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s 1 Abstract

17 Reconstructing the evolutionary history of different groups of organisms provides insight into how
18 life originated and diversified on Earth. Phylogenetic trees are commonly used to estimate this
10 evolutionary history, providing a hypothesis of the events. Within Bayesian phylogenetics a major
20 step in estimating a tree is in choosing an appropriate model of character evolution. In the case of
21 most extinct species, our only source of information to decipher their phylogenetic relationships is
2 through the morphology of fossils. We therefore use a model of morphological character evolution,

23 the most common of which being the Mk Lewis model. While it is frequently used in palaeobiology,
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24 it is not known whether the simple Mk substitution model, or any extensions to it, provide a
»s  sufficiently good description of the process of morphological evolution. To determine whether or
26 not the Mk model is appropriate for fossil data we used posterior predictive simulations, a model
27 adequacy approach, to estimate absolute fit of the model to morphological data sets. We first
2 investigate the impact that different versions of the Mk model have on key parameter estimates
20 using tetrapod data sets. We show that choice of substitution model has an impact on both topology
30 and branch lengths, highlighting the importance of model choice. Next, we use simulations to
31 investigate the power of posterior predictive simulations for morphology. Having validated this
32 approach we show that current variations of the Mk model are in fact performing adequately in
33 capturing the evolutionary dynamics that generated our data. We do not find any preference for
34 a particular model extension across multiple data sets, indicating that there is no ‘one size fits all’
35 when it comes to morphological data and that careful consideration should be given to choosing
36 models of discrete character evolution. By using suitable models of character evolution, we can
37 increase our confidence in our phylogenetic estimates, which should in turn allow us to gain more

38 accurate insights into the evolutionary history of both extinct and extant taxa.

» 2 Introduction

a0 The origination and subsequent diversification of species is a fascinating, yet complex, process.
a1 Phylogenetic trees serve as a powerful tool to aid in our understanding of this process. They
a2 provide a hypothesis of the evolutionary history of a group, enabling us to make inferences about
53 the relationships, timing of events, and patterns of evolution (Baum and Offner, 2008). While
s molecular data may be more commonly used in phylogenetics (Lee and Palci, 2015), morphological
s data was the original source of evidence (Farris et al., 1970) and remains extremely valuable to
s our interpretation of species diversification (Lépez-Antonianzas et al., 2022). As the majority of
a7 life on Earth is now extinct, the fossil record contains a wealth of knowledge about how species
s have adapted and diversified through time (Simpson, 1952). Integrating this information into
20 phylogenetic analysis, either in combination with molecular data, for example, in a total evidence
so approach (Gavryushkina et al., 2017; Mongiardino Koch et al., 2021) or independently, can therefore
51 further our ability to resolve species relationships in deep time. Studies have also shown that
52 incorporating fossil data into an analysis, even when the focus of the study is on extant taxa,

53 can improve the topological resolution or even accuracy of a phylogenetic inference (Beck and
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s« Baillie, 2018; Koch and Parry, 2020; Mongiardino Koch et al., 2021). The use of morphological
55 data in phylogenetics has been a topic of debate for many years, specifically, with regards to which
ss approach should be applied, i.e., parsimony or model-based inference (Kolaczkowski and Thornton,
57 2004; Wright and Hillis, 2014; O’Reilly et al., 2016; Puttick et al., 2017; Sansom et al., 2018;
s Goloboff et al., 2018, 2019). Due to the complex nature of morphological data, there are doubts
so about our ability to correctly model its evolution, and that any assumptions made by the models
o will bias the resulting inference (Goloboff et al., 2019). Parsimony is often considered to be an
61 assumption free approach; however, this is not entirely true, as there are still implicit assumptions
&2 about morphological evolution within a parsimony framework (Felsenstein, 1983; Steel and Penny,
63 2000). These two approaches have been compared many times throughout the literature, amassing
64 1in a large body of work which goes beyond the context of this study. Ultimately, model-based
es approaches have many more applications and statistical advantages, including the ability to select
6 among competing models and assess model adequacy (Wright and Hillis, 2014; O’Reilly et al., 2016;
¢7  Puttick et al., 2017). Amidst this debate, however, an important question has yet to be addressed:

es are available models of morphological evolution in fact adequate for our data?

s Morphological data collected from fossils, or extant taxa, can be either discretized (e.g., pres-
70 ence/absence) or continuous (e.g., body size measurements). Discrete morphological data is the
71 most widely used for phylogenetic inference (Lewis, 2001; Wright and Hillis, 2014; Harrison and
72 Larsson, 2015; Wright, 2019) and will be the focus throughout this study. The data must be man-
73 ually collected to create a morphological matrix, matching the format of a molecular alignment,
74 where each site now represents a morphological trait. Traits are described using a character which
75 is indicative of the phenotype expressed by a given taxon. Traits can have any number of character
76 states depending on the complexity and traits with more than 2 states are referred to as multistate.
77 Presence/absence traits can be described by using only 0 and 1, i.e., two character states. For
78 more complex traits, however, more character states may be required. An example of this could be
79 describing the shape of part of a skull or a shell. In this scenario a state is assigned to a particular
so modification of the trait, where a number of different adaptations (or states) may be present in a
g1 group. Within a single morphological matrix some traits can have binary character states, while
82 others require multiple states. Consequently, the same character state across different traits can
&3 have an entirely different biological meaning, even within the same matrix. See Wright (2019) for a
s« more in depth review of morphological data used in phylogenetics. The generation of this data is a

85 challenging and time-intensive process, requiring an in-depth knowledge of the taxonomic group in
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s question. Morphological data is, in turn, extremely valuable in helping us answer questions about

g7 the evolution of life that molecular data alone cannot answer.

ss  Within a model-based phylogenetic analysis, the process that gives rise to discrete character data
s is described using a substitution model. These models aim to capture the evolutionary dynamics
o0 resulting in the gain, loss or modification of discrete states. Substitution models are continuous-
o1 time markov chain (CTMC) models. They allow states to change (evolve) stochastically at any
92 point in time, and this change depends only on the current state that the evolving system is in. The
o3 assumptions of a substitution model are mathematically represented using a Q(or rate)-matrix. A
94 (Q-matrix is a square matrix where each element represents the instantaneous rate of change between
o5 states. That is Q[i, j] represents the rate of change from state i to state j. The probability of change
96 over a given interval, or branch length v, is calculated using the Q-matrix. Developing models
o7 that can accurately describe the complex processes driving morphological evolution is extremely
98 challenging and as a result, there is only one main model that is commonly applied: the Mk model
o (Felsenstein, 1992; Lewis, 2001). This model is a generalisation of the Jukes Cantor model (Jukes
1o and Cantor, 1969) used for molecular data, and as such, follows the same set of assumptions. It
101 assumes equal transitions rates between states, that is, the probability of transitioning from a state
102 0 to a1 is the same as going from a state 1 to a 0. It also assumes equal base (state) frequencies,
103 meaning the model expects that there is approximately the same number of each character state
104 throughout the morphological matrix. The Q-matrix for such a model, therefore sets all transitions
105 to have an equal probability, with its size being determined by the number of states. That is, for
106 a purely binary data set the Q-matrix will be a 2x2 matrix, representing the transitions from state

107 0 to state 1, from state 1 to state 0, and of no change.

