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Abstract

Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular
heterogeneity at the single-cell resolution by classifying and characterizing cell types in
multiple tissues and species. While several mouse retinal scRNA-seq reference datasets have
been published, each dataset either has a relatively small number of cells or is focused on
specific cell classes, and thus is suboptimal for assessing gene expression patterns across all
retina types at the same time. To establish a unified and comprehensive reference for the
mouse retina, we first generated the largest retinal scRNA-seq dataset to date, comprising
approximately 190,000 single cells from C57BL/6J mouse whole retinas. This dataset was
generated through the targeted enrichment of rare population cells via antibody-based
magnetic cell sorting. By integrating this new dataset with public datasets, we conducted an
integrated analysis to construct the Mouse Retina Cell Atlas (MRCA) for wild-type mice, which
encompasses over 330,000 single cells. The MRCA characterizes 12 major classes and 138 cell
types. It captured consensus cell type characterization from public datasets and identified
additional new cell types. To facilitate the public use of the MRCA, we have deposited it in
CELLXGENE, UCSC Cell Browser, and the Broad Single Cell Portal for visualization and gene
expression exploration. The comprehensive MRCA serves as an easy-to-use, one-stop data
resource for the mouse retina communities.

Introduction

The retina is a highly heterogenous part of the eye that captures and processes the
light signal 3. The processing is enabled through five classes of retinal neurons:
photoreceptors (PR), horizonal cells (HC), bipolar cells (BC), amacrine cells (AC), and retinal
ganglion cells (RGC), which form an intricate circuitry necessary for processing and relaying
the light signal to the visual cortex. Non-neuronal cells such as Miiller glia cells (MG), microglia,
astrocytes, and retinal pigment epithelial cells (RPE) provide structural integrity of the tissue
and carry out various supporting roles such as metabolism and neuronal homeostasis in the
retinal microenvironment *°. Characterization of distinct retinal cell types is, therefore, critical
in advancing our understanding of the fine intricacies of cell interactions involved in retinal
biology and visual disorders.
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52 Single cell technologies have opened a window into knowledge of cellular
53 heterogeneity and intricate cell-to-cell interactions that cannot currently be resolved at the
54  tissue level and have allowed exploration of individual cellular expression signatures, which
55 can be mapped to unique molecular cell types ®’. The resulting cell atlas can serve as a
56  foundation for numerous applications, including the annotation of cell types in other scRNA-
57 seq experiments &, the identification of differentially expressed targets for purification or
58 manipulation %, and the generation of marker panels useful for single-molecule imaging,
59 including spatial profiling ¥°. While studies have demonstrated cell type heterogeneities in
60 various tissues, several perplexing issues remain to be addressed in establishing a
61 comprehensive cell atlas such as the agreement on cell type definitions across different
62 experiments or whether enough cells have been profiled to exhaust all existing cell types.
63 Integrated analyses of various scRNA-seq datasets from different studies, therefore, can
64 provide an important insight that comprehensively addresses such issues.

65 The mouse retina provides an important model for the study of neurobiology, with
66  more than 130 distinct cell types characterized through previous scRNA-seq studies %1115,
67 However, the scRNA-seq datasets have been generated separately for BC !, AC 2, and RGC
68 21314 with the largest dataset containing just under 36,000 cells, making it difficult to use in
69 aggregate. Though most of these datasets are independently browsable on the Broad Single
70  Cell Portal '® and accessible through separate databases such as the Gene Expression Omnibus
71 (GEO) repository, it can be challenging to assess gene expression patterns across all retinal cell
72  types. Ensuring these atlases define a complete set of retinal cell types remains a major
73 challenge that can only be addressed by powering studies to sufficiently profile the rarest
74 retinal cell types. Here, we generated scRNA-seq data of over 189,000 cells in the mouse retina
75  to complement 141,000 cells from six publicly available scRNA-seq datasets !>, creating a
76 unified cell atlas of the wild-type mouse retina containing over 330,000 cells. Our integrated
77 analysis presents a comprehensive characterization of all major cell classes in the retina,
78 including non-neuronal types, as well as a consensus cell type annotation of BCs, ACs, and
79 RGCs. Accessible, interactive web browsers have facilitated easy visualization of atlas
80 characterizations and exploration of gene expression in the MRCA. The comprehensive unified
81 MRCA will serve as a valuable resource for the community.

