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Abstract

DNA methylation (DNAm), a crucial epigenetic mark, plays a key role in gene regulation,
mammalian development, and various human diseases. Single-cell technologies enable the
profiling of DNAm states at cytosines within the DNA sequence of individual cells, but they often
suffer from limited coverage of CpG sites. In this study, we introduce scMeFormer, a
transformer-based deep learning model designed to impute DNAm states for each CpG site in
single cells. Through comprehensive evaluations, we demonstrate the superior performance of
scMeFormer compared to alternative models across four single-nucleus DNAm datasets
generated by distinct technologies. Remarkably, scMeFormer exhibits high-fidelity imputation,
even when dealing with significantly reduced coverage, as low as 10% of the original CpG sites.
Furthermore, we applied scMeFormer to a single-nucleus DNAm dataset generated from the
prefrontal cortex of four schizophrenia patients and four neurotypical controls. This enabled the
identification of thousands of differentially methylated regions associated with schizophrenia that
would have remained undetectable without imputation and added granularity to our
understanding of epigenetic alterations in schizophrenia within specific cell types. Our study
highlights the power of deep learning in imputing DNAm states in single cells, and we expect

scMeFormer to be a valuable tool for single-cell DNAm studies.
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Introduction

DNA methylation (DNAm), a fundamental epigenetic mechanism involving the addition of a
methyl group to cytosines, plays a crucial role in gene regulation, mammalian development, and
various human diseases’. Single-cell technologies enable the profiling of DNAm states at
cytosines within the DNA sequence of individual cells, which complements single-cell
transcriptome studies in understanding cellular heterogeneity, developmental processes, and
disease states® 3. However, due to the limited DNA material available from individual cells and
inherent technical limitations, current technologies often suffer from sparse coverage for CpG
sites, typically measuring less than 10% of CpG sites in a single cell*”. This limits their full

potential to uncover the epigenetic landscape at single-cell resolution.

To address the challenge of sparse coverage in the single-cell DNAm dataset, computational
methods have been developed for imputing DNAm states for CpG sites in individual cells. For
example, Melissa, a Bayesian model, draw inferences solely from DNAm profiles®, but it was
designed for genomic regions of interest rather than genome-wide imputation. In recent years,
deep learning-based models have emerged for imputing single-cell DNAm data, automatically
extracting informative features from both DNAm profiles and DNA sequences. One notable
model, CpG Transformer®, builds upon the transformer model architecture initially designed for
language processing. CpG Transformer demonstrated superior performance compared to a
previous deep learning model, DeepCpG'°, which relied on a recurrent neural network.
However, both models exhibit limitations in scalability, making them impractical for datasets

involving thousands of cells—a scenario increasingly prevalent in the field.

Here, we introduce scMeFormer, a transformer-based and computationally efficient deep

learning model, to impute DNAm states for each CpG site in single cells, leveraging information
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from both local DNA sequences and DNAm profiles across cells. We demonstrate the superior
performance of scMeFormer compared to alternative models across four single-nucleus DNAm
datasets, each consisting of thousands of nuclei collected from the human brain using distinct
technologies*’. Remarkably, scMeFormer exhibits high fidelity in imputing DNAm states, even
under significantly reduced coverage—down to 10% of the original CpG sites through
downsampling— as demonstrated by its ability to recover cell type clusters and cell type-specific
differentially methylated regions (DMRs). We further applied scMeFormer to a single-nucleus
DNAm dataset generated from the prefrontal cortex of four schizophrenia patients and
neurotypical controls. This enabled the identification of thousands of DMRs associated with
schizophrenia that would have remained undetectable without imputation, and added granularity

to our understanding of epigenetic alterations in schizophrenia within specific cell types.

Results

scMeFormer predicts DNAm states of CpG sites in single cells

The scMeFormer model architecture comprises two main modules: a DNA module and a CpG
module (Figure 1). The DNA module is designed to learn DNAm motifs, while the CpG module
aims to leverage DNAm information from neighboring CpG sites across cell types. The DNA
module contains a convolutional neural network (CNN) block for extracting local DNA features,
followed by eight layers of transformer blocks to detect distant features that may cooperate to
influence DNAm. The CpG module consists of eight layers of transformer blocks that learn
features from neighboring CpG sites across cell types. The features learned from both modules
are catenated within a fully connected network to predict DNAm states for a given CpG site in a

subset of cells whose DNAm states for the given CpG site are measured. The model is trained
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by minimizing the prediction error, with only measured CpG sites contributing to the loss

function in each training step.

