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1 Abstract16

Reconstructing the evolutionary history of different groups of organisms provides insight into how17

life originated and diversified on Earth. Phylogenetic trees are commonly used to estimate this18

evolutionary history, providing a hypothesis of the events. Within Bayesian phylogenetics a major19

step in estimating a tree is in choosing an appropriate model of character evolution. In the case of20

most extinct species, our only source of information to decipher their phylogenetic relationships is21

through the morphology of fossils. We therefore use a model of morphological character evolution,22

the most common of which being the Mk Lewis model. While it is frequently used in palaeobiology,23
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it is not known whether the simple Mk substitution model, or any extensions to it, provide a24

sufficiently good description of the process of morphological evolution. To determine whether or25

not the Mk model is appropriate for fossil data we used posterior predictive simulations, a model26

adequacy approach, to estimate absolute fit of the model to morphological data sets. We first27

investigate the impact that different versions of the Mk model have on key parameter estimates28

using tetrapod data sets. We show that choice of substitution model has an impact on both topology29

and branch lengths, highlighting the importance of model choice. Next, we use simulations to30

investigate the power of posterior predictive simulations for morphology. Having validated this31

approach we show that current variations of the Mk model are in fact performing adequately in32

capturing the evolutionary dynamics that generated our data. We do not find any preference for33

a particular model extension across multiple data sets, indicating that there is no ‘one size fits all’34

when it comes to morphological data and that careful consideration should be given to choosing35

models of discrete character evolution. By using suitable models of character evolution, we can36

increase our confidence in our phylogenetic estimates, which should in turn allow us to gain more37

accurate insights into the evolutionary history of both extinct and extant taxa.38

2 Introduction39

The origination and subsequent diversification of species is a fascinating, yet complex, process.40

Phylogenetic trees serve as a powerful tool to aid in our understanding of this process. They41

provide a hypothesis of the evolutionary history of a group, enabling us to make inferences about42

the relationships, timing of events, and patterns of evolution (Baum and Offner, 2008). While43

molecular data may be more commonly used in phylogenetics (Lee and Palci, 2015), morphological44

data was the original source of evidence (Farris et al., 1970) and remains extremely valuable to45

our interpretation of species diversification (López-Antoñanzas et al., 2022). As the majority of46

life on Earth is now extinct, the fossil record contains a wealth of knowledge about how species47

have adapted and diversified through time (Simpson, 1952). Integrating this information into48

phylogenetic analysis, either in combination with molecular data, for example, in a total evidence49

approach (Gavryushkina et al., 2017; Mongiardino Koch et al., 2021) or independently, can therefore50

further our ability to resolve species relationships in deep time. Studies have also shown that51

incorporating fossil data into an analysis, even when the focus of the study is on extant taxa,52

can improve the topological resolution or even accuracy of a phylogenetic inference (Beck and53
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Baillie, 2018; Koch and Parry, 2020; Mongiardino Koch et al., 2021). The use of morphological54

data in phylogenetics has been a topic of debate for many years, specifically, with regards to which55

approach should be applied, i.e., parsimony or model-based inference (Kolaczkowski and Thornton,56

2004; Wright and Hillis, 2014; O’Reilly et al., 2016; Puttick et al., 2017; Sansom et al., 2018;57

Goloboff et al., 2018, 2019). Due to the complex nature of morphological data, there are doubts58

about our ability to correctly model its evolution, and that any assumptions made by the models59

will bias the resulting inference (Goloboff et al., 2019). Parsimony is often considered to be an60

assumption free approach; however, this is not entirely true, as there are still implicit assumptions61

about morphological evolution within a parsimony framework (Felsenstein, 1983; Steel and Penny,62

2000). These two approaches have been compared many times throughout the literature, amassing63

in a large body of work which goes beyond the context of this study. Ultimately, model-based64

approaches have many more applications and statistical advantages, including the ability to select65

among competing models and assess model adequacy (Wright and Hillis, 2014; O’Reilly et al., 2016;66

Puttick et al., 2017). Amidst this debate, however, an important question has yet to be addressed:67

are available models of morphological evolution in fact adequate for our data?68

Morphological data collected from fossils, or extant taxa, can be either discretized (e.g., pres-69

ence/absence) or continuous (e.g., body size measurements). Discrete morphological data is the70

most widely used for phylogenetic inference (Lewis, 2001; Wright and Hillis, 2014; Harrison and71

Larsson, 2015; Wright, 2019) and will be the focus throughout this study. The data must be man-72

ually collected to create a morphological matrix, matching the format of a molecular alignment,73

where each site now represents a morphological trait. Traits are described using a character which74

is indicative of the phenotype expressed by a given taxon. Traits can have any number of character75

states depending on the complexity and traits with more than 2 states are referred to as multistate.76

Presence/absence traits can be described by using only 0 and 1, i.e., two character states. For77

more complex traits, however, more character states may be required. An example of this could be78

describing the shape of part of a skull or a shell. In this scenario a state is assigned to a particular79

modification of the trait, where a number of different adaptations (or states) may be present in a80

group. Within a single morphological matrix some traits can have binary character states, while81

others require multiple states. Consequently, the same character state across different traits can82

have an entirely different biological meaning, even within the same matrix. See Wright (2019) for a83

more in depth review of morphological data used in phylogenetics. The generation of this data is a84

challenging and time-intensive process, requiring an in-depth knowledge of the taxonomic group in85
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question. Morphological data is, in turn, extremely valuable in helping us answer questions about86

the evolution of life that molecular data alone cannot answer.87

Within a model-based phylogenetic analysis, the process that gives rise to discrete character data88

is described using a substitution model. These models aim to capture the evolutionary dynamics89

resulting in the gain, loss or modification of discrete states. Substitution models are continuous-90

time markov chain (CTMC) models. They allow states to change (evolve) stochastically at any91

point in time, and this change depends only on the current state that the evolving system is in. The92

assumptions of a substitution model are mathematically represented using a Q(or rate)-matrix. A93

Q-matrix is a square matrix where each element represents the instantaneous rate of change between94

states. That is Q[i, j] represents the rate of change from state i to state j. The probability of change95

over a given interval, or branch length v, is calculated using the Q-matrix. Developing models96

that can accurately describe the complex processes driving morphological evolution is extremely97

challenging and as a result, there is only one main model that is commonly applied: the Mk model98

(Felsenstein, 1992; Lewis, 2001). This model is a generalisation of the Jukes Cantor model (Jukes99

and Cantor, 1969) used for molecular data, and as such, follows the same set of assumptions. It100

assumes equal transitions rates between states, that is, the probability of transitioning from a state101

0 to a 1 is the same as going from a state 1 to a 0. It also assumes equal base (state) frequencies,102

meaning the model expects that there is approximately the same number of each character state103

throughout the morphological matrix. The Q-matrix for such a model, therefore sets all transitions104

to have an equal probability, with its size being determined by the number of states. That is, for105

a purely binary data set the Q-matrix will be a 2x2 matrix, representing the transitions from state106

0 to state 1, from state 1 to state 0, and of no change.107

Morphological data is, needless to say, different to molecular, so there are concerns about how well a108

model originally developed for molecular data can be applied to morphological data. Additionally,109

given that more complex models are often selected for molecular data, there is doubt about how110

well such a simple model can be applied to morphological data. As such, there have been a111

number of extensions implemented for the Mk model to relax these strict assumptions, and allow112

the model to better describe the reality of morphological evolution. Lewis immediately noted an113

important difference between morphological and molecular data collection (Lewis, 2001). When114

taxonomists are creating a matrix, or character coding, they will typically exclusively choose traits115

which differ across species, resulting in a matrix where every site is variable. This is a markedly116
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different behavior from molecular data collection, where there can be many sites where a nucleotide117

is conserved across all species. Not accounting for this phenomenon, known as ascertainment bias,118

