

1 **Identification of sex-biased miRNA markers informative of heat-past events**

2

3 Tosca A. van Gelderen¹, Jerome Montfort², José Antonio Álvarez-Dios³, Francesc Piferrer¹,
4 Julien Bobe², Laia Ribas¹

5

6 ¹ Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003,
7 Barcelona

8 ² INRAE, Laboratoire de Physiologie et Génomique des Poissons, Rennes, France

9 ³ Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad de Santiago de
10 Compostela, 15781, Santiago de Compostela, Spain.

11

12 *corresponding author: lribas@icm.csic.es

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 **Abstract**

33 Elevated temperatures during early developmental stages play a pivotal role in the fate of the
34 final sexual phenotype of fish populations, particularly towards male-skewed sex ratios . This
35 is the case with European sea bass (*Dicentrarchus labrax*), one of the most important European
36 species in the aquaculture industry. To unveil informative markers of the past thermal events,
37 we investigated changes in the miRNome within the gonads of this species. Consequently, we
38 exposed European sea bass to elevated temperatures during early development and conducted
39 miRNA-sequencing analysis in the ovaries and testes one year post-heat treatment. The
40 examination of miRNA expression levels identified three and twelve miRNAs in ovaries and
41 testes, respectively, reflecting past thermal events. To assess the evolutionary conservation of
42 these identified miRNAs in gonads, we cross-referenced our data with miRNome public
43 information from ovaries and testes in nine additional fish species. This analysis uncovered 43
44 potential sex-biased markers present in at least five studied species along the evolutionary
45 timeline. For instance, miR-155, miR-429, and miR-140 were female-skewed while miR-184,
46 miR-499, and miR-135 were male-skewed. In addition, among these markers, eight conserved
47 sex-skewed miRNAs proved informative regarding past thermal events in both the ovaries (e.g.,
48 miR-192-5p and miR-143-3p) and testes (miR-129-5p, miR-2187a-3p, miR-724-5p, miR-143-
49 3p, miR-194a-5p and miR-223-3p). Notably, miR-223-3p and miR-194a-5p were conserved
50 female-skewed, but showed upregulation in males exposed to high temperature. These miRNAs
51 could serve as markers of heat-induced masculinization of genetic female-prone fish. The
52 current research broadens the inventory of sex-specific miRNAs along evolution in fish and,
53 elucidates thermosensitive miRNAs in the gonads. These findings hold promise as potential
54 tools for predicting historical environmental events associated with masculinization due to
55 high-temperature treatments in cultured species but also perhaps for natural populations
56 exposed to a climate change scenario.

57

58 **Keywords:** European sea bass, high temperature, evolution, climate change, fish

59

60

61

62 **Introduction**

63 The European sea bass (*Dicentrarchus labrax*) is important for aquaculture. In 2016,
64 aquaculture accounted for 96% of the total E. sea bass production in comparison with that
65 obtained from fisheries (FAO, 2022; Vandeputte et al., 2019). To ensure successful growth
66 and development in cultured fish, it is essential to maintain optimal rearing. For economic
67 production efficiency, E. sea bass females are the desired sexual phenotype as they are
68 favored due to their larger size, which can be up to 30% greater than their male counterparts
69 (Ref.). However, farmed E. sea bass is known to produce populations consisting of 70-100%
70 males, due to increased temperatures during early stages of development in the hatcheries
71 (Piferrer et al., 2005; Saillant et al., 2002). Various studies have attempted to identify the ideal
72 rearing temperature for E. sea bass larvae but it is known that temperatures exceeding 16
73 degrees Celsius (°C) during sex differentiation window (~ 50 to 140 days post fertilization,
74 dpf) lead to male-skewed populations (Navarro-Martín et al., 2009; Wang and Shen, 2018).

75

76 Unlike species with genotypic sex determination, some teleost fish, including the E. sea bass,
77 exhibit polygenic sex determination (PSD) (Vandeputte et al., 2007). In PSD, environmental
78 factors play a substantial role in shaping the final sexual phenotype of individuals. These
79 external influences impact gene expression through various epigenetic mechanisms (Granada
80 et al., 2018). The first description of epigenetics in sex regulation due to temperature in fish
81 was given in E. sea bass more than a decade ago. DNA methylation of the gonadal aromatase
82 cytochrome P450, family 19, subfamily A (*cyp19a1a*) promoter—a key gene to develop
83 ovaries—was altered in adults previously reared at a high temperature during early
84 development, favoring the masculinization of the final population (Navarro-Martín et al.,
85 2011). Since then, endeavoring research has been deployed to better understand the
86 connection between the epigenome and sexual phenotypes.

87

88 The function of miRNAs—small non-coding RNAs that play a vital role in post-
89 transcriptional gene regulation—is to act as an epigenetic mechanism and serve as a bridge
90 between the environment and the genome. In the last years, the importance of miRNAs in fish
91 has flourished and thus research related to miRNA functions in cultured fish has grown
92 exponentially. Many studies regarding temperature alterations and miRNA expression have

93 been described in various species and tissues in fish. For example, after short-term and acute
94 high or low temperature exposures (18 days), 29 miRNAs were differentially expressed (DE)
95 in the common carp (*Cyprinus carpio*) liver (Sun et al., 2019). In the Antarctic notothenioid
96 (*Trematomus bernacchii*), adapted to extreme climates of temperatures around -1°C, an acute
97 heat stress was able to alter 12 miRNAs in the gills, mainly pertaining to cellular stress
98 response (Vasadia et al., 2019). Long-term effects on the miRNome were shown in zebrafish
99 (*Danio rerio*) (van Gelderen et al., 2022) and in Atlantic cod (Bizuayehu et al., 2015).
100 Further, adult zebrafish exposed to high temperature for 21 days changed the miRNome with
101 a consecutive recovery in which miRNA expressions returned to their original state (Ikert and
102 Craig, 2020). In particular, in E. sea bass exposed at high temperature during different stages
103 of early development, miRNA expression was assessed showing an alteration of heat-
104 sensitive miRNAs in which the immune system and the reproduction system were involved
105 (Papadaki et al., 2022).

106

107 miRNAs emerged during early evolution, i.e., in metazoans, and some miRNAs have been
108 described as ancient miRNAs in bilaterians, such as miR-100, miR-125 and let-7
109 (Christodoulou et al., 2010). One of the particularities that makes miRNAs good markers for
110 conserved developmental processes is their high conservation of both sequence and function
111 along evolution (Niwa and Slack, 2007). Thus, ever since their initial discovery, miRNAs
112 have been used as tools in extensive applications in human health diagnostics, primarily for
113 tumor detection (Hamam et al., 2017). In the context of aquaculture, and since the first
114 miRNA discovery in zebrafish (Lim et al., 2003), numerous studies have been undertaken to
115 explore and characterize the miRNA repertoire in other teleost species. In fish, miRNA
116 expression patterns were proposed as indicators to improve productivity by, for example,
117 optimizing selection for breeding programs. This is the case of rainbow trout (*Onchorynchus*
118 *mykiss*), in which circulating miRNAs in the blood were recently identified as a non-invasive
119 approach to detail the metabolic and reproductive states (Cardona et al., 2021). In Nile tilapia
120 miR-1, miR-206, and miR-133a abundance was suggested as markers to link genetic
121 polymorphism data with miRNA targets (Huang et al., 2012). By using public databases, a set
122 of miRNAs (i.e., miR-9-3p, miR-135c, miR-9-5p, miR-30b, miR-122 and miR-92a-3p) was

123 suggested as a collection of potential biomarkers for cold tolerance in fish (Blödorn et al.,
124 2021).

125

126 Notwithstanding the existence of many studies regarding the miRNA roles in the reproduction
127 system, the functions of many miRNAs, particularly in the context of sex development,
128 remain still enigmatic in fish. The elucidation of conserved miRNAs within the gonads of
129 teleost fish species may provide valuable insights into the identification of markers relevant to
130 sex development. In light of the relative lack of research on the *E. sea bass* species in this
131 field, delving into the *E. sea bass* miRNome promises to offer valuable insights into the
132 intricate relationship between the environment, miRNA expression patterns and the sexual
133 phenotype. Thus, the aims of the present study were: 1) to enrich the knowledge of miRNA
134 present in the *E. sea bass* gonads; 2) to identify sexual biomarkers in fish; 3) to discover heat
135 recorders biomarkers of environmental past events like temperature. To achieve our goals,
136 miRNA-sequencing strategies of *E. sea bass* gonads subjected to high temperatures were
137 used. Furthermore, we undertook a comparative analysis of our *E. sea bass* miRNA data with
138 obtained profiles of public gonadal miRNAs databases of nine different species (Desvignes et
139 al., 2022). : zebrafish, three-spined stickleback (*Gasterosteus aculeatus*), striped catfish
140 (*Pangasianodon hypophthalmus*), Japanese medaka (*Oryzias latipes*), black bullhead
141 (*Ameiurus melas*), European perch (*Perca fluviatilis*) and eastern mudminnow (*Umbra
142 pygmaea*) and two Holostean species: bowfin (*Amia calva*) and spotted gar (*Lepisosteus
143 oculatus*) (Desvignes et al., 2018) were used in this study.

144

145 **Materials and methods**

146 *Experimental design*

147 The fish used in this study were siblings of those used in previous studies in which a
148 significant male-skewed sex ratio (70.45% males to 29.55% females, *p*-value < 0.001) was
149 observed after high temperature treatments during early development (Díaz and Piferrer,
150 2017). Briefly, *E. sea bass* larvae were divided into four groups: female control temperature
151 (FCT), female high temperature (FHT), male control temperature (MCT) and male high
152 temperature (MHT) in duplicated tanks. At seven days post fertilization (dpf), FCT and MCT
153 fish remained at 16.5 to 17°C whereas FHT and MHT fish were maintained at 21°C at a ratio

154 of 0.5°C per day. At 68 dpf, all tanks returned to natural temperatures until fish achieved the
155 sex differentiation. At 400 dpf, fish were sacrificed by an overdose of benzocaine and
156 biometric data were obtained. Gonads were dissected and quickly flash frozen in liquid
157 nitrogen and kept at -80°C. For the present experiment, a total of 14 fish were selected: N= 8
158 males (four fish per treatment), N= 6 females (three fish per treatment). In order to study the
159 heat effects uniquely, the selected fish to further study did not present biometric differences
160 between study groups within the same sex; FCT: $151 \text{ g} \pm 25 \text{ g}$, $21 \text{ cm} \pm 1.29 \text{ cm}$; FHT: 169 g
161 $\pm 28 \text{ g}$, $22 \text{ cm} \pm 0.95 \text{ cm}$; MCT $77 \text{ g} \pm 17.2 \text{ g}$, $17 \text{ cm} \pm 1.19 \text{ cm}$; MHT: $79 \text{ g} \pm 9 \text{ g}$, $17 \text{ cm} \pm 1$
162 cm, p -values > 0.05).

163

164 *miRNA extraction*

165 miRNAs of 14 gonads (eight testes and six ovaries) were obtained by miRNAs isolation
166 commercial kit (Qiagen® miRNA, 217004). Quality of the samples was assessed by
167 BioAnalyzer (2100 Bioanalyzer, Agilent Technologies) with ratio $260/280 = 2.07 \pm 0.04$ and
168 $260/230 = 1.73 \pm 0.24$ and by the RNA Integrative Number (RIN) measured with a
169 Bioanalyzer (Agilent Technologies, USA) with values > 9.2 in testis. In ovary, RIN numbers
170 were not considered due to naturally high levels of 5s rRNA and tRNA (Bir et al., 2023;
171 Mazabraud et al., 1975)

172

173 *miRNA sequencing*

174 In total, 14 libraries were constructed from *E. sea bass* gonad samples. Library preparation
175 was performed by NEBNext® Small RNA Library Prep Set for Illumina® (Multiplex
176 Compatible) kit following manufacture instructions, using sequencing Lane (1x50, v4, HiSeq)
177 single-end mode with a read length of 50 bp at the Genomics Unit of the Centre for Genomic
178 Regulation (CRG) service in Barcelona.

