

1 **Title**

2 Superior target genes and pathways for RNAi mediated pest control revealed by genome wide
3 analysis in the red flour beetle *Tribolium castaneum*

5 **Authors**

6 Benjamin Buer^{1*}; Jürgen Dönitz^{2/3*}; Martin Milner^{2*}; Sonja Mehlhorn^{1/2}; Claudia Hinnens²; Janna
7 Siemanowski-Hrach²; Julia K. Ulrich¹; Daniela Großmann^{2/3}; Doga Cedden²; Ralf Nauen¹; Sven
8 Geibel^{1#}; Gregor Bucher^{2#}

9
10 ¹Crop Science Division, Bayer AG, R&D, Pest Control, Monheim, Germany

11 ² University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of
12 Evolutionary Developmental Genetics, Göttingen, Germany

13 ³ University Medical Center Göttingen, Department of Medical Bioinformatics, Göttingen,
14 Germany

15
16 * contributed equally

17 # corresponding authors

18
19 Author for correspondence:

20 Gregor Bucher: gbucher1@uni-goettingen.de

21

22 **Abstract**

23 An increasing human population, the emergence of resistances against pesticides and their
24 potential impact on the environment call for the development of new eco-friendly pest control
25 strategies. RNA interference (RNAi) based pesticides have emerged as new option with the first
26 products entering the market. Essentially, double stranded RNAs targeting essential genes of pests
27 are either expressed in the plants or sprayed on their surface. Upon feeding, pests mount an RNAi
28 response and die. However, it has remained unclear, whether RNAi based insecticides should target
29 the same pathways as classic pesticides or whether the different mode of action would favor other
30 processes. Moreover, there is no consensus on the best genes to be targeted. We performed a
31 genome-wide screen in the red flour beetle to identify 905 RNAi target genes. Based on a validation
32 screen and clustering, we identified the 192 most effective target genes in that species. The transfer
33 to oral application in other beetle pests revealed a list of 34 superior target genes, which are an
34 excellent starting point for application in other pests. GO and KEGG analyses of our genome wide
35 dataset revealed that genes with high efficacy belonged mainly to basic cellular processes such as
36 gene expression and protein homeostasis – processes not targeted by classic insecticides. In
37 summary, our work revealed the best target genes and target processes for RNAi based pest control
38 and we propose a procedure to transfer our short list of superior target genes to other pests.

39

40

41 **Main text**

42 **Background**

43 The human population continues to grow and will reach over 9 billion by 2050 resulting in a
44 growing demand in food supply. Together with a changing regulatory landscape and the threat of
45 new resistances, novel crop protection solutions are required that are efficacious, durable, eco-
46 friendly and safe to non-target organisms. RNA interference (RNAi) based solutions promise to offer
47 such sustainable solutions with a different mode of action. However, despite many years of research
48 there is no consensus, which genes or pathways are the best targets for RNAi mediated pest control.

49 RNAi is a naturally occurring defense mechanism against viruses and transposons, initially
50 discovered in plants and in *Caenorhabditis elegans*, that has been intensively studied in various
51 organisms. Essentially, introduction of dsRNA leads to a cellular response that destroys transcripts
52 with sequence complementarity [1,2]. RNAi has become a valuable tool for gene function studies in
53 many arthropods and it has been tested as new tool for species-specific and eco-friendly pest
54 control. For instance, introduction of dsRNA targeting essential insect genes into plants has resulted
55 in protection against pests such as the Western corn rootworm (WCR) *Diabrotica virgifera*
56 (SmartStax™ PRO), the Cotton bollworm *Helicoverpa armigera* [3–5], and to resistance of papaya to
57 the Papaya Ringspot Virus [6]. Many variations and formulations are being tested to increase
58 efficacy. For instance, expression of dsRNAs in plastids led to increased lethality in the Colorado
59 potato beetle [7]. As an alternative to *in planta* produced dsRNAs, sprayed application of dsRNA
60 molecules onto plant surfaces has been successfully tested. The original challenge of producing
61 dsRNA in sufficient quantity for topical applications has been solved with the advances in dsRNA
62 production systems reducing the cost to less than US\$ 0.5/g where around 0.3-4.9 g/ha are required
63 in the field [8]. Thus, RNAi can be used for broadacre and horticultural crops through foliar spray
64 applications. Indeed, first sprayable RNAi products are entering the market targeting Colorado potato
65 beetle (*Leptinotarsa decemlineata*) [9] and guidelines on biosafety have been formulated [10].

66 Notably, the efficacy of RNAi after oral uptake widely differs across species. An efficient response
67 has been demonstrated for several coleopteran species e.g. [4,7,11]. In *D. virgifera virgifera* and the
68 red flour beetle *Tribolium castaneum*, targeting essential genes by RNAi results in death within a
69 week or so [12,13] while feeding activity was reduced already after 5 days in the mustard beetle
70 *Phaedon cochleariae* [11]. Translation to a number of other insect species including important
71 lepidopteran pests, however, failed or led to inconsistent results e.g. [14,15]. Limitations are thought
72 to be related to uptake and metabolism of dsRNA rather than to a general malfunction of the RNAi
73 mechanism [16]. It has been speculated that a strong RNAi response is largely governed by efficient
74 cellular uptake of dsRNA [17–20] and is prohibited by a high level of dsRNA degrading enzymes in the

Buer et al. - Superior RNAi targets for pest control

75 midgut and/or the hemolymph [21–26]. To overcome these challenges, new technologies for
76 improvement of dsRNA delivery and stability are being explored [27–29].

77 One of the key parameters for efficacy of RNAi mediated pest control is the choice of the target
78 genes. So far, that choice has been inspired mainly by the results from few seminal studies, which
79 had tested a limited number of genes e.g. [4], were inspired by classic insecticidal targets or were
80 derived from physiological knowledge e.g. [5]. However, this knowledge-based approach has been
81 limited by the fact that most relevant parameters are unknown such as the stability of the respective
82 protein, the dynamics of expression, and potential compensation by related proteins or regulatory
83 mechanisms. Further, it has remained unclear whether - considering the different mode of action of
84 RNAi - one should target different biological processes compared to the pathways known from classic
85 chemical insecticides. Much of this uncertainty can be overcome by unbiased large-scale screening.
86 Indeed, a previous RNAi screen in the red flour beetle *Tribolium castaneum* revealed novel target
87 genes, which showed higher efficacy compared to previously used target genes [13,30] and they
88 were successfully tested in other species e.g. [15,31]. Further, it identified the proteasome as an
89 unexpected target process [13] and indeed, a proteasome component is now being used for the first
90 sprayable dsRNA application on the market [9]. Large scale screens in other organisms had revealed
91 essential gene sets but these screens were either not based on environmental RNAi (fly *Drosophila*
92 *melanogaster*) or were performed in a species that is evolutionary quite distant to insects (nematode
93 *Caenorhabditis elegans*) [32,33].

94 However, to comprehensively analyze the best target genes and processes for RNAi mediated
95 pest control, a genome wide analysis in an appropriate laboratory model system was required.
96 Among insects, the red flour beetle *T. castaneum* is one of the most highly developed genetic model
97 systems and shows a strong and systemic RNAi [17,19,34,35]. Further, it is a representative of
98 Coleoptera, which is a clade containing a number of economically relevant pests that are amenable
99 to oral dsRNA delivery. Importantly, *T. castaneum* had been established for genome-wide screening
100 before [13,30,36]. Some reports indicated that RNAi by feeding works in *T. castaneum* but we and
101 others had no success in that respect [15].

102 To gain a genome wide view on target genes and processes, we first performed a primary RNAi
103 screen for lethality of approximately 10,000 genes, which together with the previous screen
104 performed by Ulrich et al. adds to an almost genome-wide coverage of 15,530 genes. Based on this
105 primary screen, we defined a list of 905 *target genes* (top 5.8 %). GO and KEGG analyses revealed
106 that some target processes were reminiscent of classic insecticide targets. However, most *target*
107 *genes* belonged to basic cellular processes such as protein homeostasis, which are no typical targets
108 for classic insecticides. Dose response validation of 807 of the *very good targets* and subsequent

Buer et al. - Superior RNAi targets for pest control

109 cluster analysis revealed 192 *most effective target genes* in the red flour beetle after injection of
110 dsRNA. We then tested a subset of 66 genes by oral feeding in another beetle pest species (mustard
111 beetle) and we found half of them to be highly active, leading to a list of 34 *superior target genes*.
112 Finally, we show that these *superior target genes* were very well transferable to another pest species
113 (Colorado potato beetle). In summary, we reveal that RNAi mediated pest control should target
114 biological processes different from chemical pesticides and we provide a list of genes, which
115 represents an excellent starting point for identification of efficient RNAi target genes in other
116 species.