( though referred to as acquisition bias in Lewis (2001)), can result in inferring trees with extremely119

long branch lengths. Lewis dealt with this by conditioning the likelihood calculation on there only120

being variable characters, developing the MkV model. There are a number of other extensions121

that we will explore the effects of here as well. Accounting for among-character rate variation has122

also been suggested as important when modeling morphological evolution (Harrison and Larsson,123

2015). This allows different traits to transition at different rates, as some may be evolving faster124

than others. This is frequently achieved by drawing rates from a discretized gamma distribution125

and allowing a trait to transition according to a given rate category, the same as is done for126

molecular data (Yang, 1994). Data sets can also be partitioned, often based on the maximum127

number character states (e.g., see Khakurel et al., in press). This ensures that traits are in a128

Q-matrix of the correct size. That is, in an unpartitioned analysis, the Q-matrix will take the129

size of the maximum character state in the morphological matrix, which could be for example 5.130

Transitions between binary characters will therefore also be calculated in this Q-matrix of size 5,131

meaning that there is some probability given to a binary character of transitioning to states 2, 3,132

or 4. As we do not observe these states in the data, in some cases (e.g., where states 1 or 0 are133

used to represent presence or absence) we can be certain that this is incorrect. Partitioning by134

character states such that all binary characters are in a Q-matrix of size 2 and so on, avoids this135

issue. Partitioning data can have an effect on branch lengths (Khakurel et al., in press) so it is136

important that it is done when necessary. Similarly, however, incorrect partitioning may lead to137

too low rates as a result of observer bias.138

The impact of these different variants of the Mk model is still not fully understood in terms of the139

effects on key parameter estimates, although they are likely to cause differences as has been shown140

for molecular models (Lemmon and Moriarty, 2004). When deciding what model to use, there are141

two distinct questions that can be asked, (1) which is the best model for my data compared to other142

models? and/or (2) does this model fit my data? The first question, which is the more common143

of the two, can be answered using model selection. Model selection approaches are common in144

molecular based studies although less frequently used for morphological data. For morphological145

studies there is a history of using substitution models that have been used in previous studies,146

choosing a model based on the structure of the data set, or relying on software defaults, often147

without providing statistical justification for model choice. As previously stated, data sets are148
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manually produced, meaning they can differ from each other depending on the taxonomist. If, for149

example, a substitution model had been applied to the taxonomic group of interest in the past, even150

if you are using similar taxa, if the morphological matrix is different, using the same substitution151

model as previous studies may not be logical. That being said, there are a number of examples152

where model selection has been applied to morphological data sets (Caldwell et al., 2021; Rücklin153

et al., 2021; Wright et al., 2021). By using a model selection approach, any subjectivity in model154

choice can be reduced. One down side of model selection approaches, however, is that they give no155

indication of the absolute fit of the model to the data. It tells you which model is the relative best,156

but that does not necessarily mean that the model provides a good description of the true data157

generating process, simply it fits better than other models (Gatesy, 2007). This is where question158

two becomes important. Asking if a single model is adequate allows you to understand how well a159

model can describe your data. These approaches, known as model adequacy, are currently gaining160

in popularity for molecular data (Duchêne et al., 2017, 2018; Brown and Thomson, 2018) and have161

been sporadically applied to morphological data sets (Huelsenbeck et al., 2003; Slater and Pennell,162

2014) but have yet to be systematically assessed.163

In order to confidently integrate fossils into phylogenetic approaches, ensuring we have accurate164

substitution models is a critical step. Knowing that the models are behaving as expected can165

increase our confidence in the results and allow us to ask increasingly complex questions. Here we166

explored the impacts of different substitution models on key parameter estimates across a number of167

morphological data sets, as well as investigated the best approaches for choosing a model. We found168

that the models have a notable impact on both tree length and topology, highlighting the importance169

of validating a model before using it. In our simulation study, model adequacy preformed well in170

predicting which model the data was simulated under. Ultimately, using model adequacy, we found171

that substitution models do in fact fit a number of empirical data sets, supporting the use of the172

Mk model for morphological data in paleobiology.173

174
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Figure 1: Posterior predictive simulation workflow. Step 1. an MCMC inference is carried out under a

given model. Step 2. data sets are simulated under the same model based on parameter estimates from

1. Step 3. an MCMC inference is then carried out on the simulated data sets. The pink boxes show the

test statistics that are applied to determine whether or not the model is adequate. Generalised Euclidean

distances and Gower’s coefficient are used to compare the data sets. Tree length and Robinson-Foulds are

used to compare the inferred trees. Consistency index and retention index use the empirical trees and the

empirical and simulated data sets to test for adequacy.

3 Methods175

3.1 Data176

We used a collection of previously published morphological matrices from Sansom et al. (2018)177

(taken from http://graemetlloyd.com/matrdino.html). This data set contained 166 morphological178

matrices of tetrapod taxa. The data sets vary in sizes in terms of taxa, from 12-219, traits, from179

23-622, and number of different character states, from 2-10. They have also been used previously180

to examine the use of phylogenetic methods and as such were a ideal data set for this study Sansom181

et al. (2018). We removed matrices based on two criteria: (i) those that contained characters with182

more than 9 states or 80 taxa, as they became too computationally expensive, and (ii) those that183

contained traits where only character state “0” and missing characters, “?” were present for any184

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2024. ; https://doi.org/10.1101/2024.01.25.577179doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577179
http://creativecommons.org/licenses/by-nc/4.0/


trait. This resulted in a final data set of 114 matrices. The data sets varied in size, with the number185

of taxa ranging from 12 to 80, and the number of characters being between 23 to 477.186

3.2 Empirical Comparison of Morphological Models187

Initially, our focus was on investigating how substitution models impact the estimation of key pa-188

rameters. We chose 7 variants of the Mk model (Mk, MkV, MkV+G, Mk+G, MkVP, MkVP+G,189

MkP+G, see Table 1 for model assumptions) and compared differences in the resulting tree lengths190

and topologies. All phylogenetic inference was performed in a Bayesian framework using the soft-191

ware RevBayes version (1.2.1) (Höhna et al., 2016). We ran an MCMC inference under each of the192

7 models for all 114 data sets. This allowed us to determine whether there are any systematic dif-193

ferences in parameter estimates that could be attributed to the substitution model. For all models194

we assumed a uniform tree prior on the topology. Tree length was drawn from an exponential prior195

distribution with a rate parameter of 1. Relative branch lengths were drawn from a Dirichlet prior196

distribution (Zhang et al., 2012). The branch lengths were calculated as the product of the tree197

length and the relative branch lengths. Preliminary analyses were run using an exponential prior198

for branch length estimation, however, we found the Dirichlet tree prior to perform better in sim-199

ulations. We used an Mk model, with the size of the Q-matrix being determined by the maximum200

character state of each data set. When allowing for among character rate variation, ACRV, (+G)201

the shape parameter of the gamma distribution, α was estimated as the inverse of a random variable202

alpha inv drawn from the exponential distribution with a rate parameter of 1. We discretized the203

gamma distribution into four discrete categories (Yang, 1994). To account for ascertainment bias204

(+V), we selected the variable coding option in RevBayes. Partitioned models (+P) split the data205

set based on the number of character states. Each grouping had its own Q matrix. That is, all206

binary traits were assigned to a Q-matrix of size 2, all tertiary traits were assigned to a Q-matrix207

of size 3 and so on. For this set up, we applied the same gamma distribution for ACRV to each208

partition.209

We ran the MCMC for 20,000 iterations with two simultaneous chains, sampling every 10 genera-210

tions. The output of both chains was automatically combined in RevBayes, resulting in a posterior211

sample of 4,000. Convergence was assessed using a custom R script with the R package coda212

(Plummer et al., 2006) to ensure ESS values > 200 of all parameters estimated.213
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3.2.1 Posterior Summaries214

Tree length was calculated as the sum of the branch lengths averaged across the entire posterior215

distribution. We also calculated the percentage change in tree length relative to the Mk model for216

each data set to make it easier to observe any consistent patterns across models. We then explored217

the differences in estimated tree topologies from the different substitution models for each data218

set. Using a sample of 1000 trees from the posterior distribution for each substitution model, we219

calculated the normalised Robinson-Foulds distance between all trees. With this resulting matrix220

we performed a multivariate homogeneity of group dispersions analysis using the R package vegan221

(Oksanen et al., 2022). This calculated the distance between points and their group centroid.222

Plotting this as a PCoA allowed us to visualise where models were in tree space, relative to one223

another. In order to quantify these differences, we carried out a permutation test to assess their224

significance using the permutest function in the vegan package (Oksanen et al., 2022). This allowed225

us to determine if the variability in RF distances inferred using each of the models was significantly226

different from each other.227

Models & Extensions Assumptions

Mk all transition are equal (Lewis, 2001)

V accounts for ascertainment bias (Lewis, 2001)

G allows for variation in substitution rates among sites (Yang, 1994)

P partitions the data based on the number of character states

Table 1: Models tested.

