

Assessing the Adequacy of Morphological Models used in Palaeobiology

Laura P. A. Mulvey¹, Michael R. May², Jeremy M. Brown³, Sebastian Höhna^{4,5}, April M. Wright⁶, and Rachel C. M. Warnock¹

¹*GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander
Universität Erlangen-Nürnberg, Erlangen, Germany*

²*Department of Evolution and Ecology, University of California Davis, Davis, CA USA*

³*Department of Biological Sciences and Museum of Natural Science, Louisiana State
University, Baton Rouge, LA, 70803, USA*

⁴*GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany*

⁵*Department of Earth and Environmental Sciences, Paleontology & Geobiology,
Ludwig-Maximilians-Universität München, 80333 Munich, Germany*

⁶*Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA,
70402, USA*

January 25, 2024

1 Abstract

Reconstructing the evolutionary history of different groups of organisms provides insight into how life originated and diversified on Earth. Phylogenetic trees are commonly used to estimate this evolutionary history, providing a hypothesis of the events. Within Bayesian phylogenetics a major step in estimating a tree is in choosing an appropriate model of character evolution. In the case of most extinct species, our only source of information to decipher their phylogenetic relationships is through the morphology of fossils. We therefore use a model of morphological character evolution, the most common of which being the Mk Lewis model. While it is frequently used in palaeobiology,

24 it is not known whether the simple Mk substitution model, or any extensions to it, provide a
25 sufficiently good description of the process of morphological evolution. To determine whether or
26 not the Mk model is appropriate for fossil data we used posterior predictive simulations, a model
27 adequacy approach, to estimate absolute fit of the model to morphological data sets. We first
28 investigate the impact that different versions of the Mk model have on key parameter estimates
29 using tetrapod data sets. We show that choice of substitution model has an impact on both topology
30 and branch lengths, highlighting the importance of model choice. Next, we use simulations to
31 investigate the power of posterior predictive simulations for morphology. Having validated this
32 approach we show that current variations of the Mk model are in fact performing adequately in
33 capturing the evolutionary dynamics that generated our data. We do not find any preference for
34 a particular model extension across multiple data sets, indicating that there is no ‘one size fits all’
35 when it comes to morphological data and that careful consideration should be given to choosing
36 models of discrete character evolution. By using suitable models of character evolution, we can
37 increase our confidence in our phylogenetic estimates, which should in turn allow us to gain more
38 accurate insights into the evolutionary history of both extinct and extant taxa.

39 **2 Introduction**

40 The origination and subsequent diversification of species is a fascinating, yet complex, process.
41 Phylogenetic trees serve as a powerful tool to aid in our understanding of this process. They
42 provide a hypothesis of the evolutionary history of a group, enabling us to make inferences about
43 the relationships, timing of events, and patterns of evolution (Baum and Offner, 2008). While
44 molecular data may be more commonly used in phylogenetics (Lee and Palci, 2015), morphological
45 data was the original source of evidence (Farris et al., 1970) and remains extremely valuable to
46 our interpretation of species diversification (López-Antoñanzas et al., 2022). As the majority of
47 life on Earth is now extinct, the fossil record contains a wealth of knowledge about how species
48 have adapted and diversified through time (Simpson, 1952). Integrating this information into
49 phylogenetic analysis, either in combination with molecular data, for example, in a total evidence
50 approach (Gavryushkina et al., 2017; Mongiardino Koch et al., 2021) or independently, can therefore
51 further our ability to resolve species relationships in deep time. Studies have also shown that
52 incorporating fossil data into an analysis, even when the focus of the study is on extant taxa,
53 can improve the topological resolution or even accuracy of a phylogenetic inference (Beck and

54 Baillie, 2018; Koch and Parry, 2020; Mongiardino Koch et al., 2021). The use of morphological
55 data in phylogenetics has been a topic of debate for many years, specifically, with regards to which
56 approach should be applied, i.e., parsimony or model-based inference (Kolaczkowski and Thornton,
57 2004; Wright and Hillis, 2014; O'Reilly et al., 2016; Puttick et al., 2017; Sansom et al., 2018;
58 Goloboff et al., 2018, 2019). Due to the complex nature of morphological data, there are doubts
59 about our ability to correctly model its evolution, and that any assumptions made by the models
60 will bias the resulting inference (Goloboff et al., 2019). Parsimony is often considered to be an
61 assumption free approach; however, this is not entirely true, as there are still implicit assumptions
62 about morphological evolution within a parsimony framework (Felsenstein, 1983; Steel and Penny,
63 2000). These two approaches have been compared many times throughout the literature, amassing
64 in a large body of work which goes beyond the context of this study. Ultimately, model-based
65 approaches have many more applications and statistical advantages, including the ability to select
66 among competing models and assess model adequacy (Wright and Hillis, 2014; O'Reilly et al., 2016;
67 Puttick et al., 2017). Amidst this debate, however, an important question has yet to be addressed:
68 are available models of morphological evolution in fact adequate for our data?

69 Morphological data collected from fossils, or extant taxa, can be either discretized (e.g., pres-
70 ence/absence) or continuous (e.g., body size measurements). Discrete morphological data is the
71 most widely used for phylogenetic inference (Lewis, 2001; Wright and Hillis, 2014; Harrison and
72 Larsson, 2015; Wright, 2019) and will be the focus throughout this study. The data must be man-
73 ually collected to create a morphological matrix, matching the format of a molecular alignment,
74 where each site now represents a morphological trait. Traits are described using a character which
75 is indicative of the phenotype expressed by a given taxon. Traits can have any number of character
76 states depending on the complexity and traits with more than 2 states are referred to as multistate.
77 Presence/absence traits can be described by using only 0 and 1, i.e., two character states. For
78 more complex traits, however, more character states may be required. An example of this could be
79 describing the shape of part of a skull or a shell. In this scenario a state is assigned to a particular
80 modification of the trait, where a number of different adaptations (or states) may be present in a
81 group. Within a single morphological matrix some traits can have binary character states, while
82 others require multiple states. Consequently, the same character state across different traits can
83 have an entirely different biological meaning, even within the same matrix. See Wright (2019) for a
84 more in depth review of morphological data used in phylogenetics. The generation of this data is a
85 challenging and time-intensive process, requiring an in-depth knowledge of the taxonomic group in

86 question. Morphological data is, in turn, extremely valuable in helping us answer questions about
87 the evolution of life that molecular data alone cannot answer.

88 Within a model-based phylogenetic analysis, the process that gives rise to discrete character data
89 is described using a substitution model. These models aim to capture the evolutionary dynamics
90 resulting in the gain, loss or modification of discrete states. Substitution models are continuous-
91 time markov chain (CTMC) models. They allow states to change (evolve) stochastically at any
92 point in time, and this change depends only on the current state that the evolving system is in. The
93 assumptions of a substitution model are mathematically represented using a Q(or rate)-matrix. A
94 Q-matrix is a square matrix where each element represents the instantaneous rate of change between
95 states. That is $Q[i, j]$ represents the rate of change from state i to state j . The probability of change
96 over a given interval, or branch length v , is calculated using the Q-matrix. Developing models
97 that can accurately describe the complex processes driving morphological evolution is extremely
98 challenging and as a result, there is only one main model that is commonly applied: the Mk model
99 (Felsenstein, 1992; Lewis, 2001). This model is a generalisation of the Jukes Cantor model (Jukes
100 and Cantor, 1969) used for molecular data, and as such, follows the same set of assumptions. It
101 assumes equal transitions rates between states, that is, the probability of transitioning from a state
102 0 to a 1 is the same as going from a state 1 to a 0. It also assumes equal base (state) frequencies,
103 meaning the model expects that there is approximately the same number of each character state
104 throughout the morphological matrix. The Q-matrix for such a model, therefore sets all transitions
105 to have an equal probability, with its size being determined by the number of states. That is, for
106 a purely binary data set the Q-matrix will be a 2x2 matrix, representing the transitions from state
107 0 to state 1, from state 1 to state 0, and of no change.

108 Morphological data is, needless to say, different to molecular, so there are concerns about how well a
109 model originally developed for molecular data can be applied to morphological data. Additionally,
110 given that more complex models are often selected for molecular data, there is doubt about how
111 well such a simple model can be applied to morphological data. As such, there have been a
112 number of extensions implemented for the Mk model to relax these strict assumptions, and allow
113 the model to better describe the reality of morphological evolution. Lewis immediately noted an
114 important difference between morphological and molecular data collection (Lewis, 2001). When
115 taxonomists are creating a matrix, or character coding, they will typically exclusively choose traits
116 which differ across species, resulting in a matrix where every site is variable. This is a markedly

117 different behavior from molecular data collection, where there can be many sites where a nucleotide
118 is conserved across all species. Not accounting for this phenomenon, known as ascertainment bias,
119 (though referred to as acquisition bias in Lewis (2001)), can result in inferring trees with extremely
120 long branch lengths. Lewis dealt with this by conditioning the likelihood calculation on there only
121 being variable characters, developing the MkV model. There are a number of other extensions
122 that we will explore the effects of here as well. Accounting for among-character rate variation has
123 also been suggested as important when modeling morphological evolution (Harrison and Larsson,
124 2015). This allows different traits to transition at different rates, as some may be evolving faster
125 than others. This is frequently achieved by drawing rates from a discretized gamma distribution
126 and allowing a trait to transition according to a given rate category, the same as is done for
127 molecular data (Yang, 1994). Data sets can also be partitioned, often based on the maximum
128 number character states (e.g., see Khakurel et al., in press). This ensures that traits are in a
129 Q-matrix of the correct size. That is, in an unpartitioned analysis, the Q-matrix will take the
130 size of the maximum character state in the morphological matrix, which could be for example 5.
131 Transitions between binary characters will therefore also be calculated in this Q-matrix of size 5,
132 meaning that there is some probability given to a binary character of transitioning to states 2, 3,
133 or 4. As we do not observe these states in the data, in some cases (e.g., where states 1 or 0 are
134 used to represent presence or absence) we can be certain that this is incorrect. Partitioning by
135 character states such that all binary characters are in a Q-matrix of size 2 and so on, avoids this
136 issue. Partitioning data can have an effect on branch lengths (Khakurel et al., in press) so it is
137 important that it is done when necessary. Similarly, however, incorrect partitioning may lead to
138 too low rates as a result of observer bias.

139 The impact of these different variants of the Mk model is still not fully understood in terms of the
140 effects on key parameter estimates, although they are likely to cause differences as has been shown
141 for molecular models (Lemmon and Moriarty, 2004). When deciding what model to use, there are
142 two distinct questions that can be asked, (1) which is the best model for my data compared to other
143 models? and/or (2) does this model fit my data? The first question, which is the more common
144 of the two, can be answered using model selection. Model selection approaches are common in
145 molecular based studies although less frequently used for morphological data. For morphological
146 studies there is a history of using substitution models that have been used in previous studies,
147 choosing a model based on the structure of the data set, or relying on software defaults, often
148 without providing statistical justification for model choice. As previously stated, data sets are

149 manually produced, meaning they can differ from each other depending on the taxonomist. If, for
150 example, a substitution model had been applied to the taxonomic group of interest in the past, even
151 if you are using similar taxa, if the morphological matrix is different, using the same substitution
152 model as previous studies may not be logical. That being said, there are a number of examples
153 where model selection has been applied to morphological data sets (Caldwell et al., 2021; Rücklin
154 et al., 2021; Wright et al., 2021). By using a model selection approach, any subjectivity in model
155 choice can be reduced. One down side of model selection approaches, however, is that they give no
156 indication of the absolute fit of the model to the data. It tells you which model is the relative best,
157 but that does not necessarily mean that the model provides a good description of the true data
158 generating process, simply it fits better than other models (Gatesy, 2007). This is where question
159 two becomes important. Asking if a single model is adequate allows you to understand how well a
160 model can describe your data. These approaches, known as model adequacy, are currently gaining
161 in popularity for molecular data (Duchêne et al., 2017, 2018; Brown and Thomson, 2018) and have
162 been sporadically applied to morphological data sets (Huelsenbeck et al., 2003; Slater and Pennell,
163 2014) but have yet to be systematically assessed.

164 In order to confidently integrate fossils into phylogenetic approaches, ensuring we have accurate
165 substitution models is a critical step. Knowing that the models are behaving as expected can
166 increase our confidence in the results and allow us to ask increasingly complex questions. Here we
167 explored the impacts of different substitution models on key parameter estimates across a number of
168 morphological data sets, as well as investigated the best approaches for choosing a model. We found
169 that the models have a notable impact on both tree length and topology, highlighting the importance
170 of validating a model before using it. In our simulation study, model adequacy preformed well in
171 predicting which model the data was simulated under. Ultimately, using model adequacy, we found
172 that substitution models do in fact fit a number of empirical data sets, supporting the use of the
173 Mk model for morphological data in paleobiology.

174

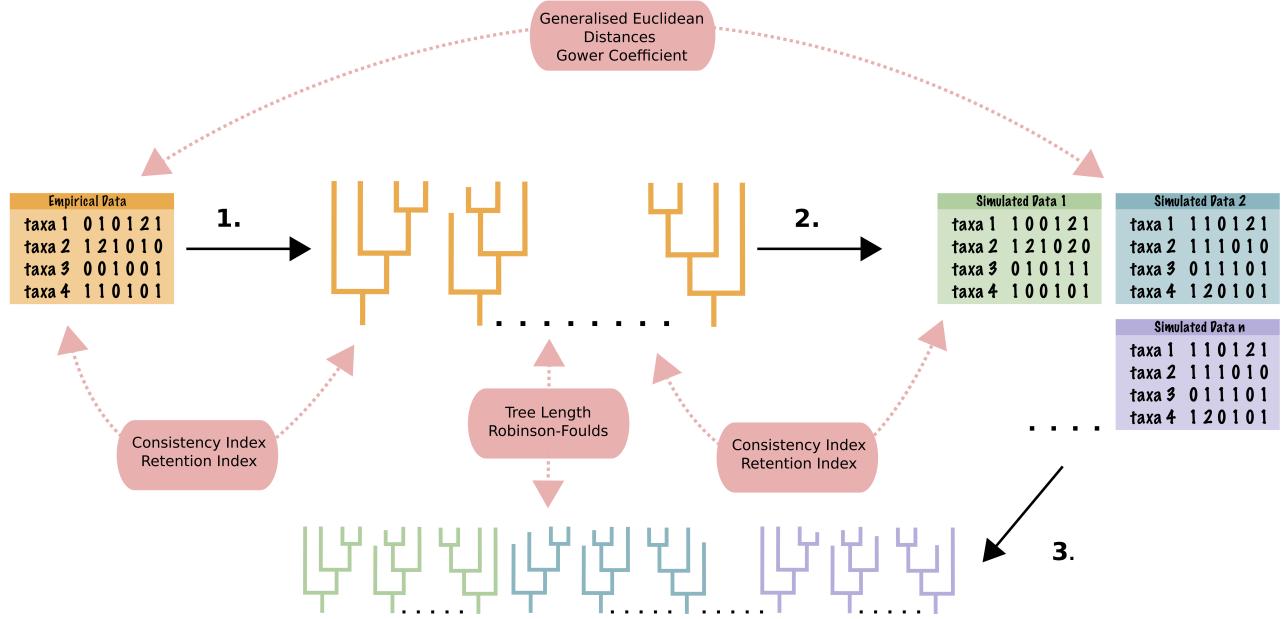


Figure 1: Posterior predictive simulation workflow. **Step 1.** an MCMC inference is carried out under a given model. **Step 2.** data sets are simulated under the same model based on parameter estimates from 1. **Step 3.** an MCMC inference is then carried out on the simulated data sets. The pink boxes show the test statistics that are applied to determine whether or not the model is adequate. Generalised Euclidean distances and Gower's coefficient are used to compare the data sets. Tree length and Robinson-Foulds are used to compare the inferred trees. Consistency index and retention index use the empirical trees and the empirical and simulated data sets to test for adequacy.

175 3 Methods

176 3.1 Data

177 We used a collection of previously published morphological matrices from Sansom et al. (2018)
 178 (taken from <http://graemelloyd.com/matrdino.html>). This data set contained 166 morphological
 179 matrices of tetrapod taxa. The data sets vary in sizes in terms of taxa, from 12-219, traits, from
 180 23-622, and number of different character states, from 2-10. They have also been used previously
 181 to examine the use of phylogenetic methods and as such were a ideal data set for this study Sansom
 182 et al. (2018). We removed matrices based on two criteria: (i) those that contained characters with
 183 more than 9 states or 80 taxa, as they became too computationally expensive, and (ii) those that
 184 contained traits where only character state “0” and missing characters, “?” were present for any

185 trait. This resulted in a final data set of 114 matrices. The data sets varied in size, with the number
186 of taxa ranging from 12 to 80, and the number of characters being between 23 to 477.

187 **3.2 Empirical Comparison of Morphological Models**

188 Initially, our focus was on investigating how substitution models impact the estimation of key pa-
189 rameters. We chose 7 variants of the Mk model (Mk, MkV, MkV+G, Mk+G, MkVP, MkVP+G,
190 MkP+G, see Table 1 for model assumptions) and compared differences in the resulting tree lengths
191 and topologies. All phylogenetic inference was performed in a Bayesian framework using the soft-
192 ware RevBayes version (1.2.1) (Höhna et al., 2016). We ran an MCMC inference under each of the
193 7 models for all 114 data sets. This allowed us to determine whether there are any systematic dif-
194 ferences in parameter estimates that could be attributed to the substitution model. For all models
195 we assumed a uniform tree prior on the topology. Tree length was drawn from an exponential prior
196 distribution with a rate parameter of 1. Relative branch lengths were drawn from a Dirichlet prior
197 distribution (Zhang et al., 2012). The branch lengths were calculated as the product of the tree
198 length and the relative branch lengths. Preliminary analyses were run using an exponential prior
199 for branch length estimation, however, we found the Dirichlet tree prior to perform better in sim-
200 ulations. We used an Mk model, with the size of the Q-matrix being determined by the maximum
201 character state of each data set. When allowing for among character rate variation, ACRV, (+G)
202 the shape parameter of the gamma distribution, α was estimated as the inverse of a random variable
203 `alpha_inv` drawn from the exponential distribution with a rate parameter of 1. We discretized the
204 gamma distribution into four discrete categories (Yang, 1994). To account for ascertainment bias
205 (+V), we selected the variable coding option in RevBayes. Partitioned models (+P) split the data
206 set based on the number of character states. Each grouping had its own Q matrix. That is, all
207 binary traits were assigned to a Q-matrix of size 2, all tertiary traits were assigned to a Q-matrix
208 of size 3 and so on. For this set up, we applied the same gamma distribution for ACRV to each
209 partition.