179

180 *Bioinformatics and statistical analysis*

181 Alignment was done using Prost! (Desvignes et al., 2019) using the *Dicentrarchus labrax*
182 genome assembly (version: dlabrax2021) and *Oryzias latipes* was used as reference genome
183 for annotating the miRNAs. miRNAs without annotation were searched in the Fishmirna.org
184 database and complemented (Desvignes et al., 2022). Raw reads were normalized using the
185 DESeq2 package in R and hierarchical clustering of the sample groups was determined by a

186 Principal Component Analysis (PCA) using the plotPCA library in the DESeq2 package
187 (Love et al., 2014). Differential expression was determined by the DESeq2 package in R
188 software. Significant differentially expressed miRNAs (DE-miRNAs) were identified using
189 an *adjusted p*-value (*adj p*-value) cutoff of <0.05. Visualization of differential expression was
190 accomplished by a heatmap using the pheatmap package (version 1.0.12) in R. Target genes
191 of DEM were determined using TargetScan (v. 6.0).

192

193 *Quantitative PCR validation*

194 Validation of the miRNA sequencing data was done by quantitative PCR (qPCR) of twelve
195 selected sequenced miRNAs in all the samples used by RNA-seq. cDNA was generated using
196 the miRNA 1st-Strand cDNA Synthesis Kit (Agilent Technologies) following manufacturer's
197 instructions. Firstly, the polyadenylation reaction was performed after cDNA synthesis. qPCR
198 was performed using the qPCR Bio SyGreen blue mix low ROX (PCR Biosystems). A mix of
199 5 μ L 2x qPCR Bio SyGreen Blue mix, 0.4 μ L forward primer, 0.4 μ L universal reverse
200 primer (Agilent Technologies), 100 ng cDNA and H₂O up to 10 μ L was made for each
201 sample. The sequences of the forward primers for the selected miRNAs were as follows: ola-
202 miR-146a-3p: ATCTATGGGCTCAGTTCTTTG, ola-miR-7132b-3p:
203 TGAGGCCTTAGAACAAAGTTCA, ola-miR-143-3p: TGAGATGAAGCACTGTAGCTC,
204 ola-miR-21-5p: TAGCTTATCAGACTGGTGTGG, ola-miR-26a-2/3-b-5p :
205 TTCAAGTAATCCAGGATAGGCT, ola-miR-199a-5p:
206 CCCAGTGTTCAGACTACCTGTT, ola-miR-199a-3p: ACAGTAGTCTGCACATTGGTT,
207 ola-223-3p: TGTCAGTTGTCAAATACCCCA, ola-192-5p:
208 ATGACCTATGAATTGACAGCC, ola-miR-194a-5p: TGTAACAGCAACTCCATGTGGA,
209 ola-miR-726-5p: GGAATTCCGCTAGTTCTGAAC, ola-miR-726-3p:
210 TTCACTACTAGCAGAACTCGG. The small nuclear RNA dre-U6:
211 ACTAAAATTGGAACGATACAGAGA was used as the reference gene. A total of twelve
212 comparisons for validations were performed as follows: ola-miR-146a-3p: ovary high
213 temperature (FHT) *vs.* ovary control temperature (FCT), ola-miR-7132b-3p: FHT *vs.* FCT,
214 ola-miR-143-3p: FHT *vs.* FCT, ola-miR-21-5p: testis high temperature (MHT) *vs.* testis
215 control temperature (MCT), ola-miR-26a-2/3-b-5p: MHT *vs.* MCT, ola-miR-199a-5p: MHT
216 *vs.* MCT, ola-miR-199a-3p: MHT *vs.* MCT, ola-223-3p: MHT *vs.* MCT, ola-192-5p: MHT *vs.*

217 MCT, ola-miR-194a-5p:MTHT *vs.* MCT, ola-miR-726-5p: FCT *vs.* MCT, ola-miR-726-3p:
218 FCT *vs.* MCT.

219

220 *Conservation analysis*

221 Expression data from miRNAs in ovary and testis were downloaded from the nine fish species
222 in which gonadal miRNAs data were available from Fishmirna.org (Desvignes et al., 2022):
223 zebrafish (Desvignes et al., 2014), three-spined stickleback (*Gasterosteus aculeatus*)
224 (Desvignes et al., 2019), bowfin (*Amia calva*) (Pasquier et al., 2016), striped catfish
225 (*Pangasianodon hypophthalmus*) (NCBI SRA: PRJNA256963), Japanese medaka (*Oryzias*
226 *latipes*) (Gay et al., 2018), spotted gar (*Lepisosteus oculatus*) (Braasch et al., 2016), black
227 bullhead (*Ameiurus melas*) (NCBI SRA: PRJNA730692), European perch (*Perca fluviatilis*)
228 (Pasquier et al., 2016) and eastern mudminnow (*Umbra pygmaea*) (Pasquier et al., 2016).

229

230 Seed region reads from all the gathered datasets were filtered using a threshold of ≥ 1 count
231 per million (CPM). Common miRNA seed regions between species were visualized in an
232 upset plot using the UpSetR package (version 1.4.0). The top conserved miRNAs were
233 visualized in a dotplot using ggplot2 package (version 3.4.2). Sex-specific overexpression was
234 determined by calculating testis seed region normalized read count divided by ovary seed
235 region normalized read count internally per species. When a seed region was not expressed in
236 ovary or testis, a value of 1 was assigned to avoid division by 0. Following that, the log2 ratio
237 was calculated for all values. To identify highly expressed miRNAs in the ten studied fish
238 species, the relative abundance was shown by calculating the percentage of miRNA
239 abundance in the whole miRNome of the tissue, either ovary or testis. The conserved
240 expression along evolution was determined using a threshold of $\log_2 \text{ratio} \geq |1|$ in at least 5
241 species, among which *D. labrax* was mandatory. To show evolutionary relation between the
242 teleost species used in the present study, a phylogenetic tree was generated using PhyloT (v2)
243 website tool.

244

245 **Results**

246 *miRNA sequencing and annotation*

247 On average, 10.3 and 6.7 million sequences per library were obtained in testes and ovaries,
248 respectively. The total number of sequences exceeded 146 million; ~93 and ~54 million for
249 testes and ovaries, respectively. A total of 299 mature miRNAs were identified after the
250 alignment to the *Dicentrarchus labrax* genome (version dlabrax2021) and after performing
251 the annotation by using the *Oryzias latipes* genome (version ASM223467v1) (Dataset 1). Ten
252 mature miRNAs were not aligned to the genome but were identified using Fishmirna.org
253 (Desvignes et al., 2022) and manually annotated, thus, 100% of the obtained sequences were
254 annotated. Raw sequencing data generated during the current study was submitted in NCBI
255 SRA repository with the accession number: PRJNA1008584. The raw data will be publicly
256 available upon publication and the metadata can be accessed by reviewers through:
257 <https://dataview.ncbi.nlm.nih.gov/object/PRJNA1008584?reviewer=ct6r6cbgav3c2ru7evoql1kqg7>

259

260 *Sexual dimorphisms in the miRNAs expression*

261 When comparing testis *vs.* ovary, 69 miRNAs were found to be DE in *E. sea bass* (*adj p-*
262 *value*<0.05), of which 33 were upregulated in ovary and 36 were upregulated in testis (Figure
263 1, Dataset 2). The five most upregulated miRNAs in ovary were miR-734-3p, miR-130c-1-5p,
264 miR-187-3p, miR-155-5p and miR-9-4-3p while in testis were miR-726-3p, miR-724-5p,
265 miR-135b-5p, miR-184a-3p, and miR-726-5p.

266

267 *Heat sensitive miRNAs*

268 FHT *vs.* FCT and MHT *vs.* MCT miRNA expression clustering was shown in a PCA (Suppl
269 Figure 1). The two components together explained 57% and 69% of the variance in ovary and
270 testis, respectively.

271

272 Almost one year after the end of the heat exposure period development, three miRNAs
273 remained DE (*adj p-value*<0.05) in ovary, one upregulated, miR-192-5p, and two
274 downregulated, miR-143-3p and miR-146a-3p (Dataset 2). In testis, twelve DE miRNAs
275 (DEM) were identified (*adj p-value*<0.05, Figure 2, Dataset 2), of which four (e.g., miR-194a
276 and miR-223-3p) and eight (e.g., miR-92a-a-5p, miR-726-3p, miR-724-5p, miR-143-3p, miR-
277 129-5p) miRNAs were upregulated and downregulated, respectively. Reproduction-related

278 genes were identified as target genes of male DEM, such as *tdrd6* (miR-1388-5p, miR-194a-
279 5p, miR-2187a-3p, miR-9-4-3p and miR-92a-1-5p), *sox3* (miR-129-5p, miR-223-3p, miR-
280 7133-3p), *pgrmc1* (miR-365-2b-3p, miR-7133-1-3p, miR-724-5p) and *gper1* (miR-129-5p,
281 miR-1388-5p, miR-2187a-3p, miR-7133-1-3p, miR-724-5p, miR-9-4-3p, miR-92a-1-5p).

282

283 *miRNA conservation*

284 In order to determine conserved expression along evolution in many fish species, miRNA
285 gonadal data from nine fish species were used together with that of *E. sea bass* of the present
286 study. By using an upset plot, data showed three intersecting sets (Figure 3): 1) the number of
287 common seed region sequences between the ten species; 2) those seeds that were conserved in
288 less than ten species and 3) the miRNA seeds per each species. In total, 210 seed regions
289 belonging to 105 miRNAs in ovaries (Figure 3A) and in testes 184 seed region sequences
290 belonging to 98 miRNAs were expressed in all ten species (Figure 3B). The evolutionary
291 distances between species is shown in a phylogenetic tree in Suppl figure 2 in showing two
292 clades of the studied species Holostei and Teleostei, emerged ~250 and ~310 million of year,
293 respectively.

294

295 *Abundance of gonadal miRNAs expression along evolution*

296 To identify highly expressed miRNAs expression patterns throughout evolution in fish, the
297 relative abundance of the top 10 most expressed miRNAs was calculated (Figure 4). In ovary,
298 five miRNAs were highly conserved: miR-143-3p, miR-26a-5p, let-7a-5p miR-100-5p and
299 miR-30a-5p in all ten species (Figure 4A) whereas in testis, two miRNAs, namely miR-143-
300 3p and miR-26a-5p, were identified in all ten species (Figure 4B). The ten highest expressed
301 miRNAs per species in ovary and testis can be found in Dataset 3.

302

303 *miRNA gonadal markers*

304 To identify sex-skewed miRNA expression in different fish species and miRNAs markers as
305 heat recorders, the following analyses were performed. First, miRNAs were identified with a
306 $\log_2 \text{ratio} > |1|$ of testis vs. ovary in at least five or more species resulting a total of 83
307 miRNAs. From those 49 identified as female-biased miRNA markers and 34 as male-biased
308 markers because they were more expressed either in the ovaries or testes in at least five

309 species along evolution (Suppl Table 1). Secondly, miRNAs were further filtered based on the
310 heat-treated data obtained in *E. sea bass* in the different comparisons based on sex and heat
311 treatment (Table 1): (1) MHT *vs.* MCT, (2) FHT *vs.* FCT, and (3) MCT *vs.* FCT. This resulted
312 in a total of 19 miRNAs, eleven of which were female-like miRNA markers, for example,
313 miR-10965-3p, miR-155-5p, miR-223-3p and miR-425-5p and eight as male-like miRNA
314 markers, for example, miR-2187a-3p and miR-143-3p. Most of the species showed a similar
315 sex-skewed patterns of these miRNA markers, except *G. aculeatus* and *A. melas* species,
316 which their expression patterns differed, in particular, for those identified as female-like
317 miRNA markers.