3.3 Assessing the Performance of Model Adequacy and Model Selection Meth-228

ods for Morphological Data229

Choosing an appropriate model of evolution is an important step in any Bayesian phylogenetic230

analysis. The results from an inference will be conditioned on the assumptions of the evolutionary231

model. As such, if the model’s assumptions are markedly different than that of the underlying232

process that generated the data, the results may be inaccurate. Methods for choosing an appropriate233

model often take a model selection approach, relying on estimation of the marginal likelihood234

(Brown, 2014b). These methods provide the relative fit of competing models. Although a model235
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may be selected as the best choice, it does not necessarily mean that the model is, in any way236

adequate for the data set being analysed. That is, it may not provide a sufficiently realistic237

description of the data generating process (Gatesy, 2007; A Shepherd and Klaere, 2019). Therefore,238

model selection provides no indication about how well the model actually fits your data, only its239

relative fit compared to other models. In contrast, model adequacy approaches provide information240

on the absolute fit of a model to a data set. They can provide information about a model’s ability241

to capture key characteristics of a given data set, as well as highlight where the model may be242

inadequate. Importantly, model adequacy provides the ability to reject models, even if they are243

identified as the “best” using a model selection approach (A Shepherd and Klaere, 2019; Brown244

and Thomson, 2018).245

Posterior-predictive simulations (PPS) is a model-adequacy approach that has been applied to a246

variety of data types, albeit with limited frequency in phylogenetics (Gelman et al., 1996; Bollback,247

2002; Brown, 2014a; Brown and Thomson, 2018; Höhna et al., 2018; Schwery et al., 2023). Briefly,248

it works by simulating data under a given model and comparing the similarity of the empirical249

data to the newly simulated data using a test statistic. The rationale here being that if the model250

adequately captures the underlying dynamics of the processes generating the data, the simulated251

data would be similar to the empirical (Gelman et al., 1996; Bollback, 2002). To date, the use of252

PPS has been demonstrated more often for molecular data, for example Brown (2014a) and Duchêne253

et al. (2018), however, it has also been suggested for models of continuous trait evolution (Slater254

and Pennell, 2014), and discrete character evolution (Huelsenbeck et al., 2003). Using simulations,255

we investigate the use of Bayes factors and PPS for determining whether a morphological model256

fits our data.257

3.3.1 Model Adequacy Using Posterior Predictive Simulations258

To test the adequacy of morphological models we used posterior prediction simulations (PPS)259

following the workflow as described in Höhna et al. (2018) implemented in RevBayes. This can be260

broadly broken down into four mains steps. We provide a brief description of these steps here, but261

for a more thorough description see Höhna et al. (2018). (1) The first step is to analyse the empirical262

data under a given model. This involves a regular MCMC inference sampling parameter values from263

the posterior distribution. (2) New data sets are then simulated in R using the phangorn R package264

(Schliep, 2011). Data sets are simulated under the same model as used in step 1 with trees and265
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parameter estimates inferred in step 1. (3) Inference under the same model is then carried out on all266

the newly simulated data sets from step 2. (4) Test statistics are calculated and compared between267

the original empirical data and inference results, and the newly simulated data and inference results,268

see Fig. 1. The overarching idea here being, the more similar the simulated data is to the empirical269

data, the better the model is at describing the underlying processes that produced your data.270

This in turn indicates whether we can have confidence in the results inferred under a given model.271

Note it is practical to simulate data sets in RevBayes, and we provide instructions for doing so in272

the associated tutorial (https://revbayes.github.io/tutorials/pps morpho/pps data morpho.html).273

We chose to simulate data using phangorn as it was slightly more computationally efficient given274

that our study featured an exceptionally large number of simulations (700,000 simulations for 160275

individual data sets), but this should not be a concern for an empirical study, which would typically276

only contain one or a few individual data sets.277

3.3.2 Candidate Test Statistics for Morphological Data278

PPS are only as good as the test statistics used, meaning if the test statics are not able to capture279

differences that result from the underlying dynamics of the data generating processes, it will not be280

possible to use PPS to understand the adequacy of a given model. Using test statistics allows us281

to convert the empirical data and output into numerical values that we can use to summarize the282

differences between empirical and simulated data. The test statistics can then be compared using283

effect sizes, which provide a way of quantifying variation in model fit and allow us to distinguish284

between the fit of competing models. Previous studies have used posterior-predictive p-values to285

accept or reject a model. In this study we chose to focus on effect sizes over p-values for two reasons.286

First, given that fit of morphological models to empirical data had not been tested previously, we287

wanted to determine how different models preformed and essentially, potentially how poorly they288

each fit empirical data. Second, effect sizes provide a more intuitive way of comparing the fit of289

different models. By applying p-values only we can assess whether a model is adequate or not, but290

not how the models perform relative to each other (Brown, 2014a; Duchêne et al., 2017). Effect291

sizes therefore allow us to gain a better understanding of the impact of different morphological292

models, and ultimately address the main questions of this study. This would not be necessary293

perhaps in an empirical study, and we do include the use of p-values for our empirical analysis.294

Here, the effect sizes were calculated by:295
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ES =
empTS − simTS

stdSimTS
(1)

where empTS is the empirical value for a given test statistic, simTS is the value of the test statistic296

from a single simulated replicate and stdSimTS is the standard deviation across all simulated297

replicates. The closer this number is to zero, the better the model is at explaining your data. Test298

statistics can be divided into three categories: (1) data based, (2) inference based, and (3) data299

inference hybrid or mixed. Data based test statistics compare the actual morphological data sets300

themselves, inference based compare the inferred trees and mixed statistics uses both the data and301

the trees to compare your empirical and simulated values.302

Data Based Test Statistics303

As the name suggests, these test statistics focus on characterising the matrices, themselves here304

meaning the morphological data. As PPS studies in phylogenetics have previously focused on305

molecular data, many of the data based statistics are only suited to DNA. For example, quantifying306

the GC content or number of invariant sites (Höhna et al., 2018). Summarising morphological data307

sets in a similar way requires different metrics. To do this we explore the use of disparity metrics.308

Disparity is a measure of the morphological variation observed among species (Hopkins et al., 2017).309

It is important to note, we are not interested in the actual measure of disparity, we are interested310

in how the value differs between the original empirical data and the simulated data. We tested two311

metrics of disparity.312

(i) Generalised Euclidean Distances (GED) (Wills, 1998) is a popular disparity metric commonly313

used in vertebrate research (Brusatte et al., 2011; Lehmann et al., 2019). This measure is similar314

to the basic Euclidean distances but incorporates adjustments to accommodate missing characters.315

Wills (2001) defines GED as:316

Sij =

√√√√ v∑
k=1

S2
ijkWijk (2)

where S ij is the total distance between taxa i and j, v is the total number of characters in the317

matrix, W ijk is the weight of the kth character, and S ijk is the distance between taxa i and j at the318

kth character. S ijk equals 0 when the ith and j th sequence match in the kth position and 1 when319
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there is a mismatch. To account for missing data, a mean estimate of disparity is first calculated320

across all comparisons for which we have observations:321

S̄ijk =

∑
SijkWijk∑

S(ijk)max
Wijk

where S(ijk) is the maximum possible distance between taxa i and j for the kth character, which322

equals 1 for discrete characters. The term S̄ijk.S(ijk)max
is then substituted into Equation 2 for323

missing Sijk values. In all cases, we treat characters as equally weighted, i.e., Wijk = 1.324