We applied scMeFormer to each of the four single-nucleus DNAm datasets collected from the
human brain through four distinct technologies (snmC-seq*, snmC-seq28, sn-m3C-seq?®, and
snmCAT-seq’). These datasets ranged in size from 2,784 nuclei (snmC-seq) to 4,357 nuclei
(snmCAT-seq). Model prediction performance was evaluated on each dataset using
independent CpG sites that were not included in both model training and validation.
scMeFormer achieved remarkable prediction performance across four datasets, with an
average area under the Precision-Recall Curve (AUPRC) of 0.86 (Figure 2A). A reduction in
prediction performance occurred when scMeFormer employed only the CpG module (average
AUPRC = 0.83) or the DNA module (average AUPRC = 0.76), indicating that both modules
contribute complementary information for predicting DNAm states. Additionally, we compared
scMeFormer with two alternative models: a CNN model and a cluster-based model that imputes
CpG states based on the mean DNAm levels of CpG sites in cells of the same cluster.
scMeFormer consistently outperformed the two alternative models across the four datasets,
except in the snmC-seq dataset, where the cluster model showed slightly better performance

(cluster, AUPRC = 0.90; scMeFormer, AUPRC = 0.89) (Figure 2A).

We further evaluated the prediction performance of various models on subsets of independent
CpG sites, stratified by their levels of variations across cells (Figure 2B). All models performed
well for CpG sites with the least variability. For example, in three datasets (snmC-seq, snmC-
seq2, sn-m3C-seq), all models achieved AUPRC > 0.98 for CpGs ranked in the bottom 10% in
terms of their variations. In the snmCAT-seq dataset, scMeFormer achieved a higher AUPRC
(0.98) than other models (DNA module: 0.93, CpG module: 0.93, CNN: 0.93, Cluster: 0.95).

Notably, we observed a reduction in prediction performance for more variable CpG sites across
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all models. Nonetheless, scMeFormer consistently outperformed alternative models, particularly
for CpG sites in the middle range of variance. For example, within the subset of the most
variable CpG sites (ranked in the top 10%), scMeFormer achieved an average AUPRC of 0.19
across four datasets, which was 0.076 and 0.032 higher than the CNN and cluster models,
respectively. For CpG sites with intermediate variability (ranked between the top 40% and top
50%), scMeFormer achieved an average AUPRC of 0.40, which was 0.16 higher than the CNN

and 0.14 higher than the cluster model across four datasets.

scMeFormer performance under lower CpG coverage through downsampling

We assessed the performance of scMeFormer under conditions of lower CpG coverage in
single cells through downsampling. We systemically reduced the number of CpG sites from 50%
to 1% used for training the model to mimic scenarios with lower coverage. In this investigation,
we compared scMeFormer with only the cluster model, as the cluster model performed better
than CNN in datasets without downsampling. We observed a trend of slightly reduced prediction
performance under situations of lower CpG coverage for both models, but scMeFormer
consistently outperformed the clustering model across all four datasets, except in the snmC-seq
dataset, where the clustering model showed a slightly better performance when the
downsampling rate was larger than 0.05 (Figure 3). Notably, both models achieved good
performance even at 1% of the original CpG coverage (scMeFormer, average AUPRC=0.79;
cluster average AUPRC=0.75) (Figure 3). We also evaluated the two models under
downsampling situations for subsets of independent CpG sites, stratified by their levels of
variations across cells (Supplementary Figure 1). Similar to our observations for datasets
without downsampling, a reduction in prediction performance occurred for more variable CpG
sites for both models. However, scMeFormer demonstrated superior performance compared to

