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Abstract 22 

Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular 23 

heterogeneity at the single-cell resolution by classifying and characterizing cell types in 24 

multiple tissues and species. While several mouse retinal scRNA-seq reference datasets have 25 

been published, each dataset either has a relatively small number of cells or is focused on 26 

specific cell classes, and thus is suboptimal for assessing gene expression patterns across all 27 

retina types at the same time. To establish a unified and comprehensive reference for the 28 

mouse retina, we first generated the largest retinal scRNA-seq dataset to date, comprising 29 

approximately 190,000 single cells from C57BL/6J mouse whole retinas. This dataset was 30 

generated through the targeted enrichment of rare population cells via antibody-based 31 

magnetic cell sorting. By integrating this new dataset with public datasets, we conducted an 32 

integrated analysis to construct the Mouse Retina Cell Atlas (MRCA) for wild-type mice, which 33 

encompasses over 330,000 single cells. The MRCA characterizes 12 major classes and 138 cell 34 

types. It captured consensus cell type characterization from public datasets and identified 35 

additional new cell types. To facilitate the public use of the MRCA, we have deposited it in 36 

CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal for visualization and gene 37 

expression exploration. The comprehensive MRCA serves as an easy-to-use, one-stop data 38 

resource for the mouse retina communities. 39 

 40 

Introduction 41 

The retina is a highly heterogenous part of the eye that captures and processes the 42 

light signal 1-3. The processing is enabled through five classes of retinal neurons: 43 

photoreceptors (PR), horizonal cells (HC), bipolar cells (BC), amacrine cells (AC), and retinal 44 

ganglion cells (RGC), which form an intricate circuitry necessary for processing and relaying 45 

the light signal to the visual cortex. Non-neuronal cells such as Müller glia cells (MG), microglia, 46 

astrocytes, and retinal pigment epithelial cells (RPE) provide structural integrity of the tissue 47 

and carry out various supporting roles such as metabolism and neuronal homeostasis in the 48 

retinal microenvironment 4,5. Characterization of distinct retinal cell types is, therefore, critical 49 

in advancing our understanding of the fine intricacies of cell interactions involved in retinal 50 

biology and visual disorders. 51 
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Single cell technologies have opened a window into knowledge of cellular 52 

heterogeneity and intricate cell-to-cell interactions that cannot currently be resolved at the 53 

tissue level and have allowed exploration of individual cellular expression signatures, which 54 

can be mapped to unique molecular cell types 6,7. The resulting cell atlas can serve as a 55 

foundation for numerous applications, including the annotation of cell types in other scRNA-56 

seq experiments 8, the identification of differentially expressed targets for purification or 57 

manipulation 9, and the generation of marker panels useful for single-molecule imaging, 58 

including spatial profiling 10. While studies have demonstrated cell type heterogeneities in 59 

various tissues, several perplexing issues remain to be addressed in establishing a 60 

comprehensive cell atlas such as the agreement on cell type definitions across different 61 

experiments or whether enough cells have been profiled to exhaust all existing cell types. 62 

Integrated analyses of various scRNA-seq datasets from different studies, therefore, can 63 

provide an important insight that comprehensively addresses such issues. 64 

The mouse retina provides an important model for the study of neurobiology, with 65 

more than 130 distinct cell types characterized through previous scRNA-seq studies 7,9,11-15. 66 

However, the scRNA-seq datasets have been generated separately for BC 11, AC 12, and RGC 67 
9,13,14, with the largest dataset containing just under 36,000 cells, making it difficult to use in 68 

aggregate. Though most of these datasets are independently browsable on the Broad Single 69 

Cell Portal 16 and accessible through separate databases such as the Gene Expression Omnibus 70 

(GEO) repository, it can be challenging to assess gene expression patterns across all retinal cell 71 

types. Ensuring these atlases define a complete set of retinal cell types remains a major 72 

challenge that can only be addressed by powering studies to sufficiently profile the rarest 73 

retinal cell types. Here, we generated scRNA-seq data of over 189,000 cells in the mouse retina 74 

to complement 141,000 cells from six publicly available scRNA-seq datasets 9,11-15, creating a 75 

unified cell atlas of the wild-type mouse retina containing over 330,000 cells. Our integrated 76 

analysis presents a comprehensive characterization of all major cell classes in the retina, 77 

including non-neuronal types, as well as a consensus cell type annotation of BCs, ACs, and 78 

RGCs. Accessible, interactive web browsers have facilitated easy visualization of atlas 79 

characterizations and exploration of gene expression in the MRCA. The comprehensive unified 80 

MRCA will serve as a valuable resource for the community. 81 

 82 

Results 83 

 84 

Generation of scRNA-seq dataset for wild-type mouse retina 85 

To establish a comprehensive atlas of the mouse retina, we performed scRNA-seq 86 

profiling with C57BL/6J mouse retina tissue samples, aged from P14 to 12 months, for over 87 