(ii) Gower’s Coefficient (GC) (Gower, 1971) is commonly used in invertebrate studies (Hopkins325

and Smith, 2015). This metric calculates disparity differently to the GED, notably in regards to326

how it deals with missing characters. Here this is achieved by normalising by the available data.327

GC can be written as (Lloyd, 2016):328

Sij =

v∑
k=1

S2
ijkWijk

v∑
k=1

δ2ijkWijk

(3)

where δijk is coded as 1 if both taxa i and j can be coded for k (i.e., character states are observed329

for both taxa), and zero if not. As above, we use assume equal weights, i.e., Wijk = 1.330

For both the above metrics, we used the R package Claddis (Lloyd, 2016). In the calculations we331

set characters as unorderd. The output from this matrix of the pairwise distance between taxa. We332

took the average disparity across the matrix for the calculation of the effect size, i.e., for empTS333

and simTS.334

Inference Based Statistics335

Inference based test statistics aim to characterise the inferred trees in the posterior distribution.336

(i) Mean Tree Length (TL) was calculated using all the tree lengths sampled in the posterior337

distribution as:338

1

k

k∑
i=1

TLi (4)

where TL is defined as the sum of branch lengths TL =
∑i=1

2N−3 bli. This calculation was done in339
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RevBayes. We took the mean tree lengths across the posterior distribution of trees as the input for340

the effect sizes.341

(ii) Mean Robinson-Foulds Distance (RF) was used to measure the topological uncertainty within342

the posterior distribution (Robinson and Foulds, 1981). This value was calculated in RevBayes.343

RF =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

RF (Ψi,Ψj) (5)

Mixed Test Statistics344

These test statistics take both the data and the tree into consideration. Again, we investigate the345

use of two test statistics here.346

347

(i) Consistency Index (CI) (Kluge and Farris, 1969) which is a measure of homoplasy within the348

data set. It can be calculated as:349

CI =
m

s
(6)

where m is the minimum possible number of steps or changes along a tree and s is the reconstructed350

number, i.e., the number observed along estimated trees (Kluge and Farris, 1969). This metric has351

been used to characterise data sets in paleontology (Murphy et al., 2021) and has been applied to352

model adequacy studies focusing on molecular data (Duchêne et al., 2018). A CI of 1 indicates no353

homoplasy and gets closer to zero as the amount of homoplasy increases.354

(ii) The Retention Index (RI) (Farris, 1989), builds on the consistency index to calculate the355

potential synapomorphy observed along the tree and is calculated as:356

RI =
g − s

g −m
(7)

where g is the maximum number of possible steps on a given tree.357

For both consistency and retention index, we used the maximum clade credibility (MCC) tree358

generated from inference of the empirical data for all calculations. We carried out preliminary359

analysis where we used the entire posterior distribution of trees for this calculation. The increased360
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computation time from a number of minutes to 24 hours and produced extremely similar results,361

see fig. S2. For this reason, we continued to use the MCC tree only for the rest of the analysis.362

3.3.3 Model Selection Using Stepping Stone Sampling363

For model selection, Bayes factors are computed to compare between models. In order to do this we364

first have to calculate the marginal likelihood of the data. The marginal likelihood is an important365

quantity in Bayesian model selection as it provides a measure of the goodness of fit of the model366

to the data, while accounting for model complexity. The marginal probability is the probability of367

the data integrated over all possible parameter values weighted by their prior probabilities for a368

given model. This is tricky to calculate so we avoid calculating it in regular MCMC inference using369

the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). We therefore, need to370

use a different approach in order to approximate this value. One such approach is stepping stone371

sampling. Stepping stone sampling is a Monte Carlo method that uses a sequence of intermediate372

distributions, or steps, between the prior and posterior distributions to compute the marginal373

likelihood. Stepping stone sampling has been demonstrated to be a reliable method for calculating374

Bayes factors and therefore performing model selection with molecular data (Xie et al., 2011; Höhna375

et al., 2021). While comparing marginal likelihoods has been used for morphological data to choose376

a model, its performance has yet to be assessed (Wright et al., 2021).377

3.3.4 Simulated Data378

We based our simulation study on two empirical data sets, one on Proboscideans (the group con-379

taining elephants and their nearest extinct relatives) (Shoshani et al., 2006) and the other on380

Hyaenodontidae (Egi et al., 2005). For simplicity we will refer to each data set as simulated ele-381

phants and simulated hyenas, respectively. The simulated elephant data set is larger, having 40382

taxa, 125 characters with 6 states compared to the simulated hyaenas which has 15 taxa, 65 char-383

acters and 5 states. For each data set, we used 20 trees from the posterior distribution inferred384

under a given model and simulated character data under the same model in R using phagnorm385

Schliep (2011). We did not simulate any traits with missing data. We did this for the MkV, MkVP,386

MkV+G and MkVP+G models for each data set (160 simulated replicates in total).387
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3.3.5 Analysis of Simulated Data388

We carried out PPS following section 3.3.1 on all simulated elephant and simulated hyena data389

sets. This allowed us to jointly validate the candidate test statistics and determine how well PPS390

can detect the correct model, as well as how it handles incorrect models. We analysed each of the391

simulated data sets under the same seven models as in section 3.2 (Mk, MkV, MkV+G, Mk+G,392

MkVP, MkVP+G, MkP+G) and kept all model parameters the same. The MCMC was ran for393

10,000 iterations, with two individual chains. Convergence was assessed by calculating the ESS394

values for the likelihood, prior, posterior, tree length and when present in the model, the estimated395

alpha values using the R package coda (Plummer et al., 2006). MCMC chains that produced ESS396

values < 200 were ran again with an increase in the chain length. There were 560 replicates for397

each data set size. For the simulated hyena data sets, 533 converged after 10,000 iterations, 24 after398

50,000 iterations and 3 after 100,000. For the simulated elephant data, 548 reached convergence399

after 10,000 iterations and 12 required 50,000 iterations.400

The number of simulations required for PPS is not strictly defined. Given that the number of401

simulation replicates will increase both the computation time and memory requirements, doing402

extra should be avoided. To explore this we used both of the simulated data sets, simulated403

under the MkV+G model. We ran an MCMC inference as described above with 1,000 simulation404

replicates. We calculated the cumulative means for each test statistic inferred under each model.405

Following Robinson et al. (2004), we plotted the cumulative means thereby taking a graphical406

approach that shows the point at which the line becomes flat, indicating the required number of407

replicates Fig. S3, (Robinson et al., 2004). We found that after 500 replicates the lines were flat408

and we determined this to be sufficient. To ensure that this number of simulation replicates was409

not effecting the calculation of the actual effect sizes, we compared the effect sizes for each test410

statistic with 500 and 1,000 replicates. For ∼92% of the effect sizes calculated, we found that the411

difference was less than 0.1 with a median of ∼0.03. The largest change in effect sizes we saw was412

between 500 and 1,000 replicates which was 0.5. This was calculated for the two data based test413

statistics both inferred under the model MkVP+G and the same replicate. This results was thus414

considered an outlier. All other differences were less than 0.25, and did not change whether a model415

was considered to be adequate or not. As a results of these tests, we determined that having 500416

simulations replicates would be sufficient for our PPS analyses throughout.417

We then used stepping stone sampling to estimate the marginal likelihoods under each of the418
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models. We kept all model parameters the same as above, and used 48 stones.419

