

1 **The diverse viromes of Australian lizards are shaped by host
2 taxonomy and habitat**

3
4
5 Jackie E. Mahar^{1*}, Michelle Wille², Erin Harvey¹, Craig C. Moritz³, Edward C. Holmes¹

6
7
8 ¹Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of
9 Sydney, Sydney, New South Wales 2006, Australia

10 ²Centre for Pathogen Genomics, Department of Microbiology and Immunology, at the Peter
11 Doherty Institute for Infection and Immunity. The University of Melbourne, Melbourne,
12 Victoria 3000, Australia.

13 ³Research School of Biology & Centre for Biodiversity Analysis, The Australian National
14 University, Canberra, ACT 2600, Australia.

15
16 *Current address: Australian Centre for Disease Control, Australian Animal Health
17 Laboratory and Health and Biosecurity, Commonwealth Scientific and Industrial Research
18 Organisation, Geelong, VIC 3219, Australia

19
20 #Correspondence to:
21 Edward C. Holmes

22 edward.holmes@sydney.edu.au

23 Tel. +61 2 9351 5591

24

25 Text word count: 6443

26 Abstract

27 Lizards inhabit diverse ecologies and evolutionary histories and hence represent a promising
28 group to explore how hosts shape virome structure and virus evolution. Yet little is known
29 about the viromes of these animals. In Australia, squamates (lizards and snakes) comprise the
30 most diverse order of vertebrates, and Australia hosts the highest diversity of lizards globally,
31 with the greatest breadth of habitat use. We used meta-transcriptomic sequencing to
32 determine the virome of nine co-distributed, tropical lizard species from three taxonomic
33 families in Australia and analyzed these data to identify host traits associated with viral
34 abundance and diversity. We show that lizards carry a large diversity of viruses, identifying
35 more than 30 novel, highly divergent vertebrate-associated viruses. These viruses were from
36 nine viral families, including several that contain well known pathogens, such as the
37 *Flaviviridae*, *Picornaviridae*, *Bornaviridae*, *Iridoviridae* and *Rhabdoviridae*. Members of the
38 *Flaviviridae* were particularly abundant across species sampled here, largely belonging to the
39 genus *Hepacivirus*: 14 novel *Hepaciviruses* were identified, broadening the known diversity
40 of this group and better defining its evolution by uncovering new reptilian clades. The
41 evolutionary histories of the viruses studied here frequently aligned with the biogeographic
42 and phylogenetic histories of the hosts, indicating that exogenous viruses may help infer host
43 evolutionary history if sampling is strategic and sampling density high enough. Notably,
44 analysis of alpha and beta diversity revealed that virome composition and richness was
45 shaped by host taxonomy, habitat and range size. In sum, we identified a diverse range of
46 reptile viruses that broadly contributes to our understanding of virus-host ecology and
47 evolution.

48

49 Keywords: evolution, metagenomics, meta-transcriptomics, viral ecology, one health,
50 *Hepacivirus*

51 1. Introduction

52 Animal virology has traditionally focused on viruses of mammals and birds as they are the
53 most likely natural reservoir hosts for viruses that may emerge in humans and animals of
54 economic importance (Mollentze and Streicker 2020; Zhang et al. 2018). While this has
55 provided major insights, it has necessarily resulted in a skewed view of viral diversity that
56 limits our understanding of virus evolution and ecology, including the frequency and
57 determinants of cross-species transmission and host range. Indeed, many viral families
58 traditionally associated with mammals and birds have now been found in other vertebrate
59 classes such as amphibians, reptiles and fish (Harding et al. 2022; Shi et al. 2018). Since far
60 greater biological diversity exists within these other vertebrates – that comprise ~33,000
61 documented species – it is reasonable to assume that they also harbour a substantial diversity
62 of viruses (Zhang et al. 2018).

63

64 A variety of factors make lizards particularly informative for the study of viral ecology and
65 evolution. Squamates (lizards and snakes) are a highly diverse and successful group of
66 vertebrates, comprising 96.3% of non-avian reptile diversity (Pincheira-Donoso et al. 2013),
67 with over 10,000 extant species globally (Herrera-Flores et al. 2021). Squamates exhibit a
68 range of morphologies, life history traits, and diverse ecologies, inhabiting every continent
69 except Antarctica (Pincheira-Donoso et al. 2013; Pyron, Burbrink and Wiens 2013). Australia
70 is home to the largest number of reptile species, comprising ~10% of the world's reptiles
71 (Geyle et al. 2021), of which squamates are the most diverse vertebrate order (Wilson and
72 Swan 2017). These animals are well adapted to the Australian landscape, colonising and
73 radiating across a diverse range of environments and ecological niches (Pianka 1969; Pianka
74 1973; Morton and James 1988;). Australian lizards comprise old endemic Gondwanan
75 lineages that pre-date the isolation of Australia and Antarctica, as well as more recent
76 immigrant lineages from the North (Brennan and Oliver 2017). For example, the Gondwanan
77 group of Pygopodoidea have a crown age of greater than 50 million years, while the genus
78 *Gehyra* have a crown age in the mid-Miocene ~20 million years ago, having colonized from
79 Asia (Oliver and Hugall 2017). Several squamate species are at high risk of extinction within
80 the next twenty years (Geyle et al. 2021) and infectious disease emergence can severely
81 threaten reptile populations (Zhang et al. 2018).

82

83 A key, yet rarely addressed, aspect of virus evolution and emergence is understanding the
84 traits that determine the diversity and abundance of viruses carried by a host (Wille et al.
85 2019). A number of studies have linked viral diversity and abundance to specific host traits,
86 including phylogenetic history, habitat, body mass, geographic range, community diversity,
87 biome, location, and infection status with particular pathogens (Olival et al. 2017; Wille et al.
88 2018; Geoghegan et al. 2021). However, the effects of host ecology on viral diversity have
89 only been explored in a handful of systems with varying results. To better understand the
90 diversity of viruses carried in lizards and how host traits affect viral abundance and diversity
91 we used meta-transcriptomic sequencing to explore the virome of nine lizard species residing
92 in various environments and habitats across the biologically diverse monsoonal tropics of
93 northern Australia.

94

95 **2. Methods**

96 **2.1 Ethics statement**

97 All work was carried out according to the Australian Code for the Care and Use of Animals
98 for Scientific Purposes with approval from the institutional animal ethics committee (Permit
99 ANU animal ethics approval A2016-07) and State authorities (collecting permits NT 58454
100 and WA SF010911).

101

102 **2.2 Animal Sampling**

103 Liver samples were collected from apparently healthy *Carlia amax*, *Carlia munda*, *Carlia*
104 *sexdentata*, *Cryptoblepharus metallicus*, *Heteronotia planiceps*, *Heteronotia binoei*, *Gehyra*
105 *nana*, *Gehyra arnhemica*, and *Oedura marmorata*. Lizards were collected in autumn and
106 winter months between April 2016 and June 2017, in arid regions of the eastern Kimberley
107 and mesic regions of the “Top End”, Australia (Table 1, Table S1). Samples were collected in
108 Australian bioregions Arnhem Coast (ARC), Victoria Bonaparte (VIB), Central Arnhem
109 (CEA), Daly Basin (DAB), or Darwin Coastal (DAC) (Table S1), as defined by Interim
110 Biogeographic Regionalisation for Australia (IBRA), version 7. Excised liver was stored in
111 RNAlater™ Stabilization solution (Thermofisher Scientific, MA, USA), at room temperature
112 while in the field and then at 4°C for longer term storage. Sampled animals displayed no
113 obvious signs of serious pathology.

114

115 **2.3 RNA extraction**

116 Liver tissue was homogenized using the Qiagen Tissue Lyser II with 3mm stainless steel
117 beads in Qiagen buffer RLT (Hilden, Germany); and RNA extracted using the Qiagen
118 RNeasy Plus minikit (Hilden, Germany) according to the manufacturer's protocol. Purified
119 RNA was pooled in equimolar ratios into eleven pools, grouping RNA samples from the
120 same lizard species and collection location, with six to twelve individuals per pool (Table 1,
121 Table S1). Pooled RNA was further purified using the RNeasy MinElute clean-up kit
122 (Qiagen, Hilden, Germany) and quantified using the Qubit RNA Broad-range Assay with the
123 Qubit Fluorometer v3.0 (Thermofisher Scientific).

124

125 **2.4 Meta-transcriptomic sequencing**

126 RNA pools were assessed for quality using the Agilent 2100 Bioanalyzer with the Agilent
127 RNA 6000 Nano Assay (Agilent Technologies, CA, USA). Library construction and
128 sequencing was performed at the Australian Genomic Research Facility (Victoria, Australia).
129 Libraries were constructed using the TruSeq Total RNA Library Preparation protocol
130 (Illumina, CA, USA) following rRNA removal using the Illumina Ribo-zero Gold
131 epidemiology kit. Paired-end (100 bp) sequencing of each RNA library was performed on a
132 HiSeq 2500 sequencing platform (Illumina, CA, USA).

133

134 **2.5 Genome/transcript assembly, annotation and abundance calculation**

135 After trimming with Trimmomatic v0.38 (Bolger, Lohse and Usadel 2014), reads were
136 assembled *de novo* using two separate assemblers – Trinity v2.5.1 (Grabherr et al. 2011) and
137 Megahit v1.2.9 (Li et al. 2015) – to increase the chances of correctly assembling all viral
138 contigs. Contigs from both methods were combined and duplicates removed (retaining the
139 longest version) using CD-HIT-EST v4.8.1 (Fu et al. 2012). Viral contigs were identified
140 using BLASTn (Altschul et al. 1990) and DIAMOND BLASTx (Buchfink, Reuter and Drost
141 2021) tools through alignment with the NCBI nucleotide (nt) database (*e*-value cut-off 1×10^{-10})
142 and non-redundant protein (nr) database (*e*-value cut-off 1×10^{-5}), respectively. The
143 Geneious assembler (available in Geneious Prime ® 2022.2.2) was used to extend viral
144 contigs where possible. Open reading frames were identified using the Find ORFs tool within
145 Geneious Prime, and conserved domains were identified using RSP-TBLASTN v2.12.0+
146 (Altschul et al. 1997) against the NCBI Conserved Domains database. The abundance of each
147 viral contig was calculated as expected counts (from mapped trimmed reads) using the RSEM

148 tool in Trinity v2.5.2 (Li et al. 2010). Overall abundance was calculated as expected
149 count/total number of trimmed reads in library x 100. Novel viruses that shared greater than
150 90% amino acid identity in the RdRp were considered to represent the same species. Likely
151 vertebrate-infecting viruses were defined as those that belong to classically vertebrate-
152 infecting viral families and/or those that clustered with viruses known to infect vertebrate
153 species in phylogenetic trees.