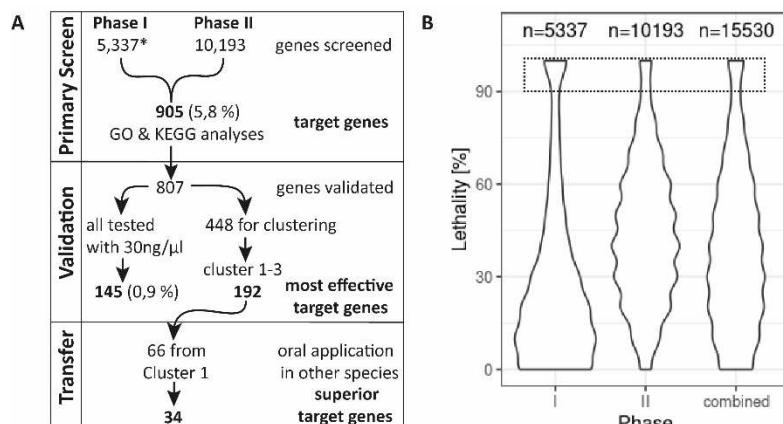
117 Results

118 A very high-throughput organismal RNAi screen to detect essential genes

119 The realization of a genome-wide RNAi screen requires a robust experimental system. We chose
120 the red flour beetle *T. castaneum* because this species is easy to keep in large amounts, produces
121 offspring all year round, is easy to inject, has a robust systemic RNAi response [19,34,35] and has
122 been established for large scale RNAi screening [12,30,36]. We needed to balance the requirements
123 of an efficient high-throughput procedure with the aim of gathering detailed information on the
124 dynamics at different dsRNA concentrations. To meet both needs, we opted for a two-phase
125 screening strategy where in the primary high-throughput screen we tested all genes using one
126 concentration of dsRNA assessing lethality at only one point in time. In the subsequent validation
127 screen (described in the next chapter), a selection of the *target genes* identified in the primary
128 screen were tested using different concentrations of dsRNA and scoring lethality several times after
129 dsRNA injection (see Fig. 1A for an overview). In the primary screen, dsRNAs at a concentration of 1
130 µg/µl were injected into 10 larvae per gene (stages L5 or L6). The first 5,337 genes had previously
131 been screened as part of the iBeetle screen (phase I) [30] and most of them had already been
132 analyzed for potency as target genes for RNAi mediated pest control [13]. The main aim of the
133 iBeetle screen had been the detection of developmental phenotypes where lethality was checked as
134 part of an extensive morphological analysis of the injected animals at day 11 post injection [30].

135 With this work, we present the results of phase II of the primary screen, where we scored 10,193
136 genes for lethality after dsRNA injection using the same concentration and the same larval stages as
137 in phase I. However, in phase II, based on previous experience we analyzed lethality already seven
138 days after injection to streamline the procedure. The best RNAi target genes reliably induce death
139 within a week in *T. castaneum* such that we did not expect to miss important target genes [13].
140 During phase II of the primary screen, we did not score for morphological phenotypes, which allowed
141 us to increase the throughput several-fold (see schedule and experimental details in Supporting
142 Figure 1). While phase I had a throughput of 25 genes per week per screener (including controls and

Buer et al. - Superior RNAi targets for pest control


143 extensive phenotypic annotations [30]), we reached a throughput of 156 genes per week per
144 screener in phase II. This increase is mainly due to the simplified readout where only the number of
145 surviving animals was scored without preparation and morphological analyses. Based on our
146 experience with several RNAi screens of different complexity [13,30,36], we think that this
147 throughput is close to the upper limit for a large scale organismic RNAi screen in *T. castaneum* and
148 probably for most if not all insects.

149 The distribution of the lethality found for each gene differed somewhat between phases of the
150 screen (Fig. 1B and Fig. S2) where in phase II a lower portion of genes showed 90 % lethality or higher
151 (compare width of distributions within the box with broken outline in Fig. 1B). This might reflect the
152 fact that phase I of the screen was biased towards more conserved and highly expressed genes,
153 leading to an enrichment of basic cell biological processes. On the other hand, an increased overall
154 level of lethality was observed for phase II (Fig. 1B; see also Fig. S2). We assign the latter shift
155 towards higher lethality in phase II to an increased technical background lethality due to stock
156 keeping issues that we observed for some time during the screen. Of note, this technical issue did
157 not compromise our work because subsequent selection of target genes was based on an
158 experimentally independent validation screen (see below).

159

160 *Figure 1 Overview and controls*

161 *A) Flowchart with the*
162 *different screening phases*
163 *and analyses performed in*
164 *this publication. *: genes*
165 *analyzed by Ulrich et al. 2015*
166 *B) Distribution of the lethality*
167 *observed in phase I and phase*
168 *II of the screen and for the*
169 *entire dataset. The width of*
170 *the shapes reflects the portion of the experiments that led to a given percentage of dead animals (n=*
171 *10 injected larvae) 11 days after injection (phase I) or 7 days after injection (phase II). Datasets with 9*
172 *or 10 dead (90 % or 100 % lethality; comprised in dotted box) were selected for the validation screen.*
173 *Phase I: n = 5,337 genes; Phase II: n = 10,193 genes; total n = 15,530 genes*

