

1 **Prolactin-mediates a lactation-induced suppression of arcuate kisspeptin neuronal  
2 activity necessary for lactational infertility in mice**

3 Eleni C.R. Hackwell<sup>1,2</sup>, Sharon R. Ladyman<sup>1,2,4</sup>, Jenny Clarkson<sup>1,3</sup>, H. James McQuillan<sup>1,2</sup>,  
4 Ulrich Boehm<sup>5</sup>, Allan E. Herbison<sup>6</sup>, Rosemary S.E. Brown<sup>1,3</sup>, David R. Grattan<sup>1,2,4</sup>

5

6 <sup>1</sup>Centre for Neuroendocrinology, <sup>2</sup>Department of Anatomy and <sup>3</sup>Department of Physiology,  
7 School of Biomedical Sciences, University of Otago, Dunedin, NZ; <sup>4</sup>Maurice Wilkins Centre  
8 for Molecular Biodiscovery, Auckland, NZ; <sup>5</sup>Saarland University School of Medicine, Centre  
9 for Molecular Signalling (PZMS), Experimental Pharmacology, Homburg, Germany;  
10 <sup>6</sup>Department of Physiology, Development and Neuroscience, University of Cambridge,  
11 Cambridge, United Kingdom.

12

13 Corresponding author: David R. Grattan

14 **Email:** [dave.grattan@otago.ac.nz](mailto:dave.grattan@otago.ac.nz)

15 **Author Contributions:**

16 ECRH: Designed research, completed research, analysed data, wrote the first draft of the  
17 manuscript, edited the manuscript.

18 SRL: Designed research, completed research, analysed data, edited the manuscript.

19 JC: Completed research, analysed data, edited the manuscript.

20 HJM: Completed research, edited the manuscript.

21 UB: Provided key resources, edited the manuscript.

22 AEH: Designed research, analysed data, edited the manuscript.

23 RSEB: Designed research, analysed data, edited the manuscript.

24 DRG: Designed research, provided key resources, analysed data, edited the manuscript.

25

26 **Competing Interest Statement:** The authors have no competing interests to declare.

27 **Abstract**

28 The specific role that prolactin plays in lactational infertility, as distinct from other suckling  
29 or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from  
30 forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal  
31 lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile  
32 LH secretion were increased in these mice, even in the presence of ongoing suckling  
33 stimulation and lactation. GCaMP6 fibre photometry of arcuate kisspeptin neurons revealed  
34 that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this  
35 was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons  
36 resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature  
37 return of reproductive cycles in early lactation. These observations show dynamic variation in  
38 arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and  
39 lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is  
40 necessary for suppressing fertility during lactation.

41

## 42 Introduction

43 In mammals, lactation is accompanied by a period of infertility. This adaptive change  
44 establishes appropriate birth spacing to enable maternal metabolic resources to be directed  
45 towards caring for the new-born offspring, rather than supporting another pregnancy <sup>1</sup>.  
46 Lactational infertility is characterized by a lactation-induced suppression of pulsatile  
47 luteinizing hormone (LH) secretion, and the temporary loss of the reproductive cycle (in  
48 rodents this is exhibited as an extended period of diestrus or anestrus) <sup>2-5</sup>. Lactation is also  
49 characterised by chronically elevated levels of the anterior pituitary hormone prolactin, which  
50 is essential for milk production and promotes adaptive changes in maternal physiology and  
51 behaviour <sup>1, 2, 4, 5</sup>. Despite hyperprolactinaemia being a well-recognized cause of infertility,  
52 the specific role that prolactin plays in lactational infertility, as distinct from other suckling-  
53 or metabolic-related cues, is currently unclear <sup>4, 6</sup>.

54 Recent *in vivo* studies have confirmed that kisspeptin neurons in the arcuate nucleus of the  
55 hypothalamus are responsible for the periodic release of gonadotrophin-releasing hormone  
56 (GnRH) and subsequent pulsatile luteinising hormone (LH) secretion that drives reproductive  
57 function <sup>7-11</sup>. Studies using GCaMP6 fibre photometry in conscious mice have demonstrated  
58 that the arcuate kisspeptin neuronal population exhibits episodes of increased intracellular  
59 calcium levels coincident with, and immediately preceding, each pulse of LH secretion in  
60 intact and gonadectomised male and female mice <sup>7, 8, 9</sup>. Miniscope investigation showed that  
61 individual kisspeptin neurons within the arcuate population act in a coordinated,  
62 synchronised, and episodic manner <sup>10, 11</sup>. Loss of pulsatile LH secretion during lactation and  
63 consequent lactational infertility may be caused by the loss of kisspeptin-mediated  
64 stimulation of GnRH secretion <sup>12-18</sup>. Kisspeptin expression is markedly suppressed in  
65 lactation <sup>12, 16</sup> and when exogenously stimulated, kisspeptin neurons are unable to activate  
66 GnRH neurons during lactation, likely due to a lack of kisspeptin synthesis <sup>13</sup>.

67 It is well established that hyperprolactinemia causes infertility, and thus, the elevated  
68 prolactin present in lactation seems a likely candidate to be involved in suppressing fertility  
69 during lactation. Prolactin administration acutely suppresses LH secretion <sup>19</sup>, and chronic  
70 exposure to elevated prolactin reduces *Kiss1* mRNA expression in the arcuate nucleus <sup>17, 20, 21</sup>.  
71 In lactating mice, suppressing endogenous prolactin secretion shortens the period of  
72 infertility <sup>22</sup>, suggesting that prolactin is important for maintaining the suppression of  
73 pulsatile LH secretion during lactation. Such a role for prolactin is controversial <sup>4, 6, 23-27</sup>,

74 however, with studies in a number of species suggesting that the neural stimulation of  
75 suckling may be more important in maintaining lactational infertility<sup>28, 29</sup>. However, it has  
76 previously been difficult to disentangle the specific role of prolactin, as suckling, prolactin,  
77 and milk production are so tightly linked that manipulating one ultimately impacts the others,  
78 making it difficult to determine the contribution of any one element. Here, using a  
79 conditional deletion strategy, we have blocked prolactin action in the brain leaving suckling,  
80 lactation, and maternal behaviour intact. Using GCaMP fibre photometry techniques, we  
81 have also documented arcuate kisspeptin neuron activity across pregnancy and lactation  
82 transitions in the same mice and established that prolactin directly acts on these neurons to  
83 suppress fertility in lactation.

84

85 **Materials and Methods**

86 **Animals**

87 All experiments were performed using adult female mice on a C57BL/6J background (8-20  
88 weeks of age). Mice were housed under controlled temperature ( $22^{\circ}\text{C} \pm 2^{\circ}\text{C}$ ) and lighting  
89 (12-hour light/12-hour dark schedule, with lights on at 0600 hours) with *ad libitum* access to  
90 food and water (Teklad Global 18% Protein Rodent Diet 2918; Envigo, Huntingdon, United  
91 Kingdom). Daily body weight was recorded and vaginal cytology was used to monitor the  
92 estrous cycle stage. All experiments were carried out with approval from the University of  
93 Otago Animal Welfare and Ethics Committee.

94 Mice were mated with male wild-type C57BL/6J mice (presence of sperm plug = day 1  
95 pregnancy). The first day a litter was seen was counted as day 1 of lactation and maternal  
96 mice were left undisturbed till day 3 of lactation, when vaginal monitoring would resume and  
97 litter size was normalised to 6 pups per animal, unless otherwise stated.

98 To monitor pulsatile secretion of LH, serial tail tip blood sampling and measurement of LH  
99 by ELISA was undertaken as reported previously<sup>19, 30, 31</sup>. As novel exposure and restraint  
100 stress has been shown to suppress pulsatile LH secretion<sup>32</sup>, all mice were habituated to the  
101 tail tip blood sampling procedure in a gentle restraint device (soft cardboard tube) or hand,  
102 for at least 3 weeks prior to experimentation<sup>33</sup>. Sequential whole blood samples (4 $\mu\text{l}$ ) were  
103 collected in 6 minute intervals for 3 hours between 0900 and 1200 hours unless otherwise  
104 stated. Samples were immediately diluted in 48 $\mu\text{l}$  0.01M PBS/0.05% Tween 20, and frozen  
105 on dry ice before being stored at -20 $^{\circ}\text{C}$  for subsequent LH measurement.

106 **Effect of neuron-specific deletion of the prolactin receptor gene on the maintenance of  
107 lactational infertility**

108 To investigate whether prolactin action in the brain is required for lactational infertility,  
109 neuron-specific *Prlr* knockout mice (*Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup>) and their respective Cre-negative  
110 controls (*Prlr*<sup>lox/lox</sup>) were generated, as previously described<sup>34</sup>. We have previously shown  
111 that while *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice do not have a complete *Prlr* deletion in the forebrain,  
112 there are areas of extensive deletion (as measured by reduced prolactin-induced pSTAT5),  
113 such as the arcuate nucleus and ventromedial nucleus of the hypothalamus, and areas where  
114 *Prlr* is reduced by about 50% such as the medial pre-optic area<sup>34, 35</sup>. RNAscope in-situ

115 hybridization was done to confirm knockdown. Briefly, intact diestrous mice and 14 day  
116 OVX mice (all aged 8-16 weeks) were perfused with 2% PFA to enable visualisation of  
117 kisspeptin cell bodies in both the RP3V and ARC regions (as kisspeptin cell bodies are only  
118 visible in the RP3V of intact mice and in the ARC of OVX mice, due to estradiol regulation  
119 <sup>36</sup>). Brain sections (14 $\mu$ m-thick) were prepared, thaw mounted onto superfrost-plus  
120 microscope slides and then stored at -80°C. RNAscope in-situ hybridization was performed  
121 using the RNAscope 2.5 High definition Duplex Detection kit – chromogenic (Advanced Cell  
122 Diagnostics, Hayward, CA) largely in accordance with manufacturer's instruction. The  
123 channel 1 Prlr probe was custom designed to pick up only the long form of the prolactin  
124 receptor. It was designed to transcript NM\_011169.5 with a target sequence spanning  
125 nucleotides 1107-2147 (Ref: 588621; Advanced Cell Diagnostics, Hayward, CA). The  
126 channel 2 Kiss1 probe was custom designed to transcript NM\_178260.3 with a target  
127 sequence spanning nucleotides 5 to 485 (Ref: 500141-C2; Advanced Cell Diagnostics,  
128 Hayward, CA). Sections were thawed at 55°C, postfixed for 3 minutes in 2% PFA, washed in  
129 0.01M PBS for 5 minutes, and endogenous peroxidases were blocked with a hydrogen  
130 peroxidase solution for 10 minutes. Tissue was washed in distilled water (dH<sub>2</sub>O) (3x 2  
131 minutes), then immersed in 100% ethanol briefly, air dried for 5 minutes, and a hydrophobic  
132 barrier was applied. Tissue was permeabilized with RNAscope protease plus for 30 minutes  
133 at 40°C. Sections were washed (2x 2 minutes) and were hybridized with the Prlr and Kiss1  
134 probes (1:300 dilution, Prlr:Kiss1) or negative control probe (Cat#320751; Advanced Cell  
135 Diagnostics, Hayward, CA) at 40°C for 2 hours. Amplification (Amp 1-6) was performed in  
136 accordance with the manufacturer's instructions. Sections were then hybridized with a Fast-  
137 RED (1:60, Fast-RED B:Fast-RED A) for 10 minutes at room temperature, before  
138 undergoing further amplification steps (Amp 7-10) in accordance to manufacturer's  
139 instructions. The final positive hybridization was detected by incubation with the secondary  
140 detection reagents (1:50, Fast-GREEN B:Fast-GREEN) for 10 minutes at room temperature.  
141 Sections were washed, counterstained with haematoxylin (25% Gills), dried at 60°C for 20  
142 minutes, and cover-slipped with VectaMount (Vector laboratories, H-5000) before imaging  
143 as previously described. Quantification of the proportion of kisspeptin neurons co-expressing  
144 *Prlr* mRNA was undertaken in FIJI software (National Institute of Health, Bethesda,  
145 Maryland, USA) following image acquisition. The total number of *Kiss1*-expressing cells and  
146 the total number of these that showed *Prlr* mRNA expression were counted.  
147 *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice showed a significant decrease in the percentage of *Kiss1*-  
148 expressing cells co-expressing *Prlr* compared to controls in both the RP3V (p = <0.0001) and

149 arcuate nucleus ( $p = 0.0009$ ) (unpaired two-tailed t tests, Supplementary Figure 1A-D). The  
150  $Prlr^{lox/lox}/Camk2a^{Cre}$  mice are hyperprolactinaemic due to impaired negative feedback of  
151 prolactin on hypothalamic dopamine neurons <sup>34</sup> and therefore show disrupted estrous cycles  
152 (showing recurrent pseudopregnancy-like cycles with long periods of diestrus of  
153 approximately 14 days between estrus stages). However, these mice are able to become  
154 pregnant and have normal pregnancies. All mice were given a 250 $\mu$ l subcutaneous injection  
155 of bromocriptine (5mg/kg, 5% ethanol/saline; Tocris Bioscience Cat#0427) prior to being  
156 mated. This treatment was designed to reinstate an estrous cycle in  $Prlr^{lox/lox}/Camk2a^{Cre}$  mice.  
157 Bromocriptine is an agonist for the type 2 dopamine receptor and inhibits prolactin secretion  
158 from the pituitary gland <sup>37</sup>, thereby terminating the pseudopregnancy-like state and bringing  
159 the mice into proestrus the following day. Following treatment, all mice were then housed  
160 with a stud male.

161 For  $Prlr^{lox/lox}/Camk2a^{Cre}$  mice, estrous cycles were monitored from day 3 of lactation until the  
162 first day of diestrus following a day of estrus (proestrus and estrus had to be observed prior to  
163 transcardial perfusion on the first day of diestrus). Brains were collected following  
164 transcardial perfusion for assessment of kisspeptin immunoreactivity. For every lactating  
165  $Prlr^{lox/lox}/Camk2a^{Cre}$  mouse ( $n = 8$ ), the brain of a  $Prlr^{lox/lox}$  control mouse ( $n = 8$ ) of the  
166 equivalent day ( $\pm 1$ ) of lactation was also collected. A group of non-lactating (NL) mice of  
167 both genotypes ( $n = 5-6$ ) was also perfused for immunohistochemistry on diestrus.

168 To evaluate pulsatile LH secretion in early lactation (prior to the return of estrous cycles) and  
169 to determine whether progesterone played any role in regulating pulsatile LH secretion in  
170 lactation, additional groups of lactating  $Prlr^{lox/lox}/Camk2a^{Cre}$  and  $Prlr^{lox/lox}$  control mice were  
171 generated and treated with either the progesterone receptor antagonist, mifepristone (4mg/kg  
172 in sesame oil, s.c.; AK Scientific Inc Cat#J10622), or vehicle ( $n = 7-8$  per group) on the  
173 morning of day 4 of lactation and on day 5 of lactation, 30 minutes prior to blood sampling  
174 that day. This dose was selected as it was found to be sufficient to cause termination of  
175 pregnancy in wild-type C57BL/6J mice ( $p = 0.0072$ , Chi-squared test, Supplementary Figure  
176 2A; pilot study) and neither vehicle nor mifepristone treatment had an effect on litter weight  
177 gain (interaction of time x genotype & treatment  $p = 0.5322$ , two-way repeated measures  
178 ANOVA, Supplementary Figure 2B).

179 **Measurement of LH concentrations**

180 An established sandwich ELISA method was used to determine LH concentration in diluted  
181 whole blood samples collected from mice <sup>30, 31</sup>. Briefly, a 96-well high plate was incubated  
182 with bovine monoclonal antibody (LH $\beta$ 518b7, 1:1000 in 1xPBS; Dr. L. Sibley, UC Davis,  
183 CA, USA) for 16 h at 4°C. Following incubation of standards, controls and experimental  
184 samples for 2 hours, plates were incubated in rabbit polyclonal LH antibody (AFP240580Rb;  
185 1:10,000; National Hormone and Pituitary Program, NIH) for 90 minutes, followed by  
186 incubation with polyclonal goat anti-rabbit IgG/HRP antibody (1:1000; DAKO Cytomation)  
187 for 90 minutes. Finally, plates were incubated in OPD (o-phenylenediamine capsules; Sigma-  
188 Aldrich Cat#P7288) for 30 minutes. A standard curve for the detection of LH concentration  
189 was generated using serial dilutions of mouse LH-reference preparation peptide (National  
190 Hormone and Pituitary Program, NIH). Luteinizing hormone levels were read using a  
191 standard absorbance plate reader (SpectraMax ABS Plus; Molecular Devices) at 490nm and  
192 630nm wavelengths.

193 PULSAR Otago was used to define LH pulses <sup>38</sup>. Parameters used; Smoothing 0.7, Peak split  
194 2.5, Level of detection 0.04, Amplitude distance 3, Assay variability 0, 2.5, 3.3, G(1)=3.5,  
195 G(2)=2.6, G(3)=1.9, G(4)=1.5, G(6)=1.2. Mean LH levels were calculated by averaging all  
196 LH levels collected during the experiment. The assay had a sensitivity of 0.04ng/ml to  
197 4ng/ml, with an intra-assay coefficient of variation of 4.40% and an inter-assay coefficient of  
198 variation of 8.29%. See supplementary information, figure 1, for all individual LH profiles.

