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Abstract
Deep learning (DL) has shown potential to provide powerful representations of bulk
RNA-seq data in cancer research. However, there is no consensus regarding the
impact of design choices of DL approaches on the performance of the learned
representation, including the model architecture, the training methodology and the
various hyperparameters. To address this problem, we evaluate the performance of
various design choices of DL representation learning methods using TCGA and
DepMap pan-cancer datasets, and assess their predictive power for survival and gene
essentiality predictions. We demonstrate that non DL-based baseline methods
achieve comparable or superior performance compared to more complex models on
survival predictions tasks. DL representation methods, however, are the most efficient
to predict the gene essentiality of cell lines. We show that auto-encoders (AE) are
consistently improved by techniques such as masking and multi-head training. Our
results suggest that the impact of DL representations and of pre-training are highly
task- and architecture-dependent, highlighting the need for adopting rigorous
evaluation guidelines. These guidelines for robust evaluation are implemented in a
pipeline made available to the research community.

Introduction
Precision medicine and the development of new therapies require accurate disease
diagnosis and outcome prediction. The field of omics research has experienced an
unprecedented data revolution fueled by high-throughput technologies, enabling the
generation of high-dimensional omics data at an exponential pace. This wealth of data
provides interesting opportunities to unravel the molecular landscape of diseases, including
cancer, and emphasizes the need for robust computational approaches to extract meaningful
insights. In particular, RNA sequencing (RNA-seq) is now ubiquitous in molecular biology
and oncology (Stark, Grzelak, et Hadfield 2019) and was shown to be the most informative
omics modality for predicting phenotypes of interest such as patient survival (Vale-Silva et
Rohr 2021) or gene essentiality in cell lines (Chiu et al. 2021).
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In parallel, deep learning-based representation learning approaches have shown remarkable
potential in analyzing complex data, ranging from images to text (Bengio, Courville, et
Vincent 2013; Devlin et al. 2019; Misra et Van Der Maaten 2020). These methods, powered
by artificial neural networks, excel at capturing intricate patterns, detecting subtle
relationships, and making accurate predictions. Applying deep representation learning
techniques (DRL) to RNA-seq data for cancer research holds the potential to revolutionize
our understanding of cancer progression, classification, and treatment response.

Therefore, the integration of deep learning-based approaches within the field of omics
research holds immense promise for advancing our understanding of cancer biology
(Chaudhary et al. 2018). Nonetheless, despite the vast potential of DRL algorithms and
demonstrated success in vision and Natural Language Processing (NLP) domains, they still
face challenges in surpassing traditional tree-based methods on tabular data (Grinsztajn,
Oyallon, et Varoquaux 2022). Importantly, their application to omics data remains
underexplored when considering gene expression matrices derived from bulk RNA-seq.

Typical tasks associated with omics data like survival or gene essentiality predictions present
unique challenges, involving high-dimensional feature spaces with limited sample sizes, a
need to account for batch effects and variations in data generation procedures (J. Liu et al.
2018; Gönen et al. 2017). They require various intricate steps like normalization, scaling,
dimensionality reduction (DR), and the selection of prediction models and training
frameworks. Moreover, the presence of noisy and heterogenous labels, such as survival and
censoring information, further complicates the analysis. Generally, these tasks can be
sensitive to overfitting and exhibit significant variability across different datasets and tasks.

Reducing the dimensions of genomic data is often a privileged option to help address such
difficulties. Non-DL dimensionality reduction methods have proven effective in analyzing
omics data for guided feature selection (Zhakparov et al. 2023), deconvolution of bulk
RNA-seq data (Y. Liu et al. 2018), clustering (R. Chen et al. 2022; Wei et al. 2023) or
prediction of clinical endpoints (Sauta et al. 2023). With the rise of deep learning, several
papers have explored new representation learning methods for cancer transcriptome data
analysis such as auto-encoder architecture variations for biomarker identification (Q. Li et al.
2023; De Weerd et al. 2023), subtyping (Withnell et al. 2021) and supervised tasks including
gene essentiality (Chiu et al. 2021) or drug response predictions (He et al. 2022; J. Chen et
al. 2022; Dincer et al. 2018; Rampášek et al. 2019). In single-cell data, the higher amount of
data points allowed the development of more complex methods inspired from
self-supervised learning (Shen et al. 2021; Han et al. 2021), graph-based methods (X. Li et
al. 2017) and more recently from large language models (Theodoris et al. 2023; Cui et al.
2023; Shen et al. 2023). Nonetheless, despite numerous publications showcasing the
potential of deep representation learning, there is a scarcity of comprehensive benchmarks
in the context of cancer research focusing on deep-learning methods for bulk RNA-seq due
the multitude of potential tasks. Existing benchmarks showcase limited improvement over
linear baselines when using deep learning methods in phenotype prediction or clustering
(Smith et al. 2020; Cantini et al. 2021), but do not cover tasks such as gene essentiality
prediction or pan-cancer pretraining approaches. This lack of reliable comparisons
seemingly originates from the difficulty of accurately assessing models’ performances in a
simple cross-validation setting (Bengio et Grandvalet 2003; Nadeau et Bengio 2003), which
becomes even more complex when adding hyperparameters (HPs) tuning, small dataset
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sizes, noisy labels and confounding factors, which are ubiquitous in omics for oncology
(Whalen et al. 2021).

