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Abstract 

 

DNA methylation (DNAm), a crucial epigenetic mark, plays a key role in gene regulation, 

mammalian development, and various human diseases. Single-cell technologies enable the 

profiling of DNAm states at cytosines within the DNA sequence of individual cells, but they often 

suffer from limited coverage of CpG sites. In this study, we introduce scMeFormer, a 

transformer-based deep learning model designed to impute DNAm states for each CpG site in 

single cells. Through comprehensive evaluations, we demonstrate the superior performance of 

scMeFormer compared to alternative models across four single-nucleus DNAm datasets 

generated by distinct technologies. Remarkably, scMeFormer exhibits high-fidelity imputation, 

even when dealing with significantly reduced coverage, as low as 10% of the original CpG sites. 

Furthermore, we applied scMeFormer to a single-nucleus DNAm dataset generated from the 

prefrontal cortex of four schizophrenia patients and four neurotypical controls. This enabled the 

identification of thousands of differentially methylated regions associated with schizophrenia that 

would have remained undetectable without imputation and added granularity to our 

understanding of epigenetic alterations in schizophrenia within specific cell types. Our study 

highlights the power of deep learning in imputing DNAm states in single cells, and we expect 

scMeFormer to be a valuable tool for single-cell DNAm studies. 
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Introduction 

 

DNA methylation (DNAm), a fundamental epigenetic mechanism involving the addition of a 

methyl group to cytosines, plays a crucial role in gene regulation, mammalian development, and 

various human diseases1. Single-cell technologies enable the profiling of DNAm states at 

cytosines within the DNA sequence of individual cells, which complements single-cell 

transcriptome studies in understanding cellular heterogeneity, developmental processes, and 

disease states2, 3. However, due to the limited DNA material available from individual cells and 

inherent technical limitations, current technologies often suffer from sparse coverage for CpG 

sites, typically measuring less than 10% of CpG sites in a single cell4-7. This limits their full 

potential to uncover the epigenetic landscape at single-cell resolution. 

 

To address the challenge of sparse coverage in the single-cell DNAm dataset, computational 

methods have been developed for imputing DNAm states for CpG sites in individual cells. For 

example, Melissa, a Bayesian model, draw inferences solely from DNAm profiles8, but it was 

designed for genomic regions of interest rather than genome-wide imputation. In recent years, 

deep learning-based models have emerged for imputing single-cell DNAm data, automatically 

extracting informative features from both DNAm profiles and DNA sequences. One notable 

model, CpG Transformer9, builds upon the transformer model architecture initially designed for 

language processing. CpG Transformer demonstrated superior performance compared to a 

previous deep learning model, DeepCpG10, which relied on a recurrent neural network. 

However, both models exhibit limitations in scalability, making them impractical for datasets 

involving thousands of cells4a scenario increasingly prevalent in the field. 

 

Here, we introduce scMeFormer, a transformer-based and computationally efficient deep 

learning model, to impute DNAm states for each CpG site in single cells, leveraging information 
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from both local DNA sequences and DNAm profiles across cells. We demonstrate the superior 

performance of scMeFormer compared to alternative models across four single-nucleus DNAm 

datasets, each consisting of thousands of nuclei collected from the human brain using distinct 

technologies4-7. Remarkably, scMeFormer exhibits high fidelity in imputing DNAm states, even 

under significantly reduced coverage4down to 10% of the original CpG sites through 

downsampling4 as demonstrated by its ability to recover cell type clusters and cell type-specific 

differentially methylated regions (DMRs). We further applied scMeFormer to a single-nucleus 

DNAm dataset generated from the prefrontal cortex of four schizophrenia patients and 

neurotypical controls. This enabled the identification of thousands of DMRs associated with 

schizophrenia that would have remained undetectable without imputation, and added granularity 

to our understanding of epigenetic alterations in schizophrenia within specific cell types. 

 

Results 

 

scMeFormer predicts DNAm states of CpG sites in single cells 

 

The scMeFormer model architecture comprises two main modules: a DNA module and a CpG 

module (Figure 1). The DNA module is designed to learn DNAm motifs, while the CpG module 

aims to leverage DNAm information from neighboring CpG sites across cell types. The DNA 

module contains a convolutional neural network (CNN) block for extracting local DNA features, 

followed by eight layers of transformer blocks to detect distant features that may cooperate to 

influence DNAm. The CpG module consists of eight layers of transformer blocks that learn 

features from neighboring CpG sites across cell types. The features learned from both modules 

are catenated within a fully connected network to predict DNAm states for a given CpG site in a 

subset of cells whose DNAm states for the given CpG site are measured. The model is trained 
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by minimizing the prediction error, with only measured CpG sites contributing to the loss 

function in each training step. 