## 199 **Assessment of kisspeptin expression**

### 200 ***Perfusion and fixation of tissue***

202 Mice were anaesthetised with sodium pentobarbital (15mg/mL) and transcardially perfused  
203 with 4% paraformaldehyde. Brains were removed, postfixed in the same solution, and  
204 cryoprotected overnight in 30% sucrose before being frozen at -80°C. Two sets of 30 $\mu$ m  
205 thick coronal brain sections were cut using a sliding microtome, from Bregma 1.10mm to -  
206 2.80mm. Brain sections were kept in cryoprotectant solution (pH = 7.6) at -20°C until  
207 immunohistochemistry was performed.

### 208 ***Immunohistochemistry***

209 Immunohistochemistry for kisspeptin in the RP3V and arcuate nucleus was performed as  
210 previously described <sup>39</sup>. Briefly, sections were incubated in polyclonal rabbit anti-kisspeptin

211 primary antibody (AC 566, 1:10,000; gift from A. Caraty, Institut National de la Recherche  
212 Agronomique, Paris, France) for 48 hours at 4°C. Sections were then incubated with  
213 biotinylated goat anti-rabbit IgG (1:200, Vector biolabs, Peterborough, GK) for 90 min at  
214 room temperature, followed by incubation in an avidin-biotin complex (Elite vectastain ABC  
215 kit, Vector laboratories). The bound antibody-peroxidase complex was visualised using a  
216 nickel-enhanced diaminobenzidine (DAB) reaction, to form a black cytoplasmic precipitate.

217 Brain sections were imaged using an Olympus BX51 light microscope and Olympus  
218 UPlanSApo 10/20x lenses. Quantification of kisspeptin neurons in the RP3V, was undertaken  
219 by manually counting all labelled neurons present in all three subdivisions, the anteroventral  
220 periventricular nucleus (AVPV), rostral preoptic periventricular nucleus (rPVpo), and caudal  
221 preoptic periventricular nucleus (cPVpo, bregma 0.02) (2 sections per brain region per  
222 mouse) and then averaging this for each animal. As kisspeptin cell bodies in the arcuate  
223 nucleus were not easily observed, as previously reported <sup>40</sup>, kisspeptin fibre immunoreactivity  
224 was imaged using a Gryphax NAOS colour camera (Jenoptik) and evaluated using FIJI  
225 software and the voxel counter function (National Institutes of Health). Kisspeptin fibre  
226 density was measured in the arcuate nucleus across the three subdivisions; rostral arcuate  
227 (rARC), middle arcuate (mARC), and caudal arcuate (cARC) with two sections of each area  
228 per animal counted, and then averaged across each animal to get total number and reported as  
229 total amount of voxels per ROI (voxel fraction).

230 **Characterization of arcuate kisspeptin neuronal activity using GCaMP fibre  
231 photometry**

232 ***Stereotaxic surgery and AAV injections***

233 Adult *Kiss1*<sup>Cre</sup> or *Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup> mice (2-3 months old) were anaesthetised with 2%  
234 Isoflurane, given local Lidocaine (4mg/kg, s.c.) and Carprofen (5mg/kg, s.c.) and placed in a  
235 stereotaxic apparatus. A custom-made unilateral Hamilton syringe apparatus holding one  
236 Hamilton syringe was used to perform unilateral injections into the arcuate nucleus. The  
237 needles were lowered into place (-0.14mm A/P, +0.04mm M/L, -0.56mm DV) over 2  
238 minutes and left in situ for 3 minutes before injection was made. 1μl AAV9-CAG-FLEX-  
239 GCaMP6s-WPRE-SV40 (1.3x10<sup>-13</sup> GC/ml, University of Pennsylvania Vector Core,  
240 Philadelphia, PA, USA) was injected into the arcuate nucleus at a rate of ~100nl/min with the  
241 needles left in situ for 3 minutes prior to being withdrawn over a period of 6 minutes. This

242 was followed by implantation of a unilateral indwelling optical fibre (400  $\mu\text{m}$  diameter, 6.5  
243 mm long, 0.48 numerical aperture (NA), Doric Lenses, Canada, product code:  
244 MFC\_400/430-0.48\_6.5mm\_SM3\*\_FLT) at the same coordinates. Carprofen (5mg/kg body  
245 weight, s.c.) was administered for post-operative pain relief. After surgery, mice received  
246 daily handling and habituation to the photometry recording procedure over 4-6 weeks before  
247 experimentation began.

248 ***GCaMP6 fibre photometry***

249 Photometry was performed as reported previously<sup>9</sup>. Fluorescence signals were acquired  
250 using a custom-built fibre photometry system made primarily from Doric components. Violet  
251 (405nm) and blue (490nm) fibre-coupled LEDs were sinusoidally modulated at 531 and 211  
252 Hz, respectively, and focused into a 400 $\mu\text{m}$ , 0.48 numerical aperture fibre optic patch cord  
253 connected to the mouse. Emitted fluorescence was collected by the same fibre and focused  
254 onto a femtowatt photoreceiver (2151, Newport). The two GCaMP6s emission signals were  
255 collected at 10 Hz in a scheduled 5s on/15s off mode by demodulating the 405nm (non-  
256 calcium dependent) and 490nm (calcium dependent) signals. The power output at the tip of  
257 the fibre was set at 50 $\mu\text{W}$ . Fluorescent signals were acquired using a custom software  
258 acquisition system (Tussock Innovation, Dunedin, New Zealand) and analysed using custom  
259 templates created by Dr Joon Kim (University of Otago, Dunedin, New Zealand) based on  
260 mathematics and calculations similar to those previously described<sup>41, 42</sup>. Briefly, the  
261 fluorescent signal obtained after stimulation with 405nm light was used to correct for  
262 movement artefacts as follows: first, the 405nm signal was filtered using a savitzky-golay  
263 filter and fitted to the 490nm signal using least linear square regression. The fitted 405nm  
264 signal was then subtracted and divided from the 490nm signal to obtain the movement and  
265 bleaching corrected signal. The output of these templates is 490- adjusted405/adjusted405,  
266 which was multiplied to get the final  $\Delta\text{F/F}$  as a percentage increase (all photometry data  
267 reported as  $\Delta\text{F/F}(\%)$ ).

268 All recordings were obtained from freely behaving mice for up to 24 hours and occurred  
269 between the hours of 0800 hours and 1200 hours (apart from 24 hours post weaning  
270 recording (0900 hours to 1700 hours), and day 18/19 pregnancy recording (1800 hours to  
271 0800 hours the following day). Synchronized events (SE) were defined as when  $\Delta\text{F/F}$   
272 exceeds 3 standard deviations (SD) above the trace mean. Manual event shape analysis was  
273 performed in addition to standard deviation method for certain datasets where necessary.

274 Events were counted manually to determine frequency of events per 60 minutes. The between  
275 animal variability in total signal means that changes in SE amplitude can only be reported as  
276 relative changes within an animal. Relative SE amplitude was calculated by using normalised  
277  $\Delta F/F$  data and then subtracting the peak of an SE from the nearest nadir to the rise of the SE  
278 and averaging that for the number of SEs in a recording. To obtain normalised  $\Delta F/F$ , three  
279 pre-pregnancy datasets from each mouse were used to find the average maximum  $\Delta F/F$  for  
280 that mouse. All datasets were then divided by that normalisation value to get normalised  
281  $\Delta F/F$  for each trace for each individual mouse.

282 ***Monitoring the activity of arcuate kisspeptin neurons across different reproductive stages  
283 in the same mice***

284 Adult *Kiss1*<sup>Cre</sup> mice were 8-10 weeks of age at the beginning of experiments, and up to 12  
285 months in age by time of final recording (n = 8 during pregnancy, n = 6 during lactation; 2  
286 mice were euthanised due to dystocia therefore those mice were only followed through  
287 pregnancy). Monitoring of vaginal cytology and weights was continuous from 1 week pre-  
288 surgery till day 19 of pregnancy and resumed on day 3 of lactation (with all handling stopped  
289 on day 19 to avoid potential compromise of parturition and onset of maternal behaviour). To  
290 investigate the activity of the arcuate kisspeptin population across different reproductive  
291 states in the same animal, the following recording protocol was followed for all *Kiss1*<sup>Cre</sup>  
292 mice, unless otherwise stated; virgin (diestrus), day 4 of pregnancy, day 14 of pregnancy, day  
293 18/19 of pregnancy (overnight), day 7 of lactation, day 14 of lactation, day 18 of lactation, 24  
294 hours after weaning, first diestrus after estrous cycles begin following weaning, and 10 days  
295 after OVX. In addition, blood sample collection for paired LH measurement was done in  
296 virgin (diestrus) state, on day 14 of pregnancy (in 4 mice, maximum of 6 samples were  
297 collected around small “peaks” in baseline), day 7 of lactation, and day 14 of lactation. Blood  
298 sampling was not carried out at additional time points as blood sampling was undertaken at  
299 least a week apart, and stress from repeated sampling was attempted to be kept at a minimum  
300 e.g., not blood sampling around the time of birth. Fibre photometry recordings were usually  
301 between 2-4 hours in length. The only longer recordings were undertaken on day 18/19 of  
302 pregnancy (14 hours) and 24 hours after weaning (8 hours). These particular recording  
303 sessions were extended to determine whether there were any longer-term changes occurring  
304 in the activity of the arcuate kisspeptin population in the lead up to parturition or following

305 weaning of pups (states closely followed by postpartum estrus and resumption of normal  
306 estrous cycles, respectively).

307 **Effect of arcuate kisspeptin neuron-specific deletion of the prolactin receptor gene on**  
308 **the maintenance of lactational infertility and the activity of kisspeptin neurons during**  
309 **lactation**

310 Kisspeptin-specific prolactin-receptor knockout mice (*Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup><sup>19</sup>) and their  
311 respective Cre-negative controls (*Prlr*<sup>lox/lox</sup>) were generated. RNAscope in-situ hybridization  
312 was done to confirm knockdown, with *Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup> mice showing a significant decrease  
313 in the percentage of *Kiss1*-expressing cells co-expressing *Prlr* compared to controls in the  
314 arcuate (p = <0.0001, unpaired two-tailed t test, Extended data Figure 3E, F). Similar to  
315 experiments described above, *Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup> (n = 27) and *Prlr*<sup>lox/lox</sup> control (n = 30) dams  
316 underwent estrous cycle monitoring from day 3 of lactation onwards to determine whether  
317 mice showed an early resumption of estrus cycles.

318 To determine whether the deletion of the prolactin receptor from arcuate kisspeptin neurons  
319 led to early reactivation of these neurons during lactation, adult *Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup> mice (n =  
320 5) and an additional *Kiss1*<sup>Cre</sup> control mouse (n = 1) (8 weeks old at the start of the  
321 experiment, and up to 14 months at end of final recording timepoint) were set up for fibre  
322 photometry, as described above. Monitoring of vaginal cytology and weights was continuous  
323 from 1 week pre-surgery till day 18 of pregnancy and resumed on day 3 of lactation.  
324 Recordings were undertaken in a similar timeline as described above, however no pregnancy  
325 recordings were done, and in early lactation recordings were performed every 2 days from  
326 day 3 to day 9 of lactation, before following the same protocol as described. No blood  
327 samples were taken over this lactation period in this genotype. As described previously,  
328 recordings were kept between 2-4 hours, apart from the 24 hours after weaning recording (8  
329 hours).

330 **Statistical analysis**

331 Data are presented as mean  $\pm$  SEM and all statistical analysis was performed with PRISM  
332 software 10 (GraphPad Software, San Diego, CA, USA) with a p value of < 0.05 considered  
333 as statistically significant. Individual symbols in graphs represent individual mice.  
334 Differences in kisspeptin cells number or fibre density was assessed using two-way

335 ANOVAs with Tukey's multiple comparisons tests or t tests, with both analyses using  
336 combined averages of each animal (averaged number of cells or fibre density across the three  
337 subdivisions of each nucleus to get total number reported). Resumption of estrous cycles was  
338 analysed using Log-rank (Mantel-Cox) test chi square test. LH pulse frequency data and  
339 mean LH data was analysed using two-way ANOVAs with Tukey's multiple comparisons  
340 tests. SE frequency and amplitude throughout reproductive cycles was analysed using mixed  
341 effect analysis (fixed type III) with Tukey's multiple comparisons tests where appropriate  
342 and day 18/19 of pregnancy data was analysed using t tests. Correlation between SE  
343 occurrence and LH pulses was assessed using chi-square test. All fibre photometry data used  
344 for quantitative analysis and comparison were from the first pregnancy and lactation. A full  
345 list of probability values, inferential statistics, and degrees of freedom for all data can be  
346 found in Supplementary Table 1.

347

348 **Results**

349 **Prolactin action on forebrain neurons is necessary to maintain lactational infertility**

350 Lactation has previously been associated with a marked decrease in *Kiss1* mRNA levels in  
351 both rostral periventricular region of the third ventricle (RP3V) and arcuate nucleus  
352 populations during lactation <sup>13</sup>. To determine whether prolactin is involved in the  
353 maintenance of lactational anestrus, the *Prlr* gene was knocked out of *Camk2a* expressing  
354 neurons (most forebrain neurons, as described in <sup>34</sup>) of female mice. Control *Prlr*<sup>lox/lox</sup> mice  
355 showed a marked reduction in kisspeptin cell body immunoreactivity in the RP3V of  
356 lactating compared to virgin mice (p = 0.0100, *Post hoc* Tukey's multiple comparisons test,  
357 Figure 1A, C). In contrast, lactation-induced suppression of kisspeptin cell bodies in the  
358 RP3V and fibre labelling in the arcuate nucleus was absent in *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice (p =  
359 0.6409, *Post hoc* Tukey's multiple comparisons test, Figure 1A, C; interaction between  
360 reproductive state and genotype p = 0.0034, two-way ANOVA, Figure 1A, C; p = 0.0020,  
361 unpaired two tailed t test, measured as percentage voxels within the region of interest, Figure  
362 1B, D).

363 Estrous cycles during lactation were significantly altered by deletion of *Prlr* in the forebrain,  
364 with all *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice showing a return to estrus between day 6 and day 10 of  
365 lactation (Figure 1E), while, as normal, estrus did not occur until day 20 in control *Prlr*<sup>lox/lox</sup>  
366 mice (p = <0.0001, log-rank (Mantel-Cox) test, Figure 1E). No differences in litter weight  
367 gain from day 3 to day 8 of lactation were observed in either group (p = 0.3282, mixed  
368 analysis test, Supplementary Figure 3), indicating that the suckling stimulus that mice  
369 received was maintained in the absence of *Prlr* expression in *Camk2a* expressing neurons.  
370 Collectively, these data show that prolactin action in the brain is absolutely required for the  
371 lactation-induced suppression of kisspeptin expression and to maintain lactational infertility  
372 in mice.

373 In a separate cohort of mice, pulsatile LH secretion in *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice was  
374 monitored in early lactation, prior to the return of estrous cycles. To rule out a potential role  
375 for progesterone in suppressing fertility during lactation <sup>9, 43, 44</sup>, the progesterone receptor  
376 antagonist mifepristone (RU486), was administered to mice in early lactation. Vehicle-treated  
377 *Prlr*<sup>lox/lox</sup> control mice showed the expected near complete absence of pulsatile LH secretion  
378 during lactation (Figure 2A, B). In contrast, nearly all *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice showed a

379 lack of the normal lactation-induced suppression of pulsatile LH secretion demonstrated by a  
380 significant increase in frequency of LH pulses compared to controls (effect of genotype  $p =$   
381 0.0024, two-way ANOVA with Tukey's multiple comparisons test, Figure 2A, B). There was  
382 no effect of mifepristone on this pattern of LH secretion, suggesting that progesterone action  
383 is not required for the suppression of LH secretion (LH pulse frequency (interaction genotype  
384 x treatment  $p = 0.2807$ ; treatment  $p = 0.8588$ ; Figure 2B), mean LH levels (interaction  
385 genotype x treatment  $p = 0.8697$ ; treatment  $p = 0.8586$ ; Figure 2C), two-way ANOVA with  
386 Tukey's multiple comparisons test). These data indicate that prolactin is the primary signal  
387 responsible for the suppression of LH during lactation in mice. Individual LH profiles from  
388 all animals are shown in Supplementary Figure 4.

389 **Episodic activity of arcuate kisspeptin neurons is suppressed during pregnancy and**  
390 **most of lactation**

391 To directly assess the role of prolactin in regulating kisspeptin neuron activity during  
392 lactation, GCaMP6 fibre photometry was undertaken to monitor real-time activity of arcuate  
393 kisspeptin neurons in freely behaving mice. We first undertook a longitudinal assessment of  
394 changes in kisspeptin neuronal activity by tracking individual animals throughout pregnancy  
395 and lactation and following weaning (Figure 3).