This impedes the development and evaluation of these methods, limiting their reliability and
usage. It has been argued that the rapid growth of deep learning in other applications can be
partly attributed to the widespread adoption of clear benchmarks, like ImageNet (Deng et al.
2009) for visual deep learning or more recently the CASP competition for protein structure
prediction (Kryshtafovych et al. 2021).

In this paper, we investigated and robustly benchmarked the performance of different
prediction models and training approaches on bulk RNA-seq data in the context of cancer
research. In particular, we studied the impact of the representation method choice on the
performance of 11 cancer-specific survival prediction tasks, a pan-cancer survival prediction
task on 33 combined cohorts and a gene essentiality prediction task on hundreds of cell
lines. We implemented DRL architectures that reach state-of-art performances in other
fields, namely auto-encoders (AE), variational auto-encoders (VAE), masking auto-encoders
(MAE), multi-head auto-encoders (MHAE), data augmentation techniques coupled with AE
(DA), graph neural network (GNN) based on prior knowledge approaches, pre-trained
models (PreAE), and compared them with standard baseline representations (Identity and
PCA). Our evaluation encompassed preprocessing steps such as normalization, scaling, and
feature selection, and provided a fully reproducible framework to evaluate their impact as
well as the one of random splits during cross-validation and hyperparameters (HPs) tuning
strategy on different prediction tasks.

This study highlights the considerable variability in results due to data splits and the limited
impact of the choice of the representation model or training framework on the performances
on the considered tasks.

Materials and Methods
In this section, we describe all the different elements of the benchmarking pipeline depicted
in Supp. Fig. S1. Additional details can be found in Supplementary Materials. Although our
pipeline can be used to evaluate any RNA-seq-based ML model, we focused in this study on
benchmarking the capacity of various representation models to capture relevant information
in bulk RNA-seq data.

Datasets
This study was based on publicly available data from The Cancer Genome Atlas Program
(TCGA) and Cancer Cell Line Encyclopedia (CCLE) dataset (Barretina et al. 2012).
Expression data (raw counts, RPKM, TPM) for all TCGA datasets were downloaded from
RECOUNT3 (Wilks et al. 2021), a publicly available resource concatenating multiple omics
datasets aiming at harmonizing preprocessing steps to make comparisons easier between
these datasets. For the per-cohort Overall Survival (OS) prediction task, we focused on the
cohorts with less than 90% of patients censored and selected the indications with more than
400 patients with associated RNA-seq samples (BRCA, UCEC, KIRC, HNSC, LUAD, LGG,
LUSC, SKCM, COAD, STAD and BLCA). For the pan-cancer task, we selected the 33
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cohorts of TCGA, for a total of 10,736 samples. For both OS prediction tasks, we used the
overall survival (OS) labels defined by the TCGA Pan-Cancer Clinical Data Resource
(TCGA-CDR) (J. Liu et al. 2018).
The Gene Essentiality prediction experiments were carried out using the CCLE dataset,
which contains the expression profiles of hundreds of human cancer cell lines. The dataset
was obtained through the DepMap portal, version 22Q4 (Barretina et al. 2012), which
provided the gene perturbation experiments results used as labels. Expression data (raw
and TPM pseudo-counts) and gene signatures files were downloaded directly from the
platform and non-transformed TPM data was obtained by applying a reverse transformation
of the pseudo-counts file. We used the same selection process as previous studies (Chiu et
al. 2021) to define gene dependencies of interest and filtered out cell lines with missing
dependencies. This resulted in 1,223 genes of interest and 893 cell lines for our
experiments.

Tasks description

The different representation architectures were evaluated by the performance on the
prediction of patients or cell lines labels when using the output of baseline representation
models or of DRL ones as input features. These downstream tasks were evaluated on
several test sets sampled from the datasets following a repeated holdout cross-validation
process (see related section below for more details).
The first task we considered was cancer-specific overall survival (OS) prediction, a common
task in cancer biology that can improve the identification of subgroups of patients at risk. In
this task, representation and prediction models were trained on single cancer cohorts
separately to predict the survival of patients within a particular cancer subtype. Our second
task consisted in pan-cancer OS prediction, which is often considered in the literature as a
standard for comparing methods and claim state of the art performance of newly developed
ML models (Vale-Silva et Rohr 2021). The models are trained on all the cohorts from TCGA
combined in a single dataset, evaluating the capabilities to predict the different survival times
of a more heterogeneous population suffering from different indications. Harrell C-index
(Harrell, Lee, et Mark 1996) was used as the final metric for both tasks and is referred to as
c-index in the paper. The different data splits were stratified to ensure similar censorship
levels between train and test sets.