189,000 cells (Fig. 1a and Methods). As summarized in Table 1, six samples of varying ages 88 

were dissociated retinal cells without enrichment, and ten samples of eight weeks old were 89 

enriched using surface markers CD73 and CD90.1 to enrich for rare cell population. Depletion 90 

of rod photoreceptors was achieved by removing cells positive for CD73 using anti-CD73-PE 91 

antibody and anti-PE magnetic beads, which primarily label photoreceptor precursors and 92 

mature rod photoreceptors in mice 12,17. To enrich ACs and RGCs, CD90.1 positive cells are 93 

selected 18,19. 94 

 95 

Integration of scRNA-seq datasets for the mouse retina 96 

To compile the most comprehensive scRNA-seq data for the MRCA, we curated and 97 

obtained six publicly available scRNA-seq datasets, each enriched for a specific cell type using 98 

transgenic labels or immunolabeling combined with FACS. Together, they consisted of over 99 

141,000 cells. To consolidate the transcript annotation between different datasets, we used 100 

the Cell Ranger (version 7.0.1) pipeline to align raw FASTQ files from four datasets obtained 101 

from GEO and Sequence Read Archive (SRA) repositories. Count matrices of these datasets 102 
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were generated using the mm10 reference genome obtained from 10x Genomics 103 

(https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-2020-A.tar.gz). Five of the 104 

published studies were sequenced on the 10x Genomics 39 platform, and one (Shekhar et al.) 105 

was generated using the Drop-seq protocol 7. The Drop-seq data were aligned against mm10 106 

and processed into count matrices using the Drop-seq pipeline 107 

(https://github.com/broadinstitute/Drop-seq). The cell type labels of previous annotations 108 

were obtained from the Broad Single Cell Portal website 16. To remove technical variations 109 

introduced across different experiments or studies, scVI 20 was applied to integrate all newly 110 

generated and public datasets, generating a low-dimensional representation (Fig. 1b and 111 

Methods). Putative cell doublets were further removed using the deep learning doublet 112 

identification method Solo 21 (Supplementary Fig. 1a). 113 

In the integrated data, the public dataset accounts for 43%, while the newly generated 114 

data accounts for the remaining 57% (Fig. 1c). Within the integrated UMAP, 97 clusters were 115 

identified (Supplementary Fig. 1b). These clusters were annotated as one of 12 major classes, 116 

including PR, BC, AC, RGC, HC, MG, RPE, astrocyte, microglial, endothelial, and pericyte, using 117 

known marker gene expression 22,23 (Supplementary Fig. 1c). Cells from non-enriched retina 118 

samples showed a distribution across major classes at an expected proportion, with rod 119 

photoreceptors as the biggest proportion 2. In contrast, enriched samples from both newly 120 

generated data and previous studies showed the expected skewed distribution of cell types in 121 

BCs, ACs, and RGCs (Supplementary Fig. 1d). The two newly generated samples with 122 

enrichment methods, CD73- and CD90.1+ samples, were primarily composed of BCs and ACs, 123 

respectively, contributing to 83% (122.6K out of 147.7K) and 25% (11.2K out of 44K) of all BCs 124 

and ACs in the integrated data, respectively. 125 

Previous studies have identified 15 distinct types of BCs, 64 ACs, and 46 RGCs 9,11,12. To 126 

determine the consensus annotation of neuronal types for these subclasses, we performed 127 

clustering analysis at higher resolution within individual BC, AC, and RGC classes (Fig. 1d and 128 

Fig. 1e). 129 

 130 

15 types of bipolar cells 131 

A total of 147,700 BCs were identified in the integrated datasets, with 122,600 cells 132 

from our newly generated CD73- sample and 19,800 cells from the Shekhar et al. study 11. The 133 

integrated analysis identified 15 BC clusters, corresponding to previously annotated BC types 134 

(Fig. 2a-b and Methods). The 15 clusters of integrated BCs showed a generally even 135 

distribution of cells from various samples, with the exception of two types, BC1A and BC1B, 136 

where more than 90% of populations came from the study by Shekhar et al. possibly due to 137 

differences in enrichment methods (Fig. 2a, 2d and Supplementary Fig. 2d-e). The final 138 

annotation of BCs revealed consistent expression profiles of previously identified BC type 139 

marker genes 11,24 (Fig. 2b-c). With a significant addition of BCs in the MRCA, clear separation 140 

of BC8 and BC9 is observed, which were merged but demonstrated substructure in the 141 

Shekhar et al. dataset (Fig. 2a-b). The separate clusters showed proper expression patterns of 142 

known markers like Cpen9 in BC9 11,25. In addition, additional BC type markers were identified 143 

via differential gene expression analysis, which showed more specific expressions than 144 

previous marker genes, such as Tafa4 in BC4, Ptprt in BC5A, and Gm13986 in BC8 (Fig. 2e). 145 