 

We applied scMeFormer to each of the four single-nucleus DNAm datasets collected from the 

human brain through four distinct technologies (snmC-seq4, snmC-seq26, sn-m3C-seq5, and 

snmCAT-seq7). These datasets ranged in size from 2,784 nuclei (snmC-seq) to 4,357 nuclei 

(snmCAT-seq). Model prediction performance was evaluated on each dataset using 

independent CpG sites that were not included in both model training and validation. 

scMeFormer achieved remarkable prediction performance across four datasets, with an 

average area under the Precision-Recall Curve (AUPRC) of 0.86 (Figure 2A). A reduction in 

prediction performance occurred when scMeFormer employed only the CpG module (average 

AUPRC = 0.83) or the DNA module (average AUPRC = 0.76), indicating that both modules 

contribute complementary information for predicting DNAm states. Additionally, we compared 

scMeFormer with two alternative models: a CNN model and a cluster-based model that imputes 

CpG states based on the mean DNAm levels of CpG sites in cells of the same cluster. 

scMeFormer consistently outperformed the two alternative models across the four datasets, 

except in the snmC-seq dataset, where the cluster model showed slightly better performance 

(cluster, AUPRC = 0.90; scMeFormer, AUPRC = 0.89) (Figure 2A). 

 

We further evaluated the prediction performance of various models on subsets of independent 

CpG sites, stratified by their levels of variations across cells (Figure 2B). All models performed 

well for CpG sites with the least variability. For example, in three datasets (snmC-seq, snmC-

seq2, sn-m3C-seq), all models achieved AUPRC > 0.98 for CpGs ranked in the bottom 10% in 

terms of their variations. In the snmCAT-seq dataset, scMeFormer achieved a higher AUPRC 

(0.98) than other models (DNA module: 0.93, CpG module: 0.93, CNN: 0.93, Cluster: 0.95). 

Notably, we observed a reduction in prediction performance for more variable CpG sites across 
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all models. Nonetheless, scMeFormer consistently outperformed alternative models, particularly 

for CpG sites in the middle range of variance. For example, within the subset of the most 

variable CpG sites (ranked in the top 10%), scMeFormer achieved an average AUPRC of 0.19 

across four datasets, which was 0.076 and 0.032 higher than the CNN and cluster models, 

respectively. For CpG sites with intermediate variability (ranked between the top 40% and top 

50%), scMeFormer achieved an average AUPRC of 0.40, which was 0.16 higher than the CNN 

and 0.14 higher than the cluster model across four datasets. 

 

scMeFormer performance under lower CpG coverage through downsampling 

 

We assessed the performance of scMeFormer under conditions of lower CpG coverage in 

single cells through downsampling. We systemically reduced the number of CpG sites from 50% 

to 1% used for training the model to mimic scenarios with lower coverage. In this investigation, 

we compared scMeFormer with only the cluster model, as the cluster model performed better 

than CNN in datasets without downsampling. We observed a trend of slightly reduced prediction 

performance under situations of lower CpG coverage for both models, but scMeFormer 

consistently outperformed the clustering model across all four datasets, except in the snmC-seq 

dataset, where the clustering model showed a slightly better performance when the 

downsampling rate was larger than 0.05 (Figure 3). Notably, both models achieved good 

performance even at 1% of the original CpG coverage (scMeFormer, average AUPRC=0.79; 

cluster average AUPRC=0.75) (Figure 3). We also evaluated the two models under 

downsampling situations for subsets of independent CpG sites, stratified by their levels of 

variations across cells (Supplementary Figure 1). Similar to our observations for datasets 

without downsampling, a reduction in prediction performance occurred for more variable CpG 

sites for both models. However, scMeFormer demonstrated superior performance compared to 

the cluster model across all four datasets, particularly for CpG sites with intermediate variability. 
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To further assess the fidelity of imputed data under lower CpG coverage, we investigated the 

ability of imputed CpG sites to recover cell type clusters obtained from the original data. We 

used the Adjusted Rand Index (ARI) to measure the similarity between clusters obtained from 

the original data and those derived from: 1) downsampled data without imputation, 2) 

downsampled data imputed by the cluster model, and 3) downsampled data imputed by 

scMeFormer. With a predefined cluster number of 10, scMeFormer demonstrated robust 

performance (ARI > 0.7) across all four datasets even when the downsampling rate was as low 

as 0.1, but this was not the case for the cluster model and the method without imputation 