318

319 Noteworthy, from the comparison (1), a total of six miRNAs altered the expression after one
320 year of the heat treatment in males. Four of them were downregulated in testes subjected to
321 HT in *E. sea bass* but also identified as male-like miRNAs, which were miR-129-5p, miR-
322 2187a-3p, miR-724-5p and miR-143-3p (Figure 5). The other were two upregulated miRNAs,
323 i.e., miR-223-3p and miR-194a-5p, which were identified as being upregulated in ovaries
324 along evolution, therefore as female-like markers. Further, for the comparison (2), two
325 miRNAs were altered in the heat-treated ovaries, miR-192 which was upregulated and
326 identified as female-like marker and miR-143 which was downregulated and identified as
327 male-like marker. The miR-143-3p was identified as DEM in all the three comparisons
328 studied (1), (2) and (3), indicating that this miRNA was highly conserved in testes along
329 evolution and it was heat sensitive in *E. sea bass*, thus showing in our analysis, a
330 downregulation in both heat-treated testes and ovaries (Figure 5).

331

332 *RNA-seq validation*

333 To validate the RNA-seq data, qPCR analysis was performed on the ovaries and testes
334 samples. When comparing the log2FC as obtained by qPCR and RNA-seq for twelve
335 miRNAs, we obtained an $R^2=0.9426$ and $p\text{-value}=1.6\text{e-}07$ (Suppl Figure 2) thus validating
336 our data.

337

338 **Discussion**

339 High temperatures are recognized to induce masculinization of fish populations. This
340 phenomenon has significant implications for many farmed species, including the E. sea bass,
341 in which females grow to a larger size than males. In addition, increasing temperatures in our
342 seas and oceans due to climate change has drastic implications in fish physiology and
343 evolution (Alfonso et al 2020). Here, we study the effect on the gonadal miRNome of this
344 heat-induced masculinization and further explore the gonadal miRNome of other species to
345 decipher miRNA sex markers.

346

347 Long-term effects of heat treatment on the miRNA expression profile in the gonads has been
348 previously described in fish. In particular, in Atlantic cod, miR-27c, miR-30c, and miR-200a
349 were found to be DE in juveniles after embryonic or larval heat-treatment, however, no
350 distinction between males or females was addressed (Bizuayehu et al., 2015). Other studies in
351 zebrafish describing the heat stress by temperature in the gonadal miRNome revealed that
352 miR-22b and miR-301a were altered to be fully recovered three months after the exposure
353 (Ikert and Craig, 2020). In zebrafish females, 23 miRNAs were DE in ovaries after larval
354 heat-treatment, among which, for example, dre-miR-726-3p was downregulated while dre-
355 miR-724-5p was upregulated (van Gelderen et al., 2022). Interestingly, these two miRNAs
356 were both found to be downregulated in E. sea bass testis one year after heat exposure in the
357 present study, indicating that a conservation in the heat response among species may exist.
358 Similarly, miR-143-3p and miR-92a-3p, which were downregulated in high temperature
359 treated fish in the present study, were altered in mice testes exposed for only 25 minutes to
360 elevated temperatures, highlighting them as potential markers in heat-induced
361 spermatogenesis disorder (Gan et al., 2023). Higher levels of circulating miR-143 and miR-
362 223 were detected in plasma levels together with cortisol after acute stress response in E. sea
363 bass (Houdelet et al., 2023), similarly of what observed in this study by heat stress. Overall
364 data shows that in fish, miRNAs play a regulatory role in the thermal plasticity of acclimation
365 and adaptation to drastic temperature changes in the environment.

366

367 In E. sea bass, we observed sexual dimorphism in miRNA expression within fish gonads, with
368 33 upregulated and 36 downregulated miRNAs in the ovary compared to the testis. To
369 enhance reliability, we cross-referenced our data with existing datasets from the nine species,

370 identifying common gonadal miRNAs along evolution. In testes and ovaries, we have
371 identified 184 and 210 conserved seed region sequences in the ten studied fish species,
372 respectively. Although we have detected the expression of these miRNAs in the gonads in
373 many fish species, these miRNA seed sequences were not sex-specific or tissue-specific, as
374 many miRNAs are highly conserved throughout evolution and body plan development. For
375 example, miR-100 and let-7, were considered as an “ancestral miRNAs”, due to its
376 conservation already described within Metazoan species (Christodoulou et al., 2010; Grimson
377 et al., 2008; Hertel et al., 2012). Nevertheless, a conservation analysis revealed 74 conserved
378 miRNAs divided into three groups: 23 miRNA families were present in both protostomes and
379 deuterostomes, 46 families conserved exclusively in vertebrates, and five families (mir-430,
380 mir-722, mir-724, mir-734, and mir-738) exclusively for fish species (Li et al., 2014).
381 Notably, in our data, miR-143-3p, miR-26a-5p, let-7a-5p, miR-100-5p and miR-30a-5p in the
382 ovaries, and miR-143-3p and miR-26a-5p in the testes were the most expressed miRNAs in
383 all ten studied fish species. Similarly, in olive flounder (*Paralichthys olivaceus*), miR-143,
384 miR-26a and let-7a were also identified as the most expressed miRNAs in both ovaries and
385 testes (Gu et al., 2014). In mouse and human, miR-30a-5p was crucial for spermatogonial
386 stem cell differentiation (Khanehzad et al., 2021) and was used as a marker for men suffering
387 from non-obstructive azoospermia (Arefnia et al., 2022). In our data, however, we observed a
388 conserved overexpression of miR-30a in adult fish ovaries compared to adult testes in the ten
389 studied species. Nevertheless, in Nile tilapia, miR-30a presented higher expression in males at
390 5 days after hatching (dah) and it was able to downregulate *cyp19a1a* in gonads (Tao et al.,
391 2016). We identified both in ovaries and testes the miR-26a, which in Chinese tongue sole
392 (*Cynoglossus semilaevis*), was identified as transgenerational male marker in sperm (Zhao et
393 al., 2021). Overall, data show the complexity of the functions of miRNA along evolution and
394 their multiple role in regulating many biological processes even those involved in the
395 reproduction system.

396

397 In fact, the exploration of miRNA phylogenetic conservation and diversity indicates that
398 miRNAs play crucial roles in animal evolution by influencing phenotypic variation during
399 development (Niwa and Slack, 2007b). This might explain the different sexual patterns
400 observed in the gonads between the ten fish species of two different clades (i.e., Teleostei and

401 Holostei) separated from one species to others for millions of years of evolution. Further,
402 representing distinct reproduction systems, from XX/XY chromosomal system such as
403 medaka, stickleback, perch and, panga (Matsuda et al., 1998; Peichel et al., 2020; Rougeot et
404 al., 2002; Wen et al., 2022), to polygenic system such as E. sea bass and zebrafish (Liew et
405 al., 2012; Vandeputte et al., 2007). Thus, to detect sexual dimorphic miRNA markers in the
406 fish gonads, we considered a sex-biased miRNA when the expression was found in at least
407 five studied species. In total, we identified eleven and eight female-like and male-like
408 markers, respectively. For example, miR-429a-3p and miR-140-3p were overexpressed in
409 ovary in at least five studied species. miR-429b-3p was reported to have lower expression in
410 yellow catfish in YY super males compared to XY males (Jing et al., 2014) and in chicken,
411 miR-140-3p was shown to promote germ cell proliferation while targeting anti-Müllerian
412 hormone *amh* (Pfennig et al., 2015; Zhang et al., 2023). On the other hand, a male-like
413 miRNA such as miR-184a-3p was shown to be a highly expressed miRNA in testis and
414 involved in spermatogenesis in mice (Wu et al., 2011). Scarce data exists about miR-499,
415 which has been related in cardiac disorders, lung cancer and regulating circadian clock
416 (Ahmed et al., 2023; Chen et al., 2013; Pisano et al., 2015) in mammals. In fish, miR-499
417 plays a role in muscle tissue (Duran et al., 2015; Nachtigall et al., 2015, 2014) and its
418 evolution targeting the intronic region of the myosin heavy chain (MYH14) gene was studied
419 throughout evolution in teleost (Bhuiyan et al., 2013). In a recent publication in E. sea bass,
420 the authors identified higher levels of circulating miR-499 in plasma differentiating males
421 when compared to differentiating females (Houdelet et al., 2023). Another example of a
422 male-like miRNAs in fish gonads is the miR-135, which is a biomedical marker in humans
423 due to its involvement in many cancer and disorders like Alzheimer disease (Kadkhoda et al.,
424 2022; Zheng et al., 2021). Similar to our data, in tilapia, miR-135 presented sexual
425 dimorphism towards males as it was upregulated in testes together with miR-33a, miR-132
426 and miR-212 (Herkenhoff et al., 2018; Xiao et al., 2014).

427
428 To identify miRNA markers that convey information about both sexual dimorphism and serve
429 as recorders of environmental cues, we considered the sex-bias miRNAs together with the
430 data from the heated E. sea bass. These analyses aided in pinpointing miRNAs that could be
431 accountable for the masculinizing effects induced by high temperatures detecting a total of

432 seven informative miRNAs. miR-194a-5p and miR-223-3p were upregulated in HT males but
433 overexpressed in ovaries in at least five fish species, thus indicating that they might be
434 involved in the masculinization of the gonads and thus, the differentiated testes might belong
435 to genetic females. In Chinese sole tongue (*Cynoglossus semilaevis*), miR-223-3p (referred to
436 as miR-223-y) was upregulated during oocyte maturation and targeted the insulin-like growth
437 factor 1 receptor (*igf1r*), a gene involved in testicular development (Cannarella et al., 2018).
438 The expression of miR-223-3p was lower in YY super males of yellow catfish (*Pelteobagrus*
439 *fulvidraco*) than XY males (Jing et al., 2014). On the other hand, male-like miRNAs that
440 showed heat-sensitivity were miR-129-5p, miR-2187a-3p, miR-724-5p and miR-143-3p
441 which were downregulated in HT males. In literature, miR-129 was associated with sexual
442 maturity in rainbow trout (*Oncorhynchus mykiss*) testis (Farlora et al., 2015) while miR-724-
443 5p (referred to as miR-724-x), showed upregulation during oocyte maturation although it
444 suppressed *cyp19a1a* (Guiguen et al., 2010; Zhang et al., 2022). In mice (Gan et al., 2023),
445 miR-143-3p was shown to be highly upregulated after heat-induced stress reducing
446 spermatogenesis and thus indicating the thermal sensitivity of this miRNAs in the gonads. In
447 all, the identification of these miRNAs may serve as potential epimarkers for predicting past
448 environmental events based on the sexual fish phenotype.

449

450 **Conclusions**

451 To gain a deeper understanding of the intricacies of masculinization induced by heat
452 treatments during early developmental stages in *E. sea bass*, we detected a total of four and
453 twelve miRNAs in the ovaries and testes, respectively. To explore the sexual dimorphic
454 miRNA patterns in the gonads across different fish species, we integrated our findings with
455 available miRNAs from public databases. This analysis revealed six conserved miRNAs
456 throughout evolution (i.e., miR-194a-5p, miR-223-3p, miR-129-5p, miR-2187a-3p, miR-724-
457 5p, and miR-143-3p) as markers for heat-induced masculinization in fish gonads.