Interestingly, despite an almost ten-fold increase in the number of BCs in our analysis, we did 146 

not observe any sign of a novel cell type, which suggests that the mature mouse retina likely 147 

only contains 15 BC types. 148 

 149 

Amacrine cells 150 

Through CD90.1 positive enrichment, the newly generated samples contributed 151 

11,200 ACs, in addition to the 27,600 ACs from Yan et al. 12 in the integrated dataset 152 

(Supplementary Fig. 3a-b). Utilizing the collected data, the integrated analysis annotated 63 153 

AC types, revealing consistent expression profiles of known marker genes (Fig. 3a-b and 154 
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Methods). While a minimal batch effect in each cluster was observed across different sample 155 

sources, CD90.1+ and Ma et al. RGC samples showed biased enrichment towards GABAergic 156 

types except for AC4, AC10, and AC28 (Supplementary Fig. 4e). The bias in cell type population 157 

appears to be directly tied to the preferential expression of Thy1 (CD90) in sub-populations of 158 

ACs (Supplementary Fig. 4d). In particular, Thy1 is characterized as being expressed primarily 159 

in GABAergic AC types 26. 160 

The integrated analysis of ACs demonstrated that four types, AC18, AC20, AC36, and 161 

AC45, have been previously under-clustered, each splitting into two clusters in the integrated 162 

UMAP (Fig. 3c). AC18, which expresses Cck neuropeptide 27, is split into C24 and C27 in our 163 

clustering and has been labeled as AC18A and AC18B in the final annotation (Fig. 3d). 164 

Interestingly, the cell type marker Cck is highly expressed in AC18A, but not in AC18B 165 

(Supplementary Fig. 5a). AC20, which does not contain any known marker, is divided into C42 166 

and C60 (AC20A and AC20B), with its marker Sema3a also expressed highly in AC20A, but not 167 

in AC20B (Supplementary Fig. 5b). A non-GABAergic non-glycinergic (nGnG) type 4, AC36, is 168 

split into C58 and C61 (AC36A and AC36B), consistent with previous finding of two 169 

morphologically distinct AC36 types in the INL and displaced in the GCL, stratifying to S3 and 170 

S5 sublaminae of the IPL 10,28. By examining the list of differentially expressed genes (DEG) 171 

between the two broadly isolated types 28, we annotated AC36A as the S3 type by the 172 

increased markers such as Gbx2, Tac1, and Pcdh8 and AC36B as the S5 type by Gad1, Gad2, 173 

and Id4. (Fig. 3e). Lastly, a catecholaminergic type 1 cell type 29, AC45, is split into C64 and C66 174 

(AC45A and AC45B). The expression of Chl1, which distinguishes catecholaminergic type 1 175 

from type 2, was increased specifically in AC45A. The DEG analysis between the clusters of the 176 

previously under-clustered cell type revealed many genes enriched specifically in each cluster, 177 

with Cck, Sema3a, Chl1 being one of the top-ranked genes in AC18A, AC20A and AC45A, 178 

respectively (Supplementary Fig. 5b). Out of the four under-clustered cell types, only one, 179 

AC20, showed a biased sample source from Yan et al. data. Furthermore, while cells from Yan 180 

et al. were distributed across both AC45A and AC45B, AC45B contains an increased number of 181 

cells from the newly generated CD90.1 sample (Supplementary Fig. 4e). 182 

As a result, we have identified 67 AC types that can be grouped into four AC 183 

subclasses: 49 GABAergic, 10 Glycinergic, 3 Both, and 5 nGnG ACs. Within the final dataset, 184 

GABAergic ACs make up 67.7% of the total AC population, followed by Glycinergic ACs at 185 

22.5%, GABA/Glycinergic ACs at 1%, and nGnG ACs at 8.7%. However, these distributions are 186 

likely biased towards GABAergic ACs due to the inclusion of cells from CD90.1+ and CD90.2+ 187 

enriched collections. 188 

 189 

Retinal ganglion cells 190 

The integrated data contains 77,900 RGCs, primarily from the three publicly available 191 

datasets. The integration of the collected data identified all 46 previously identified RGC types 192 

(Fig. 4a and Methods). Examination of known cell type markers in the integrated data with the 193 

final annotation showed proper expression profiles in corresponding types 9,18,30 (Fig. 4b). 194 

Although no novel cluster was identified, our integrated analysis of RGCs similarly identified 195 

the division of two cell types, 16_ooDS_DV (ON-OFF direction-selective dorsal and ventral) and 196 

18_Novel, into distinct clusters (Fig. 4c). The 16_ooDS_DV, which contains both types with 197 

dorsal and ventral orientation selective functional roles 31,32, was split into C31 and C39, similar 198 

to the supervised clustering analysis done in the Tran et al. 9, Jacobi et al. 13, and Ma et al. 14 199 

studies. Examination of the marker genes Calb1 and Calb2 demonstrated that C39 is the 200 

ventral selective type with high expression of Calb2, and C31 is the dorsal selective type with 201 

Calb1 expression 9. In addition, the 18_Novel type could also be split into C36 and C40. 202 

Interestingly, while C40 contained only cells with 18_Novel labels, C36 contained a mixture of 203 

