to 1 – of having a Northeast Arctic (NEA) or Icelandic origin (adding the
216 probabilities of both Icelandic ecotypes) differs across time (i.e., fire layers), body size or bone
217 element. Here, we used logistically transformed probabilities (*logit*) of NEA or Icelandic origin
218 after testing for normality with a Shapiro-Wilk test. Thereafter, we performed non-parametric
219 Kruskal-Wallis tests between such variables. Only fire layers with sufficient sample sizes ($n \geq$
220 4 in Brann1 (1000-1175 CE) to Brann4 (1275-1375 CE)) were used in these analyses ($n = 29$).
221 We excluded samples with a low probability assignment to a northernmost or north-central
222 genotype composite (i.e., COD421). Finally, we investigated if there were significant
223 differences between the size categories (50-80 cm, 80-100 cm and >100 cm) of specimens
224 genetically assigned to different groups or populations (either from the north-central group, the
225 northernmost group, or northern Norway or Iceland as individual locations) using a Fisher's
226 exact test. Analyses were computed in R using the *stats*, *ggstatsplot* and *car* packages [52, 53].
227

228 Stable isotope analysis

229 Stable isotope analysis was performed on 100 Atlantic cod specimens (50 of which were also
230 processed for genomic sequencing as noted above; Table S1). We measured stable carbon
231 ($\delta^{13}\text{C}$), nitrogen ($\delta^{15}\text{N}$), non-exchangeable hydrogen ($\delta^2\text{H}$) (hereafter described as $\delta^2\text{H}$ for
232 simplicity) and sulphur ($\delta^{34}\text{S}$) isotopes on purified bone collagen. For collagen extraction, we
233 used a cross-section of the bone to obtain an approximate life-time average for the isotopic
234 estimates and thus reduce the impact of changing trophic level associated with age [54], which
235 is captured within the concentric growth increments of acellular fish bone. Between *ca.* 400

236 and 650 mg of bone material was processed following the protocols of Barrett, Khamaiko [55]
237 and references therein, with the exclusion of a lipid removal step (given the negligible level of
238 fat present in archaeological cod bones). For $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$, the extracted collagen was
239 analysed in triplicate at the Godwin Laboratory, Department of Earth Sciences, University of
240 Cambridge, using a Costech elemental analyser coupled to a Thermo Finnigan Delta V IRMS.
241 For $\delta^{34}\text{S}$ and $\delta^2\text{H}$, (measured by Iso-Analytical Limited, by elemental analyser isotope ratio
242 mass spectrometry), analyses were routinely in duplicate, although some samples yielded only
243 enough collagen for single measurements. All isotope data are reported using international
244 scales: $\delta^{13}\text{C}$ values are reported relative to VPDB, $\delta^{15}\text{N}$ values to AIR, $\delta^2\text{H}$ values to VSMOW
245 and $\delta^{34}\text{S}$ to VCDT. The reported non-exchangeable $\delta^2\text{H}$ values are corrected for exchangeable
246 hydrogen by three-point linear calibration using standards. Overall, 64 samples passed
247 appropriate quality-control thresholds for all four measured isotope ratios (atomic C/N ratio of
248 2.9 – 3.6, atomic C/S ratio of 125 – 225, atomic N/S ratio of 40 – 80) [56]. An additional 22
249 samples only passed appropriate C/N ratio quality-control thresholds. Therefore, the $\delta^{13}\text{C}$, $\delta^{15}\text{N}$
250 and $\delta^2\text{H}$ data are likely reliable for these 22 specimens, but potentially not the $\delta^{34}\text{S}$ values. For
251 this reason, analyses using only $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and/or $\delta^2\text{H}$ values (individually and interacting) are
252 based on 86 specimens, while analyses including $\delta^{34}\text{S}$ values (individually and in combination
253 with other data) are based on 64 specimens.

254

255 We investigated correlations between C:N ratios and $\delta^{13}\text{C}$ values, and correlations between
256 $\delta^{13}\text{C}$ - $\delta^{15}\text{N}$, $\delta^{15}\text{N}$ - $\delta^2\text{H}$ and $\delta^{13}\text{C}$ - $\delta^{34}\text{S}$ values after evaluating the normality of our data with a
257 Shapiro-Wilk test using the *base* package in R [52]. We implemented a Spearman's correlation
258 (not normal distributed data) between C:N ratios and $\delta^{13}\text{C}$ values ($n = 86$), and between $\delta^{13}\text{C}$ -
259 $\delta^{34}\text{S}$ ($n = 64$); while Pearson's correlations (normal distributed data) were used between $\delta^{13}\text{C}$ -
260 $\delta^{15}\text{N}$ ($n = 86$) and $\delta^{15}\text{N}$ - $\delta^2\text{H}$ ($n = 86$). Correlations were computed in R using the *stats* package.
261 Considering the environmental and ecological shifts that can occur through time and based on
262 age and growth, we investigated variability of isotope values across time and across body size
263 groups. We performed ANOVA analysis for $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ ($n = 86$) and $\delta^2\text{H}$ values ($n = 83$,
264 excluding individuals with missing $\delta^2\text{H}$ values: COD407, COD419 and COD428) followed by
265 a TukeyHSD post-hoc test; while a non-parametric Kruskal-Wallis test was computed for $\delta^{34}\text{S}$
266 ($n = 64$) followed by a Dunn post-hoc test with a Bonferroni correction (<3 groups).

267

268 To identify potentially different ecological groups within Atlantic cod individuals, we
269 examined the individual distribution of isotope values ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^2\text{H}$) within fish across

270 the three body size categories visualizing a density plot in R. We further evaluated the
271 differences between the body size of all archaeological specimens distributed across Brann1 to
272 Brann4 ($n = 86$) using a Kruskal-Wallis test, followed by a post-hoc Dunn test with a Holm
273 correction (>3 groups). All analysis were performed in R using the *stats*, *FSA* and *ggplot2*
274 packages [52, 57, 58].

275

276 Combined genome-isotope analyses

277 A summary of isotope values, in relation to body size (50-80 cm, 80-100 cm and >100 cm) and
278 the putatively genomic assignment of individuals to either a NEA or Icelandic origin, or a
279 north-central or northernmost origin was represented by a principal component analysis (PCA)
280 on the 64 relevant $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, $\delta^2\text{H}$ and $\delta^{34}\text{S}$ individual estimates. We performed ANOVA
281 analysis to describe the contribution of size and time (Brann1 to Brann4) to each principal
282 component (PCs) in the PCA followed by a TukeyHSD post-hoc test. PCAs were plotted in R
283 using the *ggplot2* package [58]. Loadings, eigen values, and contributions of each isotope to
284 the principal components (PCs) of the PCA were calculated in R using the *factoextra* package
285 [59].

286

287 To investigate if the (genomic) probability –scaled from 0 to 1– of having a NEA or Icelandic
288 (adding the probabilities of both Icelandic ecotypes) affinity has different isotopic signatures,
289 we computed a multivariate linear regression with logistically transformed probabilities (*logit*)
290 of NEA or Icelandic origin ($n = 20$) as dependent variables, and $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, $\delta^2\text{H}$ and $\delta^{34}\text{S}$ values
291 as predictors. We tested the regression for homoscedasticity with a Breusch-Pagan test and
292 validated the model by assessing residuals and symmetry. We further evaluated for
293 multicollinearity by removing $\delta^{15}\text{N}$ from our regressions. We did not observe major differences
294 without $\delta^{15}\text{N}$; therefore, the final regression model includes all four isotope values.
295 Additionally, considering that *stockfish* is primarily produced from the Atlantic cod migratory
296 ecotype in Norway, we selected those specimens with an Icelandic frontal (Icelandic migratory
297 ecotype) affinity (another source of *stockfish* production), to assess the differences in isotopic
298 signatures between migratory ecotypes. Multivariate linear regressions with specimens with an
299 Icelandic frontal affinity follow the same procedure previously explained. All regressions and
300 the Breusch-Pagan test were computed in R using the *stats* and the *car* packages [52, 53].

301

302 Finally, we assessed the direct relation between a binary assignment to NEA or Iceland (adding
303 both ecotypes, migratory and stationary behaviour) and the $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, $\delta^2\text{H}$ and $\delta^{34}\text{S}$ values.

304 We used one-way ANOVAs (for $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^{34}\text{S}$) or Welch's ANOVAs (for $\delta^2\text{H}$) after
305 testing for equal variances with a Bartlett test (normal distributed data). Only specimens with
306 a >70% probability NEA or overall >70% probability Icelandic assignment were included
307 (Table S2). Therefore, 10 specimens were tested against $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, and $\delta^2\text{H}$ values and nine
308 specimens were tested against $\delta^{34}\text{S}$ values. Icelandic frontal (migratory ecotype) assignments
309 are usually shared with an Icelandic coastal (stationary ecotype) assignment (e.g., 43% and
310 35% respectively; see Table S3). Consequently, an Icelandic frontal assignment alone cannot
311 be binary assigned with >70% probability of origin to a population. Thus, we only included
312 samples with a confident (>70% probability) overall Icelandic origin. ANOVAs and equal
313 variance tests were computed using the *base* package in R.

314

315 **3. Results**

316 *Genomic analysis*

317 We successfully sequenced 35 Atlantic cod specimens with a total of ~770 million paired reads,
318 of which ~111 million reads aligned with a range of 0.1% to 47% of endogenous DNA content
319 per specimen (Table S2). As expected, patterns of DNA fragmentation and deamination rates
320 are consistent with those of authentic aDNA (Figure S1). We found that all 35 specimens can
321 be assigned to an eastern Atlantic origin (100% assignment probability; Figure 2b and Table
322 S1, S2) of which 19 specimens had the highest affinity to the north-central group (56-100%
323 assignment probability). No specimens were identified with a Baltic Sea origin. Within the
324 north-central group, specific population assignments are uncertain with 10 specimens
325 putatively assigned to the North Sea (42-52% assignment probability), one specimen to the
326 Irish Sea (66% assignment probability), five specimens to both the North Sea (32% assignment
327 probability) and the Norwegian Coast (Lofoten, 34% assignment probability), one specimen to
328 the Norwegian Coast (Lofoten and southwest, 32% and 33% assignment probability), and two
329 specimens to the southwest coast of Norway (26% assignment probability; Figure 2b and Table
330 S3). Sixteen specimens had the highest affinity to the northernmost group (79-100%
331 assignment probability) of which seven specimens were assigned to the Northeast Arctic (75%
332 assignment probability) and nine were likely assigned to Iceland (62-83% assignment
333 probability, adding the probabilities of both migratory and stationary ecotypes; Figure 2b and
334 Table S3).

335

336 While postcranial bones have been associated with long-distance sources (i.e., NEA and
337 Iceland) [8], we did not find a statistically significant association between the bone element

338 (cranial or postcranial) and specimens with a local (north-central group) or traded origin
339 (northernmost group; *p-value* = 0.37; *n* = 27; Figure S2a, Table S2). In addition, we did not
340 find statistically significant differences over time between specimens genetically assigned to
341 either a north-central or northernmost group (*p-value* = 0.77; *n* = 29; Figure S2b, Table S1).
342 We did not find any statistical difference between the probability of having a NEA or Icelandic
343 origin in bone element (NEA: Kruskal-Wallis chi-squared = 2.28, *df* = 1, *p-value* = 0.13 and
344 Iceland: Kruskal-Wallis chi-squared = 0.13, *df* = 1, *p-value* = 0.72; *n* = 33; Figure S3a, S3b),
345 in body size (NEA: Kruskal-Wallis chi-squared = 2.00, *df* = 2, *p-value* = 0.37 and Iceland:
346 Kruskal-Wallis chi-squared = 0.25, *df* = 2, *p-value* = 0.88; Figure S3c, S3d) or across time
347 (Brann1 to Brann 4; NEA: Kruskal-Wallis chi-squared = 0.74, *df* = 3, *p-value* = 0.86 and
348 Iceland: Kruskal-Wallis chi-squared = 0.04, *df* = 3, *p-value* = 0.99; Figure S3e, S3f).
349 Furthermore, we did not find statistical differences between the size categories of specimens
350 genetically assigned to Iceland and NEA (*p* = 0.09, *n* = 16), the north-central group and Iceland
351 (*p* = 0.68, *n* = 25), the north-central group and NEA (*p* = 0.46, *n* = 23), the north-central group,
352 NEA and Iceland (*p* = 0.26, *n* = 32), and the north-central group and northernmost group (*p* =
353 1.0, *n* = 32; Table S4).