458

459 **Ethics**

460 Experimental procedures agreed with the European regulations of animal welfare (ETS N8
461 123,01/01/91) and were approved by the Ethical Committee of Consejo Superior de
462 Investigaciones Científicas (CSIC) that evaluates projects and procedures in which animals

463 are used for experimentation and other scientific purposes –RD 53/2013 (Spanish Ministry of
464 Science and Innovation). All procedures performed were in accordance with the ethical
465 standards of the institution and followed the European Directive 2010/63 UE. The study was
466 carried out in compliance with the ARRIVE guidelines.

467

468 **Acknowledgements**

469 This study was supported by the Spanish Ministry of Science and Innovation grant
470 2PID2020-113781RB-I00 “MicroMet” and by the Consejo Superior de Investigaciones
471 Científicas (CSIC) grant 02030E004 “Interomics” to LR, by grant PID2019-108888RB-I00 to
472 FP, and with funding from the Spanish government through the ‘Severo Ochoa Centre of
473 Excellence’ accreditation (CEX2019-000928-S). We thank Noeli Díaz for sampling the fish,
474 the lab technician Sílvia Joly for her essential assistance in our team and Gemma Fusté for her
475 assistance in fish facilities.

476 **Table legends**

477 **Table 1. Sex-skewed miRNA expression in different fish species and the effects of heat**
478 **treatment.** miRNAs were identified with \log_2 ratio $>|1|$ of seed region expression in testis *vs.*
479 ovary in at least five or more fish species, among which *E. sea bass*. Furthermore, each
480 miRNA was significantly differential expressed (DEM, *adjusted-p* value <0.05) in our data.
481 The *E. sea bass* DEM comparisons were: (1) Male high temperature (MHT) *vs.* Male control
482 temperature (MCT); (2) Female high temperature (FHT) *vs.* Female control temperature
483 (FCT); (3) MCT *vs.* FCT. Negative values mean the upregulation in ovary whereas positive
484 values mean upregulation in testes for each species. The miRNA name corresponds to the seed
485 region annotation aligned with European sea bass (*Dicentrarchus labrax*). Data in the table
486 was organized based on the miRNA conservation in the ovaries or testes along fish evolution.
487 Abbreviations: dla: *Dicentrarchus labrax*; ola: *Oryzias latipes*; aca: *Amia calva*; gac:
488 *Gasterosteus aculeatus*; dre: *Danio rerio*; loc: *Lepisosteus oculatus*; phy: *Pangasianodon*
489 *hypophthalmus*; pfl: *Perca fluviatilis*; ame: *Ameiurus melas*; upy: *Umbra pygmaea*

490

Seed	miRNA	dla	ola	aca	gac	dre	loc	phy	pfl	ame	upy	Sea bass DEM
AAAGAGG	miR-10965-3p	-5.12	-0.12	-5.42	0.00	-3.05	0.00	0.00	-7.21	-4.32	-4.36	3
TAATGCT	miR-155-5p	-4.15	-3.80	-1.31	0.47	-0.36	-0.66	-1.64	-4.26	-0.18	-0.45	3
ATACTGT	miR-429a-3p	-3.33	-2.68	-3.22	2.44	0.00	0.00	-0.33	-6.04	1.77	-4.26	3
ATGACAC	miR-425-5p	-2.88	-2.01	-0.86	-0.21	0.61	-1.12	-1.31	-2.81	-0.03	0.08	3
GTAACAG	miR-194a-5p	-2.27	-1.39	-0.80	3.99	-1.42	-0.55	-3.16	2.23	4.23	-2.23	2
TGACCTA	miR-192-5p	-2.06	-1.47	-1.31	4.91	-0.62	-0.27	-2.97	2.25	3.67	-2.46	2
AACGGAA	miR-191-5p	-2.03	-2.08	-0.06	1.12	0.79	-1.18	-1.30	-1.88	-0.16	0.02	3
TGACATC	miR-489-3p	-1.90	-2.21	0.00	0.29	-1.74	-1.14	2.27	-1.87	5.20	0.00	3
ACACACAG	miR-140-3p	-1.65	-0.97	-1.01	1.56	-0.53	-2.28	0.01	-1.64	1.15	-2.37	3
ATACTGTC	miR-200b-3p	-1.35	-3.20	-3.16	3.54	-2.75	-3.51	0.82	-0.80	2.04	-1.64	3
GTCAGTT	miR-223-3p	-1.18	-4.17	-1.13	-0.19	-1.83	0.48	-0.13	-1.52	0.57	0.34	2
GAGATGA	miR-143-3p	1.25	1.26	-0.16	-0.02	0.63	1.52	-0.28	1.91	2.39	0.83	1+2+3
GGACGGA	miR-184a-3p	2.01	-1.67	1.20	1.08	4.77	1.36	-3.12	-1.45	-1.35	0.00	3
TAAGACT	miR-499a-5p	2.23	-3.28	-1.00	1.29	3.94	1.94	-1.95	2.82	2.27	3.71	3
TTTTTGC	miR-129-5p	2.38	-0.03	3.44	-3.80	-0.30	1.46	-0.75	1.68	4.14	6.31	1+3
TTACAGG	miR-2187a-3p	2.51	2.43	1.54	0.00	1.65	4.07	-0.41	0.00	3.30	0.00	1+3
GGAAGAC	miR-7-5p	2.83	4.37	-1.26	-3.05	0.80	1.43	-2.11	1.83	2.66	0.83	3
TAAAGGG	miR-724-5p	3.84	-0.07	-1.97	5.48	-3.62	2.02	1.17	0.89	-3.06	4.90	1+3
TATAGGG	miR-135b-3p	4.62	2.24	0.28	3.77	0.00	-1.20	-0.07	0.00	4.20	5.93	3

491

492

493 **Figure legends**

494 **Figure 1.** Heatmap of 69 differentially expressed miRNAs (DEM) in European sea bass testes
495 in comparison to ovaries (MCT vs. FCT). The color scale ranges from red to blue, where red
496 shows relative upregulation in testis and blue shows relative upregulation in ovary. Both
497 DEM and samples (N=14) were grouped by hierarchical clustering.

498

499 **Figure 2.** Heatmap of 12 differentially expressed miRNAs (DEM) in European sea bass
500 differentiated testes one year after heat exposure. The color scale ranges from red to blue,
501 where red shows relative upregulation in male high temperature (MHT) males and blue is
502 relative upregulation in male control temperature (MCT).

503

504 **Figure 3.** Upset plot of conserved seed regions in ovary (A) and testis (B) in ten teleost
505 species analyzed: *Danio rerio*, *Dicentrarchus labrax*, *Gasterosteus aculeatus*, *Amia calva*,
506 *Pangasianodon hypophthalmus*, *Oryzias latipes*, *Lepisosteus oculatus*, *Ameiurus melas*, *Perca*
507 *fluviatilis* and *Umbra pygmaea*. In ovary (green), 210 seed region sequences were conserved
508 in all ten species. In testis (purple), 184 seed region sequences were conserved in all ten
509 species.

510

511 **Figure 4.** Dot plot of the top 10 most abundant miRNAs in ovary (A) or testis (B) of ten
512 different teleost species. miRNAs expressed in all ten species are shown by a continuous line.
513 The other miRNAs that were in the top 10 most abundant miRNAs in the ovary or testis were
514 plotted by dots with different colors. The top 10 miRNAs per species in ovary and testis can
515 be found in Dataset 3.

516

517 **Figure 5. Gonadal miRNAs markers identified in this study.** In purple boxes, the female-
518 like miRNAs were represented and in green, the male-like miRNAs with $\log_2 \text{ratio} > |1|$ of
519 seed region expression in testis vs. ovary in at least five or more fish species. Heat-recorder
520 miRNAs were significantly differential expressed (DEM, *adjusted-p* value < 0.05) in the
521 European sea bass after one year of heat treatment during early development.

522

523

524 **Supplementary Information**

525 **Supplementary Table S1.** Ratio of seed region expression in male control temperature
526 (MCT) vs. female control temperature (FCT) in ten teleost species. Purple: overexpression
527 with $\log_2\text{ratio} > 1$ in ovary, green: overexpression with $\log_2\text{ratio} > 1$ in testis.

528

529 **Supplementary Figures**

530 **Supplementary Figure 1. Principal Component Analysis (PCA) of miRNA expression of**
531 **gonadal samples (A, ovaries and B, testes) of European sea bass after heat treatments**
532 **during early development.** Abbreviations: FCT, female control temperature; FHT, female
533 high temperature; MCT, male control temperature; MHT, male high temperature.

534

535 **Supplementary Figure 2.** Evolutionary relation between the ten teleost fish species used in
536 the present study generated by PhyloT (v2) website tool. <https://phylot.biobyt.de/>

537

538 **Supplementary Figure 3.** Validation of the miRNA sequencing data by quantitative PCR
539 (qPCR) of twelve selected sequenced miRNAs on the ovaries (N=6) and testes (N=8) samples
540 used in the present study. Table shows the results of the two techniques used by comparing
541 the log2FC as obtained by qPCR and RNA-seq for 12 miRNAs.

542

543 **Datasets**

544 **Dataset 1.** Prost! output of European sea bass miRNA annotation and reads obtained after
545 miRNA-sequencing of ovaries and testes treated with high temperature during early stages of
546 development.

547

548 **Dataset 2.** Differentially expressed miRNAs in different comparisons of *E. sea bass* gonads
549 treated with high temperature during early gonadal development. Comparisons: male control
550 temperature (MCT) vs. female control temperature (FCT), female high temperature (FHT) vs.
551 FCT and, MHT vs. MCT.

552 **Dataset 3.** Top 10 miRNAs in ovary and testis for each fish species.