the cluster model across all four datasets, particularly for CpG sites with intermediate variability.
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To further assess the fidelity of imputed data under lower CpG coverage, we investigated the
ability of imputed CpG sites to recover cell type clusters obtained from the original data. We
used the Adjusted Rand Index (ARI) to measure the similarity between clusters obtained from
the original data and those derived from: 1) downsampled data without imputation, 2)
downsampled data imputed by the cluster model, and 3) downsampled data imputed by
scMeFormer. With a predefined cluster number of 10, scMeFormer demonstrated robust
performance (ARI > 0.7) across all four datasets even when the downsampling rate was as low
as 0.1, but this was not the case for the cluster model and the method without imputation
(Figure 4). Specifically, scMeFormer achieved an average ARI of 0.88 across the four datasets,
whereas the other two methods yielded much lower ARIs (without imputation, ARI=0.50;
clustering, ARI=0.51). As downsampling rates became even smaller (< 0.1), all methods
exhibited a decline in performance, but scMeFormer showed a slower decay in performance
compared to the other two methods (Figure 4). This trend remained consistent when increasing

the number of predefined clusters (cluster number = 12, 16, 21) (Supplementary Figure 2).

scMeFormer boosts the detection of cell type-specific DMRs

To further evaluate the quality of imputed data, we assessed its ability to recover DMRs
between cell types identified in the original data for two datasets (sn-m3C-seq and snmCAT-
seq). We defined cell type-specific DMRs as regions containing at least two differentially
methylated CpG sites (DMSs), with each DMS exhibiting lower DNAm levels in the specific cell
type, since hypo-DMRs are strong indicators of regulatory elements''3, Remarkably,
scMeFormer achieved a high recall rate for cell type-specific DMRs across all cell type pairs in
each dataset (sn-m3C-seq: 0.92; snmCAT-seq: 0.92). Even when applied to 10% downsampled

data, scMeFormer maintained a high recall rate (sn-m3C-seq: 0.88; snmCAT-seq: 0.86). Figure
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5 illustrates the recall rate for cell type-specific DMRs for each pair of cell types when imputation
was performed on the raw and 10% downsampled datasets. This trend remained consistent
when employing a stricter definition of cell type-specific DMRs requiring at least five DMSs
(Supplementary Figure 3). These results demonstrate the efficacy of scMeFormer in imputing

CpG sites that faithfully retain information crucial for identifying cell type-specific DMRs.

We compared the numbers of cell type-specific DMRs detected from imputed data with those
from raw data. When DMRs were defined by at least two DMSs, we identified an average of
995,342 and 937,227 DMRs across all cell type pairs for the sn-m3C-seq (Figure 6A) and
snmCAT-seq (Supplementary Figure 4A) datasets, respectively. While these numbers were
slightly smaller when imputation was applied to the 10% downsampled data (sn-m3C-seq,
933,619 (Figure 6B); snmCAT-seq, 944,680 (Supplementary Figure 4B)), they remained
substantially higher than those identified from raw data (sn-m3C-seq: 634; snmCAT-seq: 145).
Additionally, we compared the number of DMRs defined by varying numbers of DMSs, and in
general, we observed a smaller number of DMRs with an increasing number of DMSs when
scMeFormer was applied to the raw data (Figure 6A, Supplementary Figure 4A). These
numbers became slightly smaller but remained comparable when scMeFormer was applied to

the 10% downsampled data (Figure 6B, Supplementary Figure 4B).

To estimate the false positive rates of our model in calling cell type-specific DMRs, we turned to
two broad cell types (neuron and glia) in the sn-m3C-seq dataset that allows us to identify CpG
sites of sufficient coverage for identifying differentially methylation CpG sites in the raw data.
Specifically, we first collected 7,512 CpG sites not within blacklist regions' but with high
coverage (= 1000) in each broad cell type. Among these, 1,739 showed differential methylation
between the two cell types (FDR < 0.05). We then ran DMR analysis between the two cell types

in imputed data, and selected a subset of DMRs (1,288) that contained as least one CpG site
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with coverage = 1000 in each broad cell type in the raw data. Among the 1,131 DMRs we
examined, 534 contained at least one differentially methylated CpG site from the selected high-
coverage CpG sites in the raw data, suggesting that 47% of them are likely true DMRs
(precision = 0.47). When we extended the DMRs by a window of 1kb, we observed 958 DMRs
contained at least one differentially methylated CpG site of high coverage in the raw data,

resulting in a precision of 0.85.