396 Initially, GCaMP fibre photometry recordings were collected in the virgin diestrous state,  
397 both with and without serial blood sampling to measure LH concentrations. As can be seen in  
398 Figure 4A, photometry recordings were characterized by discrete synchronised events (SEs)  
399 of elevated intracellular calcium (indicative of synchronous activity of the kisspeptin  
400 population), with each SE correlating perfectly to a single pulse of LH in the minutes  
401 following ( $p = <0.0001$ , chi-squared test). These were observed to be at a similar rate to that  
402 described previously in diestrous mice using GCaMP photometry in a different *Kiss1* mouse  
403 line<sup>9</sup>, with periodic SEs occurring about once per hour ( $1.250 \pm 0.250$ ; Figure 3 & 4B).

404 The activity of the arcuate kisspeptin population in *Kiss1*<sup>Cre</sup> mice dynamically changed  
405 depending on the reproductive state of the mouse ( $p = 0.0012$ , mixed-effect analysis, Figure 3  
406 & 4B). On day 4 of pregnancy, SE frequency had markedly decreased ( $0.297 \pm 0.136/\text{hr}$ ;  
407 Figure 3 & 4B), indicating an early reduction in activity of arcuate kisspeptin neurons during  
408 pregnancy. By day 14 of pregnancy, no SEs were seen ( $0 \pm 0/\text{hr}$ ; Figure 3 & 4B) and this was  
409 confirmed by a lack of pulsatile LH secretion (Supplementary Figure 5). In late pregnancy

410 (day 18), neuronal activity was monitored for 14 hours, during which time low amplitude,  
411 SEs were unexpectedly observed at similar frequencies to virgin levels ( $2.043\pm0.940/\text{hr}$ ;  
412 Figure 3 & 4B-C). This unusual pattern of activity is illustrated in more detail in Figure 5  
413 where alongside the resurgence of low amplitude SEs, there was a marked increase in  
414 baseline activity observed, relative to other stages. This activity was reminiscent of the  
415 miniature SEs observed to be caused by activation of subgroups of cells in a brain slice  
416 technique <sup>11</sup>, but we are unable to resolve such events using the present methods. Since our  
417 aim was to continue longitudinal assessment of the arcuate kisspeptin population into  
418 lactation and weaning, mice were not disrupted by blood sampling immediately prior to  
419 parturition as we were concerned that this additional stressor might interfere with  
420 establishment of maternal behaviour. Hence, we are unable to report whether these low  
421 amplitude SEs and elevated baseline activity were associated with LH secretion.

422 Evaluation of activity of arcuate kisspeptin neurons during lactation showed complete  
423 suppression of activity on day 7 of lactation with a corresponding absence of pulsatile LH  
424 secretion ( $0\pm0/\text{hr}$ ; Figure 3 & 4B). This lactation-induced suppression of activity was  
425 partially relieved by day 14 of lactation ( $0.583\pm0.083/\text{hr}$ ; Figure 3 & 4B), with SEs again  
426 corresponding to low frequency pulses of LH secretion. Further increases in SE frequency  
427 were seen on day 18 of lactation ( $0.850\pm0.100/\text{hr}$ ; Figure 3 & 4B), including an increase in  
428 baseline activity, similar to that seen in late pregnancy, and by 24 hours after weaning (day  
429 22 postpartum) the frequency of SEs returned to close to non-pregnant levels  
430 ( $1.375\pm0.114/\text{hr}$ ; Figure 3 & 4B). Frequency remained unchanged on the day of first diestrus  
431 following a return to estrous cycles after weaning ( $1.533\pm0.226/\text{hr}$ ; Figure 3 & 4B). As a  
432 final manipulation, mice were ovariectomized (OVX), and arcuate kisspeptin population  
433 activity observed to increase significantly with clusters of high amplitude activity  
434 ( $4.778\pm0.222/\text{hr}$ ; Figure 3 & 4B), consistent with previous reports following OVX in  
435 nulliparous mice <sup>45</sup>. Collectively, these observations show extensive, dynamic variation in  
436 activity of the arcuate kisspeptin neuronal population associated with pregnancy and  
437 lactation.

438 **Mice with an arcuate kisspeptin neuron-specific deletion have premature reactivation of  
439 estrous cycles and neuronal activity in lactation**

440 To determine whether the prolactin-induced suppression of estrous cycles and LH pulsatile  
441 secretion was specifically mediated by kisspeptin neurons, mice were generated with an

442 arcuate-specific deletion of the Prlr from kisspeptin neurons <sup>19</sup>. Similar to the data from  
443 forebrain neuron-specific deletion of Prlr, there was early resumption of estrous cycles in  
444 *Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup> mice during lactation (63% showing estrus by day 10 of lactation and 83%  
445 by day 19 lactation) compared to *Prlr*<sup>lox/lox</sup> controls (4% by day 19 lactation) (p = <0.0001,  
446 log-rank (Mantel-Cox) test, Figure 6A). No difference in litter weight gain during lactation  
447 (day 3-20 of lactation weight gain) was observed in either group (p = 0.6404, two-way  
448 ANOVA, Supplementary Figure 1H) indicating that suckling and/or lactation itself was not  
449 impaired. *In vivo* GCaMP6 fibre photometry in *Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup> mice showed early  
450 reactivation of the arcuate kisspeptin population between day 3 and 5 of lactation (Figure  
451 6C). This was accompanied by a clear return to estrous within this early lactation window in  
452 4/5 mice. These data demonstrate that prolactin action specifically on arcuate kisspeptin  
453 neurons is responsible for maintaining suppression of those neurons, and thereby fertility,  
454 during lactation in mice.

## 455 Discussion

456 We demonstrate here that prolactin action in arcuate kisspeptin neurons is necessary for the  
457 maintained suppression of fertility during lactation in mice. Neuron-specific Prlr deletion  
458 (*Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup>) resulted in premature return to estrus in early lactation, even in the  
459 presence of ongoing suckling stimulus and the full metabolic consequences of milk  
460 production. Accompanying the resumption of estrus was an absence of the normal lactation-  
461 induced reduction in kisspeptin immunoreactivity<sup>12, 16, 20</sup>, and pulsatile LH secretion was also  
462 observed on day 5 of lactation prior to the premature estrus when it would normally have  
463 been completely absent<sup>46-48</sup>. To evaluate the specific role of kisspeptin neurons in mediating  
464 the prolactin-induced suppression of fertility, we have comprehensively mapped the activity  
465 of arcuate kisspeptin neurons throughout a full reproductive cycle: pregnancy, lactation, and  
466 after weaning in individual animals. The data show an immediate suppression of activity of  
467 arcuate kisspeptin neuronal activity during pregnancy, and this is maintained throughout most  
468 of lactation, apart from a brief window of reactivation immediately prior to parturition.  
469 Deleting Prlr specifically from arcuate kisspeptin neurons prevented the suppression of  
470 activity in early lactation, resulting in premature induction of episodic activation of kisspeptin  
471 neurons, and early onset of estrus. Combined, these data provide direct evidence that  
472 prolactin action on kisspeptin neurons is necessary for lactation-induced infertility in mice.

473 It is now well established that the arcuate kisspeptin neurons form the GnRH “pulse  
474 generator”, and hence drive pulsatile release of GnRH from the hypothalamus and  
475 consequent pulses of LH from the pituitary that is required for fertility<sup>49-51</sup>. This is the first  
476 study to monitor activity of the GnRH “pulse generator” across different reproductive states  
477 in the same animal, and the data largely match previously described patterns of LH secretion  
478<sup>47, 52</sup>. The frequency and dynamics of the synchronised events changed dramatically, initially  
479 due to the pregnancy-induced changes in ovarian hormones. The abrupt decrease in “pulse  
480 generator” activity in early gestation is likely caused by rising levels of progesterone, known  
481 to profoundly suppress activity of arcuate kisspeptin neurons and LH secretion<sup>9, 43, 44</sup>.  
482 Progesterone is elevated throughout pregnancy, gradually increasing until luteolysis and  
483 progesterone withdrawal occurs in the lead up to parturition<sup>53-56</sup>. Interestingly, we observed a  
484 transient reactivation of the arcuate kisspeptin neurons in the night between days 18 and 19 of  
485 pregnancy. This was characterised by frequent, low amplitude episodes of activity, and  
486 increased baseline activity that may represent the intermittent synchronized activity of small

487 subsets of arcuate kisspeptin neurons that have not yet transitioned to full synchronization of  
488 the whole population<sup>11</sup>. It seems likely that this pattern of activity is associated with  
489 progesterone withdrawal in late pregnancy and may be important in stimulating follicular  
490 growth leading up to a postpartum ovulation<sup>57, 58</sup>.

491 In early lactation, episodic activity of arcuate kisspeptin neurons was absent, with sporadic  
492 low-amplitude activity returning around day 14 of lactation. There was another period of  
493 increased baseline activity in late lactation, similar to that seen in late pregnancy, potentially  
494 representing a signature of reactivation of synchronized activity of the arcuate kisspeptin  
495 neurons. Overall patterns of activity rapidly returned to normal diestrous levels soon after  
496 weaning. This increase in “pulse generator” activity during late lactation mirrors the increase  
497 in LH levels that has been reported as lactation progresses<sup>59</sup>. In the absence of Prlr in arcuate  
498 kisspeptin neurons, however, synchronized episodic activity re-appeared as early as 3 days  
499 after birth, even in the presence of ongoing suckling. These data clearly show that prolactin  
500 action in the arcuate kisspeptin neurons is necessary to sustain lactational infertility in mice.  
501 The observed disruption of lactational infertility in *Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup> mice is particularly  
502 remarkable given that Prlr deletion is restricted to arcuate kisspeptin neurons in this model<sup>19</sup>,  
503 and prolactin action on RP3V kisspeptin neurons<sup>21, 60</sup> and on gonadotrophs in the pituitary  
504 gland<sup>61-63</sup> are unaffected.

505 The indispensable role for prolactin in mediating lactation-induced infertility in the mouse is  
506 surprising, given the consensus of much work in other species concluding that other factors  
507 may be more important (see<sup>4, 6, 26, 27, 64</sup>). This may reflect a level of redundancy amongst  
508 contributing factors across all species, including ovarian hormones, metabolic cues and  
509 neural inputs of suckling. Notably, the conditional deletion approach described here  
510 distinguishes prolactin action from the neurogenic effects of suckling without altering the  
511 process of lactation itself. Moreover, this approach avoids the potential confounding effects  
512 of using dopamine agonists to suppress prolactin<sup>28, 29</sup>, given that dopamine can directly  
513 inhibit GnRH neuronal activity<sup>65</sup>.

514 While the effects of widespread neuronal deletion (*Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup>) on fertility were  
515 largely recapitulated by the arcuate kisspeptin-specific model, it was apparent that the global  
516 deletion was more effective at inducing the return to estrus during lactation (in 100% of  
517 animals by day 10), compared to the arcuate kisspeptin-specific model (63% by day 10, and  
518 83% by day 19). This may be due to the absence of lactation-induced suppression of *Kiss1*

519 expression in RP3V kisspeptin neurons of *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice. Similarly, we cannot  
520 rule out the possibility that other populations of prolactin-sensitive neurons, such as GABA  
521 or dopamine neurons<sup>60</sup>, may contribute to suppressing estrous cycles during lactation.  
522 Nevertheless, our data collectively provide strong evidence that prolactin action on arcuate  
523 kisspeptin neurons is the primary factor mediating lactation-induced infertility in mice. Given  
524 that hyperprolactinemia induces infertility in humans and many other species<sup>21, 22, 66-75</sup>, it is  
525 likely that a conserved mechanism will be contributing to lactational infertility in all  
526 mammalian species.

527 **Acknowledgments**

528 We would like to acknowledge the research assistance of Zin Khant-Aung, genotyping by  
529 Pene Knowles, and Dr Joon Kim for his assistance with analysis of fibre photometry data.

530 Financial support: This work was supported by Health Research Council of New Zealand  
531 (grant number: 21-560) and the Lions Club of Dunedin South - administered by Perpetual  
532 Guardian (Otago Medical Research Foundation).

533 **References**

- 534 1. Short, R.V. Lactation--the central control of reproduction. *Ciba Foundation symposium*,  
535 73-86 (1976).
- 536 2. McNeilly, A.S., *et al.* Fertility after childbirth: pregnancy associated with breast feeding. *Clin Endocrinol (Oxf)* **19**, 167-173 (1983).
- 538 3. Fox, S.R. & Smith, M.S. The suppression of pulsatile luteinizing hormone secretion  
539 during lactation in the rat. *Endocrinology* **115**, 2045-2051 (1984).
- 540 4. McNeilly, A.S. Lactational control of reproduction. *Reprod Fertil Dev* **13**, 583-590  
541 (2001).
- 542 5. Tsukamura, H. & Maeda, K. Non-metabolic and metabolic factors causing lactational  
543 anestrus: rat models uncovering the neuroendocrine mechanism underlying the suckling-  
544 induced changes in the mother. *Progress in brain research* **133**, 187-205 (2001).
- 545 6. McNeilly, A.S. Lactation and fertility. *Journal of mammary gland biology and neoplasia*  
546 **2**, 291-298 (1997).
- 547 7. Clarkson, J., *et al.* Definition of the hypothalamic GnRH pulse generator in mice. *Proc  
548 Natl Acad Sci U S A* **114**, E10216-E10223 (2017).
- 549 8. Han, S.Y., Kane, G., Cheong, I. & Herbison, A.E. Characterization of GnRH Pulse  
550 Generator Activity in Male Mice Using GCaMP Fiber Photometry. *Endocrinology* **160**,  
551 557-567 (2019).
- 552 9. McQuillan, H.J., Han, S.Y., Cheong, I. & Herbison, A.E. GnRH Pulse Generator  
553 Activity Across the Estrous Cycle of Female Mice. *Endocrinology* **160**, 1480-1491  
554 (2019).
- 555 10. Moore, A.M., Coolen, L.M. & Lehman, M.N. In vivo imaging of the GnRH pulse  
556 generator reveals a temporal order of neuronal activation and synchronization during  
557 each pulse. *Proceedings of the National Academy of Sciences* **119**, e2117767119 (2022).
- 558 11. Han, S.Y., *et al.* Mechanism of kisspeptin neuron synchronization for pulsatile hormone  
559 secretion in male mice. *Cell Rep* **42**, 111914 (2023).
- 560 12. Yamada, S., *et al.* Inhibition of metastin (kisspeptin-54)-GPR54 signaling in the arcuate  
561 nucleus-median eminence region during lactation in rats. *Endocrinology* **148**, 2226-2232  
562 (2007).
- 563 13. Liu, X., Brown, R.S., Herbison, A.E. & Grattan, D.R. Lactational anovulation in mice  
564 results from a selective loss of kisspeptin input to GnRH neurons. *Endocrinology* **155**,  
565 193-203 (2014).
- 566 14. Roa, J., *et al.* Hypothalamic expression of KiSS-1 system and gonadotropin-releasing  
567 effects of kisspeptin in different reproductive states of the female Rat. *Endocrinology* **147**, 2864-2878 (2006).
- 569 15. Ladyman, S.R. & Woodside, B. Food restriction during lactation suppresses Kiss1  
570 mRNA expression and kisspeptin-stimulated LH release in rats. *Reproduction* **147**, 743-  
571 751 (2014).
- 572 16. True, C., Kirigiti, M., Ciofi, P., Grove, K.L. & Smith, M.S. Characterisation of arcuate  
573 nucleus kisspeptin/neurokinin B neuronal projections and regulation during lactation in  
574 the rat. *J Neuroendocrinol* **23**, 52-64 (2011).
- 575 17. Brown, R.S., Herbison, A.E. & Grattan, D.R. Prolactin regulation of kisspeptin neurones  
576 in the mouse brain and its role in the lactation-induced suppression of kisspeptin  
577 expression. *J. Neuroendocrinol.* **26**, 898-908 (2014).
- 578 18. Xu, J., Kirigiti, M.A., Grove, K.L. & Smith, M.S. Regulation of food intake and  
579 gonadotropin-releasing hormone/luteinizing hormone during lactation: role of insulin  
580 and leptin. *Endocrinology* **150**, 4231-4240 (2009).

581 19. Brown, R.S.E., *et al.* Acute Suppression of LH Secretion by Prolactin in Female Mice Is  
582 Mediated by Kisspeptin Neurons in the Arcuate Nucleus. *Endocrinology* **160**, 1323-1332  
583 (2019).

584 20. Araujo-Lopes, R., *et al.* Prolactin regulates kisspeptin neurons in the arcuate nucleus to  
585 suppress LH secretion in female rats. *Endocrinology* **155**, 1010-1020 (2014).

586 21. Sonigo, C., *et al.* Hyperprolactinemia-induced ovarian acyclicity is reversed by  
587 kisspeptin administration. *J Clin Invest* **122**, 3791-3795 (2012).

588 22. Hackwell, E.C., Ladyman, S.R., Brown, R.S. & Grattan, D.R. Mechanisms of lactation-  
589 induced infertility in female mice. *Endocrinology* **164**, bqad049 (2023).

590 23. Schallenberger, E., Richardson, D.W. & Knobil, E. Role of prolactin in the lactational  
591 amenorrhea of the rhesus monkey (*Macaca mulatta*). *Biol Reprod* **25**, 370-374 (1981).