553

554

555 **References**

556 Ahmed, S.A., Zhang, B., Abdel-Rahman, A.A., 2023. Estrogen-mediated mitigation of
557 cardiac oxidative stress in ovariectomized rats is associated with upregulated cardiac
558 circadian clock Per2 and heart-specific miRNAs. *Life Sci.* 331, 122038.
559 <https://doi.org/10.1016/j.lfs.2023.122038>

560 Arefnia, M., Motovali-Bashi, M., Javadirad, S.M., Norioun, H., 2022. Overexpression of hsa-
561 miR-30a-5p and non-obstructive azoospermia: A case-control study. *Int. J. Reprod.*
562 *Biomed.* 20, 399. <https://doi.org/10.18502/IJRM.V20I5.11054>

563 Bhuiyan, S.S., Kinoshita, S., Wongwarangkana, C., Asaduzzaman, M., Asakawa, S., Watabe,
564 S., 2013. Evolution of the myosin heavy chain gene MYH14 and its intronic microRNA
565 miR-499: muscle-specific miR-499 expression persists in the absence of the ancestral
566 host gene. *BMC Evol. Biol.* 13, 142. <https://doi.org/10.1186/1471-2148-13-142>

567 Bir, J., Rojo-Bartolomé, I., Lekube, X., Diaz de Cerio, O., Ortiz-Zarragoitia, M., Cancio, I.,
568 2023. High production of transfer RNAs identifies the presence of developing oocytes in
569 ovaries and intersex testes of teleost fish. *Mar. Environ. Res.* 186.
570 <https://doi.org/10.1016/j.marenvres.2023.105907>

571 Bizuayehu, T.T., Johansen, S.D., Puvanendran, V., Toften, H., Babiak, I., 2015. Temperature
572 during early development has long-term effects on microRNA expression in Atlantic
573 cod. *BMC Genomics* 16, 305. <https://doi.org/10.1186/s12864-015-1503-7>

574 Blödorn, E.B., Domingues, W.B., Nunes, L.S., Komninou, E.R., Pinhal, D., Campos, V.F.,
575 2021. MicroRNA roles and their potential use as selection tool to cold tolerance of
576 domesticated teleostean species: A systematic review. *Aquaculture* 540, 736747.
577 <https://doi.org/10.1016/J.AQUACULTURE.2021.736747>

578 Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A.,
579 Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin,
580 K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcislo, D.,
581 Caestro, C., Sydes, J., Beaudry, F.E.G., Sun, Y., Hertel, J., Beam, M.J., Fasold, M.,
582 Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T.,
583 Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S.,
584 Fontenot, Q., Ferrara, A., Searle, S.M.J., Aken, B., Yandell, M., Schneider, I., Yoder,
585 J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W.H., Guiguen,
586 Y., Bobe, J., Shubin, N.H., Di Palma, F., Alfoldi, J., Lindblad-Toh, K., Postlethwait,
587 J.H., 2016. The spotted gar genome illuminates vertebrate evolution and facilitates
588 human-teleost comparisons. *Nat. Genet.* 2016 484 48, 427–437.
589 <https://doi.org/10.1038/ng.3526>

590 Cannarella, R., Condorelli, R.A., La Vignera, S., Calogero, A.E., 2018. Effects of the insulin-
591 like growth factor system on testicular differentiation and function: a review of the
592 literature. *Andrology* 6, 3–9. <https://doi.org/10.1111/ANDR.12444>

593 Cardona, E., Guyomar, C., Desvignes, T., Montfort, J., Guendouz, S., Postlethwait, J.H.,
594 Skiba-Cassy, S., Bobe, J., 2021. Circulating miRNA repertoire as a biomarker of
595 metabolic and reproductive states in rainbow trout. *BMC Biol.* 19, 235.

596 <https://doi.org/10.1186/s12915-021-01163-5>

597 Chen, Z., Xu, L., Ye, X., Shen, S., Li, Z., Niu, X., Lu, S., 2013. Polymorphisms of microRNA
598 Sequences or Binding Sites and Lung Cancer: A Meta-Analysis and Systematic Review.
599 PLoS One 8, e61008. <https://doi.org/10.1371/journal.pone.0061008>

600 Christodoulou, F., Raible, F., Tomer, R., Simakov, O., Trachana, K., Klaus, S., Snyman, H.,
601 Hannon, G.J., Bork, P., Arendt, D., 2010. Ancient animal microRNAs and the evolution
602 of tissue identity. Nat. 2010 463:7284 463, 1084–1088.
603 <https://doi.org/10.1038/nature08744>

604 Desvignes, T., Bardou, P., Montfort, J., Sydes, J., Guyomar, C., George, S., Postlethwait,
605 J.H., Bobe, J., 2022. FishmiRNA: An Evolutionarily Supported MicroRNA Annotation
606 and Expression Database for Ray-Finned Fishes. Mol. Biol. Evol. 39.
607 <https://doi.org/10.1093/MOLBEV/MSAC004>

608 Desvignes, T., Batzel, P., Sydes, J., Eames, B.F., Postlethwait, J.H., 2019. miRNA analysis
609 with Prost! reveals evolutionary conservation of organ-enriched expression and post-
610 transcriptional modifications in three-spined stickleback and zebrafish. Sci. Rep. 9, 3913.
611 <https://doi.org/10.1038/s41598-019-40361-8>

612 Desvignes, T., Beam, M.J., Batzel, P., Sydes, J., Postlethwait, J.H., 2014. Expanding the
613 annotation of zebrafish microRNAs based on small RNA sequencing. Gene 546, 386–
614 389. <https://doi.org/10.1016/J.GENE.2014.05.036>

615 Desvignes, T., Carey, A., Postlethwait, J.H., 2018. Evolution of caudal fin ray development
616 and caudal fin hypural diastema complex in spotted gar, teleosts, and other neopterygian
617 fishes. Dev. Dyn. 247, 832–853. <https://doi.org/10.1002/dvdy.24630>

618 Díaz, N., Piferrer, F., 2017. Estrogen exposure overrides the masculinizing effect of elevated
619 temperature by a downregulation of the key genes implicated in sexual differentiation in
620 a fish with mixed genetic and environmental sex determination. BMC Genomics 18, 973.
621 <https://doi.org/10.1186/s12864-017-4345-7>

622 Duran, B.O. da S., Fernandez, G.J., Mareco, E.A., Moraes, L.N., Salomão, R.A.S., Gutierrez
623 de Paula, T., Santos, V.B., Carvalho, R.F., Dal-Pai-Silvca, M., 2015. Differential
624 microRNA Expression in Fast- and Slow-Twitch Skeletal Muscle of *Piaractus*
625 *mesopotamicus* during Growth. PLoS One 10, e0141967.
626 <https://doi.org/10.1371/journal.pone.0141967>

627 FAO, 2022. . FAO. <https://doi.org/10.4060/cc0461en>

628 Farlora, R., Valenzuela-Miranda, D., Alarcón-Matus, P., Gallardo-Escárate, C., 2015.
629 Identification of microRNAs associated with sexual maturity in rainbow trout brain and
630 testis through small RNA deep sequencing. Mol. Reprod. Dev. 82, 651–662.
631 <https://doi.org/10.1002/MRD.22499>

632 Gan, M., Jing, Y., Xie, Z., Ma, J., Chen, L., Zhang, S., Zhao, Y., Niu, L., Wang, Y., Li, X.,
633 Zhu, L., Shen, L., 2023. Potential Function of Testicular MicroRNAs in Heat-Stress-
634 Induced Spermatogenesis Disorders. Int. J. Mol. Sci. 24, 8809.
635 <https://doi.org/10.3390/IJMS24108809/S1>

636 Gay, S., Bugeon, J., Bouchareb, A., Henry, L., Delahaye, C., Legeai, F., Montfort, J., Le Cam,
637 A., Siegel, A., Bobe, J., Thermes, V., 2018. MiR-202 controls female fecundity by
638 regulating medaka oogenesis. *PLOS Genet.* 14, e1007593.
639 <https://doi.org/10.1371/journal.pgen.1007593>

640 Granada, L., Lemos, M.F.L., Cabral, H.N., Bossier, P., Novais, S.C., 2018. Epigenetics in
641 aquaculture – the last frontier. *Rev. Aquac.* 10, 994–1013.
642 <https://doi.org/10.1111/raq.12219>

643 Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B.J., Chiang, H.R., King, N., Degnan,
644 B.M., Rokhsar, D.S., Bartel, D.P., 2008. Early origins and evolution of microRNAs and
645 Piwi-interacting RNAs in animals. *Nature* 455, 1193–1197.
646 <https://doi.org/10.1038/nature07415>

647 Gu, Y., Zhang, L., Chen, X., 2014. Differential expression analysis of *Paralichthys olivaceus*
648 microRNAs in adult ovary and testis by deep sequencing. *Gen. Comp. Endocrinol.* 204,
649 181–184. <https://doi.org/10.1016/j.ygcen.2014.05.019>

650 Guiguen, Y., Fostier, A., Piferrer, F., Chang, C.F., 2010. Ovarian aromatase and estrogens: A
651 pivotal role for gonadal sex differentiation and sex change in fish. *Gen. Comp.*
652 *Endocrinol.* 165, 352–366. <https://doi.org/10.1016/J.YGCEN.2009.03.002>

653 Hamam, R., Hamam, D., Alsaleh, K.A., Kassem, M., Zaher, W., Alfayez, M., Aldahmash, A.,
654 Alajez, N.M., 2017. Circulating microRNAs in breast cancer: novel diagnostic and
655 prognostic biomarkers. *Cell Death Dis.* 8, e3045–e3045.
656 <https://doi.org/10.1038/cddis.2017.440>

657 Herkenhoff, M.E., Oliveira, A.C., Nachtigall, P.G., Costa, J.M., Campos, V.F., Hilsdorf,
658 A.W.S., Pinhal, D., 2018. Fishing into the MicroRNA transcriptome. *Front. Genet.*
659 <https://doi.org/10.3389/fgene.2018.00088>

660 Hertel, J., Bartschat, S., Wintsche, A., Otto, C., of the Bioinformatics Computer Lab, T.S.,
661 Stadler, P.F., 2012. Evolution of the let-7 microRNA Family. *RNA Biol.* 9, 231–241.
662 <https://doi.org/10.4161/rna.18974>

663 Houdelet, C., Blondeau-Bidet, E., Estevez-Villar, M., Mialhe, X., Hermet, S., Ruelle, F.,
664 Dutto, G., Bajek, A., Bobe, J., Geffroy, B., 2023. Circulating MicroRNAs Indicative of
665 Sex and Stress in the European Seabass (*Dicentrarchus labrax*): Toward the
666 Identification of New Biomarkers. *Mar. Biotechnol.* <https://doi.org/10.1007/s10126-023-10237-0>

668 Huang, C.W., Li, Y.H., Hu, S.Y., Chi, J.R., Lin, G.H., Lin, C.C., Gong, H.Y., Chen, J.Y.,
669 Chen, R.H., Chang, S.J., Liu, F.G., Wu, J.L., 2012. Differential expression patterns of
670 growth-related microRNAs in the skeletal muscle of Nile tilapia (*Oreochromis niloticus*).
671 *J. Anim. Sci.* 90, 4266–4279. <https://doi.org/10.2527/JAS.2012-5142>

672 Ikert, H., Craig, P.M., 2020. Chronic exposure to venlafaxine and increased water temperature
673 reversibly alters microRNA in zebrafish gonads (*Danio rerio*). *Comp. Biochem. Physiol.*
674 - Part D Genomics Proteomics

675 Jing, J., Wu, J., Liu, W., Xiong, S., Ma, W., Zhang, J., Wang, W., Gui, J.F., Mei, J., 2014.

676 Sex-biased miRNAs in gonad and their potential roles for testis development in yellow
677 catfish. PLoS One 9. <https://doi.org/10.1371/journal.pone.0107946>

678 Kadkhoda, S., Eslami, S., Mahmud Hussen, B., Ghafouri-Fard, S., 2022. A review on the
679 importance of miRNA-135 in human diseases. Front. Genet. 13.
680 <https://doi.org/10.3389/fgene.2022.973585>

681 Khanehzad, M., Nourashrafeddin, S.M., Abolhassani, F., Kazemzadeh, S., Madadi, S., Shiri,
682 E., Khanlari, P., Khosravizadeh, Z., Hedayatpour, A., 2021. MicroRNA-30a-5p promotes
683 differentiation in neonatal mouse spermatogonial stem cells (SSCs). Reprod. Biol.
684 Endocrinol. 19, 1–14. <https://doi.org/10.1186/S12958-021-00758-5/FIGURES/8>

685 Li, G., Zhao, Y., Wen, L., Liu, Z., Yan, F., Gao, C., 2014. Identification and characterization
686 of microRNAs in the spleen of common carp immune organ. J. Cell. Biochem. 115,
687 1768–1778. <https://doi.org/10.1002/JCB.24843>

688 Liew, W.C., Bartfai, R., Lim, Z., Sreenivasan, R., Siegfried, K.R., Orban, L., 2012. Polygenic
689 Sex Determination System in Zebrafish. PLoS One 7, e34397.
690 <https://doi.org/10.1371/JOURNAL.PONE.0034397>