(Figure 4). Specifically, scMeFormer achieved an average ARI of 0.88 across the four datasets, 

whereas the other two methods yielded much lower ARIs (without imputation, ARI=0.50; 

clustering, ARI=0.51). As downsampling rates became even smaller (< 0.1), all methods 

exhibited a decline in performance, but scMeFormer showed a slower decay in performance 

compared to the other two methods (Figure 4). This trend remained consistent when increasing 

the number of predefined clusters (cluster number = 12, 16, 21) (Supplementary Figure 2). 

 

scMeFormer boosts the detection of cell type-specific DMRs 

 

To further evaluate the quality of imputed data, we assessed its ability to recover DMRs 

between cell types identified in the original data for two datasets (sn-m3C-seq and snmCAT-

seq). We defined cell type-specific DMRs as regions containing at least two differentially 

methylated CpG sites (DMSs), with each DMS exhibiting lower DNAm levels in the specific cell 

type, since hypo-DMRs are strong indicators of regulatory elements11-13. Remarkably, 

scMeFormer achieved a high recall rate for cell type-specific DMRs across all cell type pairs in 

each dataset (sn-m3C-seq: 0.92; snmCAT-seq: 0.92). Even when applied to 10% downsampled 

data, scMeFormer maintained a high recall rate (sn-m3C-seq: 0.88; snmCAT-seq: 0.86). Figure 
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5 illustrates the recall rate for cell type-specific DMRs for each pair of cell types when imputation 

was performed on the raw and 10% downsampled datasets. This trend remained consistent 

when employing a stricter definition of cell type-specific DMRs requiring at least five DMSs 

(Supplementary Figure 3). These results demonstrate the efficacy of scMeFormer in imputing 

CpG sites that faithfully retain information crucial for identifying cell type-specific DMRs. 

 

We compared the numbers of cell type-specific DMRs detected from imputed data with those 

from raw data. When DMRs were defined by at least two DMSs, we identified an average of 

995,342 and 937,227 DMRs across all cell type pairs for the sn-m3C-seq (Figure 6A) and 

snmCAT-seq (Supplementary Figure 4A) datasets, respectively. While these numbers were 

slightly smaller when imputation was applied to the 10% downsampled data (sn-m3C-seq, 

933,619 (Figure 6B); snmCAT-seq, 944,680 (Supplementary Figure 4B)), they remained 

substantially higher than those identified from raw data (sn-m3C-seq: 634; snmCAT-seq: 145). 

Additionally, we compared the number of DMRs defined by varying numbers of DMSs, and in 

general, we observed a smaller number of DMRs with an increasing number of DMSs when 

scMeFormer was applied to the raw data (Figure 6A, Supplementary Figure 4A). These 

numbers became slightly smaller but remained comparable when scMeFormer was applied to 

the 10% downsampled data (Figure 6B, Supplementary Figure 4B). 

 

To estimate the false positive rates of our model in calling cell type-specific DMRs, we turned to 

two broad cell types (neuron and glia) in the sn-m3C-seq dataset that allows us to identify CpG 

sites of sufficient coverage for identifying differentially methylation CpG sites in the raw data. 

Specifically, we first collected 7,512 CpG sites not within blacklist regions14 but with high 

coverage (≥ 1000) in each broad cell type. Among these, 1,739 showed differential methylation 

between the two cell types (FDR < 0.05). We then ran DMR analysis between the two cell types 

in imputed data, and selected a subset of DMRs (1,288) that contained as least one CpG site 
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with coverage ≥ 1000 in each broad cell type in the raw data. Among the 1,131 DMRs we 

examined, 534 contained at least one differentially methylated CpG site from the selected high-

coverage CpG sites in the raw data, suggesting that 47% of them are likely true DMRs 

(precision = 0.47). When we extended the DMRs by a window of 1kb, we observed 958 DMRs 

contained at least one differentially methylated CpG site of high coverage in the raw data, 

resulting in a precision of 0.85. 