354

355 Isotope analysis

356 We successfully extracted collagen from 93 out of 100 Atlantic cod specimens, with 86 passing
357 quality thresholds for $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^2\text{H}$ (Table S1). For $\delta^{34}\text{S}$, 64 specimens passed quality
358 control thresholds. Collagen yields of all 93 extractions ranged from 1.5% to 10.6%. Isotope
359 values that passed initial quality control thresholds ranged from -15.9‰ to -11.9‰ (mean -
360 13.9‰ for carbon ($\delta^{13}\text{C}$), from +12.7‰ to +16.8‰ (mean +14.9‰ for nitrogen ($\delta^{15}\text{N}$), from -
361 13.8‰ to +38.1‰ (mean +12.9‰) for hydrogen ($\delta^2\text{H}$), and from +6.0‰ to +17.5‰ (mean
362 +14.0‰ for sulphur ($\delta^{34}\text{S}$) after the initial quality control (Table S5).

363

364 The C:N ratios for the included data ranged from 3.0 to 3.6 and were negatively related to $\delta^{13}\text{C}$
365 values (Figure S4, Table S1). This correlation was weak and not significant (Spearman's rho
366 = -0.19, *p-value* = 0.07). Therefore, we assume that *post mortem* processes did not majorly
367 impact our isotopic data [60]. Isotopes were strongly correlated with a significant relation
368 between $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values (Pearson's correlation = 0.46, *p-value* = <0.01; Figure S5a), and
369 between $\delta^2\text{H}$ and $\delta^{15}\text{N}$ values (Pearson's correlation = 0.51, *p-value* = <0.01; Figure S5b). No
370 significant relationship was observed between $\delta^{13}\text{C}$ and $\delta^{34}\text{S}$ values (Spearman's correlation
371 rho = 0.18, *p-value* = 0.15; Figure S5c).

372

373 Body size significantly influences three isotope values (Table S6a): $\delta^{13}\text{C}$ (ANOVA: $F\text{-value} = 6.70$, $p\text{-value} = <0.01$, $n = 86$; Figure S6a), $\delta^{15}\text{N}$ (ANOVA: $F\text{-value} = 5.47$, $p\text{-value} = <0.01$, $n = 86$; Figure S6b) and $\delta^2\text{H}$ (ANOVA: $F\text{-value} = 7.38$, $p\text{-value} = <0.01$, $n = 83$; Figure S6c).
374 Such significant differences in $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^2\text{H}$ values were found between the smallest (50-
375 80 cm) compared to the largest (>100 cm) body size categories (TukeyHSD post-hoc test $p\text{-}$
376 $p\text{-value} = <0.01$; Table S6a). Interestingly, we observed a bimodal distribution within medium
377 sized fish (80-100cm) for $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ but not in $\delta^2\text{H}$ or smaller and larger body size
378 categories (Figure S7). Furthermore, we found significant differences of $\delta^{13}\text{C}$ (ANOVA: $F\text{-}$
379 $p\text{-value} = 5.91$, $p\text{-value} = <0.01$, $n = 81$; Figure S8a), $\delta^{15}\text{N}$ values (ANOVA: $F\text{-value} = 3.94$, $p\text{-}$
380 $p\text{-value} = <0.01$, $n = 81$; Figure S8b), and $\delta^2\text{H}$ (ANOVA: $F\text{-value} = 3.67$, $p\text{-value} = <0.01$, $n =$
381 79; Figure S8c) across time (Brann1 to Brann4; Table S6b). Specifically, Brann4 (1275-1375
382 CE) had significantly higher isotope values ($\delta^{13}\text{C}$ $p\text{-value} = <0.01$; $\delta^{15}\text{N}$ $p\text{-value} = 0.03$ and
383 $\delta^2\text{H}$ $p\text{-value} = 0.01$) compared to Brann2 (1125-1275 CE). Brann4 also had significant higher
384 $\delta^{13}\text{C}$ values ($p\text{-value} = <0.01$) compared to Brann3 (1250-1325 CE) and significantly higher
385 $\delta^{15}\text{N}$ values ($p\text{-value} = 0.01$) compared to Brann1 (1000-1175 CE). No significant correlations
386 were obtained between $\delta^{34}\text{S}$ and body size (Kruskal-Wallis chi-squared = 0.11, df = 2, $p\text{-value}$
387 = 0.95, $n = 64$; Figure S6d) or across time (Kruskal-Wallis chi-squared = 4.69, df = 3, $p\text{-value}$
388 = 0.20, $n = 60$; Figure S8d). We found significant differences between the body size of our
389 archaeological specimens across time (Kruskal-Wallis chi-squared = 11.93, df = 3, $p\text{-value} =$
390 <0.01). These differences can be observed between larger fish from Brann4 against Brann2
391 (TukeyHSD post-hoc test $p\text{-value} = 0.04$), and Brann3 (TukeyHSD post-hoc test $p\text{-value} =$
392 0.04).
393

394

395 Combined genome-isotope analyses

396 Principal component analysis (PCA) was employed to investigate the relationship between
397 isotope data and genomic assignments while controlling for fish size. The first two principal
398 component axes (PC1 and PC2) explained 99.18% of the observed variation (Figure 3a). Body
399 sizes significantly changed across PC1 (ANOVA: $F\text{-value} = 8.85$, $p\text{-value} = <0.01$, $n = 64$),
400 where PC1 values increased with body size (Figure 3a). Such differences were significantly
401 found across PC1 between the smaller (50-80 cm) compared to the medium (80-100 cm;
402 TukeyHSD post-hoc test $p\text{-value} = <0.01$) and larger (>100 cm; TukeyHSD post-hoc test $p\text{-}$
403 $p\text{-value} = <0.01$) body size categories. We found that the highest contribution to the observed
404 variation in PC1 was that of $\delta^2\text{H}$ (PC1 contribution = 99.53%), which is to be expected given
405

406 the association noted above between $\delta^2\text{H}$ values and body size (Figure 3a, Table S5a, S5b).
407 Importantly, no body size changes were observed across PC2 (ANOVA: $F\text{-value} = 0.12$, $p\text{-value} = 0.89$, $n = 64$, Figure 3). PC2 presented a negative relation with $\delta^{34}\text{S}$ according to its
408 loading values (Table S5a). We found that the highest contribution to the observed variation in
409 PC2 were $\delta^{34}\text{S}$ values (PC2 contribution = 98%, Table S5b). Furthermore, values in PC3
410 increased with $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values (Table S5a, S5b), however, no particular body size
411 changes were observed across PC3 (ANOVA: $F\text{-value} = 2.25$, $p\text{-value} = 0.11$, $n = 64$). In the
412 PCAs of isotope values highlighting the genomic assignment individuals, the second and third
413 principal component axes (PC2 and PC3) explained 4.5% of the observed variation (Figure 3b,
414 3c). The north-central vs. northernmost genomic groups are separated on PC3, whereas NEA
415 vs. Iceland do not separate on PC2 or PC3 (Figure 3b, 3c).
416

417

418 Multivariate linear regressions showed a significant relation between $\delta^{13}\text{C}$ values and the
419 (genomic) probability of having a northern Norway origin (NEA, $p\text{-value} = 0.01$, adjusted R^2
420 squared = 0.50; Table S7a), but not for the (genomic) probability of having an Icelandic ($p\text{-value} = 0.36$; Table S7b) or Icelandic frontal origin ($p\text{-value} = 0.20$; Table S7c). We found a
421 significant difference between the $\delta^{13}\text{C}$ values depending on the binary population
422 assignment between a NEA or Icelandic biological origin (ANOVA: $F\text{-value} = 5.99$, $p\text{-value} = 0.04$, Figure 4). Such differences were not observed for $\delta^{15}\text{N}$, $\delta^2\text{H}$ and $\delta^{34}\text{S}$ (Figure S9a,
424 S9b, S9c). Other isotope values did not show any significant influence on the biological
425 origin of Atlantic cod specimens (Table S7).
426

427

428 4. Discussion

429 We have implemented a multidisciplinary approach using aDNA and stable isotopes to identify
430 the biological source and distribution of Atlantic cod specimens from medieval Oslo over a
431 period of 600 years. Combining genomic and isotopic analyses, we found an overall diverse
432 origin of Atlantic cod specimens in medieval Oslo (eleventh to seventeenth centuries). Atlantic
433 cod obtained through trade (e.g., either the Northeast Arctic (NEA) or possibly Iceland) are
434 present throughout time and are found in the earliest deposits. Using multivariate linear
435 regression, we found a significant relation between carbon ($\delta^{13}\text{C}$) values and the (genomic)
436 probability of being assigned to a NEA biological origin. Moreover, by controlling for Atlantic
437 cod size, PCA analysis supports a separation between the north-central and northernmost
438 genomic groups based on stable isotope values. Our ANOVA results suggest that $\delta^{13}\text{C}$ values
439 are also significantly different between those specimens with different chromosomal inversion

440 LG1 genotypes (NEA and Iceland). Considering that this inversion is associated with different
441 behaviour patterns and habitat preferences in Atlantic cod [46-50], our observation suggests a
442 diverse biological source of Atlantic cod specimens during medieval Oslo. Below we describe
443 the implications of these findings.

444

445 Atlantic cod specimens obtained from remote northern fisheries (e.g., NEA or possibly Iceland)
446 are found in Oslo since the eleventh century (*ca.* 1000 CE). This pattern is different from
447 patterns of trade in other locations in Europe, such as in England, Flanders, Poland and Estonia
448 where this long-distance trade increased from the thirteenth to fourteenth centuries onwards
449 [6-8, 61]. *Stockfish* transport from northern Norway to Haithabu, now in northern Germany,
450 has been observed by the eleventh century (i.e., before *ca.* 1066 CE [5]). Thus, our results
451 suggest that trade of Atlantic cod to Oslo probably from the Lofoten or Vesterålen archipelagos
452 appears to be continuous in this region since such earlier periods. As Oslo was not a major hub
453 of *stockfish* trade, it can be inferred that the Atlantic cod of northern origin present since *ca.*
454 1000 CE were primarily for local consumption.

455

456 Following Martínez-García, Ferrari [8], we genetically identified a presumed Icelandic origin
457 of processed fish, possibly *stockfish* with specimens assigned to Icelandic frontal (migratory
458 behavior) or coastal (stationary behavior) ecotypes. Genomic differences between Icelandic
459 and NEA cod can be found in the chromosomal inversion LG1, where a higher frequency of
460 north-central genotypes can be found in Iceland [50]. However, there are similarities between
461 inversion frequencies (for LG1) between deep water Iceland and NEA cod [8, 62]. Considering
462 such similarities and possible biological complexity, the genetic assignments based on
463 inversion frequencies to either Iceland (either frontal and coastal ecotype) or NEA remain
464 uncertain. Nonetheless, NEA cod has distinct migratory behaviour by feeding in the Barents
465 Sea before spawning along the Norwegian coast [63]. The Icelandic populations in contrast,
466 consist of a combination of two ecotypes with different spawning, migratory and feeding
467 behaviour. According to modern otolith increment growth, Icelandic cod grow faster than NEA
468 cod during early stages of life (up to 6 years), whereas NEA cod appears to grow faster during
469 older years [64]. Consequently, significantly higher $\delta^{13}\text{C}$ values in Icelandic cod otoliths
470 ($\delta^{13}\text{C}_{\text{oto}}$) compared to NEA have been associated with differences in fish growth and also
471 metabolism [64]. Our genetic assignment results are consistent with such significant difference
472 of $\delta^{13}\text{C}$ values for specimens assigned to NEA based on multivariate linear regression and when
473 compared to those specimens assigned to Iceland; these specimens may have been exposed to

474 different oceanographic and ecological conditions [65, 66] and different metabolic activity [6,
475 63]. We do not observe overall differences in body size categories between genomic
476 assignments to Iceland and NEA specimens, or northernmost and north-central genomic
477 groups, hence the isotopic differentiation between these genetic categories is not driven by
478 these fish feeding at different trophic level. We do observe significant differences between
479 body size categories across isotopic values ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^2\text{H}$), and across time (fish from
480 Brann4 (1275-1375 CE) are larger compared to those from Brann2 (1125-1275 CE) and
481 Brann3 (1250-1325 CE)). These differences between fish of different size reflect the expected
482 ecological complexity during an individual's lifetime (related to size-specific metabolic rates
483 that decrease as fish grow older), sexual maturation (which differs according to geographical
484 latitude) and diet composition (from lower or higher trophic levels) of different ecotypes or
485 individuals[67-69]. Interestingly, we observed a binomial distribution of $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values
486 within the medium size specimens (80-100 cm), which are presumed to feed at similar trophic
487 levels given they are classified in the same size category. These differences might either reflect
488 differences in their environment (perhaps different locations) or distinct feeding strategies
489 amongst individuals of different sizes [70-72]. Overall, our findings, including variability
490 within the stable isotope data, suggest that multiple localities and/or ecotypes, provided
491 *stockfish* to Oslo from the eleventh century onwards.