691 Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B., Bartel, D.P., 2003. Vertebrate microRNA
692 genes. Science (80-.). <https://doi.org/10.1126/science.1080372>

693 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion
694 for RNA-seq data with DESeq2. Genome Biol. 15, 1–21.
695 <https://doi.org/10.1186/S13059-014-0550-8/FIGURES/9>

696 Matsuda, M., Matsuda, C., Hamaguchi, S., Sakaizumi, M., 1998. Identification of the sex
697 chromosomes of the medaka, *Oryzias latipes*, by fluorescence in situ hybridization.
698 Cytogenet. Cell Genet. 82, 257–262. <https://doi.org/10.1159/000015113>

699 Mazabraud, A., Wegnez, M., Denis, H., 1975. Biochemical research on oogenesis. RNA
700 accumulation in the oocytes of teleosts. Dev. Biol. 44, 326–332.
701 [https://doi.org/10.1016/0012-1606\(75\)90403-0](https://doi.org/10.1016/0012-1606(75)90403-0)

702 Nachtingall, P.G., Dias, M.C., Carvalho, R.F., Martins, C., Pinhal, D., 2015. MicroRNA-499
703 Expression Distinctively Correlates to Target Genes sox6 and rod1 Profiles to Resolve
704 the Skeletal Muscle Phenotype in Nile Tilapia. PLoS One 10, e0119804.
705 <https://doi.org/10.1371/journal.pone.0119804>

706 Nachtingall, P.G., Dias, M.C., Pinhal, D., 2014. Evolution and genomic organization of muscle
707 microRNAs in fish genomes. BMC Evol. Biol. 14, 196. <https://doi.org/10.1186/s12862-014-0196-x>

709 Navarro-Martín, L., Blázquez, M., Viñas, J., Joly, S., Piferrer, F., 2009. Balancing the effects
710 of rearing at low temperature during early development on sex ratios, growth and
711 maturation in the European sea bass (*Dicentrarchus labrax*).: Limitations and
712 opportunities for the production of highly female-biased stocks. Aquaculture 296, 347–
713 358. <https://doi.org/10.1016/J.AQUACULTURE.2009.07.022>

714 Navarro-Martín, L., Viñas, J., Ribas, L., Díaz, N., Gutiérrez, A., Di Croce, L., Piferrer, F.,
715 2011. DNA Methylation of the Gonadal Aromatase (cyp19a) Promoter Is Involved in

716 Temperature-Dependent Sex Ratio Shifts in the European Sea Bass. PLoS Genet. 7,
717 e1002447. <https://doi.org/10.1371/journal.pgen.1002447>

718 Niwa, R., Slack, F.J., 2007. The evolution of animal microRNA function. Curr. Opin. Genet.
719 Dev. 17, 145–150. <https://doi.org/10.1016/J.GDE.2007.02.004>

720 Papadaki, M., Kaitetzidou, E., Papadakis, I.E., Sfakianakis, D.G., Papandroulakis, N.,
721 Mylonas, C.C., Sarropoulou, E., 2022. Temperature-Biased miRNA Expression Patterns
722 during European Sea Bass (*Dicentrarchus labrax*) Development. Int. J. Mol. Sci. 2022,
723 Vol. 23, Page 11164 23, 11164. <https://doi.org/10.3390/IJMS231911164>

724 Pasquier, J., Cabau, C., Nguyen, T., Jouanno, E., Severac, D., Braasch, I., Journot, L.,
725 Pontarotti, P., Klopp, C., Postlethwait, J.H., Guiguen, Y., Bobe, J., 2016. Gene evolution
726 and gene expression after whole genome duplication in fish: the PhyloFish database.
727 BMC Genomics 17. <https://doi.org/10.1186/S12864-016-2709-Z>

728 Peichel, C.L., McCann, S.R., Ross, J.A., Naftaly, A.F.S., Urton, J.R., Cech, J.N., Grimwood,
729 J., Schmutz, J., Myers, R.M., Kingsley, D.M., White, M.A., 2020. Assembly of the
730 threespine stickleback y chromosome reveals convergent signatures of sex chromosome
731 evolution. Genome Biol. 21, 1–31. <https://doi.org/10.1186/S13059-020-02097-X>/FIGURES/6

733 Pfennig, F., Standke, A., Gutzeit, H.O., 2015. The role of Amh signaling in teleost fish –
734 Multiple functions not restricted to the gonads. Gen. Comp. Endocrinol. 223, 87–107.
735 <https://doi.org/10.1016/J.YGCEN.2015.09.025>

736 Piferrer, F., Blázquez, M., Navarro, L., González, A., 2005. Genetic, endocrine, and
737 environmental components of sex determination and differentiation in the European sea
738 bass (*Dicentrarchus labrax* L.). Gen. Comp. Endocrinol. 142, 102–110.
739 <https://doi.org/10.1016/J.YGCEN.2005.02.011>

740 Pisano, F., Altomare, C., Cervio, E., Barile, L., Rocchetti, M., Ciuffreda, M.C., Malpasso, G.,
741 Copes, F., Mura, M., Danieli, P., Viarengo, G., Zaza, A., Gnechi, M., 2015.
742 Combination of miRNA499 and miRNA133 Exerts a Synergic Effect on Cardiac
743 Differentiation. Stem Cells 33, 1187–1199. <https://doi.org/10.1002/stem.1928>

744 Rougeot, C., Jacobs, B., Kestemont, P., Melard, C., 2002. Sex control and sex determinism
745 study in Eurasian perch, *Perca fluviatilis*, by use of hormonally sex-reversed male
746 breeders. Aquaculture 211, 81–89. [https://doi.org/10.1016/S0044-8486\(01\)00893-6](https://doi.org/10.1016/S0044-8486(01)00893-6)

747 Saillant, E., Fostier, A., Haffray, P., Menu, B., Thimonier, J., Chatain, B., 2002. Temperature
748 effects and genotype-temperature interactions on sex determination in the European sea
749 bass (*Dicentrarchus labrax* L.). J. Exp. Zool. 292, 494–505.
750 <https://doi.org/10.1002/jez.10071>

751 Sun, J.L., Zhao, L.L., Wu, H., Lian, W.Q., Cui, C., Du, Z.J., Luo, W., Li, M.Z., Yang, S.,
752 2019. Analysis of miRNA-seq in the liver of common carp (*Cyprinus carpio* L.) in
753 response to different environmental temperatures. Funct. Integr. Genomics 19, 265–280.
754 <https://doi.org/10.1007/S10142-018-0643-7>/FIGURES/4

755 Tao, W., Sun, L., Shi, H., Cheng, Y., Jiang, D., Fu, B., Conte, M.A., Gammerdinger, W.J.,

756 Kocher, T.D., Wang, D., 2016. Integrated analysis of miRNA and mRNA expression
 757 profiles in tilapia gonads at an early stage of sex differentiation. *BMC Genomics* 17, 328.
 758 <https://doi.org/10.1186/s12864-016-2636-z>

759 van Gelderen, T.A., Montfort, J., Álvarez-Dios, J.A., Thermes, V., Piferrer, F., Bobe, J.,
 760 Ribas, L., 2022. Deciphering sex-specific miRNAs as heat-recorders in zebrafish. *Sci. Reports* 2022 121 12, 1–14. <https://doi.org/10.1038/s41598-022-21864-3>

762 Vandeputte, M., Dupont-Nivet, M., Chavanne, H., Chatain, B., 2007. A Polygenic Hypothesis
 763 for Sex Determination in the European Sea Bass *Dicentrarchus labrax*. *Genetics* 176,
 764 1049. <https://doi.org/10.1534/GENETICS.107.072140>

765 Vandeputte, M., Gagnaire, P.A., Allal, F., 2019. The European sea bass: a key marine fish
 766 model in the wild and in aquaculture. *Anim. Genet.* 50, 195.
 767 <https://doi.org/10.1111/AGE.12779>

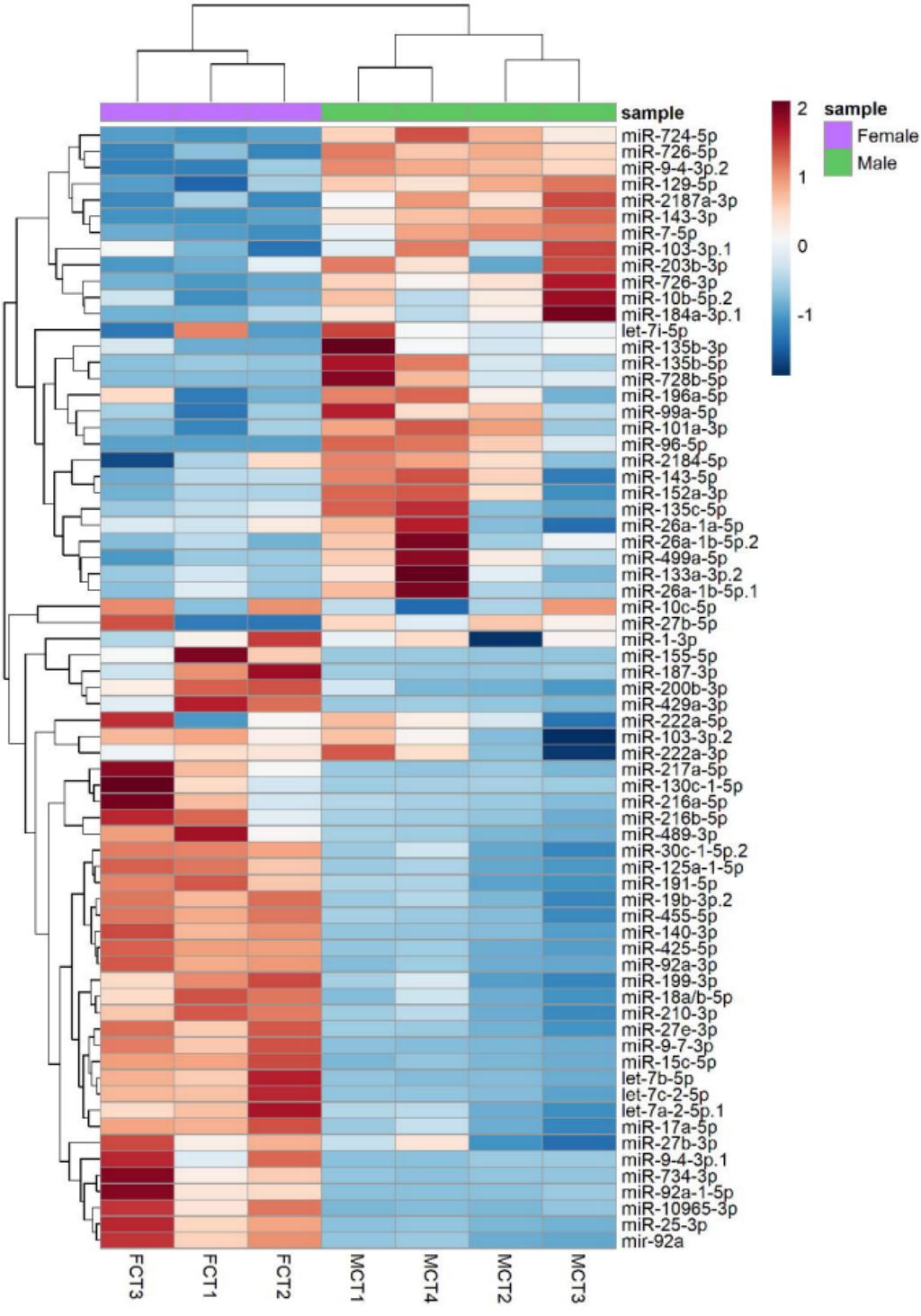
768 Vasadia, D.J., Zippay, M.L., Place, S.P., 2019. Characterization of thermally sensitive
 769 miRNAs reveals a central role of the FoxO signaling pathway in regulating the cellular
 770 stress response of an extreme stenotherm, *Trematomus bernacchii*. *Mar. Genomics* 48,
 771 100698. <https://doi.org/10.1016/j.margen.2019.100698>