 

To assess the biological relevance of cell type-specific DMRs identified from imputed data, we 

leveraged histone mark (H3K27ac) data that indicates active enhancers in four broad cell types 

(neuron, astrocyte, oligo, and microglia)15. Given prior evidence that regulatory regions are 

associated with low DNAm levels, we hypothesized that reliable cell type-specific DMRs should 

be enriched for H3K27ac marks in the corresponding broad cell type. Our analysis confirmed 

this hypothesis, revealing that cell type-specific DMRs were enriched for H3K27ac-marked 

regions in the corresponding broad cell type across both datasets (Figure 6C, Supplementary 

Figure 4C). Remarkably, this enrichment pattern remained consistent even when scMeFormer 

was applied to the 10% downsampled data (Figure 6D, Supplementary Figure 4D). This 

enrichment pattern became stronger when DMRs were defined by a larger number of DMSs, 

suggesting a higher probability of these regions being regulatory. 

 

To further validate the quality of cell type-specific DMRs identified from imputed data, we 

examined their enrichment for the heritability of three brain disorders (schizophrenia, bipolar, 

and depression) and human height. This evaluation was based on the rationale that if cell type-

specific DMRs were enriched for regulatory regions specific to those cell types, they would also 

enrich the heritability of traits in cell types relevant to the traits. This was indeed the case for 

DMRs defined by at least five CpGs in the sn-m3C-seq dataset (Figure 7). We observed strong 

enrichment for all three brain disorders, but not height, for DMRs specific to excitatory neuronal 
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cell types, particularly when they were compared to inhibitory or non-neuronal cell types. 

Enrichment was also observed for DMRs specific to inhibitory neuronal cell types when they 

were compared to non-neuronal cell types. Conversely, no enrichment was observed for DMRs 

specific to non-neuronal cell types across all three brain disorders, except for depression, where 

we noted enrichment for astrocyte-specific DMRs, supporting the emerging role of this cell type 

in depression16. This pattern remained consistent for DMRs defined by at least 10 DMSs and 

DMRs (defined by at least 5 or 10 DMSs) detected from 10% downsampled data 

(Supplementary Figure 5). Heritability enrichment analysis for DMRs detected in the snmCAT-

seq dataset showed similar pattern (Supplementary Figure 6). 

 

scMeFormer enhances the detection of schizophrenia-associated DMRs  

 

We applied scMeFormer to impute CpG states in 2,534 single-nucleus DNAm profiles 

generated from the prefrontal cortex of four schizophrenia cases and four neurotypical controls. 

We first evaluated whether imputed data could recover clusters derived from CpHs, which is 

better suited for clustering neuronal cell types than CpGs4. Specifically, using DNAm levels of 

CpHs in nonoverlapping 100kb bins, we first clustered these nuclei into five major cell types: two 

excitatory neuron subtypes from the superficial (SupExc) and deep cortical layers (DeepExc), 

two inhibitory neuron subtypes from the cortical ganglionic eminence (InhCGE) and the medial 

ganglionic eminence (InhMGE), and a glial cell type. We then clustered the same set of nuclei 

using imputed DNAm levels of CpGs in nonoverlapping 100kb bins. Clusters from imputed data 

closely mirror the clusters obtained using CpHs (Supplementary Figure 7), indicating that the 

imputation process preserved data properties related to cell type composition. 
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Next, we aimed to identify schizophrenia-associated DMRs within each cell type. Notably, no 

DMRs were detected before imputation, but imputation revealed a substantial number of DMRs 

across the five cell types (Figure 8A). S-LDSC analysis demonstrated that cell type-specific 

DMRs were enriched for schizophrenia heritability, particularly in neuronal cell types and, to a 

lesser extent, in glial cells (Figure 8B). While enrichment was also observed for bipolar disorder 

and depression, the strength was generally weaker compared to schizophrenia. There was no 

enrichment observed for height heritability, suggesting these DMRs are relatively specific to 

schizophrenia. Furthermore, we linked the DMRs detected in each cell type to the genes they 

may regulate, leveraging chromatin loops detected in the broad neuron and glial cell types in a 

previous study15. We observed that DMRs in deep excitatory neurons were linked to genes 

enriched for neurodevelopmental processes, whereas DMRs in super excitatory neurons were 

linked to genes enriched for synaptic signaling (Figure 8C). While genes regulated by DMRs in 

inhibitory neurons did not reveal significant pathways, the top pathways were consistent with 

those from DMRs in excitatory neurons. Interestingly, the top enriched pathways for genes 

regulated by DMRs in the glial cell type were related to the immune system, although not 

statistically significant after FDR correction (FDR > 0.05). These findings add granularity to our 

understanding of the functional implications of these epigenetic alterations in schizophrenia 

within specific cell types. 