18 Morphological data is, needless to say, different to molecular, so there are concerns about how well a
100 model originally developed for molecular data can be applied to morphological data. Additionally,
1o given that more complex models are often selected for molecular data, there is doubt about how
mt well such a simple model can be applied to morphological data. As such, there have been a
12 number of extensions implemented for the Mk model to relax these strict assumptions, and allow
13 the model to better describe the reality of morphological evolution. Lewis immediately noted an
s important difference between morphological and molecular data collection (Lewis, 2001). When
s taxonomists are creating a matrix, or character coding, they will typically exclusively choose traits

16 which differ across species, resulting in a matrix where every site is variable. This is a markedly
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17 different behavior from molecular data collection, where there can be many sites where a nucleotide
us is conserved across all species. Not accounting for this phenomenon, known as ascertainment bias,
ue  ( though referred to as acquisition bias in Lewis (2001)), can result in inferring trees with extremely
120 long branch lengths. Lewis dealt with this by conditioning the likelihood calculation on there only
121 being variable characters, developing the MkV model. There are a number of other extensions
122 that we will explore the effects of here as well. Accounting for among-character rate variation has
123 also been suggested as important when modeling morphological evolution (Harrison and Larsson,
124 2015). This allows different traits to transition at different rates, as some may be evolving faster
15 than others. This is frequently achieved by drawing rates from a discretized gamma distribution
s and allowing a trait to transition according to a given rate category, the same as is done for
17 molecular data (Yang, 1994). Data sets can also be partitioned, often based on the maximum
12s number character states (e.g., see Khakurel et al., in press). This ensures that traits are in a
120 Q-matrix of the correct size. That is, in an unpartitioned analysis, the Q-matrix will take the
130 size of the maximum character state in the morphological matrix, which could be for example 5.
131 Transitions between binary characters will therefore also be calculated in this Q-matrix of size 5,
132 meaning that there is some probability given to a binary character of transitioning to states 2, 3,
133 or 4. As we do not observe these states in the data, in some cases (e.g., where states 1 or 0 are
134 used to represent presence or absence) we can be certain that this is incorrect. Partitioning by
135 character states such that all binary characters are in a Q-matrix of size 2 and so on, avoids this
16 issue. Partitioning data can have an effect on branch lengths (Khakurel et al., in press) so it is
137 important that it is done when necessary. Similarly, however, incorrect partitioning may lead to

138 too low rates as a result of observer bias.

130 The impact of these different variants of the Mk model is still not fully understood in terms of the
10 effects on key parameter estimates, although they are likely to cause differences as has been shown
141 for molecular models (Lemmon and Moriarty, 2004). When deciding what model to use, there are
12 two distinct questions that can be asked, (1) which is the best model for my data compared to other
13 models? and/or (2) does this model fit my data? The first question, which is the more common
144 of the two, can be answered using model selection. Model selection approaches are common in
s molecular based studies although less frequently used for morphological data. For morphological
us studies there is a history of using substitution models that have been used in previous studies,
147 choosing a model based on the structure of the data set, or relying on software defaults, often

us  without providing statistical justification for model choice. As previously stated, data sets are
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190 manually produced, meaning they can differ from each other depending on the taxonomist. If, for
150 example, a substitution model had been applied to the taxonomic group of interest in the past, even
151 if you are using similar taxa, if the morphological matrix is different, using the same substitution
152 model as previous studies may not be logical. That being said, there are a number of examples
153 where model selection has been applied to morphological data sets (Caldwell et al., 2021; Riicklin
14 et al., 2021; Wright et al., 2021). By using a model selection approach, any subjectivity in model
155 choice can be reduced. One down side of model selection approaches, however, is that they give no
156 indication of the absolute fit of the model to the data. It tells you which model is the relative best,
157 but that does not necessarily mean that the model provides a good description of the true data
158 generating process, simply it fits better than other models (Gatesy, 2007). This is where question
159 two becomes important. Asking if a single model is adequate allows you to understand how well a
10 model can describe your data. These approaches, known as model adequacy, are currently gaining
161 in popularity for molecular data (Duchéne et al., 2017, 2018; Brown and Thomson, 2018) and have
12 been sporadically applied to morphological data sets (Huelsenbeck et al., 2003; Slater and Pennell,

13 2014) but have yet to be systematically assessed.

164« In order to confidently integrate fossils into phylogenetic approaches, ensuring we have accurate
165 substitution models is a critical step. Knowing that the models are behaving as expected can
166 increase our confidence in the results and allow us to ask increasingly complex questions. Here we
167 explored the impacts of different substitution models on key parameter estimates across a number of
168 morphological data sets, as well as investigated the best approaches for choosing a model. We found
160 that the models have a notable impact on both tree length and topology, highlighting the importance
170 of validating a model before using it. In our simulation study, model adequacy preformed well in
171 predicting which model the data was simulated under. Ultimately, using model adequacy, we found
172 that substitution models do in fact fit a number of empirical data sets, supporting the use of the

173 Mk model for morphological data in paleobiology.

174
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Figure 1: Posterior predictive simulation workflow. Step 1. an MCMC inference is carried out under a
given model. Step 2. data sets are simulated under the same model based on parameter estimates from
1. Step 3. an MCMC inference is then carried out on the simulated data sets. The pink boxes show the
test statistics that are applied to determine whether or not the model is adequate. Generalised Euclidean
distances and Gower’s coefficient are used to compare the data sets. Tree length and Robinson-Foulds are
used to compare the inferred trees. Consistency index and retention index use the empirical trees and the

empirical and simulated data sets to test for adequacy.

3 Methods

3.1 Data

We used a collection of previously published morphological matrices from Sansom et al. (2018)
(taken from http://graemetlloyd.com/matrdino.html). This data set contained 166 morphological
matrices of tetrapod taxa. The data sets vary in sizes in terms of taxa, from 12-219, traits, from
23-622, and number of different character states, from 2-10. They have also been used previously
to examine the use of phylogenetic methods and as such were a ideal data set for this study Sansom
et al. (2018). We removed matrices based on two criteria: (i) those that contained characters with
more than 9 states or 80 taxa, as they became too computationally expensive, and (ii) those that

contained traits where only character state “0” and missing characters, “?” were present for any
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185 trait. This resulted in a final data set of 114 matrices. The data sets varied in size, with the number

156 of taxa ranging from 12 to 80, and the number of characters being between 23 to 477.

w7 3.2 Empirical Comparison of Morphological Models

188 Initially, our focus was on investigating how substitution models impact the estimation of key pa-
189 rameters. We chose 7 variants of the Mk model (Mk, MkV, MkV+G, Mk+G, MkVP, MkVP+G,
1o MkP+G, see Table 1 for model assumptions) and compared differences in the resulting tree lengths
101 and topologies. All phylogenetic inference was performed in a Bayesian framework using the soft-
12 ware RevBayes version (1.2.1) (H6hna et al., 2016). We ran an MCMC inference under each of the
103 7 models for all 114 data sets. This allowed us to determine whether there are any systematic dif-
104 ferences in parameter estimates that could be attributed to the substitution model. For all models
105 we assumed a uniform tree prior on the topology. Tree length was drawn from an exponential prior
106 distribution with a rate parameter of 1. Relative branch lengths were drawn from a Dirichlet prior
197 distribution (Zhang et al., 2012). The branch lengths were calculated as the product of the tree
18 length and the relative branch lengths. Preliminary analyses were run using an exponential prior
190 for branch length estimation, however, we found the Dirichlet tree prior to perform better in sim-
200 ulations. We used an Mk model, with the size of the Q-matrix being determined by the maximum
20 character state of each data set. When allowing for among character rate variation, ACRV, (+G)
202 the shape parameter of the gamma distribution, o was estimated as the inverse of a random variable
203 alpha_inv drawn from the exponential distribution with a rate parameter of 1. We discretized the
200 gamma distribution into four discrete categories (Yang, 1994). To account for ascertainment bias
25 (+V), we selected the variable coding option in RevBayes. Partitioned models (+P) split the data
206 set based on the number of character states. Each grouping had its own Q matrix. That is, all
207 binary traits were assigned to a Q-matrix of size 2, all tertiary traits were assigned to a Q-matrix
208 of size 3 and so on. For this set up, we applied the same gamma distribution for ACRV to each

200 partition.