154

155 **2.6 Alpha and beta diversity analyses**

156 Diversity statistics were only obtained for viruses considered likely to infect vertebrate
157 species (i.e., those likely to infect the sampled host) and viruses likely to be exogenous.
158 *Retroviruses* were excluded due to the difficulty in determining whether they are endogenous
159 or exogenous, and viral groups with disrupted ORFs were considered likely to be
160 endogenous. We performed generalized linear models and selected the best-fit model at both
161 the infraorder and family taxonomic level (among a set of possible models describing the
162 relationship between taxonomy, habitat, environment, range size and the number of
163 individuals in the library) based on the lowest AIC, as done previously (Geoghegan et al.
164 2021; Chen et al. 2022). Host genus and species level were not considered due to small
165 sample sizes. The Csex_M library was excluded from all analyses because it contained no
166 exogenous, biologically relevant viruses and as the only riparian library, may have skewed
167 results. All other libraries were included for comparisons considering host taxonomy at the
168 level of infraorder. Omar_M was similarly removed for comparisons at the host family level
169 as it was the only library representing Diplodactylidae. Alpha diversity, including richness,
170 Shannon index, Simpson Index, Shannon effective and Simpson effective were calculated for
171 each library (Lagkouvardos et al. 2017). Beta diversity was calculated using the Bray–Curtis
172 dissimilarity matrix and virome structure was plotted as a function of nonmetric
173 multidimensional scaling (NMDS) ordination and tested using Adonis tests (PERMANOVA)
174 using the *vegan* and *phyloseq* packages (McMurdie and Holmes 2013; Oksanen et al. 2022).
175 Analyses were performed in R version 4.2.3 in R Studio 2022.07.1.

176

177 **2.7 Phylogenetic analysis**

178 Viral amino acid sequences were aligned with representative sequences from the same viral
179 family obtained from NCBI, using Clustal Omega v1.2.3 available in Geneious Prime. Where
180 necessary, large data sets were condensed to a more manageable size using CD-HIT version

181 4.8.1 (Fu et al. 2012). TrimAl v1.4.1 (Capella-Gutiérrez, Silla-Martínez and Gabaldón 2009)
182 was used to remove ambiguously aligned regions (using the gappyout setting in all cases
183 except for the *Flaviviridae* alignment which required stricter manually applied settings to
184 remove uninformative columns). Alignments were visualized in Geneious Prime. Maximum
185 likelihood trees were inferred using IQTree v2.1.3 (Nguyen et al. 2015) with model selection
186 estimated using ModelFinder within IQTree (Kalyaanamoorthy et al. 2017). Branch supports
187 were estimated with the Shimodaira-Hasegawa (SH)-like approximate likelihood ratio test
188 (Guindon et al. 2010). The size and length of each alignment is provided in Table S2 and
189 details of assembled viral nucleotide consensus sequences that were translated for inclusion
190 in phylogenies are provided in Table S3.

191
192 To reduce the reporting of false positives due to index-hopping during sequencing for each
193 viral contig present in more than one library, a viral contig was presumed to be a contaminant
194 from another library if it met the following criteria: contig abundance was less than 0.1% of
195 the abundance of that contig in the library where that contig was most abundant. This is based
196 on the index-hopping rate of about 0.1-2% as listed by Illumina
197 (<https://sapac.illumina.com/techniques/sequencing/ngs-library-prep/multiplexing/index-hopping.html>).
198

199
200 **2.8 Virus nomenclature**
201 Novel viral species were determined based on demarcation criteria assigned by the ICTV
202 (International Committee on Taxonomy of Viruses) for the relevant families/genera
203 (<https://ictv.global/report/genome>) and were randomly assigned provisional names. Note that
204 because these virus names are provisional, we have only assigned common names rather than
205 a full binomial nomenclature.

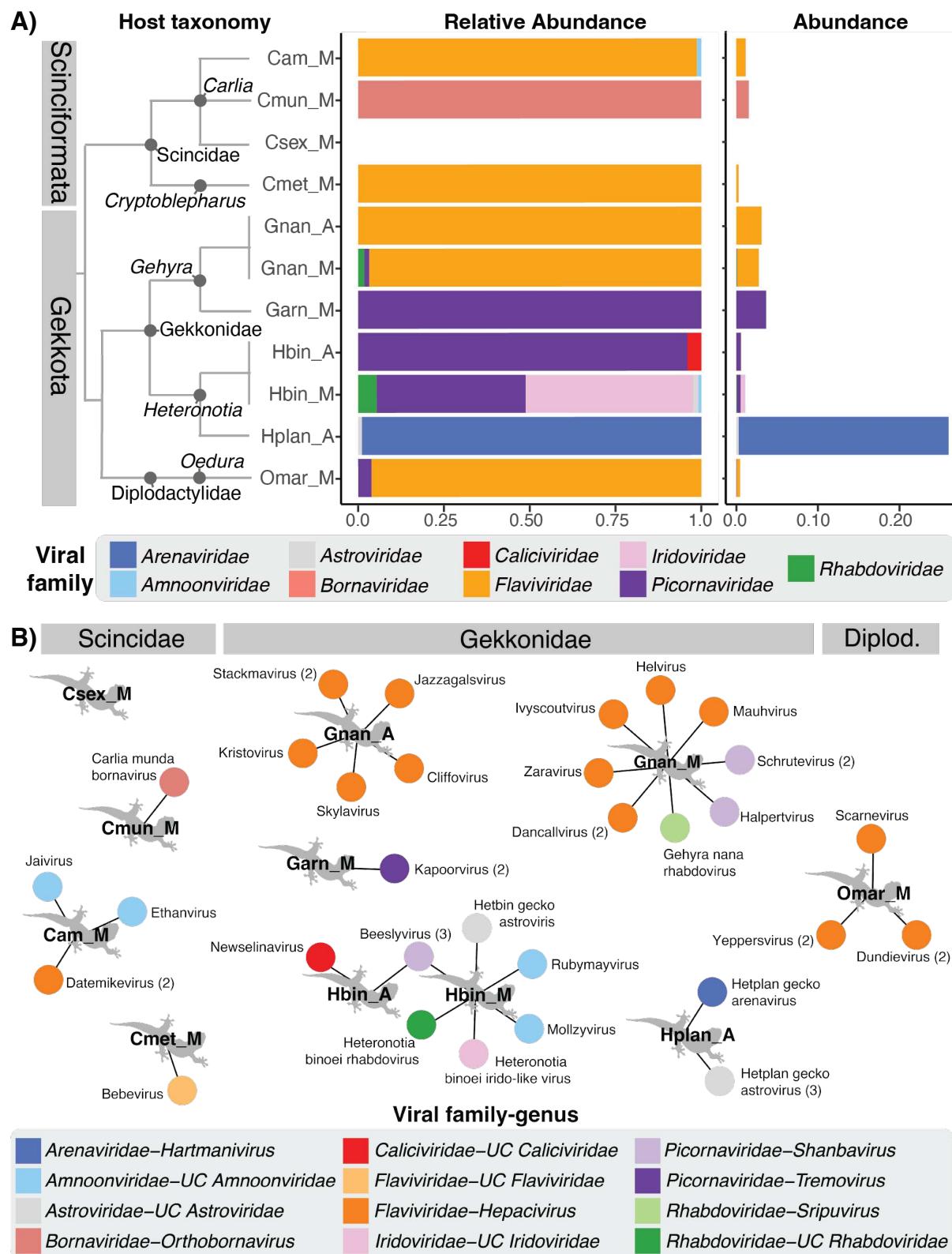
206
207 **3. Results**

208 **3.1 Viruses in Australian lizard species**
209 We sequenced 11 pooled RNA libraries with an average read count of 35,041,464 (Table 1).
210 Each library was generated from liver samples of 6 to 12 apparently healthy lizards of a
211 single species sampled from either the mesic Top End or from the relatively arid east
212 Kimberley regions of Australia (Victoria-Bonaparte region; Table 1). Two widespread gecko
213 species – *Heteronotia binoei* and *Gehyra nana* – were sampled from both regions. A high

214 diversity of vertebrate-associated viruses was detected, comprising nine different families and
215 12 genera (Figure 1). While for most viral families only a single genus and species were
216 documented, we identified viruses from at least two genera in each of the *Flaviviridae*,
217 *Picornaviridae*, *Rhabdoviridae* and *Amnoonviridae*, and two species of the same genera in
218 the *Astroviridae* (Figure 1B). Despite being present in only one library, the *Arenaviridae*
219 were by far the most abundant viral family (Figure 1), with the *Flaviviridae* the second most
220 abundant and detected in all three lizard families (5/11 libraries) (Figure 1A). Members of the
221 *Picornaviridae* were also abundant and detected in five of 11 libraries, although were
222 restricted to the Gekkota species (Gekkonidae and Diplodactylidae). No vertebrate-infecting
223 viruses were shared between different lizard species (Figure 1B). At higher taxonomic scales,
224 the genera *Hepacivirus* (*Flaviviridae*), *Shanbavirus* (*Picornaviridae*), and an unclassified
225 genus of *Astroviridae*, were found in multiple lizard species (Figure 1). Five viral families
226 were found across multiple host species: the *Flaviviridae*, *Picornaviridae*, *Astroviridae*,
227 *Rhabdoviridae* and *Amnoonviridae*.

Table 1. Details of lizard livers sampled and sequencing output for each library (see Table S1 for additional details).

<i>Library details</i>		<i>Taxonomy of sampled species</i>			<i>Sampling details and species characteristics</i>			<i>Output</i>
<i>Library Name</i>	<i>No. of samples^a</i>	<i>Infra-order</i>	<i>Family</i>	<i>Genus and species</i>	<i>Sampled region^b</i>	<i>Typical habitat</i>	<i>Range size^c</i>	<i>No. of paired reads</i>
<i>Cam_M</i>	8	Scinciformata	Scincidae	<i>Carlia amax</i>	Top End (mesic)	rocks	small	27,151,104
<i>Cmun_M</i>	6	Scinciformata	Scincidae	<i>Carlia munda</i>	Top End (mesic)	general	medium	26,737,353
<i>CSex_M</i>	8	Scinciformata	Scincidae	<i>Carlia sexdentata</i>	Top End (mesic)	riparian	very small	40,670,859
<i>Cmet_M</i>	9	Scinciformata	Scincidae	<i>Cryptoblepharus metallicus</i>	Top End (mesic)	trees	very small	29,719,339
<i>Hplan_A</i>	6	Gekkota	Gekkonidae	<i>Heteronotia planiceps</i>	Kimberley (arid)	rocks	very small	36,902,535
<i>Hbin_A</i>	8	Gekkota	Gekkonidae	<i>Heteronotia binoei</i>	Kimberley (arid)	general	very large	40,480,482
<i>Hbin_M</i>	12	Gekkota	Gekkonidae	<i>Heteronotia binoei</i>	Top End (mesic)	general	very large	52,580,948
<i>Gnan_A</i>	7	Gekkota	Gekkonidae	<i>Gehyra nana</i>	Kimberley (arid)	rocks	small	26,343,593
<i>Gnan_M</i>	9	Gekkota	Gekkonidae	<i>Gehyra nana</i>	Top End (mesic)	rocks	small	32,765,848
<i>Garn_M</i>	9	Gekkota	Gekkonidae	<i>Gehyra arnhemica</i>	Top End (mesic)	trees	small	40,865,843


<i>Omar_M</i>	10	Gekkota	Diplodactylidae	<i>Oedura marmorata</i>	Top End (mesic)	rocks	small	31,238,197
---------------	----	---------	-----------------	-------------------------	--------------------	-------	-------	------------

229

230 ^aNo. of samples: Number of individuals pooled in library.