The gene essentiality prediction task described in this paper was inspired by the DeepDEP
framework (Chiu et al. 2021), with the modification of predicting gene dependency instead of
gene effect as recommended in (Dempster et al. 2019; Chiu et al. 2021) and focusing only
on bulk RNA-seq rather than a multi-modal setting. In this context, gene dependency refers
to the extent to which a particular gene is necessary for cell survival and growth, which
depends on which cell line is considered. Each cell line is represented by its expression data
while genes are represented by their fingerprints. Fingerprints are specific encodings that
summarize the relevant biological functions of a given gene and represent its involvement in
3,115 gene signatures related to chemical and genetic perturbation defined in MSigDBv6.2
(Liberzon et al. 2011). The inputs for representation models were the RNA-seq expression
matrix and the gene fingerprints, while the output was then passed to the prediction models.
We focused only on the cell line representation based on RNA-seq data in our benchmark
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while the fingerprints were fixed and reduced to 500 dimensions using PCA, an arbitrary
choice to balance between computation speed, performance and variance explained (Supp
Figure S2). For each cell line / gene combination with a gene dependency label, we created
the corresponding features by concatenating the cell line representation and the fingerprints
representation. To evaluate model performances, we used the Spearman rank correlation.
While in the original DeepDEP paper Pearson correlation coefficients were computed, both
methods are suited to evaluate this task (Rosenski, Shifman, et Kaplan 2023; Ma et al.
2021). The Spearman correlation was preferred as it is more robust to outliers on
non-normally distributed data (Hou et al. 2022) and fits better the framework of ranking
genes for target selection. The correlation was computed on the whole test set and is
referred to as the overall correlation. Following DeepDEP’s evaluation, we computed as well
a per-gene metric: for each gene with available experiments, we calculated the Spearman
rank correlation over the different cell lines and averaged the result over all the genes to
have one final metric per repetition. To ensure a rigorous evaluation we partitioned the data
by cell lines, ensuring that a cell line did not overlap between the training and test sets.

Preprocessing Datasets and Gene Selection
The RNA-Seq data was preprocessed following a classical bioinformatics pipeline. While
different preprocessing options were tested (data and results not shown) as they can impact
downstream analyses (Paton et al. 2023), we decided to choose a fixed standard choice to
keep a reasonable computational budget and compare models all else being equal. For all
the experiments without pre-training on external datasets, we selected the 5,000 most
variable genes on the training sets, applied a logarithmic operation and normalized the data
with mean-standard scaling. The exact same transformation was then applied to the test
dataset to prevent any potential leak by computing features statistics on the whole dataset.
All models used TPM normalized expression data except the variational auto-encoder model
model which used raw counts to fit a negative binomial prior distribution (cf Methods,
Representation Models).
When considering pre-training, we implemented another preprocessing process closer to
recent pre-training strategies for foundation models (FM) trained on single-cell expression
data (scRNA-seq) (Cui et al. 2023; Shen et al. 2023; Theodoris et al. 2023). While these
models can afford little feature selection during pre-training thanks to the vast amount of
available data, pre-training on size-limited bulk RNA-seq datasets still requires gene
selection to avoid the curse of dimensionality. However, the most variable genes for the
pre-training datasets can be different from those of the datasets used to evaluate on the
downstream tasks for non-pretrained models. To select genes that were still relevant for the
tasks considered in this paper, we built two gene lists based on their variances in the TCGA
pan-cancer dataset used for pretraining :

● In the case of the per-cohort OS prediction task, the previous procedure has to be
adapted in order to ensure a fair comparison with the non-pre-trained case. We
therefore took the union of the top 2,000 most variant genes for each of the 11
cohorts selected in the downstream task to make sure relevant genes per indication
were also selected in the final features rather than genes solely linked to cancer type
that would be considered when looking at the genes variances across the whole
TCGA dataset. This resulted in a set of 5,046 unique gene identifiers.

● For the gene essentiality task, we took the top 5,000 most variant genes in TCGA
after intersection with the genes present within the CCLE dataset, similarly to
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DeepDEP’s procedure of selecting genes with a standard deviation superior to 1 in
TCGA.

The TCGA data used for pretraining was normalized within each fold with mean standard
scaling and learned statistics were saved for potential usage on the downstream datasets
(Pre-training experiments).

Repeated holdout cross-validation framework
In this study, we aim to compare the performance of different representation learning
algorithms on downstream survival and gene essentiality prediction tasks using bulk
RNA-seq data. Each representation model is trained and used to transform the input
expression data before feeding the learned low-dimensional embeddings to a task-specific
prediction model, fitted for each representation model tested. To achieve a comprehensive
evaluation, we adopt a rigorous validation pipeline that focuses on exploring the learning
algorithm's variability to diverse hyperparameter settings. Our validation pipeline involves a
repeated holdout cross-validation approach (Varoquaux et Colliot 2023) in which the dataset
is repeatedly split in two to create pairs of training and test sets, comprising 80% and 20%
of the original data respectively (Supp Fig S1). For experiments without pre-training, the
training sets are used to select jointly the optimal HPs for the representation and prediction
models by performing a 5-fold cross-validation for a given set of HPs. The HP tuning is
performed using a Tree-structured Parzen Estimator (TPE Sampler) implemented by Optuna
(Akiba et al. 2019) with a fixed budget of 50 iterations. Then, we select the set of HPs with
the best average performance over the validation folds on the downstream tasks to train the
representation and prediction models on the whole training set before evaluating it on the
test set. This procedure is repeated 10 times to generate a distribution of scores over the
different test sets, providing robust performance assessments compared to a single test
evaluation.