592 24. McNeilly, A. Suckling and the control of gonadotropin secretion. in *The Physiology of  
593 Reproduction* (ed. J.N. E. Knobil) 1179–1212 (Raven Press, New York, 1994).

594 25. Sugimoto, A., *et al.* Central somatostatin-somatostatin receptor 2 signaling mediates  
595 lactational suppression of luteinizing hormone release via the inhibition of glutamatergic  
596 interneurons during late lactation in rats. *Journal of Reproduction and Development*  
597 (2022).

598 26. Tay, C.C., Glasier, A.F. & McNeilly, A.S. Twenty-four hour patterns of prolactin  
599 secretion during lactation and the relationship to suckling and the resumption of fertility  
600 in breast-feeding women. *Human reproduction (Oxford, England)* **11**, 950-955 (1996).

601 27. Diaz, S., *et al.* Circadian variation of basal plasma prolactin, prolactin response to  
602 suckling, and length of amenorrhea in nursing women. *The Journal of clinical  
603 endocrinology and metabolism* **68**, 946-955 (1989).

604 28. Maeda, K., *et al.* Prolactin does not mediate the suppressive effect of the suckling  
605 stimulus on luteinizing hormone secretion in ovariectomized lactating rats.  
606 *Endocrinologia japonica* **37**, 405-411 (1990).

607 29. Smith, M.S. The relative contribution of suckling and prolactin to the inhibition of  
608 gonadotropin secretion during lactation in the rat. *Biol Reprod* **19**, 77-83 (1978).

609 30. Steyn, F.J., *et al.* Development of a methodology for and assessment of pulsatile  
610 luteinizing hormone secretion in juvenile and adult male mice. *Endocrinology* **154**, 4939-  
611 4945 (2013).

612 31. Czieselsky, K., *et al.* Pulse and Surge Profiles of Luteinizing Hormone Secretion in the  
613 Mouse. *Endocrinology* **157**, 4794-4802 (2016).

614 32. Briski, K.P. & Sylvester, P.W. Effects of sequential acute stress exposure on stress-  
615 induced pituitary luteinizing hormone and prolactin secretion. *Life sciences* **41**, 1249-  
616 1255 (1987).

617 33. Steyn, F.J., *et al.* Development of a method for the determination of pulsatile growth  
618 hormone secretion in mice. *Endocrinology* **152**, 3165-3171 (2011).

619 34. Brown, R.S., *et al.* Conditional Deletion of the Prolactin Receptor Reveals Functional  
620 Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus. *J.  
621 Neurosci.* **36**, 9173-9185 (2016).

622 35. Gustafson, P., *et al.* Prolactin receptor-mediated activation of pSTAT5 in the pregnant  
623 mouse brain. *J Neuroendocrinol* **32**, e12901 (2020).

624 36. Smith, J.T., Cunningham, M.J., Rissman, E.F., Clifton, D.K. & Steiner, R.A. Regulation  
625 of Kiss1 gene expression in the brain of the female mouse. *Endocrinology* **146**, 3686-  
626 3692 (2005).

627 37. Moult, P.J., Rees, L.H. & Besser, G.M. Pulsatile gonadotrophin secretion in  
628 hyperprolactinaemic amenorrhoea an the response to bromocriptine therapy. *Clin  
629 Endocrinol (Oxf)* **16**, 153-162 (1982).

630 38. Porteous, R., *et al.* Reformulation of PULSAR for Analysis of Pulsatile LH Secretion  
631 and a Revised Model of Estrogen-Negative Feedback in Mice. *Endocrinology* **162**  
632 (2021).

633 39. Clarkson, J., d'Anglemont de Tassigny, X., Colledge, W.H., Caraty, A. & Herbison, A.E.  
634 Distribution of kisspeptin neurones in the adult female mouse brain. *J Neuroendocrinol*  
635 **21**, 673-682 (2009).

636 40. Clarkson, J., Boon, W.C., Simpson, E.R. & Herbison, A.E. Postnatal development of an  
637 estradiol-kisspeptin positive feedback mechanism implicated in puberty onset.  
638 *Endocrinology* **150**, 3214-3220 (2009).

639 41. Kim, C.K., *et al.* Simultaneous fast measurement of circuit dynamics at multiple sites  
640 across the mammalian brain. *Nature methods* **13**, 325-328 (2016).

641 42. Sherathiya, V.N., Schaid, M.D., Seiler, J.L., Lopez, G.C. & Lerner, T.N. GuPPy, a  
642 Python toolbox for the analysis of fiber photometry data. *Scientific Reports* **11**, 24212  
643 (2021).

644 43. Goodman, R.L. & Karsch, F.J. Pulsatile secretion of luteinizing hormone: differential  
645 suppression by ovarian steroids. *Endocrinology* **107**, 1286-1290 (1980).

646 44. Skinner, D.C., *et al.* The negative feedback actions of progesterone on gonadotropin-  
647 releasing hormone secretion are transduced by the classical progesterone receptor. *Proc  
648 Natl Acad Sci U S A* **95**, 10978-10983 (1998).

649 45. McQuillan, H.J., *et al.* Definition of the estrogen negative feedback pathway controlling  
650 the GnRH pulse generator in female mice. *Nature Communications* **13**, 7433 (2022).

651 46. Bohnet, H.G. & Schneider, H.P. Prolactin as a cause of anovulation. in *Prolactin and  
652 human reproduction* (ed. P.G. Crosignani & C. Robyn) 153-159 (Academic Press, New  
653 York, 1977).

654 47. McNeilly. Effects of lactation on fertility. (1979).

655 48. McNeilly, A.S., Tay, C.C. & Glasier, A. Physiological mechanisms underlying  
656 lactational amenorrhea. *Ann. N. Y. Acad. Sci.* **709**, 145-155 (1994).

657 49. Herbison, A.E. The Gonadotropin-Releasing Hormone Pulse Generator. *Endocrinology*  
658 **159**, 3723-3736 (2018).

659 50. de Roux, N., *et al.* Hypogonadotropic hypogonadism due to loss of function of the  
660 KiSS1-derived peptide receptor GPR54. *Proc Natl Acad Sci U S A* **100**, 10972-10976  
661 (2003).

662 51. Seminara *et al.* The GPR54 gene as a regulator of puberty. (2003).

663 52. Morishige, W.K., Pepe, G.J. & Rothchild, I. Serum luteinizing hormone, prolactin and  
664 progesterone levels during pregnancy in the rat. *Endocrinology* **92**, 1527-1530 (1973).

665 53. Virgo, B.B. & Bellward, G.D. Serum progesterone levels in the pregnant and postpartum  
666 laboratory mouse. *Endocrinology* **95**, 1486-1490 (1974).

667 54. Pointis, G., Rao, B., Latreille, M., Mignot, T.-M. & Cedard, L. Progesterone levels in the  
668 circulating blood of the ovarian and uterine veins during gestation in the mouse. *Biology  
669 of Reproduction* **24**, 801-805 (1981).

670 55. Bridges, R.S. A quantitative analysis of the roles of dosage, sequence, and duration of  
671 estradiol and progesterone exposure in the regulation of maternal behavior in the rat.  
672 *Endocrinology* **114**, 930-940 (1984).

673 56. Sugimoto, Y., *et al.* Failure of parturition in mice lacking the prostaglandin F receptor.  
674 *Science* **277**, 681-683 (1997).

675 57. Thapa, S., Short, R.V. & Potts, M. Breast feeding, birth spacing and their effects on child  
676 survival. *Nature* **335**, 679-682 (1988).

677 58. Zakar, T. & Hertelendy, F. Progesterone withdrawal: key to parturition. *American  
678 journal of obstetrics and gynecology* **196**, 289-296 (2007).

679 59. Rolland, R., Lequin, R.M., Schellekens, L.A. & Jong, F.H.D. The role of prolactin in the  
680 restoration of ovarian function during the early post-partum period in the human female:  
681 I. A study during physiological lactation. *Clinical Endocrinology* **4**, 15-25 (1975).

682 60. Kokay, I.C., Petersen, S.L. & Grattan, D.R. Identification of prolactin-sensitive GABA  
683 and kisspeptin neurons in regions of the rat hypothalamus involved in the control of  
684 fertility. *Endocrinology* **152**, 526-535 (2011).

685 61. Hodson, D.J., Townsend, J. & Tortonese, D.J. Characterization of the Effects of  
686 Prolactin in Gonadotroph Target Cells1. *Biology of Reproduction* **83**, 1046-1055 (2010).

687 62. Tortonese, D.J., Brooks, J., Ingleton, P.M. & McNeilly, A.S. Detection of prolactin  
688 receptor gene expression in the sheep pituitary gland and visualization of the specific  
689 translation of the signal in gonadotrophs. *Endocrinology* **139**, 5215-5223 (1998).

690 63. Henderson, H.L., Townsend, J. & Tortonese, D.J. Direct effects of prolactin and  
691 dopamine on the gonadotroph response to GnRH. *J Endocrinol* **197**, 343-350 (2008).

692 64. Woodside, C. & Jans, J.E. Role of the nutritional status of the litter and length and  
693 frequency of mother-litter contact bouts in prolonging lactational diestrus in rats. *Horm  
694 Behav* **29**, 154-176 (1995).

695 65. Liu, X. & Herbison, A.E. Dopamine regulation of gonadotropin-releasing hormone  
696 neuron excitability in male and female mice. *Endocrinology* **154**, 340-350 (2013).

697 66. Greer, M.E., Moraczewski, T. & Rakoff, J.S. Prevalence of hyperprolactinemia in  
698 anovulatory women. *Obstetrics and gynecology* **56**, 65-69 (1980).

699 67. Evans, W., Cronin, M. & Thorner, M. Hypogonadism in hyperprolactinemia: proposed  
700 mechanisms. (1982).

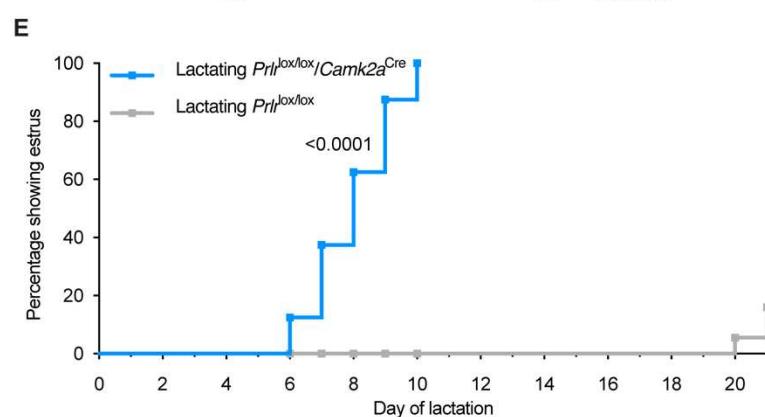
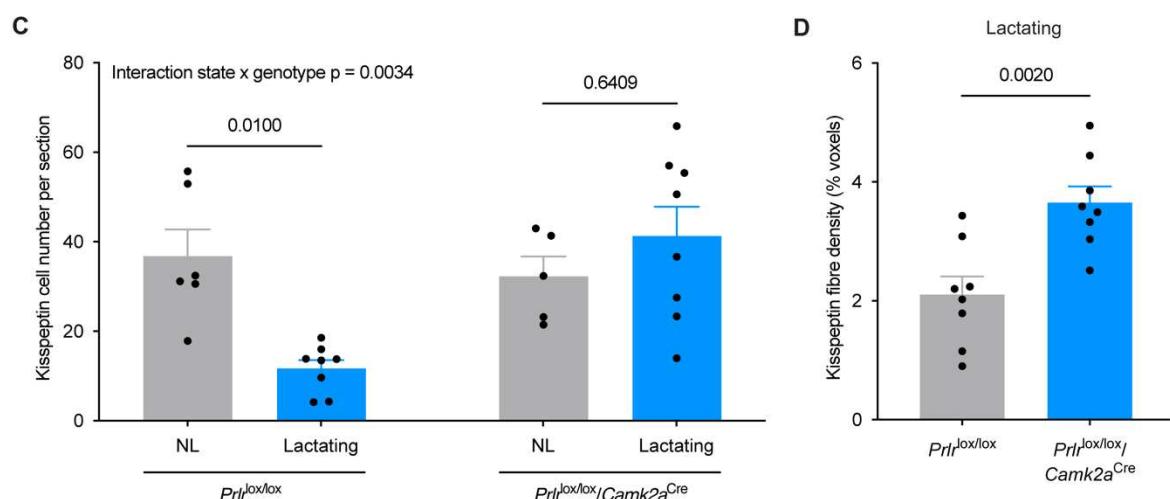
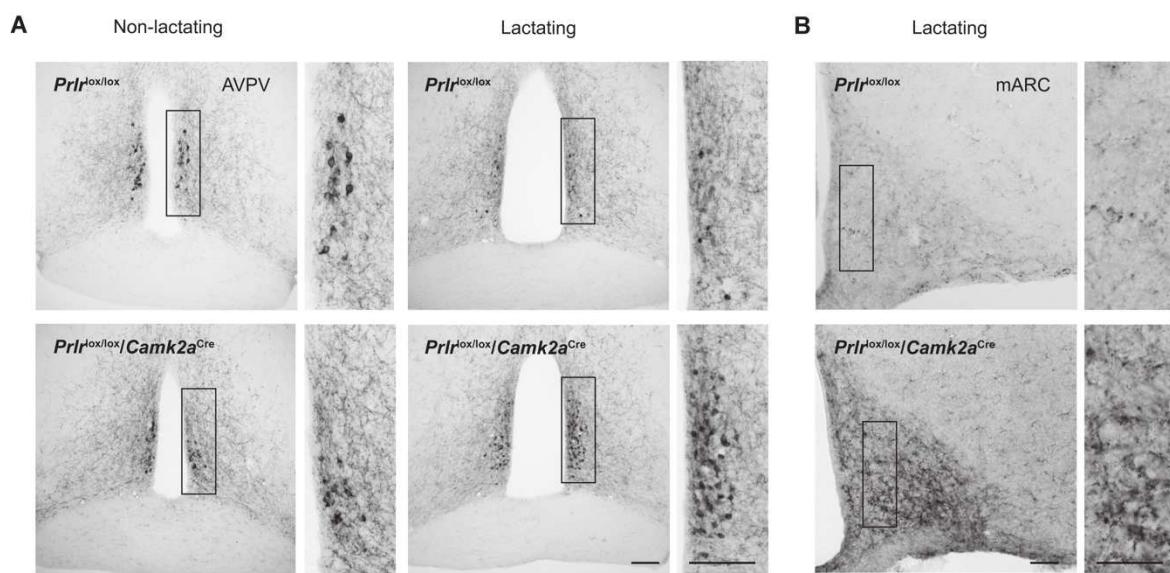
701 68. Koike, K., *et al.* Effect of prolactin on the secretion of hypothalamic GnRH and pituitary  
702 gonadotropins. *Hormone research* **35 Suppl 1**, 5-12 (1991).

703 69. Patel, S.S. & Bamigboye, V. Hyperprolactinaemia. *Journal of obstetrics and  
704 gynaecology : the journal of the Institute of Obstetrics and Gynaecology* **27**, 455-459  
705 (2007).

706 70. Cohen-Becker, I.R., Selmanoff, M. & Wise, P.M. Hyperprolactinemia alters the  
707 frequency and amplitude of pulsatile luteinizing hormone secretion in the ovariectomized  
708 rat. *Neuroendocrinology* **42**, 328-333 (1986).

709 71. Sarkar, D.K. & Yen, S.S. Hyperprolactinemia decreases the luteinizing hormone-  
710 releasing hormone concentration in pituitary portal plasma: a possible role for beta-  
711 endorphin as a mediator. *Endocrinology* **116**, 2080-2084 (1985).