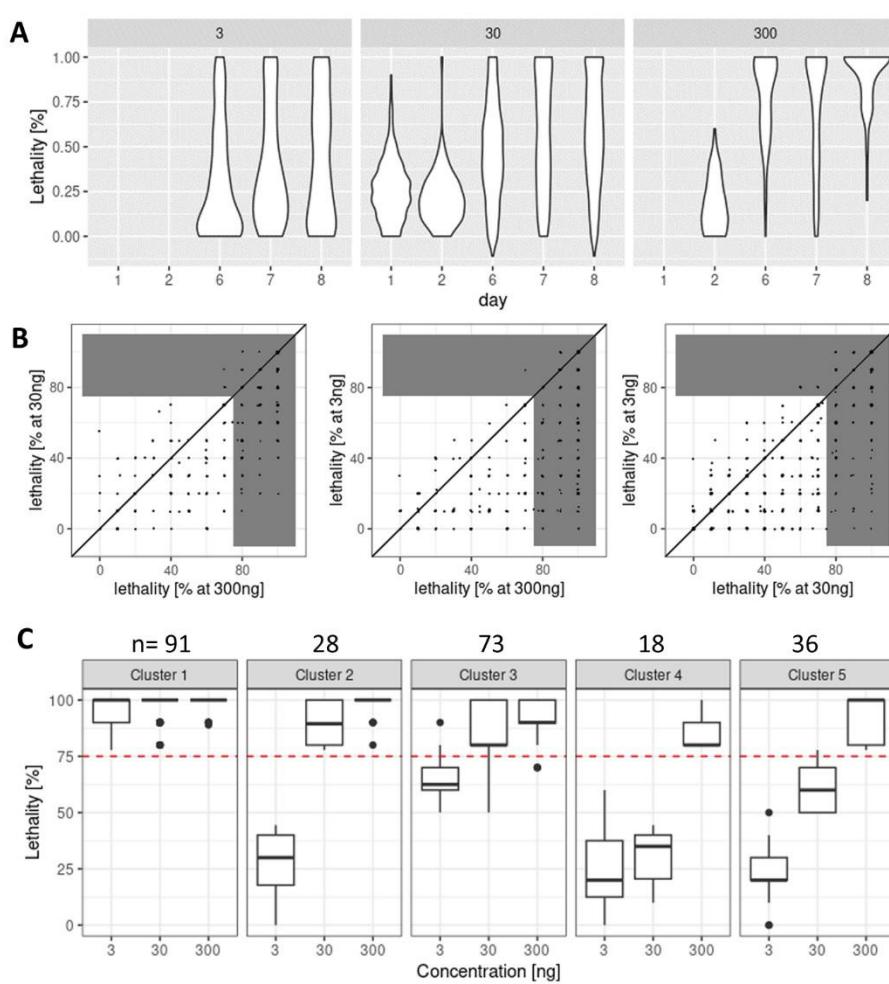
174

Buer et al. - Superior RNAi targets for pest control

175 Selection of genes for the validation screen

176 The primary screen provided a genome-wide insight into the characteristics of *target genes* for
177 RNAi mediated pest control. From this set of genes, we wanted to identify the *most effective target*
178 *genes*, defined as those that lead to lethality most rapidly with minimal dsRNA exposure. For this
179 validation screen, we chose most genes that in the primary screen had shown 100 % lethality and
180 included many genes with 90 % lethality (see Fig. S2 for more details on the selection). Specifically,
181 from the 623 and 282 genes that had shown 100 % or 90 % lethality in the primary screen,
182 respectively, 607 and 200 genes were included. In summary, 807 of these 905 genes (further referred
183 to as “*target genes*”) were included in the validation screen, i.e. they were tested in independent
184 experiments using lower concentrations of dsRNA and monitoring the lethality over time. In addition,
185 16 genes with lower lethality were tested to check for consistency with the results of the primary
186 screen.

187 Validation screen to detect the most efficient RNAi target genes


188 All 807 genes included in the validation screen were injected with a dsRNA concentration of 30
189 ng/μl and subsets were treated in addition with 3 ng/μl or 300 ng/μl dsRNA. The lethality
190 distributions revealed that 300 ng/μl closely reflected the results found in the primary screen (1
191 μg/μl) in that a high degree of lethality of almost all tested genes was observed after 6-8 days (Fig.
192 2A, right panel). At 30 ng/μl concentration of injected dsRNA, the knock-down led to lethality in
193 many but not all genes (Fig. 2A middle panel). The lowest concentration (3 ng/μl) induced lethality in
194 a yet smaller portion of genes (Fig. 2A left panel). We concluded, that the concentration of 300 ng/μl
195 was too high to be a stringent selection criterion while 3 ng/μl was close to the lower limit of dsRNA
196 concentration that can induce a lethal effect in *T. castaneum* by injection.

197 Analysis of the lethality induced by different concentrations of the same dsRNA essentially
198 confirmed these results (Fig. 2B). While the lethality at the higher concentrations correlated (Fig. 2B,
199 left panel), many dsRNA that induced lethality at higher concentrations failed to do so at 3 ng/μl (Fig.
200 2B, middle and right panels).

201

202 *Figure 2: Distribution and correlation of lethality at different concentrations found in the validation*
203 *screen*

204 (A) The lethality
205 distribution found in the
206 validation screen is
207 depicted along the time
208 axis (in days after
209 injection; see Supporting
210 Figure 3 for separate
211 documentation of the
212 results of different
213 validation screen
214 phases). As expected,
215 the effect is dose and
216 time dependent.
217 Notably, the
218 distributions found with
219 the lowest concentration
220 (left panel) differ less
221 along the time axis

222 compared to higher concentrations. (B) Correlation of lethality between different concentrations of
223 dsRNA targeting the same gene at 7 or 8 days post injection. Each dot reflects the lethality induced
224 by a given dsRNA injected at the different concentrations (see axes). Lethality equal or greater than
225 75 % is shaded in grey. As expected, the lethality increased with the concentration. The correlation of
226 the two high concentrations (left panel) was high while the lowest concentration (3ng/μl) failed to
227 induce lethality for a large number of genes, which did have strong effects at 30 or 300 ng/μl (see
228 dots in right bottom part of grey area in the middle and right panels). Nevertheless, a number of
229 genes induced lethality even at the lowest concentration (top right grey area). (C) Cluster analysis of
230 a subset of the genes tested in the validation screen according to their level of lethality. Clusters 1-3
231 were used to define the *most effective target genes* used for subsequent analyses. See text for
232 further details.

233

234 **Defining the *most effective RNAi target genes***

235 Based on our data, we considered two ways to define the *most effective target genes* from the
236 validation-screen. In the first approach, we used only the results from experiments with 30 ng/µl
237 concentration because this concentration had been used for all genes in the validation screen. From
238 all these genes, 145 showed a lethality of 100 % (0,9 % of all genes of the primary screen) (see
239 Supporting Table 3 for gene IDs). While this approach included all genes from the validation screen, it
240 did not take into account dose dependent responses and was therefore not used for follow-up
241 experiments. In an alternative approach, we performed cluster analysis on the subset of 246 genes
242 that had been validated with 3 ng/µl and that showed a lethality \geq 75% at the 30 ng/µl
243 concentration. Unsupervised K-means clustering was performed based on the percent lethality at
244 different concentrations at day 7 or 8 after injection with dsRNA. We obtained five distinct clusters
245 with Cluster 1 comprising the 91 most potent target genes with high lethality at all concentrations
246 (Fig. 2C). Similarly, Cluster 3 (73 genes) was comprised of highly potent targets with some decline of
247 efficiency at 3 ng/µl dsRNA injection. Cluster 2 (28 genes) showed more pronounced cutoff
248 concentrations. Cluster 5 (36 genes) shows the clearest dose response. Cluster 4 (18 genes) shows
249 lowest efficacy. See Supplementary Table 4 for the gene IDs of these clusters, Supplementary Table 5
250 for respective GO-term and KEGG analyses and the top 15 GO terms of Cluster 1.

251 Taken together, our genome wide screen by injection in the red flour beetle revealed a list of 905
252 *target genes*, which represented an excellent basis for understanding biological processes targeted
253 by these genes. The validation screen and cluster analysis led to the identification of 192 *most*
254 *effective target genes* derived from clusters 1-3. This set of genes represented an excellent starting
255 point for transferring our findings to relevant pests by administering dsRNA by feeding.

256 **The majority of the target genes are part of basic cellular processes**

257 To reveal the biological processes and pathways, which should be targeted in RNAi mediated pest
258 control, we asked, which functions and pathways were enriched in the *very good target gene* set
259 defined in our primary screen (905 genes representing 5.8 % of all screened genes) compared with the
260 set of genes with a mortality of 50 % or less. The genes were annotated by similarity and functional
261 domains using blast2go and mapped to KEGG pathways [37,38]. Gene Ontology (GO) term enrichment
262 analysis resulted in 393 enriched GO terms represented by at least 5 genes with p-values \leq 0.01. The
263 top GO terms according to their p-value are listed in Table 1 (see Supplementary Table 1 for all enriched
264 GO terms; the IDs of the genes contributing to the top 15 GO annotations are found in Supplementary
265 Table 2). The top GO terms in the domain “biological process” reflected predominantly basic cellular
266 processes involved in gene expression such as translation, transcription and RNA metabolism (Table
267 1). Two terms were related to development but most of the underlying genes are involved in basic

Buer et al. - Superior RNAi targets for pest control

268 cellular processes that indirectly influence developmental pattern formation (see Supplementary Table
269 2 for gene IDs). Notable exceptions are the nuclear hormone receptor *Ftz-F1* (TC002550) and the
270 Glycogen synthase kinase-3 beta (TC032822), which have direct functions in pattern formation in
271 addition to metabolic processes [39]. The most enriched GO terms of the domains “molecular
272 function” and “cellular component” reflected the above-mentioned findings. The enriched cellular
273 component “plasmodesma”, which actually is a plant-specific structure, may reveal unspecific
274 functional annotation and hint towards enrichment of the term “cell-cell junction” (GO:0005911)
275 which is a parent GO term of both, plasmodesma and cell-cell structures from animals.

276 We asked, whether signaling pathways would be good targets due to their involvement in many
277 biological processes. We found the NIK/NF-kappa B, TNF, Wnt and MAPK signaling pathways to be
278 significantly enriched in our set of candidate target genes but they were not among the top 15 (see
279 Supplementary Table 2). Further GO terms associated with molecular functions comprised protein
280 binding and cell-cell adhesion as well as endocytosis and proton-transporting ATPase activity. In line
281 with the latter term, V-ATPase had been introduced as a potent RNAi target gene before [4] and has
282 been successfully used by others since. The previously described enrichment of proteasome
283 components in RNAi target genes [13] was found in this genome wide dataset as well, albeit not with
284 the highest scores. Other enriched GO terms in the cellular component domain included key cellular
285 complexes such as the proteasome and ribosome and general compartments such as the vacuolar
286 membrane, cytoplasm and nucleoplasm and specialized structures such as the myelin sheath and
287 exosome.