18_Novel and 44_Novel labels (Supplementary Fig. 7a-c). The same annotation improvements 204 

were also observed in Ma et al.14. Examination of 18_Novel markers Pcdh20 and 205 

4833424E24Rik revealed increased expression of both markers in C40, yet Pcdh20 expression 206 
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was absent in C36 (Supplementary Fig. 7e). The DEG analysis further demonstrated many 207 

genes selectively expressed in these two clusters (Supplementary Fig. 7d). In total, we have 208 

identified 47 RGC types in the MRCA (Fig. 4d). 209 

 210 

Non-neuronal retinal cells 211 

To include the comprehensive set of cell types in the retina in the MRCA, 18,500 non-212 

neuronal cells were integrated for six non-neuronal cell types, including astrocyte, endothelial, 213 

MG, microglia, pericyte, and RPE (Supplementary Fig. 8a and Fig. 1e). These cells are evenly 214 

distributed in the collected datasets, except for astrocytes solely from the Benhar et al. dataset 215 
15 (Supplementary Fig. 8b). After being combined with neuronal retinal cells, the MRCA 216 

consisted of 12 major classes and 138 cell types. 217 

 218 

Data dissemination at accessible interactive web browsers 219 

The MRCA has been made available for public access using the CELLxGENE platform 220 

(https://cellxgene.cziscience.com/collections/a0c84e3f-a5ca-4481-b3a5-ccfda0a81ecc and 221 

https://mouseatlas.research.bcm.edu/) (Fig. 5a-c). The MRCA is also accessible on UCSC Cell 222 

Browser (https://retina.cells.ucsc.edu) and the Broad Single Cell Portal. Pre-computed gene 223 

expression profiles of all cells included in the integrated analysis can be examined and 224 

visualized. Users also have access to the metadata information, including major class and cell 225 

type labels in the database. The accessible interactive web browsers of the MRCA can aid in 226 

easy access to the transcriptome profiles of any given mouse retinal cells without the 227 

bioinformatic burden and provides a valuable tool for the vision community. 228 

 229 

Discussion 230 

As part of the central nervous system, the retina contains numerous neuronal types 231 

with distinct morphologies and functional roles 1,33. The heterogenous cell type composition 232 

and the stereotypically patterned structure of the tissue makes the retina an ideal model for 233 

single-cell sequencing studies in establishing the single-cell atlas 7,22,34. Although several 234 

scRNA-seq studies focusing on the retina tissue have been done previously 7,9,11-15, each 235 

available dataset contains single-cell profiles primarily of one or a few retinal cell classes with 236 

a limited number of cells. Furthermore, no systematic evaluation or comparison of the 237 

datasets has been done yet to cross-validate the cell type transcriptomes and address 238 

annotation consensus. 239 

In this study, we generated scRNA-seq profiles of 189,000 retinal cells from 16 scRNA-240 

seq experiments to perform an integrated analysis with 141,000 retinal cells from six 241 

previously reported datasets. Six out of the newly generated collections were done using 242 

endogenous retina tissues with simple dissociation and without enrichment. Photoreceptors 243 

constitute over 70% of the cell proportion in the retina 2,35, and there are only two subclasses 244 

of photoreceptors, which are well studied. Therefore, we utilized two methods for rare 245 

population cell type enrichment. The first way was depleting the rod photoreceptors. To 246 

achieve this goal, the rod photoreceptor cell surface marker, CD73, was used in seven of the 247 

16 experiments. Though this marker is generally considered as a specific marker for rod 248 

photoreceptors, it is also expressed on the surface of a subset of ACs, HCs, and MGs. Depletion 249 

increased the enrichment of BCs from 12% to 90%. Furthermore, CD90.1 was used to enrich 250 

certain retinal neurons such as ACs and RGCs in three experiments. Enrichment of retinal cells 251 

with CD90.1 also showed an increased number of ACs with some RGCs. 252 

One of the challenges in integrating and comparing publicly available data is that they 253 

are generated using different single-cell experimental platforms and analysis pipelines 36,37. 254 

One public data enriched with BCs from Shekhar et al. 11 was generated using the Drop-seq 7 255 

technology and was processed separately using the Cell Ranger transcript annotation. The four 256 

other sources of publicly available data were done using the 10x Genomics platform. A minimal 257 

batch effect across data sources was observed in the integrated analysis, with the expected 258 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2024. ; https://doi.org/10.1101/2024.01.24.577060doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577060
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

distribution and clustering of major classes from corresponding sources. While the newly 259 

generated data without enrichment were primarily composed of rod photoreceptors, cells 260 

from the newly generated data with enrichment and publicly available data showed a proper 261 

distribution across BCs, AC, and RGCs. 262 

Integrated analysis of various scRNA-seq datasets allowed us to examine AC, BC, and 263 