For pre-training experiments, we performed for each task HP tuning of the pre-trained
representation models separately from the prediction models. We used the TPE Sampler
with 50 trials to find the architecture choices and regularization factors (Table S1) that
minimized the reconstruction loss of the auto-encoders on TCGA data. For each trial, a
5-fold cross-validation was repeated 5 times to estimate the generalization error by
averaging the scores obtained per fold. For the gene essentiality prediction task, all of the 33
cohorts were used during pre-training (for a total of 10,736 samples in the pretraining
dataset) while we removed the 11 cohorts of the downstream tasks for the per-cohort OS
prediction task (4,480 samples in the pretraining dataset).

Acceptance Testing and Model Scoring

In (Varoquaux et Colliot 2023), the authors critically examine the limitations of traditional
null-hypothesis significance testing and the cross-validation framework in deriving statistical
conclusions. They highlight the unsuitability of standard null-hypothesis significance testing,
including t-tests, for cross-validation due to the non-independence of runs and the
complexity of deriving confidence intervals. Consequently, they advocate for a repeated
holdout framework as an alternative to cross-validation.
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While it is feasible to derive confidence intervals from the repeated holdout framework, the
authors still recommend a different scoring system. They argue that traditional hypothesis
testing primarily focuses on the statistical significance of expected improvements in models
over an infinite population. This approach, however, is not applicable to studies that
concentrate on practical, meaningful improvements on finite-sized test sets. Therefore,
following the authors' recommendation, we considered a method superior if it outperforms
another 75% of the time.
We proposed a scoring system for all models considered for a given task based on the
aforementioned criterion. To evaluate the relative importance of each model, a score was
generated by counting the number of significant pairwise comparisons won against other
models. When different cohorts were considered for the same task, an average score was
obtained from the cohort-specific scores. This value was then normalized by the maximum
value obtained by a model on the task, resulting in a score between 0 and 1. This score was
then converted into a percentage to rank the different models.

Representation Models

We selected state-of-the-art methods from various subfields of DRL: linear models as
baselines (Identity, PCA), auto-encoders-like models (AE, VAE), Self-Supervised Learning
methods (Masking Auto-Encoders), Semi-Supervised methods (Multi-Head Auto-Encoders),
data augmentation techniques coupled with AE, graph-based methods leveraging
prior-knowledge (GNN) and training frameworks (Pre-training). For each of these categories,
one base model was implemented and we considered the different architecture choices as
HPs sweeps in our pipeline as described above. Details about the architectures and HPs
ranges (Supp. Table S1) are described in Supplementary Materials.

Baselines

We considered as baseline representations the Identity and Principal Component Analysis
(PCA), widely used for all considered tasks on RNA-seq data. The number of components of
the PCA was considered a hyperparameter and optimized per fold in our pipeline (Supp.
Table S1).

Auto-Encoders

An auto-encoder (AE) is a type of neural network that learns to encode input data into a
lower-dimensional representation and then decode it back to the original form, with the goal
of reconstructing the input accurately (Hinton et Salakhutdinov 2006). Given the limited size
of our datasets, we focused on small architectures ranging from 0 to 2 hidden layers for the
encoder (excluding the representation layer) with 256 to 1024 neurons (more details
available in Supp. Table S1). The decoder part was constructed symmetrically to the
encoder. We optimized the AE models using a Mean Squared Error (MSE) Loss and the
Adam algorithm (Kingma et Ba 2017) and applied rectified linear unit activation (ReLU)
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functions between each linear layer. We did the same for other representation models
derived from this architecture (MAE, MHAE, DA-GN, PreAE).

Variational Auto-Encoders: scVI

A variational auto-encoder (VAE) is a type of auto-encoder that incorporates a probabilistic
approach, using encoder and decoder networks to generate latent variables and enable
sampling from a learned distribution, allowing for generative modeling and capturing
underlying data distributions (Kingma et Welling 2013).

Specifically, we adapted a popular method to embed scRNA-seq datasets, scVI (Lopez et al.
2018) to bulk RNA-seq data, and assessed the learned representations on our benchmark
tasks. scVI is based on a hierarchical Bayesian model where conditional distributions are
parametrized by neural networks. As in the VAE, each gene expression profile is encoded
through a non linear transformation into a low dimensional latent vector. This latent
representation is then decoded by another non linear transformation to generate an estimate
of the parameters of a Zero-Inflated Negative Binomial. Since bulk RNA-seq data typically
does not fit the zero-inflation assumption observed in scRNA-seq, we parameterized scVI’s
decoder with a Negative Binomial distribution instead.

Masking Auto-encoders

Masking in self-supervised learning refers to the process of randomly hiding or removing
portions of input data, forcing the model to learn to reconstruct the missing parts, which
promotes the discovery of meaningful features and representations. VIME, or Value
Imputation and Mask Estimation is a popular masking method for tabular data (Yoon et al.
2020). In this self-supervised learning framework for tabular data, two pretext tasks are
introduced: feature vector estimation and mask vector estimation. The encoder function is
trained together with two pretext predictive models to reconstruct a corrupted input sample
(feature vector estimation) with MSE loss and estimate the mask vector used to corrupt the
sample (mask vector estimation) with a cross-entropy loss. The resulting learned
representation captures correlations across different parts of the data, making it useful for
downstream tasks. We focused on one re-implementation from the main paper which is
similar to the original method where we only included one pretext task: feature vector
estimation.