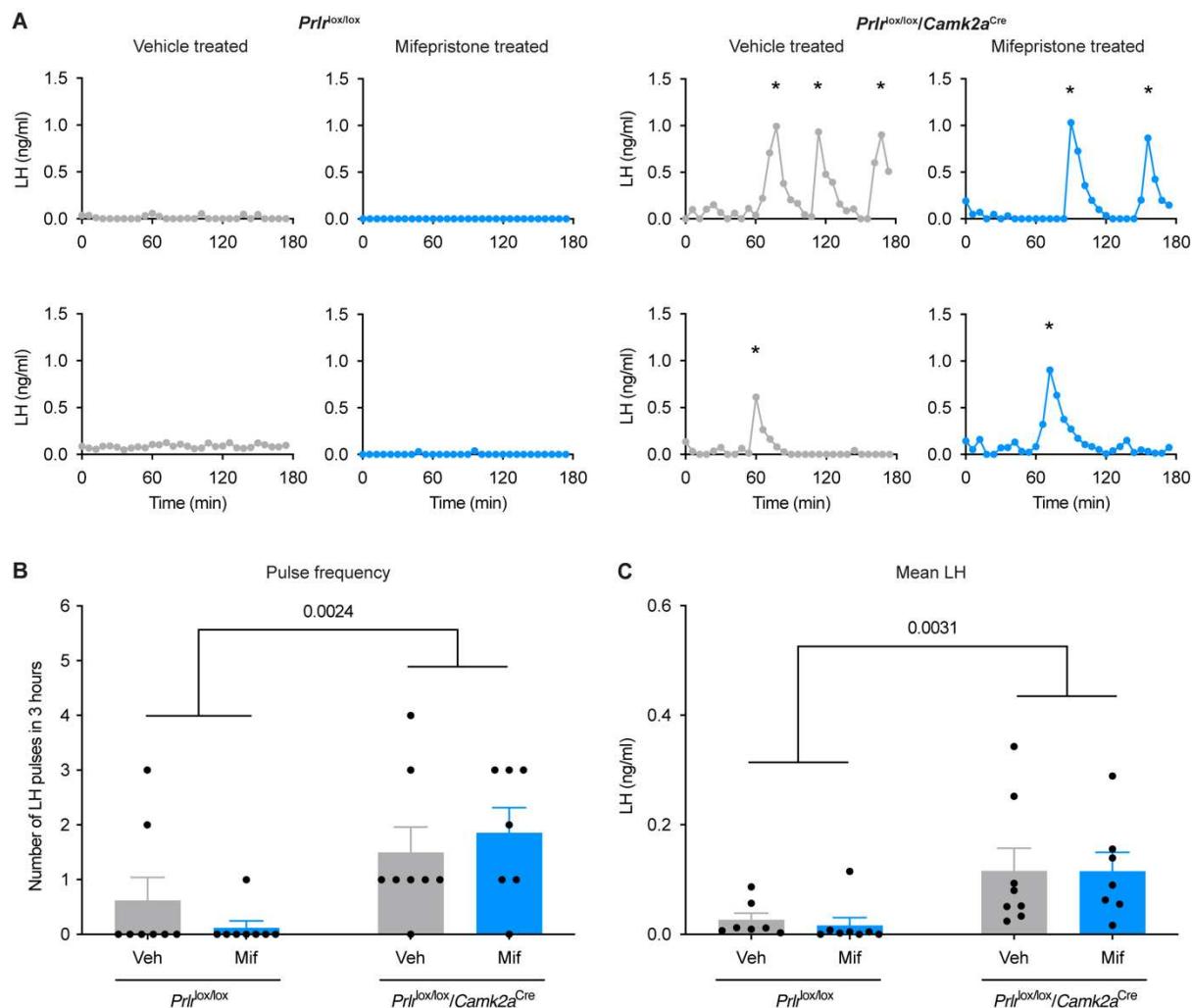
712 72. Fox, S.R., Hoefer, M.T., Bartke, A. & Smith, M.S. Suppression of pulsatile LH  
713 secretion, pituitary GnRH receptor content and pituitary responsiveness to GnRH by  
714 hyperprolactinemia in the male rat. *Neuroendocrinology* **46**, 350-359 (1987).




715 73. Park, S.K., Keenan, M.W. & Selmanoff, M. Graded hyperprolactinemia first suppresses  
716 LH pulse frequency and then pulse amplitude in castrated male rats. *Neuroendocrinology*  
717 **58**, 448-453 (1993).

718 74. Park, S.K. & Selmanoff, M. Dose-dependent suppression of postcastration luteinizing  
719 hormone secretion exerted by exogenous prolactin administration in male rats: a model  
720 for studying hyperprolactinemic hypogonadism. *Neuroendocrinology* **53**, 404-410  
721 (1991).

722 75. Grattan, D.R., Jasoni, C.L., Liu, X., Anderson, G.M. & Herbison, A.E. Prolactin  
723 regulation of gonadotropin-releasing hormone neurons to suppress luteinizing hormone  
724 secretion in mice. *Endocrinology* **148**, 4344-4351 (2007).

725


727 **Figures**



728

729

730 **Figure 1. *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice do not undergo the normal period of lactational**  
731 **infertility and the lactation-induced suppression of kisspeptin immunoreactivity is**  
732 **absent.** (A) Kisspeptin immunoreactivity shown in representative photomicrographs from the  
733 rostral periventricular region of the third ventricle (RP3V) non-lactating (NL; left) and  
734 lactating (right) *Prlr*<sup>lox/lox</sup> control and *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice (from anteroventral  
735 periventricular nucleus (AVPV) region of RP3V). (B) Representative photomicrographs  
736 showing mid arcuate nucleus (mARC) of a lactating *Prlr*<sup>lox/lox</sup> mouse (top) and a lactating  
737 *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mouse (bottom). (C) Total kisspeptin cell number for the RP3V (NL  
738 *Prlr*<sup>lox/lox</sup> (n = 6) versus lactating *Prlr*<sup>lox/lox</sup> control (n = 8) p = 0.0100, NL *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup>  
739 (n = 5) versus lactating *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> (n = 8) p = 0.6409). Two-way ANOVA followed  
740 by Tukey's multiple comparisons test. (D) Quantification of kisspeptin fibre density in the  
741 arcuate nucleus (Fiji software, measured in percentage voxels per region of interest), showing  
742 total kisspeptin fibre density in the arcuate nucleus (lactating *Prlr*<sup>lox/lox</sup> control n = 8, lactating  
743 *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> n = 7, p = 0.0020, unpaired two-tailed t test). (E) *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup>  
744 mice (blue, n = 8) resume estrous cycles significantly earlier (100% within 6-10 days of  
745 lactation) than *Prlr*<sup>lox/lox</sup> controls (grey, n = 10) (p = <0.0001, Log-rank (Mantel-Cox) test).  
746 Scale bar image and insert = 50µm. Values are shown as mean ± SEM.



747

748 **Figure 2. Prolactin action in the brain during lactation is necessary for the suppression**  
749 **of pulsatile LH secretion.** Examples of pulsatile LH levels in the blood from lactating

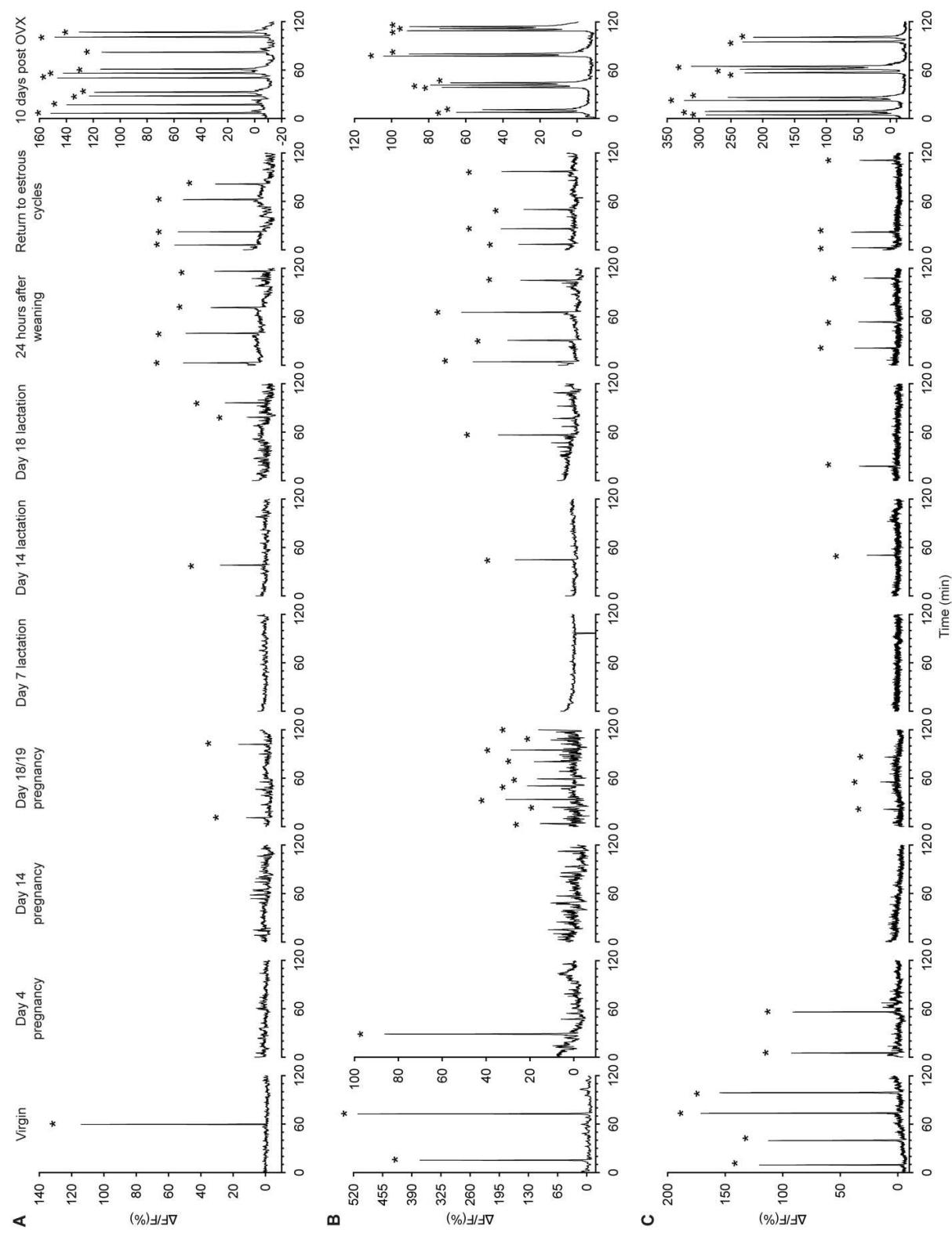
750 *Prlrllox/lox* controls and lactating *Prlrllox/lox/Camk2aCre* mice that have either been treated with

751 vehicle (sesame oil, s.c., grey, veh) or 4mg/kg mifepristone (in sesame oil, s.c., blue, mif) on

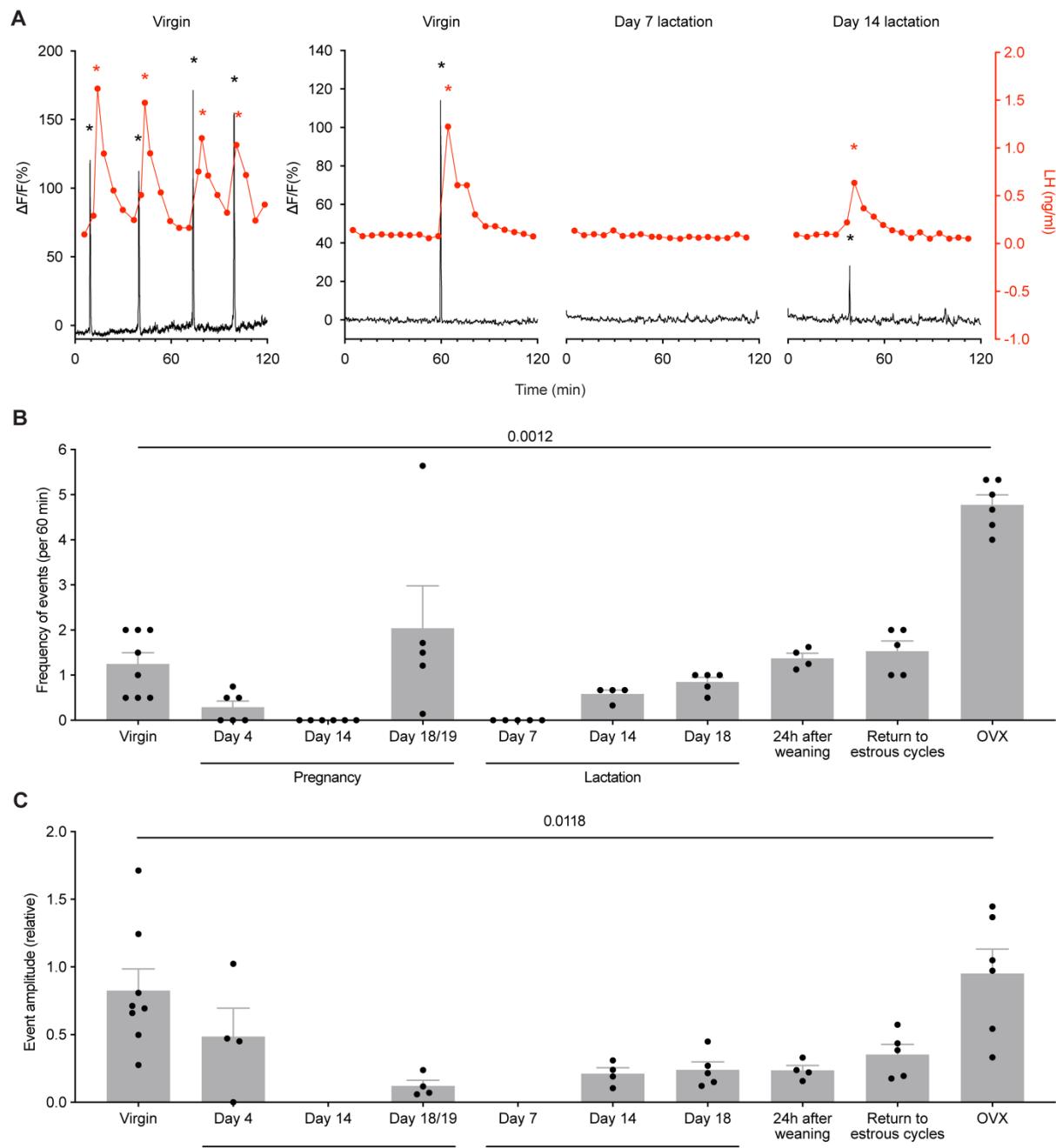
752 the day prior and on the day of blood sampling (2 injections). Asterisks indicate LH pulse

753 peaks as detected by PULSAR Otago analysis. Graphs show LH pulse frequency (B;

754 interaction p = 0.2807, genotype p = 0.0024, state p = 0.8558), and mean LH levels (C;


755 interaction p = 0.8697, genotype p = 0.0031, state p = 0.8586). Lactating vehicle-treated

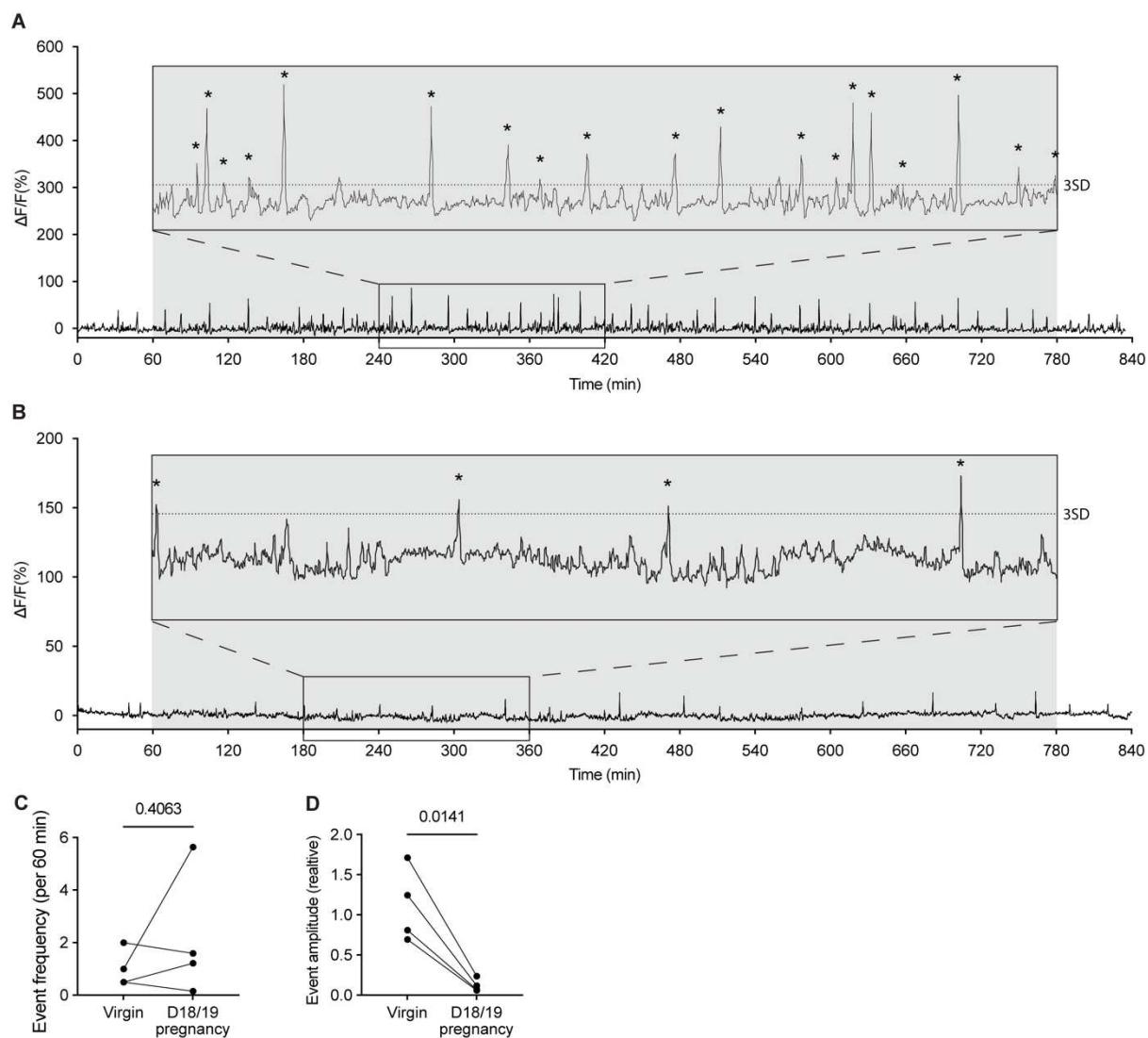
756 *Prlrllox/lox* (n = 8), lactating mifepristone-treated *Prlrllox/lox* (n = 8), lactating vehicle-treated


757 *Prlrllox/lox/Camk2aCre* (n = 8), lactating mifepristone-treated *Prlrllox/lox/Camk2aCre* (n = 7). Two-

758 way ANOVA followed by Tukey's multiple comparisons test. Values are shown as mean  $\pm$

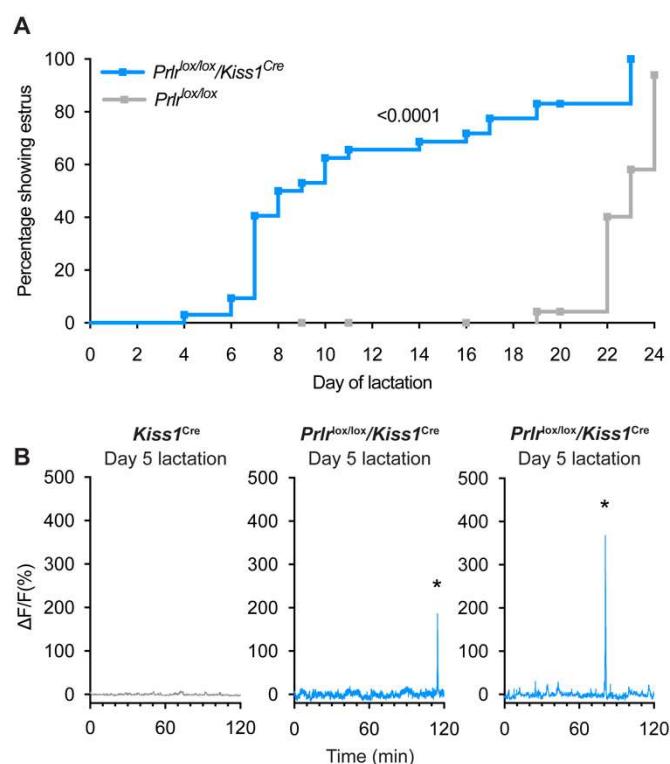
759 SEM.