492

493 **Conclusion**

494 This study highlights the utility of combining ancient DNA methods with isotope analysis, to
495 describe the biological origin and biological differences of economically important marine
496 species. For millennia, people have relied on Atlantic cod as a food source and key income
497 product for the development of coastal communities across northern Europe. In fact, our results
498 reveal a continuous presence of Atlantic cod obtained from remote locations like northern
499 Norway or possibly Iceland since the eleventh century in medieval and post-medieval Oslo.
500 This pattern of trade is different from that observed in Britain and Continental Europe outside
501 Scandinavia [8]. Knowledge on the extension of long-distance fish trading patterns can provide
502 valuable information about the exploitation timeline of specific Atlantic cod stocks. While
503 interpretation of the genomic assignment of ancient fish specimens to Iceland remain uncertain
504 based upon inversion frequencies only, the association of genetic data with differences in
505 isotopic values does provide evidence for the existence of mixed fisheries, targeting either fish
506 at different spatial locations, or co-occurring ecotypes that supported the long-distance trade to
507 Oslo.

508

509 **Data accessibility**

510 The raw reads for the ancient specimens are released under the ENA accession numbers
511 PRJEB37681 and PRJEB71940.

512

513 **Author contributions**

514 B.S and J.H.B. conceived and designed the study. LM-G and AP wrote the original manuscript.
515 AP, LM-G and GF conducted aDNA laboratory work. AH and CK conducted collagen
516 extractions and stable isotope analysis. AP and LM-G performed the genomic analysis. LM-G
517 and AP designed and performed the statistical analyses for isotopic data with input from BS
518 and JHB. Data visualization: LM-G and AP. Fish and bone illustrations: LM-G. AKH, MV,
519 and JHB provided archaeological samples and context. BS and JHB provided funding
520 acquisition. All authors reviewed, discussed and edited the final draft of the manuscript.

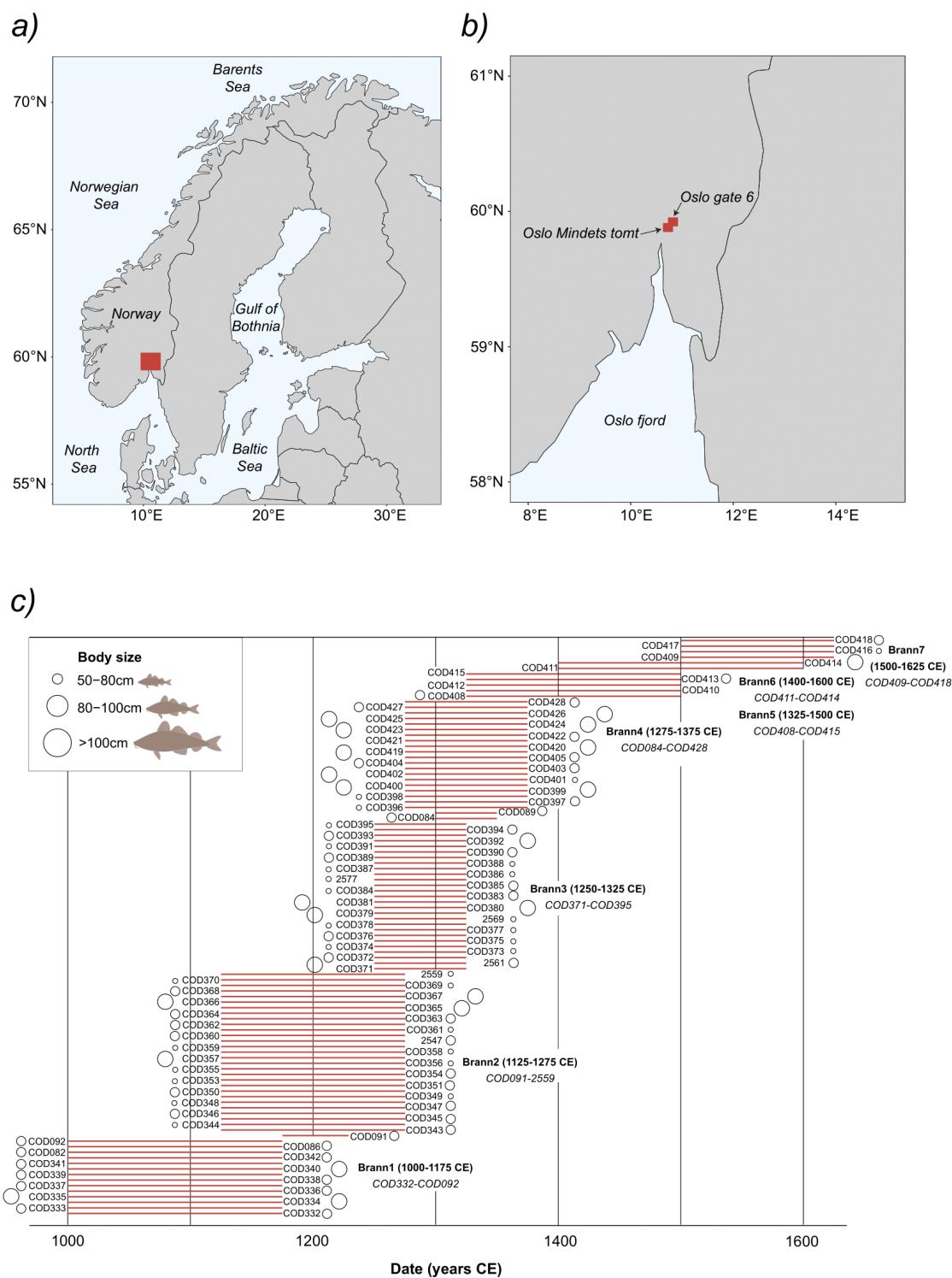
521

522 **Competing interests**

523 The authors declare no competing interests.

524

525 **Funding**

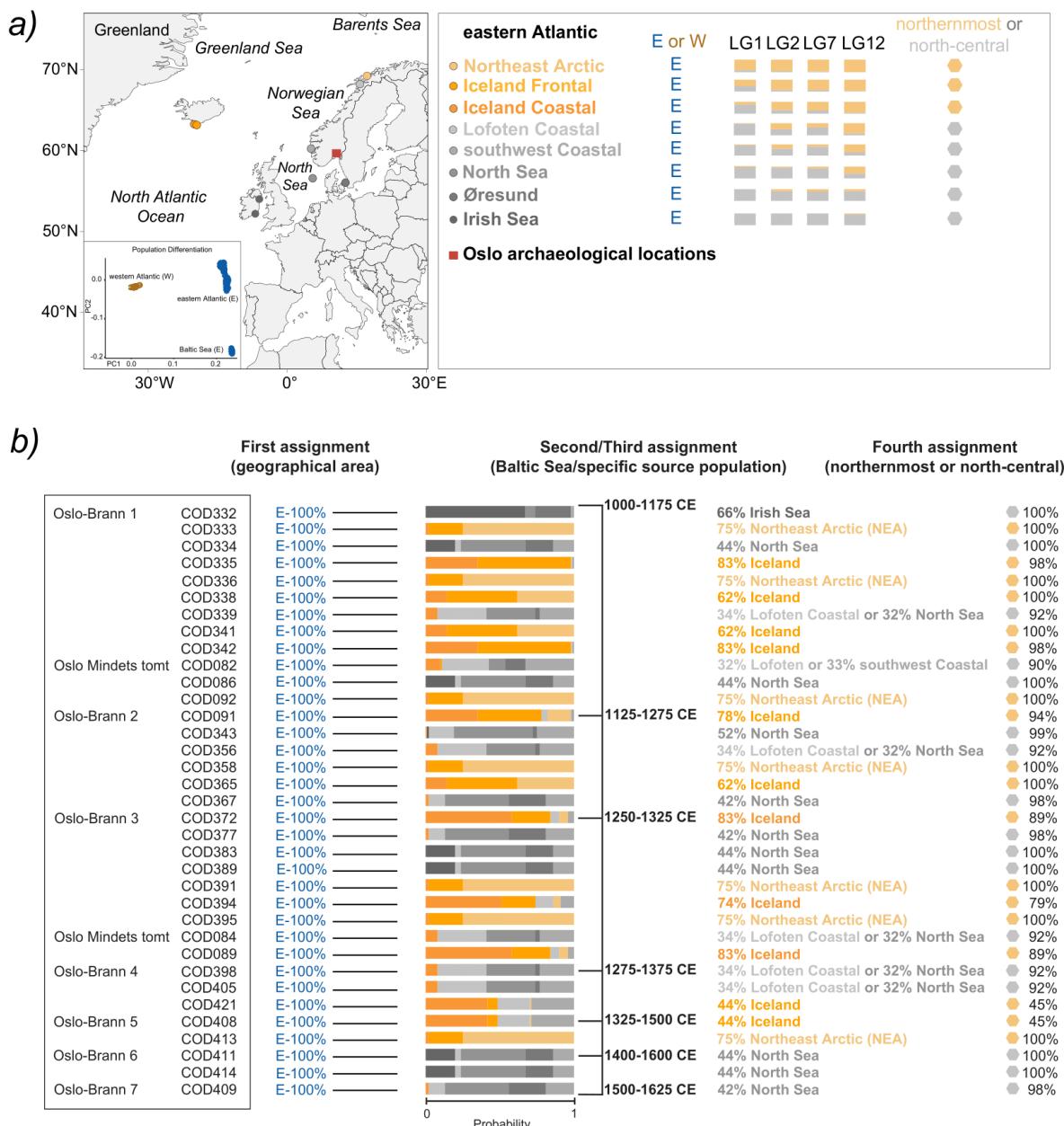

526 This work was supported by Research Council of Norway projects “FOODIMPACT”
527 (NFR300829), the European Union’s Horizon 2020 Research and Innovation Programme
528 under the Marie Skłodowska-Curie grant agreement No. 813383 (SeaChanges) and the 4-
529 OCEANS Synergy grant agreement no. 951649. The European Research Agency is not
530 responsible for any use that may be made of the information this work contains.