20 We ran the MCMC for 20,000 iterations with two simultaneous chains, sampling every 10 genera-
a1 tions. The output of both chains was automatically combined in RevBayes, resulting in a posterior
212 sample of 4,000. Convergence was assessed using a custom R script with the R package coda

213 (Plummer et al., 2006) to ensure ESS values > 200 of all parameters estimated.
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24 3.2.1 Posterior Summaries

a5 Tree length was calculated as the sum of the branch lengths averaged across the entire posterior
216 distribution. We also calculated the percentage change in tree length relative to the Mk model for
217 each data set to make it easier to observe any consistent patterns across models. We then explored
xus  the differences in estimated tree topologies from the different substitution models for each data
210 set. Using a sample of 1000 trees from the posterior distribution for each substitution model, we
20 calculated the normalised Robinson-Foulds distance between all trees. With this resulting matrix
21 we performed a multivariate homogeneity of group dispersions analysis using the R package vegan
22 (Oksanen et al., 2022). This calculated the distance between points and their group centroid.
23 Plotting this as a PCoA allowed us to visualise where models were in tree space, relative to one
24 another. In order to quantify these differences, we carried out a permutation test to assess their
225 significance using the permutest function in the vegan package (Oksanen et al., 2022). This allowed
26 us to determine if the variability in RF distances inferred using each of the models was significantly

»7 different from each other.

Models & Extensions Assumptions
Mk all transition are equal (Lewis, 2001)
\% accounts for ascertainment bias (Lewis, 2001)

allows for variation in substitution rates among sites (Yang, 1994)

P partitions the data based on the number of character states

Table 1: Models tested.

2 3.3 Assessing the Performance of Model Adequacy and Model Selection Meth-
229 ods for Morphological Data

230 Choosing an appropriate model of evolution is an important step in any Bayesian phylogenetic
231 analysis. The results from an inference will be conditioned on the assumptions of the evolutionary
22 model. As such, if the model’s assumptions are markedly different than that of the underlying
233 process that generated the data, the results may be inaccurate. Methods for choosing an appropriate
23« model often take a model selection approach, relying on estimation of the marginal likelihood

235 (Brown, 2014b). These methods provide the relative fit of competing models. Although a model
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236 may be selected as the best choice, it does not necessarily mean that the model is, in any way
237 adequate for the data set being analysed. That is, it may not provide a sufficiently realistic
238 description of the data generating process (Gatesy, 2007; A Shepherd and Klaere, 2019). Therefore,
239 model selection provides no indication about how well the model actually fits your data, only its
20 relative fit compared to other models. In contrast, model adequacy approaches provide information
21 on the absolute fit of a model to a data set. They can provide information about a model’s ability
22 to capture key characteristics of a given data set, as well as highlight where the model may be
23 inadequate. Importantly, model adequacy provides the ability to reject models, even if they are
2 identified as the “best” using a model selection approach (A Shepherd and Klaere, 2019; Brown
s and Thomson, 2018).

26 Posterior-predictive simulations (PPS) is a model-adequacy approach that has been applied to a
2a7  variety of data types, albeit with limited frequency in phylogenetics (Gelman et al., 1996; Bollback,
28 2002; Brown, 2014a; Brown and Thomson, 2018; Héhna et al., 2018; Schwery et al., 2023). Briefly,
29 it works by simulating data under a given model and comparing the similarity of the empirical
20 data to the newly simulated data using a test statistic. The rationale here being that if the model
21 adequately captures the underlying dynamics of the processes generating the data, the simulated
2 data would be similar to the empirical (Gelman et al., 1996; Bollback, 2002). To date, the use of
23 PPS has been demonstrated more often for molecular data, for example Brown (2014a) and Duchéne
24 et al. (2018), however, it has also been suggested for models of continuous trait evolution (Slater
25 and Pennell, 2014), and discrete character evolution (Huelsenbeck et al., 2003). Using simulations,
6 we investigate the use of Bayes factors and PPS for determining whether a morphological model

257 fits our data.

»s 3.3.1 Model Adequacy Using Posterior Predictive Simulations

250 To test the adequacy of morphological models we used posterior prediction simulations (PPS)
%0 following the workflow as described in Hohna et al. (2018) implemented in RevBayes. This can be
261 broadly broken down into four mains steps. We provide a brief description of these steps here, but
22 for a more thorough description see Hohna et al. (2018). (1) The first step is to analyse the empirical
263 data under a given model. This involves a regular MCMC inference sampling parameter values from
24 the posterior distribution. (2) New data sets are then simulated in R using the phangorn R package

265 (Schliep, 2011). Data sets are simulated under the same model as used in step 1 with trees and

10
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266 parameter estimates inferred in step 1. (3) Inference under the same model is then carried out on all
27 the newly simulated data sets from step 2. (4) Test statistics are calculated and compared between
s the original empirical data and inference results, and the newly simulated data and inference results,
260 see Fig. 1. The overarching idea here being, the more similar the simulated data is to the empirical
o0 data, the better the model is at describing the underlying processes that produced your data.
onn This in turn indicates whether we can have confidence in the results inferred under a given model.
o Note it is practical to simulate data sets in RevBayes, and we provide instructions for doing so in
213 the associated tutorial (https://revbayes.github.io/tutorials/pps_morpho/pps_data_morpho.html).
o714 We chose to simulate data using phangorn as it was slightly more computationally efficient given
275 that our study featured an exceptionally large number of simulations (700,000 simulations for 160
276 individual data sets), but this should not be a concern for an empirical study, which would typically

277 only contain one or a few individual data sets.

s 3.3.2 Candidate Test Statistics for Morphological Data

o9 PPS are only as good as the test statistics used, meaning if the test statics are not able to capture
280 differences that result from the underlying dynamics of the data generating processes, it will not be
281 possible to use PPS to understand the adequacy of a given model. Using test statistics allows us
232 to convert the empirical data and output into numerical values that we can use to summarize the
283 differences between empirical and simulated data. The test statistics can then be compared using
234 effect sizes, which provide a way of quantifying variation in model fit and allow us to distinguish
285 between the fit of competing models. Previous studies have used posterior-predictive p-values to
286 accept or reject a model. In this study we chose to focus on effect sizes over p-values for two reasons.
287 First, given that fit of morphological models to empirical data had not been tested previously, we
238 wanted to determine how different models preformed and essentially, potentially how poorly they
280 each fit empirical data. Second, effect sizes provide a more intuitive way of comparing the fit of
200 different models. By applying p-values only we can assess whether a model is adequate or not, but
201 not how the models perform relative to each other (Brown, 2014a; Duchéne et al., 2017). Effect
202 sizes therefore allow us to gain a better understanding of the impact of different morphological
203 models, and ultimately address the main questions of this study. This would not be necessary

204 perhaps in an empirical study, and we do include the use of p-values for our empirical analysis.

205 Here, the effect sizes were calculated by:
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empT S — simT'S

ES = stdSimTS (1)

where empT'S is the empirical value for a given test statistic, simT'S is the value of the test statistic
from a single simulated replicate and stdSimTS is the standard deviation across all simulated
replicates. The closer this number is to zero, the better the model is at explaining your data. Test
statistics can be divided into three categories: (1) data based, (2) inference based, and (3) data
inference hybrid or mixed. Data based test statistics compare the actual morphological data sets
themselves, inference based compare the inferred trees and mixed statistics uses both the data and

the trees to compare your empirical and simulated values.
Data Based Test Statistics

As the name suggests, these test statistics focus on characterising the matrices, themselves here
meaning the morphological data. As PPS studies in phylogenetics have previously focused on
molecular data, many of the data based statistics are only suited to DNA. For example, quantifying
the GC content or number of invariant sites (Hohna et al., 2018). Summarising morphological data
sets in a similar way requires different metrics. To do this we explore the use of disparity metrics.
Disparity is a measure of the morphological variation observed among species (Hopkins et al., 2017).
It is important to note, we are not interested in the actual measure of disparity, we are interested
in how the value differs between the original empirical data and the simulated data. We tested two

metrics of disparity.

(i) Generalised Euclidean Distances (GED) (Wills, 1998) is a popular disparity metric commonly
used in vertebrate research (Brusatte et al., 2011; Lehmann et al., 2019). This measure is similar
to the basic Euclidean distances but incorporates adjustments to accommodate missing characters.