762 **Figure 3. Arcuate kisspeptin neuron GCaMP6 population activity throughout different**  
763 **reproductive states in the same mice.** Representative neuronal activity from three *Kiss1*<sup>Cre</sup>  
764 mice throughout the virgin, pregnant, lactating, and post-weaning states. The time points  
765 monitored in order were: virgin diestrus, day 4 pregnancy, day 14 pregnancy, day 18/19  
766 pregnancy (overnight), day 7 lactation, day 14 lactation, day 18 lactation, 24 hours after  
767 weaning (day 22 postpartum), return to normal cycling following weaning (return to estrous  
768 cycles), and 10 days post ovariectomy (OVX). Asterisks indicate SEs. Note: dataset from (B)  
769 on day 4 of pregnancy onwards and OVX datasets from all mice are on a different y axes  
770 scale.

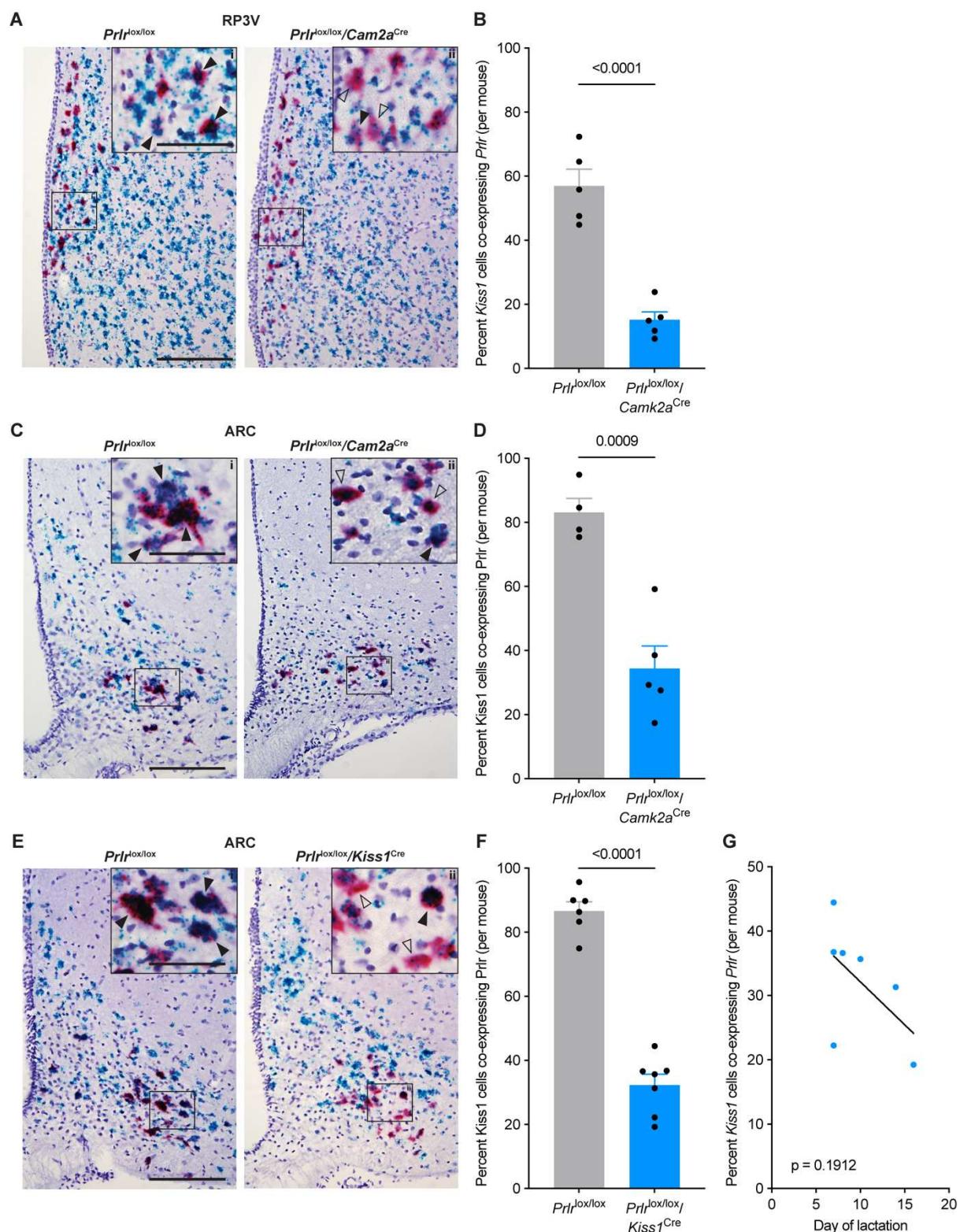


771


772 **Figure 4. Synchronised  $\text{Ca}^{2+}$  events are perfectly correlated to pulsatile LH secretion**  
773 **across different reproductive states.** (A) When fibre photometry was paired with serial  
774 blood sampling for pulsatile LH secretion, the relationship between SEs and LH pulses was  
775 examined. Each of the times an SE was seen during a recording with blood sampling, a pulse  
776 of LH was also observed, with 100% correlation ( $p = <0.0001$ , Chi-squared test; 73 out of 73  
777 SEs observed lead to an LH pulse). Representative examples of paired photometry and blood  
778 sampling are shown from the diestrous state (virgin), from day 7 lactation where no SEs  
779 corresponds with no LH release, and from day 14 lactation when SE are beginning to re-

780 emerge. (B) Quantitative analysis of SE frequency per hour across different reproductive  
781 states in *Kiss1*<sup>Cre</sup> mice (p = 0.0012, mixed effect analysis (fixed type III) with Tukey's  
782 multiple comparisons tests). (C) Quantitative analysis of SE amplitude of normalised  $\Delta F/F$   
783 across different reproductive states (p = 0.0118, mixed effect analysis (fixed type III) with  
784 Tukey's multiple comparisons tests). Black asterisks indicate SEs, red asterisks indicate LH  
785 pulse peaks as detected by PULSAR Otago analysis. Values shown as mean  $\pm$  SEM.




**787 Figure 5. Activity of arcuate kisspeptin neurons on day 18/19 of pregnancy**

788 Fibre photometry recordings of mice on the evening of day 18 of pregnancy (0600 hours) to  
789 the morning of day 19 of pregnancy (0800 hours) shows low amplitude SEs. 3-hour  
790 section blown up for ease of viewing. (C) No difference is seen between frequency of SEs  
791 (per 60 minutes) in the virgin diestrus versus D18/19 pregnancy ( $p = 0.4063$ , paired two-  
792 tailed t test), however a significant decrease in relative SE amplitude is seen (D;  $p = 0.0141$ ,  
793 paired two-tailed t test). Asterisks indicate SEs. Dotted line in insert of (A) and (B) indicates  
794 3 standard deviations (3SD). Grey shaded region = lights off.



795  
796 **Figure 6. *Prlr<sup>lox/lox</sup>/Kiss1<sup>Cre</sup>* mice do not undergo the normal period of lactational**  
797 **infertility and show early reactivation of arcuate kisspeptin neurons prior to estrus in**  
798 **lactation. (A) *Prlr<sup>lox/lox</sup>/Kiss1<sup>Cre</sup>* mice resume estrous cycles significantly earlier (78% within**  
799 **4-18 days of lactation, n = 32) than *Prlr<sup>lox/lox</sup>* controls (0% by day 18, n = 30) (p = <0.0001,**  
800 **Log-rank (Mantel-Cox) test). (B) Representative fibre photometry traces from day 5 of**  
801 **lactation from either a *Kiss1<sup>Cre</sup>* control mouse or *Prlr<sup>lox/lox</sup>/Kiss1<sup>Cre</sup>* mice. Mice with *Prlr***  
802 **knocked out of arcuate kisspeptin neurons (*Prlr<sup>lox/lox</sup>/Kiss1<sup>Cre</sup>*) show SEs early in lactation,**  
803 **which were not seen until day 14 lactation in *Kiss1<sup>Cre</sup>* control mice. In comparison, the**  
804 ***Kiss1<sup>Cre</sup>* control mouse shows no SEs, as seen in earlier groups sampled on day 7. Asterisks**  
805 **indicate SEs.**

806 **Supplementary data**

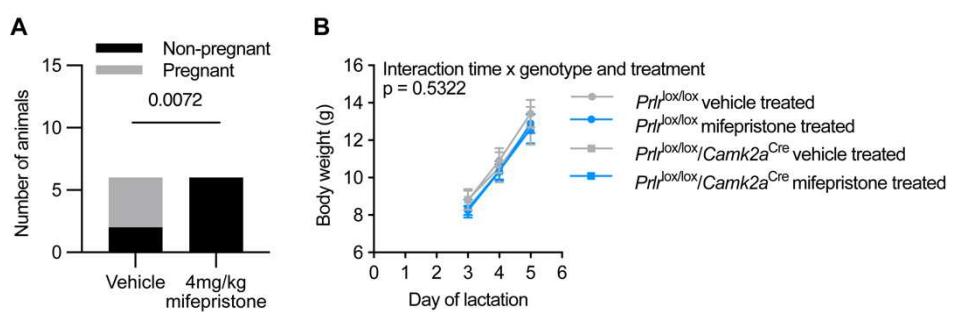


807

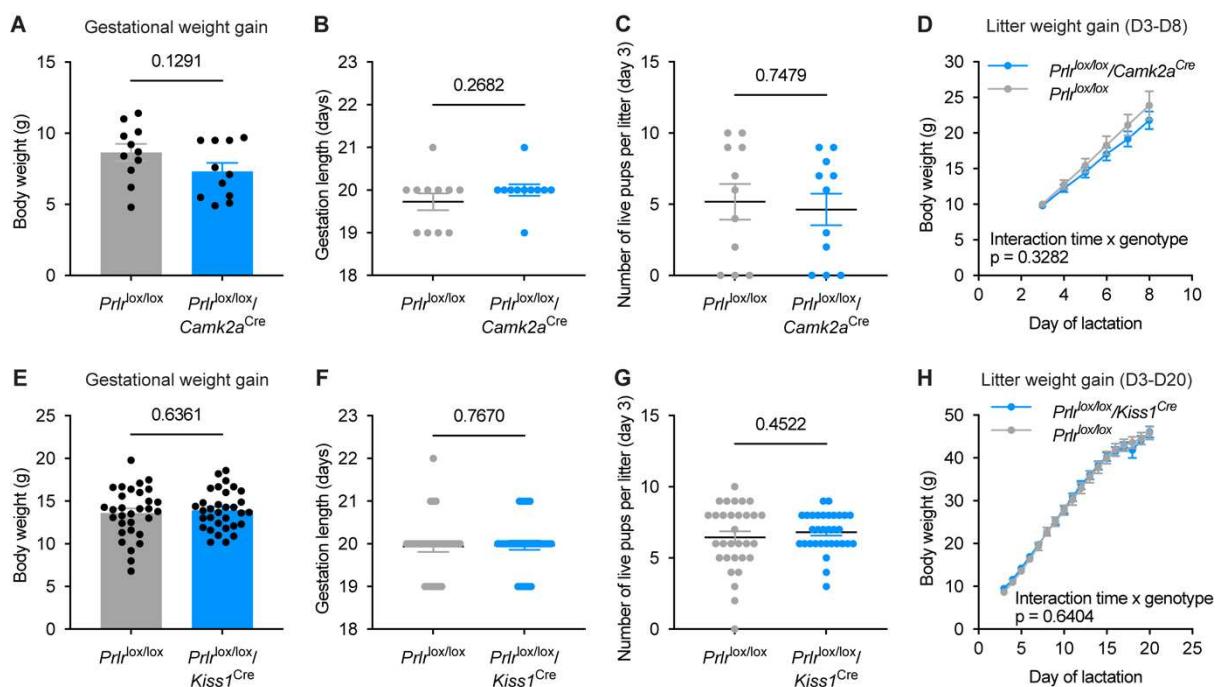
808

809 **Supplementary Figure 1. Proportion of kisspeptin neurons showing *Prlr* deletion using**  
810 **RNAscope.** Representative photomicrographs showing RNAscope labelling for *Prlr* (blue)  
811 and *Kiss1* (red) in the rostral periventricular region of the third ventricle (RP3V, A) or  
812 arcuate nucleus (ARC, C, E), in either intact (*Prlr*<sup>lox/lox</sup> control n = 5, *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup>, n  
813 = 5, A) or ovariectomised (OVX; *Prlr*<sup>lox/lox</sup> control n = 4, *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> n = 5, C;  
814 *Prlr*<sup>lox/lox</sup> control n = 6, *Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup> n = 7, E) mice. Compared to *Prlr*<sup>lox/lox</sup> control mice,  
815 *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice show a significant decrease in percentage of *Kiss1*-expressing cells  
816 co-expressing *Prlr* in both the RP3V (B; p = <0.0001) and ARC (D; p = 0.0009) (unpaired  
817 two-tailed t tests). (F) A significant decrease in the percent of *Kiss1*-expressing cells co-  
818 expressing *Prlr* was seen in *Prlr*<sup>lox/lox</sup>/*Kiss1*<sup>Cre</sup> compared to *Prlr*<sup>lox/lox</sup> controls (p = <0.0001,  
819 unpaired two-tailed t test). (G) No correlation was found between percentage of *Kiss1* cells  
820 co-expressing with *Prlr* and the day of estrus return during lactation (p = 0.1912, simple  
821 linear regression). A *Kiss1*-expressing cell was classified as co-expressing *Prlr* mRNA if the  
822 density of *Prlr* staining was above background. Solid black arrows = doubled labelled cells  
823 expressing both *Kiss1* and *Prlr*; black outlined arrows = *Kiss1* cells with sparse co-labelling  
824 for *Prlr*. Scale bar = 150 $\mu$ m, insert = 60 $\mu$ m. Values are shown as mean  $\pm$  SEM.