531

532 **Acknowledgments**

533 We thank J. Rolfe (Cambridge) who assisted with the isotope ratio mass spectrometry, T.
534 O’Connell (Cambridge) who facilitated use of the Dorothy Garrod Laboratory for Isotopic
535 Analysis and Katrien Dierickx for giving advice in statistical analysis. The hydrogen and
536 sulphur isotope analyses were conducted by Iso-Analytical Limited (I. Begley). Finally, we
537 thank M. Skage, S. Kollias and A. Tooming-Klunderud at the Norwegian Sequencing Centre
538 for sequencing and processing of samples. We also thank K.S. Jakobsen and S. Jentoft for
539 insightful discussions and Eric J. Guiry for commenting on an early version of this manuscript.
540 Sequencing analysis were performed on the SAGA Cluster using the resources and assistance

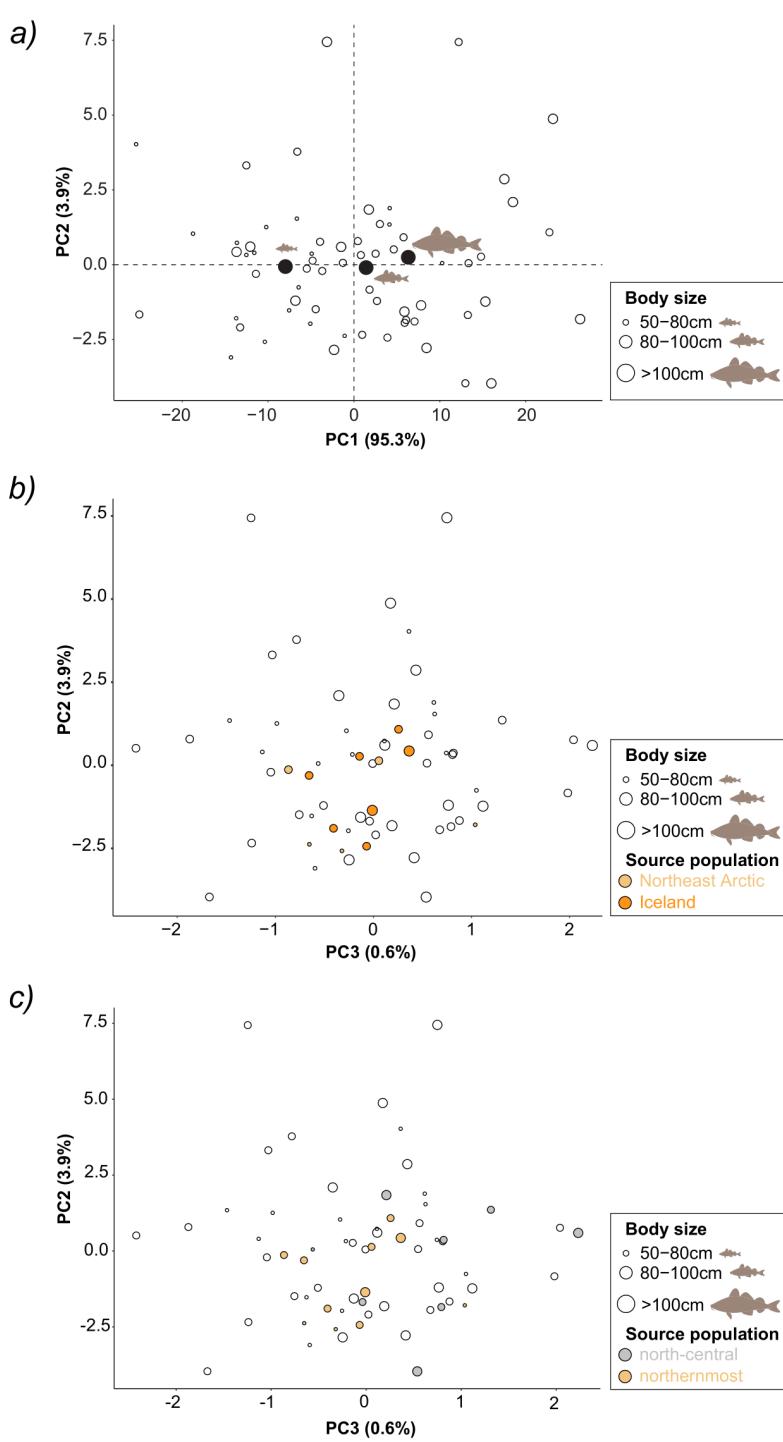
541 from the SIGMA2 Metacenter, the Norwegian National Infrastructure for High Performance
542 Computing and Data Storage.



543

544 **Figure 1.** Geographical location of the archaeological Atlantic cod specimens collected from
 545 two archaeological sites in (a) southeast Norway in (b) Oslo (Oslogate 6, $n = 100$ and Oslo
 546 Mindets tomt, $n = 6$; Table S1). (c) Date distribution and body size estimation for

547 archaeological samples. Specimens are obtained from layers placed between distinct fire layers
548 (*Branntrinn*) that have been dated using archaeological methods (across the eleventh to
549 seventeenth centuries). A total of eight fire stages (Brann1 to Brann8) have been identified and
550 are used to describe the stratigraphy and constructions in the urban development [17].
551 Specimens COD406 and COD407 (from Brann8) do not have a confident date estimation and
552 are excluded from this figure. Body size is significantly different between fire layers (Kruskal-
553 Wallis chi-squared = 11.93, df = 3, *p-value* = <0.01), with fish from Brann4 significantly larger
554 than those from Brann2 (TukeyHSD post-hoc test *p-value* = 0.04) and Brann3 (TukeyHSD
555 post-hoc test *p-value* = 0.04).


556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

589 genotypic group is based on the frequencies of chromosomal inversions of Atlantic cod (LG1,
590 LG2, LG7 and LG12) as per Star, Boessenkool [5]. Percentages (%) indicate the highest
591 probability to be from one population and area.

592

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

Figure 3. Principal component analysis (PCA) for carbon ($\delta^{13}\text{C}$), nitrogen ($\delta^{15}\text{N}$), non-exchangeable hydrogen ($\delta^2\text{H}$) and sulphur ($\delta^{34}\text{S}$) isotopes highlighting (a) body size and (b) putative genetically inferred source population assignments of individuals to the Northeast Arctic (NEA) or Iceland populations, and (c) a north-central or northernmost genomic groups.

626 Values distributed across PC1-PC2 axes explain 99.18% of the observed variations, while
627 values across PC2-PC3 axes explain 4.5% of the observed variation.

628

629

630

631

632

633

634

635

636

637

638

639

640

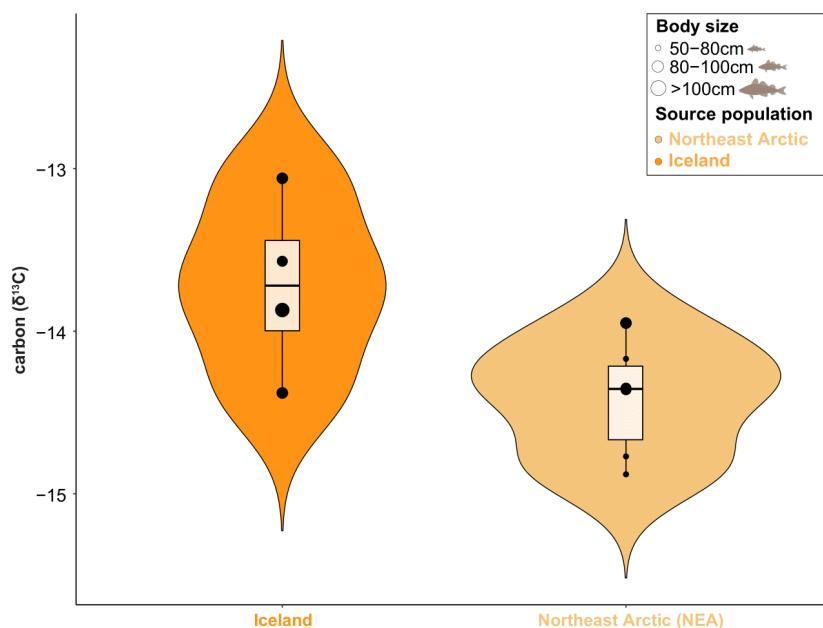
641

642

643

644

645


646

647

648

649

ANOVA: $F\text{-value} = 5.99$, $p\text{-value} = 0.04$, $n = 10$

645 **Figure 4.** Differences in carbon ($\delta^{13}\text{C}$) values across specimens with a binary assignment to
646 genetically inferred source populations: Iceland or NEA. Only specimens with a 70%, or higher
647 probability of being assigned to either origin, were used in this analysis (see Table S2, S3).

648

649

650

651 References

- 652 1. Holm P., Nicholls J., Hayes P.W., Ivinson J., Allaire B. 2021 Accelerated extractions of North
653 Atlantic cod and herring, 1520–1790. *Fish and Fisheries* **23**, 54–72.
654 (doi:<https://doi.org/10.1111/faf.12598>).
- 655 2. Barrett J.H., Locker A.M., Roberts C.M. 2004 ‘Dark Age Economics’ revisited: the English
656 fish bone evidence AD 600–1600. *Antiquity* **78**(301), 618–636.
- 657 3. Maltin E., Jonsson L. 2018 Cod heads, stockfish, and dried spurdog: Unexpected commodities
658 in Nya Lödöse (1473–1624), Sweden. *International Journal of Historical Archaeology* **22**(2), 343–363.
- 659 4. Hufthammer A.K. 2016 Fish Trade in Norway ad 800–1400: Zooarchaeological Evidence. In
660 *Cod and Herring* (eds. Barrett J.H., Orton D.C.), pp. 221–230, Oxbow Books.
- 661 5. Star B., Boessenkool S., Gondek A.T., Nikulina E.A., Hufthammer A.K., Pampoulie C.,
662 Knutson H., Andre C., Nistelberger H.M., Dierking J., et al. 2017 Ancient DNA reveals the Arctic
663 origin of Viking Age cod from Haithabu, Germany. *Proc Natl Acad Sci U S A* **114**(34), 9152–9157.
664 (doi:10.1073/pnas.1710186114).
- 665 6. Barrett J.H., Orton D., Johnstone C., Harland J., Van Neer W., Ervynck A., Roberts C., Locker
666 A., Amundsen C., Enghoff I.B. 2011 Interpreting the expansion of sea fishing in medieval Europe using
667 stable isotope analysis of archaeological cod bones. *Journal of Archaeological Science* **38**(7), 1516–
668 1524.
- 669 7. Orton D.C., Morris J., Locker A., Barrett J.H. 2014 Fish for the city: meta-analysis of
670 archaeological cod remains and the growth of London’s northern trade. *Antiquity* **88**(340), 516–530.
671 (doi:10.1017/S0003598X00101152).
- 672 8. Martínez-García L., Ferrari G., Cuevas A., Atmore L.M., López-Arias B., Culling M., Llorente-
673 Rodríguez L., Morales-Muñiz A., Roselló-Izquierdo E., Quirós J.A., et al. 2022 Ancient DNA evidence
674 for the ecological globalization of cod fishing in medieval and post-medieval Europe. *Proceedings of
675 the Royal Society B: Biological Sciences* **289**(1985), 20221107. (doi:10.1098/rspb.2022.1107).
- 676 9. Heinrich D., Grigson C., Clutton-Brock J. 1983 Temporal changes in fishery and fish
677 consumption between early medieval Haithabu and its successor, Schleswig. *Animals and archaeology*
678 **2**, 151–156.
- 679 10. Hallström A. 1979 Die Fischknochen. *Eketorp: Befestigung und Siedlung auf Oland/Schweden*
680 *Die Fauna Stockholm: Almqvist & Wiksell*, 422–492.
- 681 11. Hoffmann R.C. 2001 Frontier foods for late medieval consumers: culture, economy, ecology.
682 *Environment and History* **7**(2), 131–167.
- 683 12. Perdikaris S. 1999 From chiefly provisioning to commercial fishery: Long-term economic
684 change in arctic Norway. *World Archaeology* **30**(3), 388–402.

685 13. Garnier N., Vedeler M. 2021 Revealing Medieval culinary practices in Norway: A first
686 metabolomic-based approach. *Journal of Archaeological Science: Reports* **40**, 103206.
687 (doi:<https://doi.org/10.1016/j.jasrep.2021.103206>).

688 14. Nordeide S.W., Gulliksen S. 2007 First Generation Christians, Second Generation Radiocarbon
689 Dates: The Cemetery at St. Clement's in Oslo. *Norwegian Archaeological Review* **40**(1), 1-25.
690 (doi:10.1080/00293650601054362).

691 15. Sørheim H. 1997 The origin of commercial fisheries and the trade of stockfish in the northern
692 part of western Norway. In *Exchange and trade in Medieval Europe: Papers of the Medieval Europe*
693 *Brugge 1997 Conference* (pp. 107-117).

694 16. Eide O.E. 2007 Om muremåter og kirkedateringer i 1100-tallets Oslo. *Collegium medievale*
695 **20**(2007), 137-168.

696 17. Molaug P.M., Skre D., Flodin L. 2018 *Oslogate 6: Arkeologiske utgravnninger 1987-1989*. Oslo,
697 NIKU OPPDRAGSRAPPORT 4/2018.

698 18. Grier C., Flanigan K., Winters M., Jordan L.G., Lukowski S., Kemp B.M. 2013 Using ancient
699 DNA identification and osteometric measures of archaeological Pacific salmon vertebrae for
700 reconstructing salmon fisheries and site seasonality at Dionisio Point, British Columbia. *Journal of*
701 *Archaeological Science* **40**(1), 544-555.