3.4 Analysis of Empirical Data420

Once we identified appropriate test statistics, we could test model fit using PPS on empirical data421

sets to determine which, if any, morphological models were adequate. We chose to analyse 8 data422

sets here. This was limited by the computational costs of running the analysis multiple times. Data423

sets were chosen to cover a range of sizes, in terms of taxa, characters and states. We tested the424

same 7 models we used throughout (Mk, MkV, MkV+G, Mk+G, MkVP, MkVP+G, MkP+G) and425

kept all model parameters the same as in section 3.3.1. We also used stepping stone sampling on426

each of the data sets in order to see how the models chosen by model selection compared to those427

identified as most appropriate by model adequacy. Posterior p-values were calculated in R for each428

of the test statistics to compare with the results obtained using effect sizes.429

4 Results430

4.1 Empirical Comparison of Morphological Models431

Assuming different models of morphological evolution produced different estimates of key parame-432

ters of interest. Figure 2A shows the percentage difference in mean tree lengths relative to that of433

the Mk model for all 114 data sets. There are some general trends that emerged here. As expected434

(Lewis, 2001), the MkV model produced smaller estimates of tree length relative to the Mk model435

for all but one data set. The Mk+G model produced longer trees for 96% of the data sets compared436

to the Mk model. However, when used in combination, these two extensions produced the smallest437

trees compared to all models in 96% of data sets. Partitioned models estimated larger trees, with438

the MkP+G model estimating larger trees in 100% of the data sets, consistent with the findings439

of Khakurel et al. (in press). Interestingly, the MkVP+G model was divided between larger and440

smaller trees compared to the Mk model, with only 35% of the trees being larger. Figure 2B shows441

the tree length plotted for two data sets, of Hyaenodontidae (Egi et al., 2005) and Proboscideans442

(Shoshani et al., 2006), respectively. This is to highlight, that while there are some general trends,443

models still behave differently depending on the data set. It is worth noting that the Shoshani444

et al. (2006) data set (Figure 2B (i)) is the larger of the two, both in terms of number of taxa and445
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characters. The influence of different models on tree length tended increase with larger data sets,446

both in terms of taxa and character number see supplementary fig. S1.447

Figure 2C shows the tree space for the same two data sets. Using the permuted p-values estimated448

from the pairwise distances using Robinson-Foulds, we found that for both data sets the majority449

of models occupied a different tree space, i.e., differences in topology were significant. For the data450

set from Egi et al. (2005), trees inferred using MkV, MkV+G and Mk+G models grouped in a451

similar tree space, whereas all other models occupied different spaces. Whereas for the data set452

from Shoshani et al. (2006), we found two separate groupings, one of trees inferred using the Mk+G453

and MkV models, and the other an overlap between the MkV and MkV+G models. These results454

highlight that, not only do the substitution models have an impact on key parameter estimates,455

but this impact is not uniform across data sets.456

Figure 2: Analysis from 114 data sets under the 7 different models Mk, MkV, MkV+G, Mk+G, MkVP,

MkVP+G, MkP+G. A, the changes in mean tree length of the posterior inferred using each model relative

to the Mk model. B, the tree length calculated for each model for two different data sets from Egi et al.

(2005) (Hyaenodontidae) and Shoshani et al. (2006) (Proboscideans), respectively. C, the tree space of the

same two data sets as for B.
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4.2 Assessing the Performance of Model Adequacy and Model Selection Meth-457

ods for Morphological Data458

4.2.1 Candidate Test Statistics for Morphological data459

We explored the use of six test statistics for morphological models. The desired characteristic of460

test statics considered here, is their ability to indicate the adequacy of a particular model while461

also pointing out the inadequacy of another, i.e., we want the effect size of the correct model to462

be consistently around zero, while being far from zero for the incorrect models. We will focus on463

the results from both hyena and elephant data sets simulated under the MkV+G and MkVP+G464

models. We carried out the same investigation on data sets simulated under the MkV and MkVP465

models and reached the same conclusions, see Fig. S6 -S8. The data test statistics, shown in Fig.466

3, Grower’s coefficient and Generalized Euclidean Distance, both show a similar pattern. For the467

unpartitioned models there is no discernible preference for a given model. That is, they all fall468

within a similar range of effect sizes. For data simulated under a partitioned model, there was469

a stronger separation of effect sizes, where all the partitioned models are closer to zero and fall470

within a similar range. This pattern is more consistent for Gower’s Coefficient, suggesting it’s471

potential use as a test statistic. Neither of the inference based test statistics, shown in Fig. 4, show472

any strong or meaningful separation of effect sizes. Meaning, there is no preference for any of the473

models and it is unclear what explains this pattern. As for the mixed test statistics, consistency474

index and retention index, shown in Fig. 5, there is a similar pattern to that of the data based test475

statistics, however, with the differences in effect sizes between models being more pronounced. In476

order to quantify these results, we focused on three key features, (i) the variance in effect sizes for477

the correct model, meaning the total range of effect sizes for a given test statistic with the correct478

model, (ii) how incorrect models preformed, meaning the total range of effect sizes for a given479

test statistics across all models and, (iii) how easily we could differentiate between adequate and480

inadequate models by calculating the number of models which fall into the correct model effect size481

(ES) range. A numerical summary of these results can be found in Table 2 and 3. Consistency index482

and retention index demonstrated the best performance of these three aspects, with the correct483

models being consistently close to zero, incorrect models having larger ES values, and the fewest484

number of models on average falling within the correct model effect size range. While Grower’s485

coefficient also seems promising, the difference in effect sizes is less than that of the mixed test486
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statistics. As such, in the empirical analyses we relied solely on the mixed test statistics, the487

consistency and retention indices.488

Figure 3: Validation of the data based test statistics. Plots show the output from each simulated data

set with 20 replicates for each test statistic. The coloured points indicate the correct model, with the grey

horizontal bar marking the range of effect sizes calculated for the correct model. ■ = Mk, ✕ = Mk+G, ▲

= MkV, ◆ = MkV+G, ✳ = MkVP, ● = MkP+G, and + = MkVP+G

4.2.2 Model Adequacy vs. Model Selection489

Here we compared the use of model adequacy and model selection using simulated data sets. To490

reiterate, unlike model selection, model adequacy approaches do not rank potential models in the491

same way, indicating that one model is the best. Therefore, for any given data set, if multiple492

models are investigated, as was the case here, several models may be adequate according to a493

particular test statistic. We will focus on the same 4 data sets as in section 4.2.1.494

In the above section, to identify appropriate test statistics, we focused on the pattern of median495

ES values. When considering individual replicates we required more information than just the496

median ES value to determine the adequacy of a model for a given data set. Using this value497

alone makes it difficult to determine a model’s adequacy unless the median value is zero. We498

explored the use of upper and lower quartiles, and minimum and maximum limits and found the499

latter to be the more informative approach for identifying a model’s adequacy. We propose that500
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Figure 4: Validation of the inference based test statistics. Plots shows the output from each simulated

data set with 20 replicates for each test statistic. The coloured points indicate the correct model with the

grey horizontal bar marking the range of effect sizes values calculated for the correct model. ■ = Mk, ✕ =

Mk+G, ▲ = MkV, ◆ = MkV+G, ✳ = MkVP, ● = MkP+G, and + = MkVP+G

if the minimum and maximum limits pass through zero, this would indicate that the model is501

adequate using our chosen test statistics. Following this criteria, we could quantify the percentage502

of simulation replicates where the model was deemed adequate/inadequate. Table 4 shows the503

percentage of times a model met the above described criteria using the consistency index and the504

retention index.505

Model selection produced surprising results. We consistently found support for partitioned models,506

regardless of the model used to simulate the data. Table 5 shows the percentage of times a model507

was chosen as the best model according to Bayes factors. For this reason, using Bayes factors is not508

a reliable approach for deciding between partitions with morphological data, at least not using the509

standard approach we applied to partition characters, i.e., by the maximum observed state number510

(see the Discussion for a full explanation).511

4.3 Analysis of Empirical data512

We then applied PPS with the newly validated test statistics to 8 empirical data sets. This allowed513

us to answer our main question: are current morphological models adequate for empirical data?514
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Figure 5: Validation of the mixed test statistics. Plots shows the output from each simulated data set with