RGC types, which together comprise over 100 distinct cell types. Through the integrated 264 

analysis, we addressed two key questions on the neuronal cell types in the retina: to confirm 265 

the consensus cell type signatures and to examine whether the total number of cell types of 266 

retinal neurons is exhausted. Following the initial integrated analysis to identify major classes, 267 

subsets of each major class were subjected to further integration and two-level clustering to 268 

annotate all previously identified cell types, which showed an even distribution of data sources 269 

in general. The cell type annotation was achieved through examining known marker gene 270 

expressions and previous annotation labels when available. Although our newly generated 271 

data resulted in a significantly increased number of cells in the integrated analysis of BCs, ACs, 272 

and RGCs, we did not observe significant increases of novel cluster. As such, the previously 273 

reported set of BC types in the adult mouse retina is likely complete, supported by the more 274 

than 7-fold increase in BCs in the integrated data. On the other hand, our integrated analysis 275 

updates annotations of AC and RGC types. In particular, we observed several instances of 276 

previously under-clustered AC and RGC types splitting into distinct clusters in our analysis. For 277 

example, we confirmed the separation of 16_ooDS_DV types into two distinct clusters in the 278 

integrated data of RGCs, which was separated into dorsal and ventral selective types only 279 

through supervised clustering in the Tran et al. study 9 and later confirmed in Jacobi et al. 13 280 

study. Furthermore, we identified the separation of AC36 and assigned its clusters to S3 and 281 

S5, stratifying Gbx2+ AC types28, which strengthens our analysis by connecting to biologically 282 

distinct cell types. The separation of previously merged cell types into distinct clusters can be 283 

attributed to the increased number of cells in our integrated analysis. This suggests that, while 284 

our AC and RGC type annotations are comprehensive, they will likely continue to be refined 285 

by future studies. 286 

Finally, we have deposited the MRCA into interactive web browsers that are user-287 

friendly and publicly accessible. This allows for the examination of raw and normalized gene 288 

expression profiles of all retinal cells, along with their metadata such as major class and cell 289 

type annotation. The MRCA not only provides the consensus signature of mouse retinal cell 290 

types by comparing multiple scRNA-seq data but also alleviates the bioinformatics burden for 291 

many vision researchers who wish to examine transcriptome signatures in any cell type of their 292 

interest. 293 

 294 

Methods 295 

 296 

Generation of scRNA-seq datasets of the mouse retina 297 

We have generated 16 scRNA-seq samples of the mouse C57BL/6J retina (Table 1). All 298 

mice were male. All procedures were approved by the Institutional Animal Care and Use 299 

Committee (IACUC) and followed the Association for Research in Vision and Ophthalmology 300 

(ARVO) Statements for the Use of Animals in Ophthalmic and Vision Research, in addition to 301 

the guidelines for laboratory animal experiments (Institute of Laboratory Animal Resources, 302 

Public Health Service Policy on Humane Care and Use of Laboratory Animals). After dissection, 303 

retinas were dissociated into single cells using papain-based enzyme following the published 304 

protocol38. With activated 45U of papain (Worthington, Cat. #LS003126) solution (1mg L-305 

Cystine, Sigma; 8 KU of DNase I, Affymetrix; in 5 ml DPBS), retina was incubated at 37C for 306 

~20min, followed by the replacement of buffer with 2ml ovomucoid solution (15 mg 307 

ovomucoid, Worthington Biochemical; 15 mg BSA Thermo Fisher Scientific; in 10 ml DPBS) and 308 

500ul deactivated FBS. Following the enzymatic digestion step, the retina tissues were 309 

carefully triturated and filtered using 20 um plastic meshes. Trituration steps were repeated 310 
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with additional 1ml ovomucoid solution until no tissue was visible. Single-cell suspension was 311 

spun down at 300g, 4C for 10 min and used in the next step. 312 

To deplete the photoreceptors, cells were resuspended in 0.5% BSA and stained with 313 

CD73-PE antibody (MACS, Catalog: 130-102-616) for 10min at 4C (for each million cells, add 314 

98ul 0.5% BSA with 2ul CD73-PE antibody) and washed with 35 ml 0.5% BSA at 4C for 10min. 315 

After being stained with Anti-PE microbeads (MACS, Catalog: 130-105-639) (80ul 0.5% BSA and 316 

20ul microbeads per each million cells) for 15 min at 4C, cells were washed and resuspended 317 

in 0.5% BSA. CD73 negative neuronal cells were enriched by autoMACS Pro Separator (Miltenyi 318 

Biotec) DEPLETES mode. Similarly, CD90.1 positive neuronal cells were enriched with CD90.1 319 

microbeads (MACS, LOT: 130-094-523; 90ul 0.5% BSA and 10ul CD90.1 microbeads per each 320 

million cells) and autoMACS POSSEL-S mode. Cells viability was 87%-94% when checked using 321 

DAPI staining under microscope. 322 

Guided by 10X manufacturer9s protocols (https://www.10xgenomics.com), single-cell 323 

cDNA library was prepared and sequenced. Briefly, single-cell suspension was loaded on a 324 