702 19. Atmore L.M., Martínez-García L., Makowiecki D., André C., Lõugas L., Barrett J.H., Star B.
703 2022 Population dynamics of Baltic herring since the Viking Age revealed by ancient DNA and
704 genomics. *Proceedings of the National Academy of Sciences* **119**(45), e2208703119.

705 20. Martínez-García L., Ferrari G., Hufthammer A.K., Jakobsen K.S., Jentoft S., Barrett J.H., Star
706 B. 2022 Ancient DNA reveals a southern presence of the Northeast Arctic cod during the Holocene.
707 *Biology Letters* **18**(5), 20220021. (doi:10.1098/rsbl.2022.0021).

708 21. Barrett J.H., Boessenkool S., Kneale C.J., O'Connell T.C., Star B. 2020 Ecological
709 globalisation, serial depletion and the medieval trade of walrus rostra. *Quaternary science reviews* **229**,
710 106122. (doi:10.1016/j.quascirev.2019.106122).

711 22. Fuller B.T., Müldner G., Van Neer W., Ervynck A., Richards M.P. 2012 Carbon and nitrogen
712 stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites
713 (1 st and 2 nd millennium AD). *Journal of Analytical Atomic Spectrometry* **27**(5), 807-820.

714 23. Ólafsdóttir A.S., Thorsdóttir I., Wagner K., Elmádófa I. 2006 Polyunsaturated fatty acids in the
715 diet and breast milk of lactating Icelandic women with traditional fish and cod liver oil consumption.
716 *Annals of nutrition and metabolism* **50**(3), 270-276.

717 24. Molaug P.B. 2015 From the Farm of Oslo to the Townyard of Miklagard. (University of
718 Bergen.

719 25. Høeg H.I. 1977 *De Arkeologiske utgravnninger i Gamlebyen, Oslo: Feltet "Mindets tomt"*,
720 Universitetsforlaget.

721 26. Lie R. 1988 Animal Bones. In "*Mindets tomt*" – "*Søndre felt*" *Animal bones, moss-, plant-, insect- and parasite remains De arkeologiske utgravninger i Gamlebyen, Oslo, Volume 5* (ed. E. S.),
722 723 pp. 153-196, Alvheim & Eide Akademisk Forlag, Øvre Ervik.

724 27. Schia E. 1977 *De Arkeologiske utgravninger i Gamlebyen, Oslo*. Oslo, Universitetsforl.

725 28. Schia E. 1987 Reconstructing townyards on the periphery of the European urban culture.
726 *Norwegian Archaeological Review* **20**(2), 81-96. (doi:10.1080/00293652.1987.9965454).

727 29. Cooper A., Poinar H.N. 2000 Ancient DNA: do it right or not at all. *Science* **289**(5482), 1139-
728 1139.

729 30. Gilbert M.T.P., Bandelt H.-J., Hofreiter M., Barnes I. 2005 Assessing ancient DNA studies.
730 *Trends in Ecology & Evolution* **20**(10), 541-544.

731 31. Ferrari G., Cuevas A., Gondek-Wyrozemka A.T., Ballantyne R., Kersten O., Pálsson A.H.,
732 van der Jagt I., Hufthammer A.K., Ystgaard I., Wickler S., et al. 2021 The preservation of ancient DNA
733 in archaeological fish bone. *Journal of Archaeological Science* **126**, 105317.
734 (doi:<https://doi.org/10.1016/j.jas.2020.105317>).

735 32. Martínez-García L., Ferrari G., Oosting T., Ballantyne R., van der Jagt I., Ystgaard I., Harland
736 J., Nicholson R., Hamilton-Dyer S., Baalsrud H.T., et al. 2021 Historical demographic processes
737 dominate genetic variation in ancient Atlantic cod mitogenomes. *Frontiers in Ecology and Evolution* **9**,
738 342. (doi:doi:10.3389/fevo.2021.671281).

739 33. Gondek A.T., Boessenkool S., Star B. 2018 A stainless-steel mortar, pestle and sleeve design
740 for the efficient fragmentation of ancient bone. *BioTechniques* **64**(6), 266-269.

741 34. Boessenkool S., Hanghøj K., Nistelberger H.M., Der Sarkissian C., Gondek A.T., Orlando L.,
742 Barrett J.H., Star B. 2017 Combining bleach and mild predigestion improves ancient DNA recovery
743 from bones. *Molecular Ecology Resources* **17**(4), 742-751.

744 35. Meyer M., Kircher M. 2010 Illumina sequencing library preparation for highly multiplexed
745 target capture and sequencing. *Cold Spring Harbor Protocols* **2010**(6), pdb. prot5448.

746 36. Kircher M., Sawyer S., Meyer M. 2012 Double indexing overcomes inaccuracies in multiplex
747 sequencing on the Illumina platform. *Nucleic Acids Research* **40**(1), e3-e3.

748 37. Schroeder H., Ávila-Arcos M.C., Malaspina A.-S., Poznik G.D., Sandoval-Velasco M.,
749 Carpenter M.L., Moreno-Mayar J.V., Sikora M., Johnson P.L., Allentoft M.E. 2015 Genome-wide
750 ancestry of 17th-century enslaved Africans from the Caribbean. *Proceedings of the National Academy
751 of Sciences* **112**(12), 3669-3673.

752 38. Kapp J.D., Green R.E., Shapiro B. 2021 A fast and efficient single-stranded genomic library
753 preparation method optimized for ancient DNA. *Journal of Heredity* **112**(3), 241-249.

754 39. Schubert M., Ermini L., Der Sarkissian C., Jónsson H., Ginolhac A., Schaefer R., Martin M.D.,
755 Fernández R., Kircher M., McCue M. 2014 Characterization of ancient and modern genomes by SNP

756 detection and phylogenomic and metagenomic analysis using PALEOMIX. *Nature Protocols* **9**(5),
757 1056.

758 40. Lindgreen S. 2012 AdapterRemoval: easy cleaning of next-generation sequencing reads. *BMC*
759 *Research Notes* **5**(1), 337.

760 41. Star B., Nederbragt A.J., Jentoft S., Grimbolt U., Malmstrøm M., Gregers T.F., Rouge T.B.,
761 Paulsen J., Solbakken M.H., Sharma A., et al. 2011 The genome sequence of Atlantic cod reveals a
762 unique immune system. *Nature* **477**(7363), 207-210.

763 42. Tørresen O.K., Star B., Jentoft S., Reinar W.B., Grove H., Miller J.R., Walenz B.P., Knight J.,
764 Ekhholm J.M., Peluso P. 2017 An improved genome assembly uncovers prolific tandem repeats in
765 Atlantic cod. *BMC Genomics* **18**(1), 95.

766 43. Li H., Durbin R. 2009 Fast and accurate short read alignment with Burrows–Wheeler transform.
767 *Bioinformatics* **25**(14), 1754-1760.

768 44. Jónsson H., Ginolhac A., Schubert M., Johnson P.L., Orlando L. 2013 mapDamage2. 0: fast
769 approximate Bayesian estimates of ancient DNA damage parameters. *Bioinformatics* **29**(13), 1682-
770 1684.

771 45. Ferrari G., Atmore L.M., Jentoft S., Jakobsen K.S., Makowiecki D., Barrett J.H., Star B. 2021
772 An accurate assignment test for extremely low-coverage whole-genome sequence data. *bioRxiv*.

773 46. Matschiner M., Barth J.M.I., Tørresen O.K., Star B., Baalsrud H.T., Brieuc M.S.O., Pampoulie
774 C., Bradbury I., Jakobsen K.S., Jentoft S. 2022 Supergene origin and maintenance in Atlantic cod.
775 *Nature Ecology & Evolution* **6**(4), 469-481. (doi:10.1038/s41559-022-01661-x).

776 47. Barney B.T., Munkholm C., Walt D.R., Palumbi S.R. 2017 Highly localized divergence within
777 supergenes in Atlantic cod (*Gadus morhua*) within the Gulf of Maine. *BMC Genomics* **18**(1), 1-14.

778 48. Sodeland M., Jorde P.E., Lien S., Jentoft S., Berg P.R., Grove H., Kent M.P., Arnyasi M., Olsen
779 E.M., Knutsen H. 2016 “Islands of Divergence” in the Atlantic cod genome represent polymorphic
780 chromosomal rearrangements. *Genome Biology and Evolution* **8**(4), 1012-1022.
781 (doi:doi.org/10.1093/gbe/evw057).

782 49. Berg P.R., Star B., Pampoulie C., Sodeland M., Barth J.M., Knutsen H., Jakobsen K.S., Jentoft
783 S. 2016 Three chromosomal rearrangements promote genomic divergence between migratory and
784 stationary ecotypes of Atlantic cod. *Scientific Reports* **6**(1), 1-12.

785 50. Berg P.R., Star B., Pampoulie C., Bradbury I.R., Bentzen P., Hutchings J.A., Jentoft S.,
786 Jakobsen K.S. 2017 Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large
787 inversions. *Heredity* **119**(6), 418-428. (doi:10.1038/hdy.2017.54).

788 51. Johansen T., Besnier F., Quintela M., Jorde P.E., Glover K.A., Westgaard J.-I., Dahle G., Lien
789 S., Kent M.P. 2020 Genomic analysis reveals neutral and adaptive patterns that challenge the current
790 management regime for East Atlantic cod *Gadus morhua* L. *Evolutionary Applications* **13**(10), 2673-
791 2688. (doi:<https://doi.org/10.1111/eva.13070>).

792 52. Team R.C. 2022 R: A Language and Environment for Statistical Computing. (Vienna, Austria,
793 R Foundation for Statistical Computing.

794 53. Fox J., Weisberg S. 2019 An {R} Companion to Applied Regression, Third Edition. (Thousand
795 Oaks, CA, Sage.

796 54. Guiry E.J., Hunt B.P. 2020 Integrating fish scale and bone isotopic compositions for ‘deep
797 time’ retrospective studies. *Mar Environ Res* **160**, 104982.

798 55. Barrett J.H., Khamaiko N., Ferrari G., Cuevas A., Kneale C., Hufthammer A.K., Pálssdóttir
799 A.H., Star B. 2022 Walruses on the Dnieper: new evidence for the intercontinental trade of Greenlandic
800 ivory in the Middle Ages. *Proceedings of the Royal Society B* **289**(1972), 20212773.

801 56. Nehlich O., Richards M.P. 2009 Establishing collagen quality criteria for sulphur isotope
802 analysis of archaeological bone collagen. *Archaeological and Anthropological Sciences* **1**(1), 59-75.

803 57. Ogle D.H., Doll J.C., Wheeler P., Dinno A. 2022 FSA: Fisheries Stock Analysis. R package
804 version 0.9.3. (

805 58. Wickham H. 2016 Data analysis. In *ggplot2* (pp. 189-201, Springer.

806 59. Kassambara A., Mundt F. 2020 factoextra: Extract and Visualize the Results of Multivariate
807 Data Analyses. R package version 1.0.7. (

808 60. Guiry E.J., Szpak P. 2021 Improved quality control criteria for stable carbon and nitrogen
809 isotope measurements of ancient bone collagen. *Journal of Archaeological Science* **132**, 105416.
810 (doi:<https://doi.org/10.1016/j.jas.2021.105416>).

811 61. Orton D.C., Makowiecki D., de Roo T., Johnstone C., Harland J., Jonsson L., Heinrich D.,
812 Enghoff I.B., Lougas L., Van Neer W. 2011 Stable isotope evidence for late medieval (14th–15th C)
813 origins of the eastern Baltic cod (*Gadus morhua*) fishery. *PLoS One* **6**(11), e27568.

814 62. Pampoulie C., Ruzzante D.E., Chosson V., Jörundsdóttir T.D., Taylor L., Thorsteinsson V.,
815 Daniélsdóttir A.K., Marteinsdóttir G. 2006 The genetic structure of Atlantic cod (*Gadus morhua*)
816 around Iceland: insight from microsatellites, the Pan I locus, and tagging experiments. *Canadian
817 Journal of Fisheries and Aquatic Sciences* **63**(12), 2660-2674.

818 63. Sundby S., Nakken O. 2008 Spatial shifts in spawning habitats of Arcto-Norwegian cod related
819 to multidecadal climate oscillations and climate change. *ICES Journal of Marine Science* **65**(6), 953-
820 962.