231 ^bSampled region: Top End: Top End of Australia (Northern Territory), mesic environment; Kimberley: Kimberley region (Western Australia and
232 Northern Territory), arid environment.

233 ^cRange size: Broadly summarised based on range listed on <https://arod.com.au>.

234
235

236 **Figure 1. Biologically relevant viruses (i.e., viruses that infect vertebrates) in the**
237 **sampled lizard species. (A) Relative abundance (left plot) and overall abundance (right) of**
238 **the vertebrate-infecting virus families present in each library. Libraries are plotted in**
239 **taxonomic sequence, with host relationships indicated by a cladogram and host infraorder**
240 **indicated in grey bars. Library names are as follows: Cam_M, *Carlia amax* (collected from a**
241 **mesic environment); Cmun_M, *Carlia munda* (mesic), Csex_M, *Carlia sexdentata* (mesic);**

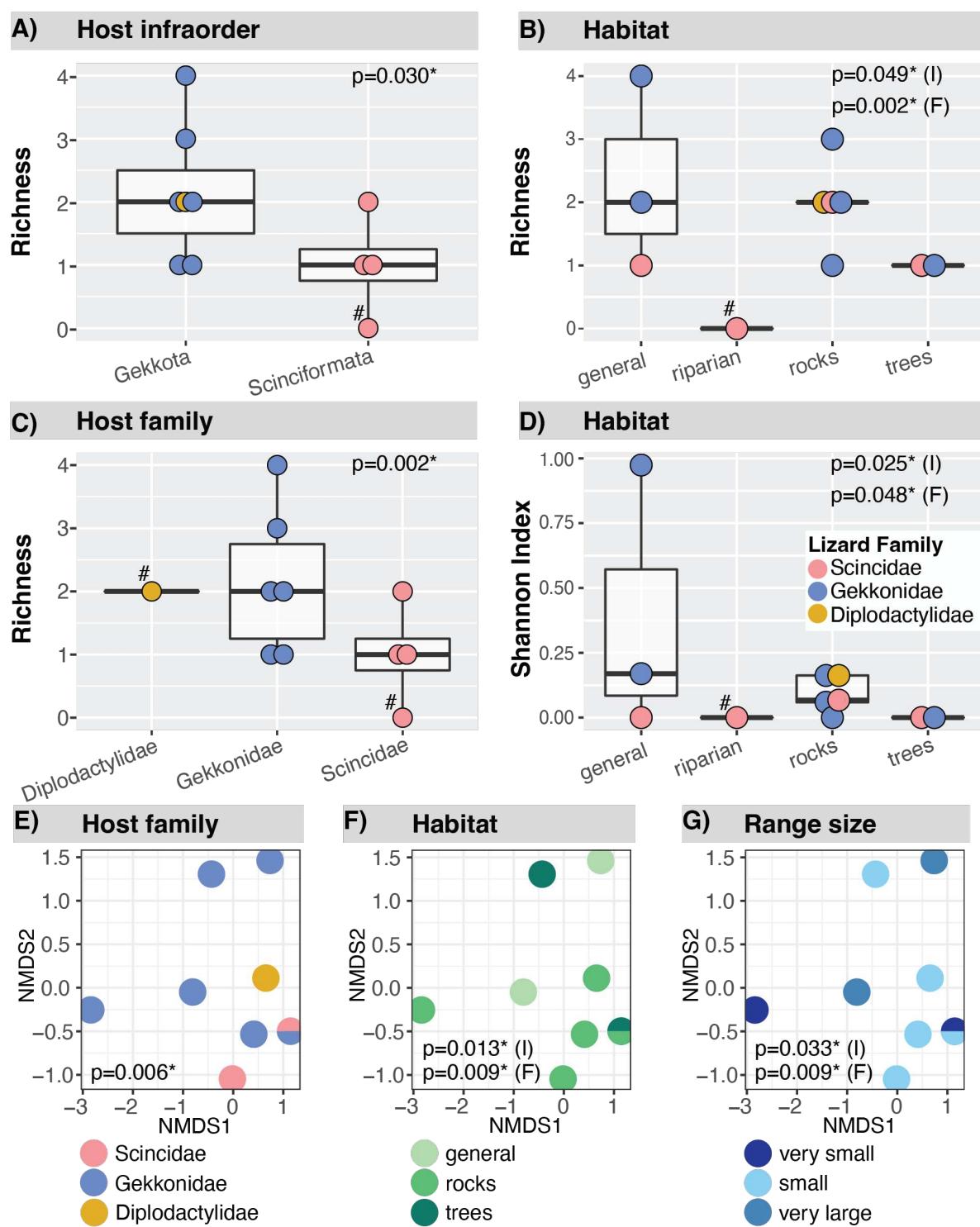
242 Cmet_M, *Cryptoblepharus metallicus* (mesic); Gnan_A, *Gehyra nana* (arid); Gnan_M
243 *Gehyra nana* (mesic); Garn_M, *Gehyra arnhemica* (mesic); Hbin_A, *Heteronotia binoei*
244 (arid); Hbin_M, *Heteronotia binoei* (mesic); Hplan_A, *Heteronotia planiceps* (arid);
245 Omar_M, *Oedura marmorata* (mesic). (B) Viruses found in each library are represented by
246 circles coloured by viral genus (UC=unclassified genus), with lines connecting them to the
247 libraries in which they were found. Libraries are grouped by host family (indicated by grey
248 bars above; Diplod.=Diplodactylidae). Numbers in parentheses beside virus names indicates
249 the number of variants of that virus detected (where >1). Note that all the *Amnooviridae*
250 belong to currently unclassified genera, but may represent more than one genus.

251

252 A number of other vertebrate-associated viral families were detected, but were determined as
253 likely endogenous virus elements (EVEs) because longer contigs had disrupted open reading
254 frames. These included members of the *Adintoviridae*, *Hepadnaviridae*, *Retroviridae*, and
255 *Circoviridae*, and were excluded from abundance and alpha diversity analyses. Of note,
256 library CSex_M (comprising *Carlia sexdentata*) did not contain any biologically relevant
257 viruses, aside from some likely EVEs, but did contain some viruses that are not associated
258 with vertebrates (Figure S1). Across all libraries, we detected several viral groups that were
259 unlikely to be associated with vertebrate infection, representing the *Permutotetraviridae*,
260 *Chuviridae*, *Tectiviridae*, *Mimiviridae*, *Autolykiviridae*, *Baculoviridae*, unclassified
261 *Ortervirales*, unclassified *Riboviria*, and *tombus*-like, *solemo*-like, *narna*-like, *partiti*-like, and
262 *toti*-like viruses. None of these viruses were abundant (Figure S1) and were considered likely
263 to be viruses of commensal organisms in the lizard livers (i.e., *narna*-like) or contaminants.
264 Only vertebrate-associated viral families are included in the analyses described below.

265

266 **3.2 Abundance and diversity of lizard viruses**


267 To help determine the factors influencing virome diversity, we compared the abundance and
268 alpha diversity in biologically relevant viruses between libraries from different lizard species
269 and sampling regions. Specifically, we considered host taxonomy (at the level of infraorder
270 and family) as well as a range of ecological variables, including habitat, environment and
271 range size (Csex_M was excluded from these analyses as it was the only riparian library and
272 no biologically relevant viruses were found in this library). Given variability in the number of
273 individuals per pool, we first assessed the effect of the number of samples per pool/library to
274 account for any bias introduced by sampling strategy. The number of samples per pool
275 correlated with the Richness ($p=0.037$) and Shannon diversity ($p=0.015$), but not the
276 abundance ($p= 0.140$) of vertebrate viruses, or the Shannon Effective ($p=0.052$), Simpson
277 ($p=0.434$) or Simpson Effective diversity ($p=0.077$) (Figure S2). As such, the number of

278 samples per pool was considered in all statistical models, and included as cofactors in final
279 models addressing Richness and Shannon diversity.

280

281 Host taxonomy and habitat were consistently important parameters in the best-fit models for
282 all diversity measures regardless of the level of taxonomy considered, indicating that these
283 factors are important modulators of viral diversity in this sample. Taxonomy had a
284 statistically significant effect on viral richness regardless of taxonomic level (host infraorder
285 $p=0.030$, family $p=0.002$; Figure 2A and 2C), but was not significant in modulating
286 abundance or Shannon and Simpson indexes (Figure S3). Habitat significantly modulated
287 richness and Shannon index diversity when considering host infraorder ($p=0.049$ and
288 $p=0.025$, respectively) and host family ($p=0.002$ and $p=0.048$; Figure 2B and 2D), and also
289 had a significant effect on the Simpson index of diversity, but only when considering host
290 infraorder ($p=0.037$; Figure S4). Range size was significant in the best-fit model for richness,
291 regardless of the taxonomy level explored (host infraorder $p=0.049$, host family $p=0.002$).

292

293
294

295 **Figure 2. Diversity of biologically relevant viruses by host taxonomic and ecological**
296 **variables.** (A—D) viral alpha diversity plots: (A) viral richness according to host infraorder;
297 (B) viral richness according to lizard habitat type; (C) viral richness according to host family;
298 (D) Shannon index according to host habitat. Points are coloured by host family. Host
299 taxonomic levels comprising only a single library were included in plots for visualisation
300 only and excluded from the final statistical models (denoted by a # in host taxonomy alpha
301 diversity plots). Csex_M was not included in statistical models or beta diversity plots as no
302 biologically relevant viruses were found in this library and it was the only riparian library.