Multi-head Auto-Encoders

A multi-head auto-encoder (MHAE) includes one or more auxiliary heads to perform
supervised tasks during the representation model training. These auxiliary heads are
fully-connected neural networks that take the compressed representation as inputs, and
predict labels such as overall survival and gene essentiality as outputs. In this study we
considered MH auto-encoders trained with an auxiliary head predicting the label of the
downstream task, to assess if adding supervision would improve the performance of the
auto-encoder.
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Graphs Neural Networks

We used a Graph Neural Network (GNN) architecture to incorporate protein-protein
interaction networks (PPIs) as a source of prior knowledge. The STRING PPI database
served as the underlying graph on which the bulk RNA-seq data was laid. Each node of the
graph represented a gene, with gene expression as a node feature. In this setting, each
patient (or sample) was represented as a single graph, and the graph topology over the
samples did not vary, only the overlaying signal did. This model is close to the traditional
convolutional neural network alternating between convolution and pooling steps, but using a
graph instead of e.g. pixel coordinates to perform message passing to neighboring features.
(Althubaiti et al. 2021; Ramirez et al. 2021) previously showcased this kind of model for
survival prediction, and we propose here a modified version intended for representation
learning. More details about the implementation are given in the Supplementary Materials.

Data Augmentation

Data augmentation is a set of techniques used to reduce overfitting of machine learning
models by generating new training data points from the original ones. It is ubiquitous in
computer vision, where new images can be obtained by simple transformations such as
rotations or cropping (Perez et Wang 2017). In the case of omics data, there are no obvious
equivalents of such transformations. However, certain methods have been successfully
applied to single-cell RNA-seq data in the context of contrastive learning by adding noise
and simulating dropout events (Han et al. 2021). Specifically, we focused on using data
augmentation based on Gaussian Noise (DA GN). The method consists in creating
additional samples by copying the data and adding gaussian noise to all the features after
they have been standardized with mean and standard normalization. We used a centered
normal distribution with standard deviation controlled by a hyperparameter and fixed the
number of copies to 4 corrupted samples for one original sample. The target labels for these
new data points are simply copied from the original dataset.

Pre-training experiments

The use of bulk RNA-seq data to train representation algorithms is often hindered by the
limited number of patients who were screened for a specific condition. To address this issue,
pre-training models on larger datasets can help represent the data more accurately. In this
study, we tried two different pre-training strategies for both the per-cohort survival prediction
and the gene essentiality prediction tasks. In order to better assess the effect of pre-training
and decouple it from architecture details, we focused our pre-training experiments on the AE
model.

For both downstream tasks, we compared the original AE to two different pre-training
strategies, PreAE and PreAE finetuned. In the case of PreAE, the mean-standard scaling
was done using solely the statistics of the TCGA pre-training dataset (as described above,
all 33 TCGA cohorts were used for pre-training for gene essentiality prediction task, while we
removed the 11 cohorts of the downstream tasks for the per-cohort OS prediction task) and
the auto-encoder was used only for inference on the task dataset. For the PreAE finetuned
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strategy, the scaling was performed using the learned statistics on the training folds of the
task dataset while the auto-encoder was also fine-tuned for each fold. These former
experiments assess how initializing the weights with pre-training can help on the
downstream tasks. Both optimization histories for the pretraining are available in (Supp Fig
S3, Supp Fig S4).

Downstream prediction models
For survival prediction tasks, each representation model was combined with a multi-layer
perceptron (MLP) optimized with a differentiable Cox loss (Faraggi et Simon 1995; Katzman
et al. 2018) using the Adam algorithm. 20% within each training fold were used for early
stopping to prevent overfitting of the MLP. The choice of using MLP rather than Cox linear
models was motivated by faster computation times thanks to GPU usage with PyTorch and
by the need of a fair comparison with DL models that use nonlinear prediction heads. More
details about the hyperparameters of the prediction model are available in the
Supplementary Materials (Table S2).

For Gene Essentiality a light gradient-boosting machine (LGBM) regressor was trained to
predict the essentiality (dependency score) of each gene in a cell line based on the features
described in the task section. To train the LGBM regressors effectively, two HPs were
considered: the learning rate and the regularization coefficient alpha, the other HPs having
minimal impact in our experiments (data not shown). The learning rate was set in the range
of 0.01 to 0.3 and the regularization coefficient within a range of 0 to 100 for exploring
various regularization strengths. Notice that we initially tested both MLP (the choice in
DeepDEP paper) and LGBM but ended up keeping the best performing model (data not
shown).

Results
In this work, we benchmarked the performance of different representations of bulk RNA-Seq
data on survival prediction tasks on TCGA dataset and gene essentiality prediction on
DepMap data. In particular, we compared the results obtained with standard baseline
representations (Identity and PCA) with those obtained with DRL architecture such as
auto-encoders (AE), variational auto-encoders (VAE), masking auto-encoders (MAE),
multi-head auto-encoders (MHAE), data augmentation techniques coupled with AE (DA),
graph neural network (GNN) based on prior knowledge approaches, and pre-trained models
(PreAE) (see Materials and Methods).