821 64. Smoliński S., Denechaud C., von Leesen G., Geffen A.J., Grønkjær P., Godiksen J.A.,
822 Campana S.E. 2021 Differences in metabolic rate between two Atlantic cod (*Gadus morhua*)
823 populations estimated with carbon isotopic composition in otoliths. *PLOS ONE* **16**(4), e0248711.
824 (doi:10.1371/journal.pone.0248711).

825 65. Johnson S.P., Schindler D.E. 2012 Four decades of foraging history: Stock-specific variation
826 in the carbon and nitrogen stable isotope signatures of Alaskan sockeye salmon. *Marine Ecology
827 Progress Series* **460**, 155-167.

828 66. Trueman C.N., MacKenzie K., Palmer M. 2012 Identifying migrations in marine fishes through
829 stable-isotope analysis. *Journal of Fish Biology* **81**(2), 826-847.

830 67. Jennings S., Pinnegar J.K., Polunin N.V., Boon T.W. 2001 Weak cross-species relationships
831 between body size and trophic level belie powerful size-based trophic structuring in fish communities.
832 *Journal of Animal Ecology*, 934-944.

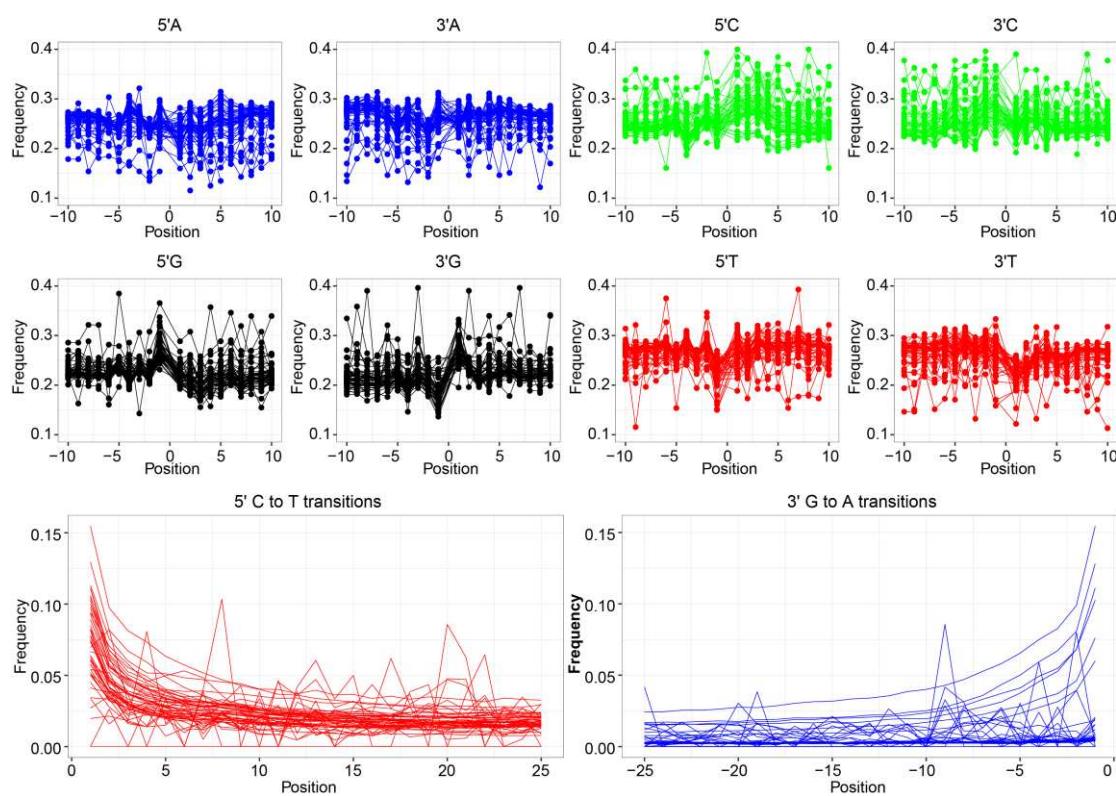
833 68. Soto D.X., Wassenaar L.I., Hobson K.A., Catalan J. 2011 Effects of size and diet on stable
834 hydrogen isotope values (δD) in fish: implications for tracing origins of individuals and their food
835 sources. *Canadian Journal of Fisheries and Aquatic Sciences* **68**(11), 2011-2019.

836 69. Köster F.W., Trippel E.A., Tomkiewicz J. 2013 Linking size and age at sexual maturation to
837 body growth, productivity and recruitment of Atlantic cod stocks spanning the North Atlantic. *Fisheries
838 Research* **138**, 52-61. (doi:<https://doi.org/10.1016/j.fishres.2012.07.002>).

839 70. Sherwood G.D., Rideout R.M., Fudge S.B., Rose G.A. 2007 Influence of diet on growth,
840 condition and reproductive capacity in Newfoundland and Labrador cod (*Gadus morhua*): Insights from
841 stable carbon isotopes ($\delta^{13}\text{C}$). *Deep Sea Research Part II: Topical Studies in Oceanography* **54**(23),
842 2794-2809. (doi:<https://doi.org/10.1016/j.dsr2.2007.08.007>).

843 71. Badalamenti F., D'Anna G., Pinnegar J., Polunin N. 2002 Size-related trophodynamic changes
844 in three target fish species recovering from intensive trawling. *Marine Biology* **141**, 561-570.

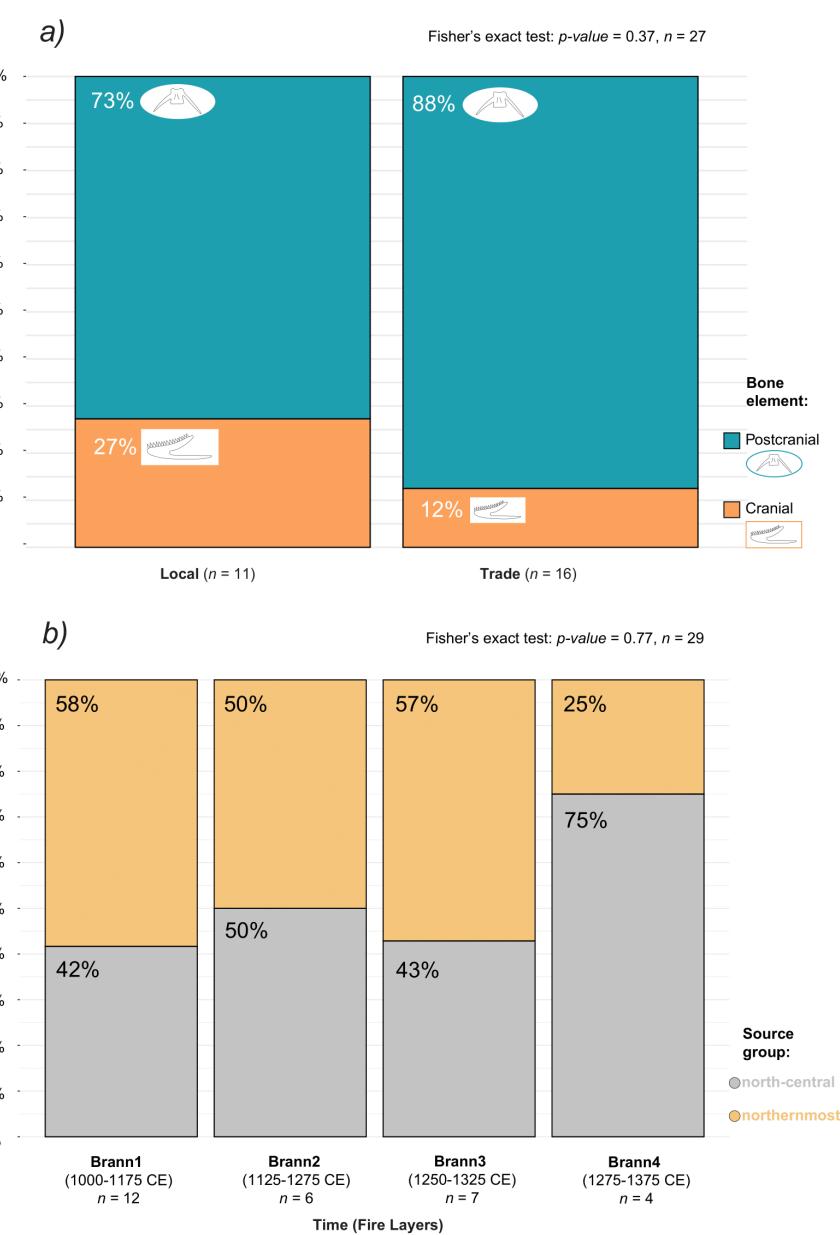
845 72. Miller M.J., Capriles J.M., Hastorf C.A. 2010 The fish of Lake Titicaca: implications for
846 archaeology and changing ecology through stable isotope analysis. *Journal of Archaeological Science*
847 **37**(2), 317-327. (doi:<https://doi.org/10.1016/j.jas.2009.09.043>).

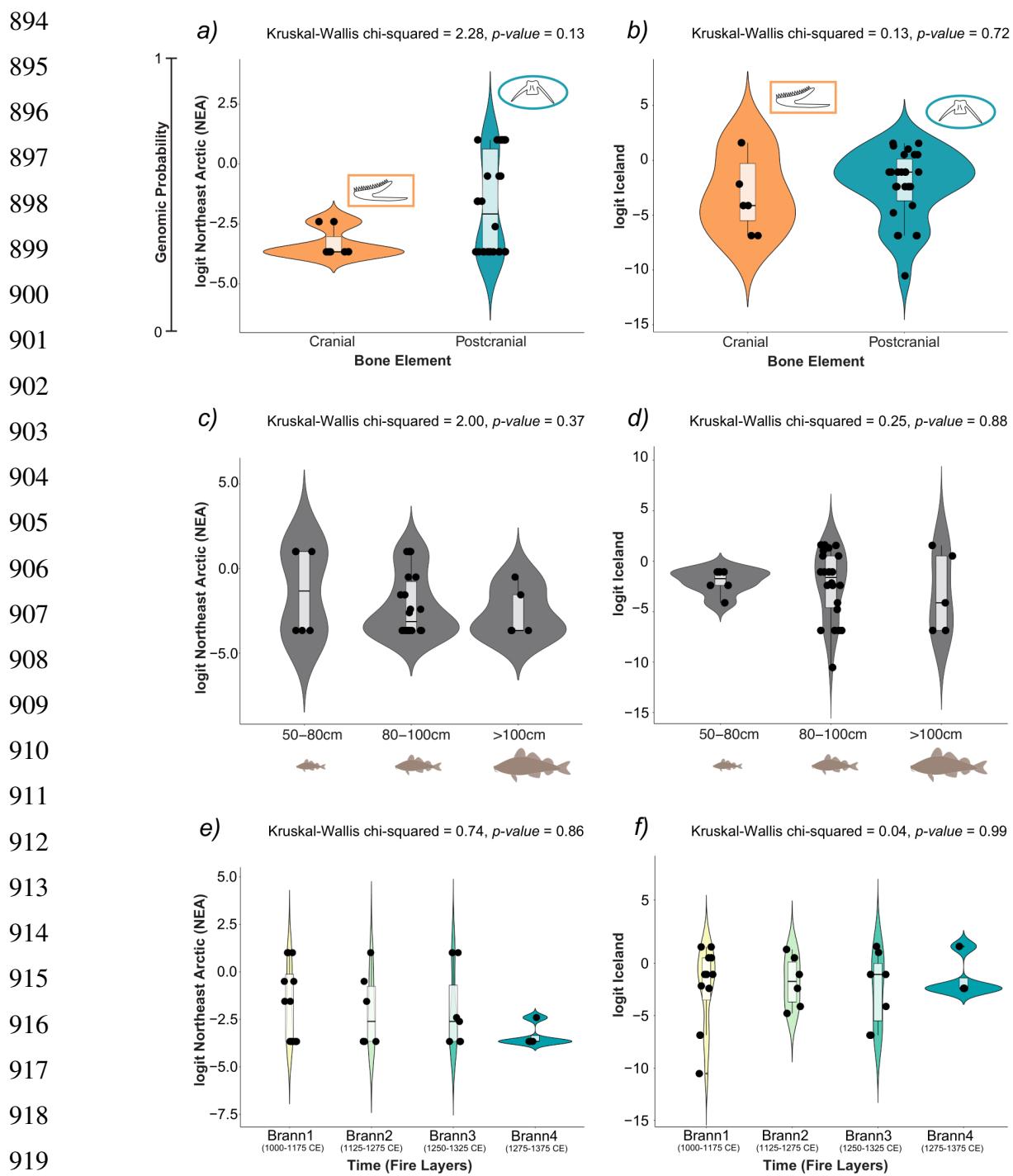

848

849

850

Supplementary material


851


852

853 **Figure S1.** Typical fragmentation and misincorporation patterns of nucleotides of aDNA from
854 sequencing data of 50 Atlantic cod specimens from Oslo gate 6 ($n = 44$) and Oslo Mindets tomt
855 ($n = 6$). Base frequencies are shown in the top panel. The bottom panel shows the increase in
856 cytosine to thymine (C > T) misincorporations due to cytosine deamination at the 5'-end of
857 DNA fragments and the corresponding increase of guanine to adenine (G > A)
858 misincorporations at the 3'-end. Several specimens with (lower number of reads <12,000)
859 introduce stochastic patterns in the Cytosine to thymine (C > T & G > A) misincorporations.
860