 

Discussion 

 

Single-cell DNAm profiling technologies have offered unprecedented opportunities to explore 

the epigenetic landscape of DNA sequence at the single-cell resolution. However, many of 

these technologies suffer from a high missing rate of CpG sites, limiting their full potential to 

uncover the epigenetic mechanism underlying various biological processes and diseases. 

Previous deep learning models have attempted to impute CpGs methylation status in single 
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cells9, 10. However, these models face challenges in scaling to thousands of cells, a scenario 

that is becoming increasingly popular. In contrast, our novel model, scMeFormer, efficiently 

imputes data for thousands of cells. It achieves training times of approximately 72 hours for 

each single-nucleus DNAm dataset we investigated, utilizing four NVIDIA A100 GPUs. Crucially, 

the multitask prediction framework employed by scMeFormer allows the imputation of single-cell 

DNAm datasets of any size without incurring additional computational time costs. Remarkably, 

scMeFormer exhibits the ability to impute DNAm states with high fidelity, even with only one-

tenth of the current coverage of CpG sites through downsampling, as evidenced by the recovery 

of cell type clusters and cell type-specific DMRs. Furthermore, we applied scMeFormer to a 

single-nucleus DNAm dataset generated from the prefrontal cortex of schizophrenia patients 

and neurotypical controls. This led to the identification of thousands of schizophrenia-associated 

DMRs that would have remained undetectable without imputation, adding granularity to our 

understanding of epigenetic alterations in schizophrenia within specific brain cell types. Our 

study underscores the power of deep learning in imputing DNA states in single cells, and we 

expect that scMeFormer will be a valuable tool for single-cell DNAm studies. 

 

While scMeFormer demonstrates significant promise for single-cell DNAm data imputation, we 

acknowledge several limitations and potential areas for future work. First, scMeFormer relies on 

input DNA sequences from the reference genome, which does not precisely align with the DNA 

sequences in the samples we used for training the model. The model's performance could be 

further improved by utilizing DNA sequences and DNAm data from the same individuals. 

Second, scMeFormer currently focuses on CpG sites imputation. Expanding its capabilities to 

CpH sites, known for their crucial roles in neurons, would enhance its utility. Third, scMeFormer 

requires retraining for each new dataset. Building a transferable model capable of adapting to 

new datasets without retraining would be highly beneficial for broader applications. 
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Methods 

 

Training datasets 

 

Training datasets include four single-nucleus DNAm datasets generated by four different 

technologies we developed: snmC-seq4, snmC-seq26, sn-m3C-seq5, and snmCAT-seq7, all 

applied to human postmortem brain tissues. Detailed information regarding each technology 

and the bioinformatics procedures for data processing have been described in our original 

studies. Briefly, snmC-seq was a multiplexed single-nucleus DNAm profiling technique we 

initially developed, which was used to analyze the methylomes of 2,784 neurons isolated from 

the human frontal cortex. snmC-seq2 was the improved version of snmC-seq with increased 

read mapping and enhanced throughput, and was used to profile the methylomes of 3,072 

nuclei obtained from postmortem prefrontal cortex. sn-m3C-seq was a single-cell multi-omics 

technique that jointly profiles chromatin conformation and DNAm from the same cells and was 

applied to profile 4,237 nuclei from human BA10 cortical tissue. snmCAT-seq was developed to 

jointly profile methylome, chromatin accessibility, and transcriptome from the same cells, and 

was applied to profile 4,357 nuclei isolated from postmortem human BA10 cortical tissue. 

 

scMeformer architecture 

 

scMeformer contains three main modules: a DNA module, a CpG module, and a fully connected 

network. The input to the model includes two modalities: a one-hot encoded DNA sequence of 2 

kb and the DNAm levels of 100 neighboring CpGs around the target CpG in each cell cluster. 

The output of the model is the predicted methylation states of the target CpG in each cell across 

all cells. Below are descriptions of each module. 
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DNA module. The DNA module employs the INTERACT architecture developed in our previous 

study17, which consists of two sub-modules: a convolutional neural network (CNN) and the 

encoder of transformer. The CNN comprises three convolutional layers, a batch normalization 

layer, a max-pooling layer, and a dropout layer. Each convolutional layer uses 512 kernels of 

size 10 to learn motifs from DNA sequences, and each kernel is activated by a rectified linear 

unit (ReLU) function. The max-pooling layer (step size = 20bp) is used after the three 

convolutional layers to capture motifs learned by the convolutional layers. The batch 

normalization layer is used after the max-pooling layer to improve training speed and stability. 