The benchmarking pipeline (Supp. Fig. S1) was based on repeated holdout cross-validation
processes and addressing issues such as unfair budget for HP tuning, overfitting or
performing hardly generalizable statistical tests on particular data splits (See Materials and
Methods section and Supplementary material section).
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Comparing DRL and baseline models performances

We first considered the survival prediction tasks in TCGA datasets by studying separately
the different cancer cohorts. This task is known to be challenging, as the OS labels are noisy
(high percentage of censoring and debatable quality of the labels as shown in (J. Liu et al.
2018)), challenging to predict accurately, and with high variability of model performance
across different cohorts (Huang et al. 2020). As shown in Fig 1, in the indication-specific
survival prediction task, we observed that the choice of the representation model had
minimal impact on performance, as they consistently achieved similar scores in terms of
mean c-index, with less than 10% difference in most cohorts between the best and worst
models and close to 15% difference in BRCA or STAD. Interestingly, Identity and PCA
demonstrated excellent performance on most cohorts. Notably, as shown in Fig 1 and Supp.
Fig S5, using 75% acceptance criterion on test folds, no model outperformed all the others
in at least one cohort. Nonetheless, by using the number of significant pairwise comparisons,
Identity was the best representation model choice for BRCA (together with MAE), LUAD,
COAD (together with AE) and BLCA while PCA was the best choice for UCEC, KIRK and
HNSC. Among the DRL methods, under the same criteria, AE is also the best choice for
SKMC and STAD, MHAE for LGG. Notice that these results are not equivalent to standard
comparison of mean performance (cfr. Supp. Table S3), for which for example Identity would
only be considered the best model for HNSC and BLCA.

Figure 1. Comparison of performance on per-cohort OS prediction task on different
TCGA cohorts for different bulk RNA-seq representation models. Black dots represent
c-index results on different test folds. For each model, mean (square) c-index and standard
deviation (intervals) are represented. Numbers on x axis labels represent the total number
of samples available for this task in each cohort.
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Figure 2. Comparison of performance on pan-cohort OS prediction task on TCGA
dataset for different bulk RNA-seq representation models. Black dots represent c-index
results on different test folds. For each model, mean (square) c-index and standard deviation
(intervals) are represented.

We also considered the OS prediction task in a pan-cancer setup (detailed in the Material
and Methods section). For this task, most of our models, including baselines, produced
comparable performances when taking into account test set variability. Even though results
are not directly comparable because of different evaluation frameworks, State-of-the-art
(SOTA) models such as MultiSurv (Vale-Silva et Rohr 2021) when using solely RNA-seq
data exhibits comparable performance, 0.758 (0.735 - 0.780), to most of our models,
including baselines. As shown in Fig 2, we observed that deep learning methods did not
exhibit a clear advantage over all baselines, also in this pan-cancer case. Indeed, PCA,
masked auto-encoders (MAE) and multi-head auto-encoders (MH-AE) equally emerged as
the best-performing methods on pairwise comparison under the 75% criterion acceptance
(Supp. Figure S6). Once again, mean c-indexes for all representation models differ for no
more than 1.5%. Notice that in this case, similar conclusions could have been obtained by
comparing mean c-index over test folds (cfr. Supp. Table S5).

The third task we considered was the Gene Essentiality prediction task. As expected,
models obtained higher scores on the Overall Spearman correlation than the per-gene one
(Fig 3), with differences between the best and the worst models around 0.6% and 8% for the
overall and per-gene correlations respectively. Indeed, it is a more challenging task to grasp
the distinction within a specific gene across various cell lines than it is to do so across all
genes and cell lines. Interestingly, we see in this task that DRL methods more clearly
demonstrated a superior performance compared to baselines on pairwise comparison under
the 75% criterion acceptance (Supp. Figure S7). In particular, MAE and DA-GN proved to
be the most effective approaches for both overall and per-gene correlations. Nonetheless,
PCA reaches comparable results with best performing DRL methods, with differences of the
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order of 0.2% for overall correlation and 4% for per-gene correlation. Also in this case, mean
Spearman correlation over test folds confirm superiority of both MAE and DA-GN over the
other methods, and in general of DRL over simple baselines. While our evaluation
framework and data are different from the original DeepDEP paper, preventing any direct
comparison, we computed per-gene Pearson correlation scores to verify the coherence of
our predictions to SOTA models' performance ranges. We observed mean correlations per
model ranging from 0.268, to 0.294, to compare with the 0.14 per-gene Pearson correlation
score for Exp-DeepDEP (expression-only model) and 0.17 for DeepDep (on the 5
modalities).

Figure 3. Comparison of performance on gene essentiality prediction task on DepMap
dataset for different bulk RNA-seq representation models. Top panel) Spearman Rank
correlation distributions between predicted and observed gene essentialities: black dots
represent results on different test folds. For each model, mean (square) Spearman Rank and
standard deviation (intervals) are represented. Bottom panel) Same as Top panel, but
correlation computed per-gene.
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All in all, we observed that no model clearly outperforms all the others for all tasks and all
cohorts. Our study highlighted high variability of performances across different test sets for
all tasks and models, showing the importance of adapting a rigorous evaluation framework
taking these into account. Notably, we show that performing bootstrapping on a single test
set could lead to false claims of superiority for certain models that are not generalizable to
other data splits (Fig 4a).