To assess the biological relevance of cell type-specific DMRs identified from imputed data, we
leveraged histone mark (H3K27ac) data that indicates active enhancers in four broad cell types
(neuron, astrocyte, oligo, and microglia)'®. Given prior evidence that regulatory regions are
associated with low DNAm levels, we hypothesized that reliable cell type-specific DMRs should
be enriched for H3K27ac marks in the corresponding broad cell type. Our analysis confirmed
this hypothesis, revealing that cell type-specific DMRs were enriched for H3K27ac-marked
regions in the corresponding broad cell type across both datasets (Figure 6C, Supplementary
Figure 4C). Remarkably, this enrichment pattern remained consistent even when scMeFormer
was applied to the 10% downsampled data (Figure 6D, Supplementary Figure 4D). This
enrichment pattern became stronger when DMRs were defined by a larger number of DMSs,

suggesting a higher probability of these regions being regulatory.

To further validate the quality of cell type-specific DMRs identified from imputed data, we
examined their enrichment for the heritability of three brain disorders (schizophrenia, bipolar,
and depression) and human height. This evaluation was based on the rationale that if cell type-
specific DMRs were enriched for regulatory regions specific to those cell types, they would also
enrich the heritability of traits in cell types relevant to the traits. This was indeed the case for
DMRs defined by at least five CpGs in the sn-m3C-seq dataset (Figure 7). We observed strong

enrichment for all three brain disorders, but not height, for DMRs specific to excitatory neuronal
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cell types, particularly when they were compared to inhibitory or non-neuronal cell types.
Enrichment was also observed for DMRs specific to inhibitory neuronal cell types when they
were compared to non-neuronal cell types. Conversely, no enrichment was observed for DMRs
specific to non-neuronal cell types across all three brain disorders, except for depression, where
we noted enrichment for astrocyte-specific DMRs, supporting the emerging role of this cell type
in depression'®. This pattern remained consistent for DMRs defined by at least 10 DMSs and
DMRs (defined by at least 5 or 10 DMSs) detected from 10% downsampled data
(Supplementary Figure 5). Heritability enrichment analysis for DMRs detected in the snrmCAT-

seq dataset showed similar pattern (Supplementary Figure 6).

scMeFormer enhances the detection of schizophrenia-associated DMRs

We applied scMeFormer to impute CpG states in 2,534 single-nucleus DNAm profiles
generated from the prefrontal cortex of four schizophrenia cases and four neurotypical controls.
We first evaluated whether imputed data could recover clusters derived from CpHs, which is
better suited for clustering neuronal cell types than CpGs*. Specifically, using DNAm levels of
CpHs in nonoverlapping 100kb bins, we first clustered these nuclei into five major cell types: two
excitatory neuron subtypes from the superficial (SupExc) and deep cortical layers (DeepExc),
two inhibitory neuron subtypes from the cortical ganglionic eminence (InhCGE) and the medial
ganglionic eminence (InhMGE), and a glial cell type. We then clustered the same set of nuclei
using imputed DNAm levels of CpGs in nonoverlapping 100kb bins. Clusters from imputed data
closely mirror the clusters obtained using CpHs (Supplementary Figure 7), indicating that the

imputation process preserved data properties related to cell type composition.
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Next, we aimed to identify schizophrenia-associated DMRs within each cell type. Notably, no
DMRs were detected before imputation, but imputation revealed a substantial number of DMRs
across the five cell types (Figure 8A). S-LDSC analysis demonstrated that cell type-specific
DMRs were enriched for schizophrenia heritability, particularly in neuronal cell types and, to a
lesser extent, in glial cells (Figure 8B). While enrichment was also observed for bipolar disorder
and depression, the strength was generally weaker compared to schizophrenia. There was no
enrichment observed for height heritability, suggesting these DMRs are relatively specific to
schizophrenia. Furthermore, we linked the DMRs detected in each cell type to the genes they
may regulate, leveraging chromatin loops detected in the broad neuron and glial cell types in a
previous study'. We observed that DMRs in deep excitatory neurons were linked to genes
enriched for neurodevelopmental processes, whereas DMRs in super excitatory neurons were
linked to genes enriched for synaptic signaling (Figure 8C). While genes regulated by DMRs in
inhibitory neurons did not reveal significant pathways, the top pathways were consistent with
those from DMRs in excitatory neurons. Interestingly, the top enriched pathways for genes
regulated by DMRs in the glial cell type were related to the immune system, although not
statistically significant after FDR correction (FDR > 0.05). These findings add granularity to our
understanding of the functional implications of these epigenetic alterations in schizophrenia

within specific cell types.