210 We ran the MCMC for 20,000 iterations with two simultaneous chains, sampling every 10 genera-
211 tions. The output of both chains was automatically combined in RevBayes, resulting in a posterior
212 sample of 4,000. Convergence was assessed using a custom R script with the R package coda
213 (Plummer et al., 2006) to ensure ESS values > 200 of all parameters estimated.

214 3.2.1 Posterior Summaries

215 Tree length was calculated as the sum of the branch lengths averaged across the entire posterior
216 distribution. We also calculated the percentage change in tree length relative to the Mk model for
217 each data set to make it easier to observe any consistent patterns across models. We then explored
218 the differences in estimated tree topologies from the different substitution models for each data
219 set. Using a sample of 1000 trees from the posterior distribution for each substitution model, we
220 calculated the normalised Robinson-Foulds distance between all trees. With this resulting matrix
221 we performed a multivariate homogeneity of group dispersions analysis using the R package vegan
222 (Oksanen et al., 2022). This calculated the distance between points and their group centroid.
223 Plotting this as a PCoA allowed us to visualise where models were in tree space, relative to one
224 another. In order to quantify these differences, we carried out a permutation test to assess their
225 significance using the `permute` function in the vegan package (Oksanen et al., 2022). This allowed
226 us to determine if the variability in RF distances inferred using each of the models was significantly
227 different from each other.

Models & Extensions	Assumptions
Mk	all transition are equal (Lewis, 2001)
V	accounts for ascertainment bias (Lewis, 2001)
G	allows for variation in substitution rates among sites (Yang, 1994)
P	partitions the data based on the number of character states

Table 1: Models tested.

228 3.3 Assessing the Performance of Model Adequacy and Model Selection Meth- 229 ods for Morphological Data

230 Choosing an appropriate model of evolution is an important step in any Bayesian phylogenetic
231 analysis. The results from an inference will be conditioned on the assumptions of the evolutionary
232 model. As such, if the model's assumptions are markedly different than that of the underlying
233 process that generated the data, the results may be inaccurate. Methods for choosing an appropriate
234 model often take a model selection approach, relying on estimation of the marginal likelihood
235 (Brown, 2014b). These methods provide the relative fit of competing models. Although a model

236 may be selected as the best choice, it does not necessarily mean that the model is, in any way
237 adequate for the data set being analysed. That is, it may not provide a sufficiently realistic
238 description of the data generating process (Gatesy, 2007; A Shepherd and Klaere, 2019). Therefore,
239 model selection provides no indication about how well the model actually fits your data, only its
240 relative fit compared to other models. In contrast, model adequacy approaches provide information
241 on the absolute fit of a model to a data set. They can provide information about a model's ability
242 to capture key characteristics of a given data set, as well as highlight where the model may be
243 inadequate. Importantly, model adequacy provides the ability to reject models, even if they are
244 identified as the “best” using a model selection approach (A Shepherd and Klaere, 2019; Brown
245 and Thomson, 2018).

246 Posterior-predictive simulations (PPS) is a model-adequacy approach that has been applied to a
247 variety of data types, albeit with limited frequency in phylogenetics (Gelman et al., 1996; Bollback,
248 2002; Brown, 2014a; Brown and Thomson, 2018; Höhna et al., 2018; Schwery et al., 2023). Briefly,
249 it works by simulating data under a given model and comparing the similarity of the empirical
250 data to the newly simulated data using a test statistic. The rationale here being that if the model
251 adequately captures the underlying dynamics of the processes generating the data, the simulated
252 data would be similar to the empirical (Gelman et al., 1996; Bollback, 2002). To date, the use of
253 PPS has been demonstrated more often for molecular data, for example Brown (2014a) and Duchêne
254 et al. (2018), however, it has also been suggested for models of continuous trait evolution (Slater
255 and Pennell, 2014), and discrete character evolution (Huelsenbeck et al., 2003). Using simulations,
256 we investigate the use of Bayes factors and PPS for determining whether a morphological model
257 fits our data.

258 3.3.1 Model Adequacy Using Posterior Predictive Simulations

259 To test the adequacy of morphological models we used posterior prediction simulations (PPS)
260 following the workflow as described in Höhna et al. (2018) implemented in RevBayes. This can be
261 broadly broken down into four mains steps. We provide a brief description of these steps here, but
262 for a more thorough description see Höhna et al. (2018). (1) The first step is to analyse the empirical
263 data under a given model. This involves a regular MCMC inference sampling parameter values from
264 the posterior distribution. (2) New data sets are then simulated in R using the phangorn R package
265 (Schliep, 2011). Data sets are simulated under the same model as used in step 1 with trees and

266 parameter estimates inferred in step 1. (3) Inference under the same model is then carried out on all
267 the newly simulated data sets from step 2. (4) Test statistics are calculated and compared between
268 the original empirical data and inference results, and the newly simulated data and inference results,
269 see Fig. 1. The overarching idea here being, the more similar the simulated data is to the empirical
270 data, the better the model is at describing the underlying processes that produced your data.
271 This in turn indicates whether we can have confidence in the results inferred under a given model.
272 Note it is practical to simulate data sets in RevBayes, and we provide instructions for doing so in
273 the associated tutorial (https://revbayes.github.io/tutorials/pps_morpho/pps_data_morpho.html).
274 We chose to simulate data using phangorn as it was slightly more computationally efficient given
275 that our study featured an exceptionally large number of simulations (700,000 simulations for 160
276 individual data sets), but this should not be a concern for an empirical study, which would typically
277 only contain one or a few individual data sets.

278 **3.3.2 Candidate Test Statistics for Morphological Data**

279 PPS are only as good as the test statistics used, meaning if the test statics are not able to capture
280 differences that result from the underlying dynamics of the data generating processes, it will not be
281 possible to use PPS to understand the adequacy of a given model. Using test statistics allows us
282 to convert the empirical data and output into numerical values that we can use to summarize the
283 differences between empirical and simulated data. The test statistics can then be compared using
284 effect sizes, which provide a way of quantifying variation in model fit and allow us to distinguish
285 between the fit of competing models. Previous studies have used posterior-predictive *p*-values to
286 accept or reject a model. In this study we chose to focus on effect sizes over *p*-values for two reasons.
287 First, given that fit of morphological models to empirical data had not been tested previously, we
288 wanted to determine how different models preformed and essentially, potentially how poorly they
289 each fit empirical data. Second, effect sizes provide a more intuitive way of comparing the fit of
290 different models. By applying *p*-values only we can assess whether a model is adequate or not, but
291 not how the models perform relative to each other (Brown, 2014a; Duchêne et al., 2017). Effect
292 sizes therefore allow us to gain a better understanding of the impact of different morphological
293 models, and ultimately address the main questions of this study. This would not be necessary
294 perhaps in an empirical study, and we do include the use of *p*-values for our empirical analysis.
295 Here, the effect sizes were calculated by:

$$ES = \frac{empTS - simTS}{stdSimTS} \quad (1)$$

296 where $empTS$ is the empirical value for a given test statistic, $simTS$ is the value of the test statistic
297 from a single simulated replicate and $stdSimTS$ is the standard deviation across all simulated
298 replicates. The closer this number is to zero, the better the model is at explaining your data. Test
299 statistics can be divided into three categories: (1) data based, (2) inference based, and (3) data
300 inference hybrid or mixed. Data based test statistics compare the actual morphological data sets
301 themselves, inference based compare the inferred trees and mixed statistics uses both the data and
302 the trees to compare your empirical and simulated values.

303 **Data Based Test Statistics**

304 As the name suggests, these test statistics focus on characterising the matrices, themselves here
305 meaning the morphological data. As PPS studies in phylogenetics have previously focused on
306 molecular data, many of the data based statistics are only suited to DNA. For example, quantifying
307 the GC content or number of invariant sites (Höhna et al., 2018). Summarising morphological data
308 sets in a similar way requires different metrics. To do this we explore the use of disparity metrics.
309 Disparity is a measure of the morphological variation observed among species (Hopkins et al., 2017).
310 It is important to note, we are not interested in the actual measure of disparity, we are interested
311 in how the value differs between the original empirical data and the simulated data. We tested two
312 metrics of disparity.

313 (i) *Generalised Euclidean Distances* (GED) (Wills, 1998) is a popular disparity metric commonly
314 used in vertebrate research (Brusatte et al., 2011; Lehmann et al., 2019). This measure is similar
315 to the basic Euclidean distances but incorporates adjustments to accommodate missing characters.
316 Wills (2001) defines GED as:

$$S_{ij} = \sqrt{\sum_{k=1}^v S_{ijk}^2 W_{ijk}} \quad (2)$$

317 where S_{ij} is the total distance between taxa i and j , v is the total number of characters in the
318 matrix, W_{ijk} is the weight of the k th character, and S_{ijk} is the distance between taxa i and j at the
319 k th character. S_{ijk} equals 0 when the i th and j th sequence match in the k th position and 1 when

320 there is a mismatch. To account for missing data, a mean estimate of disparity is first calculated
 321 across all comparisons for which we have observations:

$$\bar{S}_{ijk} = \frac{\sum S_{ijk} W_{ijk}}{\sum S_{(ijk)_{max}} W_{ijk}}$$

322 where $S_{(ijk)}$ is the maximum possible distance between taxa i and j for the k th character, which
 323 equals 1 for discrete characters. The term $\bar{S}_{ijk} \cdot S_{(ijk)_{max}}$ is then substituted into Equation 2 for
 324 missing S_{ijk} values. In all cases, we treat characters as equally weighted, i.e., $W_{ijk} = 1$.

325 (ii) *Gower's Coefficient* (GC) (Gower, 1971) is commonly used in invertebrate studies (Hopkins
 326 and Smith, 2015). This metric calculates disparity differently to the GED, notably in regards to
 327 how it deals with missing characters. Here this is achieved by normalising by the available data.
 328 GC can be written as (Lloyd, 2016):

$$S_{ij} = \frac{\sum_{k=1}^v S_{ijk}^2 W_{ijk}}{\sum_{k=1}^v \delta_{ijk}^2 W_{ijk}} \quad (3)$$

329 where δ_{ijk} is coded as 1 if both taxa i and j can be coded for k (i.e., character states are observed
 330 for both taxa), and zero if not. As above, we use assume equal weights, i.e., $W_{ijk} = 1$.

331 For both the above metrics, we used the R package Claddis (Lloyd, 2016). In the calculations we
 332 set characters as unorderd. The output from this matrix of the pairwise distance between taxa. We
 333 took the average disparity across the matrix for the calculation of the effect size, i.e., for *empTS*
 334 and *simTS*.

335 Inference Based Statistics

336 Inference based test statistics aim to characterise the inferred trees in the posterior distribution.
 337 (i) *Mean Tree Length* (TL) was calculated using all the tree lengths sampled in the posterior
 338 distribution as:

$$\frac{1}{k} \sum_{i=1}^k TL_i \quad (4)$$

339 where TL is defined as the sum of branch lengths $TL = \sum_{2N-3}^{i=1} bl_i$. This calculation was done in

340 RevBayes. We took the mean tree lengths across the posterior distribution of trees as the input for
341 the effect sizes.

342 (ii) *Mean Robinson-Foulds Distance* (RF) was used to measure the topological uncertainty within
343 the posterior distribution (Robinson and Foulds, 1981). This value was calculated in RevBayes.

$$RF = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i+1}^k RF(\Psi_i, \Psi_j) \quad (5)$$

344 Mixed Test Statistics

345 These test statistics take both the data and the tree into consideration. Again, we investigate the
346 use of two test statistics here.

347

348 (i) *Consistency Index* (CI) (Kluge and Farris, 1969) which is a measure of homoplasy within the
349 data set. It can be calculated as:

$$CI = \frac{m}{s} \quad (6)$$

350 where m is the minimum possible number of steps or changes along a tree and s is the reconstructed
351 number, i.e., the number observed along estimated trees (Kluge and Farris, 1969). This metric has
352 been used to characterise data sets in paleontology (Murphy et al., 2021) and has been applied to
353 model adequacy studies focusing on molecular data (Duchêne et al., 2018). A CI of 1 indicates no
354 homoplasy and gets closer to zero as the amount of homoplasy increases.

355 (ii) The *Retention Index* (RI) (Farris, 1989), builds on the consistency index to calculate the
356 potential synapomorphy observed along the tree and is calculated as:

$$RI = \frac{g - s}{g - m} \quad (7)$$

357 where g is the maximum number of possible steps on a given tree.

358 For both consistency and retention index, we used the maximum clade credibility (MCC) tree
359 generated from inference of the empirical data for all calculations. We carried out preliminary
360 analysis where we used the entire posterior distribution of trees for this calculation. The increased

³⁶¹ computation time from a number of minutes to 24 hours and produced extremely similar results,
³⁶² see fig. S2. For this reason, we continued to use the MCC tree only for the rest of the analysis.

³⁶³ **3.3.3 Model Selection Using Stepping Stone Sampling**

³⁶⁴ For model selection, Bayes factors are computed to compare between models. In order to do this we
³⁶⁵ first have to calculate the marginal likelihood of the data. The marginal likelihood is an important
³⁶⁶ quantity in Bayesian model selection as it provides a measure of the goodness of fit of the model
³⁶⁷ to the data, while accounting for model complexity. The marginal probability is the probability of
³⁶⁸ the data integrated over all possible parameter values weighted by their prior probabilities for a
³⁶⁹ given model. This is tricky to calculate so we avoid calculating it in regular MCMC inference using
³⁷⁰ the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). We therefore, need to
³⁷¹ use a different approach in order to approximate this value. One such approach is stepping stone
³⁷² sampling. Stepping stone sampling is a Monte Carlo method that uses a sequence of intermediate
³⁷³ distributions, or steps, between the prior and posterior distributions to compute the marginal
³⁷⁴ likelihood. Stepping stone sampling has been demonstrated to be a reliable method for calculating
³⁷⁵ Bayes factors and therefore performing model selection with molecular data (Xie et al., 2011; Höhna
³⁷⁶ et al., 2021). While comparing marginal likelihoods has been used for morphological data to choose
³⁷⁷ a model, its performance has yet to be assessed (Wright et al., 2021).

³⁷⁸ **3.3.4 Simulated Data**

³⁷⁹ We based our simulation study on two empirical data sets, one on Proboscideans (the group con-
³⁸⁰ taining elephants and their nearest extinct relatives) (Shoshani et al., 2006) and the other on
³⁸¹ Hyaenodontidae (Egi et al., 2005). For simplicity we will refer to each data set as simulated ele-
³⁸² phants and simulated hyenas, respectively. The simulated elephant data set is larger, having 40
³⁸³ taxa, 125 characters with 6 states compared to the simulated hyaenas which has 15 taxa, 65 char-
³⁸⁴ acters and 5 states. For each data set, we used 20 trees from the posterior distribution inferred
³⁸⁵ under a given model and simulated character data under the same model in R using phagnorm
³⁸⁶ Schliep (2011). We did not simulate any traits with missing data. We did this for the MkV, MkVP,
³⁸⁷ MkV+G and MkVP+G models for each data set (160 simulated replicates in total).

388 3.3.5 Analysis of Simulated Data

389 We carried out PPS following section 3.3.1 on all simulated elephant and simulated hyena data
390 sets. This allowed us to jointly validate the candidate test statistics and determine how well PPS
391 can detect the correct model, as well as how it handles incorrect models. We analysed each of the
392 simulated data sets under the same seven models as in section 3.2 (Mk, MkV, MkV+G, Mk+G,
393 MkVP, MkVP+G, MkP+G) and kept all model parameters the same. The MCMC was ran for
394 10,000 iterations, with two individual chains. Convergence was assessed by calculating the ESS
395 values for the likelihood, prior, posterior, tree length and when present in the model, the estimated
396 alpha values using the R package coda (Plummer et al., 2006). MCMC chains that produced ESS
397 values < 200 were ran again with an increase in the chain length. There were 560 replicates for
398 each data set size. For the simulated hyena data sets, 533 converged after 10,000 iterations, 24 after
399 50,000 iterations and 3 after 100,000. For the simulated elephant data, 548 reached convergence
400 after 10,000 iterations and 12 required 50,000 iterations.

401 The number of simulations required for PPS is not strictly defined. Given that the number of
402 simulation replicates will increase both the computation time and memory requirements, doing
403 extra should be avoided. To explore this we used both of the simulated data sets, simulated
404 under the MkV+G model. We ran an MCMC inference as described above with 1,000 simulation
405 replicates. We calculated the cumulative means for each test statistic inferred under each model.
406 Following Robinson et al. (2004), we plotted the cumulative means thereby taking a graphical
407 approach that shows the point at which the line becomes flat, indicating the required number of
408 replicates Fig. S3, (Robinson et al., 2004). We found that after 500 replicates the lines were flat
409 and we determined this to be sufficient. To ensure that this number of simulation replicates was
410 not effecting the calculation of the actual effect sizes, we compared the effect sizes for each test
411 statistic with 500 and 1,000 replicates. For $\sim 92\%$ of the effect sizes calculated, we found that the
412 difference was less than 0.1 with a median of ~ 0.03 . The largest change in effect sizes we saw was
413 between 500 and 1,000 replicates which was 0.5. This was calculated for the two data based test
414 statistics both inferred under the model MkVP+G and the same replicate. This results was thus
415 considered an outlier. All other differences were less than 0.25, and did not change whether a model
416 was considered to be adequate or not. As a results of these tests, we determined that having 500
417 simulations replicates would be sufficient for our PPS analyses throughout.

418 We then used stepping stone sampling to estimate the marginal likelihoods under each of the

419 models. We kept all model parameters the same as above, and used 48 stones.

420 **3.4 Analysis of Empirical Data**

421 Once we identified appropriate test statistics, we could test model fit using PPS on empirical data
422 sets to determine which, if any, morphological models were adequate. We chose to analyse 8 data
423 sets here. This was limited by the computational costs of running the analysis multiple times. Data
424 sets were chosen to cover a range of sizes, in terms of taxa, characters and states. We tested the
425 same 7 models we used throughout (Mk, MkV, MkV+G, Mk+G, MkVP, MkVP+G, MkP+G) and
426 kept all model parameters the same as in section 3.3.1. We also used stepping stone sampling on
427 each of the data sets in order to see how the models chosen by model selection compared to those
428 identified as most appropriate by model adequacy. Posterior *p*-values were calculated in R for each
429 of the test statistics to compare with the results obtained using effect sizes.