82

83 Results

84

85 Generation of scRNA-seq dataset for wild-type mouse retina

86 To establish a comprehensive atlas of the mouse retina, we performed scRNA-seq

87 profiling with C57BL/6J mouse retina tissue samples, aged from P14 to 12 months, for over
88 189,000 cells (Fig. 1a and Methods). As summarized in Table 1, six samples of varying ages
89  were dissociated retinal cells without enrichment, and ten samples of eight weeks old were
90 enriched using surface markers CD73 and CD90.1 to enrich for rare cell population. Depletion
91 of rod photoreceptors was achieved by removing cells positive for CD73 using anti-CD73-PE
92 antibody and anti-PE magnetic beads, which primarily label photoreceptor precursors and
93 mature rod photoreceptors in mice 7. To enrich ACs and RGCs, CD90.1 positive cells are
94  selected 8%,

95
96 Integration of scRNA-seq datasets for the mouse retina
97 To compile the most comprehensive scRNA-seq data for the MRCA, we curated and

98 obtained six publicly available scRNA-seq datasets, each enriched for a specific cell type using
99  transgenic labels or immunolabeling combined with FACS. Together, they consisted of over
100 141,000 cells. To consolidate the transcript annotation between different datasets, we used
101  the Cell Ranger (version 7.0.1) pipeline to align raw FASTQ files from four datasets obtained
102  from GEO and Sequence Read Archive (SRA) repositories. Count matrices of these datasets
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103  were generated using the mm10 reference genome obtained from 10x Genomics
104  (https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-2020-A.tar.gz). Five of the
105 published studies were sequenced on the 10x Genomics 3’ platform, and one (Shekhar et al.)
106  was generated using the Drop-seq protocol 7. The Drop-seq data were aligned against mm10
107 and processed into count matrices using the Drop-seq pipeline
108  (https://github.com/broadinstitute/Drop-seq). The cell type labels of previous annotations
109  were obtained from the Broad Single Cell Portal website °. To remove technical variations
110 introduced across different experiments or studies, scVI 2° was applied to integrate all newly
111  generated and public datasets, generating a low-dimensional representation (Fig. 1b and
112 Methods). Putative cell doublets were further removed using the deep learning doublet
113 identification method Solo ?! (Supplementary Fig. 1a).

114 In the integrated data, the public dataset accounts for 43%, while the newly generated
115 data accounts for the remaining 57% (Fig. 1c). Within the integrated UMAP, 97 clusters were
116 identified (Supplementary Fig. 1b). These clusters were annotated as one of 12 major classes,
117 including PR, BC, AC, RGC, HC, MG, RPE, astrocyte, microglial, endothelial, and pericyte, using
118 known marker gene expression ?>?* (Supplementary Fig. 1c). Cells from non-enriched retina
119 samples showed a distribution across major classes at an expected proportion, with rod
120 photoreceptors as the biggest proportion 2. In contrast, enriched samples from both newly
121  generated data and previous studies showed the expected skewed distribution of cell types in
122 BCs, ACs, and RGCs (Supplementary Fig. 1d). The two newly generated samples with
123 enrichment methods, CD73" and CD90.1* samples, were primarily composed of BCs and ACs,
124 respectively, contributing to 83% (122.6K out of 147.7K) and 25% (11.2K out of 44K) of all BCs
125 and ACs in the integrated data, respectively.

126 Previous studies have identified 15 distinct types of BCs, 64 ACs, and 46 RGCs ¥'+12, To
127 determine the consensus annotation of neuronal types for these subclasses, we performed
128 clustering analysis at higher resolution within individual BC, AC, and RGC classes (Fig. 1d and

129  Fig. 1e).

130

131 15 types of bipolar cells

132 A total of 147,700 BCs were identified in the integrated datasets, with 122,600 cells

133 from our newly generated CD73  sample and 19,800 cells from the Shekhar et al. study *. The
134 integrated analysis identified 15 BC clusters, corresponding to previously annotated BC types
135 (Fig. 2a-b and Methods). The 15 clusters of integrated BCs showed a generally even
136  distribution of cells from various samples, with the exception of two types, BC1A and BC1B,
137  where more than 90% of populations came from the study by Shekhar et al. possibly due to
138 differences in enrichment methods (Fig. 2a, 2d and Supplementary Fig. 2d-e). The final
139 annotation of BCs revealed consistent expression profiles of previously identified BC type
140 marker genes %% (Fig. 2b-c). With a significant addition of BCs in the MRCA, clear separation
141 of BC8 and BC9 is observed, which were merged but demonstrated substructure in the
142 Shekhar et al. dataset (Fig. 2a-b). The separate clusters showed proper expression patterns of
143 known markers like Cpen9 in BC9 ¥, In addition, additional BC type markers were identified
144  via differential gene expression analysis, which showed more specific expressions than
145 previous marker genes, such as Tafa4 in BC4, Ptprt in BC5A, and Gm13986 in BC8 (Fig. 2e).
146 Interestingly, despite an almost ten-fold increase in the number of BCs in our analysis, we did
147 not observe any sign of a novel cell type, which suggests that the mature mouse retina likely
148 only contains 15 BC types.