Wills (2001) defines GED as:

where S;; is the total distance between taxa ¢ and j, v is the total number of characters in the
matrix, Wji is the weight of the kth character, and S;;;, is the distance between taxa i and j at the

kth character. S equals 0 when the ith and jth sequence match in the kth position and 1 when

12
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320 there is a mismatch. To account for missing data, a mean estimate of disparity is first calculated

a1 across all comparisons for which we have observations:

E:S(ijk)max Wik

322 where S(;;p) is the maximum possible distance between taxa i and j for the kth character, which
323 equals 1 for discrete characters. The term gijk'S(z'jk)maI is then substituted into Equation 2 for

224 missing S;j;, values. In all cases, we treat characters as equally weighted, i.e., Wjj;, = 1.

w25 (i) Gower’s Coefficient (GC) (Gower, 1971) is commonly used in invertebrate studies (Hopkins
326 and Smith, 2015). This metric calculates disparity differently to the GED, notably in regards to
327 how it deals with missing characters. Here this is achieved by normalising by the available data.

28  GC can be written as (Lloyd, 2016):

M=

2 g
Sz‘jkak

k=1 (3)

2 .
5ijkWZJk

T

Sij =

N

=
Il

1

320 where d;5;, is coded as 1 if both taxa i and j can be coded for k (i.e., character states are observed

30 for both taxa), and zero if not. As above, we use assume equal weights, i.e., Wj;, = 1.

s For both the above metrics, we used the R package Claddis (Lloyd, 2016). In the calculations we
32 set characters as unorderd. The output from this matrix of the pairwise distance between taxa. We
333 took the average disparity across the matrix for the calculation of the effect size, i.e., for empTS

3¢ and simTS.
333 Inference Based Statistics
336 Inference based test statistics aim to characterise the inferred trees in the posterior distribution.

ss7 (i) Mean Tree Length (TL) was calculated using all the tree lengths sampled in the posterior

38 distribution as:

| =

k
> TL; (4)
=1

330  where TL is defined as the sum of branch lengths T'L = Zl;vl_g bl;. This calculation was done in

13


https://doi.org/10.1101/2024.01.25.577179
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577179; this version posted January 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a0 RevBayes. We took the mean tree lengths across the posterior distribution of trees as the input for

a1 the effect sizes.

s2 (i) Mean Robinson-Foulds Distance (RF) was used to measure the topological uncertainty within

s3  the posterior distribution (Robinson and Foulds, 1981). This value was calculated in RevBayes.

T
L

RF = F(¥,;, ) (5)

||M
Mw

s Mixed Test Statistics

a5 These test statistics take both the data and the tree into consideration. Again, we investigate the
a6 use of two test statistics here.

347

us (i) Consistency Indexr (CI) (Kluge and Farris, 1969) which is a measure of homoplasy within the

9 data set. It can be calculated as:

CI = (6)

m
s
350 where m is the minimum possible number of steps or changes along a tree and s is the reconstructed
351 number, i.e., the number observed along estimated trees (Kluge and Farris, 1969). This metric has
32 been used to characterise data sets in paleontology (Murphy et al., 2021) and has been applied to

353 model adequacy studies focusing on molecular data (Duchéne et al., 2018). A CI of 1 indicates no

s« homoplasy and gets closer to zero as the amount of homoplasy increases.

35 (ii) The Retention Index (RI) (Farris, 1989), builds on the consistency index to calculate the

356 potential synapomorphy observed along the tree and is calculated as:

357 where ¢ is the maximum number of possible steps on a given tree.

s For both consistency and retention index, we used the maximum clade credibility (MCC) tree
350 generated from inference of the empirical data for all calculations. We carried out preliminary

360 analysis where we used the entire posterior distribution of trees for this calculation. The increased

14
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61 computation time from a number of minutes to 24 hours and produced extremely similar results,

32 see fig. S2. For this reason, we continued to use the MCC tree only for the rest of the analysis.

363 3.3.3 Model Selection Using Stepping Stone Sampling

s« For model selection, Bayes factors are computed to compare between models. In order to do this we
s6s first have to calculate the marginal likelihood of the data. The marginal likelihood is an important
6 quantity in Bayesian model selection as it provides a measure of the goodness of fit of the model
37 to the data, while accounting for model complexity. The marginal probability is the probability of
s the data integrated over all possible parameter values weighted by their prior probabilities for a
360 given model. This is tricky to calculate so we avoid calculating it in regular MCMC inference using
s the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). We therefore, need to
sn use a different approach in order to approximate this value. One such approach is stepping stone
sz sampling. Stepping stone sampling is a Monte Carlo method that uses a sequence of intermediate
a3 distributions, or steps, between the prior and posterior distributions to compute the marginal
s likelihood. Stepping stone sampling has been demonstrated to be a reliable method for calculating
srs Bayes factors and therefore performing model selection with molecular data (Xie et al., 2011; Héhna
st6 et al., 2021). While comparing marginal likelihoods has been used for morphological data to choose

s77 - a model, its performance has yet to be assessed (Wright et al., 2021).

s 3.3.4 Simulated Data

s We based our simulation study on two empirical data sets, one on Proboscideans (the group con-
0 taining elephants and their nearest extinct relatives) (Shoshani et al., 2006) and the other on
ss1 Hyaenodontidae (Egi et al., 2005). For simplicity we will refer to each data set as simulated ele-
sz phants and simulated hyenas, respectively. The simulated elephant data set is larger, having 40
383 taxa, 125 characters with 6 states compared to the simulated hyaenas which has 15 taxa, 65 char-
s34 acters and 5 states. For each data set, we used 20 trees from the posterior distribution inferred
ss under a given model and simulated character data under the same model in R using phagnorm
sss  Schliep (2011). We did not simulate any traits with missing data. We did this for the MkV, MkVP,
37 MkV+G and MkVP+G models for each data set (160 simulated replicates in total).
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s 3.3.5 Analysis of Simulated Data

0 We carried out PPS following section 3.3.1 on all simulated elephant and simulated hyena data
a0 sets. This allowed us to jointly validate the candidate test statistics and determine how well PPS
301 can detect the correct model, as well as how it handles incorrect models. We analysed each of the
sz simulated data sets under the same seven models as in section 3.2 (Mk, MkV, MkV+G, Mk+G,
s MkVP, MkVP+G, MkP+G) and kept all model parameters the same. The MCMC was ran for
304 10,000 iterations, with two individual chains. Convergence was assessed by calculating the ESS
305 values for the likelihood, prior, posterior, tree length and when present in the model, the estimated
306 alpha values using the R package coda (Plummer et al., 2006). MCMC chains that produced ESS
307 values < 200 were ran again with an increase in the chain length. There were 560 replicates for
38 each data set size. For the simulated hyena data sets, 533 converged after 10,000 iterations, 24 after
390 50,000 iterations and 3 after 100,000. For the simulated elephant data, 548 reached convergence

a0 after 10,000 iterations and 12 required 50,000 iterations.

200 The number of simulations required for PPS is not strictly defined. Given that the number of
202 simulation replicates will increase both the computation time and memory requirements, doing
103 extra should be avoided. To explore this we used both of the simulated data sets, simulated
204 under the MkV+G model. We ran an MCMC inference as described above with 1,000 simulation
a5 replicates. We calculated the cumulative means for each test statistic inferred under each model.
ws Following Robinson et al. (2004), we plotted the cumulative means thereby taking a graphical
207 approach that shows the point at which the line becomes flat, indicating the required number of
a8 replicates Fig. S3, (Robinson et al., 2004). We found that after 500 replicates the lines were flat
a0 and we determined this to be sufficient. To ensure that this number of simulation replicates was
a0 not effecting the calculation of the actual effect sizes, we compared the effect sizes for each test
a1 statistic with 500 and 1,000 replicates. For ~92% of the effect sizes calculated, we found that the
a2 difference was less than 0.1 with a median of ~0.03. The largest change in effect sizes we saw was
a3 between 500 and 1,000 replicates which was 0.5. This was calculated for the two data based test
414 statistics both inferred under the model MkVP+G and the same replicate. This results was thus
a5 considered an outlier. All other differences were less than 0.25, and did not change whether a model
416 was considered to be adequate or not. As a results of these tests, we determined that having 500

417 simulations replicates would be sufficient for our PPS analyses throughout.

a8 We then used stepping stone sampling to estimate the marginal likelihoods under each of the

16


https://doi.org/10.1101/2024.01.25.577179
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577179; this version posted January 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

419 models. We kept all model parameters the same as above, and used 48 stones.