Discussion

Single-cell DNAm profiling technologies have offered unprecedented opportunities to explore
the epigenetic landscape of DNA sequence at the single-cell resolution. However, many of
these technologies suffer from a high missing rate of CpG sites, limiting their full potential to
uncover the epigenetic mechanism underlying various biological processes and diseases.

Previous deep learning models have attempted to impute CpGs methylation status in single
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cells® '°. However, these models face challenges in scaling to thousands of cells, a scenario
that is becoming increasingly popular. In contrast, our novel model, scMeFormer, efficiently
imputes data for thousands of cells. It achieves training times of approximately 72 hours for
each single-nucleus DNAm dataset we investigated, utilizing four NVIDIA A100 GPUs. Crucially,
the multitask prediction framework employed by scMeFormer allows the imputation of single-cell
DNAm datasets of any size without incurring additional computational time costs. Remarkably,
scMeFormer exhibits the ability to impute DNAm states with high fidelity, even with only one-
tenth of the current coverage of CpG sites through downsampling, as evidenced by the recovery
of cell type clusters and cell type-specific DMRs. Furthermore, we applied scMeFormer to a
single-nucleus DNAm dataset generated from the prefrontal cortex of schizophrenia patients
and neurotypical controls. This led to the identification of thousands of schizophrenia-associated
DMRs that would have remained undetectable without imputation, adding granularity to our
understanding of epigenetic alterations in schizophrenia within specific brain cell types. Our
study underscores the power of deep learning in imputing DNA states in single cells, and we

expect that scMeFormer will be a valuable tool for single-cell DNAm studies.

While scMeFormer demonstrates significant promise for single-cell DNAm data imputation, we
acknowledge several limitations and potential areas for future work. First, scMeFormer relies on
input DNA sequences from the reference genome, which does not precisely align with the DNA
sequences in the samples we used for training the model. The model's performance could be
further improved by utilizing DNA sequences and DNAm data from the same individuals.
Second, scMeFormer currently focuses on CpG sites imputation. Expanding its capabilities to
CpH sites, known for their crucial roles in neurons, would enhance its utility. Third, scMeFormer
requires retraining for each new dataset. Building a transferable model capable of adapting to

new datasets without retraining would be highly beneficial for broader applications.
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Methods

Training datasets

Training datasets include four single-nucleus DNAm datasets generated by four different
technologies we developed: snmC-seq®*, snmC-seq28, sn-m3C-seq®, and snmCAT-seq’, all
applied to human postmortem brain tissues. Detailed information regarding each technology
and the bioinformatics procedures for data processing have been described in our original
studies. Briefly, snmC-seq was a multiplexed single-nucleus DNAm profiling technique we
initially developed, which was used to analyze the methylomes of 2,784 neurons isolated from
the human frontal cortex. snmC-seq2 was the improved version of snmC-seq with increased
read mapping and enhanced throughput, and was used to profile the methylomes of 3,072
nuclei obtained from postmortem prefrontal cortex. sn-m3C-seq was a single-cell multi-omics
technique that jointly profiles chromatin conformation and DNAm from the same cells and was
applied to profile 4,237 nuclei from human BA10 cortical tissue. snmCAT-seq was developed to
jointly profile methylome, chromatin accessibility, and transcriptome from the same cells, and

was applied to profile 4,357 nuclei isolated from postmortem human BA10 cortical tissue.

scMeformer architecture

scMeformer contains three main modules: a DNA module, a CpG module, and a fully connected
network. The input to the model includes two modalities: a one-hot encoded DNA sequence of 2
kb and the DNAm levels of 100 neighboring CpGs around the target CpG in each cell cluster.

The output of the model is the predicted methylation states of the target CpG in each cell across

all cells. Below are descriptions of each module.
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DNA module. The DNA module employs the INTERACT architecture developed in our previous
study'’, which consists of two sub-modules: a convolutional neural network (CNN) and the
encoder of transformer. The CNN comprises three convolutional layers, a batch normalization
layer, a max-pooling layer, and a dropout layer. Each convolutional layer uses 512 kernels of
size 10 to learn motifs from DNA sequences, and each kernel is activated by a rectified linear
unit (ReLU) function. The max-pooling layer (step size = 20bp) is used after the three
convolutional layers to capture motifs learned by the convolutional layers. The batch
normalization layer is used after the max-pooling layer to improve training speed and stability.