149
150  Amacrine cells
151 Through CD90.1 positive enrichment, the newly generated samples contributed

152 11,200 ACs, in addition to the 27,600 ACs from Yan et al. 2 in the integrated dataset
153 (Supplementary Fig. 3a-b). Utilizing the collected data, the integrated analysis annotated 63
154  AC types, revealing consistent expression profiles of known marker genes (Fig. 3a-b and
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155 Methods). While a minimal batch effect in each cluster was observed across different sample
156  sources, CD90.1* and Ma et al. RGC samples showed biased enrichment towards GABAergic
157  types except for AC4, AC10, and AC28 (Supplementary Fig. 4e). The bias in cell type population
158 appears to be directly tied to the preferential expression of Thy1 (CD90) in sub-populations of
159  ACs (Supplementary Fig. 4d). In particular, Thy1 is characterized as being expressed primarily
160  in GABAergic AC types 6.

161 The integrated analysis of ACs demonstrated that four types, AC18, AC20, AC36, and
162  AC45, have been previously under-clustered, each splitting into two clusters in the integrated
163 UMAP (Fig. 3c). AC18, which expresses Cck neuropeptide ?/, is split into C24 and C27 in our
164  clustering and has been labeled as AC18A and AC18B in the final annotation (Fig. 3d).
165 Interestingly, the cell type marker Cck is highly expressed in AC18A, but not in AC18B
166 (Supplementary Fig. 5a). AC20, which does not contain any known marker, is divided into C42
167 and C60 (AC20A and AC20B), with its marker Sema3a also expressed highly in AC20A, but not
168  in AC20B (Supplementary Fig. 5b). A non-GABAergic non-glycinergic (nGnG) type 4, AC36, is
169 split into C58 and C61 (AC36A and AC36B), consistent with previous finding of two
170 morphologically distinct AC36 types in the INL and displaced in the GCL, stratifying to S3 and
171 S5 sublaminae of the IPL 1*2, By examining the list of differentially expressed genes (DEG)
172 between the two broadly isolated types %, we annotated AC36A as the S3 type by the
173 increased markers such as Gbx2, Tacl, and Pcdh8 and AC36B as the S5 type by Gadl, Gad2,
174  and Id4. (Fig. 3e). Lastly, a catecholaminergic type 1 cell type 2%, AC45, is split into C64 and C66
175 (AC45A and ACA45B). The expression of Chl/1, which distinguishes catecholaminergic type 1
176  fromtype 2, was increased specifically in AC45A. The DEG analysis between the clusters of the
177 previously under-clustered cell type revealed many genes enriched specifically in each cluster,
178 with Cck, Sema3a, Chl1l being one of the top-ranked genes in AC18A, AC20A and AC45A,
179 respectively (Supplementary Fig. 5b). Out of the four under-clustered cell types, only one,
180 AC20, showed a biased sample source from Yan et al. data. Furthermore, while cells from Yan
181 et al. were distributed across both AC45A and AC45B, AC45B contains an increased number of
182 cells from the newly generated CD90.1 sample (Supplementary Fig. 4e).

183 As a result, we have identified 67 AC types that can be grouped into four AC
184 subclasses: 49 GABAergic, 10 Glycinergic, 3 Both, and 5 nGnG ACs. Within the final dataset,
185 GABAergic ACs make up 67.7% of the total AC population, followed by Glycinergic ACs at
186 22.5%, GABA/Glycinergic ACs at 1%, and nGnG ACs at 8.7%. However, these distributions are
187 likely biased towards GABAergic ACs due to the inclusion of cells from CD90.1* and CD90.2*
188 enriched collections.

189
190  Retinal ganglion cells
191 The integrated data contains 77,900 RGCs, primarily from the three publicly available

192 datasets. The integration of the collected data identified all 46 previously identified RGC types
193 (Fig. 4a and Methods). Examination of known cell type markers in the integrated data with the
194  final annotation showed proper expression profiles in corresponding types %% (Fig. 4b).
195  Although no novel cluster was identified, our integrated analysis of RGCs similarly identified
196 thedivision of two cell types, 16_ooDS_DV (ON-OFF direction-selective dorsal and ventral) and
197 18_Novel, into distinct clusters (Fig. 4c). The 16_ooDS_DV, which contains both types with
198  dorsal and ventral orientation selective functional roles 3-*2, was split into C31 and C39, similar
199  to the supervised clustering analysis done in the Tran et al. %, Jacobi et al. 3, and Ma et al. 1*
200  studies. Examination of the marker genes Calbl and Calb2 demonstrated that C39 is the
201  ventral selective type with high expression of Calb2, and C31 is the dorsal selective type with
202 Calbl expression °. In addition, the 18_Novel type could also be split into C36 and C40.
203 Interestingly, while C40 contained only cells with 18 Novel labels, C36 contained a mixture of
204 18_Novel and 44_Novel labels (Supplementary Fig. 7a-c). The same annotation improvements
205 were also observed in Ma et al'®. Examination of 18 Novel markers Pcdh20 and
206  4833424E24Rik revealed increased expression of both markers in C40, yet Pcdh20 expression
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207  was absent in C36 (Supplementary Fig. 7e). The DEG analysis further demonstrated many
208  genes selectively expressed in these two clusters (Supplementary Fig. 7d). In total, we have
209  identified 47 RGC types in the MRCA (Fig. 4d).