288 To map and visualize enriched GO terms and their functional interconnections, we created
289 networks using REVIGO and GO slim annotations (Supplementary Figures 4-6) [40]. With respect to
290 biological process, the network consists of two major subnetworks: One reflecting regulatory
291 processes (top part in Supplementary Fig. 4) and one reflecting transcription, translation and related
292 decay processes (center part in Supplementary Fig. 4). With respect to the category “cellular
293 component”, only one network was found that included mainly translation and protein decay
294 (Supporting Fig. 5).

295 In summary, our GO term analysis revealed that the set of *target genes* identified from a genome
296 wide screen was highly enriched in basic cellular processes with translation, protein homeostasis,
297 transcription and RNA biology being among the top processes. Our analysis shows that genes in
298 biosynthetic processes are more abundant among the most efficient target genes than genes for
299 structural components, which were not much enriched in our dataset.

300

Buer et al. - Superior RNAi targets for pest control

301 **Table 1: Gene ontology enrichment of the set of *very good RNAi target genes*.**

302 The 905 genes with mortality larger or equal 90 % in the primary screen were compared to all
303 genes with mortality less or equal 50 % using hypergeometric distribution. Top 15 enriched GO terms
304 are shown. See Supplementary Table 1 for all GO terms and Supplementary Table 2 for respective
305 gene IDs.

Accession	Name	Ontology	Target genes	Total genes	p-value
GO:0009792	embryo development ending in birth or egg hatching	BP	88	228	3,15E-38
GO:0006614	SRP-dependent cotranslational protein targeting to membrane	BP	48	66	3,16E-38
GO:0019083	viral transcription	BP	43	60	6,86E-34
GO:0000184	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay	BP	50	87	3,11E-32
GO:0002119	nematode larval development	BP	70	178	4,43E-31
GO:0006413	translational initiation	BP	47	82	2,77E-30
GO:0002181	cytoplasmic translation	BP	41	65	6,66E-29
GO:0003735	structural constituent of ribosome	MF	51	113	3,05E-26
GO:0044822	RNA binding	MF	120	539	1,07E-25
GO:0005840	ribosome	CC	62	169	1,20E-25
GO:0003729	mRNA binding	MF	61	164	1,27E-25
GO:0009506	plasmodesma	CC	60	165	1,30E-24
GO:0006364	rRNA processing	BP	44	95	2,35E-23
GO:0005654	nucleoplasm	CC	178	1097	4,55E-21
GO:0005730	nucleolus	CC	118	592	6,24E-21

306

307 In order to complement the functional enrichment with pathway information, our collection of
308 *target genes* was assigned to KEGG pathways. Essentially, this analysis yielded pathways similar to
309 those found by the GO term enrichment, e.g. ribosome, proteasome and spliceosome as top
310 annotations and a number of additional processes related to protein and RNA biology (Table 2).
311 Interestingly, in this analysis the proteasome was recovered as one of the three top pathways
312 reflecting our previous findings [13]. Notably, the KEGG pathway 'oxidative phosphorylation' had a
313 high score indicating that energy metabolism may be a good target for RNAi mediated pest control as
314 well.

315

Buer et al. - Superior RNAi targets for pest control

316 Table 2: KEGG enrichment of the set of *target genes*.

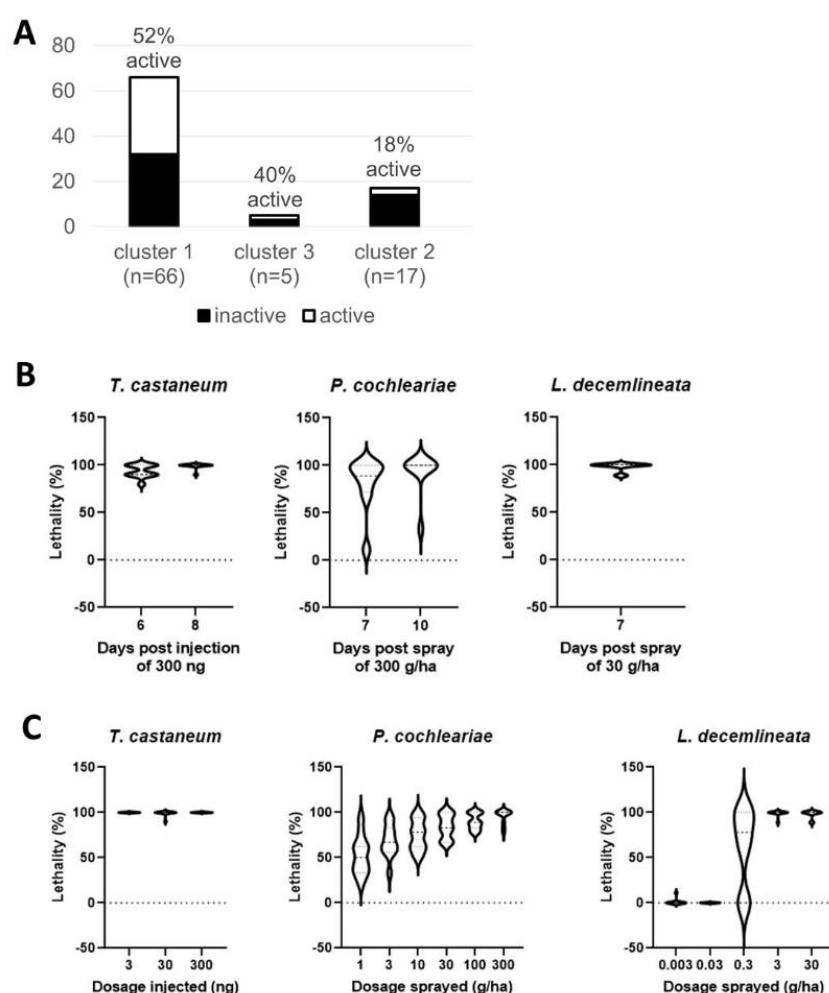
317 The 905 genes with mortality larger or equal 90% in the primary screen were analyzed for
318 annotation in KEGG pathways.

Accession	Name	Lethal	Total	p-value	Lethal
		genes	genes		genes (%)
ko03010	Ribosome	43	69	1,72E-18	62.3
ko00190	Oxidative phosphorylation	30	58	2,50E-10	51.7
ko03050	Proteasome	22	35	4,50E-10	62.9
ko03040	Spliceosome	35	82	6,01E-09	42.7
ko04145	Phagosome	24	52	2,81E-07	46.2
ko04721	Synaptic vesicle cycle	16	30	2,69E-06	53.3
ko03060	Protein export	11	16	3,54E-06	68.8
ko03013	RNA transport	27	73	1,00E-05	37.0
ko00970	Aminoacyl-tRNA biosynthesis	12	25	0,00018991	48.0
ko03020	RNA polymerase	9	16	0,00027484	56.3
ko03022	Basal transcription factors	11	25	0,00089401	44.0
ko03015	mRNA surveillance pathway	16	46	0,00146617	34.8
ko03008	Ribosome biogenesis in eukaryotes	14	44	0,00716605	31.8
ko04623	Cytosolic DNA-sensing pathway	7	16	0,0083228	43.8
ko04714	Thermogenesis	26	102	0,00923878	25.5

319

320 Transfer to oral feeding in other pest species reveals 34 *superior target genes*

321 We tested some of the *most effective target genes* in other species for two reasons. First, our
322 genome-wide screen was based on injection of dsRNA, which probably has different characteristics
323 compared to oral application. Oral application of dsRNA did not work for *T. castaneum* in our hands
324 despite positive reports from others [41–44]. Second, while some RNAi target genes had successfully
325 been transferred to other species, limits of transferability had been observed as well. For instance,
326 some of the top target genes from our previous study [13] had been tested in other species where
327 some but not all turned out to be effective [15]. That indicated that the transferability of a given
328 gene may be dependent on the species and we could not identify a clear pattern of effectiveness for
329 these target genes in that survey [15]. Therefore, we tested for the transferability of *superior target*
330 *genes* to different species and changing the delivery mode to oral application.