The dropout layer is employed to prevent overfitting. The dropout rate in this layer is set to 0.5.

The encoder of transformer consists of a stack of eight identical layers, which takes the CNN
output as input to learn distant features that may act jointly. Each layer in the transformer
encoder employs two sub-layers. The first sub-layer is a multi-head self-attention layer that
learns the attention between any two features at different positions. The second sub-layer is a
simple, position-wise fully connected feed-forward network. After both sub-layers, a
normalization layer is employed to speed up training and improve training stability. Additionally,
a dropout layer with a rate of 0.1 is employed to prevent overfitting. Each sub-layer in the
encoder has a residual connection to help mitigate the vanishing gradient problem. Residual
connections are often used in deep neural networks to prevent the network from forgetting

important features of the input during training.

CpG module. The CpG module employs the same encoder of transformer as the DNA module.
Given a target CpG site the model aims to predict, the CpG module takes as input the DNAm
levels of 100 CpG sites around the target CpG site (excluding the target CpG site itself) across
pre-defined cell clusters. To create this input, all single cells are initially clustered into clusters

based on the DNAm levels of CpG sites within non-overlapping 100kb bins. For a given CpG
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site, its DNAm level in each cluster is determined by dividing the number of methylated reads by
the total number of reads in that cluster. If the cells are clustered into n clusters, the input to the

CpG module is a 100 x n matrix.

Fully connected network. The fully connected network is composed of a hidden layer with 512
units, a dropout layer, and an output layer. The dropout layer is designed to prevent overfitting
and uses a drop rate of 0.1. The output layer applies the sigmoid function to scale the predicted
values between 0 and 1. The number of units in the output layer is equal to the number of cells.
The input to the fully connected network is the concatenation of the output from the DNA
module and the CpG module. Each unit in the output layer represents the DNAm state of the

target CpG site in the corresponding cell and is indicated by a value of either 0 or 1.

Model training. We divided CpG sites into three subsets by chromosomes for model training,
validation, and evaluation. The training set consisted of CpG sites on chromosomes 1 to 20,
while CpG sites on chromosome 21 were used as the validation set for model tuning, and CpG
sites on chromosome 22 were used as the independent testing set to evaluate the model
prediction performance. Approximately 5% of CpG sites were covered by at least one read in a
single cell across the four datasets and were employed for model training, while the remaining
CpG sites were not covered by any reads and were not used in model training. We defined
DNAm state as 1 for a CpG site if all mapped reads support methylation, and 0 if all mapped
reads support unmethylation. We did not include CpG sites for model training if their mapped

reads support both methylation and unmethylation.

Alternative models. We compared scMeformer to four alternative models: the CNN model, the
cluster model, the scMeformer model but with only the DNA module, and the scMeformer model

but with only the CpG module. The CNN model also consists of three modules, including a DNA
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module, a CpG module, and a fully connected network. However, in the CNN model, both the
DNA and CpG modules employ a convolutional neural network (the same as described in the
DNA module of scMeformer) rather than the transformer encoders. The cluster model first
clusters cells into clusters based on DNAm levels of CpGs within non-overlapping 100kb bins.
For each cell in a cluster, the methylation state for a CpG site not covered by any reads is

imputed by known methylation states of this CpG site in cells of the same cluster.

Cell type-specific DMRs

We leveraged pre-assigned cell type labels for each nucleus in each dataset from the original
studies. We then employed the DMRfind function from methylpy (v1.4.2)'8 to identify cell type-
specific DMRs across all cell type pairs. Briefly, DMRfind utilizes a permutation-based root
mean square test of goodness-of-fit to identify differentially methylated sites (DMS) across
samples. Consecutive DMSs within 250 bp are then merged into DMRs. In our imputed dataset,
we considered a CpG site with a predicted methylation status as covered by one read
supporting methylation, and a predicted unmethylated CpG site as covered by one read

supporting unmethylation.