210
211 Non-neuronal retinal cells
212 To include the comprehensive set of cell types in the retina in the MRCA, 18,500 non-

213 neuronal cells were integrated for six non-neuronal cell types, including astrocyte, endothelial,
214 MG, microglia, pericyte, and RPE (Supplementary Fig. 8a and Fig. 1e). These cells are evenly
215 distributed in the collected datasets, except for astrocytes solely from the Benhar et al. dataset
216 ' (Supplementary Fig. 8b). After being combined with neuronal retinal cells, the MRCA
217 consisted of 12 major classes and 138 cell types.

218
219  Data dissemination at accessible interactive web browsers
220 The MRCA has been made available for public access using the CELLXGENE platform

221 (https://cellxgene.cziscience.com/collections/a0c84e3f-a5ca-4481-b3a5-ccfdala8lecc  and
222 https://mouseatlas.research.bcm.edu/) (Fig. 5a-c). The MRCA is also accessible on UCSC Cell
223 Browser (https://retina.cells.ucsc.edu) and the Broad Single Cell Portal. Pre-computed gene
224  expression profiles of all cells included in the integrated analysis can be examined and
225  visualized. Users also have access to the metadata information, including major class and cell
226  type labels in the database. The accessible interactive web browsers of the MRCA can aid in
227 easy access to the transcriptome profiles of any given mouse retinal cells without the
228 bioinformatic burden and provides a valuable tool for the vision community.

229

230 Discussion

231 As part of the central nervous system, the retina contains numerous neuronal types
232 with distinct morphologies and functional roles 3. The heterogenous cell type composition
233 and the stereotypically patterned structure of the tissue makes the retina an ideal model for
234  single-cell sequencing studies in establishing the single-cell atlas 7?%34. Although several
235 scRNA-seq studies focusing on the retina tissue have been done previously 7915 each
236  available dataset contains single-cell profiles primarily of one or a few retinal cell classes with
237 a limited number of cells. Furthermore, no systematic evaluation or comparison of the
238 datasets has been done yet to cross-validate the cell type transcriptomes and address
239 annotation consensus.

240 In this study, we generated scRNA-seq profiles of 189,000 retinal cells from 16 scRNA-
241 seq experiments to perform an integrated analysis with 141,000 retinal cells from six
242 previously reported datasets. Six out of the newly generated collections were done using
243 endogenous retina tissues with simple dissociation and without enrichment. Photoreceptors
244  constitute over 70% of the cell proportion in the retina >*°, and there are only two subclasses
245 of photoreceptors, which are well studied. Therefore, we utilized two methods for rare
246 population cell type enrichment. The first way was depleting the rod photoreceptors. To
247 achieve this goal, the rod photoreceptor cell surface marker, CD73, was used in seven of the
248 16 experiments. Though this marker is generally considered as a specific marker for rod
249 photoreceptors, it is also expressed on the surface of a subset of ACs, HCs, and MGs. Depletion
250 increased the enrichment of BCs from 12% to 90%. Furthermore, CD90.1 was used to enrich
251 certain retinal neurons such as ACs and RGCs in three experiments. Enrichment of retinal cells
252  with CD90.1 also showed an increased number of ACs with some RGCs.

253 One of the challenges in integrating and comparing publicly available data is that they
254  are generated using different single-cell experimental platforms and analysis pipelines 3¢%,
255 One public data enriched with BCs from Shekhar et al. * was generated using the Drop-seq ’
256  technology and was processed separately using the Cell Ranger transcript annotation. The four
257 other sources of publicly available data were done using the 10x Genomics platform. A minimal
258 batch effect across data sources was observed in the integrated analysis, with the expected
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259 distribution and clustering of major classes from corresponding sources. While the newly
260  generated data without enrichment were primarily composed of rod photoreceptors, cells
261  from the newly generated data with enrichment and publicly available data showed a proper
262 distribution across BCs, AC, and RGCs.