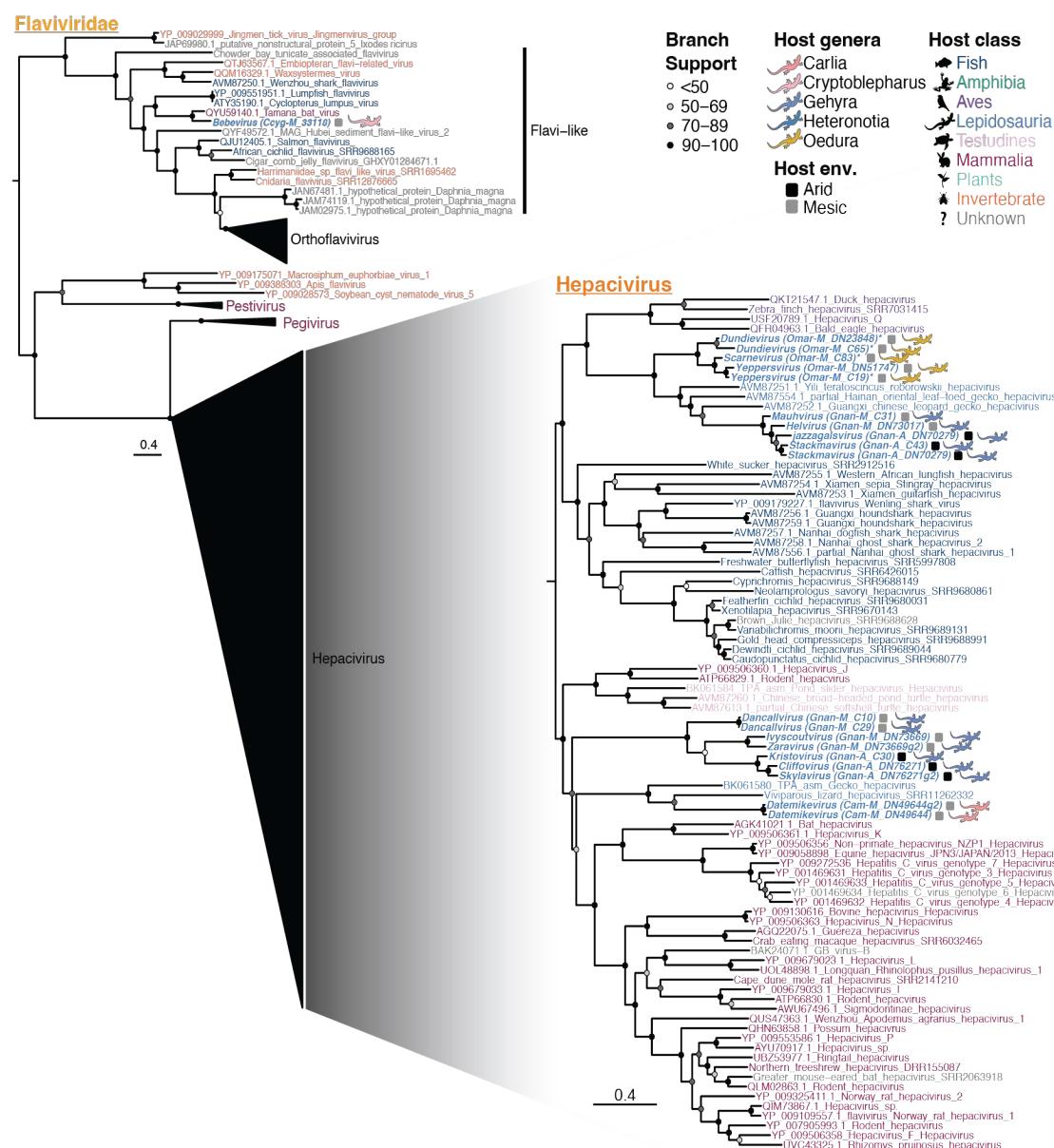
303 (E—G) viral beta diversity NMDS plot coloured by: (E) host family, (F) host habitat, and (G)
304 host range size. Cmet_M and Gnan_A overlap, depicted by a half circle. In all plots, P-values
305 for habitat or range size when considered with taxonomy at the level of host infraorder are
306 indicated with an “I”, while those considered with taxonomy at the level of host family are
307 indicated with an “F”. P-values <0.05 were considered significant and indicated with an
308 asterisk.

309

310 We also explored beta-diversity in relation to host traits (Figure 2E-G and Figure S5). A
311 similar trend to alpha diversity was observed, in which taxonomy, habitat and range size were
312 statistically significant in models considering host family (host family $p=0.006$, habitat
313 $p=0.009$, range size $p=0.009$), as was habitat and range size in models considering host
314 infraorder ($p=0.013$ and 0.033 , respectively). Overall, we documented a general trend of host
315 taxonomy, habitat and range size as potential modulators of viral diversity.

316

317 **3.3 Evolutionary relationships of novel viruses**


318 *3.3.1 Flaviviridae*

319 Strikingly, most of the *Flaviviridae* identified in the lizards studied here fell within the genus
320 *Hepacivirus*. The Australian lizard hepaciviruses were all novel and fell into three clades in a
321 host specific manner (Figure 4). Hepaciviruses from *Carlia amax* formed a monophyletic
322 group with a viviparous lizard hepacivirus from *Zootoca vivipara* (Lacertidae) sampled in the
323 UK (Scotland), and a Gecko hepacivirus previously sampled from *Oedura* in Australia
324 (although the RdRp sequence from the Gecko hepacivirus was only 92 amino acid residues,
325 necessarily impacting phylogenetic accuracy). In addition, the long branch lengths suggest
326 substantial unsampled genetic diversity within this clade. While this clade has strong support,
327 its specific phylogenetic placement within the hepaciviruses is poorly resolved such that its
328 closest relatives are unclear (Figure 4). *Gehyra nana* had a high diversity of hepaciviruses,
329 with viral sequences clustering into two groups: one distinct lineage that broadly clustered
330 with mammalian viruses and a second that grouped with reptile and bird viruses (Figure 4).
331 Viruses in the avian/reptile lineage grouped with viruses from other Gekkota species sampled
332 in China, including a *Goniurosaurus lului* (Gekkota; Eublepharidae, AVM87252.1),
333 *Hemidactylus bowringii* (Gekkota; Eublepharidae, AVM87554.1) and a *Teratoscincus*
334 *roborowskii* (Gekkota; Sphaerodactylidae, AVM87251.1). This is consistent with the Asian
335 origins of *Gehyra* (Oliver and Hugall 2017). Viruses from the *Oedura marmorata* sampled in
336 this study formed their own clade within the avian/reptile host lineage, basal to those from
337 China and *G. nana*.

338

339 Interestingly, the *Flaviviridae* identified in the *Cryptoblepharus metallicus* library did not
 340 cluster with the other Australian lizard *Flaviviridae*, but rather with Tanama bat virus and
 341 Lumpfish flavivirus (Figure 4), which are part of a broad “flavi-like” group that are
 342 phylogenetically distinct from members of the genus *Orthoflavivirus*. The long branch
 343 lengths between these three viruses suggest that there is considerable unsampled viral
 344 diversity in this clade, and that this constitutes a new virus that we have tentatively named
 345 Bebevirus.

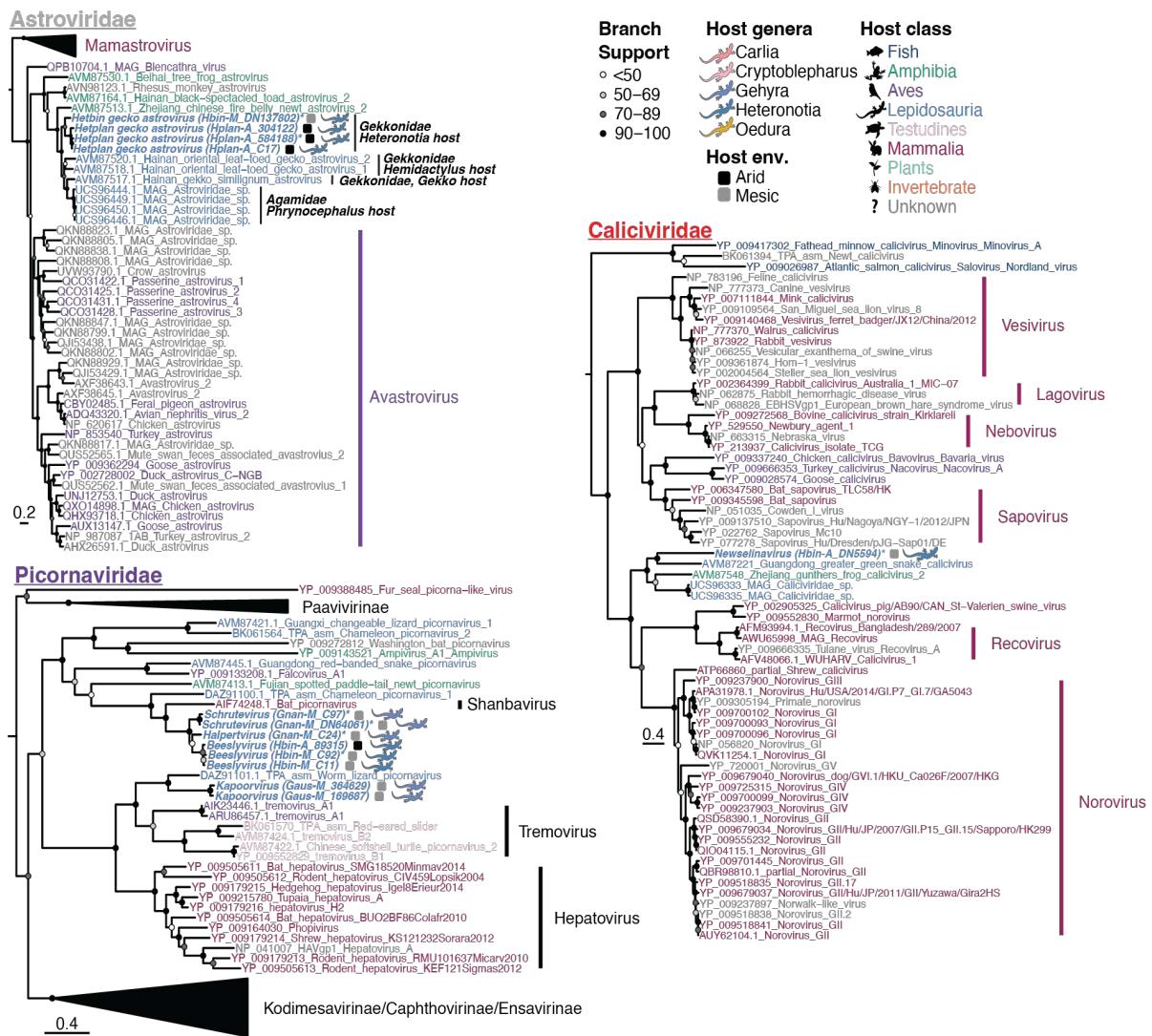
346

347

348

349 **Figure 3. Maximum likelihood phylogeny of the RdRp of Flaviviridae in Australian**
 350 **lizards.** Taxon names are coloured according to apparent host. Viruses discovered in this

351 study are indicated by bold and italicized taxa names and lizard silhouettes beside taxa
352 names, coloured by host genus. Squares next to the taxa names indicate the sampling
353 location/environment (env.) for viruses discovered in this study. An asterisk beside the taxa
354 name for viruses detected here indicates that the sequence is not the complete length of the
355 alignment. The accession number is indicated in the taxon name for sequences downloaded
356 from NCBI. Circles at the nodes represent the branch support as estimated using the SH-like
357 approximate likelihood ratio test. Trees are mid-point rooted for clarity. Scale bars indicate
358 the number of amino acid substitutions per site. To achieve greater resolution, the
359 *Hepacivirus* phylogeny was estimated from a sequence alignment of this genus only.
360