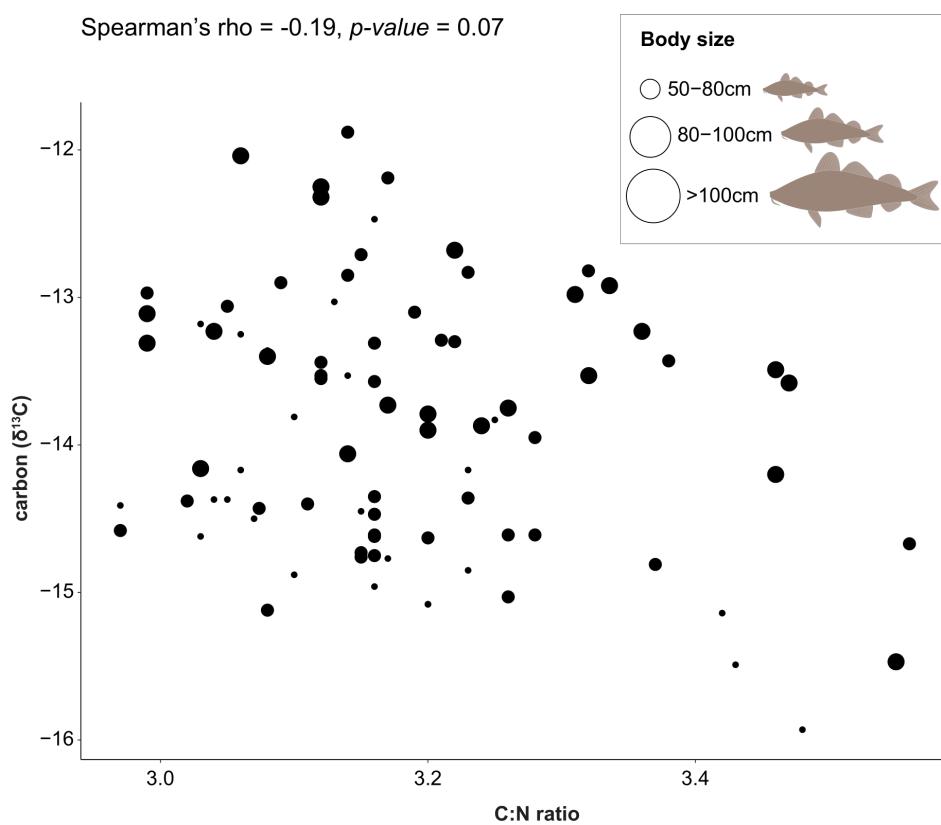
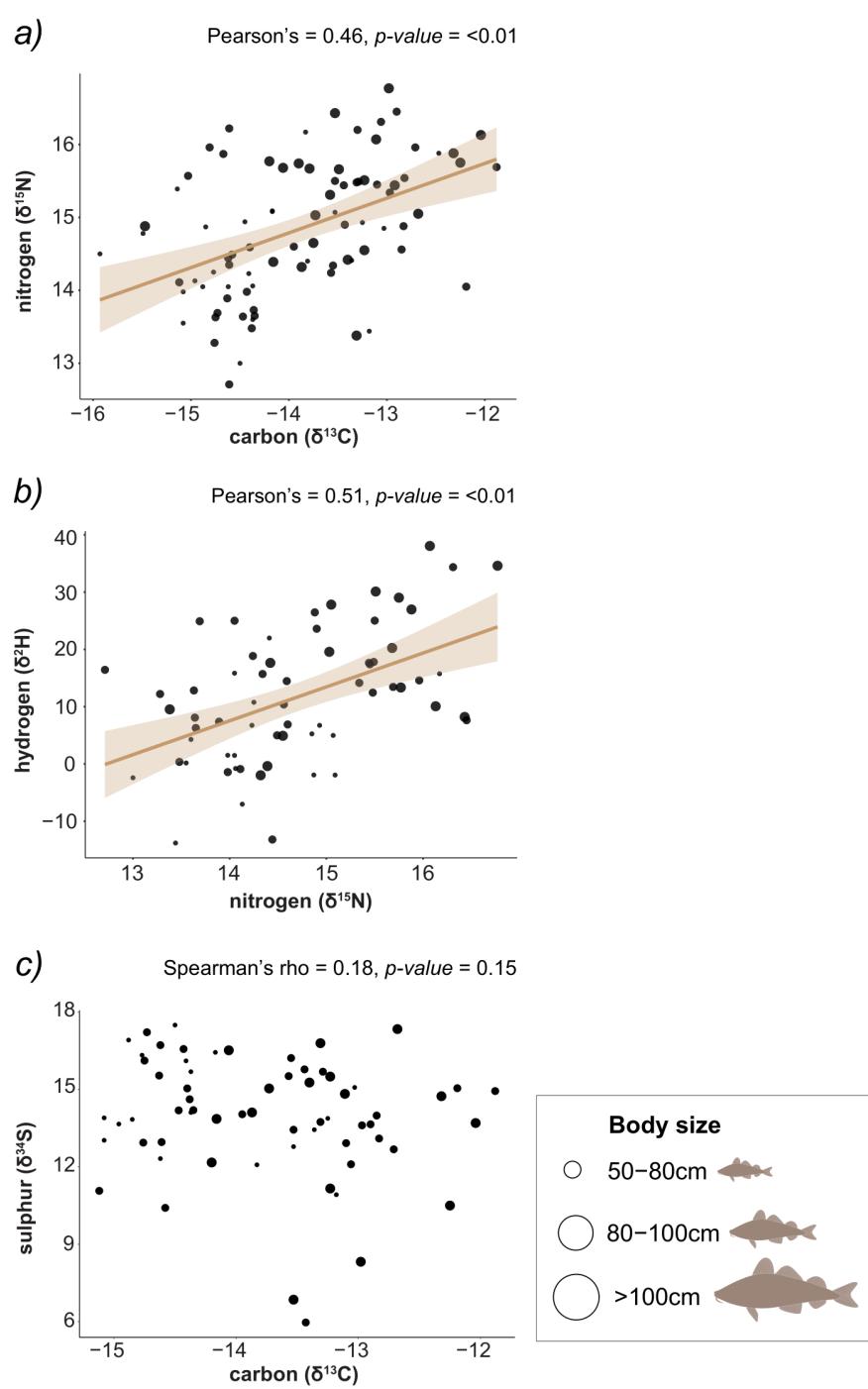
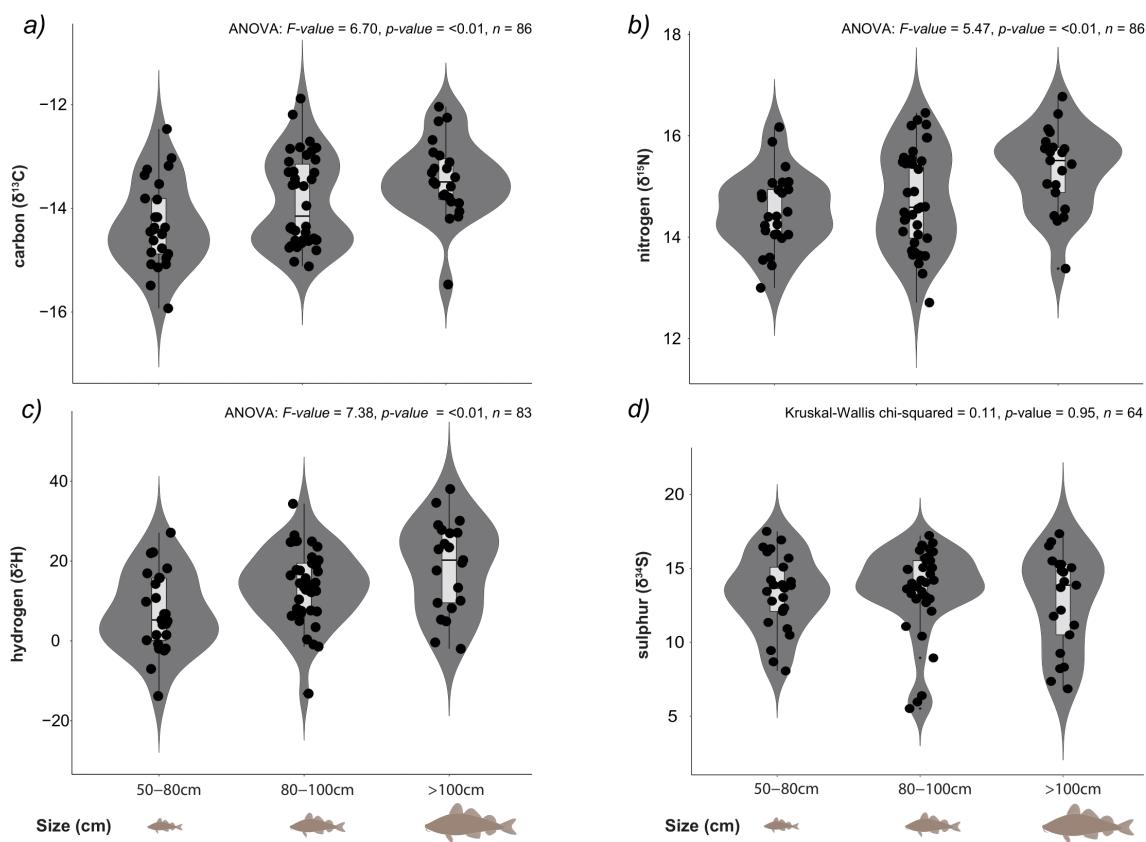

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

Figure S2. (a) Association between bone element (cranial or postcranial) and specimens with a presumed local or traded origin ($p\text{-value} = 0.37$). Percentage (%) of cranial (orange) or postcranial (blue) bones with a local or traded (NEA or Iceland) genomic assignment ($n = 27$). Individuals with ambiguous origin (i.e., COD082, COD084, COD339, COD356, COD398, COD405) and individuals with a northernmost origin below 70% probability (i.e., COD408 and COD421) were excluded from this test. **(b)** Distribution of specimens genetically assigned to a binary origin to the north-central (grey) or the northernmost (orange) groups across time (Brann 1 to Brann 4; $p\text{-value} = 0.77, n = 29$).

922 **Figure S3.** Associations between the probability of having a Northeast Arctic (NEA) or
923 Icelandic origin (*logit* values) and (a) bone element (cranial or postcranial) categories, (b) size
924 categories (small: 50-80 cm, medium: 80-100 cm, large: >100 cm), and (c) across time (Brann1
925 to Brann4).