430 **4 Results**

431 **4.1 Empirical Comparison of Morphological Models**

432 Assuming different models of morphological evolution produced different estimates of key parame-
433 ters of interest. Figure 2A shows the percentage difference in mean tree lengths relative to that of
434 the Mk model for all 114 data sets. There are some general trends that emerged here. As expected
435 (Lewis, 2001), the MkV model produced smaller estimates of tree length relative to the Mk model
436 for all but one data set. The Mk+G model produced longer trees for 96% of the data sets compared
437 to the Mk model. However, when used in combination, these two extensions produced the smallest
438 trees compared to all models in 96% of data sets. Partitioned models estimated larger trees, with
439 the MkP+G model estimating larger trees in 100% of the data sets, consistent with the findings
440 of Khakurel et al. (in press). Interestingly, the MkVP+G model was divided between larger and
441 smaller trees compared to the Mk model, with only 35% of the trees being larger. Figure 2B shows
442 the tree length plotted for two data sets, of Hyaenodontidae (Egi et al., 2005) and Proboscideans
443 (Shoshani et al., 2006), respectively. This is to highlight, that while there are some general trends,
444 models still behave differently depending on the data set. It is worth noting that the Shoshani
445 et al. (2006) data set (Figure 2B (i)) is the larger of the two, both in terms of number of taxa and

446 characters. The influence of different models on tree length tended increase with larger data sets,
 447 both in terms of taxa and character number see supplementary fig. S1.

448 Figure 2C shows the tree space for the same two data sets. Using the permuted *p*-values estimated
 449 from the pairwise distances using Robinson-Foulds, we found that for both data sets the majority
 450 of models occupied a different tree space, i.e., differences in topology were significant. For the data
 451 set from Egi et al. (2005), trees inferred using MkV, MkV+G and Mk+G models grouped in a
 452 similar tree space, whereas all other models occupied different spaces. Whereas for the data set
 453 from Shoshani et al. (2006), we found two separate groupings, one of trees inferred using the Mk+G
 454 and MkV models, and the other an overlap between the MkV and MkV+G models. These results
 455 highlight that, not only do the substitution models have an impact on key parameter estimates,
 456 but this impact is not uniform across data sets.

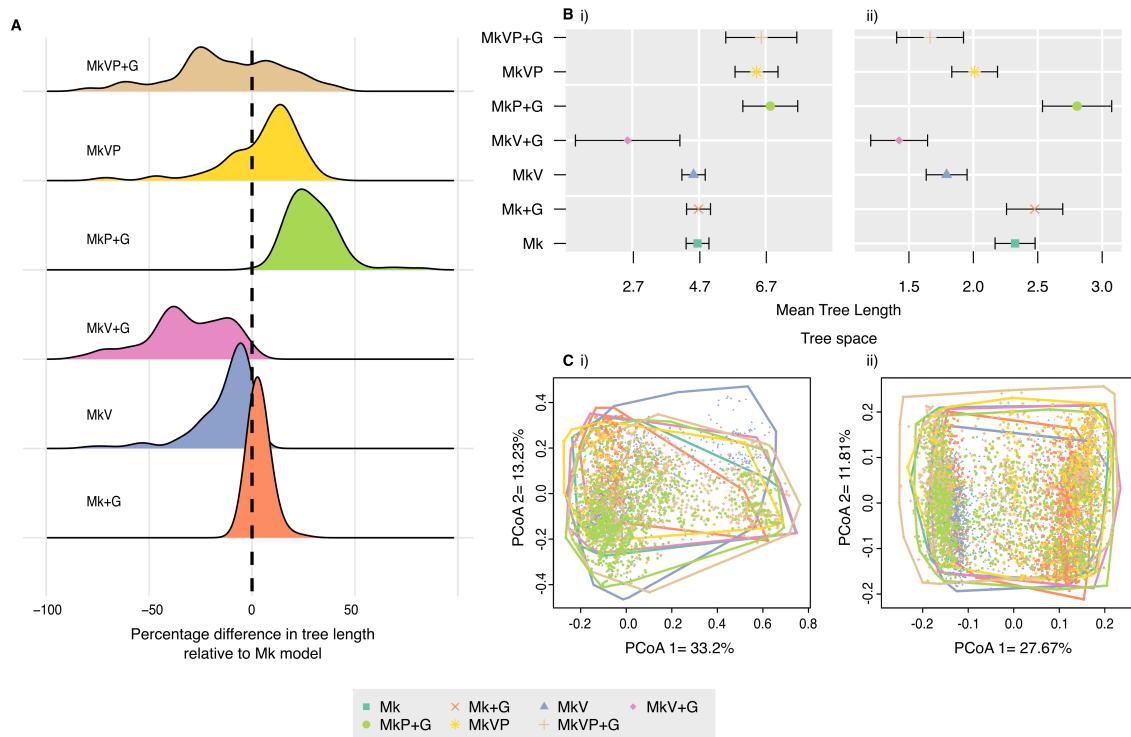


Figure 2: Analysis from 114 data sets under the 7 different models Mk, MkV, MkV+G, Mk+G, MkVP, MkVP+G, MkP+G. **A**, the changes in mean tree length of the posterior inferred using each model relative to the Mk model. **B**, the tree length calculated for each model for two different data sets from Egi et al. (2005) (Hyaenodontidae) and Shoshani et al. (2006) (Proboscideans), respectively. **C**, the tree space of the same two data sets as for B.

457 4.2 Assessing the Performance of Model Adequacy and Model Selection Methods 458 for Morphological Data

459 4.2.1 Candidate Test Statistics for Morphological data

460 We explored the use of six test statistics for morphological models. The desired characteristic of
461 test statics considered here, is their ability to indicate the adequacy of a particular model while
462 also pointing out the inadequacy of another, i.e., we want the effect size of the correct model to
463 be consistently around zero, while being far from zero for the incorrect models. We will focus on
464 the results from both hyena and elephant data sets simulated under the MkV+G and MkVP+G
465 models. We carried out the same investigation on data sets simulated under the MkV and MkVP
466 models and reached the same conclusions, see Fig. S6 -S8. The data test statistics, shown in Fig.
467 3, Grower's coefficient and Generalized Euclidean Distance, both show a similar pattern. For the
468 unpartitioned models there is no discernible preference for a given model. That is, they all fall
469 within a similar range of effect sizes. For data simulated under a partitioned model, there was
470 a stronger separation of effect sizes, where all the partitioned models are closer to zero and fall
471 within a similar range. This pattern is more consistent for Gower's Coefficient, suggesting it's
472 potential use as a test statistic. Neither of the inference based test statistics, shown in Fig. 4, show
473 any strong or meaningful separation of effect sizes. Meaning, there is no preference for any of the
474 models and it is unclear what explains this pattern. As for the mixed test statistics, consistency
475 index and retention index, shown in Fig. 5, there is a similar pattern to that of the data based test
476 statistics, however, with the differences in effect sizes between models being more pronounced. In
477 order to quantify these results, we focused on three key features, (i) the variance in effect sizes for
478 the correct model, meaning the total range of effect sizes for a given test statistic with the correct
479 model, (ii) how incorrect models preformed, meaning the total range of effect sizes for a given
480 test statistics across all models and, (iii) how easily we could differentiate between adequate and
481 inadequate models by calculating the number of models which fall into the correct model effect size
482 (ES) range. A numerical summary of these results can be found in Table 2 and 3. Consistency index
483 and retention index demonstrated the best performance of these three aspects, with the correct
484 models being consistently close to zero, incorrect models having larger ES values, and the fewest
485 number of models on average falling within the correct model effect size range. While Grower's
486 coefficient also seems promising, the difference in effect sizes is less than that of the mixed test

487 statistics. As such, in the empirical analyses we relied solely on the mixed test statistics, the
 488 consistency and retention indices.

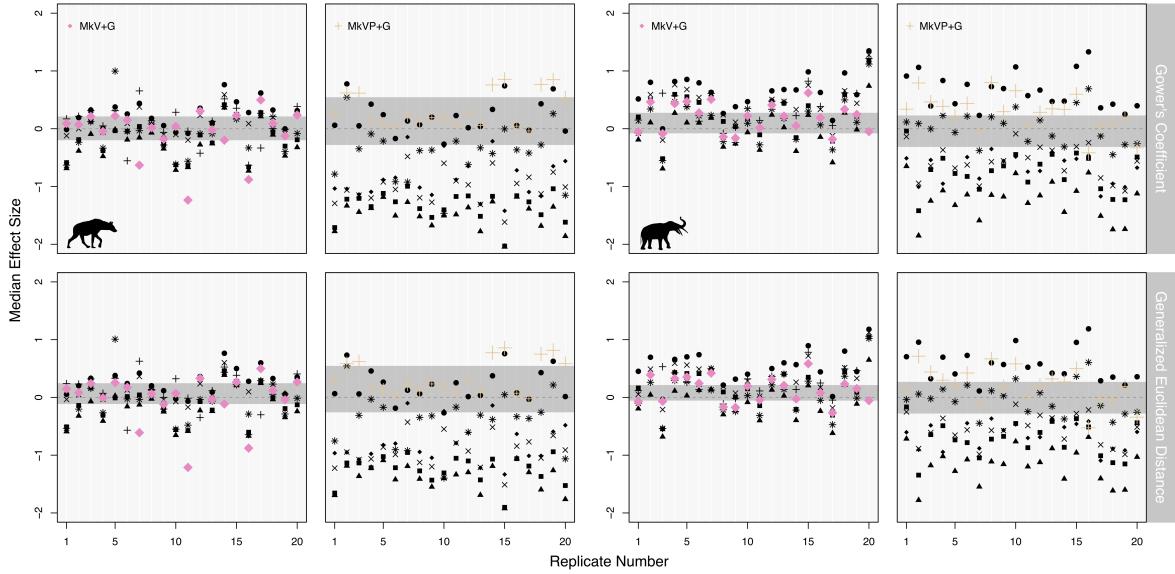


Figure 3: Validation of the data based test statistics. Plots show the output from each simulated data set with 20 replicates for each test statistic. The coloured points indicate the correct model, with the grey horizontal bar marking the range of effect sizes calculated for the correct model. ■ = Mk, ✕ = Mk+G, ▲ = MkV, ◆ = MkV+G, * = MkVP, ● = MkP+G, and + = MkVP+G

489 **4.2.2 Model Adequacy vs. Model Selection**

490 Here we compared the use of model adequacy and model selection using simulated data sets. To
 491 reiterate, unlike model selection, model adequacy approaches do not rank potential models in the
 492 same way, indicating that one model is the best. Therefore, for any given data set, if multiple
 493 models are investigated, as was the case here, several models may be adequate according to a
 494 particular test statistic. We will focus on the same 4 data sets as in section 4.2.1.

495 In the above section, to identify appropriate test statistics, we focused on the pattern of median
 496 ES values. When considering individual replicates we required more information than just the
 497 median ES value to determine the adequacy of a model for a given data set. Using this value
 498 alone makes it difficult to determine a model's adequacy unless the median value is zero. We
 499 explored the use of upper and lower quartiles, and minimum and maximum limits and found the
 500 latter to be the more informative approach for identifying a model's adequacy. We propose that

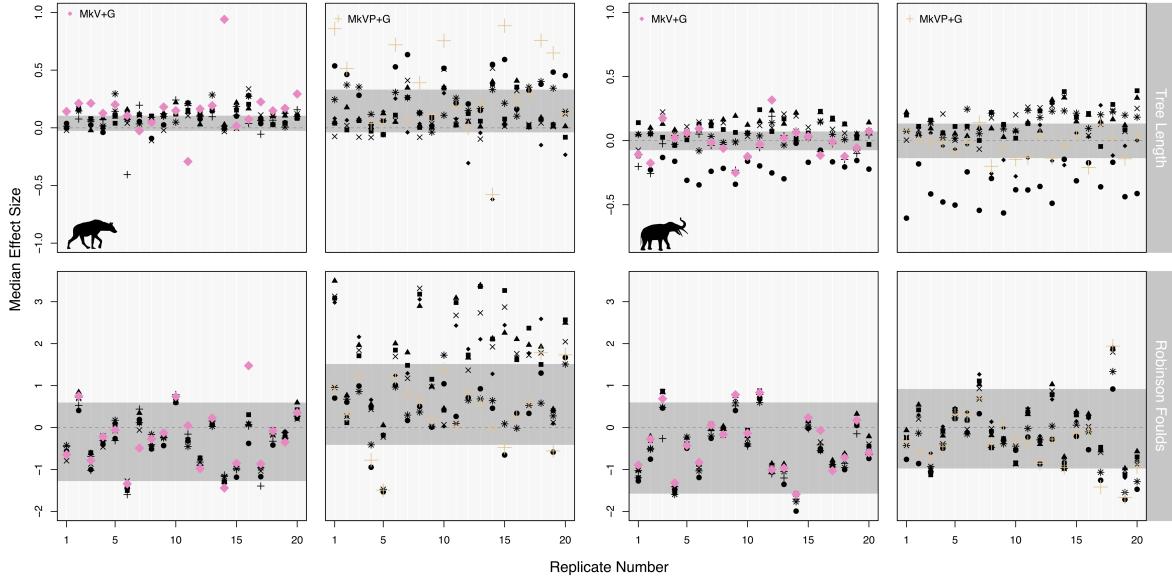


Figure 4: Validation of the inference based test statistics. Plots shows the output from each simulated data set with 20 replicates for each test statistic. The coloured points indicate the correct model with the grey horizontal bar marking the range of effect sizes values calculated for the correct model. ■ = Mk, ✕ = Mk+G, ▲ = MkV, ◆ = MkV+G, * = MkVP, ● = MkP+G, and + = MkVP+G

501 if the minimum and maximum limits pass through zero, this would indicate that the model is
 502 adequate using our chosen test statistics. Following this criteria, we could quantify the percentage
 503 of simulation replicates where the model was deemed adequate/inadequate. Table 4 shows the
 504 percentage of times a model met the above described criteria using the consistency index and the
 505 retention index.

506 Model selection produced surprising results. We consistently found support for partitioned models,
 507 regardless of the model used to simulate the data. Table 5 shows the percentage of times a model
 508 was chosen as the best model according to Bayes factors. For this reason, using Bayes factors is not
 509 a reliable approach for deciding between partitions with morphological data, at least not using the
 510 standard approach we applied to partition characters, i.e., by the maximum observed state number
 511 (see the Discussion for a full explanation).

512 4.3 Analysis of Empirical data

513 We then applied PPS with the newly validated test statistics to 8 empirical data sets. This allowed
 514 us to answer our main question: are current morphological models adequate for empirical data?

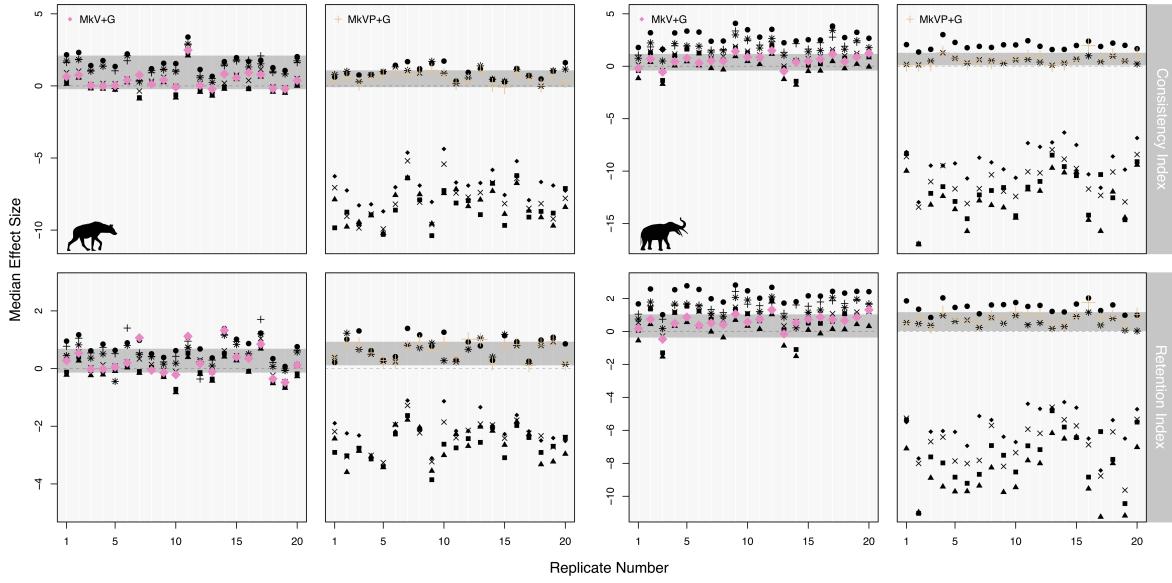


Figure 5: Validation of the mixed test statistics. Plots shows the output from each simulated data set with 20 replicates for each test statistic. The coloured points indicate the correct model with the grey horizontal bar marking the range of effect sizes calculated for the correct model. \blacksquare = Mk, \times = Mk+G, \blacktriangle = MkV, \blacklozenge = MkV+G, \ast = MkVP, \bullet = MkP+G, and $+$ = MkVP+G

515 Of the 8 data sets, 5 had at least one model that was adequate. Fig. 6 shows the effect sizes from
 516 4 data sets (see also supplementary Fig. S9). The MkVP+G model was found to be adequate for
 517 all 5 data sets. Of those 5 data sets, 4 also fit an MkVP model. We found the MkP+G model
 518 to be adequate for 3 data sets. For one of the data sets, Fig.6D, we found all models apart from
 519 the MkP+G model to be adequate. We do not see any clear pattern in terms of adequate models,
 520 with respect to the size of the data sets, i.e., number of taxa, characters, or state number. This
 521 suggests that these variables are not informative when choosing a model. For the two largest data
 522 sets, in terms of taxa, we did not find any models to be adequate. These data sets had 40 taxa
 523 (Shoshani et al., 2006) and 50 taxa (Tomiya, 2011). However, no models were adequate for a third
 524 data set with only 25 taxa (Schoch and Sues, 2013). Table. 6 shows the p -values calculated for
 525 consistency index and retention index for the same data sets as in Fig. 6. Values below 0.025
 526 and above 0.975 are considered to be significant. This would indicate that the simulated data is
 527 significantly different from the empirical data, and that the model does not capture the underlying
 528 data generating processes and therefore is not adequate for that data set. Results using effect sizes
 529 and p -values agree on the same models for all data sets. There is one instance when there is a
 530 disagreement using retention index. For the data set from Egi et al. (2005), the Mk+G model

Model	Test Statistic	Correct ES	Overall ES	Num in Correct
MkV+G	GC	1.7	2.2	5.7
	GED	1.7	2.2	5.6
	TL	1.2	1.4	6
	RF	2.9	3.1	5.9
	CI	2.7	4.3	5
	RI	1.8	2.5	5.6
MkVP+G	GC	0.9	2.9	1
	GED	0.9	2.8	1
	TL	2.8	2.8	6
	RF	3.3	5.0	4.1
	CI	1.2	11.7	1.40
	RI	1.1	5.3	1.6

Table 2: Validation of test statistics from the simulated hyena data sets. Correct ES gives the total range of effect sizes for a given test statistics with the correct model. Overall ES gives the total range of effect sizes for a given test statistic across all models. Num in Correct gives the number of models which fall into the Correct ES range. Num in Correct only looks at incorrect models, which means the maximum value here can be 6. GC = Gower's coefficient, GED = generalized euclidean distance, TL = tree length, RF = Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index have the largest overall ES range with, on average the fewest models falling in the same range as that of the correct model.