Chromium controller to obtain single cell GEMS (Gel Beads-In-Emulsions) for the reaction. The 325 

library was prepared with Chromium Next GEM single cell 39 kit V2 (10X Genomics) and 326 

sequenced on Illumina Novaseq 6000 (https://www.illumina.com). Our newly generated 327 

single cell data was sequenced at the Single Cell Genomics Core at Baylor College of Medicine. 328 

 329 

Data collection and preprocessing of the mouse retinal scRNA-seq 330 

To recover high-quality cells, data samples were processed through a quality control 331 

pipeline (https://github.com/lijinbio/cellqc). In brief, raw sequencing reads of 10x Genomics 332 

were first analyzed by the 10x Genomics Cell Ranger pipeline (version 7.0.1) 39 using the mm10 333 

genome reference obtained from 10x Genomics (https://cf.10xgenomics.com/supp/cell-334 

exp/refdata-gex-mm10-2020-A.tar.gz). Potential empty droplets in the filtered feature count 335 

matrices were further detected by dropkick 40. Background transcripts contamination in the 336 

retained true cells were eliminated using SoupX 41. DoubletFinder then was utilized to estimate 337 

and exclude potential doublets with high proportions of simulated artificial doublets 42. In the 338 

resulting singlets, we extracted high-feature cells that contain g 300  features, g 500 339 

transcript counts, and f10% of reads mapped to mitochondrial genes.  340 

In addition to our own data, we have incorporated well-characterized public datasets. 341 

Specifically, we have integrated cell-type-enhanced profiling data for amacrine cells 342 

(accession: GSE149715) 12, bipolar cells (accession: GSE81904) 11, and retinal ganglion cells 343 

(accession: GSE133382) 9. Furthermore, we have included four samples from wild-type mice 344 

were also collected from GSE201254 to account for retinal ganglion cells 13. To account for 345 

non-neuronal retinal cells, nine control samples were collected from GSE199317 15. These cell-346 

type specific single-cell datasets form the basis for subclass clustering in our mouse retina 347 

reference. To generate the updated transcriptome measurement of the GSE81904 from 348 

Shekhar et al., which was derived from the Drop-seq protocol, we applied the Drop-seq 349 

pipeline using the source code available at https://github.com/broadinstitute/Drop-seq. To 350 

ensure consistent gene feature annotation with the Cell Ranger pipeline, we used the gene 351 

annotation GTF file from the 10x Genomics mm10 genome reference package during the 352 

alignment of Drop-seq reads. In addition, GSE149715, GSE133382, GSE201254, and 353 

GSE199317 were also processed from scratch using raw sequencing reads using the 10x 354 

Genomics Cell Ranger pipeline (version 7.0.1) 39. To incorporate the high-quality cell type 355 

annotation of four public datasets, released count matrices and cell labeling were downloaded 356 

for meta-analysis. To further eliminate potential multiples in the integrated analysis, Solo 357 

doublet detection algorithm was used to identify potential multiples. 358 

 359 

Data integration of scRNA-seq datasets 360 

To eliminate technical variations in samples derived from different studies and 361 

experiments, 52 samples were integrated to remove the batch effect by scVI 43. scVI explicitly 362 
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formulates the batch effect as a latent variable in the deep generative model of observed 363 

expressions. Normalized expression was applied to detect highly variable genes (HVGs) using 364 

the Seurat algorithm (flavor: seurat). The <sampleID= was used as the batch key for calculating 365 

HVGs and the batch variable in the scVI modeling. The scVI model utilized 2 hidden layers 366 

(n_layers: 2) and a 30-dimensional latent space (n_latent: 30). The trained low-dimensional 367 

representation was used for cluster detection with the Leiden algorithm 44. UMAP of low-368 

dimensional visualization was generated by the Scanpy package 45. 369 

 370 

Cell clustering and cell type annotation 371 

To annotate major classes of cell clusters, we incorporated well-annotated cell labels 372 

released from public datasets, i.e., Yan et al. for ACs, Shekhar et al. for BCs, and Tran et al. and 373 

Jacobi et al. for RGCs. Cells from Yan et al. were annotated into 63 AC types. Cells from Shekhar 374 

et al. were 15 BC types showing in 14 clusters with small numbers of cells annotated as ACs, 375 

rod, and cone. Tran et al. cells were identified as 45 RGC types. The cell type labels of these 376 

well-annotated cells are used to annotate integrated cell clusters. To annotate isolated cell 377 

clusters that were isolated from existing cell labels of the public datasets, cluster-specific 378 

markers were examined from the top ranked genes generated by the Wilcoxon rank-sum test 379 

using the rank_genes_groups() function in the Scanpy package 45. 380 

To annotate subclass BC, AC, and RGC, subclass-specific cells were isolated and 381 

integrated using scVI. The generated low-dimensional embeddings were used to detect 382 

clusters using the Leiden algorithm. To determine the optimal number of clusters for 383 

subclasses, a two-level clustering approach was applied. In the first level of clustering, various 384 

resolutions were tested to achieve clustering without over-clustering in UMAP visualization. 385 