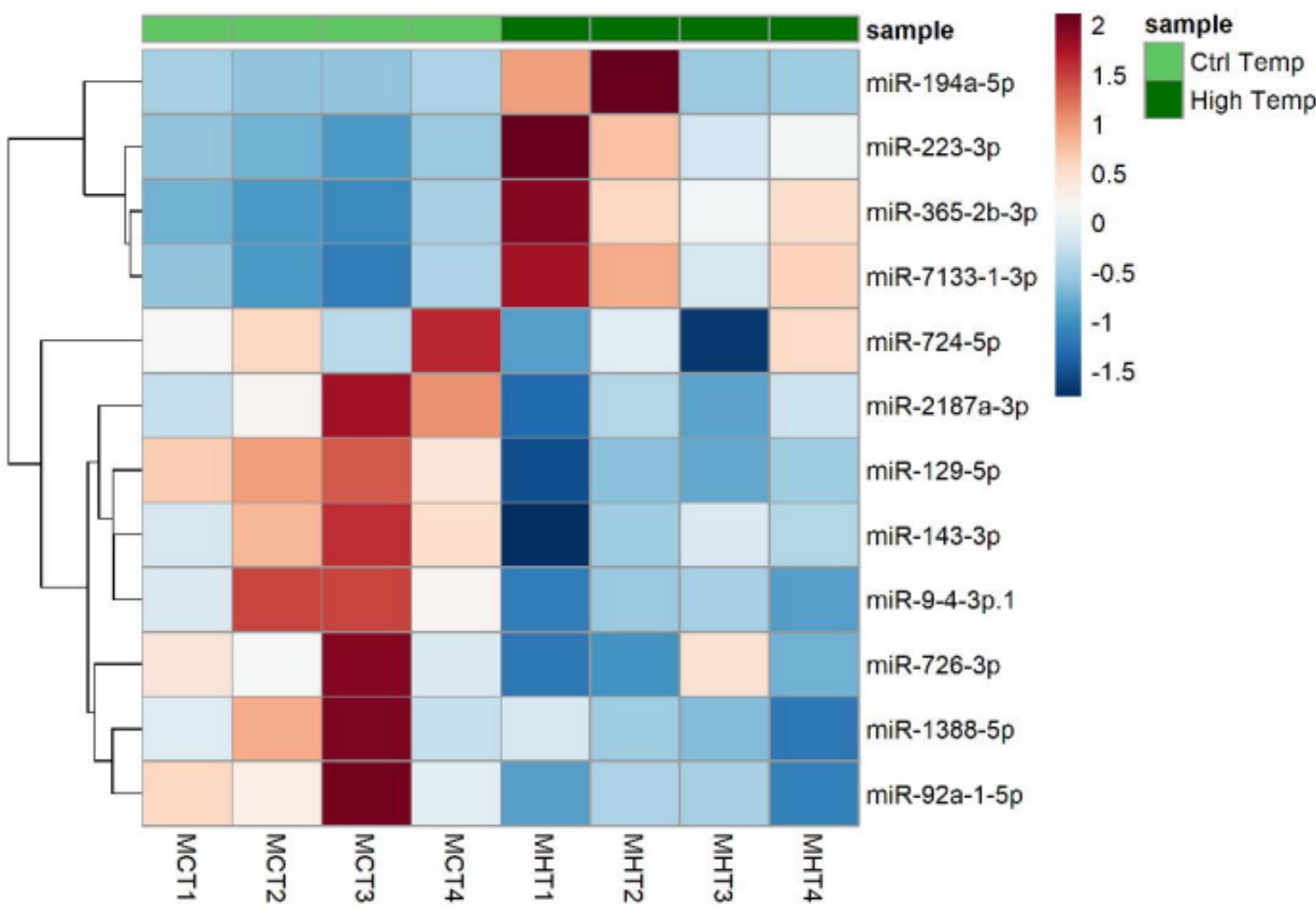
772 Wang, H.-P., Shen, Z.-G., 2018. Sex Control in Aquaculture, in: Sex Control in Aquaculture.
 773 John Wiley & Sons, Ltd, Chichester, UK, pp. 1–34.
 774 <https://doi.org/10.1002/9781119127291.ch1>

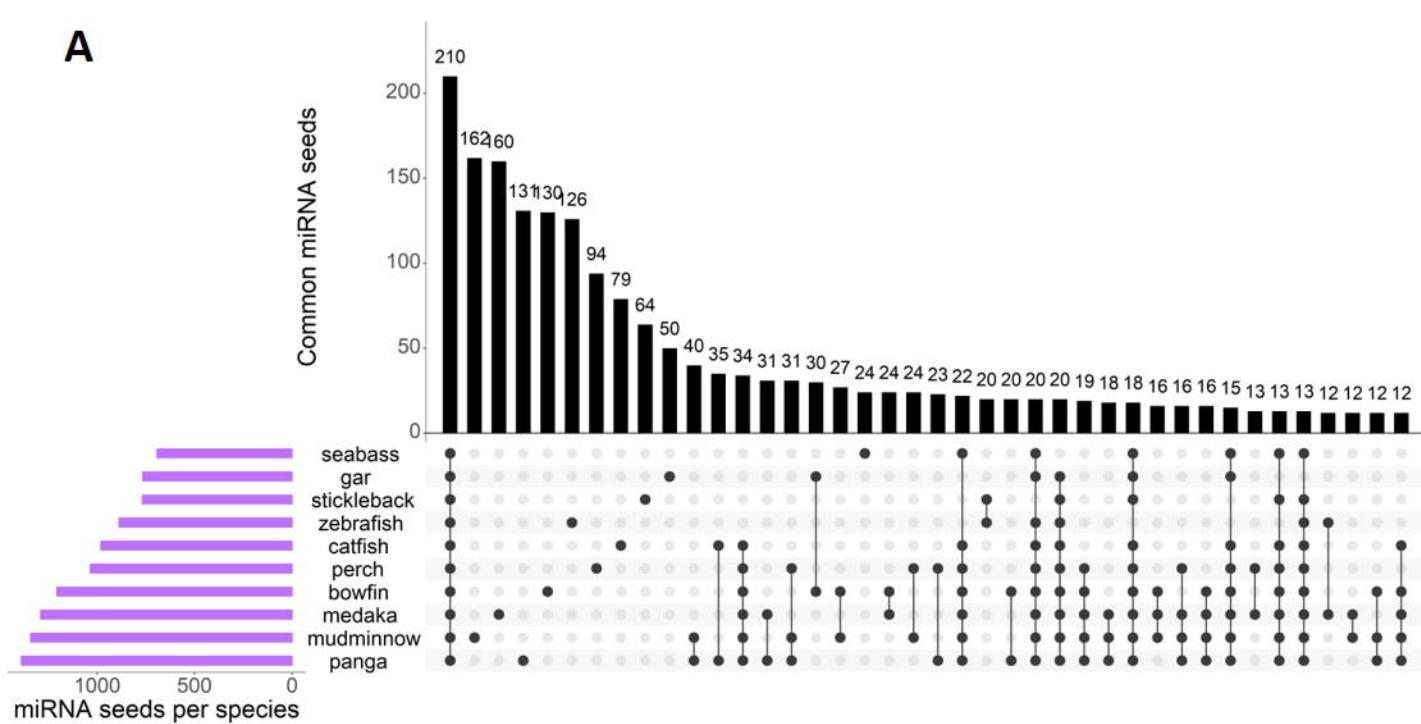
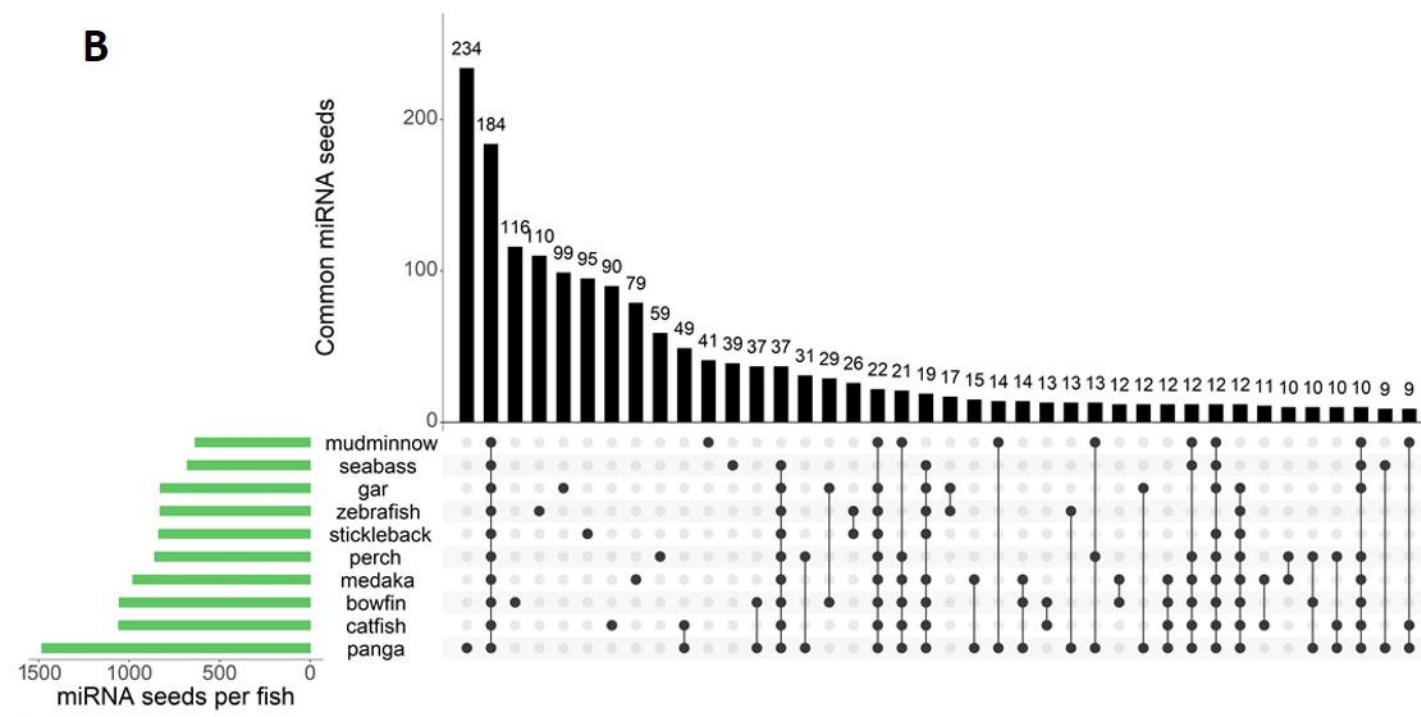
775 Wen, M., Pan, Q., Jouanno, E., Montfort, J., Zahm, M., Cabau, C., Klopp, C., Iampietro, C.,
 776 Roques, C., Bouchez, O., Castinel, A., Donnadieu, C., Parrinello, H., Poncet, C.,
 777 Belmonte, E., Gautier, V., Avarre, J.C., Dugue, R., Gustiano, R., Trần Thị Thúy, H.,
 778 Campet, M., Sriphairoj, K., Ribolli, J., de Almeida, F.L., Desvignes, T., Postlethwait,
 779 J.H., Bucao, C.F., Robinson-Rechavi, M., Bobe, J., Herpin, A., Guiguen, Y., 2022. An
 780 ancient truncated duplication of the anti-Müllerian hormone receptor type 2 gene is a
 781 potential conserved master sex determinant in the Pangasiidae catfish family. *Mol. Ecol.*
 782 *Resour.* 22, 2411–2428. <https://doi.org/10.1111/1755-0998.13620>