531 was accepted using the threshold that we defined for effect sizes and rejected using p -values. Both
 532 metrics rejected the model according to consistency index, however, so the Mk+G was ultimately
 533 rejected using both approaches.

534 5 Discussion

535 Understanding morphological evolution is an extremely difficult task. Within palaeobiology we
 536 rely on a small number of relatively simple models to describe this complex process (Wright, 2019).
 537 Until now, the impact of these different substitution models on parameter estimates was not well
 538 understood. Our analysis on the influence of these models using empirical data sets, focusing on tree

Model	Test Statistic	Correct ES	Overall ES	Num in Correct
MkV+G	GC	0.8	2.0	4.1
	GED	0.9	1.9	4.7
	TL	0.7	0.7	5.7
	RF	2.4	2.9	5.5
	CI	2.0	5.9	2.8
	RI	1.8	4.3	3
MkVP+G	GC	1.2	3.2	2.1
	GED	1.2	4.0	2.95
	TL	0.3	1.0	2.95
	RF	3.7	3.7	5.95
	CI	1.9	20.0	1.45
	RI	1.5	13	1.6

Table 3: Validation of test statistics from the simulated elephant data sets. Correct ES gives the total range of effect sizes for a given test statistics with the correct model. Overall ES gives the total range of effect sizes for a given test statistic across all models. Num in Correct gives the number of models which fall into the Correct ES range. Num in Correct only looks at incorrect models, which means the maximum value here can be 6. GC = Gower's coefficient, GED = generalized euclidean distance, TL = tree length, RF = Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index have the largest overall ES range with, on average the fewest models falling in the same range as that of the correct model.

539 length and topology, demonstrates that different models can produce contrasting reconstructions of
 540 the evolutionary history of a group, emphasising the importance of model choice (Fig. 2). Although
 541 the impact of models on parameter estimates is not uniform across data sets, the most consistent
 542 pattern we observe is whether or not the data is partitioned.

543 5.1 Partitioned models

544 In all the partitioned models explored here, traits were partitioned based on the number of character
 545 states. This is a practical approach, both in terms of the biology and the way in which the characters
 546 tend to be coded. We found that for all but two data sets, the unpartitioned models produced

Sim Model	Data set	Test Statistic	Mk	Mk+G	MkV	MkV+G	MkP+G	MVP	MkVP+G
MkV+G	Hyena	CI	100%	95%	100%	100%	95%	95%	95%
MkV+G	Hyena	RI	100%	100%	100%	100%	100%	100%	100%
MkVP+G	Hyena	CI	-	-	-	-	100%	100%	100%
MkVP+G	Hyena	RI	50%	65%	45%	75%	100%	100%	100%
MkV+G	Elephant	CI	100%	100%	100%	100%	40%	85%	80%
MkV+G	Elephant	RI	100%	100%	100%	100%	70%	100%	100%
MkVP+G	Elephant	CI	-	-	-	-	100%	100%	100%
MkVP+G	Elephant	RI	-	-	-	-	100%	100%	100%

Table 4: The percentage of times a model was found to be adequate across all replicates using consistency index (CI) and retention index (RI) as tests statistics. In order for a model to be considered adequate the effect sizes need to meet the criteria put forward here, where the range of minimum and maximum values contain zero.

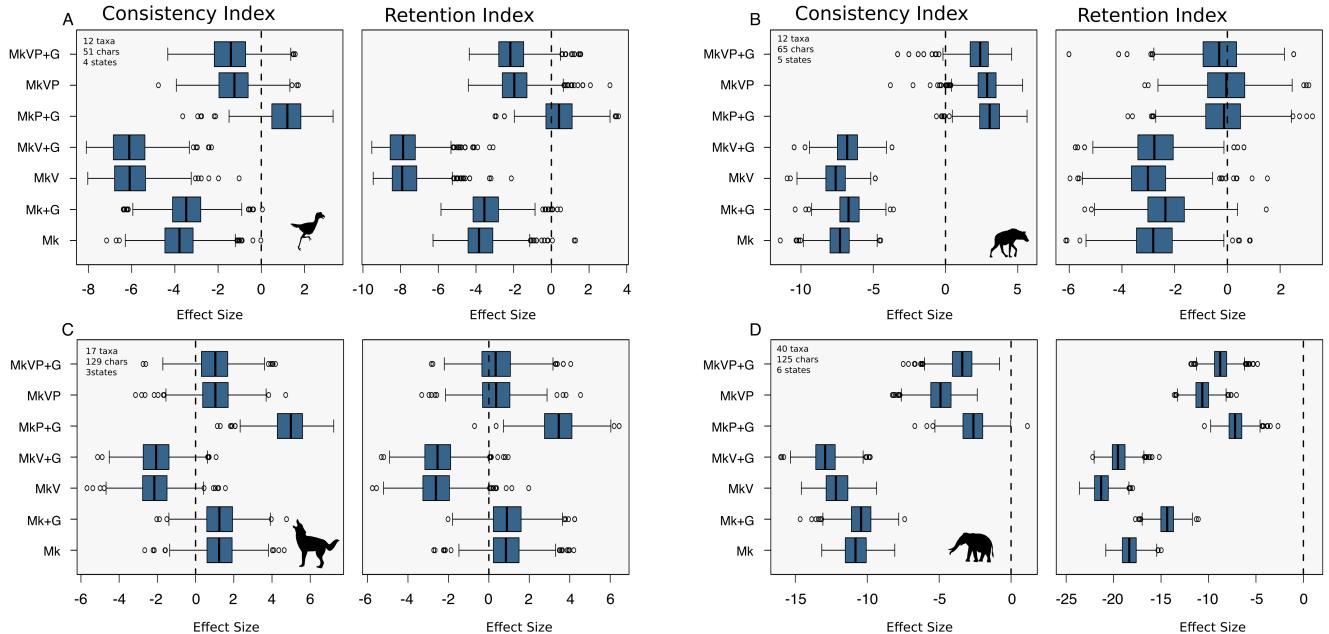


Figure 6: Effect sizes for four empirical data sets for the consistency index and retention index. The dashed black line is at zero is there to help identify adequate models. The data sets are taken from (Agnolin, 2007), (Egi et al., 2005), (Bourdon et al., 2009) and (Shoshani et al., 2006), respectively.

Model	Data set	Mk	Mk+G	MkV	MkV+G	MkP+G	MVP	MkVP+G
MkV+G	Hyena	-	-	-	-	5%	15%	80%
MkVP+G	Hyena	-	-	-	-	5%	30%	65%
MkV+G	Elephant	-	-	-	-	-	-	100%
MkVP+G	Elephant	-	-	-	-	-	-	100%

Table 5: Models chosen using Bayes factors and the marginal likelihoods. Cells show the percentage of times a model was selected across the 20 replicates from each simulation set up. The dashed line indicates the model was never selected.

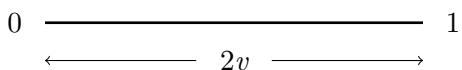
547 smaller trees. To further investigate the cause of this, we ran an analysis using a binary data set
 548 and increased the Q-matrix size from 2-5. The objective here was to mirror what happens when we
 549 have characters with a lower number of observed states than the maximum number of states in the
 550 matrix. For example, placing binary characters in a partition with a maximum of 5 character states.
 551 We show that as the size of the Q-matrix increases tree length gets smaller (Fig. S10). The effect
 552 of partitioning that we observe on empirical estimates of tree length, is therefore a direct result of
 553 how morphological data is typically partitioned (see also Equations 8 and 9 below). Characters are
 554 partitioned by maximum number of observed states, e.g., binary characters are all together in one
 555 partition and assigned to a rate matrix of size 2, characters with 3 states are assigned to a rate
 556 matrix of size 3 and so on. For unpartitioned models, however, all of the characters will be in a
 557 single Q-matrix that is the size of the maximum number of observed states across the whole data
 558 set. This means that for a given branch length v , under a model that assumes there are n states,
 559 for characters where we observe $< n$ states (e.g., a binary character in a rate matrix of size 5), the
 560 probability of observing no change will be underestimated. Similarly, the probability of observing
 561 a given change will also be lower if there are more (unobserved) possible states. Both cases will
 562 result in shorter branch lengths. Partitioning morphological data by character state number is
 563 a practical approach, however, this requires making an assumption that we know the number of
 564 states for each character, when in reality we might not. For molecular data of course, this is not
 565 something we need to consider, as we know there are four nucleotides. By assuming we know the
 566 number of states, based on the number of observed states, we may be biasing our results. The
 567 effects of whether or not a data set is partitioned are considerable in terms of parameter estimates.
 568 As such, it is important to consider how the data is being partitioned and whether or not it makes
 569 biological sense for your data set to do so.

Model	Agnolin		Egi		Bourdon		Shoshani	
	CI	RI	CI	RI	CI	RI	CI	RI
Mk	0	0.003	0	0.005	0.8895	0.812	0	0
Mk+G	0.001	0.004	0	0.006	0.898	0.8235	0	0
MkV	0	0	0	0.005	0.019	0.011	0	0
MkV+G	0	0	0	0.006	0.033	0.01	0	0
MkP+G	0.835	0.659	0.994	0.446	1	0.999	0.001	0
MkVP	0.105	0.041	0.992	0.483	0.859	0.655	0	0
MkVP+G	0.095	0.034	0.974	0.376	0.848	0.6245	0	0

Table 6: Posterior p -values from the empirical analyses. CI refers to consistency index and RI to retention index. Values below 0.025 and above 0.975 are considered to be significant. This would indicate that the simulated data is significantly different than the empirical data and that the model is not adequate for that data set. The results here agree with those produced using effect sizes. See Table 4.

570 Here we focused exclusively on partitioning by character state. This is the most common partition-
 571 scheme and is even a default in some phylogenetic software programs, for example BEAST2
 572 (Bouckaert et al., 2019), and MrBayes (Ronquist et al., 2012). Yet this is not the only way that
 573 data could be partitioned. A researcher could partition the data based on different anatomical
 574 regions, or based on subsets of anatomical, ecological or behavioural traits. Thus one may need to
 575 decide between various partitioning schemes or no partitioning at all. To date, model selection is
 576 regarded as the gold standard for choosing between substitution models and partition schemes (Xie
 577 et al., 2011). Within a Bayesian framework, comparing marginal likelihoods has been shown to be
 578 effective for choosing between partition schemes with molecular data. Our results, however, show
 579 that for morphological data, model selection consistently selects a partitioned model, regardless
 580 of the model used to simulate the data. This result can be explained by taking into account how
 581 partitioning morphological data effects the likelihood calculation, importantly how it effects the
 582 transition probabilities and the stationary frequencies.

583 For example, assume you have a tree consisting of two tips, one with discrete state 0 and the other
 584 with discrete states 1, as shown here.



586 The tips share a common ancestor v time units in the past. The transition probability for this
 587 scenario under the Mk model is calculated as:

$$p_{01}(2v) = \frac{1}{k} - \frac{1}{k}e^{-2v} \quad (8)$$

588 where k is the number of states. Further, the likelihood of this data is:

$$P(0, 1 | v) = \frac{1}{k} \times \frac{1}{k} [1 - e^{-2v}] \quad (9)$$

589 Here k would be set to 2 as we observe two states. However, in cases where there are other
 590 traits, some of which have a higher maximum observed state, k would increase., e.g., as happens
 591 in unpartitioned inference. Higher values of k would result in a lower likelihood. This change
 592 in likelihood is a direct result of the partitioning scheme. When partitioning molecular data, we
 593 do not change the size of the Q-matrix (k), which is why we do not see the same effects on the
 594 likelihood. Figure 7 shows the impact on the log likelihood of changing the size of the Q-matrix
 595 (k) along different branch lengths (v) for these two tips.

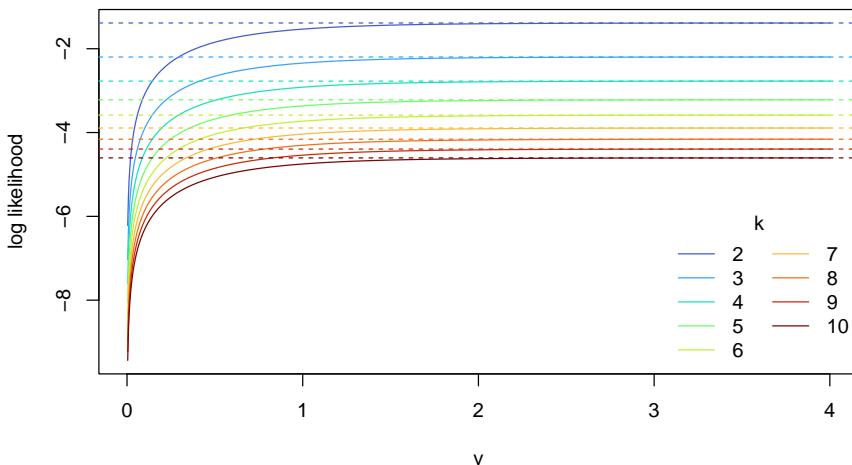


Figure 7: Log likelihoods calculated for different sizes Q-matrices (k) along as a function of branch lengths (v). The log likelihoods converge as v increases and the transition probability approaches the stationary frequencies.

596 To empirically demonstrate the impact of of partitioning by state space on the likelihood we ran
 597 two experiments. First, using an empirical binary morphological matrix we calculated the marginal
 598 likelihood under an unpartitioned MkV+G model increasing the Q-matrix size from 2-5. Supple-
 599 mentary figure. S12 shows the decrease in marginal likelihood as we increase the number of transition

600 possibilities (Q-matrix size). We then wanted to investigate the impact of adding the “correct”
601 partitions. Here, we used an empirical morphological matrix with a maximum of 6 states. We first
602 calculated the marginal likelihood under an unpartitioned MkV+G model. We then created two
603 partitions, one partition for all binary states and the second for all other states. Then we increased
604 the number of partitions to three, with one for binary states, one for ternary states and kept all
605 others in the third partition. This method of adding partitions was continued until there were 5
606 in total and all states were in the appropriately sized Q-matrix. Fig. S11 shows that the marginal
607 likelihood increases as partitions are added to the model. This is expected, given Equations 8
608 and 9. This suggests that the results from model selection will not be indicative of any meaning-
609 ful biological signal. For this reason, using model selection to differentiate between partitions for
610 morphological data is not appropriate when the Q-matrix size varies.

611 5.2 Test Statistics

612 Overall, our results show that model adequacy, in particular PPS, currently offers the most effective
613 way of identifying the most suitable model for morphological data. In addition, we demonstrate
614 that PPS can reliably determine whether a given model is adequate or not. Understanding the
615 absolute fit of available models can lend support to the use of model based phylogenetics for the
616 analysis of morphological data. Here we carried out the first thorough investigation into the use of
617 PPS with discrete morphological substitution models.

618 One of the most important aspects of PPS to consider is the choice of test statistics. As this
619 was the first systematic application of PPS to discrete character data, we first validated available
620 test statistics using simulations. We explored the use of 6 test statistics and ultimately found
621 consistency index and retention index to be the most informative. Neither of the inference based
622 test statistics we explored, Robinson-Foulds or tree length, were able to give a clear indication of
623 model adequacy. In this context, Robinson-Foulds distance is used to quantify variance across the
624 posterior distribution of trees, therefore reflecting topological uncertainty. Given that morphological
625 data sets tend to be small, the uncertainty in topology may be high, regardless of the model
626 used for inference (Barido-Sottani et al., 2020). The uninformativeness of tree length is more
627 puzzling, since competing models have a clear impact on the estimated tree length. Tree length has
628 also previously been shown to be a poor test statistic for molecular data (Duchêne et al., 2018).
629 Both Gower’s coefficient and generalized euclidean distance did show some potential value as test

630 statistics (Fig. 3), although the mixed test statistics, the consistency index and retention indices,
631 were substantially better (Fig. 5, Tables 2-3). Having a test statistics specifically focused on the
632 data would be favourable. Future studies could focus on alternative ways of including disparity
633 metrics as test statistics. For example, we used the mean pairwise distance, perhaps looking at the
634 sum of the variance or sum of the ranges could be more informative for model adequacy (Smith
635 et al., 2023).

636 5.3 Practical Considerations

637 Importantly, our simulation study also allowed us to identify ways of reducing the overall computa-
638 tional costs. As with many Bayesian analyses, there can be a high computational costs associated
639 with running a PPS analysis. To mitigate any unnecessary computation, we assessed the maximum
640 number of simulation replicates required to reach stability in the mean effect sizes. By doing so, we
641 were able to ensure that we were not running unnecessary replicates. Further, the most expensive
642 part of running a PPS analysis comes from the inference of the simulation replicates. Based on
643 our simulation study, we did not find any benefit to including inference based test statistics (tree
644 length and Robinson Foulds, Fig.4), meaning this expensive step can be skipped. Taking both of
645 these findings into account, the time and memory required to run a PPS analysis becomes a lot
646 smaller. For example, when compared to a stepping stone analysis, we found PPS to take half the
647 time per model.

648 From our simulation study, relying exclusively on the mixed test statistics, consistency index and
649 retention index, we found that for all replicates, more than one model was adequate (Table 4).
650 When interpreting these results it is important to remember simulated data is often “neater”
651 than empirical data. In our simulation set up, all characters in a given matrix were simulated
652 under the same model and the model extensions we used are not proposing conflicting statements
653 about the underlying process. As such, it is not surprising that we found multiple models to be
654 adequate for our simulated data. The choice of substitution model may have less impact on our
655 simulated data, as the topology is easier to infer. For example, taking all simulation replicates
656 of the simulated hyena data under an MkV+G model, the mean variance in tree length across
657 the 7 different models was 0.74. In contrast, for the empirical data used as the basis for the
658 simulations, the variance in tree length across models was 4.29 (Fig. 2B(i)). Our simulation study
659 was valuable in determining which test statistics were sensitive to model choice under exemplar

660 conditions, but it is not alarming that differentiating between similar models, i.e., all partitioned
661 models, was not possible. Future work could investigate model adequacy when data is simulated
662 under more complex models, e.g., generating matrices that contain conflicting characters associated
663 with different models or topologies (Sansom et al., 2017; Weisbecker et al., 2023).