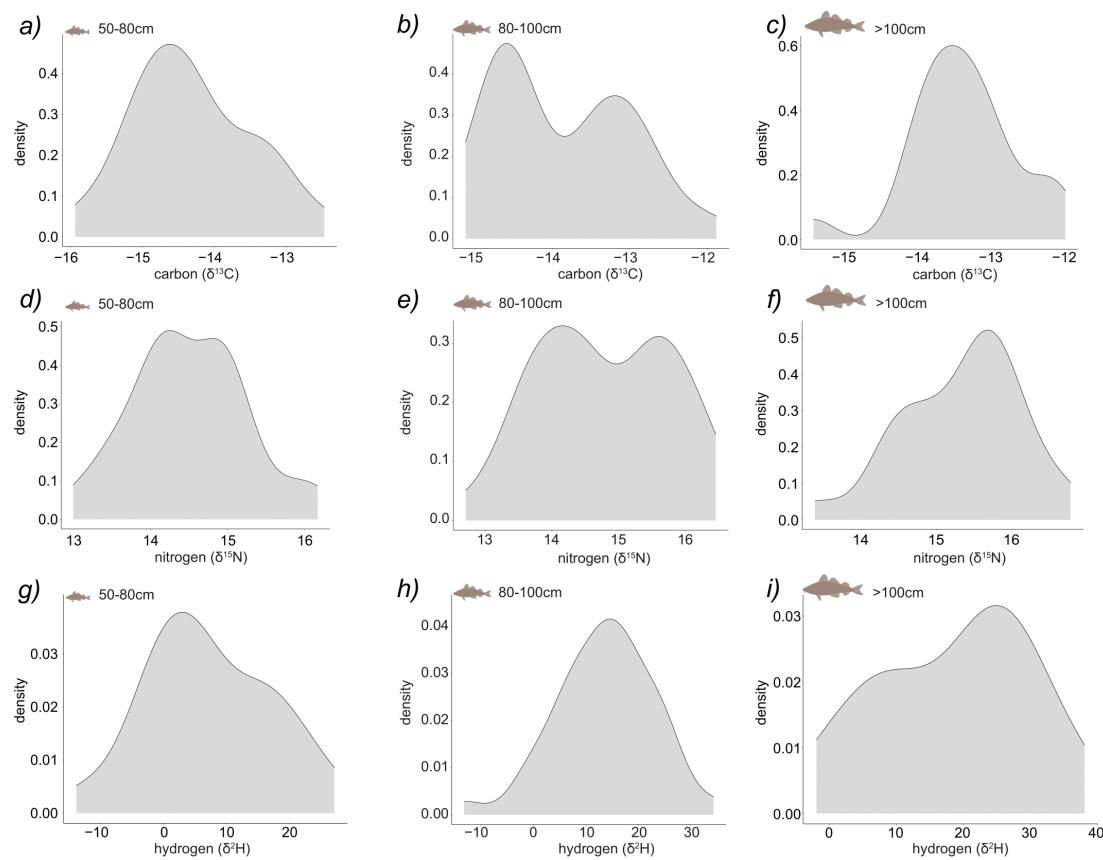
927


928 **Figure S4.** Isotope correlation between carbon ($\delta^{13}\text{C}$) values and C:N ratios from
929 archaeological Atlantic cod bones from medieval Oslo. A non-significant correlation is
930 observed.

931

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

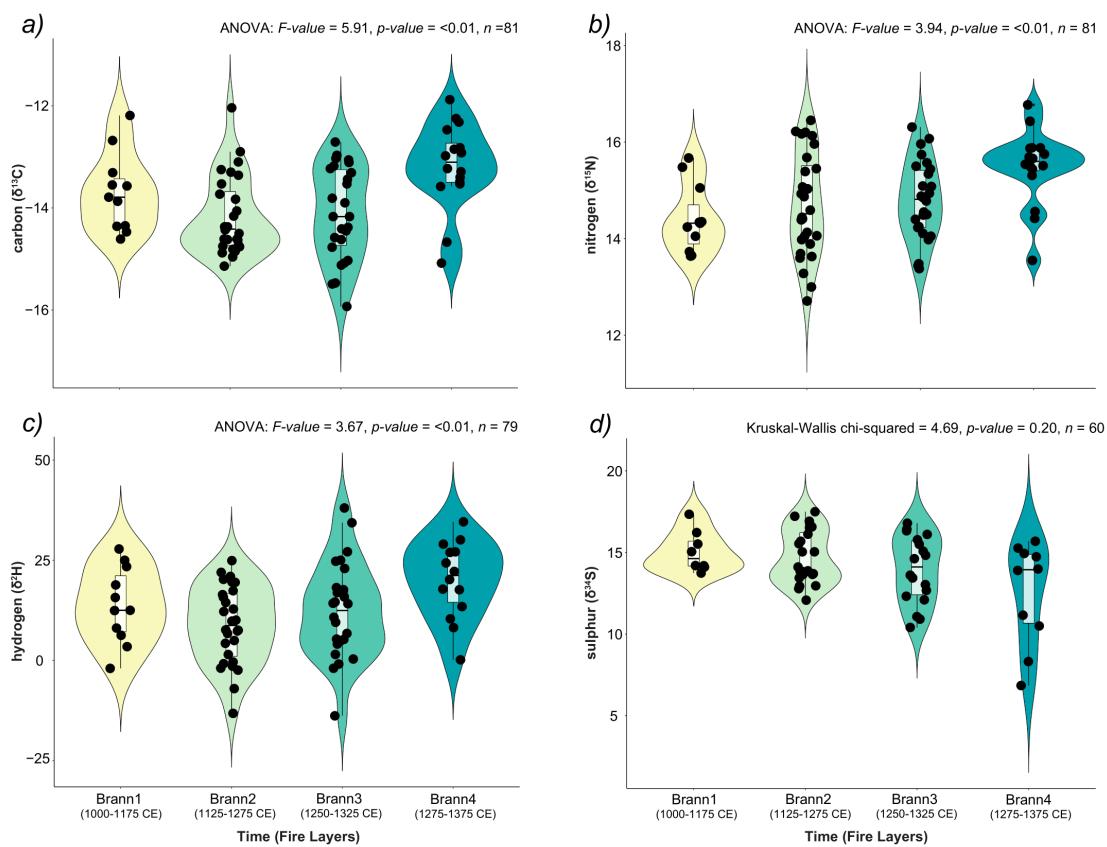
Figure S5. Isotope correlations of archaeological Atlantic cod bones from medieval Oslo. (a) Positive correlations between carbon and nitrogen ($\delta^{13}\text{C}$ - $\delta^{15}\text{N}$), and (b) nitrogen and hydrogen ($\delta^2\text{H}$) isotopes. (c) Negative correlation between sulphur and carbon ($\delta^{34}\text{S}$ - $\delta^{13}\text{C}$).



966

967

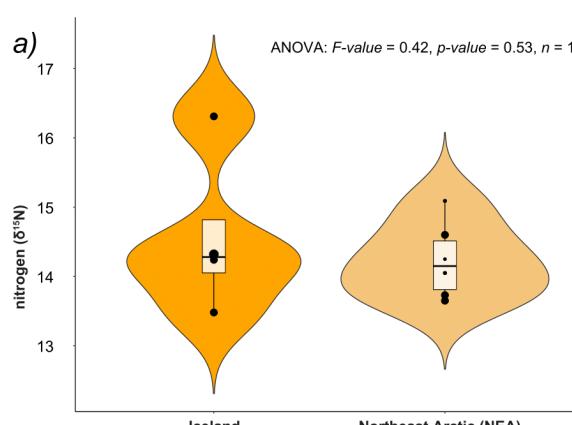
968 **Figure S6.** Differences between isotope values across body size and **(a)** carbon ($\delta^{13}\text{C}$) values,
969 **(b)** nitrogen ($\delta^{15}\text{N}$) values, **(c)** hydrogen ($\delta^2\text{H}$) values, and **(d)** sulphur ($\delta^{34}\text{S}$) values. Significant
970 differences were found in $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^2\text{H}$ values between the smaller (50–80 cm) compared
971 to the larger (>100 cm) body size categories (TukeyHSD post-hoc test $p\text{-value} = <0.01$).
972 Bimodal distributions were observed within carbon ($\delta^{13}\text{C}$) and nitrogen ($\delta^{15}\text{N}$) values for the
973 medium size category of fish (see also Figure S7.).


974

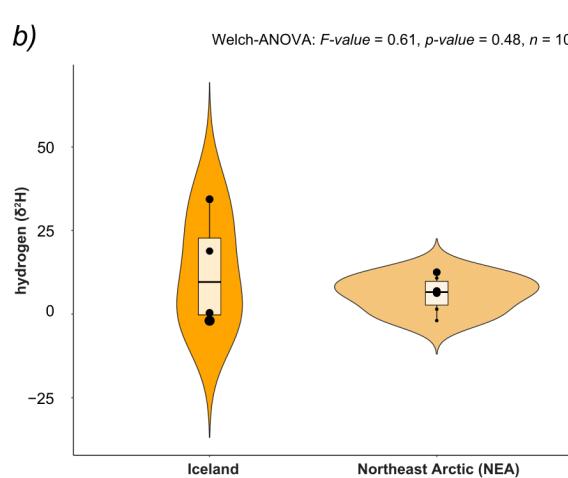
975

976 **Figure S7.** Distribution of (a, b, c) carbon ($\delta^{13}\text{C}$), (d, e, f) nitrogen ($\delta^{15}\text{N}$), and (g, h, i) hydrogen
977 ($\delta^2\text{H}$) values within body size categories (small: 50-80 cm, medium: 80-100 cm, large: >100
978 cm). A bimodal distribution is observed only within medium sized fish (80-100cm) for $\delta^{13}\text{C}$
979 and $\delta^{15}\text{N}$ but not in $\delta^2\text{H}$ or smaller and larger body size categories.

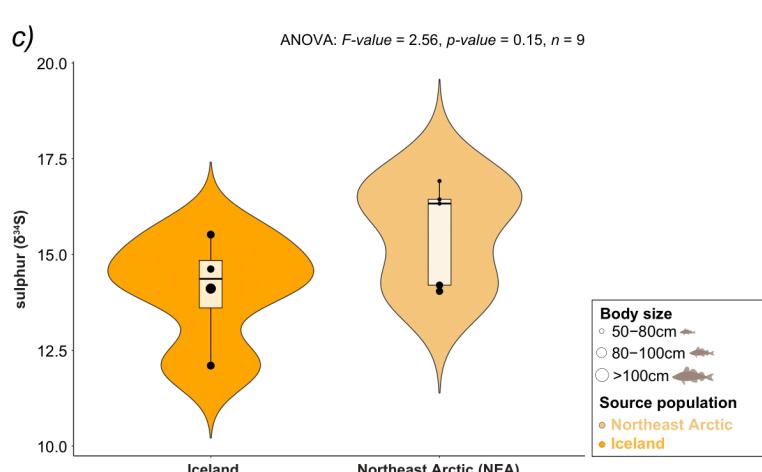
980



981


982 **Figure S8.** Differences between isotope values across time (Brann1 to Brann4): (a) carbon
983 ($\delta^{13}\text{C}$) values, (b) nitrogen ($\delta^{15}\text{N}$) values, (c) hydrogen ($\delta^2\text{H}$) values, and (d) sulphur ($\delta^{34}\text{S}$)
984 values. Significant higher isotope values ($\delta^{13}\text{C}$ $p\text{-value} = <0.01$; $\delta^{15}\text{N}$ $p\text{-value} = 0.03$ and $\delta^2\text{H}$
985 $p\text{-value} = 0.01$) were found between Brann4 (1275-1375 CE) and Brann2 (1125-1275 CE).
986 Furthermore, significant higher $\delta^{13}\text{C}$ values ($p\text{-value} = <0.01$) were found between Brann4
987 compared to Brann3 (1250-1325 CE), and significantly higher $\delta^{15}\text{N}$ values ($p\text{-value} = 0.01$)
988 were found between Brann4 and Brann1 (1000-1175 CE). No significant correlations were
989 obtained between $\delta^{34}\text{S}$ values across time (Kruskal-Wallis chi-squared = 4.69, $\text{df} = 3$, $p\text{-value}$
990 = 0.20, $n = 60$).

991


992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

1010
1011
1012
1013
1014
1015
1016
1017
1018

1019
1020
1021
1022
1023

Figure S9. Differences across a binary assignment to Iceland or NEA populations and (a) nitrogen ($\delta^{15}\text{N}$) values, (b) hydrogen ($\delta^2\text{H}$) values, and (c) sulphur ($\delta^{34}\text{S}$) values. Only specimens with a 70%, or higher probability of being assigned to either origin, were used.