361 *3.3.2 Picornaviridae*

362 Members of the *Picornaviridae* were found in all Gekkota species analyzed, with the
363 exception of *H. planiceps* (although a picornavirus contig from *O. marmorata* was excluded
364 from the phylogeny as there were no RdRp contigs of sufficient length). The picornaviruses
365 isolated from lizards in this study fell into two main groups. Viruses from *H. binoei* and *G.*
366 *nana* grouped together and shared a common ancestor with bat picornavirus (AIF74248.1;
367 53.5-62% amino acid [aa] identity) and Chameleon picornavirus 1 (DAZ91100; 50-58.7% aa
368 identity) (Figure 4), a virus found in multiple lizard species including *Kinyongia boehmei*
369 (Chamaeleonidae), *Podarcis muralis* (Lacertidae), and *Timon pater* (Lacertidae). Bat
370 picornavirus is a member of the genus *Shanbavirus*, and (based on identity in the RdRp) the
371 *H. binoei* and *G. nana* viruses, as well as Chameleon picornavirus 1, should also belong to
372 the shanbaviruses (<https://ictv.global/report/chapter/picornaviridae/picornaviridae>). Three
373 distinct *Shanbavirus* species were identified in this study, provisionally named Halpertvirus
374 (*G. nana* host), Schrutevirus (*G. nana* host), and Beeslyvirus (*H. binoei* host). Notably,
375 Beeslyvirus was found in *H. binoei* from both mesic and arid environments and was the only
376 virus found in more than one library.

377

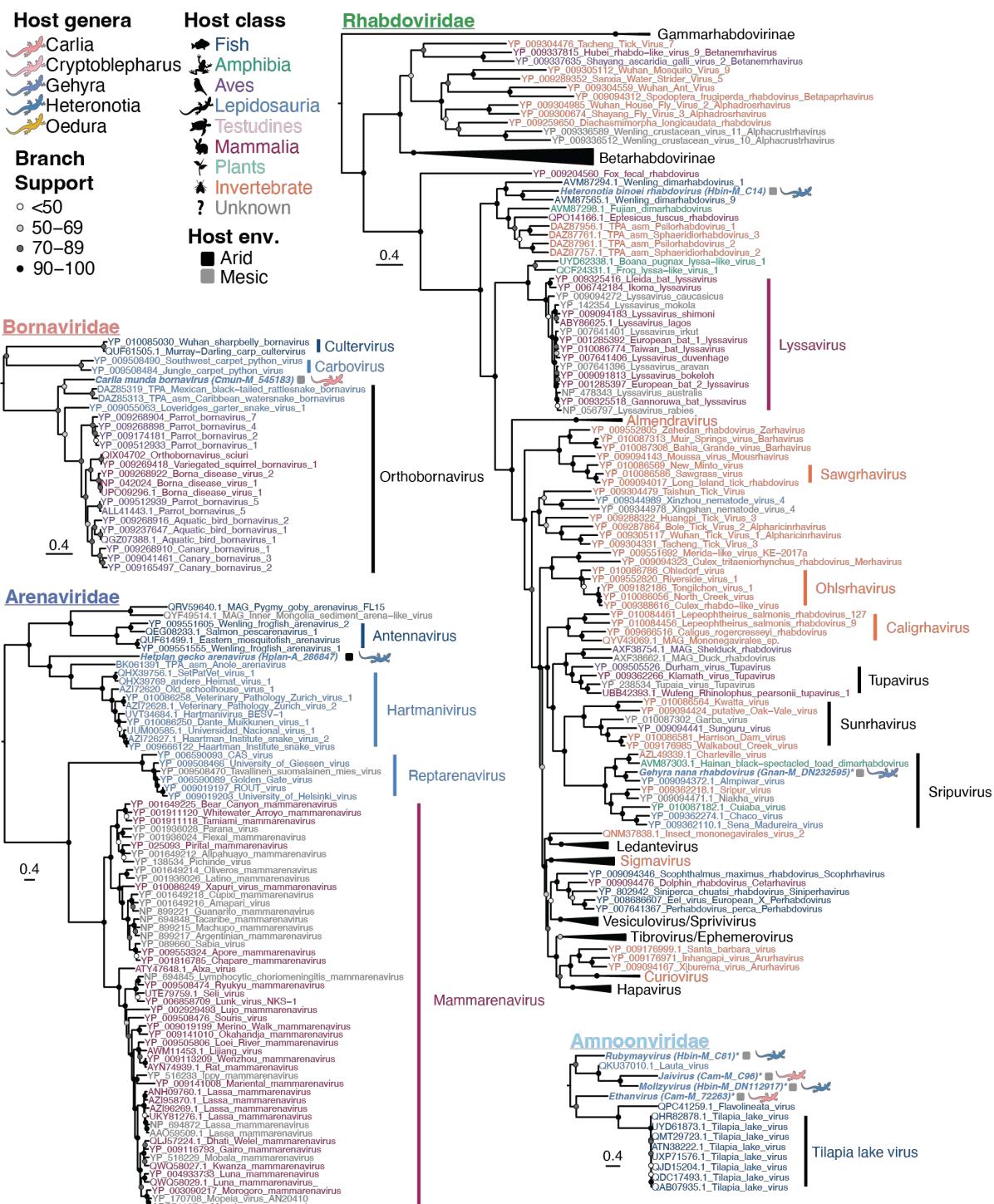
378 The second group contained the *G. arnhemica* picornavirus sequences, which were closely
379 related and hence assigned as the same virus species, here provisionally named Kapoorvirus.
380 This virus was most closely related to worm lizard picornavirus (57.6% aa identity in the
381 RdRp) from *Blanus cinereus* (Blanidae) and more broadly related to members of the genus
382 *Tremovirus* (Figure 4), associated with reptiles and birds, and known to cause
383 encephalomyelitis in avian hosts. The Kapoorviruses shared 34.3-41.6% amino acid identity
384 in the RdRp with the *Tremoviruses* included in the phylogeny, which placed them on the
385 border of the level of divergence required for a new genus (64% divergence). As such, we
386 have tentatively placed them within the genus *Tremovirus*.

387

Figure 4. Maximum likelihood phylogenies of the RdRp of positive-sense RNA viruses in Australian lizards (with the exception of the *Flaviviridae*, shown in Figure 3). Taxon names are coloured according to apparent host. Viruses discovered in this study are indicated by bold and italicized taxa names and lizard silhouettes beside taxa names, which are coloured by host genus. Squares next to the taxa names indicate the sampling location/environment (env.) for viruses discovered in this study. An asterisk beside the taxa name for viruses detected here indicates that the sequence is not the complete length of the alignment. The accession number is indicated in the taxon name for sequences downloaded from NCBI. Circles at the nodes represent the branch support as estimated using the SH-like approximate likelihood ratio test. Trees are mid-point rooted for clarity. Scale bars indicate the number of amino acid substitutions per site. Host family and genus names are indicated for the Lepidosauria in the *Astroviridae* phylogeny to demonstrate virus-host co-divergence within the Lepidosauria.

3.3.3 *Astroviridae*

Members of the *Astroviridae* were detected in two *Heteronotia* libraries from two different species – *H. binoei* and *H. planiceps*. A distinct astrovirus was identified in each library,


407 designated as Hetplan gecko astrovirus (from *H. planiceps*) and Hetbin gecko astrovirus
408 (from *H. binoei*), and the two viruses grouped together in the RdRp phylogeny (Figure 4).
409 These viruses then grouped more broadly with a larger well-supported clade of viruses from
410 lizards (Figure 4), clustering in a fashion reflective of host family and genus. Specifically, the
411 viruses from *Heteronotia* grouped closely with viruses from other members of the
412 Gekkonidae, including *Hemidactylus bowringii* and *Gekko similignum*, with each also
413 clustering by host genus, all of which fell basal to a clade of viruses from Agamidae
414 (*Phrynocephalus erythhrurus* and *Phrynocephalus theobaldi*), mirroring the host phylogeny
415 (Figure 4). Genus demarcation criteria for the *Astroviridae* is unclear and is most strongly
416 associated with host species. As a consequence, the viruses found here, along with the
417 published lizard astroviruses, would most likely form their own genus. It is also notable that
418 the lizard astrovirus cluster grouped more broadly with viruses found in amphibians and
419 birds.

420

421 3.3.4 *Rhabdoviridae*

422 Viral contigs related to the *Rhabdoviridae* were identified in two libraries (Figure 1). The *H.*
423 *binoei* rhabdovirus fell with a group of viruses not classified to any genus, including those
424 isolated from ray-finned fishes (*Actinopterygii*; from liver, gut and gills), and a spotted
425 paddle-tail newt (*Pachytriton brevipes*; from gut) (Figure 5). This virus is highly divergent
426 (49% aa identity in the RdRp to the closest relative, Wenling dimarhabdovirus 9) and would
427 therefore represent a new species, that we have named *Heteronotia binoei* rhabdovirus. This
428 virus, together with Wenling dimarhabdovirus 9, Fujian dimarhabdovirus, and Wenling
429 dimarhabdovirus 1, should form at least one new genus based on the observed level of
430 sequence diversity. This group of unclassified viruses then fell as a sister-group to a large
431 clade of rhabdoviruses including lyssavirus and many other pathogenic viruses (Figure 5).
432 Only short *Rhabdoviridae* contigs could be obtained for the RdRp region from the *G. nana*
433 library (Gnan_M), the longest being 124 residues. A phylogeny was estimated using a
434 smaller region of the RdRp (230 aa after trimAl trimming) where this contig aligned to
435 confirm the phylogenetic groupings observed in the larger alignment (774 aa after trimAl
436 trimming). Regardless of the RdRp alignment used, the *G. nana* rhabdovirus grouped with
437 the *Sripuviruses* (Figure 5). It shared 75% identity in the RdRp protein to its closest relative –
438 Almpiwar virus, isolated from skinks in Northern Queensland Australia. As all RdRp contigs
439 from Gnan_M (including the one in the phylogeny) exhibited less than 90% amino acid

440 identity to the closest relative, this virus likely represents a new species of *Sripuvirus*,
 441 tentatively named *Gehyra nana* rhabdovirus.

442
 443
 444 **Figure 5. Maximum likelihood phylogenies of the RdRp of negative-sense RNA viruses**
 445 **in Australian lizards.** Taxon names are coloured according to apparent host. Viruses
 446 discovered in this study are indicated by bold and italicized taxa names and lizard silhouettes
 447 beside taxa names, which are coloured by host genus. Squares next to the taxa names indicate
 448 the sampling location/environment (env.) for viruses discovered in this study. An asterisk
 449 beside the taxa name for viruses detected here indicates that the sequence is not the complete
 450 length of the alignment. Accession numbers are indicated in the taxon name for sequences

451 downloaded from NCBI. Circles at the nodes represent the branch support as estimated using
452 the SH-like approximate likelihood ratio test. Trees are mid-point rooted for clarity. Scale
453 bars indicate the number of amino acid substitutions per site.