The second-level clustering refines the clusters from the first-level clusters by testing various 386 

resolutions to achieve optimal clustering without over-clustering on UMAP again. In the first-387 

level, Leiden clusters containing the majority of one type were annotated. When Leiden 388 

clusters contained more than one types, cells within the clusters were isolated. Within each 389 

subset of isolated cells, Leiden clusters were calculated again using the same low-dimensional 390 

embedding. The second-level Leiden clusters were examined for their cell label to determine 391 

their cell types. 392 

To construct the BC atlas, data samples for BCs were integrated using scVI. Initially, 33 393 

clusters were identified, of which 30 could be matched and merged to individual BC types by 394 

examining previously generated cell labels and their known marker gene expression 11,24, while 395 

the remaining 3 clusters (C30, C31, and C32) were excluded from the analysis as they 396 

contained non-BCs from previous annotation labels or had high UMI counts (Fig. 2a and 397 

Supplementary Fig. 2a-c). Consequently, 15 BC types were identified and annotated. 398 

To construct the AC atlas, the data integration analysis for ACs using scVI identified a 399 

total of 71 clusters, of which 62 clusters could be matched and merged to 49 individual AC 400 

types via previous annotation labels and known marker expression. However, 8 clusters were 401 

over-clustered that contained two or more previous AC type labels, and one cluster (C70) was 402 

excluded from the AC reference due to non-AC cells (Supplementary Fig. 3c-d). To further 403 

address the 8 remaining over-clustered clusters (Supplementary Fig. 4a), we utilized a two-404 

level annotation approach. This involved isolating cells from each cluster and refining the 405 

clustering. The two-level annotation allowed the separation of the remaining 14 types: AC11, 406 

AC16, AC29, AC42, AC47, AC50, AC53, AC54, AC55, AC56, AC60, AC61, AC62, and AC63 407 

(Supplementary Fig. 4a-c). This revealed clusters that primarily consisted of RGCs, which have 408 

been removed in the integrated AC map (Supplementary Fig. 4c). As a result, 63 AC types were 409 

identified and annotated. 410 

Three AC types, AC16, AC53, and AC62, were identified as dual types expressing both 411 

canonical GABAergic and glycinergic receptors in the study by Yan et al. AC16, however, was 412 

shown as a suspected doublet in their study, alongside AC60. Similarly, our UMAP showed 413 

loose cluster formation of AC16 and AC60 in proximity to each other, with relatively high UMI 414 
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counts (Fig. 3a and Supplementary Fig. 4e). In addition, our integrated UMAP showed AC53 415 

cells spread out in the middle of AC6 cells. Although the AC53 cluster was resolved in the 416 

second-level annotation, the loose clustering of AC53 cells is quite apparent. The third dual 417 

type, AC62, was also under-clustered and merged with AC42 and AC55. While AC62 was 418 

resolved in the second-level annotation, AC62 also appears near its neighboring cluster, AC42, 419 

in the UMAP. With very few cells being annotated as dual types in CD90.1 and Ma et al. 420 

samples, which express high levels of Thy1 (data not shown), further validations of the dual 421 

types are required. 422 

To construct the RGC atlas in the MRCA, the integrated analysis identified 54 clusters 423 

with an even distribution of cells from different data sources in most clusters (Supplementary 424 

Fig. 6a-d). Out of these clusters, 48 can be mapped and merged into 39 individual RGC types 425 

previously identified using marker gene expression and previous annotation labels 426 

(Supplementary Fig. 6a-b), while five clusters were over-clustered that contained multiple 427 

previous RGC types, and one cluster (C8) contained a mixture of several RGC type labels with 428 

high UMIs and was excluded from the downstream analysis as multiplets. To annotate the 429 

remaining seven types found in the five clusters with multiple labels, the second-level 430 

annotation was performed, which resulted in a clear separation of all 46 previously identified 431 

RGC types (Fig. 4a and Supplementary Fig.7a-c). 432 

 433 

Differentially expressed gene analysis 434 

To identify genes that are differentially expressed between cell types, we generated 435 

pseudo-bulk transcriptome of each annotated cell type in individual sample id. We used 436 

pyDESEQ2 46 to compare two clusters or types using the Wald test and identified genes 437 

specifically expressed in each cluster or type. Differentially expressed genes are identified 438 

under q-value < 0.05. The Wald statistics (log2FoldChange divided by lfcSE) was used to rank 439 

and select the top 10 genes expressed in each type. 440 

 441 

Data Availability 442 

The raw sequencing reads of sixteen newly generated samples have been deposited 443 

at NCBI GEO under the accession GSE243413. The landing page for the MRCA data resources 444 

is accessible at https://rchenlab.github.io/resources/mouse-atlas.html. Processed cell-by-445 

gene count matrices, along with cell type annotations, are available on Zenodo. Furthermore, 446 

both raw and normalized count matrices and cell type annotations are publicly accessible on 447 

the CELLxGENE data collection at https://cellxgene.cziscience.com/collections/a0c84e3f-448 

a5ca-4481-b3a5-ccfda0a81ecc. The MRCA is also hosted on the Baylor College of Medicine 449 

data portal at https://mouseatlas.research.bcm.edu. Additionally, access to the MRCA is 450 

provided on the UCSC Cell Browser at https://retina.cells.ucsc.edu and the Broad Single Cell 451 