The dropout layer is employed to prevent overfitting. The dropout rate in this layer is set to 0.5. 

 

The encoder of transformer consists of a stack of eight identical layers, which takes the CNN 

output as input to learn distant features that may act jointly. Each layer in the transformer 

encoder employs two sub-layers. The first sub-layer is a multi-head self-attention layer that 

learns the attention between any two features at different positions. The second sub-layer is a 

simple, position-wise fully connected feed-forward network. After both sub-layers, a 

normalization layer is employed to speed up training and improve training stability. Additionally, 

a dropout layer with a rate of 0.1 is employed to prevent overfitting. Each sub-layer in the 

encoder has a residual connection to help mitigate the vanishing gradient problem. Residual 

connections are often used in deep neural networks to prevent the network from forgetting 

important features of the input during training. 

 

CpG module. The CpG module employs the same encoder of transformer as the DNA module. 

Given a target CpG site the model aims to predict, the CpG module takes as input the DNAm 

levels of 100 CpG sites around the target CpG site (excluding the target CpG site itself) across 

pre-defined cell clusters. To create this input, all single cells are initially clustered into clusters 

based on the DNAm levels of CpG sites within non-overlapping 100kb bins. For a given CpG 
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site, its DNAm level in each cluster is determined by dividing the number of methylated reads by 

the total number of reads in that cluster. If the cells are clustered into n clusters, the input to the 

CpG module is a 100 × n matrix. 

 

Fully connected network. The fully connected network is composed of a hidden layer with 512 

units, a dropout layer, and an output layer. The dropout layer is designed to prevent overfitting 

and uses a drop rate of 0.1. The output layer applies the sigmoid function to scale the predicted 

values between 0 and 1. The number of units in the output layer is equal to the number of cells. 

The input to the fully connected network is the concatenation of the output from the DNA 

module and the CpG module. Each unit in the output layer represents the DNAm state of the 

target CpG site in the corresponding cell and is indicated by a value of either 0 or 1.  

 

Model training. We divided CpG sites into three subsets by chromosomes for model training, 

validation, and evaluation. The training set consisted of CpG sites on chromosomes 1 to 20, 

while CpG sites on chromosome 21 were used as the validation set for model tuning, and CpG 

sites on chromosome 22 were used as the independent testing set to evaluate the model 

prediction performance. Approximately 5% of CpG sites were covered by at least one read in a 

single cell across the four datasets and were employed for model training, while the remaining 

CpG sites were not covered by any reads and were not used in model training. We defined 

DNAm state as 1 for a CpG site if all mapped reads support methylation, and 0 if all mapped 

reads support unmethylation. We did not include CpG sites for model training if their mapped 

reads support both methylation and unmethylation. 

 

Alternative models. We compared scMeformer to four alternative models: the CNN model, the 

cluster model, the scMeformer model but with only the DNA module, and the scMeformer model 

but with only the CpG module. The CNN model also consists of three modules, including a DNA 
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module, a CpG module, and a fully connected network. However, in the CNN model, both the 

DNA and CpG modules employ a convolutional neural network (the same as described in the 

DNA module of scMeformer) rather than the transformer encoders. The cluster model first 

clusters cells into clusters based on DNAm levels of CpGs within non-overlapping 100kb bins. 

For each cell in a cluster, the methylation state for a CpG site not covered by any reads is 

imputed by known methylation states of this CpG site in cells of the same cluster. 

 

Cell type-specific DMRs 

 

We leveraged pre-assigned cell type labels for each nucleus in each dataset from the original 

studies. We then employed the DMRfind function from methylpy (v1.4.2)18 to identify cell type-

specific DMRs across all cell type pairs. Briefly, DMRfind utilizes a permutation-based root 

mean square test of goodness-of-fit to identify differentially methylated sites (DMS) across 

samples. Consecutive DMSs within 250 bp are then merged into DMRs. In our imputed dataset, 

we considered a CpG site with a predicted methylation status as covered by one read 

supporting methylation, and a predicted unmethylated CpG site as covered by one read 

supporting unmethylation. 