825

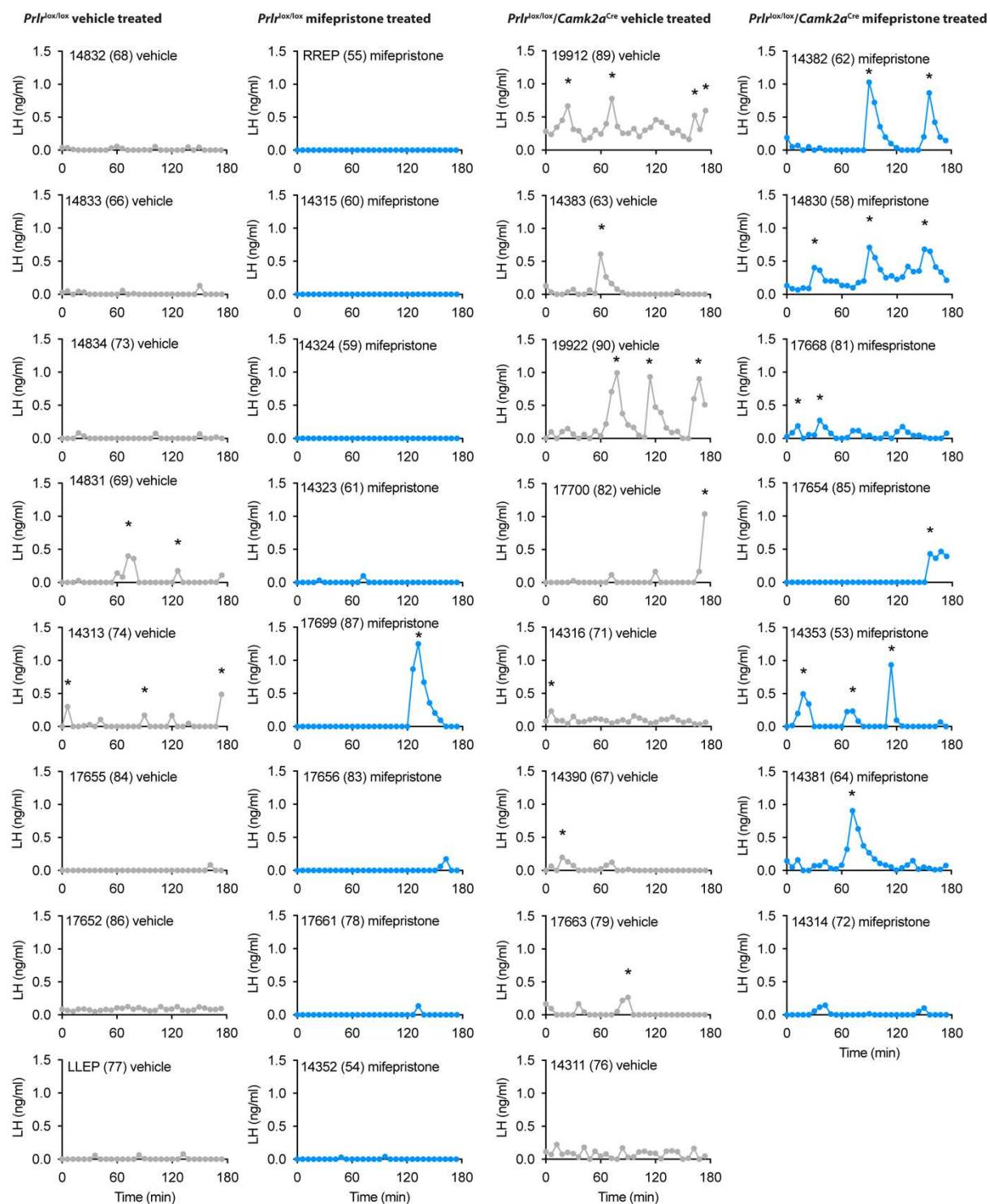

826

827  
828


829

830 **Supplementary Figure 2. Mifepristone dose response and effect on litter weight gain.**

831 (A) Mifepristone dose response trial showing dose of 4mg/kg was sufficient to terminate  
832 pregnancy in all mice ( $p = 0.072$ , Chi-square test,  $n = 6$  both groups). (B) Mifepristone or  
833 vehicle injections had no effect on litter weight gain from day 3 to day 5 of lactation  
834 (interaction of time x genotype & treatment  $p = 0.5322$ ; time  $p = <0.0001$ ; genotype and  
835 treatment  $p = 0.8811$ ; subject  $p = <0.0001$ ; two-way ANOVA). Values are shown as mean  $\pm$   
836 SEM.



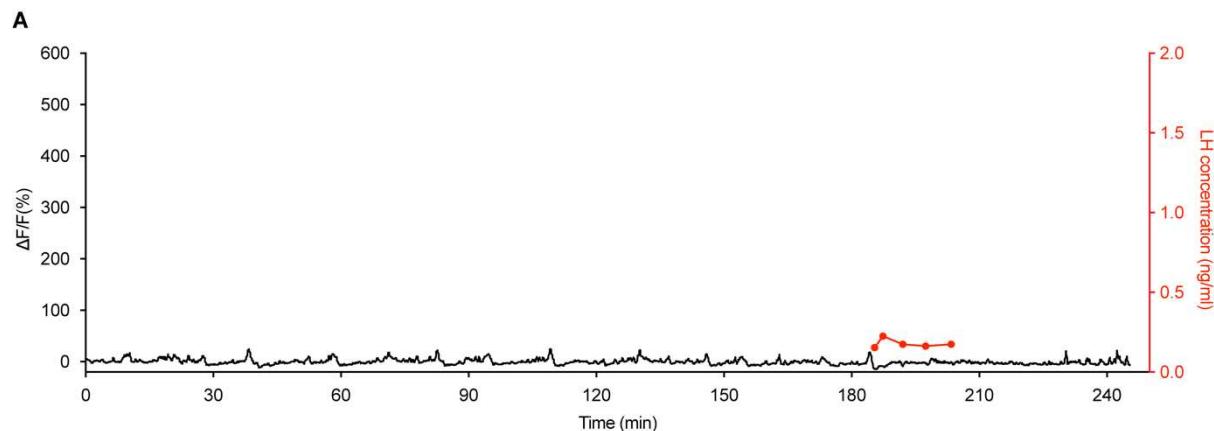

837



838

839 **Supplementary Figure 3. Gestational and maternal phenotyping of *Prlrllox/lox/Camk2aCre***  
840 **and *Prlrllox/lox/Kiss1Cre* mice and their respective *Prlrllox/lox* controls. (A-H)** Data show  
841 gestational weight gain (A; *Prlrllox/lox* n = 11, *Prlrllox/lox/Camk2aCre* n = 11; E; *Prlrllox/lox* n = 31,  
842 *Prlrllox/lox/Kiss1Cre* n = 27), gestation length (B; *Prlrllox/lox* n = 11, *Prlrllox/lox/Camk2aCre* n = 11; F;  
843 *Prlrllox/lox* n = 31, *Prlrllox/lox/Kiss1Cre* n = 27), number of live pups on day 3 of lactation (C;  
844 *Prlrllox/lox* n = 11; *Prlrllox/lox/Camk2aCre* n = 11; G; *Prlrllox/lox* n = 31, *Prlrllox/lox/Kiss1Cre* n = 27),  
845 and litter weight gain between day 3-8 of lactation (D; *Prlrllox/lox* n = 8; *Prlrllox/lox/Camk2aCre* n  
846 = 8) or day 3-20 of lactation (H; *Prlrllox/lox* n = 22, *Prlrllox/lox/Kiss1Cre* n = 20). There were no  
847 differences in any of these parameters (A, C, E, G, unpaired two-tailed t test; B, F, Mann  
848 Whitney test; D, H, repeated measures mixed effect analysis, fixed effects (type III) with  
849 Šídák's multiple comparisons test. Grey = *Prlrllox/lox*; blue A-D = *Prlrllox/lox/Camk2aCre*, blue E-  
850 H = *Prlrllox/lox/Kiss1Cre*. Some *Prlrllox/lox* and *Prlrllox/lox/Kiss1Cre* mice were euthanised prior to  
851 day 20 lactation due to COVID-19 lockdown (*Prlrllox/lox* n = 5, *Prlrllox/lox/Kiss1Cre* n = 5), due to  
852 showing estrus and therefore euthanised 2 hours following blood sampling, or when being  
853 used as a control for one of these mice (*Prlrllox/lox* n = 2, *Prlrllox/lox/Kiss1Cre* n = 2), or due to a  
854 litter losing weight (*Prlrllox/lox* n = 1). Values are shown as mean ± SEM.




855

856

857

858 **Supplementary Figure 4: Pulsatile LH secretion profiles of *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice**  
859 **and their controls following vehicle or mifepristone treatment.** Individual LH pulse data  
860 from lactating *Prlr*<sup>lox/lox</sup> controls and *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> mice treated with either vehicle  
861 (sesame oil subcutaneous injection, grey) or 4mg/kg mifepristone (in sesame oil  
862 subcutaneous injection, blue) once a day for 2 days prior to blood sampling (2 injections).  
863 Lactating vehicle-treated *Prlr*<sup>lox/lox</sup> (n = 8), lactating mifepristone-treated *Prlr*<sup>lox/lox</sup> (n = 8),  
864 lactating vehicle-treated *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> (n = 8), lactating mifepristone-treated  
865 *Prlr*<sup>lox/lox</sup>/*Camk2a*<sup>Cre</sup> (n = 7). Asterisks indicate LH pulse peaks as detected by PULSAR  
866 Otago analysis.

867



868  
869 **Supplementary Figure 5. Miniature synchronised event-like activity on day 14 of**  
870 **pregnancy does not result in pulsatile LH secretion.** (A) Paired fibre photometry and  
871 blood sampling from mouse on day 14 of pregnancy showing miniature SE-like activity have  
872 no significant effect on pulsatile LH secretion (red).

873 **Supplementary Table 1.** Statistics table. Abbreviations for tables below: DF = degrees of  
 874 freedom; mc = multiple comparison; CI = 95% confidence interval; MW U = Mann Whitney  
 875 U; MEA = Mixed effect analysis (fixed effects (type III)), RM = repeated measures. Ext =  
 876 extended data figure.

| Fig. | Description                                                                                                                                    | Statistical analysis       |         |                |                    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|----------------|--------------------|
|      |                                                                                                                                                | p                          | DF      | CI             | R <sup>2</sup>     |
| 1C   | RP3V Kisspeptin immunoreactivity in <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> mice                                         |                            |         |                |                    |
|      | Interaction                                                                                                                                    | Two-way ANOVA              | 0.0034  | 1              |                    |
|      | Genotype                                                                                                                                       | Two-way ANOVA              | 0.0251  | 1              |                    |
|      | State                                                                                                                                          | Two-way ANOVA              | 0.1380  | 1              |                    |
|      | <i>Prlr</i> <sup>lox/lox</sup> :NL vs. <i>Prlr</i> <sup>lox/lox</sup> :Lactating                                                               | Tukey's mc                 | 0.0100  | 23             | 5.175 to 44.95     |
|      | <i>Prlr</i> <sup>lox/lox</sup> :NL vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :NL                                       | Tukey's mc                 | 0.9429  | 23             | -17.79 to 26.81    |
|      | <i>Prlr</i> <sup>lox/lox</sup> :NL vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Lactating                                | Tukey's mc                 | 0.9228  | 23             | -24.38 to 15.39    |
|      | <i>Prlr</i> <sup>lox/lox</sup> :Lactating vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :NL                                | Tukey's mc                 | 0.0565  | 23             | -41.55 to 0.4412   |
|      | <i>Prlr</i> <sup>lox/lox</sup> :Lactating vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Lactating                         | Tukey's mc                 | 0.0010  | 23             | -47.97 to -11.15   |
|      | <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :NL vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Lactating | Tukey's mc                 | 0.6409  | 23             | -30.00 to 11.99    |
| 1D   | Arcuate Kisspeptin immunoreactivity in <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> mice                                      | Unpaired two-tailed t test | 0.0020  | 14             | 0.6692 to 2.424    |
| 1E   | <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> do not show lactational diestrus                                                 |                            | p       | X <sup>2</sup> | DF                 |
|      | Percent mice showing estrous                                                                                                                   | Log rank (Mantel-Cox) test | <0.0001 | 42.37          | 1                  |
| 2B   | Effect of mifepristone treatment on LH pulse frequency in <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> mice                   |                            | p       | DF             | CI                 |
|      | Interaction                                                                                                                                    | Two-way ANOVA              | 0.2807  | 1              |                    |
|      | Genotype                                                                                                                                       | Two-way ANOVA              | 0.0024  | 1              |                    |
|      | Treatment                                                                                                                                      | Two-way ANOVA              | 0.8558  | 1              |                    |
|      | <i>Prlr</i> <sup>lox/lox</sup> :Veh vs. <i>Prlr</i> <sup>lox/lox</sup> :Mif                                                                    | Tukey's mc                 | 0.7922  | 27             | -0.9804 to 1.980   |
|      | <i>Prlr</i> <sup>lox/lox</sup> :Veh vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Veh                                     | Tukey's mc                 | 0.3861  | 27             | -2.355 to 0.6054   |
|      | <i>Prlr</i> <sup>lox/lox</sup> :Veh vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Mif                                     | Tukey's mc                 | 0.1487  | 27             | -2.765 to 0.3002   |
|      | <i>Prlr</i> <sup>lox/lox</sup> :Mif vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Veh                                     | Tukey's mc                 | 0.0758  | 27             | -2.765 to 0.3002   |
|      | <i>Prlr</i> <sup>lox/lox</sup> :Mif vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Mif                                     | Tukey's mc                 | 0.0223  | 27             | -2.765 to 0.3002   |
|      | <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Veh vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Mif      | Tukey's mc                 | 0.9188  | 27             | -1.890 to 1.175    |
| 2C   | Effect of mifepristone treatment on mean LH in <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> mice                              |                            | p       | DF             |                    |
|      | Interaction                                                                                                                                    | Two-way ANOVA              | 0.8697  | 1              |                    |
|      | Genotype                                                                                                                                       | Two-way ANOVA              | 0.0031  | 1              |                    |
|      | Treatment                                                                                                                                      | Two-way ANOVA              | 0.8586  | 1              |                    |
|      | <i>Prlr</i> <sup>lox/lox</sup> :Veh vs. <i>Prlr</i> <sup>lox/lox</sup> :Mif                                                                    | Tukey's mc                 | 0.9947  | 26             | -0.1021 to 0.1220  |
|      | <i>Prlr</i> <sup>lox/lox</sup> :Veh vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Veh                                     | Tukey's mc                 | 0.1528  | 26             | -0.2015 to 0.02263 |