331 We used the mustard beetle *Phaedon cochleariae*, which is a well-described pest that had
332 previously been established for RNAi screening [11]. We randomly chose 88 genes from our *most*

Buer et al. - Superior RNAi targets for pest control

333 *effective target genes* (i.e. clusters 1 – 3), determined their orthologs in *P. cochleariae* and tested
334 respective dsRNAs by oral delivery. We used a concentration corresponding to 30 g/ha or 100 g/ha
335 and checked for effects after 10 days maximum. We tested 66 sequences from cluster 1 and found
336 that 34 (52 %) showed increased lethality by more than 50 % in comparison to controls (Figure 3A).
337 For cluster 2 (17 genes) the rate declined to 18 % while for cluster 3 (5 genes) we found 40 %. These
338 results underscored the variability of the transfer across species and/or delivery modes. Based on
339 this experiment we defined the 34 successfully transferred genes from Cluster 1 to be our final
340 selection of *superior target genes*. This set of genes represents a manageable number to be tested in
341 other pest species yet may be large enough to accommodate for species-specific variability. The gene
342 IDs of the 34 *superior target genes* are given in Table 3. Note that additional similarly effective target
343 genes might be present, e.g. in the 26 non-tested genes from clusters 1-3 or in the set of most
344 efficient target genes that we defined by the alternative approach (see above).

345

Buer et al. - Superior RNAi targets for pest control

346

347 *Figure 3 Transfer of most effective target genes to other species*

348 A) From 66 genes of cluster 1, we found 52% to be transferable to *P. cochleariae* by oral feeding.
349 The transferability for the other clusters was lower. We defined the 34 genes transferred from Cluster
350 1 to represent our superior target gene set. B) Time to mortality induced by 11 selected genes that
351 were active in *T. castaneum*, *P. cochleariae* and *L. decemlineata*. Lethality was found within 7-10 days
352 in all three species. C) These 11 genes were sensitive to small amounts of dsRNA but large species-
353 specific differences of sensitivity were observed.

354 To confirm transferability of the *superior target genes*, we tested a subset of 12 genes in the *L.*
355 *decemlineata*, an organism that had shown excellent response to RNAi [45]. Indeed, 11 out of 12
356 sequences showed strong effects compared to our controls indicating a high degree of transferability
357 (marked in grey in Table 3). Interestingly, these eleven genes led to lethality within 7-10 days in all
358 tested species (Fig. 3C).

Buer et al. - Superior RNAi targets for pest control

359 *Table 3 Superior target genes recommended for transfer to other pest species*

360 *These 34 genes were identified as most efficient target genes in *T. castaneum* by injection (i.e.*
361 *they are part of Cluster 1) and were successfully transferred to *C. cochleariae* by feeding. The 11*
362 *genes shaded in grey were additionally successfully transferred to *L. decemlineata*.*

Tribolium gene ID	iBeetle number	Gene name
TC000069	iB_00011	Proteasome subunit beta type-1
TC000614	iB_00141	Proteasome subunit alpha type-6
TC000641	iB_00148	Coatomer subunit beta
TC002574	iB_00404	Signal recognition particle 54 kDa Short=SRP54
TC004425	iB_03754	Heat shock 70 kDa cognate 3
TC005185	iB_06598	Polyadenylate-binding 1 Short=PABP-1 Short=Poly(A)-binding 1
TC005653	iB_07516	snakeskin
TC006375	iB_04125	26S proteasome non-ATPase regulatory subunit 6
TC006492	iB_04154	26S proteasome regulatory subunit 7
TC007891	iB_01280	26S proteasome non-ATPase regulatory subunit 8
TC007999	iB_04411	26S proteasome regulatory subunit 6B
TC008617	iB_01375	Proteasome subunit beta type-4
TC009191	iB_01493	transport Sec23A
TC009491	iB_01562	RNA-binding 15
TC009675	iB_08675	26S proteasome regulatory subunit 4 Short=P26s4
TC009965	iB_04734	Ras-related Rab-1A
TC010003	iB_01640	DNA-directed RNA polymerases I, II, and III subunit RPABC1
TC010318	iB_01665	Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase (PAPS synthase)
TC010321	iB_04808	26S proteasome regulatory subunit 10B
TC010519	iB_01704	ATP-binding cassette sub-family E member 1
TC011058	iB_01793	Dynamin
TC011120	iB_01807	ROP
TC011182	iB_01820	60S ribosomal L7a
TC012303	iB_01965	Eukaryotic translation initiation factor 3 subunit A (eIF3a)
TC013782	iB_02204	Glycine-tRNA ligase
TC014413	iB_05628	ATP-dependent RNA helicase WM6 Short=DEAD box UAP56 Short=Dmrnahel
TC014725	iB_09124	Prolactin regulatory element-binding
TC015014	iB_02377	Clathrin heavy chain
TC015205	iB_08499	Proteasome subunit beta type-3
TC015539	iB_09161	40S ribosomal S3a
TC031132	iB_07271	Pre-mRNA-splicing factor SYF1
TC033036	iB_02787	26S proteasome non-ATPase regulatory subunit 1
TC034312	iB_09459	Splicing factor 3B subunit 1
TC034766	iB_01582	Tubulin beta-3 chain

363

364 **Discussion**

365 RNAi mediated pest control can target biological processes not used by classic insecticides

366 With this work, we present the first genome-wide screen of the most effective target genes and
367 pathways. Our study provides an unbiased whole genome view whereas many other studies chose to
368 target classic insecticidal targets with RNAi. Indeed, we detected novel target pathways only some of
369 which had been known from classic insecticidal processes such as synaptic vesicle cycle or oxidative
370 phosphorylation. However, most *target genes* acted in basic cellular processes such as transcription,
371 protein translation, export and degradation. Notably, these processes are very different from the
372 modes of action of classic insecticides. A reason for this discrepancy might be that the protein
373 domains essential for basic cellular processes are often highly conserved between insects and
374 vertebrates such that most chemical inhibitors would not pass the biosafety measures. Moreover,
375 RNAi might be able to target the expression of genes whose protein products are not accessible for
376 classic insecticides due to their cellular localization or quaternary structures known for instance from
377 the proteasome or ribosomal proteins. To avoid cross-effects on non-target organisms, RNAi can be
378 directed to diverged sequences including UTRs, which allows for species-specific targeting of even
379 highly conserved proteins, enabling bio-safe targeting [10,13]. Indeed, the pilot for this screen had
380 identified the proteasome as prime target and the first sprayable application is based on a
381 proteasome subunit [9,13]. In summary, RNAi opens essential basic cellular pathways for targeting,
382 which have been protected from classic insecticides.

383 **How comprehensive was our analysis?**

384 The primary screen (15.530 genes) covered 93,6 % of the current protein coding gene set of the
385 *T. castaneum* genome assembly OGS3 [46] and mainly missed genes that could not be cloned from
386 cDNA and genes that were affected by the usual loss of experiments during high throughput screens
387 (see Supplementary Table 6 for all results of the primary screen). Therefore, our list of 905 *target*
388 *genes* (top 5.8 % of the tested genes) is very comprehensive and our conclusions on GO terms and
389 KEGG pathways provide the first and a very robust genome-wide view on that matter. Likewise, the
390 validation screen was quite comprehensive where 807 out of 905 *target genes* were tested (89,2%).

391 The subsequent steps had the aim of identifying a manageable number of superior target genes
392 for transfer to other pests rather than providing comprehensive analyses. Therefore, the cluster
393 analysis was based only on those 443 genes, which had been validated with the lowest concentration
394 (54,9 % of 807 genes in the validation screen). Due to this restriction, about half of the genes
395 matching our criteria for *superior target genes* are probably missing from our list. Likewise, we tested
396 a subset of 66 out of 91 genes from Cluster 1 (72,5 %) to define our list of *superior target genes*. This
397 means that another dozen genes or so from Cluster 1 may show a similar efficacy when transferred

398 to other species. Given the high transferability of our *superior target genes* to another pest species
399 (11 out of 12; 91,7 %) we think that 34 genes are a sufficient and at the same time manageable
400 number. If testing of the entire *superior gene* list does not result in an efficient RNAi response in an
401 organism, the root cause is likely to lie in other reasons than the selection of the appropriate target
402 gene.