454

455 3.3.5 *Amnoonviridae*

456 Several contigs related to Lauta virus (MT386081), a member of the *Amnoonviridae*, were
457 identified in *C. amax* and *H. binoei* sampled from the same area of the north-east Top End.
458 However, the contigs obtained were short and hence difficult to classify. The amino acid
459 sequence identity between the longest contigs (270 aa and 238 aa) from the two libraries is
460 only 26.7%, while the identity of the longest contigs from *C. amax* and *H. binoei* with the
461 nearest published relative (MT386081, Lauta virus) were 31.3% and 35.8%, respectively.
462 The nearest known relative, found in an Australian gecko (*Gehyra lauta*) liver in 2013 (Ortiz-
463 Baez et al. 2020), is itself highly divergent from other published viruses, and was only
464 detected using a protein structure prediction approach. All *Amnoonviridae* contigs detected in
465 this study were from the RdRp segment as these viruses are so distinct from known viruses
466 that it was challenging to identify other genomic regions, particularly as these viruses are
467 likely to be segmented. Phylogenetic analysis of the RdRp of contigs longer than 100 aa from
468 each library suggested that there were four distinct species of lizard virus within
469 *Amnoonviridae*, two in each library (Figure 5). Three of these species clustered with Lauta
470 virus, creating a lizard-infecting clade, while the fourth was basal (yet quite distant) to a clade
471 of fish viruses, including Tilapia lake virus (Figure 5). However, the clustering of these
472 contigs may be unreliable since they are short (160 – 270 aa) and not the complete length of
473 the RdRp. Additionally, contigs from the same library did not overlap (or only overlapped
474 minimally) in the alignment and therefore their relationship is difficult to determine.

475

476 3.4 Viral families in which a single species was identified

477 A single virus species was detected in the lizard metatranscriptomes from the *Caliciviridae*,
478 *Arenaviridae*, *Bornaviridae*, and *Iridoviridae*. A member of the *Caliciviridae* was detected in
479 the *H. binoei* (Hbin_A) (Figure 1), but only partial contigs were obtained which aligned to
480 most of the capsid, parts of the RdRp, 2C-like protein and the proteinase. Alignment of a 449
481 aa region of the RdRp with published sequences grouped this virus with caliciviruses from
482 other squamates; *Cyclophiops major* (Colubridae), *Phrynocephalus theobaldi* (Agamidae),
483 and a frog, *Sylvirana guentheri* (Ranidae) (Figure 4). The *H. binoei* calicivirus was highly
484 divergent from its closest relative – Guangdong greater green snake calicivirus (AVM87221)
485 – sharing only 35.4% identity in the aligned region of the RdRp. We therefore suggest that it

486 comprises a new species that we have tentatively named Newselinavirus. Based on alignment
487 of the near complete major capsid protein (527 aa), this virus has >60% amino acid sequence
488 difference to other caliciviruses and therefore would also constitute a different genus
489 (<https://ictv.global/report/chapter/caliciviridae/caliciviridae>).
490


491 A member of the *Arenaviridae* was detected in *H. planiceps* (Hplan_A) with the highest
492 abundance of any virus detected in this study (>0.2% of total reads for that library, Figure 1)
493 with a near complete genome obtained. This virus clusters with the *Hartmaniviruses* (Figure
494 5), a genus known to infect snakes with unknown pathogenicity, although with only 23.6% aa
495 identity to its closest relative in the RdRp region. However, based on the genus demarcation
496 criteria for *Arenaviridae* (i.e., members of the same genus share >35% nucleotide identity in
497 the L gene; <https://ictv.global/report/chapter/arenaviridae/arenaviridae>), this virus falls just
498 within the genus *Hartmanivirus*. Like other members of this genus, the virus detected here,
499 tentatively named Hetplan gecko arenavirus, lacked the gene encoding the zinc-binding
500 matrix protein (Hepojoki et al. 2015).

501 A near-complete genome of a member of the *Bornaviridae* was found in the *C. munda* library
502 (Cmun_M). Phylogenetic analysis of the RdRp showed that it formed a clade with two snake
503 viruses from the genus *Orthobornavirus* which also contained Loveridges garter snake virus
504 1 (YP_009055063) and viruses with mammalian and avian hosts (Figure 5). As it shared only
505 53.5% nucleotide identity across the entire genome with its nearest relative, the virus detected
506 here would constitute its own species (Kuhn et al. 2015), tentatively named *Carlia munda*
507 bornavirus, and would likely belong to the genus *Orthobornavirus*. It is not clear whether the
508 two snake viruses that grouped with *Carlia munda* bornavirus are pathogenic (Pfaff and
509 Rubbenstroth 2021), but other members of the *Orthobornavirus* clade cause neurotropic
510 disease in mammals and avian hosts, while members of the *Carbovirus* genus cause
511 neurological disease in snakes (Hyndman et al. 2018).

512 Transcripts from multiple genes related to the *Iridoviridae* (double-strand DNA viruses) were
513 detected in *H. binoei* (Hbin_M) (Figure 1), including the major capsid, myristylated
514 membrane protein, phosphotransferase, ATPase, DNA helicase, dUTP, and NTPase I. This
515 suggested that an *Iridoviridae* was actively replicating in one or more lizards sampled in this
516 library. Phylogenetic analysis of the major capsid protein revealed that this virus clustered
517 within the subfamily *Betairidovirinae* that was originally considered invertebrate-specific but
518 which is increasingly being associated with vertebrate infection (Russo et al. 2021) (Figure
519 6). Interestingly, this virus grouped with erythrocytic necrosis virus, a pathogen of fish
520 (72.4% aa identity in the capsid), and *Rhinella marina* erythrocytic-like virus found in cane

521 toads (85.4% aa identity) and would likely fall into the same genus
522 (<https://ictv.global/report/chapter/iridoviridae/iridoviridae>), but as a novel species that we
523 have named *Heteronotia binoei* irido-like virus (Figure 6). A new genus containing these and
524 erythrocytic viruses of ectothermic hosts has been putatively proposed, but not yet formally
525 ratified or named (Emmenegger et al. 2014). Three other erythrocytic viruses from Squamata
526 hosts – *Thamnophis sauritus* erythrocytic virus (EV), *Lacerta monticola* EV, and *Pogona*
527 *vitticeps* EV – fell within this erythrocytic virus lineage based on sequence of a short PCR
528 product of a homolog to a region of the DNA dependent DNA polymerase (Grosset et al.
529 2014; Russo et al. 2018), although the transcript encoding this particular protein was not
530 found in our data, precluding a phylogenetic analysis. However, it is likely the virus
531 discovered here is a relative to the other Squamata erythrocytic viruses and supports the
532 presence of Squamata hosts for this lineage.

533

536 **Figure 6. Maximum likelihood phylogenetic tree of the major capsid protein of the**
537 ***Iridoviridae* in Australian lizards.** Taxon names are coloured according to apparent host.
538 The virus discovered in this study is indicated by a bold and italicized taxon name and a
539 lizard silhouette beside the taxon name, which is coloured by host genus. The square next to
540 the taxon name indicates the sampling location/environment (env.) for the virus discovered in
541 this study. The accession number is indicated in the taxon name for sequences downloaded
542 from NCBI. Circles at the nodes represent the branch support as estimated using the SH-like
543 approximate likelihood ratio test. The tree is mid-point rooted for clarity, and the scale bar
544 indicates the number of amino acid substitutions per site.

545

546 4. Discussion

547 We used Australian lizards as model organisms to better understand the host determinants of
548 viral abundance and diversity, while simultaneously expanding our knowledge of the lizard
549 virome and virus evolution. Indeed, to date relatively little attention has been paid to the
550 viromes of squamates (lizards and snakes) (Shi et al. 2018; Harding et al. 2022). In Australia,
551 the Squamata are the most species-rich vertebrate assemblage (Wilson and Swan 2017) and
552 the varied ages of Squamate radiations (Brennan and Oliver 2017), alongside their varied

553 population structures and their adaption to multiple habitats and environments (Pianka 1969;
554 Pianka 1973), makes them an informative group to study in the context of viral evolution and
555 ecology. Using a meta-transcriptomics approach we characterized the virome of nine lizard
556 species from three families and five genera, finding a wide diversity of novel viruses,
557 including those from families/genera that commonly cause disease in humans and other
558 animals, including the *Flaviviridae* (*Hepacivirus*), *Bornaviridae*, *Rhabdoviridae*, and
559 *Picornaviridae*. Our findings expand many known viral families, adding entire new clades.
560 This includes a new lizard-specific clade of the *Amnoonviridae*, a family previously
561 containing only fish viruses and a single lizard-infecting virus (Ortiz-Baez et al. 2020).

562

563 Viral diversity and abundance differed markedly between hosts, and consistent with other
564 studies on virome and pathogen ecology, environmental variables had some effect on virome
565 diversity across our sampled hosts – particularly host habitat. The effect of various habitats
566 on alpha diversity in viruses has previously been demonstrated in fish (Geoghegan et al.
567 2021), rodents (Tirera et al. 2021), and bats (Bergner et al. 2020), while virome composition
568 has also been shown to differ significantly in different habitats for bats, shrews and rats
569 (Chen et al. 2023). As different habitats have a range of environmental factors that modulate
570 host behavior and ecology, it is unsurprising that host habitat may also impact virome
571 composition. For example, foraging behavior is likely to play a role in the transmission of
572 low pathogenic avian influenza, where avian species that forage in shallow water are more
573 likely to influence avian influenza ecology (Wille et al. 2023).

574

575 Host taxonomy also impacted measures of virus richness and beta diversity, consistent with
576 some degree of host-specific virus evolution, including co-divergence. The effect of host
577 taxonomy on viral diversity is similar to that seen in fish (Geoghegan et al. 2021) and
578 mammalian viromes (Olival et al. 2017), although a different pattern was observed in some
579 bird viromes (Wille et al. 2018, 2019), suggesting that it is dependent on the taxa in question.
580 Over evolutionary time the likelihood of successful cross-species virus transmission is
581 predicted to decline because of host genetic differences in viral receptors, the cellular
582 machinery required for replication, immune response and other factors that affect viral
583 infection and spread (Ferris, Heise and Baric 2016). This may in part explain the link
584 between host taxonomy and viral richness and composition. Alternatively, this association
585 could simply reflect virome-level virus-host co-divergence over longer evolutionary
586 timescales. Indeed, in most cases, the lizard viruses discovered here grouped together and/or

587 with viruses found in other members of the reptilian class Lepidosauria, and phylogenies
588 generally followed a broad pattern of host-virus co-divergence. For example, in the case of
589 the *Astroviridae*, virus sequences from Squamata clearly group by host genera, and viruses
590 from the Gekkonidae fall basal to those from the Agamidae, matching the host phylogeny
591 (Oliver and Hugall 2017). Similarly, in the case of the relatively well-sampled hepaciviruses
592 and picornaviruses, more closely related Squamata hosts tended to carry more closely related
593 viruses, with viruses from the same host species forming a monophyletic group and viruses
594 from the same family and infraorder similarly tending to do the same.