664 The results from our empirical data sets show a larger difference in the effect sizes for different
665 models (Fig. 6). Based on our criteria of using the minimum and maximum effect sizes (after
666 removing outliers) we determined that for 5 of data sets, at least one of the models tested here
667 was adequate. This leaves the other 3 without a model being adequate. While initially this result
668 may seem negative, in that no models were adequate, it is actually more reasonable than not. The
669 expectation that all data sets would have a model available that fit would have been unrealistic,
670 given the complexity of the data versus the simplicity of the models. Having a method which allows
671 the researcher to detect the limits of available models is much more useful than picking the best
672 out of a group of models without considering whether any of them fit. This result highlights the
673 benefit of using such an approach. In the situation where no models are considered adequate for a
674 data set, it would be up to the researcher to determine how to proceed. For instance, if the effect
675 sizes are not markedly far from zero one may still opt to use a model, however, appreciating its
676 limitations would be important before drawing any conclusions based on the inference results. It
677 is also encouraging to see that the most complex model, the MkVP+G model, was identified as
678 adequate for all 5 of the data sets for which we found an adequate model, indicating that we are
679 moving in the right direction, in terms of our assumptions about the data generating processes.
680 This strongly supports the above discussed rationale of partitioning the data based on character
681 state, lending confidence to our biological interpretation of the evolution of the data.

682 Here we have demonstrated how PPS outperforms a model selection approach in several respects.
683 Making this a standard approach in palaeobiology would be beneficial to the field in allowing for a
684 better appreciation of how well our models are performing. In this study we explored the use of 7
685 extensions of the Mk model, as they are the most commonly applied. This is not an exhaustive list
686 of available models and there are a number of alternatives that further relax assumptions of the
687 Mk model. For example, Wright et al. (2016) showed how relaxing the assumption of symmetrical
688 probability of change between characters can improve model fit and phylogenetic estimation (Wright
689 et al., 2016). Models including hidden states have also been proposed for morphological data
690 (Tarasov, 2019). Such models can also be assessed using the workflow presented here, the only

691 requirements being that the model can be used for both simulation and inference. There are
692 also a number of models of continuous character evolution that are often used in phylogenetic
693 comparative methods (Álvarez-Carretero et al., 2022; Hansen et al., 2022). While we did not
694 explore these models here, there has been work previously carried out demonstrating their use with
695 model adequacy (Slater and Pennell, 2014). We focused exclusively on discrete data as it remains
696 the most wildly used for tree inference. Our results also have implications for studies focused on
697 divergence time estimation and ancestral state reconstruction. The same model validation can be
698 applied before either of these types of analyses are carried out. Fossils are our only direct source of
699 information about extinct taxa. Collection and character coding of fossils for phylogenetic analysis
700 requires huge effort both in terms time and knowledge required. Ensuring that we are using the
701 best available models can help provide confidence in our results and ask more complex questions
702 with the data.

703 6 Conclusions

704 As model-based phylogenetic analysis gains prominence in paleobiology our study aimed to em-
705 phasise the importance of model choice, by demonstrating how different substitution models can
706 impact inference results. We show that substitution model choice impacts estimates of both lengths
707 and topology. By providing a workflow for PPS to validate models adequacy, researchers can gain
708 insights into absolute rather than relative model fit, and can have more confidence in their choice
709 of substitution model going forward. We show that, despite the arguably simplistic assumptions
710 of available morphological models, they are often able to approximate the underlying generating
711 processes of discrete morphological data sets. However, we also show that no single model fits all
712 data sets examined here, so we recommend researchers use model adequacy to assess model fit as
713 a first step in phylogenetic inference. Given the substantial taxonomic effort invested into collect-
714 ing these data sets, the importance of utilizing accurate models cannot be overstated. Our work
715 reinforces the significance of these considerations, particularly as fossil data remains the primary
716 avenue for gaining a comprehensive understanding of evolutionary history in deep time.

717 7 Supplementary Material

718 All data sets used here were taken from previous studies and are available on GitHub
719 (https://github.com/laumul/PPS_Morphology). The associated RevBayes tutorial is available here
720 (https://revbayes.github.io/tutorials/pps_morpho/pps_data_morpho.html).

721 8 Acknowledgements

722 AMW was supported on NSF DEB 2045842. This work was supported by the Deutsche Forschungs-
723 gemeinschaft (DFG) Emmy Noether-Program (Award HO 6201/1-1 to S.H.) and by the Euro-
724 pean Union (ERC, MacDrive, GA 101043187). Views and opinions expressed are however those
725 of the authors only and do not necessarily reflect those of the European Union or the Euro-
726 pean Research Council Executive Agency. Neither the European Union nor the granting au-
727 thority can be held responsible for them. The majority of this research was conducted with
728 high-performance computational resources provided by Friedrich Alexander University Erlangen-
729 Nuremberg (<https://hpc.fau.de>).

730 References

731 A Shepherd, D. and S. Klaere. 2019. How well does your phylogenetic model fit your data? *Systematic Biology* 68:157–167.

733 Agnolin, F. 2007. *Brontornis burmeisteri* moreno & mercerat, un anseriformes (aves) gigante del
734 mioceno medio de patagonia, argentina. *Revista del Museo Argentino de Ciencias Naturales*
735 nueva serie 9:15–25.

736 Álvarez-Carretero, S., A. U. Tamuri, M. Battini, F. F. Nascimento, E. Carlisle, R. J. Asher, Z. Yang,
737 P. C. Donoghue, and M. Dos Reis. 2022. A species-level timeline of mammal evolution integrating
738 phylogenomic data. *Nature* 602:263–267.

739 Archibald, J. D., A. O. Averianov, and E. G. Ekdale. 2001. Late Cretaceous relatives of rabbits,
740 rodents, and other extant eutherian mammals. *Nature* 414:62–65.

741 Barido-Sottani, J., N. M. Van Tiel, M. J. Hopkins, D. F. Wright, T. Stadler, and R. C. Warnock.
742 2020. Ignoring fossil age uncertainty leads to inaccurate topology and divergence time estimates
743 in time calibrated tree inference. *Frontiers in Ecology and Evolution* 8:183.

744 Baum, D. A. and S. Offner. 2008. Phylogenics & tree-thinking. *The American Biology Teacher*
745 70:222–229.

746 Beck, R. M. and C. Baillie. 2018. Improvements in the fossil record may largely resolve current
747 conflicts between morphological and molecular estimates of mammal phylogeny. *Proceedings of
748 the Royal Society B* 285:20181632.

749 Bloch, J. I., D. C. Fisher, K. D. Rose, and P. D. Gingerich. 2001. Stratocladistic analysis of
750 Paleocene Carpolestidae (Mammalia, Plesiadapiformes) with description of a new late Tiffanian
751 genus. *Journal of Vertebrate Paleontology* 21:119–131.

752 Bollback, J. P. 2002. Bayesian model adequacy and choice in phylogenetics. *Molecular Biology and
753 Evolution* 19:1171–1180.

754 Bouckaert, R., T. G. Vaughan, J. Barido-Sottani, S. Duchêne, M. Fourment, A. Gavryushkina,
755 J. Heled, G. Jones, D. Kühnert, N. De Maio, et al. 2019. BEAST 2.5: An advanced software
756 platform for Bayesian evolutionary analysis. *PLoS computational biology* 15:e1006650.

757 Bourdon, E., A. De Ricqlès, and J. Cubo. 2009. A new Transantarctic relationship: morphological
758 evidence for a Rheidae–Dromaiidae–Casuariidae clade (Aves, Palaeognathae, Ratitae). *Zoological
759 Journal of the Linnean Society* 156:641–663.

760 Brown, J. M. 2014a. Detection of implausible phylogenetic inferences using posterior predictive
761 assessment of model fit. *Systematic Biology* 63:334–348.

762 Brown, J. M. 2014b. Predictive approaches to assessing the fit of evolutionary models. *Systematic
763 Biology* 63:289–292.

764 Brown, J. M. and R. C. Thomson. 2018. Evaluating model performance in evolutionary biology.
765 *Annual Review of Ecology, Evolution, and Systematics* 49:95–114.

766 Brusatte, S. L., S. Montanari, H.-y. Yi, and M. A. Norell. 2011. Phylogenetic corrections for mor-
767 phological disparity analysis: new methodology and case studies. *Paleobiology* 37:1–22.

768 Caldwell, M. W., T. R. Simões, A. Palci, F. F. Garberoglio, R. R. Reisz, M. S. Lee, and R. L.
769 Nydam. 2021. *Tetrapodophis amplectus* is not a snake: re-assessment of the osteology, phylogeny
770 and functional morphology of an Early Cretaceous dolichosaurid lizard. *Journal of Systematic
771 Palaeontology* 19:893–952.

772 Duchêne, D. A., S. Duchêne, and S. Y. Ho. 2017. New statistical criteria detect phylogenetic bias
773 caused by compositional heterogeneity. *Molecular Biology and Evolution* 34:1529–1534.

774 Duchêne, D. A., S. Duchêne, and S. Y. Ho. 2018. Differences in performance among test statistics
775 for assessing phylogenomic model adequacy. *Genome Biology and Evolution* 10:1375–1388.

776 Egi, N., P. A. Holroyd, T. Tsubamoto, A. N. Soe, M. Takai, and R. L. Ciochon. 2005. Proviverrine
777 hyaenodontids (Creodonta: Mammalia) from the Eocene of Myanmar and a phylogenetic analysis
778 of the proviverrines from the Para-Tethys area. *Journal of Systematic Palaeontology* 3:337–358.

779 Farris, J. S. 1989. The retention index and the rescaled consistency index. *Cladistics: the interna-
780 tional journal of the Willi Hennig Society* 5:417–419.

781 Farris, J. S., A. G. Kluge, and M. J. Eckardt. 1970. A numerical approach to phylogenetic system-
782 atics. *Systematic Zoology* 19:172–189.

783 Felsenstein, J. 1983. Parsimony in systematics: biological and statistical issues. *Annual Review of
784 Ecology and Systematics* 14:313–333.

785 Felsenstein, J. 1992. Phylogenies from restriction sites: a maximum-likelihood approach. *Evolution*
786 46:159–173.

787 Gatesy, J. 2007. A tenth crucial question regarding model use in phylogenetics. *Trends in Ecology*
788 & Evolution

789 22:509–510.

790 Gavryushkina, A., T. A. Heath, D. T. Ksepka, T. Stadler, D. Welch, and A. J. Drummond. 2017.
791 Bayesian total-evidence dating reveals the recent crown radiation of penguins. *Systematic Biology*
792 66:57–73.

793 Gelman, A., X.-L. Meng, and H. Stern. 1996. Posterior predictive assessment of model fitness via
realized discrepancies. *Statistica sinica* Pages 733–760.

794 Goloboff, P. A., M. Pittman, D. Pol, and X. Xu. 2019. Morphological data sets fit a common mech-
795 anism much more poorly than DNA sequences and call into question the Mkv model. *Systematic*
796 *Biology* 68:494–504.

797 Goloboff, P. A., A. Torres, and J. S. Arias. 2018. Weighted parsimony outperforms other methods
798 of phylogenetic inference under models appropriate for morphology. *Cladistics* 34:407–437.

799 Gower, J. C. 1971. A general coefficient of similarity and some of its properties. *Biometrics*
800 Pages 857–871.

801 Hansen, T. F., G. H. Bolstad, and M. Tsuboi. 2022. Analyzing disparity and rates of morphological
802 evolution with model-based phylogenetic comparative methods. *Systematic Biology* 71:1054–
803 1072.

804 Harrison, L. B. and H. C. Larsson. 2015. Among-character rate variation distributions in phyloge-
805 netic analysis of discrete morphological characters. *Systematic Biology* 64:307–324.

806 Hastings, W. K. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applica-
807 tions. *Biometrika* 57:97–109.

808 Höhna, S., L. M. Coghill, G. G. Mount, R. C. Thomson, and J. M. Brown. 2018. P3: Phylogenetic
809 posterior prediction in RevBayes. *Molecular Biology and Evolution* 35:1028–1034.

810 Höhna, S., M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, B. R. Moore, J. P. Huelsenbeck,
811 and F. Ronquist. 2016. RevBayes: Bayesian phylogenetic inference using graphical models and
812 an interactive model-specification language. *Systematic Biology* 65:726–736.

813 Höhna, S., M. J. Landis, and J. P. Huelsenbeck. 2021. Parallel power posterior analyses for fast
814 computation of marginal likelihoods in phylogenetics. *PeerJ* 9:e12438.

815 Hopkins, M., S. Gerber, L. N. de la Rosa, and G. Muller. 2017. Evolutionary developmental biology.
816 Morphological Disparity .

817 Hopkins, M. J. and A. B. Smith. 2015. Dynamic evolutionary change in post-paleozoic echinoids
818 and the importance of scale when interpreting changes in rates of evolution. *Proceedings of the
819 National Academy of Sciences* 112:3758–3763.

820 Huelsenbeck, J. P., R. Nielsen, and J. P. Bollback. 2003. Stochastic mapping of morphological
821 characters. *Systematic Biology* 52:131–158.

822 Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules. *Mammalian protein
823 metabolism* 3:21–132.

824 Khakurel, B., C. Grigsby, T. D. Tran, J. Zariwala, S. Höhna, and A. M. Wright. in press. The
825 fundamental role of character coding in bayesian morphological phylogenetics. *Systematic Biology*
826 .

827 Kluge, A. G. and J. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. *Systematic
828 Biology* 18:1–32.

829 Koch, N. M. and L. A. Parry. 2020. Death is on our side: paleontological data drastically modify
830 phylogenetic hypotheses. *Systematic Biology* 69:1052–1067.

831 Kolaczkowski, B. and J. W. Thornton. 2004. Performance of maximum parsimony and likelihood
832 phylogenetics when evolution is heterogeneous. *Nature* 431:980–984.

833 Lee, M. S. and A. Palci. 2015. Morphological phylogenetics in the genomic age. *Current Biology*
834 25:R922–R929.

835 Lehmann, O. E., M. D. Ezcurra, R. J. Butler, and G. T. Lloyd. 2019. Biases with the Generalized
836 Euclidean Distance measure in disparity analyses with high levels of missing data. *Palaeontology*
837 62:837–849.

838 Lemmon, A. R. and E. C. Moriarty. 2004. The importance of proper model assumption in bayesian
839 phylogenetics. *Systematic Biology* Pages 265–277.

840 Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological
841 character data. *Systematic Biology* 50:913–925.

842 Lloyd, G. T. 2016. Estimating morphological diversity and tempo with discrete character-taxon
843 matrices: implementation, challenges, progress, and future directions. *Biological Journal of the
844 Linnean Society* 118:131–151.

845 López-Antoñanzas, R., J. Mitchell, T. R. Simões, F. L. Condamine, R. Aguilée, P. Peláez-
846 Campomanes, S. Renaud, J. Rolland, and P. C. Donoghue. 2022. Integrative phylogenetics:
847 Tools for palaeontologists to explore the tree of life. *Biology* 11:1185.

848 Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation
849 of State Calculations by Fast Computing Machines. *Journal of Chemical Physics* 21:1087–1092.

850 Mongiardino Koch, N., R. J. Garwood, and L. A. Parry. 2021. Fossils improve phylogenetic analyses
851 of morphological characters. *Proceedings of the Royal Society B* 288:20210044.

852 Murphy, J. L., M. N. Puttik, J. E. O'Reilly, D. Pisani, and P. C. Donoghue. 2021. Empirical
853 distributions of homoplasy in morphological data. *Palaeontology* 64:505–518.

854 Oksanen, J., G. L. Simpson, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. O'Hara,
855 P. Solymos, M. H. H. Stevens, E. Szoecs, H. Wagner, M. Barbour, M. Bedward, B. Bolker, D. Bor-
856 card, G. Carvalho, M. Chirico, M. De Caceres, S. Durand, H. B. A. Evangelista, R. FitzJohn,
857 M. Friendly, B. Furneaux, G. Hannigan, M. O. Hill, L. Lahti, D. McGlinn, M.-H. Ouellette,
858 E. Ribeiro Cunha, T. Smith, A. Stier, C. J. Ter Braak, and J. Weedon. 2022. vegan. R package
859 version 2.6-4.

860 O'Reilly, J. E., M. N. Puttik, L. Parry, A. R. Tanner, J. E. Tarver, J. Fleming, D. Pisani, and
861 P. C. Donoghue. 2016. Bayesian methods outperform parsimony but at the expense of precision
862 in the estimation of phylogeny from discrete morphological data. *Biology Letters* 12:20160081.

863 Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. CODA: Convergence Diagnosis and Output
864 Analysis for MCMC. *R News* 6:7–11.

865 Puttik, M. N., J. E. O'Reilly, A. R. Tanner, J. F. Fleming, J. Clark, L. Holloway, J. Lozano-
866 Fernandez, L. A. Parry, J. E. Tarver, D. Pisani, et al. 2017. Uncertain-tree: discriminating
867 among competing approaches to the phylogenetic analysis of phenotype data. *Proceedings of the
868 Royal Society B: Biological Sciences* 284:20162290.

869 Robinson, D. F. and L. R. Foulds. 1981. Comparison of phylogenetic trees. *Mathematical Bio-*
870 *sciences* 53:131–147.

871 Robinson, T. J., C. M. Borror, and R. H. Myers. 2004. Robust parameter design: a review. *Quality*
872 *and reliability engineering international* 20:81–101.

873 Ronquist, F., M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget,
874 L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic
875 inference and model choice across a large model space. *Systematic Biology* 61:539–542.

876 Rücklin, M., B. King, J. A. Cunningham, Z. Johanson, F. Marone, and P. C. Donoghue. 2021.
877 Acanthodian dental development and the origin of gnathostome dentitions. *Nature Ecology &*
878 *Evolution* 5:919–926.

879 Sansom, R. S., P. G. Choate, J. N. Keating, and E. Randle. 2018. Parsimony, not Bayesian analysis,
880 recovers more stratigraphically congruent phylogenetic trees. *Biology Letters* 14:20180263.

881 Sansom, R. S., M. A. Wills, and T. Williams. 2017. Dental data perform relatively poorly in recon-
882 structing mammal phylogenies: morphological partitions evaluated with molecular benchmarks.
883 *Systematic Biology* 66:813–822.