403 **Comparison of our superior target genes to the target genes currently used**

404 A number of genes had previously been used by others as targets for RNAi mediated pest control
405 and we asked, how far these genes were comprised in our lists. Importantly, several popular target
406 genes such as chitin synthase, acetylcholinesterase or ecdysone receptor were found in none of our
407 lists indicating that there is room for improvement for respective applications by testing our *superior*
408 *target genes*.

409 Three previously used genes were in our *superior target gene* list: Sec23, heat shock 70 kDa, and
410 COPI coatomer β subunit (bold in Table 4) confirming that these previous screening efforts have
411 identified excellent target genes. Neither of the currently registered RNAi-based products and only 5
412 out of 12 commonly used target genes belonged to our top performing Cluster 1 genes (see Table 4).
413 However, another three represented different subunits of protein complexes that were targeted by
414 at least one of our *superior target genes*: The proteasome, microtubules and the ribosome (marked
415 in grey in Table 4). While these genes are likely quite good target genes, testing the *superior target*
416 *genes* as targets would still be advisable as even a minor increase of efficacy reduces the cost for
417 application. The most lethal eleven genes identified in a previous screen belonged to Cluster 1 while
418 a machine learning approach to identify essential genes had revealed only one Cluster 1 target gene.

419

420

Buer et al. - Superior RNAi targets for pest control

421 *Table 4 Commonly used target genes compared to our gene sets*

422 Selected target genes were checked whether they were included in the 905 *target genes*
423 (identified in the primary screen), the 145 *most effective target genes* (based on the validation screen
424 based on 30ng/ul; see above) or the 91 genes from Cluster 1. Three genes previously published by
425 others were included in our *superior target gene* list (shown in bold) and three targeted different
426 subunits of the protein complexes targeted by *superior target genes* (shaded in grey).

427

Target gene	Species/Reference	905 target genes	145 most effective target genes	91 cluster 1 genes
Current products:				
<i>Snf7</i> (SmartStax®PRO)	<i>D. virgifera virgifera</i> (Baum et al., 2007)	Yes	Yes	No
<i>Proteasome Subunit Beta Type-5</i> (Calantha™)	<i>L. decemlineata</i> (Rodrigues et al. 2021)	Yes	No	No
Commonly targeted genes:				
<i>V-ATPase</i> subunits	<i>D. virgifera virgifera</i> (Baum et al., 2007)	Yes	Yes	Yes
<i>α-tubulin</i>	<i>D. virgifera virgifera</i> (Baum et al., 2007)	No	No	No
<i>β-actin</i>	<i>L. decemlineata</i> (Zhang et al., 2015) [7]	No	No	No
<i>smooth septate junction (SSJ)</i>	<i>D. virgifera virgifera</i> (Hu et al., 2016) [47]	Yes	Yes	Yes
<i>Heat shock protein 70</i>	<i>Agrilus planipennis</i> (Rodrigues et al., 2018) [48]	Yes	Yes	Yes
<i>Sec23</i>	<i>L. decemlineata</i> (Zhu et al., 2011) [45]	Yes	Yes	Yes
<i>inhibitors of apoptosis</i>	<i>Aedes aegypti</i> (Pridgeon et al., 2008) [49]	No	No	No
<i>COPI coatomer 6 subunit</i>	<i>D. virgifera virgifera</i> (Baum et al., 2007)	Yes	Yes	Yes
<i>ribosomal protein L19</i>	<i>D. virgifera virgifera</i> (Baum et al., 2007)	Yes	No	No
<i>chitin synthase</i>	<i>Spodoptera exigua</i> (Tian et al., 2009)[50]	No	No	No
<i>Acetylcholinesterase</i>	<i>Helicoverpa armigera</i> (Kumar et al., 2009) [51]	No	No	No
<i>Ecdysone receptor</i>	<i>Nilaparvata lugens</i> (Yu et al., 2014) [52]	No	No	No
Previous large scale RNAi screen:				
All top 11 genes	<i>T. castaneum</i> Ulrich et al. 2015	Yes	Yes	Yes

Prediction based on machine learning:

ATP-dependent RNA	<i>T. castaneum</i>	Yes	No	No
<i>helicase spindle-E-like</i>	Beder et al. 2021 [53]			
ATP-dependent RNA	<i>T. castaneum</i>	Yes	No	No
<i>helicase abstrakt-like</i>	Beder et al. 2021			
<i>Eukaryotic translation initiation factor 3 a</i>	<i>T. castaneum</i>	Yes	Yes	Yes
	Beder et al. 2021			
ATP-dependent RNA	<i>T. castaneum</i>	No	No	No
<i>helicase Dbp45A-like</i>	Beder et al. 2021			
ATPase family AAA domain-containing	<i>T. castaneum</i>	No	No	No
<i>protein 3-like</i>	Beder et al. 2021			

428

429 In summary, our superior target genes perform better than many genes previously selected based
430 on knowledge on protein functions - at least under the tested conditions such as species, targeted
431 stage or selected sequence. One reason could be that the knowledge-based approach does not take
432 into account additional parameters that influence the RNAi response. For instance, high protein
433 stability increases the time from knock-down to biological effect; alternative pathways or paralogs
434 may compensate for the loss of an essential protein and compensatory upregulation of expression
435 may counteract the knock-down effect. Moreover, we do not know, in which cell types a given gene
436 may be essential and which cells take up dsRNA efficiently. Given our lack of knowledge of most
437 parameters for most of the genes, our unbiased large-scale screen seemed the tool of choice for the
438 identification of the most efficient target genes. Interestingly, both current RNAi-based commercial
439 products are targeting genes that are comprised in our *very good target gene* set (905 genes with
440 >90 % lethality) and one of them, Snf7 (SmartStax®PRO), even belonged to the *most effective genes*.
441 This highlights the potential for transferability from an unbiased screen in a model species to the
442 market.

443 Considerations for the identification of the most effective target genes for RNAi mediated
444 pest control

445 We propose keeping the following considerations in mind when planning to identify the target
446 genes for RNAi mediated pest control:

447 First, the selection of a target gene based on the knowledge of its essential function is often
448 suboptimal because we lack the knowledge of all the other parameters influencing an efficient RNAi
449 response such as the developmental stage, dsRNA stability etc. For instance, some excellent targets
450 for chemical insecticides have performed poorly when targeted by RNAi.

451 Second, due to species-specific variation of parameters influencing the effect of RNAi, a gene with
452 an excellent response in one species may be less effective in another. Hence, there is no such thing

453 as *the one best target gene*. See table in Mehlhorn et al. 2021b for examples. As consequence,
454 several putatively efficient target genes have to be tested rather than relying on one.

455 Third, our list of *superior target genes* is an excellent starting point for a small scale screen to
456 identify the best targets in another species. Such an approach focuses on some of the most
457 promising targets but it still considers the possibility of species-specific variability. Testing 34 genes
458 will be realistic for most systems and we consider the likelihood to be rather high that at least one of
459 them will belong to the species-specific top group. If a more comprehensive approach is needed, the
460 remaining genes of Cluster 1 could be included or the 145 genes of the *most effective target genes*
461 could be tested.

462 Fourth, careful controls and independent replicates are paramount to avoid false-positive reports
463 on RNAi in pest control. Lethality is a very unspecific phenotype that is often elicited by a variety of
464 technical variables such as contaminated injection needles, poor dsRNA preparations, stock keeping
465 issues, infection status etc. Before testing RNAi for pest control with such an unspecific readout, an
466 efficient RNAi response should first be confirmed. To that end, the use of non-lethal target genes
467 with a clear phenotypic readout such as pigmentation genes are advisable. See Mehlhorn et al.
468 2021b for suggestions.

469 Fifth, many of the target processes are highly conserved in eukaryotes. Hence, they might be
470 valuable targets in other economically relevant arthropods such as spider mites or even other clades
471 of eukaryotes such as fungi.