Nonetheless, as described in the Methods section, the acceptance criterion can be used to
define another scoring system to evaluate the relative superiority of a model over the others,
that by construction is more and more consistent once increasing the number of test folds.
The overall results about relative scoring of the models on the different tasks, using
acceptance criterion and pairwise comparison, are shown in Fig 4b. Under this scoring
system, the baseline representation models appear as the best models for survival
prediction, Identity for Per-cohort task and PCA for Pan-cancer (together with MHAE and
MAE). On the other hand, all DRL methods can be considered better (or at least equivalent)
choices for Gene Essentiality prediction tasks, under both overall and per-gene correlation
metrics.
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Figure 4. Comparison of model evaluation processes. a) Test metric distributions
obtained with bootstrap (n=1,000 per seed) on the test sets generated by different
seeds on the downstream tasks. Models were trained following our repeated holdout
pipeline, but graphs show results only on arbitrary chosen individual test sets to showcase
the limitations of this evaluation process. p-values are computed using Wilcoxon tests. i)
Comparison of representation models on 3 example cohorts from the per-cohort OS
prediction task. ii) Comparison of AE and scVI on the pan-cancer task. iii) Comparison of
MAE and DA-GN on the Gene Essentiality task. b) Overall comparison of the different
representations models over the tasks Per-cohort OS Prediction, Pan-cohort OS
Prediction and Gene Essentiality (Overall Metric and per-gene). The score for a given
model corresponds to the number of winning pairwise comparisons to other models
according to our acceptance test criteria. The sum is then normalized by task to obtain the
final score and is expressed as a percentage.

Pre-training influence on auto-encoders
Adding another dimension to our benchmark, we investigated the hypothesis that deep
learning methods performances would benefit from pre-training on external datasets. For this
use case, we focused on the auto-encoder based model on the per-cohort survival prediction
and the gene essentiality prediction tasks. For both tasks, the external dataset for
pre-training is taken from TCGA, removing the downstream task cohorts for the survival
prediction. Specifically for the gene essentiality task, this setting allows us to potentially
extend to RNA-seq-only models the claim from DeepDEP that a dataset representing
different entities such as patient tumor samples can still be used to train a model to generate
consistent embeddings of cell lines expression profiles.
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Figure 5. Impact of the pre-training strategy on the performance of autoencoders on
the per-cohort OS prediction task on different TCGA bulk RNA-seq cohorts. Black dots
represent c-index results on different test folds. Numbers on x axis labels represent the total
number of samples available for this task in each cohort.

We first repeated the survival prediction tasks in per-cohort TCGA datasets, by exploring the
two different pretraining strategies described in the Methods section, on basic
auto-encoders. As shown in Fig 5 and Supp Fig S8, while in terms of mean performances,
PreAE finetuned models outperform PreAE on almost all cohorts (with the exception of
LUSC and SKMC), with differences of performances between AE and pretrained models
ranging from 1 to 11% at most (Table S3), the superiority of PreAE finetuned is less clear in
terms of 75% acceptance criterion on test folds.
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Figure 6. Impact of the pre-training strategy on TCGA samples on the performance of
autoencoders on Gene Essentiality prediction task on DepMap dataset. Top panel)
Correlation distributions between predicted and observed gene essentialities: black dots
represent results on different test folds. Bottom panel) Same as Top Left panel, but
correlation computed per-gene.

When considering the Gene Essentiality prediction task on the DepMap dataset, the results
shown in Fig 6 and Supp. Fig S9 highlight that autoencoders pre-trained on TCGA samples
(details in Methods section) struggle to outperform non pre-trained auto-encoders under the
acceptance criterion assumed in this paper. This is the case for both pre-training strategies
considered in this paper (with or without fine-tuning), and for both overall and per-gene
correlations. Notice that PreAE (for which only the prediction model on top of the
representation obtained on TCGA samples is trained on CCLE, the downstream task
dataset) reaches performances which differ from the AE by 0.25% and 5% for the overall
and per-gene correlation respectively. Moreover, retraining on CCLE dataset consistently
improves the performance of PreAE for this task. It is to be noted that our setting here is
different from DeepDEP as we do not focus on developing an end-to-end model integrating
multiple modalities but we conducted similar experiments on Exp-DeepDEP using the
original code baseline (see Supplementary Material for details) and reached similar
conclusions (Supp. Fig S10).
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Discussion

In this paper, we benchmarked different architectures for representation of bulk RNA-Seq
data against two classical downstream tasks in cancer research: survival and gene
essentiality prediction. Notably, we observed that simple methods for representation like
Identity and PCA can achieve comparable or even superior performances with respect to
more complex or deep models. In particular, we observed that simple baseline models can
be considered as achieving superior performance over other DRL on survival prediction
tasks on patient TCGA data, while DRL methods seem to have a slight but consistent
advantage over baselines on gene essentiality prediction tasks on cell line DepMap data.
Moreover, our findings indicated consistent improvements across tasks in auto-encoders
(AE) when incorporating masking and multi-head techniques, suggesting promising avenues
for future research.