20 replicates for each test statistic. The coloured points indicate the correct model with the grey horizontal

bar marking the range of effect sizes calculated for the correct model. ■ = Mk, ✕ = Mk+G, ▲ = MkV, ◆

= MkV+G, ✳ = MkVP, ● = MkP+G, and + = MkVP+G

Of the 8 data sets, 5 had at least one model that was adequate. Fig. 6 shows the effect sizes from515

4 data sets (see also supplementary Fig. S9). The MkVP+G model was found to be adequate for516

all 5 data sets. Of those 5 data sets, 4 also fit an MkVP model. We found the MkP+G model517

to be adequate for 3 data sets. For one of the data sets, Fig.6D, we found all models apart from518

the MkP+G model to be adequate. We do not see any clear pattern in terms of adequate models,519

with respect to the size of the data sets, i.e., number of taxa, characters, or state number. This520

suggests that these variables are not informative when choosing a model. For the two largest data521

sets, in terms of taxa, we did not find any models to be adequate. These data sets had 40 taxa522

(Shoshani et al., 2006) and 50 taxa (Tomiya, 2011). However, no models were adequate for a third523

data set with only 25 taxa (Schoch and Sues, 2013). Table. 6 shows the p-values calculated for524

consistency index and retention index for the same data sets as in Fig. 6. Values below 0.025525

and above 0.975 are considered to be significant. This would indicate that the simulated data is526

significantly different from the empirical data, and that the model does not capture the underlying527

data generating processes and therefore is not adequate for that data set. Results using effect sizes528

and p-values agree on the same models for all data sets. There is one instance when there is a529

disagreement using retention index. For the data set from Egi et al. (2005), the Mk+G model530
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Model Test Statistic Correct ES Overall ES Num in Correct

MkV+G

GC 1.7 2.2 5.7

GED 1.7 2.2 5.6

TL 1.2 1.4 6

RF 2.9 3.1 5.9

CI 2.7 4.3 5

RI 1.8 2.5 5.6

MkVP+G

GC 0.9 2.9 1

GED 0.9 2.8 1

TL 2.8 2.8 6

RF 3.3 5.0 4.1

CI 1.2 11.7 1.40

RI 1.1 5.3 1.6

Table 2: Validation of test statistics from the simulated hyena data sets. Correct ES gives the total range

of effect sizes for a given test statistics with the correct model. Overall ES gives the total range of effect

sizes for a given test statistic across all models. Num in Correct gives the number of models which fall into

the Correct ES range. Num in Correct only looks at incorrect models, which means the maximum value

here can be 6. GC = Gower’s coefficient, GED = generlized euclidean distance, TL = tree length, RF =

Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index

have the largest overall ES range with, on average the fewest models falling in the same range as that of the

correct model.

was accepted using the threshold that we defined for effect sizes and rejected using p-values. Both531

metrics rejected the model according to consistency index, however, so the Mk+G was ultimately532

rejected using both approaches.533

5 Discussion534

Understanding morphological evolution is an extremely difficult task. Within palaeobiology we535

rely on a small number of relatively simple models to describe this complex process (Wright, 2019).536

Until now, the impact of these different substitution models on parameter estimates was not well537

understood. Our analysis on the influence of these models using empirical data sets, focusing on tree538
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Model Test Statistic Correct ES Overall ES Num in Correct

MkV+G

GC 0.8 2.0 4.1

GED 0.9 1.9 4.7

TL 0.7 0.7 5.7

RF 2.4 2.9 5.5

CI 2.0 5.9 2.8

RI 1.8 4.3 3

MkVP+G

GC 1.2 3.2 2.1

GED 1.2 4.0 2.95

TL 0.3 1.0 2.95

RF 3.7 3.7 5.95

CI 1.9 20.0 1.45

RI 1.5 13 1.6

Table 3: Validation of test statistics from the simulated elephant data sets. Correct ES gives the total range

of effect sizes for a given test statistics with the correct model. Overall ES gives the total range of effect

sizes for a given test statistic across all models. Num in Correct gives the number of models which fall into

the Correct ES range. Num in Correct only looks at incorrect models, which means the maximum value

here can be 6. GC = Gower’s coefficient, GED = generlized euclidean distance, TL = tree length, RF =

Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index

have the largest overall ES range with, on average the fewest models falling in the same range as that of the

correct model.

length and topology, demonstrates that different models can produce contrasting reconstructions of539

the evolutionary history of a group, emphasising the importance of model choice (Fig. 2). Although540

the impact of models on parameter estimates is not uniform across data sets, the most consistent541

pattern we observe is whether or not the data is partitioned.542

5.1 Partitioned models543

In all the partitioned models explored here, traits were partitioned based on the number of character544

states. This is a practical approach, both in terms of the biology and the way in which the characters545

tend to be coded. We found that for all but two data sets, the unpartitioned models produced546
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Sim Model Data set Test Statistic Mk Mk+G MkV MkV+G MkP+G MVP MkVP+G

MkV+G Hyena CI 100% 95% 100% 100% 95% 95% 95%

MkV+G Hyena RI 100% 100% 100% 100% 100% 100% 100%

MkVP+G Hyena CI - - - - 100% 100% 100%

MkVP+G Hyena RI 50% 65% 45% 75% 100% 100% 100%

MkV+G Elephant CI 100% 100% 100% 100% 40% 85% 80%

MkV+G Elephant RI 100% 100% 100% 100% 70% 100% 100%

MkVP+G Elephant CI - - - - 100% 100% 100%

MkVP+G Elephant RI - - - - 100% 100% 100%

Table 4: The percentage of times a model was found to be adequate across all replicates using consistency

index (CI) and retention index (RI) as tests statistics. In order for a model to be considered adequate the

effect sizes need to meet the criteria put forward here, where the range of minimum and maximum values

contain zero.

Figure 6: Effect sizes for four empirical data sets for the consistency index and retention index. The dashed

black line is at zero is there to help identify adequate models. The data sets are taken from (Agnolin, 2007),

(Egi et al., 2005), (Bourdon et al., 2009) and (Shoshani et al., 2006), respectively.
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Model Data set Mk Mk+G MkV MkV+G MkP+G MVP MkVP+G

MkV+G Hyena - - - - 5% 15% 80%

MkVP+G Hyena - - - - 5% 30% 65%

MkV+G Elephant - - - - - - 100%

MkVP+G Elephant - - - - - - 100%

Table 5: Models chosen using Bayes factors and the marginal likelihoods. Cells show the percentage of

times a model was selected across the 20 replicates from each simulation set up. The dashed line indicates

the model was never selected.

smaller trees. To further investigate the cause of this, we ran an analysis using a binary data set547

and increased the Q-matrix size from 2-5. The objective here was to mirror what happens when we548

have characters with a lower number of observed states than the maximum number of states in the549

matrix. For example, placing binary characters in a partition with a maximum of 5 character states.550

We show that as the size of the Q-matrix increases tree length gets smaller (Fig. S10). The effect551

of partitioning that we observe on empirical estimates of tree length, is therefore a direct result of552

how morphological data is typically partitioned (see also Equations 8 and 9 below). Characters are553

partitioned by maximum number of observed states, e.g., binary characters are all together in one554

partition and assigned to a rate matrix of size 2, characters with 3 states are assigned to a rate555

matrix of size 3 and so on. For unpartitioned models, however, all of the characters will be in a556

single Q-matrix that is the size of the maximum number of observed states across the whole data557

set. This means that for a given branch length v, under a model that assumes there are n states,558

for characters where we observe <n states (e.g., a binary character in a rate matrix of size 5), the559

probability of observing no change will be underestimated. Similarly, the probability of observing560

a given change will also be lower if there are more (unobserved) possible states. Both cases will561

result in shorter branch lengths. Partitioning morphological data by character state number is562

a practical approach, however, this requires making an assumption that we know the number of563

states for each character, when in reality we might not. For molecular data of course, this is not564

something we need to consider, as we know there are four nucleotides. By assuming we know the565

number of states, based on the number of observed states, we may be biasing our results. The566

effects of whether or not a data set is partitioned are considerable in terms of parameter estimates.567

As such, it is important to consider how the data is being partitioned and whether or not it makes568

biological sense for your data set to do so.569
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Agnolin Egi Bourdon Shoshani

Model CI RI CI RI CI RI CI RI

Mk 0 0.003 0 0.005 0.8895 0.812 0 0

Mk+G 0.001 0.004 0 0.006 0.898 0.8235 0 0

MkV 0 0 0 0.005 0.019 0.011 0 0

MkV+G 0 0 0 0.006 0.033 0.01 0 0

MkP+G 0.835 0.659 0.994 0.446 1 0.999 0.001 0

MkVP 0.105 0.041 0.992 0.483 0.859 0.655 0 0

MkVP+G 0.095 0.034 0.974 0.376 0.848 0.6245 0 0

Table 6: Posterior p-values from the empirical analyses. CI refers to consistency index and RI to retention

index. Values below 0.025 and above 0.975 are considered to be significant. This would indicate that the

simulated data is significantly different than the empirical data and that the model is not adequate for that

data set. The results here agree with those produced using effect sizes. See Table 4.