20 3.4 Analysis of Empirical Data

41 Once we identified appropriate test statistics, we could test model fit using PPS on empirical data
422 sets to determine which, if any, morphological models were adequate. We chose to analyse 8 data
423 sets here. This was limited by the computational costs of running the analysis multiple times. Data
424 sets were chosen to cover a range of sizes, in terms of taxa, characters and states. We tested the
a5 same 7 models we used throughout (Mk, MkV, MkV+G, Mk+G, MkVP, MkVP+G, MkP+G) and
226 kept all model parameters the same as in section 3.3.1. We also used stepping stone sampling on
427 each of the data sets in order to see how the models chosen by model selection compared to those
428 identified as most appropriate by model adequacy. Posterior p-values were calculated in R for each

420 of the test statistics to compare with the results obtained using effect sizes.

2 4 Results

s 4.1 Empirical Comparison of Morphological Models

432 Assuming different models of morphological evolution produced different estimates of key parame-
433 ters of interest. Figure 2A shows the percentage difference in mean tree lengths relative to that of
43¢ the Mk model for all 114 data sets. There are some general trends that emerged here. As expected
a5 (Lewis, 2001), the MkV model produced smaller estimates of tree length relative to the Mk model
a6 for all but one data set. The Mk+G model produced longer trees for 96% of the data sets compared
437 to the Mk model. However, when used in combination, these two extensions produced the smallest
138 trees compared to all models in 96% of data sets. Partitioned models estimated larger trees, with
430 the MkP+G model estimating larger trees in 100% of the data sets, consistent with the findings
w0 of Khakurel et al. (in press). Interestingly, the MkVP+G model was divided between larger and
a1 smaller trees compared to the Mk model, with only 35% of the trees being larger. Figure 2B shows
a2 the tree length plotted for two data sets, of Hyaenodontidae (Egi et al., 2005) and Proboscideans
a3 (Shoshani et al., 2006), respectively. This is to highlight, that while there are some general trends,
44 models still behave differently depending on the data set. It is worth noting that the Shoshani

us et al. (2006) data set (Figure 2B (i)) is the larger of the two, both in terms of number of taxa and
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a6 characters. The influence of different models on tree length tended increase with larger data sets,

47 both in terms of taxa and character number see supplementary fig. S1.

4s  Figure 2C shows the tree space for the same two data sets. Using the permuted p-values estimated
49 from the pairwise distances using Robinson-Foulds, we found that for both data sets the majority
450 of models occupied a different tree space, i.e., differences in topology were significant. For the data
a1 set from Egi et al. (2005), trees inferred using MkV, MkV+G and Mk+G models grouped in a
a2 similar tree space, whereas all other models occupied different spaces. Whereas for the data set
53 from Shoshani et al. (2006), we found two separate groupings, one of trees inferred using the Mk+G
4« and MkV models, and the other an overlap between the MkV and MkV+G models. These results
45 highlight that, not only do the substitution models have an impact on key parameter estimates,

a6 but this impact is not uniform across data sets.
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Figure 2: Analysis from 114 data sets under the 7 different models Mk, MkV, MkV+G, Mk+G, MkVP,
MkVP+G, MkP+G. A, the changes in mean tree length of the posterior inferred using each model relative
to the Mk model. B, the tree length calculated for each model for two different data sets from Egi et al.
(2005) (Hyaenodontidae) and Shoshani et al. (2006) (Proboscideans), respectively. C, the tree space of the

same two data sets as for B.
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7 4.2  Assessing the Performance of Model Adequacy and Model Selection Meth-
458 ods for Morphological Data

w9 4.2.1 Candidate Test Statistics for Morphological data

w60 We explored the use of six test statistics for morphological models. The desired characteristic of
461 test statics considered here, is their ability to indicate the adequacy of a particular model while
462 also pointing out the inadequacy of another, i.e., we want the effect size of the correct model to
463 be consistently around zero, while being far from zero for the incorrect models. We will focus on
464 the results from both hyena and elephant data sets simulated under the MkV+G and MkVP+G
465 models. We carried out the same investigation on data sets simulated under the MkV and MkVP
466 models and reached the same conclusions, see Fig. S6 -S8. The data test statistics, shown in Fig.
w67 3, Grower’s coefficient and Generalized Euclidean Distance, both show a similar pattern. For the
s unpartitioned models there is no discernible preference for a given model. That is, they all fall
460 within a similar range of effect sizes. For data simulated under a partitioned model, there was
470 a stronger separation of effect sizes, where all the partitioned models are closer to zero and fall
a1 within a similar range. This pattern is more consistent for Gower’s Coefficient, suggesting it’s
472 potential use as a test statistic. Neither of the inference based test statistics, shown in Fig. 4, show
473 any strong or meaningful separation of effect sizes. Meaning, there is no preference for any of the
422 models and it is unclear what explains this pattern. As for the mixed test statistics, consistency
475 index and retention index, shown in Fig. 5, there is a similar pattern to that of the data based test
476 statistics, however, with the differences in effect sizes between models being more pronounced. In
a7 order to quantify these results, we focused on three key features, (i) the variance in effect sizes for
478 the correct model, meaning the total range of effect sizes for a given test statistic with the correct
a9 model, (ii) how incorrect models preformed, meaning the total range of effect sizes for a given
w0 test statistics across all models and, (iii) how easily we could differentiate between adequate and
41 inadequate models by calculating the number of models which fall into the correct model effect size
a2 (ES) range. A numerical summary of these results can be found in Table 2 and 3. Consistency index
a3 and retention index demonstrated the best performance of these three aspects, with the correct
42 models being consistently close to zero, incorrect models having larger ES values, and the fewest
45 number of models on average falling within the correct model effect size range. While Grower’s

486 coefficient also seems promising, the difference in effect sizes is less than that of the mixed test
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47 statistics. As such, in the empirical analyses we relied solely on the mixed test statistics, the

488 consistency and retention indices.
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Figure 3: Validation of the data based test statistics. Plots show the output from each simulated data
set with 20 replicates for each test statistic. The coloured points indicate the correct model, with the grey
horizontal bar marking the range of effect sizes calculated for the correct model. B = Mk, X = Mk+G, A
= MkV, ® = MkV+G, *¥ = MkVP, ®@ = MkP+G, and + = MkVP+G

0 4.2.2 Model Adequacy vs. Model Selection

100 Here we compared the use of model adequacy and model selection using simulated data sets. To
401 reiterate, unlike model selection, model adequacy approaches do not rank potential models in the
102 same way, indicating that one model is the best. Therefore, for any given data set, if multiple
13 models are investigated, as was the case here, several models may be adequate according to a

204 particular test statistic. We will focus on the same 4 data sets as in section 4.2.1.

205 In the above section, to identify appropriate test statistics, we focused on the pattern of median
206 ES values. When considering individual replicates we required more information than just the
47 median ES value to determine the adequacy of a model for a given data set. Using this value
108 alone makes it difficult to determine a model’s adequacy unless the median value is zero. We
199 explored the use of upper and lower quartiles, and minimum and maximum limits and found the

s0 latter to be the more informative approach for identifying a model’s adequacy. We propose that
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Figure 4: Validation of the inference based test statistics. Plots shows the output from each simulated
data set with 20 replicates for each test statistic. The coloured points indicate the correct model with the
grey horizontal bar marking the range of effect sizes values calculated for the correct model. B = Mk, X =

Mk+GC, A = MkV, ® = MkV+C, % = MkVP, ® = MkP+GC, and + = MkVP+G

if the minimum and maximum limits pass through zero, this would indicate that the model is
adequate using our chosen test statistics. Following this criteria, we could quantify the percentage
of simulation replicates where the model was deemed adequate/inadequate. Table 4 shows the
percentage of times a model met the above described criteria using the consistency index and the

retention index.