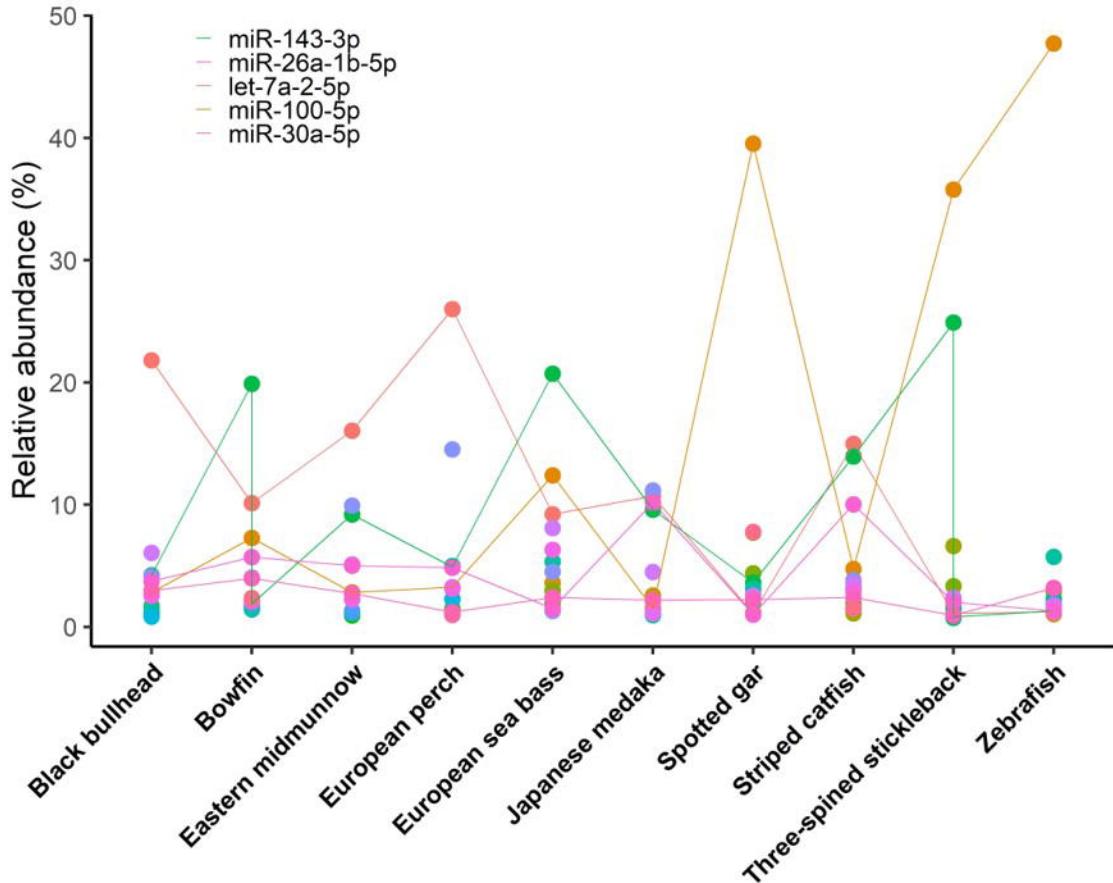
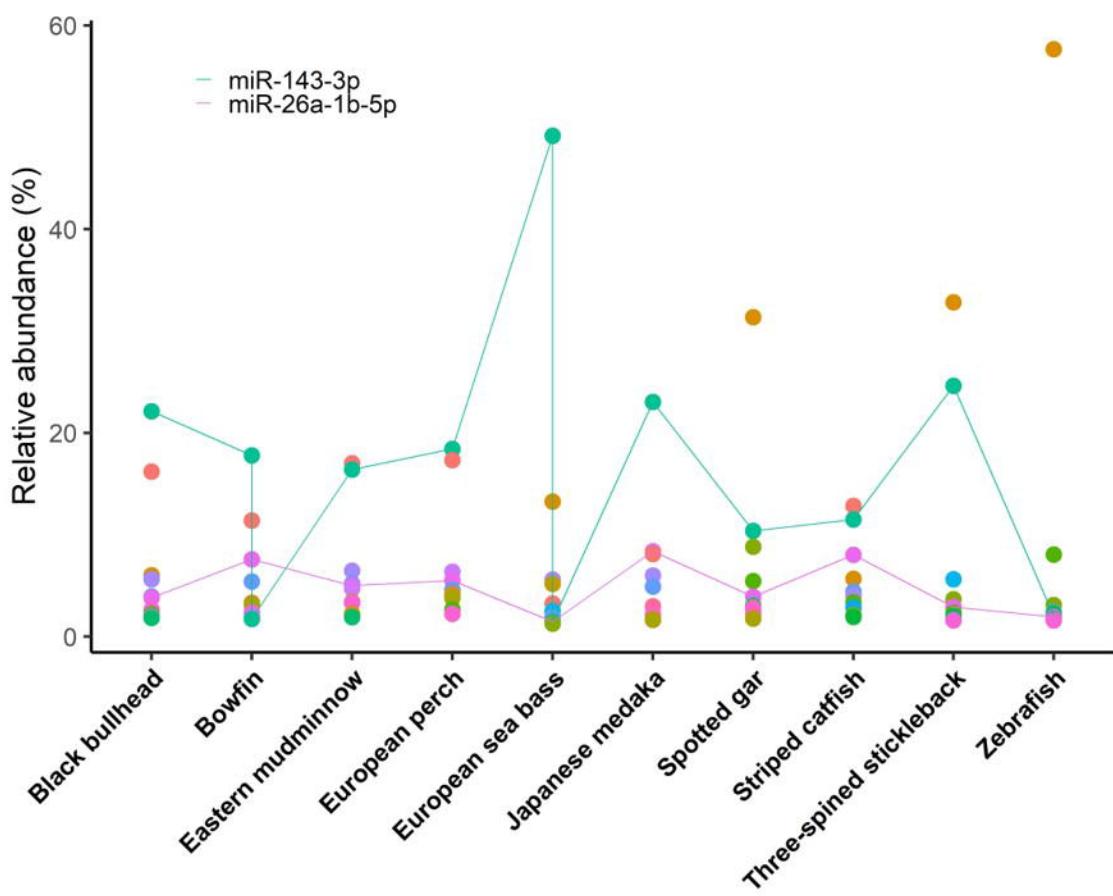
783 Wu, J., Bao, J., Wang, L., Hu, Y., Xu, C., 2011. MicroRNA-184 downregulates nuclear
 784 receptor corepressor 2 in mouse spermatogenesis. *BMC Dev. Biol.* 11, 1–10.
 785 <https://doi.org/10.1186/1471-213X-11-64/FIGURES/5>

786 Xiao, J., Zhong, H., Zhou, Y., Yu, F., Gao, Y., Luo, Y., Tang, Z., Guo, Z., Guo, E., Gan, X.,
 787 Zhang, M., Zhang, Y., 2014. Identification and Characterization of MicroRNAs in Ovary
 788 and Testis of Nile Tilapia (*Oreochromis niloticus*) by Using Solexa Sequencing
 789 Technology. *PLoS One* 9, e86821. <https://doi.org/10.1371/JOURNAL.PONE.0086821>


790 Zhang, B.B., Li, X.N., Li, M.X., Sun, Y.Y., Shi, Y.X., Ma, T.H., 2023. miR-140-3p promotes
 791 follicle granulosa cell proliferation and steroid hormone synthesis via targeting AMH in
 792 chickens. *Theriogenology* 202, 84–92.
 793 <https://doi.org/10.1016/J.THERIOGENOLOGY.2023.03.010>


794 Zhang, D., Shi, B., Shao, P., Shao, C., Wang, C., Li, J., Liu, X., Ma, X., Zhao, X., 2022. The
 795 identification of miRNAs that regulate ovarian maturation in *Cynoglossus semilaevis*.
 796 *Aquaculture* 555, 738250. <https://doi.org/10.1016/J.AQUACULTURE.2022.738250>



797 Zhao, N., Jia, L., He, X., Zhang, B., 2021. Sex bias miRNAs in *Cynoglossus semilaevis* could
798 play a role in transgenerational inheritance. *Comp. Biochem. Physiol. Part D Genomics*
799 *Proteomics* 39, 100853. <https://doi.org/10.1016/j.cbd.2021.100853>

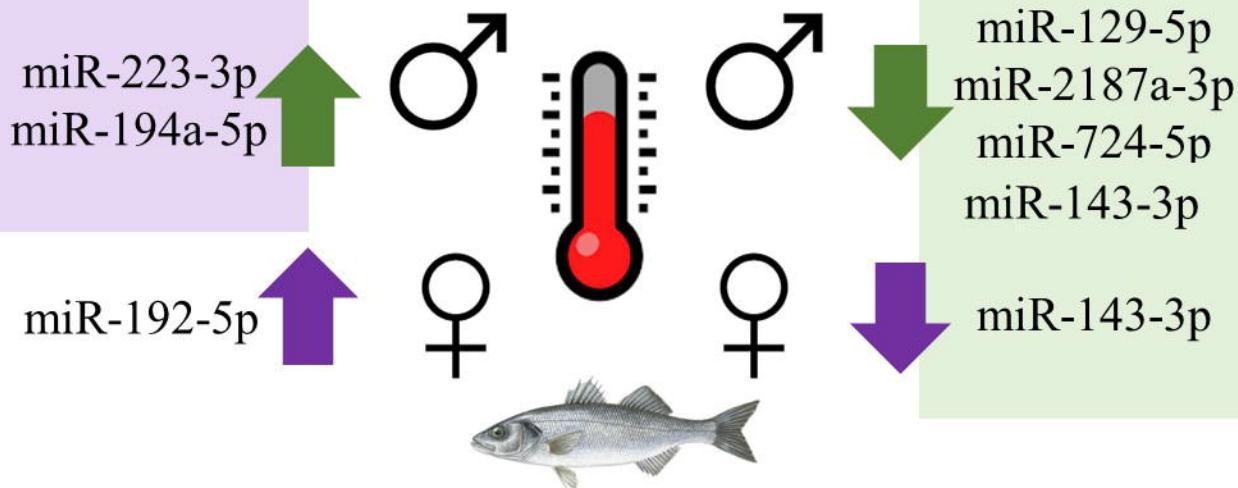


800 Zheng, K., Hu, F., Zhou, Y., Zhang, J., Zheng, J., Lai, C., Xiong, W., Cui, K., Hu, Y.-Z., Han,
801 Z.-T., Zhang, H.-H., Chen, J.-G., Man, H.-Y., Liu, D., Lu, Y., Zhu, L.-Q., 2021. miR-
802 135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling
803 pathway in a mouse model of Alzheimer's disease. *Nat. Commun.* 12, 1903.
804 <https://doi.org/10.1038/s41467-021-22196-y>

805



A**B**

A**B**


Female-like

miR-10965-3p
miR-155-5p
miR-429a-3p
miR-425-5p
miR-191-5p
miR-489-3p
miR-140-3p
miR-200b-3p
miR-192-5p

Male-like

miR-184a-3p
miR-499a-5p
miR-7-5p
miR-135b-3p