Here we focused exclusively on partitioning by character state. This is the most common partition-570

ing scheme and is even a default in some phylogenetic software programs, for example BEAST2571

(Bouckaert et al., 2019), and MrBayes (Ronquist et al., 2012). Yet this is not the only way that572

data could be partitioned. A researcher could partition the data based on different anatomical573

regions, or based on subsets of anatomical, ecological or behavioural traits. Thus one may need to574

decide between various partitioning schemes or no partitioning at all. To date, model selection is575

regarded as the gold standard for choosing between substitution models and partition schemes (Xie576

et al., 2011). Within a Bayesian framework, comparing marginal likelihoods has been shown to be577

effective for choosing between partition schemes with molecular data. Our results, however, show578

that for morphological data, model selection consistently selects a partitioned model, regardless579

of the model used to simulate the data. This result can be explained by taking into account how580

partitioning morphological data effects the likelihood calculation, importantly how it effects the581

transition probabilities and the stationary frequencies.582

For example, assume you have a tree consisting of two tips, one with discrete state 0 and the other583

with discrete states 1, as shown here.584

0 1

2v
585
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The tips share a common ancestor v time units in the past. The transition probability for this586

scenario under the Mk model is calculated as:587

p01(2v) =
1

k
− 1

k
e−2v (8)

where k is the number of states. Further, the likelihood of this data is:588

P (0, 1 | v) = 1

k
× 1

k

[
1− e−2v

]
(9)

Here k would be set to 2 as we observe two states. However, in cases where there are other589

traits, some of which have a higher maximum observed state, k would increase., e.g., as happens590

in unpartitioned inference. Higher values of k would result in a lower likelihood. This change591

in likelihood is a direct result of the partitioning scheme. When partitioning molecular data, we592

do not change the size of the Q-matrix (k), which is why we do not see the same effects on the593

likelihood. Figure 7 shows the impact on the log likelihood of changing the size of the Q-matrix594

(k) along different branch lengths (v) for these two tips.595
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Figure 7: Log likelihoods calculated for different sizes Q-matrices (k) along as a function of branch lengths

(v). The log likelihoods converge as v increases and the transition probability approaches the stationary

frequencies.

To empirically demonstrate the impact of of partitioning by state space on the likelihood we ran596

two experiments. First, using an empirical binary morphological matrix we calculated the marginal597

likelihood under an unpartitioned MkV+G model increasing the Q-matrix size from 2-5. Supple-598

mentary figure. S12 shows the decrease in marginal likelihood as we increase the number of transition599
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possibilities (Q-matrix size). We then wanted to investigate the impact of adding the “correct”600

partitions. Here, we used an empirical morphological matrix with a maximum of 6 states. We first601

calculated the marginal likelihood under an unpartitioned MkV+G model. We then created two602

partitions, one partition for all binary states and the second for all other states. Then we increased603

the number of partitions to three, with one for binary states, one for ternary states and kept all604

others in the third partition. This method of adding partitions was continued until there were 5605

in total and all states were in the appropriately sized Q-matrix. Fig. S11 shows that the marginal606

likelihood increases as partitions are added to the model. This is expected, given Equations 8607

and 9. This suggests that the results from model selection will not be indicative of any meaning-608

ful biological signal. For this reason, using model selection to differentiate between partitions for609

morphological data is not appropriate when the Q-matrix size varies.610

5.2 Test Statistics611

Overall, our results show that model adequacy, in particular PPS, currently offers the most effective612

way of identifying the most suitable model for morphological data. In addition, we demonstrate613

that PPS can reliably determine whether a given model is adequate or not. Understanding the614

absolute fit of available models can lend support to the use of model based phylogenetics for the615

analysis of morphological data. Here we carried out the first thorough investigation into the use of616

PPS with discrete morphological substitution models.617

One of the most important aspects of PPS to consider is the choice of test statistics. As this618

was the first systematic application of PPS to discrete character data, we first validated available619

test statistics using simulations. We explored the use of 6 test statistics and ultimately found620

consistency index and retention index to be the most informative. Neither of the inference based621

test statistics we explored, Robinson-Foulds or tree length, were able to give a clear indication of622

model adequacy. In this context, Robinson-Foulds distance is used to quantify variance across the623

posterior distribution of trees, therefore reflecting topological uncertainty. Given that morphological624

data sets tend to be small, the uncertainty in topology may be high, regardless of the model625

used for inference (Barido-Sottani et al., 2020). The uninformativeness of tree length is more626

puzzling, since competing models have a clear impact on the estimated tree length. Tree length has627

also previously been shown to be a poor test statistic for molecular data (Duchêne et al., 2018).628

Both Gower’s coefficient and generalized euclidean distance did show some potential value as test629
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statistics (Fig. 3), although the mixed test statistics, the consistency index and retention indices,630

were substantially better (Fig. 5, Tables 2-3). Having a test statistics specifically focused on the631

data would be favourable. Future studies could focus on alternative ways of including disparity632

metrics as test statistics. For example, we used the mean pairwise distance, perhaps looking at the633

sum of the variance or sum of the ranges could be more informative for model adequacy (Smith634

et al., 2023).635

5.3 Practical Considerations636

Importantly, our simulation study also allowed us to identify ways of reducing the overall computa-637

tional costs. As with many Bayesian analyses, there can be a high computational costs associated638

with running a PPS analysis. To mitigate any unnecessary computation, we assessed the maximum639

number of simulation replicates required to reach stability in the mean effect sizes. By doing so, we640

were able to ensure that we were not running unnecessary replicates. Further, the most expensive641

part of running a PPS analysis comes from the inference of the simulation replicates. Based on642

our simulation study, we did not find any benefit to including inference based test statistics (tree643

length and Robinson Foulds, Fig.4), meaning this expensive step can be skipped. Taking both of644

these findings into account, the time and memory required to run a PPS analysis becomes a lot645

smaller. For example, when compared to a stepping stone analysis, we found PPS to take half the646

time per model.647

From our simulation study, relying exclusively on the mixed test statistics, consistency index and648

retention index, we found that for all replicates, more than one model was adequate (Table 4).649

When interpreting these results it is important to remember simulated data is often “neater”650

than empirical data. In our simulation set up, all characters in a given matrix were simulated651

under the same model and the model extensions we used are not proposing conflicting statements652

about the underlying process. As such, it is not surprising that we found multiple models to be653

adequate for our simulated data. The choice of substitution model may have less impact on our654

simulated data, as the topology is easier to infer. For example, taking all simulation replicates655

of the simulated hyena data under an MkV+G model, the mean variance in tree length across656

the 7 different models was 0.74. In contrast, for the empirical data used as the basis for the657

simulations, the variance in tree length across models was 4.29 (Fig. 2B(i)). Our simulation study658

was valuable in determining which test statistics were sensitive to model choice under exemplar659
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conditions, but it is not alarming that differentiating between similar models, i.e., all partitioned660

models, was not possible. Future work could investigate model adequacy when data is simulated661

under more complex models, e.g., generating matrices that contain conflicting characters associated662

with different models or topologies (Sansom et al., 2017; Weisbecker et al., 2023).663