Model selection produced surprising results. We consistently found support for partitioned models,
regardless of the model used to simulate the data. Table 5 shows the percentage of times a model
was chosen as the best model according to Bayes factors. For this reason, using Bayes factors is not
a reliable approach for deciding between partitions with morphological data, at least not using the
standard approach we applied to partition characters, i.e., by the maximum observed state number

(see the Discussion for a full explanation).

4.3 Analysis of Empirical data

We then applied PPS with the newly validated test statistics to 8 empirical data sets. This allowed

us to answer our main question: are current morphological models adequate for empirical data?
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Figure 5: Validation of the mixed test statistics. Plots shows the output from each simulated data set with
20 replicates for each test statistic. The coloured points indicate the correct model with the grey horizontal
bar marking the range of effect sizes calculated for the correct model. B = Mk, X = Mk+G, A = MkV, ¢
= MkV+G, ¥ = MkVP, ® = MkP+G, and + = MkVP+G

Of the 8 data sets, 5 had at least one model that was adequate. Fig. 6 shows the effect sizes from
4 data sets (see also supplementary Fig. S9). The MkVP+G model was found to be adequate for
all 5 data sets. Of those 5 data sets, 4 also fit an MkVP model. We found the MkP+G model
to be adequate for 3 data sets. For one of the data sets, Fig.6D, we found all models apart from
the MkP+G model to be adequate. We do not see any clear pattern in terms of adequate models,
with respect to the size of the data sets, i.e., number of taxa, characters, or state number. This
suggests that these variables are not informative when choosing a model. For the two largest data
sets, in terms of taxa, we did not find any models to be adequate. These data sets had 40 taxa
(Shoshani et al., 2006) and 50 taxa (Tomiya, 2011). However, no models were adequate for a third
data set with only 25 taxa (Schoch and Sues, 2013). Table. 6 shows the p-values calculated for
consistency index and retention index for the same data sets as in Fig. 6. Values below 0.025
and above 0.975 are considered to be significant. This would indicate that the simulated data is
significantly different from the empirical data, and that the model does not capture the underlying
data generating processes and therefore is not adequate for that data set. Results using effect sizes
and p-values agree on the same models for all data sets. There is one instance when there is a

disagreement using retention index. For the data set from Egi et al. (2005), the Mk+G model
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Model Test Statistic Correct ES Overall ES Num in Correct

GC 1.7 2.2 5.7
GED 1.7 2.2 5.6
TL 1.2 1.4 6
MkV+G
RF 2.9 3.1 5.9
CI 2.7 4.3 )
RI 1.8 2.5 5.6
GC 0.9 2.9 1
GED 0.9 2.8 1
TL 2.8 2.8 6
MkVP+G
RF 3.3 5.0 4.1
CI 1.2 11.7 1.40
RI 1.1 9.3 1.6

Table 2: Validation of test statistics from the simulated hyena data sets. Correct ES gives the total range
of effect sizes for a given test statistics with the correct model. Overall ES gives the total range of effect
sizes for a given test statistic across all models. Num in Correct gives the number of models which fall into
the Correct ES range. Num in Correct only looks at incorrect models, which means the maximum value
here can be 6. GC = Gower’s coefficient, GED = generlized euclidean distance, TL = tree length, RF =
Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index
have the largest overall ES range with, on average the fewest models falling in the same range as that of the

correct model.

was accepted using the threshold that we defined for effect sizes and rejected using p-values. Both
metrics rejected the model according to consistency index, however, so the Mk+G was ultimately

rejected using both approaches.

5 Discussion

Understanding morphological evolution is an extremely difficult task. Within palaeobiology we
rely on a small number of relatively simple models to describe this complex process (Wright, 2019).
Until now, the impact of these different substitution models on parameter estimates was not well

understood. Our analysis on the influence of these models using empirical data sets, focusing on tree
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Model Test Statistic Correct ES Overall ES Num in Correct

GC 0.8 2.0 4.1
GED 0.9 1.9 4.7
TL 0.7 0.7 5.7
MkV+G
RF 2.4 2.9 9.5
CI 2.0 5.9 2.8
RI 1.8 4.3 3
GC 1.2 3.2 2.1
GED 1.2 4.0 2.95
TL 0.3 1.0 2.95
MkVP+G
RF 3.7 3.7 5.95
CI 1.9 20.0 1.45
RI 1.5 13 1.6

Table 3: Validation of test statistics from the simulated elephant data sets. Correct ES gives the total range
of effect sizes for a given test statistics with the correct model. Overall ES gives the total range of effect
sizes for a given test statistic across all models. Num in Correct gives the number of models which fall into
the Correct ES range. Num in Correct only looks at incorrect models, which means the maximum value
here can be 6. GC = Gower’s coefficient, GED = generlized euclidean distance, TL = tree length, RF =
Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index
have the largest overall ES range with, on average the fewest models falling in the same range as that of the

correct model.

length and topology, demonstrates that different models can produce contrasting reconstructions of
the evolutionary history of a group, emphasising the importance of model choice (Fig. 2). Although
the impact of models on parameter estimates is not uniform across data sets, the most consistent

pattern we observe is whether or not the data is partitioned.

5.1 Partitioned models

In all the partitioned models explored here, traits were partitioned based on the number of character
states. This is a practical approach, both in terms of the biology and the way in which the characters

tend to be coded. We found that for all but two data sets, the unpartitioned models produced
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Sim Model Data set Test Statistic Mk Mk+G MkV MkV+G MkP+G MVP MkVP+G
MkV+G Hyena CI 100%  95%  100%  100% 95% 95% 95%
MkV+G Hyena RI 100%  100%  100%  100% 100%  100% 100%

MkVP+G  Hyena CI - - - - 100%  100% 100%

MkVP+G  Hyena RI 50% 65% 45% 75% 100%  100% 100%
MkV+G  Elephant CI 100%  100%  100%  100% 40% 85% 80%
MkV+G  Elephant RI 100%  100%  100%  100% 70% 100% 100%

MkVP+G  Elephant CI - - - - 100%  100% 100%

MkVP+G  Elephant RI - - - - 100%  100% 100%

Table 4: The percentage of times a model was found to be adequate across all replicates using consistency

index (CI) and retention index (RI) as tests statistics. In order for a model to be considered adequate the

effect sizes need to meet the criteria put forward here, where the range of minimum and maximum values

contain zero.
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Figure 6: Effect sizes for four empirical data sets for the consistency index and retention index. The dashed

black line is at zero is there to help identify adequate models. The data sets are taken from (Agnolin, 2007),
(Egi et al., 2005), (Bourdon et al., 2009) and (Shoshani et al., 2006), respectively.
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Model Data set Mk Mk+G MkV MkV+G MkP+G MVP MkVP4+G

MkV+G Hyena - - - - 5% 15% 80%
MkVP+G  Hyena - - - - 5% 30% 65%
MkV+G  Elephant - - - - - - 100%
MkVP+G Elephant - - - - - - 100%

Table 5: Models chosen using Bayes factors and the marginal likelihoods. Cells show the percentage of
times a model was selected across the 20 replicates from each simulation set up. The dashed line indicates

the model was never selected.

smaller trees. To further investigate the cause of this, we ran an analysis using a binary data set
and increased the Q-matrix size from 2-5. The objective here was to mirror what happens when we
have characters with a lower number of observed states than the maximum number of states in the
matrix. For example, placing binary characters in a partition with a maximum of 5 character states.
We show that as the size of the Q-matrix increases tree length gets smaller (Fig. S10). The effect
of partitioning that we observe on empirical estimates of tree length, is therefore a direct result of
how morphological data is typically partitioned (see also Equations 8 and 9 below). Characters are
partitioned by maximum number of observed states, e.g., binary characters are all together in one
partition and assigned to a rate matrix of size 2, characters with 3 states are assigned to a rate
matrix of size 3 and so on. For unpartitioned models, however, all of the characters will be in a
single Q-matrix that is the size of the maximum number of observed states across the whole data
set. This means that for a given branch length v, under a model that assumes there are n states,
for characters where we observe <n states (e.g., a binary character in a rate matrix of size 5), the
probability of observing no change will be underestimated. Similarly, the probability of observing
a given change will also be lower if there are more (unobserved) possible states. Both cases will
result in shorter branch lengths. Partitioning morphological data by character state number is
a practical approach, however, this requires making an assumption that we know the number of
states for each character, when in reality we might not. For molecular data of course, this is not
something we need to consider, as we know there are four nucleotides. By assuming we know the
number of states, based on the number of observed states, we may be biasing our results. The
effects of whether or not a data set is partitioned are considerable in terms of parameter estimates.
As such, it is important to consider how the data is being partitioned and whether or not it makes

biological sense for your data set to do so.