884 Schliep, K. 2011. phangorn: phylogenetic analysis in R. *Bioinformatics* 27:592–593.

885 Schoch, R. R. and H.-D. Sues. 2013. A new dissorophid temnospondyl from the Lower Permian of
886 north-central Texas. *Comptes Rendus Palevol* 12:437–445.

887 Schwery, O., W. A. Freyman, and E. E. Goldberg. 2023. adequaSSE: Model adequacy testing for
888 trait-dependent diversification models. *bioRxiv Pages* 2023–03.

889 Shoshani, J., R. C. Walter, M. Abraha, S. Berhe, P. Tassy, W. J. Sanders, G. H. Marchant, Y. Lib-
890 sekal, T. Ghirmai, and D. Zinner. 2006. A proboscidean from the late Oligocene of Eritrea, a
891 “missing link” between early Elephantiformes and Elephantimorpha, and biogeographic implica-
892 tions. *Proceedings of the National Academy of Sciences* 103:17296–17301.

893 Simpson, G. G. 1952. How many species? *Evolution* 6:342–342.

894 Slater, G. J. and M. W. Pennell. 2014. Robust regression and posterior predictive simulation increase
895 power to detect early bursts of trait evolution. *Systematic Biology* 63:293–308.

896 Smith, T. J., R. S. Sansom, D. Pisani, and P. C. Donoghue. 2023. Fossilization can mislead analyses
897 of phenotypic disparity. *Proceedings of the Royal Society B* 290:20230522.

898 Steel, M. and D. Penny. 2000. Parsimony, likelihood, and the role of models in molecular phyloge-
899 netics. *Molecular biology and evolution* 17:839–850.

900 Tarasov, S. 2019. Integration of anatomy ontologies and evo-devo using structured Markov models
901 suggests a new framework for modeling discrete phenotypic traits. *Systematic Biology* 68:698–
902 716.

903 Tomiya, S. 2011. A new basal caniform (Mammalia: Carnivora) from the middle Eocene of North
904 America and remarks on the phylogeny of early carnivorans. *PLoS One* 6:e24146.

905 Weisbecker, V., R. M. Beck, T. Guillerme, A. R. Harrington, L. Lange-Hodgson, M. S. Lee, K. Mar-
906 don, and M. J. Phillips. 2023. Multiple modes of inference reveal less phylogenetic signal in mar-
907 supial basicranial shape compared with the rest of the cranium. *Philosophical Transactions of
908 the Royal Society B* 378:20220085.

909 Wills, M. A. 1998. Crustacean disparity through the Phanerozoic: comparing morphological and
910 stratigraphic data. *Biological Journal of the Linnean Society* 65:455–500.

911 Wills, M. A. 2001. Morphological disparity: a primer. Pages 55–144 in *Fossils, phylogeny, and form: an analytical approach*. Springer.

912 Wright, A., P. J. Wagner, and D. F. Wright. 2021. Testing character evolution models in phyloge-
913 netic paleobiology: a case study with Cambrian echinoderms. Cambridge University Press.

914 Wright, A. M. 2019. A systematist’s guide to estimating bayesian phylogenies from morphological
915 data. *Insect Systematics and Diversity* 3:2.

916 Wright, A. M. and D. M. Hillis. 2014. Bayesian analysis using a simple likelihood model outperforms
917 parsimony for estimation of phylogeny from discrete morphological data. *PLoS One* 9:e109210.

918 Wright, A. M., G. T. Lloyd, and D. M. Hillis. 2016. Modeling character change heterogeneity in
919 phylogenetic analyses of morphology through the use of priors. *Systematic Biology* 65:602–611.

920 Xie, W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood
921 estimation for Bayesian phylogenetic model selection. *Systematic Biology* 60:150–160.

923 Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable
924 rates over sites: approximate methods. *Journal of Molecular evolution* 39:306–314.

925 Zhang, C., B. Rannala, and Z. Yang. 2012. Robustness of compound Dirichlet priors for Bayesian
926 inference of branch lengths. *Systematic Biology* 61:779–784.

9 Supplementary Information

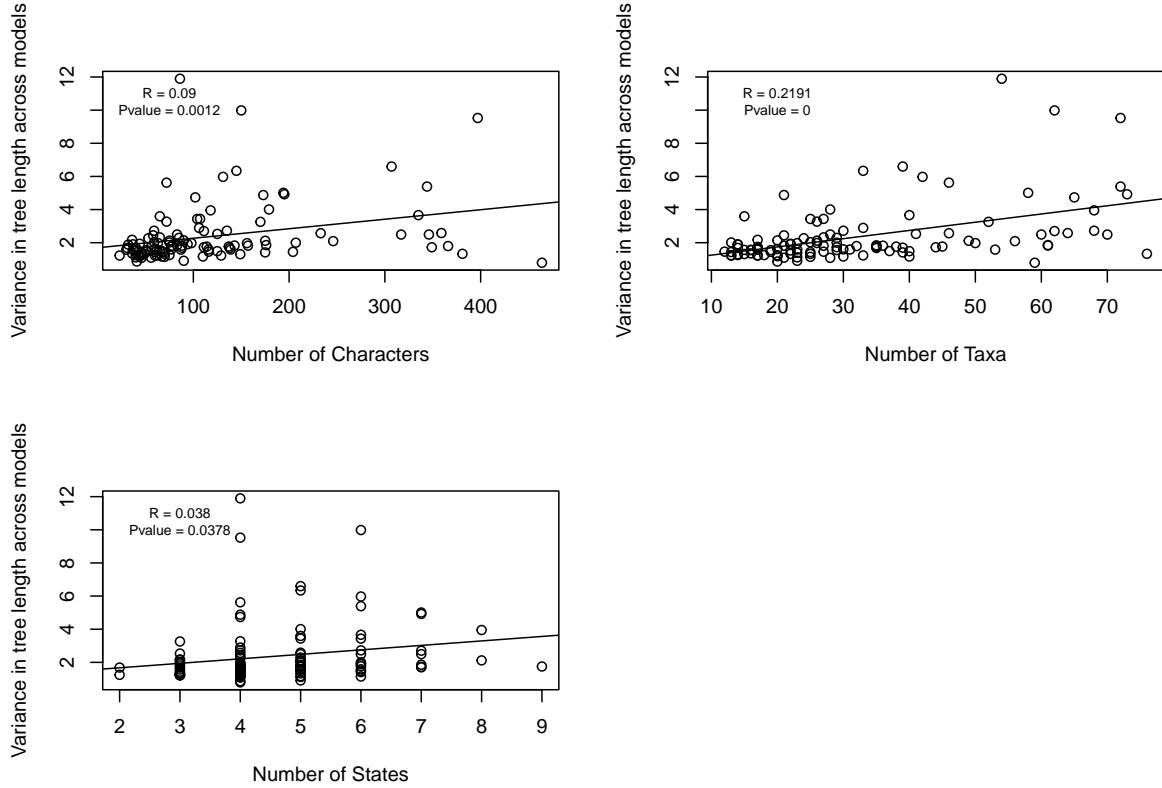


Figure S1: The relationship between the impact of different models on branch lengths and properties of the data sets. Variance between models was calculated by subtracting the smallest tree length from the largest tree length for each data set, irrespective of the model used for inference.

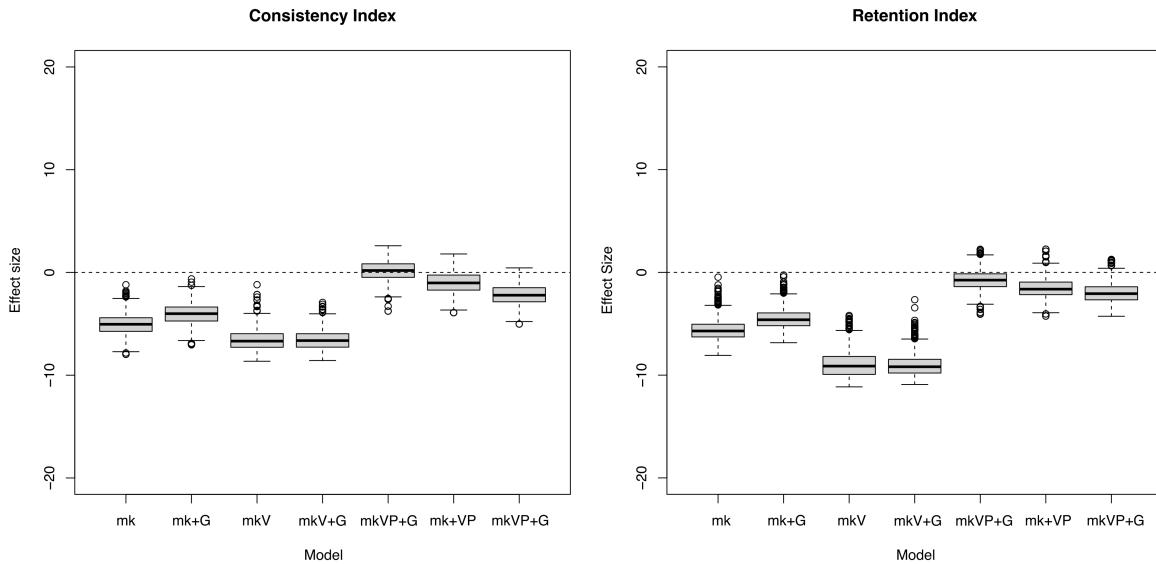


Figure S2: Effect Sizes calculated for the Agnolin data set using the entire posterior distribution. While the values are slightly different compared to those calculated using an MCMC tree, see fig. 6A, it determines the same models being adequate. This calculation also increased computation time significantly.

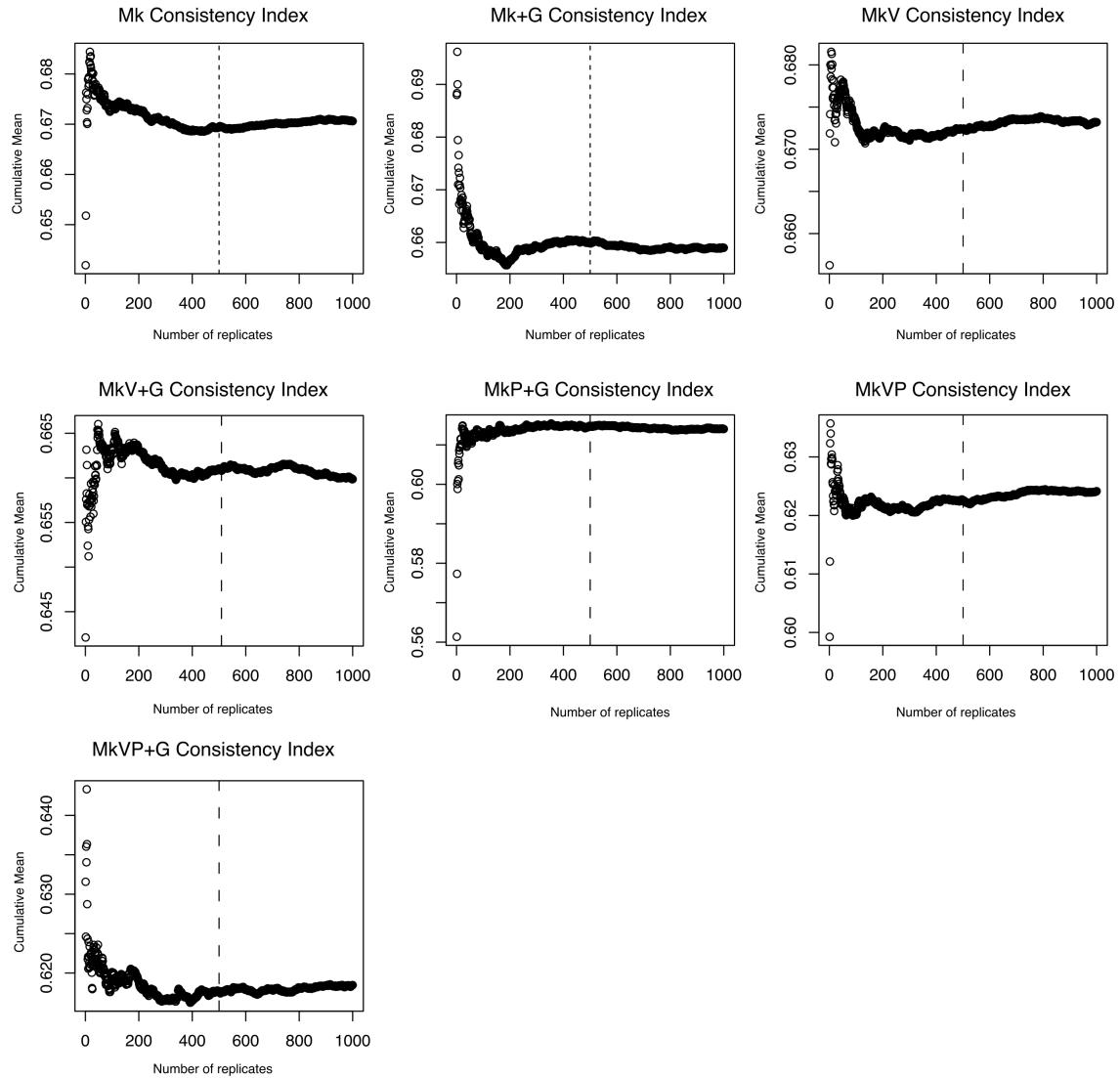


Figure S3: The cumulative means calculated for consistency index for one replicate of the simulated hyena data sets under the MkV+G model. This serves as a representative of all other replicates and test statistics which also showed the same pattern. The dashed line is at 500. After this point the line plateaus, representing that the variation of mean effect size is constant after that point.

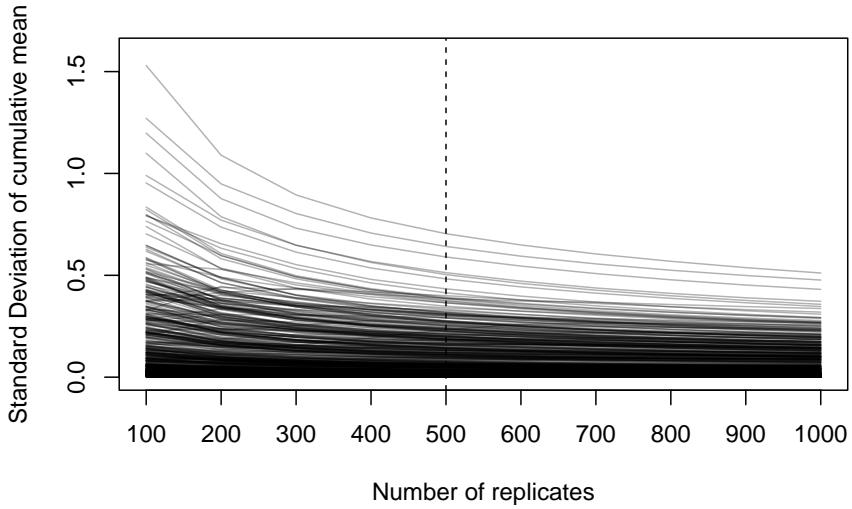


Figure S4: The standard deviation around the cumulative mean for all replicates of the simulated hyena MkV+G and test statistics (Gower's coefficient, generalized euclidean distance, tree length, Robinson Foulds, consistency index, and retention index). The dashed line is at 500. After this point the lines plateau, indicating that the mean will not change if more replicates are added.

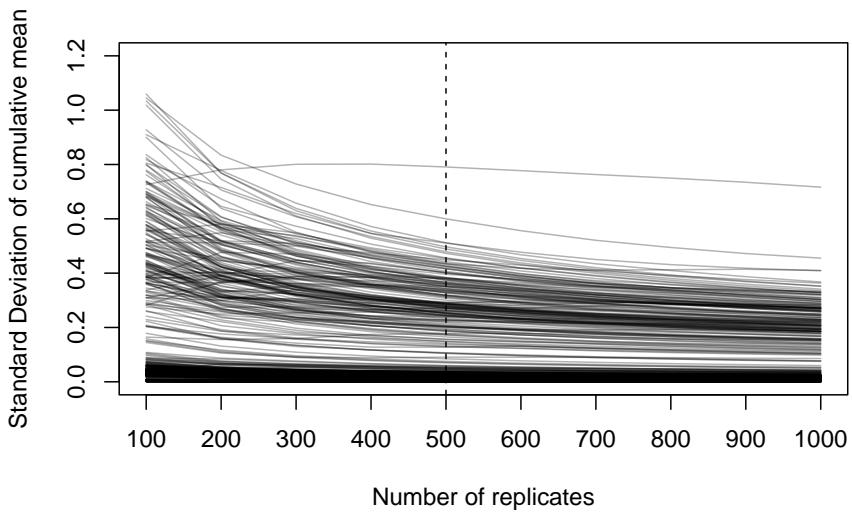


Figure S5: The standard deviation around the cumulative mean for all replicates of the simulated elephant MkV+G and test statistics (Gower's coefficient, generalized euclidean distance, tree length, Robinson Foulds, consistency index, and retention index). The dashed line is at 500. After this point the lines plateau, indicating that the mean will not change if more replicates are added.