263 Integrated analysis of various scRNA-seq datasets allowed us to examine AC, BC, and
264 RGC types, which together comprise over 100 distinct cell types. Through the integrated
265 analysis, we addressed two key questions on the neuronal cell types in the retina: to confirm
266  the consensus cell type signatures and to examine whether the total number of cell types of
267 retinal neurons is exhausted. Following the initial integrated analysis to identify major classes,
268 subsets of each major class were subjected to further integration and two-level clustering to
269 annotate all previously identified cell types, which showed an even distribution of data sources
270 in general. The cell type annotation was achieved through examining known marker gene
271 expressions and previous annotation labels when available. Although our newly generated
272 data resulted in a significantly increased number of cells in the integrated analysis of BCs, ACs,
273 and RGCs, we did not observe significant increases of novel cluster. As such, the previously
274 reported set of BC types in the adult mouse retina is likely complete, supported by the more
275  than 7-fold increase in BCs in the integrated data. On the other hand, our integrated analysis
276 updates annotations of AC and RGC types. In particular, we observed several instances of
277 previously under-clustered AC and RGC types splitting into distinct clusters in our analysis. For
278 example, we confirmed the separation of 16_ooDS_DV types into two distinct clusters in the
279 integrated data of RGCs, which was separated into dorsal and ventral selective types only
280  through supervised clustering in the Tran et al. study ° and later confirmed in Jacobi et al. 3
281 study. Furthermore, we identified the separation of AC36 and assigned its clusters to S3 and
282 S5, stratifying Gbx2* AC types?, which strengthens our analysis by connecting to biologically
283 distinct cell types. The separation of previously merged cell types into distinct clusters can be
284  attributed to the increased number of cells in our integrated analysis. This suggests that, while
285 our AC and RGC type annotations are comprehensive, they will likely continue to be refined
286 by future studies.

287 Finally, we have deposited the MRCA into interactive web browsers that are user-
288  friendly and publicly accessible. This allows for the examination of raw and normalized gene
289 expression profiles of all retinal cells, along with their metadata such as major class and cell
290 type annotation. The MRCA not only provides the consensus signature of mouse retinal cell
291  types by comparing multiple scRNA-seq data but also alleviates the bioinformatics burden for
292 many vision researchers who wish to examine transcriptome signatures in any cell type of their
293 interest.

294

295 Methods

296

297 Generation of scRNA-seq datasets of the mouse retina

298 We have generated 16 scRNA-seq samples of the mouse C57BL/6J retina (Table 1). All

299 mice were male. All procedures were approved by the Institutional Animal Care and Use
300 Committee (IACUC) and followed the Association for Research in Vision and Ophthalmology
301 (ARVO) Statements for the Use of Animals in Ophthalmic and Vision Research, in addition to
302  the guidelines for laboratory animal experiments (Institute of Laboratory Animal Resources,
303 Public Health Service Policy on Humane Care and Use of Laboratory Animals). After dissection,
304 retinas were dissociated into single cells using papain-based enzyme following the published
305 protocol®®. With activated 45U of papain (Worthington, Cat. #LS003126) solution (1mg L-
306 Cystine, Sigma; 8 KU of DNase |, Affymetrix; in 5 ml DPBS), retina was incubated at 37C for
307 ~20min, followed by the replacement of buffer with 2ml ovomucoid solution (15 mg
308 ovomucoid, Worthington Biochemical; 15 mg BSA Thermo Fisher Scientific; in 10 ml DPBS) and
309 500ul deactivated FBS. Following the enzymatic digestion step, the retina tissues were
310  carefully triturated and filtered using 20 um plastic meshes. Trituration steps were repeated
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311  with additional 1ml ovomucoid solution until no tissue was visible. Single-cell suspension was
312 spun down at 300g, 4C for 10 min and used in the next step.

313 To deplete the photoreceptors, cells were resuspended in 0.5% BSA and stained with
314  CD73-PE antibody (MACS, Catalog: 130-102-616) for 10min at 4C (for each million cells, add
315 98ul 0.5% BSA with 2ul CD73-PE antibody) and washed with 35 ml 0.5% BSA at 4C for 10min.
316  After being stained with Anti-PE microbeads (MACS, Catalog: 130-105-639) (80ul 0.5% BSA and
317 20ul microbeads per each million cells) for 15 min at 4C, cells were washed and resuspended
318 in 0.5% BSA. CD73 negative neuronal cells were enriched by autoMACS Pro Separator (Miltenyi
319 Biotec) DEPLETES mode. Similarly, CD90.1 positive neuronal cells were enriched with CD90.1
320 microbeads (MACS, LOT: 130-094-523; 90ul 0.5% BSA and 10ul CD90.1 microbeads per each
321 million cells) and autoMACS POSSEL-S mode. Cells viability was 87%-94% when checked using
322 DAPI staining under microscope.