595

596 As well as providing some evidence for virus-host co-divergence, we documented many
597 instances of virus-host jumping or multi-host viruses at higher taxonomic scales. Indeed, in
598 some cases, lizard viruses clustered more closely with amphibian, mammalian or fish viruses,
599 rather than with other reptile or bird viruses. Three distinct clades of lizard hepaciviruses
600 were identified, all of which group separately to a clade of turtle hepaciviruses. Although the
601 hepacivirus phylogeny is difficult to resolve, the presence of four clades of reptile
602 hepaciviruses and the placement of two reptile clades within the mammalian hepacivirus
603 clade is suggestive of host jumping between reptiles and mammals at some time in the distant
604 evolutionary past. Similarly, the *Iridoviridae* and *Rhabdoviridae* phylogenies are highly
605 incongruent with their host phylogenies, suggesting frequent host jumping. In the case of the
606 two lizard *Rhabdoviridae*, one groups with fish viruses while the other clusters in the
607 *Sripuvirus* clade with viruses from reptiles, amphibians and invertebrates. The closest relative
608 of the *Sripuvirus* detected here, Almpiwar virus, was isolated from skinks in Northern
609 Queensland Australia, and neutralizing antibodies against Almpiwar virus were also found in
610 the sera of crocodiles, a wild bird and multiple mammalian hosts, including a human
611 (McAllister et al. 2014). Although, the presence of neutralizing antibodies against Almpiwar
612 virus in mammals was relatively rare, it does suggest that this group of viruses could have a
613 broader host range than reptiles alone. In addition, there is evidence that this virus, along with
614 other members of this genus – including Charleville virus, which was also isolated in
615 Australia from *Gehyra* (the same host genus as the virus detected here) and sandflies – are
616 arthropod-borne (McAllister et al. 2014; Vasilakis et al. 2019). The lizard *Iridoviridae* found
617 was most closely related to an amphibian and fish virus, with a relatively short genetic
618 distance between them. This is perhaps unsurprising as recent host jumping seems to be
619 commonplace within the *Iridoviridae*; some members of this family can infect fish, reptiles
620 and amphibians (Brenes et al. 2014), and some invertebrate-infecting *Iridoviridae* can also

621 apparently infect vertebrates (Papp and Marschang 2019). In sum, this work supports a model
622 of frequent host-jumping throughout the evolutionary history of most virus families on a
623 backdrop of virus-host co-divergence (Geoghegan, Duchêne and Holmes 2017; Geoghegan
624 and Holmes 2017; Shi et al. 2018).

625

626 Our phylogenetic analyses also revealed some geospatial clustering. For virus families with
627 multiple detections, there is little overlap of virus species from different environments. This
628 suggests that lizard viruses are evolving within their host populations in a relatively isolated
629 manner, as might be expected given the generally strong phylogeographic structuring across
630 species ranges (Moritz et al. 2016; Moritz et al. 2018; Potter et al. 2018). It is also of interest
631 that phylogenetic groups that contain viruses sampled from both mesic and arid locations
632 tend to have mesic associated viruses in the basal positions. The hepacivirus phylogeny is
633 particularly enlightening in this respect and it suggests the movement of viruses from one
634 environment to another: both clades of *G. nana* hepaciviruses have viruses collected from
635 mesic environments located in basal phylogenetic positions to those viruses sampled from
636 animals in arid environments. This is consistent with the theory that Australia's mesic
637 terrestrial biota is mostly ancestral (Byrne et al. 2011). Additionally, more consistent mesic
638 conditions may favor the retention of viral diversity, such that younger taxa dominate in the
639 more climatically variable arid regions of the Kimberley. This could also be associated with
640 the more variable demographic histories of the drier Kimberley compared to the mesic Top
641 End populations (Potter et al. 2018).

642

643 The hepacivirus phylogeny also reflects host historical biogeography. As >90% of Australian
644 reptiles are endemic (Chapman 2009), it is expected that viruses infecting Australian reptiles
645 would have minimal opportunities to spread between countries. Indeed, even the currently
646 limited sampling of lizard viruses demonstrates little movement between countries. However,
647 in one clade of hepaciviruses, viruses from Australian *O. marmorata* hosts were separated
648 from viruses from Australian *G. nana* by viruses sampled from China, with the Chinese
649 sampled viruses falling as sister taxa to the Australian *G. nana* viruses. Interestingly, *O.*
650 *marmorata* are thought to have Gondwanan origins, while the *G. nana* are believed to have
651 immigrated from Asia around the Eocene-Oligocene transition (Oliver and Hugall 2017).
652 Thus, this clade of hepaciviruses could reflect the historical biogeography of their hosts, with
653 evidence of a lineage of viruses introduced to Australia within immigrant ancestors. As the
654 evolutionary histories of the viruses studied here frequently aligned with the biogeographic

655 and paleoclimatic histories of the hosts, this supports the role of virus evolution in informing
656 animal host ecological histories where sampling is strategic and sufficiently dense (Wilfert
657 and Jiggins 2014). Clearly, however, increased sampling across taxa and biogeographic
658 regions would be useful in confirming this hypothesis.

659

660 Although the disease association, if any, of the viruses collected here is unknown, we did
661 identify viruses related to known pathogens, including an *Orthobornavirus*, multiple
662 *Hepaciviruses*, and a member of the *Iridoviridae*. It is noteworthy that seemingly healthy
663 lizards can carry a very high abundance and richness of viruses in the liver, particularly the
664 *Gehyra* species (high viral richness) and *H. planiceps* (high abundance). Viral emergence can
665 have devastating effects on reptile species, such as the Bellinger River snapping turtle that is
666 now critically endangered following mass mortalities due to a novel nidovirus outbreak
667 (Zhang et al. 2018). Although it is unclear where the novel nidovirus (with kidney tropism)
668 originated, the closest known viral relatives were observed in pythons and lizards (usually
669 associated with respiratory disease) (Zhang et al. 2018). Given that lizards make up 59% of
670 non-avian reptiles (Pincheira-Donoso et al. 2013), and one fifth of reptile species are
671 threatened (Cox et al. 2022), this expansion of the lizard virosphere and elucidation of viral
672 genomic sequences may help inform and prepare for potential threats to reptile species.

673

674 While this work is the first structured examination of the lizard virome, the sample size is
675 relatively small and there are several caveats. Previous studies have found variation in
676 viromes depending on the age of the individuals sampled (Bergner et al. 2020) and the time
677 of year that sampling occurred (Raghwani et al. 2022). These variables were not controlled in
678 this study. In addition, a larger sample size would enable better comparison between matched
679 species sampled from different environments and a greater sample across the squamate
680 phylogeny would expand these results. The viral families detected here are reflective of the
681 fact that liver samples were sequenced, and as viromes commonly differ by the tissue of
682 sampling, studying a wider range of tissues would be beneficial. Despite these limitations,
683 this study demonstrates that lizards carry a large diversity of viruses, often in high abundance
684 and potentially species-specific. As such they are not only interesting models of vertebrate
685 evolution and ecology, but also serve as good host models by which to study virus ecology
686 and evolution. This work further demonstrates that virus evolution may be a useful tool for
687 understanding or corroborating host biogeographic and paleoclimatic histories.

688

689 **Data availability**

690 All raw data (fastq files) generated for this study are available in the NCBI SRA database
691 under BioProject XXXX, BioSample accessions XXXX. Consensus sequences of assembled
692 viral contigs presented in phylogenies are available in GenBank under accession numbers
693 XXXXX-XXXX.

694

695 **Acknowledgements**

696 We acknowledge the logistical support provided by Niccy Aitken and Leo Tedeschi at
697 Australian National University while completing the wet-lab component of this study. We
698 acknowledge the Sydney Informatics Hub and the University of Sydney's high-performance
699 computing cluster Artemis for providing the high-performance computing resources that
700 contributed to the research results reported within this paper.

701

702 **Funding**

703 This work was supported by an Australian Research Council Australian Laureate Fellowship
704 awarded to E.C.H. (grant number FL170100022).

705

706 **Conflict of interest:** none declared.

707

708 **References**

709 Altschul, S. F. et al. (1990). 'Basic Local Alignment Search Tool', *Journal of Molecular*
710 *Biology*, 215: 403–10.
711 Altschul, S. F. et al. (1997). 'Gapped BLAST and PSI-BLAST: a New Generation of Protein
712 Database Search Programs.', *Nucleic Acids Research*, 25: 3389–402.
713 Bergner, L. M. et al. (2020). 'Demographic and Environmental Drivers of Metagenomic
714 Viral Diversity in Vampire Bats', *Molecular Ecology*, 29: 26–39.
715 Bolger, A. M., Lohse, M., and Usadel, B. (2014). 'Trimmomatic: a Flexible Trimmer For
716 Illumina Sequence Data', *Bioinformatics*, 30: 2114–20.
717 Brenes, R. et al. (2014). 'Transmission of *Ranavirus* between Ectothermic Vertebrate Hosts',
718 *PLoS One*, 9: e92476.
719 Brennan, I. G., and Oliver, P. M. (2017). 'Mass Turnover and Recovery Dynamics of a
720 Diverse Australian Continental Radiation', *Evolution*, 71: 1352–65.
721 Buchfink, B., Reuter, K., and Drost, H.-G. (2021). 'Sensitive Protein Alignments at Tree-of-
722 Life Scale Using DIAMOND', *Nature Methods*, 18: 366–8.
723 Byrne, M. et al. (2011). 'Decline of a Biome: Evolution, Contraction, Fragmentation,
724 Extinction and Invasion of the Australian Mesic Zone Biota', *Journal of*
725 *Biogeography*, 38: 1635–56.

726 Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. (2009). ‘trimAl: a Tool for
727 Automated Alignment Trimming in Large-Scale Phylogenetic Analyses’,
728 *Bioinformatics*, 25: 1972–3.

729 Chapman, A. D. (2009). *Numbers of Living Species in Australia and the World*. Australian
730 Government, Department of the Environment, Water, Heritage, and the Arts.

731 Chen, Y.-M. et al. (2023). ‘Host Traits Shape Virome Composition and Virus Transmission
732 in Wild Small Mammals’, *Cell*, 186: 4662–75.

733 Chen, Y.-M. et al. (2022). ‘RNA Viromes from Terrestrial Sites Across China Expand
734 Environmental Viral Diversity’, *Nature Microbiology*, 7: 1312–23.