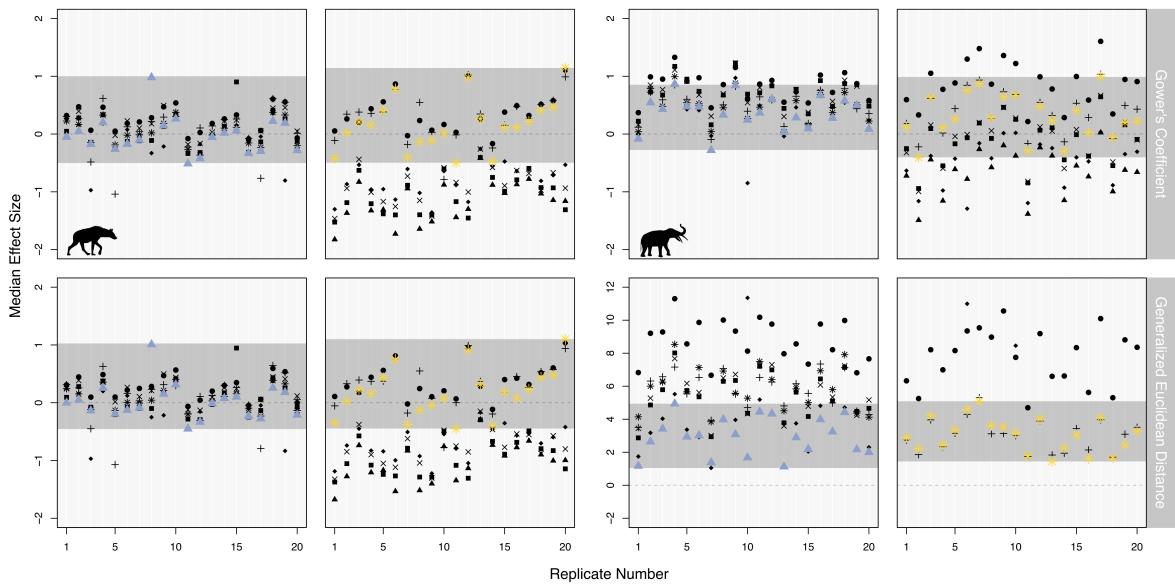


Figure S6: Validation of the data based test statistics. Plots show the output from each simulated data set with 20 replicates for each test statistic. The coloured points indicate the correct model, with the grey horizontal bar marking the range of effect sizes calculated for the correct model. ■ = Mk, ✕ = Mk+G, ▲ = MkV, ◆ = MkV+G, * = MkVP, ● = MkP+G, and + = MkVP+G

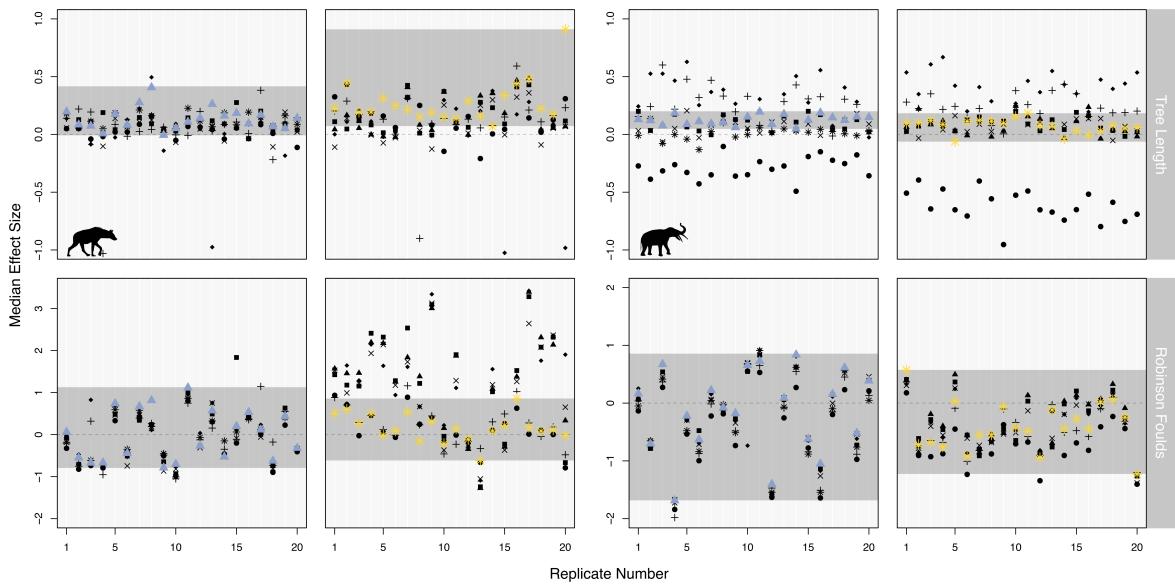


Figure S7: Validation of the inference based test statistics. Plots shows the output from each simulated data set with 20 replicates for each test statistic. The coloured points indicate the correct model with the grey horizontal bar marking the range of effect sizes values calculated for the correct model. ■ = Mk, ✕ = Mk+G, ▲ = MkV, ◆ = MkV+G, * = MkVP, ● = MkP+G, and + = MkVP+G

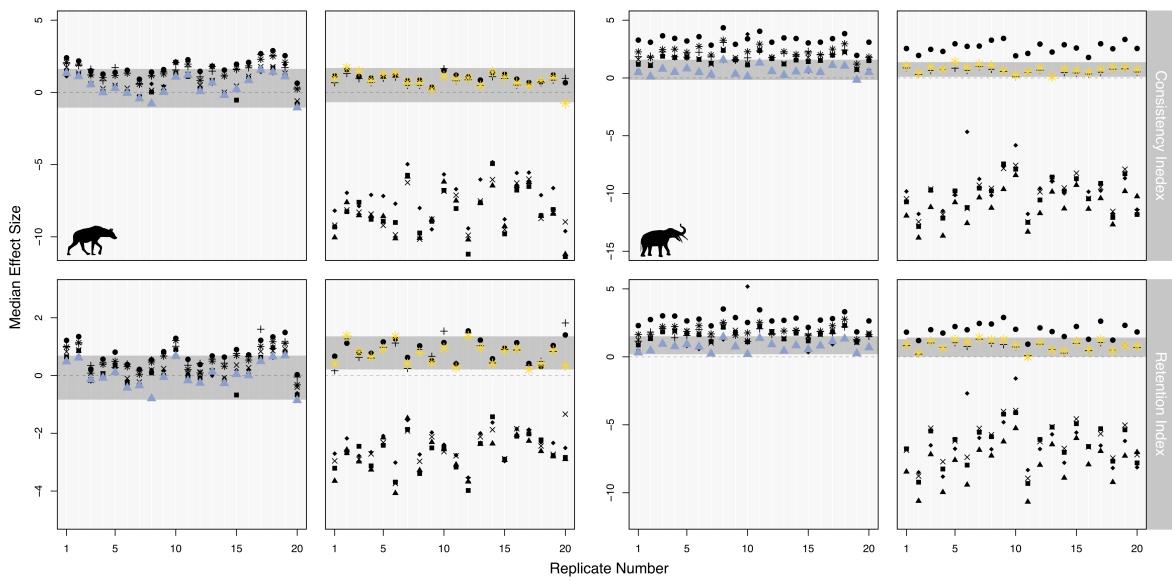


Figure S8: Validation of the mixed test statistics. Plots shows the output from each simulated data set with 20 replicates for each test statistic. The coloured points indicate the correct model with the grey horizontal bar marking the range of effect sizes calculated for the correct model. ■ = Mk, ✕ = Mk+G, ▲ = MkV, ◆ = MkV+G, * = MkVP, ● = MkP+G, and + = MkVP+G

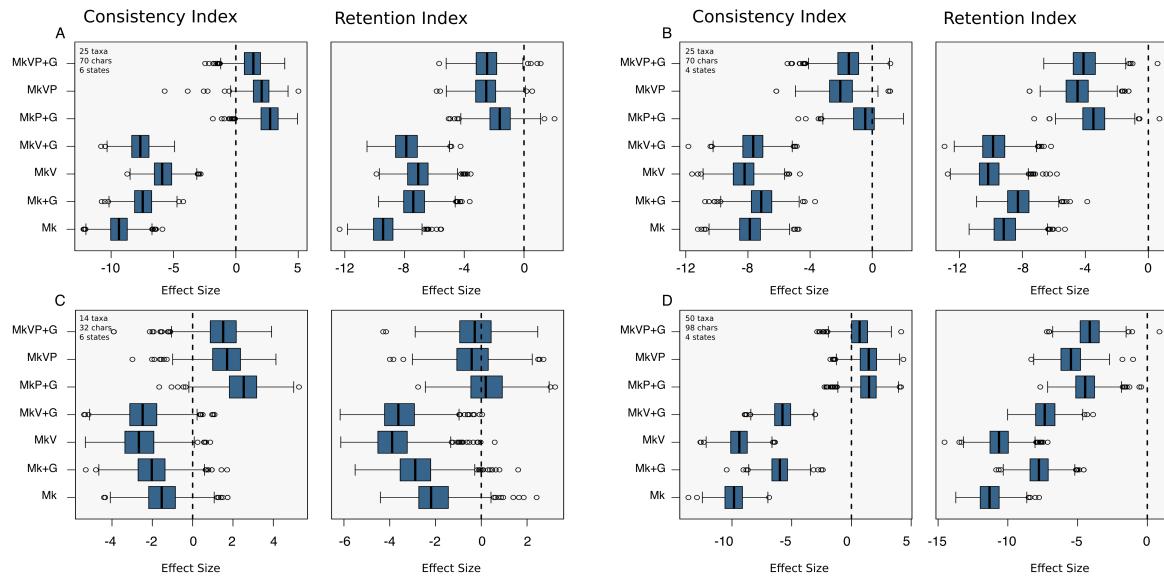


Figure S9: Results from four of the empirical data sets for consistency and retention index. The dashed black line is at zero is there to help identify adequate models. The data sets are taken from Archibald et al. (2001), Schoch and Sues (2013), Bloch et al. (2001), and Tomiya (2011) respectively

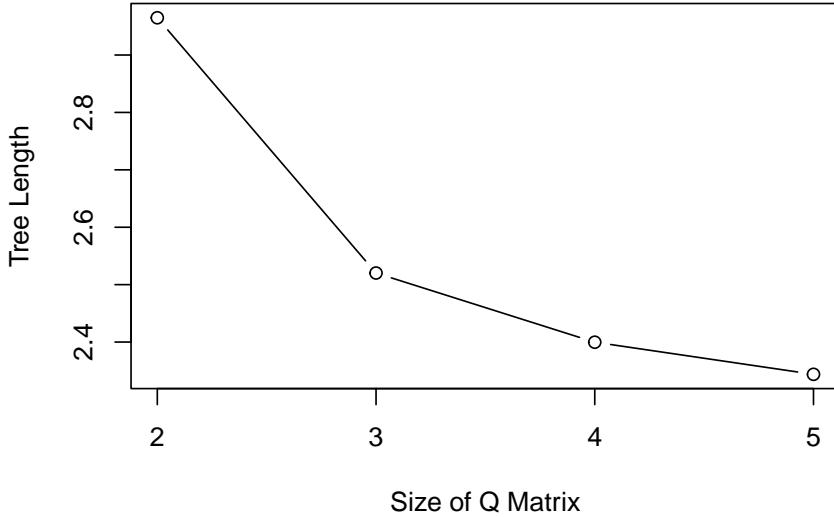


Figure S10: The impact of the Q-matrix size on tree length. Using a binary alignment the Q-matrix was increased from 2-5. The tree length becomes smaller as the Q-matrix increases in size.

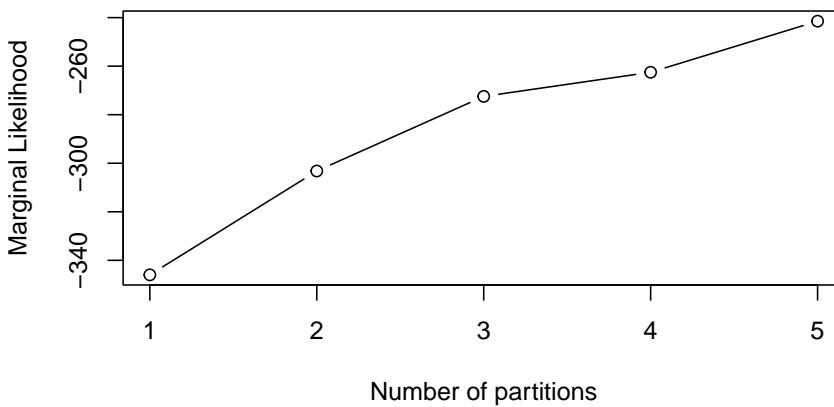


Figure S11: The effects of increasing partitions on the likelihood calculation. Using a data set with a maximum state size 6 the number of partitions was increased from 1 to 5. Where 1 was completely unpartitioned, 2 has one partitions for binary characters with all others in the other partition, 3 has one partition for binary, one partition for tertiary and all others in the third partition, and so on until all characters are in the correct partition with 5 partitions. As the number of partitions increase, and characters are added to a Q-matrix of the correct size, the likelihood increases.

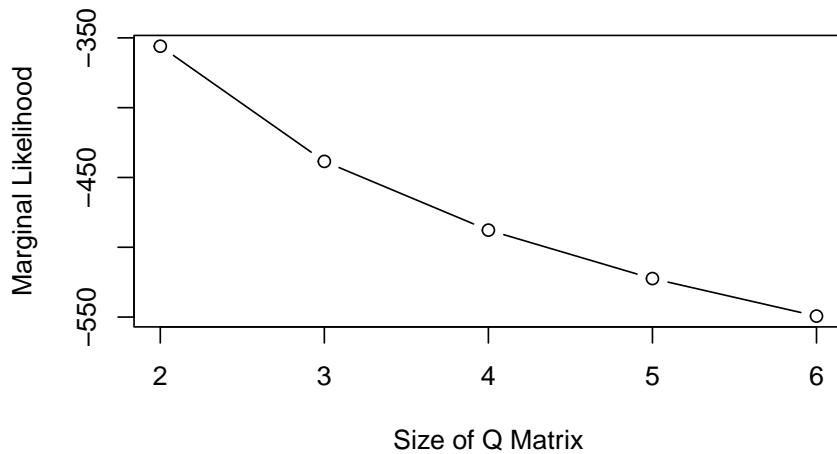


Figure S12: The impact of increasing the size of the Q-matrix on the marginal likelihood calculation. Here a binary alignment was used with stepping stone analysis to calculate the marginal likelihoods. A Q-matrix of size 2-6 was used. As the Q-matrix increased in size, causing binary characters to be in a matrix that was too large, the likelihood decreases.

References

Acosta, H. C., C. Tambussi, M. Donato, and M. Cozzuol. 2007. A new miocene penguin from patagonia and its phylogenetic relationships. *Acta Palaeontologica Polonica* 52.

Agnolin, F. 2007. *Brontornis burmeisteri* moreno & mercerat, un anseriformes (aves) gigante del miocene medio de patagonia, argentina. *Revista del Museo Argentino de Ciencias Naturales* nueva serie 9:15–25.

Alroy, J. 1995. Continuous track analysis: a new phylogenetic and biogeographic method. *Systematic Biology* 44:152–178.

Archibald, J. D., A. O. Averianov, and E. G. Ekdale. 2001. Late cretaceous relatives of rabbits, rodents, and other extant eutherian mammals. *Nature* 414:62–65.

Averianov, A., T. Martin, A. Lopatin, and S. Krasnolutskii. 2015. Stem therian mammal amphi-betulimus from the middle jurassic of siberia. *Paläontologische Zeitschrift* 89:197–206.

Bai, B., Y. Wang, and J. Meng. 2010. New craniodental materials of *litolophus gobiensis* (perissodactyla, “eomoropidae”) from inner mongolia, china, and phylogenetic analyses of eocene chalicotheres. *American Museum Novitates* 2010:1–27.

Baskin, J. A. 2004. *Bassariscus* and *probassariscus* (mammalia, carnivora, procyonidae) from the early barstovian (middle miocene). *Journal of Vertebrate Paleontology* 24:709–720.

Benton, M. J. 2016. The chinese pareiasaurs. *Zoological Journal of the Linnean Society* 177:813–853.

Billet, G. and C. D. Muizon. 2013. External and internal anatomy of a petrosal from the late paleocene of itaboraí, brazil, referred to notoungulata (placentalia). *Journal of Vertebrate Paleontology* 33:455–469.

Bloch, J. I., D. C. Fisher, K. D. Rose, and P. D. Gingerich. 2001. Stratocladistic analysis of paleocene carpolestidae (mammalia, plesiadapiformes) with description of a new late tiffanian genus. *Journal of Vertebrate Paleontology* 21:119–131.

Bloch, J. I., M. T. Silcox, D. M. Boyer, and E. J. Sargis. 2007. New paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. *Proceedings of the National Academy of Sciences* 104:1159–1164.

Boessenecker, R. W. and M. Churchill. 2013. A reevaluation of the morphology, paleoecology, and phylogenetic relationships of the enigmatic walrus *pelagicarctos*. PLOS one 8:e54311.

Boisserie, J.-R. 2005. The phylogeny and taxonomy of hippopotamidae (mammalia: Artiodactyla): a review based on morphology and cladistic analysis. Zoological Journal of the Linnean society 143:1–26.

Botha-Brink, J. and S. P. Modesto. 2009. Anatomy and relationships of the middle permian varanopid *heleosaurus scholtzi* based on a social aggregation from the karoo basin of south africa. Journal of Vertebrate Paleontology 29:389–400.

Bourdon, E., A. de Ricqles, and J. Cubo. 2009. A new transantarctic relationship: morphological evidence for a rheidae–dromaiidae–casuariidae clade (aves, palaeognathae, ratitae). Zoological Journal of the Linnean Society 156:641–663.

Boyd, C. A. and D. C. Pagnac. 2015. Insight on the anatomy, systematic relationships, and age of the early cretaceous ankylopellexian dinosaur *dakotadon lakotaensis*. PeerJ 3:e1263.

Brusatte, S. L. and T. D. Carr. 2016. The phylogeny and evolutionary history of tyrannosauroid dinosaurs. Scientific Reports 6:20252.

Cerdeño, E. 1995. Cladistic analysis of the family rhinocerotidae (perissodactyla). american museum novitates; no. 3143 .

Chiappe, L. M. and C. A. Walker. 2002. Skeletal morphology and systematics of the cretaceous euenantiornithes (ornithothoraces: Enantiornithes). Mesozoic birds: above the heads of dinosaurs Pages 240–267.

Churchill, M., R. W. Boessenecker, and M. T. Clementz. 2014. Colonization of the southern hemisphere by fur seals and sea lions (carnivora: Otariidae) revealed by combined evidence phylogenetic and bayesian biogeographical analysis. Zoological Journal of the Linnean Society 172:200–225.

Clarke, J. A., D. T. Ksepka, M. Stucchi, M. Urbina, N. Giannini, S. Bertelli, Y. Narváez, and C. A. Boyd. 2007. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and cenozoic climate change. Proceedings of the National Academy of Sciences 104:11545–11550.

Coria, R. A. and P. J. Currie. 2016. A new megaraptoran dinosaur (dinosauria, theropoda, megaraptoridae) from the late cretaceous of patagonia. *PLoS One* 11:e0157973.

Danilo, L., J. A. Remy, M. Vianey-Liaud, B. Marandat, J. Sudre, and F. Lihoreau. 2013. A new eocene locality in southern france sheds light on the basal radiation of palaeotheriidae (mammalia, perissodactyla, equoidea). *Journal of Vertebrate Paleontology* 33:195–215.

Danilov, I. G., E. V. Syromyatnikova, P. P. Skutschas, T. M. Kodrul, and J. Jin. 2013. The first ‘true’adocus (testudines, adocidae) from the paleogene of asia. *Journal of Vertebrate Paleontology* 33:1071–1080.

Demar Jr, D. G. 2013. A new fossil salamander (caudata, proteidae) from the upper cretaceous (maastrichtian) hell creek formation, montana, usa. *Journal of Vertebrate Paleontology* 33:588–598.