Furthermore, we utilized our benchmarking framework to investigate the impact of
pre-training on the same models and tasks. We found that pre-trained autoencoders (AE) on
patient samples (TCGA) generated representations that achieved comparable gene
essentiality performance on cell-lines data to fine-tuned methods, without any specific
preprocessing or alignment between TCGA and CCLE datasets. This shows that the
representation is able to transfer knowledge and suggests potential for significant
computational time savings by pretraining a "feature extractor", a practice common in image
processing. However, we observed that pre-training did not lead to significant performance
improvements in both overall survival (OS) and gene essentiality (GE) prediction, even after
subsequent fine-tuning.

We also showed that comparing models on a singular test set sampled from the task
datasets can lead to misinterpretations even if coupled with statistical significance testing.
This highlights the importance of adopting standardized evaluation practices to avoid
unwarranted claims of superiority for novel techniques. This seems particularly true when
training representation models on patient bulk RNA-seq data, and is probably due to the
poor ratio samples/features and the intrinsic complexity of the underlying biology.

In this study, we tackled the issue of reproducibility of results in the field of deep learning on
omics data for cancer research. We focused on building a robust, reproducible and fair
benchmarking framework to compare different machine learning models built on bulk
RNA-seq data with respect to their performance on different downstream tasks. The key
elements used in the pipeline we developed (repeated holdout cross-validation and fixed HP
tuning budget) are not new per-se (Filiot et al. 2023) but to our knowledge this framework
has been used in a limited number of studies (Smith et al. 2020) evaluating ML models on
omics data in cancer-specific downstream tasks. Tuning directly on a cross-validation
without a held out test set could lead to inflated performance and justifies the need for a
nested cross-validation framework or the proposed repeated holdout test set. We chose the
repeated holdout test to be able to provide confidence intervals and to provide a fairer metric
(see details in Supplementary Materials). Additionally, we adopted the acceptance criterion
from (Varoquaux et Colliot 2023) to compare model performance, in order to focus on
meaningful improvements on finite-sized test sets. This criterion allows us to establish a
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scoring system for relative model performance, complementing standard mean performance
considerations by accounting for variations from non-model factors like random splits during
cross-validation and HP tuning strategy. We applied this benchmarking framework to
evaluate the performance of different dimensionality reduction methods, including various
model architectures and training techniques, on different downstream tasks (survival on
patient data and gene essentiality on cell lines) using TCGA and DepMap public pan-cancer
datasets.

We focused this work on fair comparisons and ablation studies, ensuring that each model
was tested independently without combining different elements such as scaling,
normalization, and gene selection. This approach allowed us to identify the strengths and
weaknesses of each model more accurately. We believe this framework to be robust and
generalizable to other tasks. For instance, while in the original VIME paper (Yoon et al. 2020)
it was observed that the addition of mask prediction as a subtask provided improved
performances, in our specific use case our ablation study revealed that once applied on bulk
RNA-seq data, this addition actually worsened the models’ performance and increased
training time.

While our study provides valuable insights, we acknowledge some limitations. For instance,
we chose not to incorporate multi-omics data in our analysis due to prior research
(Vale-Silva et Rohr 2021; Chiu et al. 2021) indicating marginal gains or lack of statistical
significance when integrating such data in related studies. The framework uses a fixed
budget HP tuning, which could arguably have been different per model. Larger models and
higher HP budgets could potentially yield better performances. Our study also focused on
breadth rather than depth, exploring many models without deep parameter studies and
tuning. Regarding the comparison with a related method, DeepDEP, we observed that the
datasets used in our study were not identical, possibly leading to adaptations in
hyperparameters. Nonetheless, we demonstrated that pre-training did not consistently
improve performance, supporting our earlier observations. Lastly, we want to highlight that
the highest-performing method on a single metric may not necessarily be the most effective
approach in practical applications. Taking into account other relevant considerations, such as
model interpretability, can contribute to more informed decisions regarding method selection
for specific use cases.

Future development could include extending our tasks by considering out-of-domain
evaluation metrics or exploring additional tasks like drug response prediction. The
computational scale of the study can be increased, with greater budget for HP tuning and
scaling up the number of test sets, and combining models for potentially greater
improvements is a natural step. Additionally, different architectures from the regular
auto-encoders could potentially leverage the pretraining process more efficiently as well as
pretraining on larger bulk RNA-seq datasets (Lachmann et al. 2018). Recent learnings from
large pretrained models applied to single-cell data could be applied to our use case, such as
different feature preprocessing of RNA-seq (Theodoris et al. 2023; Cui et al. 2023).

In conclusion, we believe our study brings valuable insights to the understanding of deep
learning methods for bulk RNA-seq data representations in cancer research. By providing a
robust evaluation framework we aim to facilitate fair comparisons of novel approaches
against established methods, thus advancing the field towards more reliable and impactful
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techniques. The limitations identified in this study also offer guidance for future research
directions and potential refinements to enhance the application of deep learning in cancer
research.

Data and Code Availability
The cancer TCGA data was downloaded from recount3 https://rna.recount.bio/, the
associated clinical data from TCGA-CDR1 and the cell lines datasets from the DepMap portal
https://depmap.org/portal/. The code is available in a public repository provided upon
publication.
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