 

Stratified LD score regression 

 

We performed stratified LD score regression (S-LDSC)19 to evaluate the enrichment of 

heritability of three brain disorders (schizophrenia20, depression21, and bipolar disorder22). We 

also included one non-brain trait, human height23, as a negative control to examine whether our 

findings are specific to brain disorders. Following recommendations from the LDSC resource 

website (https://alkesgroup.broadinstitute.org/LDSCORE), S-LDSC was run for each list of 

variants with the baseline LD model v2.2 that included 97 annotations to control for the LD 
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between variants with other functional annotations in the genome. We used HapMap Project 

Phase 3 SNPs as regression SNPs, and 1000 Genomes SNPs of European ancestry samples 

as reference SNPs, which were all downloaded from the LDSC resource website. To evaluate 

the unique contribution of annotations to trait heritability, we utilized a metric from S-LDSC: the 

z-score of per-SNP heritability. This metric allows us to discern the unique contributions of 

candidate annotations while accounting for contributions from other functional annotations in the 

baseline model. The p-values were derived from the z-score assuming a normal distribution and 

FDR was computed from the p-values based on Benjamini & Hochberg procedure. 

 

Single-nucleus DNAm data from schizophrenia cases and controls 

 

We generated single-nucleus methylomes from the prefrontal cortex of four schizophrenia cases 

and four neurotypical controls using the snmCAT-seq technique, but without capturing 

chromatin accessibility information. The brain tissues were from the brain repository at the 

Lieber Institute for Brain Development. Details on tissue acquisition, processing, curation, and 

dissection, were described in prior reports24. All eight brain samples were male Caucasian 

individuals with a mean age of 42 years old in both cases and controls. 

 

We processed sequencing reads by implementing a versatile mapping pipeline (http://cemba-

data.readthedocs.io/) for all the methylome-based technologies developed by our group, as 

detailed in our previous study7. After allc files were generated, the methylcytosine (mc) and total 

cytosine basecalls (cov) were summed up for each 100kb bin across the hg19 genome for each 

sequence context (CG, CH). After filtering cells by various mapping metrics, 2,534 nuclei were 

retained for further analysis. Using DNAm levels of CpHs in nonoverlapping 100kb bins, we 

clustered these nuclei into five major cell types: two excitatory neuron subtypes from the 

superficial and deep cortical layers (SupExc and DeepExc), two inhibitory neuron subtypes from 
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the cortical ganglionic eminence (InhCGE) and the medial ganglionic eminence (InhMGE), and 

a glial cell type. We also clustered these nuclei using DNAm levels of CpGs in nonoverlapping 

100kb bins after imputation employing functions from the scanorama package. We employed 

the DMRfind function from methylpy to identify schizophrenia-associated DMRs for each cell 

type. DMRs were called for regions with at least two DMSs (FDR < 0.01) within 250bp and each 

DMS had the same direction of effect in at least two samples from either the case or control 

group. DMR detected in neuronal and glial cell types were assigned to target genes, leveraging 

reported chromatin loops between active promoters and distal regulatory regions in the broad 

neuronal and two glial cell types (microglia and oligodendrocytes)15. We used clusterProfiler25 

for gene ontology enrichment analysis for genes regulated by DMRs detected in each cell type, 

using all distally regulated genes detected in the corresponding broad cell type as the 

background genes. 
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Figures 

 

 

Figure 1. Illustration of scMeformer architecture. 
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Figure 2. Comparison of model prediction performance between scMeformer and four 

alternative models across four single-nucleus DNAm datasets. A. Comparison was based on all 

independent testing CpG sites on chromosome 22. B. Comparison was based on subsets of 

independent testing CpG sites stratified by their levels of variations across all cells in each 

dataset. The <0-0.1= group represents the top 10% variable CpG sites. 
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Figure 3. Comparison of model prediction performance between scMeformer and the cluster 

model across four datasets under lower CpG coverage through downsampling. Comparison 

was based on independent testing CpG sites on chromosome 22 in each dataset. 
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Figure 4. Evaluation of imputed data under lower CpG coverage in its ability to recover cell 

types identified in the original data across four datasets. The x-axis represents various 

downsampling rates and the y-axis represents Adjusted Rand Index. 
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Figure 5. Recall rate for cell type-specific DMRs detected in each pair of cell type in two 

datasets (sn−m3C−seq and snmCAT−seq). Cell type-specific DMRs were defined by at least 

two DMSs. The left and right panel shows recall rates when imputation was performed on the 

raw and 10% downsampled data, respectively. The x-axis represents DMRs specific to each cell 

type, compared to each cell type labeled on the y-axis. 
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Figure 6. scMeFormer enhances the detection of cell type-specific DMRs in the dataset of sn-

m3C-seq. A. The top left panel displays the number of cell type-specific DMRs (log scale) 

detected in the raw data, with subsequent panels showing the number of cell type-specific 

DMRs (log scale) detected in imputed data, defined by varying numbers of DMSs. The x-axis 

represents DMRs specific to each cell type, compared to each cell type labeled on the y-axis. B. 