472 Conclusions

473 Our genome-wide approach allowed us making well-founded statements on the processes and
474 genes that are the best targets for RNAi based pest control. We found that most of the best RNAi
475 target genes are highly conserved genes acting in basic cellular and biosynthetic processes. Further,
476 we provided a short list of superior target genes, which can be used as starting point for future
477 efforts to establish this technique in other pest species. While it may seem unlikely to identify more
478 efficient protein coding target genes, it remains elusive how well non-coding RNA targets may
479 perform. Another future main challenge will be to increase the efficacy of the specific target
480 sequence by rational design.

481 Material and methods

482 Primary screen

483 The screening followed the procedure extensively described in Schmitt-Engel et al. 2015 with
484 minor modifications. In brief, pBA19 L6 or L5 instar larvae were injected and scored for lethality.
485 dsRNA solution at a concentration 1 μ g/ μ l was injected into 10 animals per experiment (mixed males
486 and females). Per screening day, injections for 40 different genes and controls were performed,
487 where the first round of injection of each day represented the negative control (injection buffer).
488 Injections were performed four days a week with the fifth day being required for stock maintenance
489 and documentation. Using this schedule, each week 156 novel genes were injected. On day 7 and 16
490 after injection, the lethality of the larvae, pupae and adults, respectively was determined. See
491 supporting Figures 1 and 5 for detailed information.

492 Functional annotation of genes

493 Functional annotation of *Tribolium castaneum* genes was performed as described in [54]. In brief,
494 BLAST2GO v1.3.3 [55] was used to summarize annotation of protein domain predictions from
495 InterproScan v5.17-56.0 [56] and similarity searches against Uniprot KB using NCBI-BlastP v2.2.27 [57].

496 Functional and pathway enrichment analysis was performed using hypergeometric distribution
497 with R package goseq v1.28.0 [58] with default parameters. For enrichment of pathways, annotation
498 from KEGG database was used [38].

499 For visualization and clustering of enriched GO terms, REVIGO v1.8.1 [40] was used with default
500 parameters. Clustering of GO terms was performed at a cutoff value of 0.9.

501 Clustering

502 Clustering of lethal genes was performed using kmeans clustering with R v3.6.2. The number (n=5)
503 of clusters was defined using the elbow method. A number of genes had not been screened with 300
504 ng/ μ l concentration. In order to include them in the analysis, we replaced these values with the
505 values from the 30 ng/ μ l concentration. Based on our previous distribution and correlation analyses
506 (Fig. 2A,B) this should not introduce a concerning bias that would interfere with our aims.

507

508

509

510 Supporting information

511 Supporting file 1: Supporting text and figures 1-6

512 Supplementary Table 1: GO terms and KEGG pathways enriched in very good target genes

513 Supplementary Table 2: Gene lists underlying the top 15 GO terms

514 Supplementary Table 3: *Most effective target genes* based on lethality at 30ng_per_ul

515 Supplementary Table 4: *Most effective target genes* based on clustering

516 Supplementary Table 5: GO and KEGG enrichment analysis of clusters 1-5

517 Supplementary Table 6: Lethality results of the primary screen for all genes

518

519 Acknowledgements

520 This work was supported by the DFG research unit FOR1234 *iBeetle* via the grants BU1443/6-1
521 and 6-2. We thank Elke Küster for help with the screen.

522

523 References

- 524 1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic
525 interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature*. 1998;391:806–11.
- 526 2. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. *Nature*.
527 2004;431:343–9.
- 528 3. Bachman PM, Bolognesi R, Moar WJ, Mueller GM, Paradise MS, Ramaseshadri P, et al.
529 Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted
530 activity against Western Corn Rootworm (*Diabrotica virgifera virgifera* LeConte). *Transgenic Res*.
531 2013;22:1207–22.
- 532 4. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, et al. Control of coleopteran insect
533 pests through RNA interference. *Nat Biotechnol*. 2007;25:1322–6.
- 534 5. Mao Y-B, Cai W-J, Wang J-W, Hong G-J, Tao X-Y, Wang L-J, et al. Silencing a cotton bollworm P450
535 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. *Nat Biotechnol*.
536 2007;25:1307–13.
- 537 6. Jia R, Zhao H, Huang J, Kong H, Zhang Y, Guo J, et al. Use of RNAi technology to develop a PRSV-
538 resistant transgenic papaya. *Sci Rep*. 2017;7:12636.
- 539 7. Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Pest control. Full crop protection from an
540 insect pest by expression of long double-stranded RNAs in plastids. *Science*. 2015;347:991–4.
- 541 8. Guan R, Chu D, Han X, Miao X, Li H. Advances in the Development of Microbial Double-Stranded
542 RNA Production Systems for Application of RNA Interference in Agricultural Pest Control. *Front
543 Bioeng Biotechnol* [Internet]. 2021 [cited 2023 Jul 4];9. Available from:
544 <https://www.frontiersin.org/articles/10.3389/fbioe.2021.753790>
- 545 9. Rodrigues TB, Mishra SK, Sridharan K, Barnes ER, Alyokhin A, Tuttle R, et al. First Sprayable Double-
546 Stranded RNA-Based Biopesticide Product Targets Proteasome Subunit Beta Type-5 in Colorado
547 Potato Beetle (*Leptinotarsa decemlineata*). *Front Plant Sci*. 2021;12:728652.
- 548 10. Arpaia S, Christiaens O, Giddings K, Jones H, Mezzetti B, Moronta-Barrios F, et al. Biosafety of GM
549 Crop Plants Expressing dsRNA: Data Requirements and EU Regulatory Considerations. *Front Plant Sci*
550 [Internet]. 2020 [cited 2023 Jul 4];11. Available from:
551 <https://www.frontiersin.org/articles/10.3389/fpls.2020.00940>
- 552 11. Mehlhorn S, Ulrich J, Baden CU, Buer B, Maiwald F, Lueke B, et al. The mustard leaf beetle,
553 *Phaedon cochleariae*, as a screening model for exogenous RNAi-based control of coleopteran pests.
554 *Pestic Biochem Physiol*. 2021;176:104870.
- 555 12. Knorr E, Fishilevich E, Tenbusch L, Frey MLF, Rangasamy M, Billion A, et al. Gene silencing in
556 *Tribolium castaneum* as a tool for the targeted identification of candidate RNAi targets in crop pests.
557 *Sci Rep*. 2018;8:2061.
- 558 13. Ulrich J, Dao VA, Majumdar U, Schmitt-Engel C, Schwirz J, Schultheis D, et al. Large scale RNAi
559 screen in *Tribolium* reveals novel target genes for pest control and the proteasome as prime target.
560 *BMC Genomics* [Internet]. 2015 [cited 2016 Jun 15];16. Available from:
561 <http://www.biomedcentral.com/1471-2164/16/674>

562 14. Christiaens O, Whyard S, Vélez AM, Smagghe G. Double-Stranded RNA Technology to Control
563 Insect Pests: Current Status and Challenges. *Front Plant Sci* [Internet]. 2020 [cited 2023 Jul 4];11.
564 Available from: <https://www.frontiersin.org/articles/10.3389/fpls.2020.00451>

565 15. Mehlhorn S, Hunnekohl VS, Geibel S, Nauen R, Bucher G. Establishing RNAi for basic research and
566 pest control and identification of the most efficient target genes for pest control: a brief guide. *Front
567 Zool*. 2021;18:60.

568 16. Cooper AM, Silver K, Zhang J, Park Y, Zhu KY. Molecular mechanisms influencing efficiency of RNA
569 interference in insects. *Pest Manag Sci*. 2019;75:18–28.

570 17. Bucher G, Scholten J, Klingler M. Parental RNAi in *Tribolium* (Coleoptera). *Curr Biol*. 2002;12:R85–
571 6.

572 18. Tomoyasu Y, Denell RE. Larval RNAi in *Tribolium* (Coleoptera) for analyzing adult development.
573 *Dev Genes Evol*. 2004;214:575–8.

574 19. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. Exploring systemic
575 RNA interference in insects: a genome-wide survey for RNAi genes in *Tribolium*. *Genome Biol*.
576 2008;9:R10.

577 20. Whangbo JS, Hunter CP. Environmental RNA interference. *Trends Genet TIG*. 2008;24:297–305.

578 21. Allen ML, Walker WB. Saliva of *Lygus lineolaris* digests double stranded ribonucleic acids. *J Insect
579 Physiol*. 2012;58:391–6.