Stratified LD score regression

We performed stratified LD score regression (S-LDSC)® to evaluate the enrichment of
heritability of three brain disorders (schizophrenia?, depression?', and bipolar disorder??). We
also included one non-brain trait, human height®, as a negative control to examine whether our
findings are specific to brain disorders. Following recommendations from the LDSC resource
website (https://alkesgroup.broadinstitute.org/LDSCORE), S-LDSC was run for each list of

variants with the baseline LD model v2.2 that included 97 annotations to control for the LD
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between variants with other functional annotations in the genome. We used HapMap Project
Phase 3 SNPs as regression SNPs, and 1000 Genomes SNPs of European ancestry samples
as reference SNPs, which were all downloaded from the LDSC resource website. To evaluate
the unique contribution of annotations to trait heritability, we utilized a metric from S-LDSC: the
z-score of per-SNP heritability. This metric allows us to discern the unique contributions of
candidate annotations while accounting for contributions from other functional annotations in the
baseline model. The p-values were derived from the z-score assuming a normal distribution and

FDR was computed from the p-values based on Benjamini & Hochberg procedure.

Single-nucleus DNAm data from schizophrenia cases and controls

We generated single-nucleus methylomes from the prefrontal cortex of four schizophrenia cases
and four neurotypical controls using the snmCAT-seq technique, but without capturing
chromatin accessibility information. The brain tissues were from the brain repository at the
Lieber Institute for Brain Development. Details on tissue acquisition, processing, curation, and
dissection, were described in prior reports®*. All eight brain samples were male Caucasian

individuals with a mean age of 42 years old in both cases and controls.

We processed sequencing reads by implementing a versatile mapping pipeline (http://cemba-
data.readthedocs.io/) for all the methylome-based technologies developed by our group, as
detailed in our previous study’. After allc files were generated, the methylcytosine (mc) and total
cytosine basecalls (cov) were summed up for each 100kb bin across the hg19 genome for each
sequence context (CG, CH). After filtering cells by various mapping metrics, 2,534 nuclei were
retained for further analysis. Using DNAm levels of CpHs in nonoverlapping 100kb bins, we
clustered these nuclei into five major cell types: two excitatory neuron subtypes from the

superficial and deep cortical layers (SupExc and DeepExc), two inhibitory neuron subtypes from
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the cortical ganglionic eminence (InhCGE) and the medial ganglionic eminence (InhMGE), and
a glial cell type. We also clustered these nuclei using DNAm levels of CpGs in nonoverlapping
100kb bins after imputation employing functions from the scanorama package. We employed
the DMRfind function from methylpy to identify schizophrenia-associated DMRs for each cell
type. DMRs were called for regions with at least two DMSs (FDR < 0.01) within 250bp and each
DMS had the same direction of effect in at least two samples from either the case or control
group. DMR detected in neuronal and glial cell types were assigned to target genes, leveraging
reported chromatin loops between active promoters and distal regulatory regions in the broad
neuronal and two glial cell types (microglia and oligodendrocytes)'®. We used clusterProfiler?
for gene ontology enrichment analysis for genes regulated by DMRs detected in each cell type,
using all distally regulated genes detected in the corresponding broad cell type as the

background genes.
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Figure 2. Comparison of model prediction performance between scMeformer and four

alternative models across four single-nucleus DNAm datasets. A. Comparison was based on all

independent testing CpG sites on chromosome 22. B. Comparison was based on subsets of

independent testing CpG sites stratified by their levels of variations across all cells in each

dataset. The “0-0.1” group represents the top 10% variable CpG sites.
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Figure 5. Recall rate for cell type-specific DMRs detected in each pair of cell type in two
datasets (sn-m3C-seq and snmCAT-seq). Cell type-specific DMRs were defined by at least
two DMSs. The left and right panel shows recall rates when imputation was performed on the
raw and 10% downsampled data, respectively. The x-axis represents DMRs specific to each cell

type, compared to each cell type labeled on the y-axis.
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Figure 6. scMeFormer enhances the detection of cell type-specific DMRs in the dataset of sn-
m3C-seq. A. The top left panel displays the number of cell type-specific DMRs (log scale)
detected in the raw data, with subsequent panels showing the number of cell type-specific
DMRs (log scale) detected in imputed data, defined by varying numbers of DMSs. The x-axis
represents DMRs specific to each cell type, compared to each cell type labeled on the y-axis. B.
Similar to A, but imputation was performed on 10% downsampled data. C. Enrichment fold for
H3K27ac mark in the corresponding broad cell type among cell type-specific DMRs detected in

the raw data (top left panel) and in the imputed data defined by varying number of DMS. The x-
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axis represents DMRs specific to each cell type, compared to each cell type labeled on the y-

axis. D. Similar to C, but imputation was performed on 10% downsampled data.
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Figure 7. Heritability enrichment analysis for cell type-specific DMRs identified from imputed
data of the sn-m3C-seq dataset. The x-axis represents DMRs specific to each cell type,
compared to each cell type labeled on the y-axis. Cell type-specific DMRs were defined by at
least five DMSs. The color represents the -log1o(FDR) values, derived from the z-score of per-