26


https://doi.org/10.1101/2024.01.25.577179
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577179; this version posted January 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

available under aCC-BY-NC 4.0 International license.

Agnolin Egi Bourdon Shoshani
Model CI RI CI RI CI RI CI RI

Mk 0 0.003 0 0.005 0.8895 0.812 0
Mk+G 0.001 0.004 0 0.006 0.898 0.8235 0

MkV 0 0 0 0.005 0.019 0.011 0
MkV+G 0 0 0 0.006 0.033 0.01 0
MkP+G  0.835 0.659 0.994 0.446 1 0.999 0.0
MkVP 0.105 0.041 0.992 0.483 0.859  0.655

MkVP+G 0.095 0.034 0974 0.376 0.848 0.6245

o o o o o o O

Table 6: Posterior p-values from the empirical analyses. CI refers to consistency index and RI to retention
index. Values below 0.025 and above 0.975 are considered to be significant. This would indicate that the
simulated data is significantly different than the empirical data and that the model is not adequate for that

data set. The results here agree with those produced using effect sizes. See Table 4.

Here we focused exclusively on partitioning by character state. This is the most common partition-
ing scheme and is even a default in some phylogenetic software programs, for example BEAST2
(Bouckaert et al., 2019), and MrBayes (Ronquist et al., 2012). Yet this is not the only way that
data could be partitioned. A researcher could partition the data based on different anatomical
regions, or based on subsets of anatomical, ecological or behavioural traits. Thus one may need to
decide between various partitioning schemes or no partitioning at all. To date, model selection is
regarded as the gold standard for choosing between substitution models and partition schemes (Xie
et al., 2011). Within a Bayesian framework, comparing marginal likelihoods has been shown to be
effective for choosing between partition schemes with molecular data. Our results, however, show
that for morphological data, model selection consistently selects a partitioned model, regardless
of the model used to simulate the data. This result can be explained by taking into account how
partitioning morphological data effects the likelihood calculation, importantly how it effects the

transition probabilities and the stationary frequencies.

For example, assume you have a tree consisting of two tips, one with discrete state 0 and the other

with discrete states 1, as shown here.
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The tips share a common ancestor v time units in the past. The transition probability for this

scenario under the Mk model is calculated as:

1 1
po1(2v) = 5 Ee_% (8)
where k is the number of states. Further, the likelihood of this data is:
1 1 —2v
P(o,l\u):ExEﬁ—e ] (9)

Here k£ would be set to 2 as we observe two states. However, in cases where there are other
traits, some of which have a higher maximum observed state, & would increase., e.g., as happens
in unpartitioned inference. Higher values of k£ would result in a lower likelihood. This change
in likelihood is a direct result of the partitioning scheme. When partitioning molecular data, we
do not change the size of the Q-matrix (k), which is why we do not see the same effects on the
likelihood. Figure 7 shows the impact on the log likelihood of changing the size of the Q-matrix
(k) along different branch lengths (v) for these two tips.
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Figure 7: Log likelihoods calculated for different sizes Q-matrices (k) along as a function of branch lengths
(v). The log likelihoods converge as v increases and the transition probability approaches the stationary

frequencies.

To empirically demonstrate the impact of of partitioning by state space on the likelihood we ran
two experiments. First, using an empirical binary morphological matrix we calculated the marginal
likelihood under an unpartitioned MkV+G model increasing the Q-matrix size from 2-5. Supple-

mentary figure. S12 shows the decrease in marginal likelihood as we increase the number of transition
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0 possibilities (Q-matrix size). We then wanted to investigate the impact of adding the “correct”
so1 partitions. Here, we used an empirical morphological matrix with a maximum of 6 states. We first
602 calculated the marginal likelihood under an unpartitioned MkV+G model. We then created two
603 partitions, one partition for all binary states and the second for all other states. Then we increased
604 the number of partitions to three, with one for binary states, one for ternary states and kept all
605 others in the third partition. This method of adding partitions was continued until there were 5
e in total and all states were in the appropriately sized Q-matrix. Fig. S11 shows that the marginal
607 likelihood increases as partitions are added to the model. This is expected, given Equations 8
es and 9. This suggests that the results from model selection will not be indicative of any meaning-
600 ful biological signal. For this reason, using model selection to differentiate between partitions for

610 morphological data is not appropriate when the Q-matrix size varies.

1 5.2 Test Statistics

612 Overall, our results show that model adequacy, in particular PPS, currently offers the most effective
613 way of identifying the most suitable model for morphological data. In addition, we demonstrate
614 that PPS can reliably determine whether a given model is adequate or not. Understanding the
615 absolute fit of available models can lend support to the use of model based phylogenetics for the
616 analysis of morphological data. Here we carried out the first thorough investigation into the use of

617 PPS with discrete morphological substitution models.

618 One of the most important aspects of PPS to consider is the choice of test statistics. As this
610 was the first systematic application of PPS to discrete character data, we first validated available
620 test statistics using simulations. We explored the use of 6 test statistics and ultimately found
621 consistency index and retention index to be the most informative. Neither of the inference based
62 test statistics we explored, Robinson-Foulds or tree length, were able to give a clear indication of
623 model adequacy. In this context, Robinson-Foulds distance is used to quantify variance across the
624 posterior distribution of trees, therefore reflecting topological uncertainty. Given that morphological
625 data sets tend to be small, the uncertainty in topology may be high, regardless of the model
26 used for inference (Barido-Sottani et al., 2020). The uninformativeness of tree length is more
627 puzzling, since competing models have a clear impact on the estimated tree length. Tree length has
s2s also previously been shown to be a poor test statistic for molecular data (Duchéne et al., 2018).

620 Both Gower’s coefficient and generalized euclidean distance did show some potential value as test
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s30 statistics (Fig. 3), although the mixed test statistics, the consistency index and retention indices,
31 were substantially better (Fig. 5, Tables 2-3). Having a test statistics specifically focused on the
632 data would be favourable. Future studies could focus on alternative ways of including disparity
633 metrics as test statistics. For example, we used the mean pairwise distance, perhaps looking at the
634 sum of the variance or sum of the ranges could be more informative for model adequacy (Smith

635 et al., 2023).

3 5.3 Practical Considerations

637 Importantly, our simulation study also allowed us to identify ways of reducing the overall computa-
638 tional costs. As with many Bayesian analyses, there can be a high computational costs associated
630 with running a PPS analysis. To mitigate any unnecessary computation, we assessed the maximum
s40 number of simulation replicates required to reach stability in the mean effect sizes. By doing so, we
641 were able to ensure that we were not running unnecessary replicates. Further, the most expensive
s2 part of running a PPS analysis comes from the inference of the simulation replicates. Based on
3 our simulation study, we did not find any benefit to including inference based test statistics (tree
ssa length and Robinson Foulds, Fig.4), meaning this expensive step can be skipped. Taking both of
s¢s these findings into account, the time and memory required to run a PPS analysis becomes a lot
ss6 smaller. For example, when compared to a stepping stone analysis, we found PPS to take half the

647 time per model.

e4s From our simulation study, relying exclusively on the mixed test statistics, consistency index and
0 retention index, we found that for all replicates, more than one model was adequate (Table 4).
60 When interpreting these results it is important to remember simulated data is often “neater”
651 than empirical data. In our simulation set up, all characters in a given matrix were simulated
652 under the same model and the model extensions we used are not proposing conflicting statements
653 about the underlying process. As such, it is not surprising that we found multiple models to be
65« adequate for our simulated data. The choice of substitution model may have less impact on our
655 simulated data, as the topology is easier to infer. For example, taking all simulation replicates
66 of the simulated hyena data under an MkV+G model, the mean variance in tree length across
es7  the 7 different models was 0.74. In contrast, for the empirical data used as the basis for the
s simulations, the variance in tree length across models was 4.29 (Fig. 2B(i)). Our simulation study

6o was valuable in determining which test statistics were sensitive to model choice under exemplar
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60 conditions, but it is not alarming that differentiating between similar models, i.e., all partitioned
61 models, was not possible. Future work could investigate model adequacy when data is simulated
662 under more complex models, e.g., generating matrices that contain conflicting characters associated

o3  with different models or topologies (Sansom et al., 2017; Weisbecker et al., 2023).