323 Guided by 10X manufacturer’s protocols (https://www.10xgenomics.com), single-cell
324  cDNA library was prepared and sequenced. Briefly, single-cell suspension was loaded on a
325 Chromium controller to obtain single cell GEMS (Gel Beads-In-Emulsions) for the reaction. The
326 library was prepared with Chromium Next GEM single cell 3’ kit V2 (10X Genomics) and
327 sequenced on lllumina Novaseq 6000 (https://www.illumina.com). Our newly generated
328 single cell data was sequenced at the Single Cell Genomics Core at Baylor College of Medicine.
329

330 Data collection and preprocessing of the mouse retinal scRNA-seq

331 To recover high-quality cells, data samples were processed through a quality control
332  pipeline (https://github.com/lijinbio/cellqc). In brief, raw sequencing reads of 10x Genomics
333  were first analyzed by the 10x Genomics Cell Ranger pipeline (version 7.0.1) 3° using the mm10
334 genome reference obtained from 10x Genomics (https://cf.10xgenomics.com/supp/cell-
335 exp/refdata-gex-mm10-2020-A.tar.gz). Potential empty droplets in the filtered feature count
336 matrices were further detected by dropkick °. Background transcripts contamination in the
337 retained true cells were eliminated using SoupX 1. DoubletFinder then was utilized to estimate
338 and exclude potential doublets with high proportions of simulated artificial doublets #2. In the
339 resulting singlets, we extracted high-feature cells that contain > 300 features, = 500
340  transcript counts, and <10% of reads mapped to mitochondrial genes.

341 In addition to our own data, we have incorporated well-characterized public datasets.
342 Specifically, we have integrated cell-type-enhanced profiling data for amacrine cells
343  (accession: GSE149715) 2, bipolar cells (accession: GSE81904) 1, and retinal ganglion cells
344 (accession: GSE133382) °. Furthermore, we have included four samples from wild-type mice
345  were also collected from GSE201254 to account for retinal ganglion cells . To account for
346 non-neuronal retinal cells, nine control samples were collected from GSE199317 *°. These cell-
347  type specific single-cell datasets form the basis for subclass clustering in our mouse retina
348 reference. To generate the updated transcriptome measurement of the GSE81904 from
349 Shekhar et al., which was derived from the Drop-seq protocol, we applied the Drop-seq
350 pipeline using the source code available at https://github.com/broadinstitute/Drop-seq. To
351 ensure consistent gene feature annotation with the Cell Ranger pipeline, we used the gene
352 annotation GTF file from the 10x Genomics mm10 genome reference package during the
353 alignment of Drop-seq reads. In addition, GSE149715, GSE133382, GSE201254, and
354  GSE199317 were also processed from scratch using raw sequencing reads using the 10x
355 Genomics Cell Ranger pipeline (version 7.0.1) 3°. To incorporate the high-quality cell type
356  annotation of four public datasets, released count matrices and cell labeling were downloaded
357  for meta-analysis. To further eliminate potential multiples in the integrated analysis, Solo
358 doublet detection algorithm was used to identify potential multiples.

359
360 Data integration of scRNA-seq datasets
361 To eliminate technical variations in samples derived from different studies and

|43

362 experiments, 52 samples were integrated to remove the batch effect by scVI *°. scVI explicitly
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363 formulates the batch effect as a latent variable in the deep generative model of observed
364  expressions. Normalized expression was applied to detect highly variable genes (HVGs) using
365  the Seurat algorithm (flavor: seurat). The “samplelD” was used as the batch key for calculating
366 HVGs and the batch variable in the scVI modeling. The scVI model utilized 2 hidden layers
367 (n_layers: 2) and a 30-dimensional latent space (n_latent: 30). The trained low-dimensional
368 representation was used for cluster detection with the Leiden algorithm **. UMAP of low-
369 dimensional visualization was generated by the Scanpy package *°.

370
371 Cell clustering and cell type annotation
372 To annotate major classes of cell clusters, we incorporated well-annotated cell labels

373 released from public datasets, i.e., Yan et al. for ACs, Shekhar et al. for BCs, and Tran et al. and
374  Jacobietal. for RGCs. Cells from Yan et al. were annotated into 63 AC types. Cells from Shekhar
375 et al. were 15 BC types showing in 14 clusters with small numbers of cells annotated as ACs,
376 rod, and cone. Tran et al. cells were identified as 45 RGC types. The cell type labels of these
377  well-annotated cells are used to annotate integrated cell clusters. To annotate isolated cell
378 clusters that were isolated from existing cell labels of the public datasets, cluster-specific
379 markers were examined from the top ranked genes generated by the Wilcoxon rank-sum test
380 using the rank_genes_groups() function in the Scanpy package *.

381 To annotate subclass BC, AC, and RGC, subclass-specific cells were isolated and
382 integrated using scVI. The generated low-dimensional embeddings were used to detect
383 clusters using the Leiden algorithm. To determine the optimal number of clusters for
384  subclasses, a two-level clustering approach was applied. In the first level of clustering, various
385 resolutions were tested to achieve clustering without over-clustering in UMAP visualization.
386  The second-level clustering refines the clusters from the first-level clusters by testing various
387 resolutions to achieve optimal clustering without over-clustering on UMAP again. In the first-
388 level, Leiden clusters containing the majority of one type were annotated. When Leiden
389 clusters contained more than one types, cells within the clusters were isolated. Within each
390 subset of isolated cells, Leiden clusters were calculated again using the same low-dimensional
391 embedding. The second-level Leiden clusters were examined for their cell label to determine
392  their cell types.