The results from our empirical data sets show a larger difference in the effect sizes for different664

models (Fig. 6). Based on our criteria of using the minimum and maximum effect sizes (after665

removing outliers) we determined that for 5 of data sets, at least one of the models tested here666

was adequate. This leaves the other 3 without a model being adequate. While initially this result667

may seem negative, in that no models were adequate, it is actually more reasonable than not. The668

expectation that all data sets would have a model available that fit would have been unrealistic,669

given the complexity of the data versus the simplicity of the models. Having a method which allows670

the researcher to detect the limits of available models is much more useful than picking the best671

out of a group of models without considering whether any of them fit. This result highlights the672

benefit of using such an approach. In the situation where no models are considered adequate for a673

data set, it would be up to the researcher to determine how to proceed. For instance, if the effect674

sizes are not markedly far from zero one may still opt to use a model, however, appreciating its675

limitations would be important before drawing any conclusions based on the inference results. It676

is also encouraging to see that the most complex model, the MkVP+G model, was identified as677

adequate for all 5 of the data sets for which we found an adequate model, indicating that we are678

moving in the right direction, in terms of our assumptions about the data generating processes.679

This strongly supports the above discussed rationale of partitioning the data based on character680

state, lending confidence to our biological interpretation of the evolution of the data.681

Here we have demonstrated how PPS outperforms a model selection approach in several respects.682

Making this a standard approach in palaebiology would be beneficial to the field in allowing for a683

better appreciation of how well our models are performing. In this study we explored the use of 7684

extensions of the Mk model, as they are the most commonly applied. This is not an exhaustive list685

of available models and there are a number of alternatives that further relax assumptions of the686

Mk model. For example, Wright et al. (2016) showed how relaxing the assumption of symmetrical687

probability of change between characters can improve model fit and phylogenetic estimation (Wright688

et al., 2016). Models including hidden states have also been proposed for morphological data689

(Tarasov, 2019). Such models can also be assessed using the workflow presented here, the only690
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requirements being that the model can be used for both simulation and inference. There are691

also a number of models of continuous character evolution that are often used in phylogenetic692

comparative methods (Álvarez-Carretero et al., 2022; Hansen et al., 2022). While we did not693

explore these models here, there has been work previously carried out demonstrating their use with694

model adequacy (Slater and Pennell, 2014). We focused exclusively on discrete data as it remains695

the most wildly used for tree inference. Our results also have implications for studies focused on696

divergence time estimation and ancestral state reconstruction. The same model validation can be697

applied before either of these types of analyses are carried out. Fossils are our only direct source of698

information about extinct taxa. Collection and character coding of fossils for phylogenetic analysis699

requires huge effort both in terms time and knowledge required. Ensuring that we are using the700

best available models can help provide confidence in our results and ask more complex questions701

with the data.702

6 Conclusions703

As model-based phylogenetic analysis gains prominence in paleobiology our study aimed to em-704

phasise the importance of model choice, by demonstrating how different substitution models can705

impact inference results. We show that substitution model choice impacts estimates of both lengths706

and topology. By providing a workflow for PPS to validate models adequacy, researchers can gain707

insights into absolute rather than relative model fit, and can have more confidence in their choice708

of substitution model going forward. We show that, despite the arguably simplistic assumptions709

of available morphological models, they are often able to approximate the underlying generating710

processes of discrete morphological data sets. However, we also show that no single model fits all711

data sets examined here, so we recommend researchers use model adequacy to assess model fit as712

a first step in phylogenetic inference. Given the substantial taxonomic effort invested into collect-713

ing these data sets, the importance of utilizing accurate models cannot be overstated. Our work714

reinforces the significance of these considerations, particularly as fossil data remains the primary715

avenue for gaining a comprehensive understanding of evolutionary history in deep time.716
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7 Supplementary Material717

All data sets used here were taken from previous studies and are available on GitHub718

(https://github.com/laumul/PPS Morphology). The associated RevBayes tutorial is available here719

(https://revbayes.github.io/tutorials/pps morpho/pps data morpho.html).720
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Figure S1: The relationship between the impact of different models on branch lengths and properties of the

data sets. Variance between models was calculated by subtracting the smallest tree length from the largest

tree length for each data set, irrespective of the model used for inference.
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Figure S2: Effect Sizes calculated for the Agnolin data set using the entire posterior distribution. While

the values are slightly different compared to those calculated using an MCMC tree, see fig. 6A, it determines

the same models being adequate. This calculation also increased computation time significantly.
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Figure S3: The cumulative means calculated for consistency index for one replicate of the simulated hyena

data sets under the MkV+G model. This serves as a representative of all other replicates and test statistics

which also showed the same pattern. The dashed line is at 500. After this point the line plateaus, representing

that the variation of mean effect size is constant after that point.
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Figure S4: The standard deviation around the cumulative mean for all replicates of the simulated hyena

MkV+G and test statistics (Gower’s coefficient, generalized euclidean distance, tree length, Robinson Foulds,

consistency index, and retention index). The dashed line is at 500. After this point the lines plateaus,

indicating that the mean will not change if more replicates are added.
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Figure S5: The standard deviation around the cumulative mean for all replicates of the simulated elephant

MkV+G and test statistics (Gower’s coefficient, generalized euclidean distance, tree length, Robinson Foulds,

consistency index, and retention index). The dashed line is at 500. After this point the lines plateaus,

indicating that the mean will not change if more replicates are added.
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Figure S6: Validation of the data based test statistics. Plots show the output from each simulated data

set with 20 replicates for each test statistic. The coloured points indicate the correct model, with the grey

horizontal bar marking the range of effect sizes calculated for the correct model. ■ = Mk, ✕ = Mk+G, ▲

= MkV, ◆ = MkV+G, ✳ = MkVP, ● = MkP+G, and + = MkVP+G

Figure S7: Validation of the inference based test statistics. Plots shows the output from each simulated

data set with 20 replicates for each test statistic. The coloured points indicate the correct model with the

grey horizontal bar marking the range of effect sizes values calculated for the correct model. ■ = Mk, ✕ =

Mk+G, ▲ = MkV, ◆ = MkV+G, ✳ = MkVP, ● = MkP+G, and + = MkVP+G
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Figure S8: Validation of the mixed test statistics. Plots shows the output from each simulated data set with

20 replicates for each test statistic. The coloured points indicate the correct model with the grey horizontal

bar marking the range of effect sizes calculated for the correct model. ■ = Mk, ✕ = Mk+G, ▲ = MkV, ◆

= MkV+G, ✳ = MkVP, ● = MkP+G, and + = MkVP+G

Figure S9: Results from four of the empirical data sets for consistency and retention index. The dashed

black line is at zero is there to help identify adequate models. The data sets are taken from Archibald et al.

(2001), Schoch and Sues (2013), Bloch et al. (2001), and Tomiya (2011) respectively
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Figure S10: The impact of the Q-matrix size on tree length. Using a binary alignment the Q-matrix was

increased from 2-5. The tree length becomes smaller as the Q-matrix increases in size.
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Figure S11: The effects of increasing partitions on the likelihood calculation. Using a data set with

a maximum state size 6 the number of partitions was increased from 1 to 5. Where 1 was completely

unpartitioned, 2 has one partitions for binary characters with all others in the other partition, 3 has one

partition for binary, one partition for tertiary and all others in the third partition, and so on until all

characters are in the correct partition with 5 partitions. As the number of partitions increase, and characters

are added to a Q-matrix of the correct size, the likelihood increases.
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Figure S12: The impact of increasing the size of the Q-matrix on the marginal likelihood calculation. Here

a binary alignment was used with stepping stone analysis to calculate the marginal likelihoods. A Q-matrix

of size 2-6 was used. As the Q-matrix increased in size, causing binary characters to be in a matrix that was

too large, the likelihood decreases.
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