580 22. Garbutt JS, Bellés X, Richards EH, Reynolds SE. Persistence of double-stranded RNA in insect
581 hemolymph as a potential determiner of RNA interference success: evidence from *Manduca sexta*
582 and *Blattella germanica*. *J Insect Physiol*. 2013;59:171–8.

583 23. Prentice K, Christiaens O, Pertry I, Bailey A, Niblett C, Ghislain M, et al. RNAi-based gene silencing
584 through dsRNA injection or ingestion against the African sweet potato weevil *Cylas puncticollis*
585 (Coleoptera: Brentidae). *Pest Manag Sci*. 2017;73:44–52.

586 24. Prentice K, Smagghe G, Gheysen G, Christiaens O. Nuclease activity decreases the RNAi response
587 in the sweetpotato weevil *Cylas puncticollis*. *Insect Biochem Mol Biol*. 2019;110:80–9.

588 25. Spit J, Philips A, Wynant N, Santos D, Plaetinck G, Vanden Broeck J. Knockdown of nuclease
589 activity in the gut enhances RNAi efficiency in the Colorado potato beetle, *Leptinotarsa*
590 *decemlineata*, but not in the desert locust, *Schistocerca gregaria*. *Insect Biochem Mol Biol*.
591 2017;81:103–16.

592 26. Wynant N, Santos D, Verdonck R, Spit J, Van Wielendaele P, Vanden Broeck J. Identification,
593 functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes
594 present in the gut of the desert locust, *Schistocerca gregaria*. *Insect Biochem Mol Biol*. 2014;46:1–8.

595 27. Christiaens O, Tardajos MG, Martinez Reyna ZL, Dash M, Dubruel P, Smagghe G. Increased RNAi
596 Efficacy in *Spodoptera exigua* via the Formulation of dsRNA With Guanylated Polymers. *Front Physiol*.
597 2018;9:316.

598 28. Lin Y-H, Huang J-H, Liu Y, Belles X, Lee H-J. Oral delivery of dsRNA lipoplexes to German cockroach
599 protects dsRNA from degradation and induces RNAi response. *Pest Manag Sci*. 2017;73:960–6.

600 29. Zhang M, Koskie K, Ross JS, Kayser KJ, Caple MV. Enhancing glycoprotein sialylation by targeted
601 gene silencing in mammalian cells. *Biotechnol Bioeng*. 2010;105:1094–105.

602 30. Schmitt-Engel C, Schultheis D, Schwirz J, Ströhlein N, Troelenberg N, Majumdar U, et al. The
603 iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. *Nat
604 Commun*. 2015;6:7822.

605 31. Bingsohn L, Knorr E, Billion A, Narva KE, Vilcinskas A. Knockdown of genes in the Toll pathway
606 reveals new lethal RNA interference targets for insect pest control. *Insect Mol Biol*. 2017;26:92–102.

607 32. Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in
608 *Drosophila*. *Nature*. 1980;287:795–801.

609 33. Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, et al. Functional genomic
610 analysis of cell division in *C. elegans* using RNAi of genes on chromosome III. *Nature*. 2000;408:331–
611 6.

612 34. Klingler M, Bucher G. The red flour beetle *T. castaneum*: elaborate genetic toolkit and unbiased
613 large scale RNAi screening to study insect biology and evolution. *EvoDevo*. 2022;13:14.

614 35. Tomoyasu Y, Denell RE. Larval RNAi in *Tribolium* (Coleoptera) for analyzing adult development.
615 *Dev Genes Evol*. 2004;214:575–8.

616 36. Hakeem MS, Ansari S, Teuscher M, Weißkopf M, Großmann D, Kessel T, et al. Screens in fly and
617 beetle reveal vastly divergent gene sets required for developmental processes. *BMC Biol*. 2022;20:38.

618 37. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput
619 functional annotation and data mining with the Blast2GO suite. *Nucleic Acids Res*. 2008;36:3420–35.

620 38. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res*.
621 2000;28:27–30.

622 39. dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA, Thurmond J, et al. FlyBase:
623 introduction of the *Drosophila melanogaster* Release 6 reference genome assembly and large-scale
624 migration of genome annotations. *Nucleic Acids Res*. 2015;43:D690–7.

625 40. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene
626 ontology terms. *PloS One*. 2011;6:e21800.

627 41. Abd El Halim HM, Alshukri BMH, Ahmad MS, Nakasu EYT, Awwad MH, Salama EM, et al. RNAi-
628 mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in *Tribolium*
629 *castaneum*. *Sci Rep*. 2016;6:29301.

630 42. Cao M, Gatehouse JA, Fitches EC. A Systematic Study of RNAi Effects and dsRNA Stability in
631 *Tribolium castaneum* and *Acyrtosiphon pisum*, Following Injection and Ingestion of Analogous
632 dsRNAs. *Int J Mol Sci*. 2018;19:1079.

633 43. Peng Y, Wang K, Chen J, Wang J, Zhang H, Ze L, et al. Identification of a double-stranded RNA-
634 degrading nuclease influencing both ingestion and injection RNA interference efficiency in the red
635 flour beetle *Tribolium castaneum*. *Insect Biochem Mol Biol*. 2020;125:103440.

636 44. Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific
637 insecticides. *Insect Biochem Mol Biol*. 2009;39:824–32.

638 45. Zhu F, Xu J, Palli R, Ferguson J, Palli SR. Ingested RNA interference for managing the populations
639 of the Colorado potato beetle, *Leptinotarsa decemlineata*. *Pest Manag Sci*. 2011;67:175–82.

640 46. Herndon N, Shelton J, Gerischer L, Ioannidis P, Ninova M, Dönitz J, et al. Enhanced genome
641 assembly and a new official gene set for *Tribolium castaneum*. *BMC Genomics*. 2020;21:47.

642 47. Hu X, Richtman NM, Zhao J-Z, Duncan KE, Niu X, Procyk LA, et al. Discovery of midgut genes for
643 the RNA interference control of corn rootworm. *Sci Rep*. 2016;6:30542.

644 48. Rodrigues TB, Duan JJ, Palli SR, Rieske LK. Identification of highly effective target genes for RNAi-
645 mediated control of emerald ash borer, *Agrilus planipennis*. *Sci Rep*. 2018;8:5020.

646 49. Pridgeon JW, Zhao L, Becnel JJ, Strickman DA, Clark GG, Linthicum KJ. Topically applied AaeIP1
647 double-stranded RNA kills female adults of *Aedes aegypti*. *J Med Entomol*. 2008;45:414–20.

648 50. Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, et al. Developmental Control of a Lepidopteran Pest
649 *Spodoptera exigua* by Ingestion of Bacteria Expressing dsRNA of a Non-Midgut Gene. *PLoS ONE*.
650 2009;4:e6225.

Buer et al. - Superior RNAi targets for pest control

651 51. Kumar M, Gupta GP, Rajam MV. Silencing of acetylcholinesterase gene of *Helicoverpa armigera*
652 by siRNA affects larval growth and its life cycle. *J Insect Physiol.* 2009;55:273–8.

653 52. Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, et al. The Insect Ecdysone Receptor is a Good Potential
654 Target for RNAi-based Pest Control. *Int J Biol Sci.* 2014;10:1171–80.

655 53. Beder T, Aromolaran O, Dönitz J, Tapanelli S, Adedeji EO, Adebiyi E, et al. Identifying essential
656 genes across eukaryotes by machine learning. *NAR Genomics Bioinforma.* 2021;3:lqab110.

657 54. Boaventura D, Buer B, Hamaekers N, Maiwald F, Nauen R. Toxicological and molecular profiling of
658 insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. *Pest Manag
659 Sci.* 2021;77:3713–26.

660 55. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for
661 annotation, visualization and analysis in functional genomics research. *Bioinformatics.*
662 2005;21:3674–6.

663 56. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein
664 domains identifier. *Nucleic Acids Res.* 2005;33:W116-120.

665 57. Mahram A, Herbordt MC. NCBI BLASTP on High-Performance Reconfigurable Computing Systems.
666 *ACM Trans Reconfigurable Technol Syst.* 2015;7:33:1-33:20.

667 58. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting
668 for selection bias. *Genome Biol.* 2010;11:R14.

669