664 The results from our empirical data sets show a larger difference in the effect sizes for different
s models (Fig. 6). Based on our criteria of using the minimum and maximum effect sizes (after
s66 removing outliers) we determined that for 5 of data sets, at least one of the models tested here
667 was adequate. This leaves the other 3 without a model being adequate. While initially this result
668 may seem negative, in that no models were adequate, it is actually more reasonable than not. The
s60  expectation that all data sets would have a model available that fit would have been unrealistic,
670 given the complexity of the data versus the simplicity of the models. Having a method which allows
671 the researcher to detect the limits of available models is much more useful than picking the best
62 out of a group of models without considering whether any of them fit. This result highlights the
673 benefit of using such an approach. In the situation where no models are considered adequate for a
e74 data set, it would be up to the researcher to determine how to proceed. For instance, if the effect
675 sizes are not markedly far from zero one may still opt to use a model, however, appreciating its
676 limitations would be important before drawing any conclusions based on the inference results. It
677 is also encouraging to see that the most complex model, the MkVP+G model, was identified as
es adequate for all 5 of the data sets for which we found an adequate model, indicating that we are
670 moving in the right direction, in terms of our assumptions about the data generating processes.
sso This strongly supports the above discussed rationale of partitioning the data based on character

es1  state, lending confidence to our biological interpretation of the evolution of the data.

62 Here we have demonstrated how PPS outperforms a model selection approach in several respects.
63 Making this a standard approach in palaebiology would be beneficial to the field in allowing for a
684 better appreciation of how well our models are performing. In this study we explored the use of 7
ess extensions of the Mk model, as they are the most commonly applied. This is not an exhaustive list
ess of available models and there are a number of alternatives that further relax assumptions of the
ss7 Mk model. For example, Wright et al. (2016) showed how relaxing the assumption of symmetrical
sss probability of change between characters can improve model fit and phylogenetic estimation (Wright
0 et al., 2016). Models including hidden states have also been proposed for morphological data

o (Tarasov, 2019). Such models can also be assessed using the workflow presented here, the only
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601 requirements being that the model can be used for both simulation and inference. There are
62 also a number of models of continuous character evolution that are often used in phylogenetic
603 comparative methods (Alvarez—Carretero et al., 2022; Hansen et al., 2022). While we did not
604 explore these models here, there has been work previously carried out demonstrating their use with
s model adequacy (Slater and Pennell, 2014). We focused exclusively on discrete data as it remains
606 the most wildly used for tree inference. Our results also have implications for studies focused on
607 divergence time estimation and ancestral state reconstruction. The same model validation can be
s0s applied before either of these types of analyses are carried out. Fossils are our only direct source of
690 information about extinct taxa. Collection and character coding of fossils for phylogenetic analysis
700 requires huge effort both in terms time and knowledge required. Ensuring that we are using the
71 best available models can help provide confidence in our results and ask more complex questions

702 with the data.

s 6 Conclusions

704 As model-based phylogenetic analysis gains prominence in paleobiology our study aimed to em-
705 phasise the importance of model choice, by demonstrating how different substitution models can
706 impact inference results. We show that substitution model choice impacts estimates of both lengths
707 and topology. By providing a workflow for PPS to validate models adequacy, researchers can gain
708 insights into absolute rather than relative model fit, and can have more confidence in their choice
700 of substitution model going forward. We show that, despite the arguably simplistic assumptions
70 of available morphological models, they are often able to approximate the underlying generating
711 processes of discrete morphological data sets. However, we also show that no single model fits all
712 data sets examined here, so we recommend researchers use model adequacy to assess model fit as
713 a first step in phylogenetic inference. Given the substantial taxonomic effort invested into collect-
714 ing these data sets, the importance of utilizing accurate models cannot be overstated. Our work
715 reinforces the significance of these considerations, particularly as fossil data remains the primary

716 avenue for gaining a comprehensive understanding of evolutionary history in deep time.
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: 7 Supplementary Material

7

-

715 All data sets used here were taken from previous studies and are available on GitHub
719 (https://github.com/laumul/PPS_Morphology). The associated RevBayes tutorial is available here
720 (https://revbayes.github.io/tutorials/pps_morpho/pps_data_morpho.html).
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Figure S1: The relationship between the impact of different models on branch lengths and properties of the
data sets. Variance between models was calculated by subtracting the smallest tree length from the largest

tree length for each data set, irrespective of the model used for inference.
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Figure S2: Effect Sizes calculated for the Agnolin data set using the entire posterior distribution. While
the values are slightly different compared to those calculated using an MCMC tree, see fig. 6A, it determines

the same models being adequate. This calculation also increased computation time significantly.
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Figure S3: The cumulative means calculated for consistency index for one replicate of the simulated hyena
data sets under the MkV+G model. This serves as a representative of all other replicates and test statistics
which also showed the same pattern. The dashed line is at 500. After this point the line plateaus, representing

that the variation of mean effect size is constant after that point.
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Figure S4: The standard deviation around the cumulative mean for all replicates of the simulated hyena
MkV+G and test statistics (Gower’s coefficient, generalized euclidean distance, tree length, Robinson Foulds,
consistency index, and retention index). The dashed line is at 500. After this point the lines plateaus,

indicating that the mean will not change if more replicates are added.
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Figure S5: The standard deviation around the cumulative mean for all replicates of the simulated elephant
MkV+G and test statistics (Gower’s coefficient, generalized euclidean distance, tree length, Robinson Foulds,
consistency index, and retention index). The dashed line is at 500. After this point the lines plateaus,

indicating that the mean will not change if more replicates are added.
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Figure S7: Validation of the inference based test statistics. Plots shows the output from each simulated
data set with 20 replicates for each test statistic. The coloured points indicate the correct model with the
grey horizontal bar marking the range of effect sizes values calculated for the correct model. B = Mk, X =
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Figure S9: Results from four of the empirical data sets for consistency and retention index. The dashed
black line is at zero is there to help identify adequate models. The data sets are taken from Archibald et al.

(2001), Schoch and Sues (2013), Bloch et al. (2001), and Tomiya (2011) respectively
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Figure S10: The impact of the Q-matrix size on tree length. Using a binary alignment the Q-matrix was

increased from 2-5. The tree length becomes smaller as the Q-matrix increases in size.
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Figure S11: The effects of increasing partitions on the likelihood calculation. Using a data set with
a maximum state size 6 the number of partitions was increased from 1 to 5. Where 1 was completely
unpartitioned, 2 has one partitions for binary characters with all others in the other partition, 3 has one
partition for binary, one partition for tertiary and all others in the third partition, and so on until all
characters are in the correct partition with 5 partitions. As the number of partitions increase, and characters

are added to a Q-matrix of the correct size, the likelihood increases.
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Figure S12: The impact of increasing the size of the Q-matrix on the marginal likelihood calculation. Here
a binary alignment was used with stepping stone analysis to calculate the marginal likelihoods. A Q-matrix
of size 2-6 was used. As the Q-matrix increased in size, causing binary characters to be in a matrix that was

too large, the likelihood decreases.
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