SNP heritability as reported by stratified LDSC regression.
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Figure 8. scMeFormer enhances the detection of schizophrenia-associated DMRs. A. Numbers
of schizophrenia-associated DMRs detected in each cell type. B. Evaluation of schizophrenia-
associated DMRs for their contributions to the heritability of three brain disorders and human
height. The numbers within the squares are z-scores of per-SNP heritability that are significant
after multiple testing correction (FDR < 0.05). C. Top 10 enriched pathways for genes linked by

schizophrenia-associated DMRs through chromatin loops in each cell type.
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Supplementary Figure 1. Comparison of prediction performance between scMeformer and the
cluster model across four datasets under lower CpG coverage through downsampling.
Comparison was based on subsets of independent testing CpG sites stratified by their levels of

variation across cells. The “0-0.1” group represents the top 10% variable CpG sites.

Supplementary Figure 2. Evaluation of imputed data quality under reduced CpG coverage in
recovering cell types identified in the original data across four datasets, when varying the

number of defined clusters in the original data from 12 to 21.

Supplementary Figure 3. Recall rate for cell type-specific DMRs for all cell type pairs in two
datasets (sn-m3C-seq and sn—-m3C-seq). Cell type-specific DMRs were defined by at least
five DMSs. The left and right panel shows recall rate when imputation was conducted on the
raw and 10% downsampled data, respectively. The x-axis represents DMRs specific to each cell

type, compared to each cell type labeled on the y-axis.

Supplementary Figure 4. scMeFormer enhances the detection of cell type-specific DMRs in
the dataset of shrmCAT-seq. A. The top left panel displays the number of cell type-specific
DMRs (log scale) detected in the raw data, with subsequent panels showing the number of cell
type-specific DMRs (log scale) detected in imputed data, defined by varying numbers of DMSs.
The x-axis represents DMRs specific to each cell type, compared to each cell type labeled on
the y-axis. B. Similar to A, but imputation was performed on 10% downsampled data. C.
Enrichment fold for H3K27ac mark in the corresponding broad cell type among cell type-specific

DMRs detected in the raw data (top left panel) and in the imputed data defined by varying
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number of DMS. The x-axis represents DMRs specific to each cell type, compared to each cell
type labeled on the y-axis. D. Similar to C, but imputation was performed on 10% downsampled

data.

Supplementary Figure 5. Heritability enrichment analysis for cell type-specific DMRs identified
from imputed data in the dataset of sn-m3C-seq. These plots show enrichment analysis results
for cell type-specific DMRs defined by at least five or 10 DMSs and when imputation was
performed in original data or 10% downsampled data. The color represents the -log1o(FDR)
values, derived from the z-score of per-SNP heritability as reported by stratified LDSC
regression. The x-axis represents DMRs specific to each cell type, compared to each cell type

labeled on the y-axis.

Supplementary Figure 6. Heritability enrichment analysis for cell type-specific DMRs identified
from imputed data in the dataset of shrmCAT-seq. These plots show enrichment analysis results
for cell type-specific DMRs defined by at least five or 10 DMSs and when imputation was
performed in original data or 10% downsampled data. The color represents the -logio(FDR)
values, derived from the z-score of per-SNP heritability as reported by stratified LDSC
regression. The x-axis represents DMRs specific to each cell type, compared to each cell type

labeled on the y-axis.

Supplementary Figure 7. T-SNE plot using imputed CpG sites resemble clusters obtained

using CpHs in the raw data.


https://doi.org/10.1101/2024.01.25.577200
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.25.577200; this version posted January 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.


https://doi.org/10.1101/2024.01.25.577200
http://creativecommons.org/licenses/by-nc-nd/4.0/