393 To construct the BC atlas, data samples for BCs were integrated using scVI. Initially, 33
394  clusters were identified, of which 30 could be matched and merged to individual BC types by
395 examining previously generated cell labels and their known marker gene expression %%, while
396 the remaining 3 clusters (C30, C31, and C32) were excluded from the analysis as they
397 contained non-BCs from previous annotation labels or had high UMI counts (Fig. 2a and
398  Supplementary Fig. 2a-c). Consequently, 15 BC types were identified and annotated.

399 To construct the AC atlas, the data integration analysis for ACs using scVI identified a
400  total of 71 clusters, of which 62 clusters could be matched and merged to 49 individual AC
401  types via previous annotation labels and known marker expression. However, 8 clusters were
402 over-clustered that contained two or more previous AC type labels, and one cluster (C70) was
403 excluded from the AC reference due to non-AC cells (Supplementary Fig. 3c-d). To further
404  address the 8 remaining over-clustered clusters (Supplementary Fig. 4a), we utilized a two-
405 level annotation approach. This involved isolating cells from each cluster and refining the
406  clustering. The two-level annotation allowed the separation of the remaining 14 types: AC11,
407  AC16, AC29, AC42, AC47, AC50, AC53, AC54, AC55, AC56, AC60, AC61, AC62, and AC63
408 (Supplementary Fig. 4a-c). This revealed clusters that primarily consisted of RGCs, which have
409 been removed in the integrated AC map (Supplementary Fig. 4c). As a result, 63 AC types were
410 identified and annotated.

411 Three AC types, AC16, AC53, and AC62, were identified as dual types expressing both
412 canonical GABAergic and glycinergic receptors in the study by Yan et al. AC16, however, was
413 shown as a suspected doublet in their study, alongside AC60. Similarly, our UMAP showed
414 loose cluster formation of AC16 and AC60 in proximity to each other, with relatively high UMI
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415 counts (Fig. 3a and Supplementary Fig. 4e). In addition, our integrated UMAP showed AC53
416  cells spread out in the middle of AC6 cells. Although the AC53 cluster was resolved in the
417 second-level annotation, the loose clustering of AC53 cells is quite apparent. The third dual
418  type, AC62, was also under-clustered and merged with AC42 and AC55. While AC62 was
419 resolved in the second-level annotation, AC62 also appears near its neighboring cluster, AC42,
420 in the UMAP. With very few cells being annotated as dual types in CD90.1 and Ma et al.
421 samples, which express high levels of Thy1 (data not shown), further validations of the dual
422 types are required.

423 To construct the RGC atlas in the MRCA, the integrated analysis identified 54 clusters
424  with an even distribution of cells from different data sources in most clusters (Supplementary
425 Fig. 6a-d). Out of these clusters, 48 can be mapped and merged into 39 individual RGC types
426 previously identified using marker gene expression and previous annotation labels
427 (Supplementary Fig. 6a-b), while five clusters were over-clustered that contained multiple
428 previous RGC types, and one cluster (C8) contained a mixture of several RGC type labels with
429 high UMIs and was excluded from the downstream analysis as multiplets. To annotate the
430 remaining seven types found in the five clusters with multiple labels, the second-level
431 annotation was performed, which resulted in a clear separation of all 46 previously identified
432 RGC types (Fig. 4a and Supplementary Fig.7a-c).

433
434  Differentially expressed gene analysis
435 To identify genes that are differentially expressed between cell types, we generated

436 pseudo-bulk transcriptome of each annotated cell type in individual sample id. We used
437 pyDESEQ2 “® to compare two clusters or types using the Wald test and identified genes
438 specifically expressed in each cluster or type. Differentially expressed genes are identified
439 under g-value < 0.05. The Wald statistics (log2FoldChange divided by IfcSE) was used to rank
440  and select the top 10 genes expressed in each type.

441

442  Data Availability

443 The raw sequencing reads of sixteen newly generated samples have been deposited
444  at NCBI GEO under the accession GSE243413. The landing page for the MRCA data resources
445 is accessible at https://rchenlab.github.io/resources/mouse-atlas.html. Processed cell-by-
446  gene count matrices, along with cell type annotations, are available on Zenodo. Furthermore,
447 both raw and normalized count matrices and cell type annotations are publicly accessible on
448  the CELLXGENE data collection at https://cellxgene.cziscience.com/collections/a0c84e3f-
449 a5ca-4481-b3a5-ccfdala8lecc. The MRCA is also hosted on the Baylor College of Medicine
450 data portal at https://mouseatlas.research.bcm.edu. Additionally, access to the MRCA is
451 provided on the UCSC Cell Browser at https://retina.cells.ucsc.edu and the Broad Single Cell
452 Portal.