Portal. 452 

 453 

Code Availability 454 

All code used for the MRCA project can be found in the MRCA reproducibility GitHub 455 

repository (https://github.com/RCHENLAB/MouseRetinaAtlas_manuscript). The pipeline to 456 

process the unpublished and collected public datasets is accessible at 457 

https://github.com/lijinbio/cellqc. 458 
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Figure 1. Overview of single cell atlas of the mouse retina

(a) The workflow for generating unpublished scRNA-seq datasets. The data generation process involved 

using mice aged from P14 to 12 months. Following retina dissection and cell dissociation, single cells were 

enriched using autoMACS with Anti-CE73-PE antibodies or Anti-CD90.1 beads for specific amacrine, bipolar, 

and retinal ganglion cells. Subsequently, 10X single-cell RNA sequencing was performed on both the 

unenriched and enriched single cells. The retained single cells were then utilized in downstream atlas 

construction. (b) The integrated analysis workflow for constructing the MRCA. To construct a 

comprehensive unified single-cell reference of the mouse retina, we generated 16 unpublished scRNA-seq 

samples of the mouse retina and incorporated four curated public datasets to enhance specific amacrine, 

bipolar and retinal ganglion cells. The collected data were processed using the Cell Ranger and CellQC 

pipeline to produce feature count matrices. Feature counts were then processed to remove estimated 

empty droplets, ambient RNA, and doublets. The retained cells were integrated using scVI to eliminate 

batch effects across samples. The trained low-dimensional embeddings were used to calculate cell 

dissimilarities and identify clustering through a two-level clustering approach. Major class and subclass cell 

types were annotated using canonical marker genes and public labeling. To facilitate user-friendly access 

and exploration, the MRCA was deployed on accessible interactive web browsers, including CELLxGENE, 

UCSC Cell Browser, and Single Cell Portal. (c) Pie chart displaying the percentage of cells contributed by each 

dataset used in the MRCA. (d) UMAP visualization of the MRCA colored by major classes. (e) Dot plot 

illustrating the expression of canonical markers for major classes.
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Figure 2. Bipolar cells
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Figure 2. Bipolar cells

(a) UMAP visualization of BCs colored by public cell type labels from Shekhar et al. 2016. The newly 

discovered cells without public labeling are colored in gray. (b) BCs colored by the 15 annotated annotated 

cell types. (c) Dot plot of BC type marker gene expression in the 15 types. (d) Pie chart showing the 

percentage each data source making up BC1A and BC1B population. (e) Dot plot of new markers for three 

BC types: BC4, BC5A, and BC8. The three new markers exhibit more exclusive expression patterns. 
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Figure 3. Amacrine cells
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Figure 3. Amacrine cells

(a) UMAP visualization of AC cells colored by the annotated types. (b) Dot plot of canonical marker gene 

expression in AC types. (c) Four previously under-clustered AC types, i.e., AC18, AC20, AC36, and AC45, are 

split into two distinct clusters at a high resolution of clustering. (d) Visualization of AC cells colored by AC 

types at a high clustering resolution. (e) Dot plot of DEGs expressed in two split clusters for AC_36, 

stratifying Gbx2+ AC types in AC_36. 
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Figure 4. Retinal ganglion cells
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Figure 4. Retinal ganglion cells

(a) UMAP visualization of RGC cells colored by the annotated types. (b) Dot plot of canonical marker gene 

expression in RGC types. (c) Two previously under-clustered RGC types, i.e., 16_ooDS_DV and 18_Novel, are 

split into two distinct clusters at a high resolution of clustering. Dot plot of Calb1 and Calb2 in the two split 

clusters of 16_ooDS_DV. (d) Visualization of RGC cells colored by RGC types at a high clustering resolution.
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Figure 5. Visualization of MRCA in accessible interactive browsers
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Figure 5. Visualization of MRCA in accessible interactive browsers

(a) Visualization of the MRCA in the CELLxGENE browser. The homepage depicts three panels to explore the 

MRCA. The left panel contains the pre-computed features facilitating the selection of cells by interested 

categories. The middle panel is the UMAP of the MRCA, colored by the annotated major classes. The right 

panel allows input of quick gene symbols and gene sets. (b) Visualization of the subclass RGC atlas in the 

CELLxGENE browser. The middle panel depicts RGCs colored by the reclassified names selected in the left 

panel. (c) Visualization of gene expression for a BC9 marker, Cpne9, in the BC atlas. The left subfigure shows 

the BC types, and the right subfigure highlights the normalized gene expression values of Cpne9 for BC9 

type in the middle panel.
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