| Fig.                                                     | Description                                                                                                                               | Statistical analysis |         |    |                     |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|----|---------------------|--|
|                                                          |                                                                                                                                           | p                    | DF      | CI |                     |  |
| 4B                                                       | <i>Prlr</i> <sup>lox/lox</sup> :Veh vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Mif                                | Tukey's mc           | 0.1765  | 26 | -0.2047 to 0.02672  |  |
|                                                          | <i>Prlr</i> <sup>lox/lox</sup> :Mif vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Veh                                | Tukey's mc           | 0.0803  | 26 | -0.2076 to 0.008853 |  |
|                                                          | <i>Prlr</i> <sup>lox/lox</sup> :Mif vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Mif                                | Tukey's mc           | 0.0974  | 26 | -0.2110 to 0.01306  |  |
|                                                          | <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Veh vs. <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> :Mif | Tukey's mc           | >0.9999 | 26 | -0.1116 to 0.1125   |  |
| Kisspeptin activity across different reproductive states |                                                                                                                                           |                      |         |    |                     |  |
| Event frequency across states                            |                                                                                                                                           | MEA                  | 0.0012  |    |                     |  |
| Virgin vs. Day 4 pregnancy                               |                                                                                                                                           | Tukey's mc           | 0.0828  | 5  | -0.1356 to 2.052    |  |
| Virgin vs. Day 14 pregnancy                              |                                                                                                                                           | Tukey's mc           | 0.0586  | 5  | -0.05175 to 2.552   |  |
| Virgin vs. Day 18/19 pregnancy                           |                                                                                                                                           | Tukey's mc           | 0.9837  | 4  | -5.518 to 3.932     |  |
| Virgin vs. Day 7 lactation                               |                                                                                                                                           | Tukey's mc           | 0.0912  | 4  | -0.2517 to 2.752    |  |
| Virgin vs. Day 14 lactation                              |                                                                                                                                           | Tukey's mc           | 0.6584  | 3  | -1.598 to 2.931     |  |
| Virgin vs. Day 18 lactation                              |                                                                                                                                           | Tukey's mc           | 0.9638  | 4  | -1.661 to 2.461     |  |
| Virgin vs. 24h after weaning                             |                                                                                                                                           | Tukey's mc           | >0.9999 | 3  | -3.097 to 2.847     |  |
| Virgin vs. Return to estrous cycles                      |                                                                                                                                           | Tukey's mc           | 0.9993  | 4  | -3.016 to 2.449     |  |
| Virgin vs. OVX                                           |                                                                                                                                           | Tukey's mc           | 0.0009  | 5  | -4.955 to -2.100    |  |
| Day 4 pregnancy vs. Day 14 pregnancy                     |                                                                                                                                           | Tukey's mc           | 0.5635  | 5  | -0.3793 to 0.9626   |  |
| Day 4 pregnancy vs. Day 18/19 pregnancy                  |                                                                                                                                           | Tukey's mc           | 0.6960  | 4  | -6.958 to 3.455     |  |
| Day 4 pregnancy vs. Day 7 lactation                      |                                                                                                                                           | Tukey's mc           | 0.6396  | 4  | -0.5180 to 1.101    |  |
| Day 4 pregnancy vs. Day 14 lactation                     |                                                                                                                                           | Tukey's mc           | 0.4286  | 3  | -1.026 to 0.4430    |  |
| Day 4 pregnancy vs. Day 18 lactation                     |                                                                                                                                           | Tukey's mc           | 0.2948  | 4  | -1.579 to 0.4622    |  |
| Day 4 pregnancy vs. 24h after weaning                    |                                                                                                                                           | Tukey's mc           | 0.1309  | 3  | -2.649 to 0.4820    |  |
| Day 4 vs. Return to estrous cycles                       |                                                                                                                                           | Tukey's mc           | 0.1986  | 4  | -3.185 to 0.7012    |  |
| Day 4 pregnancy vs. OVX                                  |                                                                                                                                           | Tukey's mc           | <0.0001 | 5  | -5.683 to -3.290    |  |
| Day 14 pregnancy vs. Day 18/19 pregnancy                 |                                                                                                                                           | Tukey's mc           | 0.5272  | 4  | -7.022 to 2.936     |  |
| Day 14 pregnancy vs. Day 7 lactation                     |                                                                                                                                           | Tukey's mc           |         |    |                     |  |
| Day 14 pregnancy vs. Day 14 lactation                    |                                                                                                                                           | Tukey's mc           | 0.0343  | 3  | -1.092 to -0.07436  |  |
| Day 14 pregnancy vs. Day 18 lactation                    |                                                                                                                                           | Tukey's mc           | 0.0092  | 4  | -1.380 to -0.3202   |  |
| Day 14 pregnancy vs. 24h after weaning                   |                                                                                                                                           | Tukey's mc           | 0.0072  | 3  | -2.072 to -0.6781   |  |
| Day 14 pregnancy vs. Return to estrous cycles            |                                                                                                                                           | Tukey's mc           | 0.0210  | 4  | -2.731 to -0.3355   |  |
| Day 14 pregnancy vs. OVX                                 |                                                                                                                                           | Tukey's mc           | <0.0001 | 5  | -5.877 to -3.679    |  |
| Day 18/19 pregnancy vs. Day 7 lactation                  |                                                                                                                                           | Tukey's mc           | 0.6053  | 3  | -4.432 to 8.518     |  |
| Day 18/19 pregnancy vs. Day 14 lactation                 |                                                                                                                                           | Tukey's mc           | 0.9434  | 2  | -11.74 to 14.66     |  |
| Day 18/19 pregnancy vs. Day 18 lactation                 |                                                                                                                                           | Tukey's mc           | 0.9458  | 3  | -5.853 to 8.239     |  |
| Day 18/19 pregnancy vs. 24h after weaning                |                                                                                                                                           | Tukey's mc           | 0.9807  | 2  | -6.951 to 8.287     |  |
| Day 18/19 pregnancy vs. Return to estrous cycles         |                                                                                                                                           | Tukey's mc           | 0.9952  | 3  | -4.164 to 5.183     |  |
| Day 18/19 pregnancy vs. OVX                              |                                                                                                                                           | Tukey's mc           | 0.2556  | 4  | -7.450 to 1.980     |  |
| Day 7 lactation vs. Day 14 lactation                     |                                                                                                                                           | Tukey's mc           | 0.0382  | 3  | -1.112 to -0.05439  |  |
| Day 7 lactation vs. Day 18 lactation                     |                                                                                                                                           | Tukey's mc           | 0.0325  | 3  | -1.578 to -0.1222   |  |
| Day 7 lactation vs. 24h after weaning                    |                                                                                                                                           | Tukey's mc           | 0.0412  | 2  | -2.620 to -0.1304   |  |
| Day 7 lactation vs. Return to estrous cycles             |                                                                                                                                           | Tukey's mc           | 0.0514  | 3  | -3.083 to 0.01609   |  |
| Day 7 lactation vs. OVX                                  |                                                                                                                                           | Tukey's mc           | 0.0002  | 4  | -5.887 to -3.669    |  |

| Fig.     | Description                                                                                        | Statistical analysis       |                      |                   |                    |
|----------|----------------------------------------------------------------------------------------------------|----------------------------|----------------------|-------------------|--------------------|
|          |                                                                                                    |                            |                      |                   |                    |
| 4C       | Day 14 lactation vs. Day 18 lactation                                                              | Tukey's mc                 | 0.8130               | 3                 | -1.405 to 0.8715   |
|          | Day 14 lactation vs. 24h after weaning                                                             | Tukey's mc                 | 0.1642               | 2                 | -2.285 to 0.7020   |
|          | Day 14 lactation vs. Return to estrous cycles                                                      | Tukey's mc                 | 0.2736               | 2                 | -3.366 to 1.466    |
|          | Day 14 lactation vs. OVX                                                                           | Tukey's mc                 | 0.0026               | 3                 | -5.734 to -2.655   |
|          | Day 18 lactation vs. 24h after weaning                                                             | Tukey's mc                 | 0.1662               | 3                 | -1.362 to 0.3122   |
|          | Day 18 lactation vs. Return to estrous cycles                                                      | Tukey's mc                 | 0.1946               | 3                 | -1.849 to 0.4823   |
|          | Day 18 lactation vs. OVX                                                                           | Tukey's mc                 | 0.0016               | 4                 | -5.475 to -2.380   |
|          | 24h after weaning vs. Return to estrous cycles                                                     | Tukey's mc                 | 0.9643               | 3                 | -1.180 to 0.8630   |
|          | 24h after weaning vs. OVX                                                                          | Tukey's mc                 | 0.0080               | 3                 | -5.192 to -1.614   |
|          | Return to estrous cycles vs OVX                                                                    | Tukey's mc                 | 0.0113               | 4                 | -5.382 to -1.107   |
| 4C       | Kisspeptin activity across different reproductive states                                           | <b>p</b>                   | <b>DF</b>            | <b>CI</b>         |                    |
|          | Event amplitude across states                                                                      | MEA                        | 0.0118               |                   |                    |
|          | Virgin vs. Day 4                                                                                   | Tukey's mc                 | 0.7336               | 3                 | -0.9745 to 1.654   |
|          | Virgin vs. Day 18/19                                                                               | Tukey's mc                 | 0.2608               | 3                 | -0.6762 to 2.086   |
|          | Virgin vs. Day 14                                                                                  | Tukey's mc                 | 0.0851               | 3                 | -0.1362 to 1.365   |
|          | Virgin vs. Day 18                                                                                  | Tukey's mc                 | 0.1766               | 4                 | -0.2966 to 1.467   |
|          | Virgin vs. 24h after weaning                                                                       | Tukey's mc                 | 0.4700               | 3                 | -0.9997 to 2.178   |
|          | Virgin vs. Return to estrous cycles                                                                | Tukey's mc                 | 0.4514               | 4                 | -0.5997 to 1.546   |
|          | Virgin vs. OVX                                                                                     | Tukey's mc                 | 0.9938               | 5                 | -0.9886 to 0.7359  |
|          | Day 4 vs. Day 18/19                                                                                | Tukey's mc                 | 0.7336               | 1                 | -5.882 to 6.612    |
|          | Day 4 vs. Day 14                                                                                   | Tukey's mc                 | 0.7858               | 2                 | -1.431 to 1.981    |
|          | Day 4 vs. Day 18                                                                                   | Tukey's mc                 | 0.6250               | 2                 | -0.9138 to 1.405   |
|          | Day 4 vs. 24h after weaning                                                                        | Tukey's mc                 | 0.2399               | 1                 | -0.8660 to 1.365   |
|          | Day 4 vs. Return to estrous cycles                                                                 | Tukey's mc                 | 0.9217               | 2                 | -1.026 to 1.293    |
|          | Day 4 vs. OVX                                                                                      | Tukey's mc                 | 0.5530               | 3                 | -1.870 to 0.9381   |
|          | Day 18/19 vs. Day 14                                                                               | Tukey's mc                 | 0.7069               | 2                 | -0.5763 to 0.3960  |
|          | Day 18/19 vs. Day 18                                                                               | Tukey's mc                 | 0.1985               | 3                 | -0.3267 to 0.08725 |
|          | Day 18/19 vs. 24h after weaning                                                                    | Tukey's mc                 | 0.6222               | 2                 | -0.6603 to 0.4286  |
|          | Day 18/19 vs. Return to estrous cycles                                                             | Tukey's mc                 | 0.2384               | 2                 | -0.7754 to 0.3120  |
|          | Day 18/19 vs. OVX                                                                                  | Tukey's mc                 | 0.1494               | 3                 | -2.103 to 0.4405   |
|          | Day 14 vs. Day 18                                                                                  | Tukey's mc                 | 0.9929               | 3                 | -0.3118 to 0.2526  |
|          | Day 14 vs. 24h after weaning                                                                       | Tukey's mc                 | 0.5747               | 2                 | -0.1375 to 0.08624 |
|          | Day 14 vs. Return to estrous cycles                                                                | Tukey's mc                 | 0.4210               | 2                 | -0.6226 to 0.3396  |
|          | Day 14 vs. OVX                                                                                     | Tukey's mc                 | 0.3306               | 3                 | -2.375 to 0.8931   |
|          | Day 18 vs. 24h after weaning                                                                       | Tukey's mc                 | >0.9999              | 3                 | -0.3977 to 0.4056  |
|          | Day 18 vs. Return to estrous cycles                                                                | Tukey's mc                 | 0.6644               | 3                 | -0.5038 to 0.2799  |
|          | Day 18 vs. OVX                                                                                     | Tukey's mc                 | 0.1809               | 4                 | -1.793 to 0.3702   |
|          | 24h after weaning vs. Return to estrous cycles                                                     |                            | 0.5101               | 3                 | -0.4457 to 0.2140  |
|          | 24h after weaning vs. OVX                                                                          | Tukey's mc                 | 0.2874               | 3                 | -2.185 to 0.7540   |
|          | Return to estrous cycles vs. OVX                                                                   | Tukey's mc                 | 0.2096               | 4                 | -1.563 to 0.3637   |
| 5C       | Virgin vs day 18/19 pregnancy frequency of events                                                  | <b>p</b>                   | <b>R<sup>2</sup></b> | <b>CI</b>         |                    |
|          | Paired two-tailed t test                                                                           | 0.4063                     | 0.2364               | -2.646 to 4.945   |                    |
| 5D       | Virgin vs day 18/19 pregnancy relative event amplitude                                             | <b>p</b>                   | <b>R<sup>2</sup></b> | <b>CI</b>         |                    |
|          | Paired two-tailed t test                                                                           | 0.0141                     | 0.8989               | -1.606 to -0.3816 |                    |
| 6A       | <i>Prlr</i> <sup>lox/lox</sup> / <i>Kiss1</i> <sup>Cre</sup> do not show lactational diestrus      | <b>p</b>                   | <b>X<sup>2</sup></b> | <b>DF</b>         |                    |
|          | Percent mice showing estrus                                                                        | Log rank (Mantel-Cox) test | <0.0001              | 38.02             | 1                  |
| Ext 1A-D | <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> maternal and gestational phenotyping | <b>p</b>                   | <b>R<sup>2</sup></b> | <b>CI</b>         | <b>MW U</b>        |
|          | A: gestational weight gain                                                                         | Unpaired two-tailed t test | 0.1291               | 0.1113            | -3.076 to 0.4219   |
|          | B: gestation length                                                                                | Mann Whitney test          | 0.2682               |                   | 45.50              |

| Fig.        | Description                                                                                                       | Statistical analysis       |                |                |                  |
|-------------|-------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|----------------|------------------|
|             |                                                                                                                   | p                          | R <sup>2</sup> | CI             | MW U             |
| Ext1<br>E-H | C: number of live pups                                                                                            | Unpaired two-tailed t test | 0.7479         | 0.005282       | -4.037 to 2.946  |
|             | D: litter weight gain                                                                                             |                            |                |                |                  |
|             | Time                                                                                                              | MEA                        | <0.0001        |                |                  |
|             | Genotype                                                                                                          | MEA                        | 0.3833         |                |                  |
|             | Time x genotype                                                                                                   | MEA                        | 0.3282         |                |                  |
|             | Day 3 lactation                                                                                                   | Šídák's mc                 | >0.9999        |                | -3.740 to 4.115  |
|             | Day 4 lactation                                                                                                   | Šídák's mc                 | 0.9993         |                | -3.365 to 4.490  |
|             | Day 5 lactation                                                                                                   | Šídák's mc                 | 0.9863         |                | -2.965 to 4.890  |
|             | Day 6 lactation                                                                                                   | Šídák's mc                 | 0.9525         |                | -2.690 to 5.165  |
|             | Day 7 lactation                                                                                                   | Šídák's mc                 | 0.6938         |                | -1.953 to 5.903  |
|             | Day 8 lactation                                                                                                   | Šídák's mc                 | 0.619          |                | -1.821 to 6.112  |
| Ext1<br>E-H | <i>Prlr</i> <sup>lox/lox</sup> / <i>Kiss1</i> <sup>Cre</sup> maternal and gestational phenotyping                 |                            |                |                |                  |
|             | E: gestational weight gain                                                                                        | Unpaired two-tailed t test | 0.6361         | 0.003694       | -0.9985 to 1.622 |
|             | F: gestation length                                                                                               | Mann Whitney test          | 0.7670         |                | 471.5            |
|             | G: number of live pups                                                                                            | Unpaired two-tailed t test | 0.4522         | 0.009296       | -0.5930 to 1.315 |
|             | H: litter weight gain                                                                                             |                            |                |                |                  |
|             | Time x Genotype                                                                                                   | Two-way RM ANOVA           | 0.6404         |                |                  |
|             | Time                                                                                                              | Two-way RM ANOVA           | <0.0001        |                |                  |
|             | Genotype                                                                                                          | Two-way RM ANOVA           | 0.9014         |                |                  |
|             | Subject                                                                                                           | Two-way RM ANOVA           | <0.0001        |                |                  |
|             | Day 3 lactation                                                                                                   | Šídák's mc                 | >0.9999        |                | -5.407 to 3.653  |
|             | Day 4 lactation                                                                                                   | Šídák's mc                 | >0.9999        |                | -5.204 to 3.857  |
|             | Day 5 lactation                                                                                                   | Šídák's mc                 | >0.9999        |                | -5.159 to 3.902  |
|             | Day 6 lactation                                                                                                   | Šídák's mc                 | >0.9999        |                | -5.105 to 3.956  |
|             | Day 7 lactation                                                                                                   | Šídák's mc                 | >0.9999        |                | -4.976 to 4.084  |
|             | Day 8 lactation                                                                                                   | Šídák's mc                 | >0.9999        |                | -4.226 to 4.834  |
|             | Day 9 lactation                                                                                                   | Šídák's mc                 | >0.9999        |                | -4.757 to 4.304  |
|             | Day 10 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -4.650 to 4.410  |
|             | Day 11 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -5.154 to 3.907  |
|             | Day 12 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -5.242 to 3.819  |
|             | Day 13 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -4.936 to 4.125  |
|             | Day 14 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -4.979 to 4.081  |
|             | Day 15 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -4.776 to 4.284  |
|             | Day 16 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -4.152 to 4.909  |
|             | Day 17 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -4.216 to 4.845  |
|             | Day 18 lactation                                                                                                  | Šídák's mc                 | 0.9912         |                | -2.717 to 6.343  |
|             | Day 19 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -4.182 to 4.878  |
|             | Day 20 lactation                                                                                                  | Šídák's mc                 | >0.9999        |                | -4.752 to 4.309  |
| Ext 3       | Proportion of kisspeptin neurons showing <i>Prlr</i> deletion using RNAscope                                      |                            | p              | R <sup>2</sup> | CI               |
|             | B: <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> RP3V                                             | Unpaired two-tailed t test | <0.0001        | 0.8740         | -55.02 to 28.69  |
|             | D: <i>Prlr</i> <sup>lox/lox</sup> / <i>Camk2a</i> <sup>Cre</sup> ARC                                              | Unpaired two-tailed t test | 0.0009         | 0.8123         | -69.72 to 8.860  |
|             | F: <i>Prlr</i> <sup>lox/lox</sup> / <i>Kiss1</i> <sup>Cre</sup> ARC                                               | Unpaired two-tailed t test | <0.0001        | 0.9300         | -64.27 to -44.46 |
|             | G: correlation of day of estrus and average density of <i>Prlr</i> on <i>Kiss1</i> -expressing cells (per animal) | Simple linear regression   | 0.1912         | 0.3135         |                  |
| Ext 4A      | Mifepristone functional dose response trial                                                                       |                            | p              | X <sup>2</sup> | Z                |
|             |                                                                                                                   | Chi-square test            | 0.0072         | 6              | 2.449            |
| Ext 4B      | Mifepristone has no effect on litter weight gain                                                                  |                            | p              | DF             |                  |
|             | Time x Genotype and treatment                                                                                     | Two-way RM ANOVA           | 0.5322         | 6              |                  |
|             | Time                                                                                                              | Two-way RM ANOVA           | <0.0001        | 2              |                  |
|             | Genotype and treatment                                                                                            | Two-way RM ANOVA           | 0.8811         | 3              |                  |

| <b>Fig.</b> | <b>Description</b> | <b>Statistical analysis</b> |         |    |  |
|-------------|--------------------|-----------------------------|---------|----|--|
|             |                    | Two-way RM ANOVA            | <0.0001 | 22 |  |
|             | Subject            |                             |         |    |  |