453

454 Code Availability

455 All code used for the MRCA project can be found in the MRCA reproducibility GitHub
456  repository (https://github.com/RCHENLAB/MouseRetinaAtlas_manuscript). The pipeline to
457 process the unpublished and collected public datasets is accessible at

458 https://github.com/lijinbio/cellgc.
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Figure 1. Overview of single cell atlas of the mouse retina
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Figure 1. Overview of single cell atlas of the mouse retina

(a) The workflow for generating unpublished scRNA-seq datasets. The data generation process involved
using mice aged from P14 to 12 months. Following retina dissection and cell dissociation, single cells were
enriched using autoMACS with Anti-CE73-PE antibodies or Anti-CD90.1 beads for specific amacrine, bipolar,
and retinal ganglion cells. Subsequently, 10X single-cell RNA sequencing was performed on both the
unenriched and enriched single cells. The retained single cells were then utilized in downstream atlas
construction. (b) The integrated analysis workflow for constructing the MRCA. To construct a
comprehensive unified single-cell reference of the mouse retina, we generated 16 unpublished scRNA-seq
samples of the mouse retina and incorporated four curated public datasets to enhance specific amacrine,
bipolar and retinal ganglion cells. The collected data were processed using the Cell Ranger and CellQC
pipeline to produce feature count matrices. Feature counts were then processed to remove estimated
empty droplets, ambient RNA, and doublets. The retained cells were integrated using scVI to eliminate
batch effects across samples. The trained low-dimensional embeddings were used to calculate cell
dissimilarities and identify clustering through a two-level clustering approach. Major class and subclass cell
types were annotated using canonical marker genes and public labeling. To facilitate user-friendly access
and exploration, the MRCA was deployed on accessible interactive web browsers, including CELLXGENE,
UCSC Cell Browser, and Single Cell Portal. (c) Pie chart displaying the percentage of cells contributed by each
dataset used in the MRCA. (d) UMAP visualization of the MRCA colored by major classes. (e) Dot plot
illustrating the expression of canonical markers for major classes.
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Figure 2. Bipolar cells
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Figure 2. Bipolar cells

(a) UMAP visualization of BCs colored by public cell type labels from Shekhar et al. 2016. The newly
discovered cells without public labeling are colored in gray. (b) BCs colored by the 15 annotated annotated
cell types. (c) Dot plot of BC type marker gene expression in the 15 types. (d) Pie chart showing the
percentage each data source making up BC1A and BC1B population. (e) Dot plot of new markers for three
BC types: BC4, BC5A, and BC8. The three new markers exhibit more exclusive expression patterns.
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Figure 3. Amacrine cells
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Figure 3. Amacrine cells

(a) UMAP visualization of AC cells colored by the annotated types. (b) Dot plot of canonical marker gene
expression in AC types. (c) Four previously under-clustered AC types, i.e., AC18, AC20, AC36, and AC45, are
split into two distinct clusters at a high resolution of clustering. (d) Visualization of AC cells colored by AC
types at a high clustering resolution. (e) Dot plot of DEGs expressed in two split clusters for AC_36,
stratifying Gbx2* AC types in AC_36.
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Figure 4. Retinal ganglion cells

(a) UMAP visualization of RGC cells colored by the annotated types. (b) Dot plot of canonical marker gene
expression in RGC types. (c) Two previously under-clustered RGC types, i.e., 16_ooDS_DV and 18_Novel, are
split into two distinct clusters at a high resolution of clustering. Dot plot of Calb1 and Calb2 in the two split
clusters of 16_ooDS_DV. (d) Visualization of RGC cells colored by RGC types at a high clustering resolution.
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Figure 5. Visualization of MRCA in accessible interactive browsers

(a) Visualization of the MRCA in the CELLXGENE browser. The homepage depicts three panels to explore the
MRCA. The left panel contains the pre-computed features facilitating the selection of cells by interested
categories. The middle panel is the UMAP of the MRCA, colored by the annotated major classes. The right
panel allows input of quick gene symbols and gene sets. (b) Visualization of the subclass RGC atlas in the
CELLXGENE browser. The middle panel depicts RGCs colored by the reclassified names selected in the left
panel. (c) Visualization of gene expression for a BC9 marker, Cpne9, in the BC atlas. The left subfigure shows
the BC types, and the right subfigure highlights the normalized gene expression values of Cpne9 for BC9
type in the middle panel.


https://doi.org/10.1101/2024.01.24.577060
http://creativecommons.org/licenses/by-nc-nd/4.0/