Similar to A, but imputation was performed on 10% downsampled data. C. Enrichment fold for 

H3K27ac mark in the corresponding broad cell type among cell type-specific DMRs detected in 

the raw data (top left panel) and in the imputed data defined by varying number of DMS. The x-
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axis represents DMRs specific to each cell type, compared to each cell type labeled on the y-

axis. D. Similar to C, but imputation was performed on 10% downsampled data. 

 

Figure 7. Heritability enrichment analysis for cell type-specific DMRs identified from imputed 

data of the sn-m3C-seq dataset. The x-axis represents DMRs specific to each cell type, 

compared to each cell type labeled on the y-axis. Cell type-specific DMRs were defined by at 

least five DMSs. The color represents the -log10(FDR) values, derived from the z-score of per-

SNP heritability as reported by stratified LDSC regression. 
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Figure 8. scMeFormer enhances the detection of schizophrenia-associated DMRs. A. Numbers 

of schizophrenia-associated DMRs detected in each cell type. B. Evaluation of schizophrenia-

associated DMRs for their contributions to the heritability of three brain disorders and human 

height. The numbers within the squares are z-scores of per-SNP heritability that are significant 

after multiple testing correction (FDR < 0.05). C. Top 10 enriched pathways for genes linked by 

schizophrenia-associated DMRs through chromatin loops in each cell type. 
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Supplementary Figure 1.  Comparison of prediction performance between scMeformer and the 

cluster model across four datasets under lower CpG coverage through downsampling. 

Comparison was based on subsets of independent testing CpG sites stratified by their levels of 

variation across cells. The <0-0.1= group represents the top 10% variable CpG sites. 

 

Supplementary Figure 2.  Evaluation of imputed data quality under reduced CpG coverage in 

recovering cell types identified in the original data across four datasets, when varying the 

number of defined clusters in the original data from 12 to 21.  

 

Supplementary Figure 3.  Recall rate for cell type-specific DMRs for all cell type pairs in two 

datasets (sn−m3C−seq and sn−m3C−seq). Cell type-specific DMRs were defined by at least 

five DMSs. The left and right panel shows recall rate when imputation was conducted on the 

raw and 10% downsampled data, respectively. The x-axis represents DMRs specific to each cell 

type, compared to each cell type labeled on the y-axis. 

 

Supplementary Figure 4.  scMeFormer enhances the detection of cell type-specific DMRs in 

the dataset of snmCAT-seq. A. The top left panel displays the number of cell type-specific 

DMRs (log scale) detected in the raw data, with subsequent panels showing the number of cell 

type-specific DMRs (log scale) detected in imputed data, defined by varying numbers of DMSs. 

The x-axis represents DMRs specific to each cell type, compared to each cell type labeled on 

the y-axis. B. Similar to A, but imputation was performed on 10% downsampled data. C. 

Enrichment fold for H3K27ac mark in the corresponding broad cell type among cell type-specific 

DMRs detected in the raw data (top left panel) and in the imputed data defined by varying 
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number of DMS. The x-axis represents DMRs specific to each cell type, compared to each cell 

type labeled on the y-axis. D. Similar to C, but imputation was performed on 10% downsampled 

data. 

 

Supplementary Figure 5.  Heritability enrichment analysis for cell type-specific DMRs identified 

from imputed data in the dataset of sn-m3C-seq. These plots show enrichment analysis results 

for cell type-specific DMRs defined by at least five or 10 DMSs and when imputation was 

performed in original data or 10% downsampled data. The color represents the -log10(FDR) 

values, derived from the z-score of per-SNP heritability as reported by stratified LDSC 

regression. The x-axis represents DMRs specific to each cell type, compared to each cell type 

labeled on the y-axis. 

 

Supplementary Figure 6.  Heritability enrichment analysis for cell type-specific DMRs identified 

from imputed data in the dataset of snmCAT-seq. These plots show enrichment analysis results 

for cell type-specific DMRs defined by at least five or 10 DMSs and when imputation was 

performed in original data or 10% downsampled data. The color represents the -log10(FDR) 

values, derived from the z-score of per-SNP heritability as reported by stratified LDSC 

regression. The x-axis represents DMRs specific to each cell type, compared to each cell type 

labeled on the y-axis. 

 

Supplementary Figure 7.  T-SNE plot using imputed CpG sites resemble clusters obtained 

using CpHs in the raw data. 
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