Dyke, G. J., B. E. Gulas, and T. M. Crowe. 2003. Suprageneric relationships of galliform birds (aves, galliformes): a cladistic analysis of morphological characters. *Zoological Journal of the Linnean Society* 137:227–244.

Egi, N., P. A. Holroyd, T. Tsubamoto, A. N. Soe, M. Takai, and R. L. Ciochon. 2005. Proviverrine hyaenodontids (Creodonta: Mammalia) from the Eocene of Myanmar and a phylogenetic analysis of the proviverrines from the Para-Tethys area. *Journal of Systematic Palaeontology* 3:337–358.

Engelman, R. K. and D. A. Croft. 2014. A new species of small-bodied sparassodont (mammalia, metatheria) from the middle miocene locality of quebrada honda, bolivia. *Journal of Vertebrate Paleontology* 34:672–688.

Escaso, F., F. Ortega, P. Dantas, E. Malafaia, N. L. Pimentel, X. Pereda-Suberbiola, J. L. Sanz, J. C. Kullberg, M. C. Kullberg, and F. Barriga. 2007. New evidence of shared dinosaur across upper jurassic proto-north atlantic: Stegosaurus from portugal. *Naturwissenschaften* 94:367–374.

Filippi, L. S., R. A. García, and A. C. Garrido. 2011. A new titanosaur sauropod dinosaur from the upper cretaceous of north patagonia, argentina. *Acta Palaeontologica Polonica* 56:505–520.

Fischer, V., N. Bardet, R. B. Benson, M. S. Arkhangelsky, and M. Friedman. 2016. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. *Nature communications* 7:10825.

Flores, D. A. 2009. Phylogenetic analyses of postcranial skeletal morphology in didelphid marsupials. *Bulletin of the American Museum of Natural History* 2009:1–81.

Gao, K.-Q., C.-F. Zhou, L. Hou, and R. C. Fox. 2013. Osteology and ontogeny of early cretaceous philydrosaurus (diapsida: Choristodera) based on new specimens from liaoning province, china. *Cretaceous Research* 45:91–102.

García-López, D. A. and M. J. Babot. 2015. Notoungulate faunas of north-western argentina: new findings of early-diverging forms from the eocene geste formation. *Journal of Systematic Palaeontology* 13:557–579.

Gaubert, P., W. C. Wozencraft, P. Cordeiro-Estrela, and G. Veron. 2005. Mosaics of convergences and noise in morphological phylogenies: what's in a viverrid-like carnivoran? *Systematic biology* 54:865–894.

Gaudin, T. J. 1995. The ear region of edentates and the phylogeny of the tardigrada (mammalia, xenarthra). *Journal of Vertebrate Paleontology* 15:672–705.

Han, F., W. Zheng, D. Hu, X. Xu, and P. M. Barrett. 2014. A new basal ankylosaurid (dinosauria: Ornithischia) from the lower cretaceous jiufotang formation of liaoning province, china. *Plos one* 9:e104551.

Heyning, J. E. 1997. Sperm whale phylogeny revisited: analysis of the morphological evidence. *Marine Mammal Science* 13:596–613.

Hooker, J. J. 1989. Character polarities in early eocene perissodactyls and their significance for hyracotherium and infraordinal relationships. *The evolution of perissodactyls*. Pages 79–101.

Huttenlocker, A. 2009. An investigation into the cladistic relationships and monophyly of thercephalian therapsids (amniota: Synapsida). *Zoological Journal of the Linnean Society* 157:865–891.

Ji, Q., Z.-X. Luo, X. Zhang, C.-X. Yuan, and L. Xu. 2009. Evolutionary development of the middle ear in mesozoic therian mammals. *Science* 326:278–281.

Jiang, D.-Y., R. Motani, J.-D. Huang, A. Tintori, Y.-C. Hu, O. Rieppel, N. C. Fraser, C. Ji, N. P. Kelley, W.-L. Fu, et al. 2016. A large aberrant stem ichthyosauriform indicating early rise

and demise of ichthyosauromorphs in the wake of the end-permian extinction. *Scientific Reports* 6:26232.

Jiménez-Huidobro, P. and M. W. Caldwell. 2016. Reassessment and reassignment of the early maastrichtian mosasaur *hainosaurus bernardi* dollo, 1885, to *tylosaurus* marsh, 1872. *Journal of Vertebrate Paleontology* 36:e1096275.

Joyce, W. G., T. R. Lyson, and J. I. Kirkland. 2016. An early bothremydid (testudines, pleurodira) from the late cretaceous (cenomanian) of utah, north america. *PeerJ* 4:e2502.

Kammerer, C. F. 2016. Systematics of the rubidgeinae (therapsida: Gorgonopsia). *PeerJ* 4:e1608.

Kear, B. P. 2005. A new elasmosaurid plesiosaur from the lower cretaceous of queensland, australia. *Journal of Vertebrate Paleontology* 25:792–805.

Kear, B. P., B. N. Cooke, M. Archer, and T. F. Flannery. 2007. Implications of a new species of the oligo-miocene kangaroo (marsupialia: Macropodoidea) nambaroo, from the riversleigh world heritage area, queensland, australia. *Journal of Paleontology* 81:1147–1167.

Kielan-Jaworowska, Z. and J. H. Hurum. 2001. Phylogeny and systematics of multituberculate mammals. *Palaeontology* 44:389–429.

Lambert, O., G. Bianucci, and C. De Muizon. 2017. Macroraptorial sperm whales (cetacea, odontoceti, physeteroidea) from the miocene of peru. *Zoological Journal of the Linnean Society* 179:404–474.

Lambert, O., C. De Muizon, and G. Bianucci. 2015. A new archaic homodont toothed cetacean (mammalia, cetacea, odontoceti) from the early miocene of peru. *Geodiversitas* 37:79–108.

Larson, D. W., N. E. Campione, C. M. Brown, D. C. Evans, and M. J. Ryan. 2015. Hadrosauroid material from the santonian milk river formation of southern alberta, canada. *in Hadrosaurs*. Indiana University Press.

Liu, J. and F. Abdala. 2014. Phylogeny and taxonomy of the traversodontidae. Early evolutionary history of the Synapsida Pages 255–279.

Lively, J. R. 2015. A new species of baenid turtle from the kaiparowits formation (upper cretaceous, campanian) of southern utah. *Journal of Vertebrate Paleontology* 35:e1009084.

Livezey, B. C. 1996. A phylogenetic analysis of geese and swans (anseriformes: Anserinae), including selected fossil species. *Systematic Biology* 45:415–450.

Longrich, N. R., J. Sankey, and D. Tanke. 2010. *Texacephale langstoni*, a new genus of pachycephalosaurid (dinosauria: Ornithischia) from the upper campanian aguja formation, southern texas, usa. *Cretaceous Research* 31:274–284.

Lü, J., M. Kundrát, and C. Shen. 2016. New material of the pterosaur *gladocephaloideus* lü et al., 2012 from the early cretaceous of liaoning province, china, with comments on its systematic position. *PLoS One* 11:e0154888.

Lyson, T. R. and W. G. Joyce. 2011. Cranial anatomy and phylogenetic placement of the enigmatic turtle *compsemys victa* leidy, 1856. *Journal of Paleontology* 85:789–801.

Macdougall, M. J. and S. P. Modesto. 2011. New information on the skull of the early triassic parareptile *sauropareion anoplus*, with a discussion of tooth attachment and replacement in procolophonids. *Journal of Vertebrate Paleontology* 31:270–278.

Maganuco, S. and G. Pasini. 2009. A new specimen of trematosaurian temnospondyl from the lower triassic of nw madagascar, with remarks on palatal anatomy and taxonomic affinities. *Atti Societ italiana Museo Civico di Storia Naturale Milano* 150:91–112.

Maridet, O. and X. Ni. 2013. A new cricetid rodent from the early oligocene of yunnan, china, and its evolutionary implications for early eurasian cricetids. *Journal of Vertebrate Paleontology* 33:185–194.

Matsumoto, R., E. Buffetaut, F. Escuillie, S. Hervet, and S. E. Evans. 2013. New material of the choristodere *lazarussuchus* (diapsida, choristodera) from the paleocene of france. *Journal of Vertebrate Paleontology* 33:319–339.

Mayr, G. 2011. The phylogeny of charadriiform birds (shorebirds and allies)-reassessing the conflict between morphology and molecules. *Zoological Journal of the Linnean Society* 161:916–934.

Mayr, G., J. L. Goedert, and O. Vogel. 2015. Oligocene plotopterid skulls from western north america and their bearing on the phylogenetic affinities of these penguin-like seabirds. *Journal of Vertebrate Paleontology* 35:e943764.

Mayr, G., C. Mourer-Chauviré, and I. Weidig. 2004. Osteology and systematic position of the eocene primobucconidae (aves, coraciiformes sensu stricto), with first records from europe. *Journal of Systematic Palaeontology* 2:1–12.

McGOWAN, G. J. 2002. Albanerpetontid amphibians from the lower cretaceous of spain and italy: a description and reconsideration of their systematics. *Zoological Journal of the Linnean Society* 135:1–32.

Mihlbachler, M. C. and T. A. Deméré. 2010. Phylogenetic status of metarhinus pater (brontotheriidae: Perissodactyla) from southern california and species variation in metarhinus from the middle eocene of north america. *Journal of Vertebrate Paleontology* 30:1229–1244.

Modesto, S. P., B. S. Rubidge, and J. Welman. 2002. A new dicynodont therapsid from the lower-most beaufort group, upper permian of south africa. *Canadian Journal of Earth Sciences* 39:1755–1765.

Mori, H., P. S. Druckenmiller, and G. M. Erickson. 2015. A new arctic hadrosaurid from the prince creek formation (lower maastrichtian) of northern alaska. *Acta Palaeontologica Polonica* 61:15–32.

Mukherjee, D. and S. Ray. 2014. A new hyperodapedon (Archosauria, Rhynchosauria) from the upper triassic of india: implications for rhynchosaur phylogeny. *Palaeontology* 57:1241–1276.

Müller, J. 2007. First record of a thalattosaur from the upper triassic of austria. *Journal of Vertebrate Paleontology* 27:236–240.

Orliac, M. J., A. Pierre-Olivier, and S. Ducrocq. 2010. Phylogenetic relationships of the suidae (mammalia, cetartiodactyla): new insights on the relationships within suoidea. *Zoologica Scripta* 39:315–330.

Ortega, F., F. Escaso, and J. L. Sanz. 2010. A bizarre, humped carcharodontosauria (theropoda) from the lower cretaceous of spain. *Nature* 467:203–206.

O'Meara, R. N. and R. S. Thompson. 2014. Were there miocene meridiolestidans? assessing the phylogenetic placement of necrolestes patagonensis and the presence of a 40 million year meridiolestidan ghost lineage. *Journal of Mammalian Evolution* 21:271–284.

Parker, W. G. 2016. Revised phylogenetic analysis of the aetosauria (archosauria: Pseudosuchia); assessing the effects of incongruent morphological character sets. *PeerJ* 4:e1583.

Parsons, W. L. and K. M. Parsons. 2009. A new ankylosaur (dinosauria: Ankylosauria) from the lower cretaceous cloverly formation of central montana. *Canadian Journal of Earth Sciences* 46:721–738.

Polly, P. D. 1996. The skeleton of *gazinocyon vulpeculus* gen. et comb. nov. and the cladistic relationships of hyaenodontidae (eutheria, mammalia). *Journal of Vertebrate Paleontology* 16:303–319.

Poropat, S. F., P. D. Mannion, P. Upchurch, S. A. Hocknull, B. P. Kear, M. Kundrát, T. R. Tischler, T. Sloan, G. H. Sinapius, J. A. Elliott, et al. 2016. New australian sauropods shed light on cretaceous dinosaur palaeobiogeography. *Scientific reports* 6:34467.

Prideaux, G. J. and N. M. Warburton. 2010. An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (macropodidae: Marsupialia). *Zoological Journal of the Linnean Society* 159:954–987.

Ramassamy, B. 2016. Description of a new long-snouted beaked whale from the late miocene of denmark: evolution of suction feeding and sexual dimorphism in the zifidae (cetacea: Odontoceti). *Zoological Journal of the Linnean Society* 178:381–409.

Rincon, A. F., J. I. Bloch, B. J. Macfadden, and C. A. Jaramillo. 2013. First central american record of anthracotheriidae (mammalia, bothriodontinae) from the early miocene of panama. *Journal of Vertebrate Paleontology* 33:421–433.

Rodrigues, H. G., L. Marivaux, and M. Vianey-Liaud. 2010. Phylogeny and systematic revision of eocene cricetidae (rodentia, mammalia) from central and east asia: on the origin of cricetid rodents. *Journal of Zoological Systematics and Evolutionary Research* 48:259–268.

Romano, P. S., V. Gallo, R. R. Ramos, and L. Antonioli. 2014. *Atolchelys lepida*, a new side-necked turtle from the early cretaceous of brazil and the age of crown pleurodira. *Biology Letters* 10:20140290.

Rook, D. L. and J. P. Hunter. 2011. Phylogeny of the taeniodonta: evidence from dental characters and stratigraphy. *Journal of Vertebrate Paleontology* 31:422–427.

Ruta, M. et al. 2009. Patterns of morphological evolution in major groups of paleozoic temnospondyli (amphibia: Tetrapoda) .

Rybczynski, N. 2007. Castorid phylogenetics: implications for the evolution of swimming and tree-exploitation in beavers. *Journal of Mammalian Evolution* 14:1–35.

Sánchez-Villagra, M. R., I. Horovitz, and M. Motokawa. 2006. A comprehensive morphological analysis of talpid moles (mammalia) phylogenetic relationships. *Cladistics* 22:59–88.

Scanferla, A., H. Zaher, F. E. Novas, C. de Muizon, and R. Céspedes. 2013. A new snake skull from the paleocene of bolivia sheds light on the evolution of macrostomatans. *PLoS One* 8:e57583.

Schoch, R. R. and H.-D. Sues. 2013. A new dissorophid temnospondyl from the lower permian of north-central texas. *Comptes Rendus Palevol* 12:437–445.

Sereno, P. C. 1999. The evolution of dinosaurs. *Science* 284:2137–2147.

Shoshani, J., R. C. Walter, M. Abraha, S. Berhe, P. Tassy, W. J. Sanders, G. H. Marchant, Y. Libsekal, T. Ghirmai, and D. Zinner. 2006. A proboscidean from the late Oligocene of Eritrea, a “missing link” between early Elephantiformes and Elephantimorpha, and biogeographic implications. *Proceedings of the National Academy of Sciences* 103:17296–17301.

Simmons, N. B., K. L. Seymour, J. Habersetzer, and G. F. Gunnell. 2008. Primitive early eocene bat from wyoming and the evolution of flight and echolocation. *Nature* 451:818–821.

Smith, N. A. 2011. Taxonomic revision and phylogenetic analysis of the flightless mancallinae (aves, pan-alcidae). *ZooKeys* Page 1.

Sookias, R. B., C. Böhmer, and J. A. Clack. 2014. Redescription and phylogenetic analysis of the mandible of an enigmatic pennsylvanian (late carboniferous) tetrapod from nova scotia, and the lability of meckelian jaw ossification. *PloS one* 9:e109717.

Tomiya, S. 2011. A new basal caniform (Mammalia: Carnivora) from the middle Eocene of North America and remarks on the phylogeny of early carnivorans. *PLoS One* 6:e24146.

Tortosa, T., E. Buffetaut, N. Vialle, Y. Dutour, E. Turini, and G. Cheylan. 2014. A new abelisaurid dinosaur from the late cretaceous of southern france: Palaeobiogeographical implications. Pages 63–86 *in Annales de Paléontologie* vol. 100 Elsevier.

Trueb, L. and A. M. Báez. 2006. Revision of the early cretaceous cordicephalus from israel and an assessment of its relationships among pipoid frogs. *Journal of Vertebrate Paleontology* 26:44–59.

Unwin, D. M. 2003. On the phylogeny and evolutionary history of pterosaurs. *Geological Society, London, Special Publications* 217:139–190.

Velez-Juarbe, J., A. R. Wood, C. De Gracia, and A. J. Hendy. 2015. Evolutionary patterns among living and fossil kogiid sperm whales: evidence from the neogene of central america. *PLoS One* 10:e0123909.

Vila Nova, B. C., J. M. Sayão, V. H. Neumann, and A. W. Kellner. 2014. Redescription of *cearadactylus atrox* (pterosauria, pterodactyloidea) from the early cretaceous romualdo formation (santana group) of the araripe basin, brazil. *Journal of Vertebrate Paleontology* 34:126–134.

Vitek, N. 2011. Insights into the taxonomy and systematics of north american eocene soft-shelled turtles from a well-preserved specimen. *Bulletin of the Peabody Museum of Natural History* 52:189–208.

Wang, M., G. Mayr, J. Zhang, and Z. Zhou. 2012. Two new skeletons of the enigmatic, rail-like avian taxon *songzia hou*, 1990 (songziidae) from the early eocene of china. *Alcheringa: An Australasian Journal of Palaeontology* 36:487–499.

Wang, X. 1994. Phylogenetic systematics of the hesperocyoninae (carnivora, canidae). *Bulletin of the American Museum of Natural History* 221:1–207.

Wang, X. and O. Carranza-Castaneda. 2008. Earliest hog-nosed skunk, *coneptatus* (mephitidae, carnivora), from the early pliocene of guanajuato, mexico and origin of south american skunks. *Zoological Journal of the Linnean Society* 154:386–407.

Williamson, T. E. and A. Weil. 2011. A new puercan (early paleocene) hyopsodontid “condylarth” from new mexico. *Acta Palaeontologica Polonica* 56:247–255.

Wilson, J. A., D. M. Mohabey, S. E. Peters, and J. J. Head. 2010. Predation upon hatchling dinosaurs by a new snake from the late cretaceous of india. *PLoS biology* 8:e1000322.

Worthy, T. H. 2009. Descriptions and phylogenetic relationships of two new genera and four new species of oligo-miocene waterfowl (aves: Anatidae) from australia. *Zoological Journal of the Linnean Society* 156:411–454.

Worthy, T. H., S. J. Hand, and M. Archer. 2014. Phylogenetic relationships of the australian oligo-miocene ratite emuarius gidju casuariidae. *Integrative Zoology* 9:148–166.

Wu, X.-C., D. B. Brinkman, and A. P. Russell. 1996. A new alligator from the upper cretaceous of canada and the relationship of early eusuchians. *Palaeontology* 39:351–376.

You, H.-L., K. Tanoue, and P. Dodson. 2008. New data on cranial anatomy of the ceratopsian dinosaur *psittacosaurus major*. *Acta Palaeontologica Polonica* 53:183–196.