735 Cox, N. et al. (2022). ‘A Global Reptile Assessment Highlights Shared Conservation Needs
736 of Tetrapods’, *Nature*, 605: 285–90.

737 Emmenegger, E. J. et al. (2014). ‘Molecular Identification of Erythrocytic Necrosis Virus
738 (ENV) From the Blood of Pacific herring (*Clupea pallasii*)’, *Veterinary
739 Microbiology*, 174: 16–26.

740 Ferris, M. T., Heise, M. T., and Baric, R. S. (2016). ‘Host Genetics: It Is Not Just the Virus,
741 Stupid’. In Katze M. G., Korth M. J., Law G. L., and Nathanson N. (eds) *Viral
742 Pathogenesis (Third Edition)*, pp. 169–79. Academic Press: Boston.

743 Fu, L., et al. (2012). ‘CD-HIT: Accelerated for Clustering the Next-Generation Sequencing
744 Data’, *Bioinformatics*, 28: 3150–2.

745 Geoghegan, J. L. et al. (2021). ‘Virome Composition in Marine Fish Revealed by Meta-
746 Transcriptomics’, *Virus Evolution*, 7: veab005.

747 Geoghegan, J. L., Duchêne, S., and Holmes, E. C. (2017). ‘Comparative Analysis Estimates
748 the Relative Frequencies of Co-Divergence and Cross-Species Transmission Within
749 Viral Families’, *PLoS Pathogens*, 13: e1006215.

750 Geoghegan, J. L., and Holmes, E. C. (2017). ‘Predicting Virus emergence Amid Evolutionary
751 Noise’, *Open Biology*, 7: 170189.

752 Geyle, H. M. et al. (2021). ‘Reptiles on the Brink: Identifying the Australian Terrestrial
753 Snake and Lizard Species Most at Risk of Extinction’, *Pacific Conservation Biology*,
754 27: 3–12.

755 Grabherr, M. G. et al. (2011). ‘Full-Length Transcriptome Assembly from RNA-Seq Data
756 Without a Reference Genome’, *Nature Biotechnology*, 29: 644–52.

757 Grosset, C. et al. (2014). ‘Intraerythrocytic Iridovirus in Central Bearded Dragons (*Pogona
758 vitticeps*)’, *Journal of Veterinary Diagnostic Investigation*, 26: 354–64.

759 Guindon, S. et al. (2010). ‘New Algorithms and Methods to Estimate Maximum-Likelihood
760 Phylogenies: Assessing the Performance of PhyML 3.0’, *Systematic Biology*, 59:
761 307–21.

762 Harding, E. F. et al. (2022). ‘Revealing the Uncharacterised Diversity of Amphibian and
763 Reptile Viruses’, *ISME Communications*, 2: 95.

764 Hepojoki, J. et al. (2015). ‘Arenavirus Coinfections Are Common in Snakes with Boid
765 Inclusion Body Disease’, *Journal of Virology*, 89: 8657–60.

766 Herrera-Flores, J. A., Stubbs, T. L., and Benton, M. J. (2021). ‘Ecomorphological
767 Diversification of Squamates in the Cretaceous’, *Royal Society Open Science*, 8:
768 201961.

769 Hyndman, T. H. et al. (2018). ‘Divergent Bornaviruses from Australian Carpet Pythons with
770 Neurological Disease Date the Origin of Extant *Bornaviridae* Prior to the End-
771 Cretaceous Extinction’, *PLoS Pathogens*, 14: e1006881.

772 Kalyaanamoorthy, S. et al. (2017). ‘ModelFinder: Fast Model Selection for Accurate
773 Phylogenetic Estimates’, *Nature Methods*, 14: 587–9. 5

774 Kuhn, J. H. et al. (2015). ‘Taxonomic Reorganization of the Family *Bornaviridae*’, *Archives
775 of Virology*, 160: 621–32.

776 Lagkouvardos, I. et al. (2017). 'Rhea: a Transparent and Modular R Pipeline for Microbial
777 Profiling Based on 16S rRNA Gene Amplicons', *PeerJ*, 5: e2836.

778 Li, B. et al. (2010). 'RNA-Seq Gene Expression Estimation with Read Mapping Uncertainty',
779 *Bioinformatics*, 26: 493–500.

780 Li, D. et al. (2015). 'MEGAHIT: an Ultra-Fast Single-Node Solution for Large and Complex
781 Metagenomics Assembly Via Succinct de Bruijn graph', *Bioinformatics*, 31: 1674–6.

782 McAllister, J. et al. (2014). 'Genomic Characterisation of Almpiwar virus, Harrison Dam
783 virus and Walkabout Creek virus; Three Novel Rhabdoviruses from Northern
784 Australia', *Virology Reports*, 3–4: 1–17.

785 McMurdie, P. J., and Holmes, S. (2013). 'phyloseq: an R Package for Reproducible
786 Interactive Analysis and Graphics of Microbiome Census Data', *PLoS One*, 8:
787 e61217.

788 Mollentze, N., and Streicker, D. G. (2020). 'Viral Zoonotic Risk is Homogenous Among
789 Taxonomic Orders of Mammalian and Avian Reservoir Hosts', *Proceedings of the
790 National Academy of Sciences*, 117: 9423–30.

791 Moritz, C. C. et al. (2018). 'Cryptic Lineage Diversity, Body Size Divergence, and Sympatry
792 in a Species Complex of Australian Lizards (*Gehyra*)', *Evolution*, 72: 54–66.

793 Moritz, C. et al. (2016). 'Multilocus Phylogeography Reveals Nested Endemism in a Gecko
794 Across the Monsoonal Tropics of Australia', *Molecular Ecology*, 25: 1354–66.

795 Morton, S. R., and James, C. D. (1988). 'The Diversity and Abundance of Lizards in Arid
796 Australia: A New Hypothesis', *The American Naturalist*, 132: 237–56.

797 Nguyen, L.-T. et al. (2015). 'IQ-TREE: A Fast and Effective Stochastic Algorithm for
798 Estimating Maximum-Likelihood Phylogenies', *Molecular Biology and Evolution*,
799 32: 268–74.

800 Oksanen, J. et al. (2022). 'Vegan: Community Ecology Package'. [http://CRAN.R-
801 project.org/package=vegan](http://CRAN.R-project.org/package=vegan).

802 Olival, K. J. et al. (2017). 'Host and Viral Traits Predict Zoonotic Spillover From Mammals',
803 *Nature*, 546: 646–50.

804 Oliver, P. M., and Hugall, A. F. (2017). 'Phylogenetic Evidence for Mid-Cenozoic Turnover
805 of a Diverse Continental biota', *Nature Ecology & Evolution*, 1: 1896–902.

806 Ortiz-Baez, A. S. et al. (2020). 'A Divergent *Articulavirus* in an Australian Gecko Identified
807 Using Meta-Transcriptomics and Protein Structure Comparisons', *Viruses*, 12: 613.

808 Papp, T., and Marschang, R. E. (2019). 'Detection and Characterization of Invertebrate
809 Iridoviruses Found in Reptiles and Prey Insects in Europe over the Past Two
810 Decades', *Viruses*, 11: 600.

811 Pfaff, F., and Rubbenstroth, D. (2021). 'Two Novel Bornaviruses Identified in Colubrid and
812 Viperid Snakes', *Archives of Virology*, 166: 2611–4.

813 Pianka, E. R. (1969). 'Habitat Specificity, Speciation, and Species Density in Australian
814 Desert Lizards', *Ecology*, 50: 498–502.

815 Pianka, E. R. (1973). 'The Structure of Lizard Communities', *Annual Review of Ecology and
816 Systematics*, 4: 53–74.

817 Pincheira-Donoso, D. et al. (2013). 'Global Taxonomic Diversity of Living Reptiles', *PLoS
818 One*, 8: e59741.

819 Potter, S. et al. (2018). 'Pleistocene Climatic Changes Drive Diversification Across a
820 Tropical Savanna', *Molecular Ecology*, 27: 520–32.

821 Pyron, R. A., Burbrink, F. T., and Wiens, J. J. (2013). 'A Phylogeny and Revised
822 Classification of Squamata, Including 4161 Species of Lizards and Snakes', *BMC
823 Evolutionary Biology*, 13: 93.

824 Raghwani, J. et al. (2022). 'Seasonal Dynamics of the Wild Rodent Faecal Virome',
825 *Molecular Ecology*, 32: 4763–76.

826 Russo, A. G. et al. (2018). 'Viral Discovery in the Invasive Australian Cane Toad (*Rhinella*
827 *marina*) Using Metatranscriptomic and Genomic Approaches', *Journal of Virology*,
828 92/17: e00768-18.

829 Russo, A. G. et al. (2021). 'Discovery of Novel Viruses Associated with the Invasive Cane
830 Toad (*Rhinella marina*) in Its Native and Introduced Ranges', *Frontiers in*
831 *Microbiology*, 12:733631.

832 Shi, M. et al. (2018). 'The Evolutionary History of Vertebrate RNA Viruses', *Nature*, 556:
833 197–202.

834 Tirera, S. et al. (2021). 'The Influence of Habitat on Viral Diversity in Neotropical Rodent
835 Hosts', *Viruses*, 1: 1690.

836 Vasilakis, N. et al. (2019). 'Genomic Characterisation of Cuiaba and Charleville viruses:
837 Arboviruses (family *Rhabdoviridae*, genus *Sripuvirus*) Infecting Reptiles and
838 Amphibians', *Virus Genes*, 55: 87–94.

839 Wilfert, L., and Jiggins, F. M. (2014). 'Flies on the Move: An Inherited Virus Mirrors
840 *Drosophila melanogaster*'s Elusive Ecology and Demography', *Molecular Ecology*,
841 23: 2093–104.

842 Wille, M. et al. (2018). 'Virus–Virus Interactions and Host Ecology are Associated with
843 RNA Virome Structure in Wild Birds', *Molecular Ecology*, 27: 5263–78.

844 Wille, M. et al. (2023). 'Strong Host Phylogenetic and Ecological Effects on Host
845 Competency for Avian Influenza in Australian Wild Birds', *Proceedings of the Royal
846 Society B: Biological Sciences*, 290: 20222237.

847 Wille, M. et al. (2019). 'Virome Heterogeneity and Connectivity in Waterfowl and Shorebird
848 Communities', *The ISME Journal*, 13: 2603–16.

849 Wilson, S., and Swan, G. (2017). *A Complete Guide to Reptiles of Australia*. Reed New
850 Holland.

851 Zhang, J. et al. (2018). 'Identification of a Novel Nidovirus as a Potential Cause of Large
852 Scale Mortalities in the Endangered Bellinger River Snapping Turtle (*Myuchelys*
853 *georgesii*)', *PLoS One*, 13/10: e0205209.

854 Zhang, Y.-Z. et al. (2018). 'The Diversity, Evolution and Origins of Vertebrate RNA
855 Viruses', *Current Opinion in Virology*, 31: 9–16.