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Abstract (312/400) 

Alzheimer’s disease (AD) is primarily characterized by the accumulation of amyloid and tau 

pathologies. However, alterations in the detailed organization and composition of neural 

tissue also contribute to the disease's early stages. Here, we sought to explore whether 

hippocampal and cortical microstructural changes, such as myelin alterations and 

inflammation-mediated increases in iron, could serve as indices of AD-related 

pathophysiology. In this study, we included 158 participants across the AD spectrum: from 

individuals without cognitive impairment, at high risk for AD, in the prodromal phase with 

mild cognitive impairment, and suffering from clinical dementia. We measured atrophy using 

structural magnetic resonance imaging (MRI) and estimated myelin and iron content using 

quantitative MRI (qMRI) metrics derived from T1 and T2* relaxation, times respectively. We 

integrated these contrasts to estimate a joint multivariate signature of tissue alterations across 

the cortex and hippocampus using non-negative matrix factorization. The relevance of these 

signatures to AD-spectrum measures of medical history, lifestyle, and cognition were further 

explored using partial least squares correlation. Our results reveal lower disease-related 

cortical thickness over large areas of the cortex while T2* provided specific variation across 

the brain (lower in dorsomedial and superior temporal areas, superior frontal cortex, and 

premotor cortex, and higher in the occipital lobe). Additionally, we observed longer T1 and 

T2* times in the hippocampus associated with specific lifestyle risk factors like past smoking, 

high blood pressure, high cholesterol levels, and higher anxiety. These patterns were 

significantly related to older age, associated with AD progression, being female, and being an 

APOE-�4 carrier. Taken together, our results suggest that qMRI metrics could serve as a 

valuable non-invasive tool for exploring the role of myelin and inflammation in AD-related 
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pathophysiology and could be sensitive to modifiable risk factors related to lifestyle and 

medical history. Future studies may use these signatures to investigate their relationship in 

investigations related to lifestyle interventions or novel therapeutics. 
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1. Introduction 

As the global population ages, the proportion of elderly individuals is increasing at an 

unprecedented rate. Advanced age is the most significant risk factor for neurodegenerative 

diseases, such as Alzheimer’s disease (AD)1. The recently approved AD-related therapies2,3 

mostly target extracellular deposition of ß-amyloid (Aß) with modest effect sizes on outcome 

measures that are important to patients: namely cognition and activities of daily living4. 

Further, while Aß and intracellular accumulation of hyperphosphorylated microtubule 

associated protein tau (p-tau) are the main pathological hallmarks of AD, the disease is 

known to be multifactorial and to involve other microstructural changes such as myelin 

deterioration and inflammation-mediated increases in iron5. Additionally, the above 

pathological processes are likely initiated several years if not decades before the first clinical 

manifestations of the disease6. Here, we propose to examine microstructural and 
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morphological signatures of the disease across the AD spectrum: from individuals not 

suffering from cognitive impairment, those at high risk for AD, those in the prodromal phase 

with mild cognitive impairment (MCI), and those suffering from clinical dementia.  

To assess the multifactorial aspect of AD progression, we used a combination of 

neuroimaging measures that index both local brain atrophy and microstructure. Specifically, 

quantitative MRI (qMRI) techniques were used to estimate the biophysical properties of the 

underlying tissue sample (i.e amount of myelin and iron) through the use of relaxation times. 

While qMRI has been increasingly used in some clinical research related to multiple 

sclerosis7 or musculoskeletal diseases8, it has been under-explored in the context of the AD 

spectrum9. Nonetheless, it has been demonstrated that myelin breakdown and inflammation-

induced iron accumulation may promote amyloid accumulation10–14 and that individuals in 

the earliest stages of AD harbour a higher iron load15–17. These previous findings strongly 

suggest that myelin and iron are two pathologically-relevant microstructural properties in the 

context of AD, and their in vivo measurement could add neurobiological insights regarding 

disease pathophysiology and complement treatment targets. 

In this study, we used a data integration technique, namely non-negative matrix factorization 

(NMF), to derive components defined by groupings of voxels sharing common modes of 

covariation across MRI-based measures18. This strategy is ideal to identify relevant brain 

regions while simultaneously providing insight into biological sensitivity and specificity 

within these regions. For example, morphological measures lack a precise biological 

interpretation, and incorporation of microstructural information from qMRI can provide 

insights into the putative underlying causes of volume changes. Here, we specifically studied 

the hippocampus19,20 and cortex21–23 because structural MRI studies have repeatedly 

identified that morphometric changes in these areas are reliable indicators of AD pathology. 

To better understand the association between NMF-derived brain patterns and relevant factors 

in the AD-spectrum, we examined their multi-variate relationship to demographics, medical, 

cognitive information and lifestyle risk factors. 

Our findings suggest that the cortical morphometry and hippocampal microstructure patterns 

may sensitively index AD progression. Specifically, our microstructural findings reveal lower 

tissue integrity, decreased myelin, higher water content, and iron reduction in the 

hippocampus, all of which are associated with disease stage. Cortical findings revealed a 

reduction of cortical thickness (CT) and surface area (SA), but no myelin changes, suggesting 
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a neuronal loss more than a glial alteration related to the progression of AD. Finally, 

multivariate analyses demonstrate an association between some of these patterns that were 

preferentially associated with AD-related risk factors like smoking, high cholesterol levels, 

blood pressure, and anxiety. We believe that this approach can be further refined to examine 

the impact of trials related to lifestyle interventions or novel therapeutics. 

 

2. Methods 

A workflow of the key methodological steps employed in our study is depicted in Figure 1.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.24.576996doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.576996
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Schematic representation of the methods. From the 219 initial participants, 61 

were excluded due to motion quality control (QC), leaving 158 participants with high-quality 

MRI images that were included in the final sample. The MP2RAGE sequence provides a T1w 

image and a quantitative T1 map. The minc-bpipe-library is used to preprocess the T1w 

images and obtain a brain mask. CIVET is used to extract CT, SA and cortical surfaces. 

Additional surfaces were created to sample the maps at different cortical depths (12.5%, 25%, 

37.5%, 50%, 62.5%, 75% and 87.5%). � is defined as the angle between  and the cortical 
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normal at each vertex. The multi-echo gradient echo sequence provides 12 magnitude images. 

A denoising using adaptive non-local means denoising 24 is applied on each echo. An 

exponential fit was used to extract T2* relaxation times from the 12 echoes and the angle � 

was used to residualized the cortical T2* values. Deformation based morphometry (DBM) 

was used to calculate jacobians (J) using the T1w scans. Using the average template created 

from DBM, we manually defined a hippocampal mask to extract hippocampal voxel-wise 

metrics. 

2.1. Participants 

Individuals from two datasets collected at the Douglas Research Center were included. This 

data acquisition was approved by McGill Institutional Review Board and Douglas Mental 

Health University Institute Research Ethics Board. 219 participants were originally included: 

168 individuals were part of the Alzheimer’s disease biomarker cohort25–29 and 51 were part 

of the “Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer 

Disease” (PREVENT-AD) cohort30. Inclusion and exclusion criteria are described in 

Supplementary methods. Demographics of our participants are reported in Table 1. After 

quality control (QC) of the image processing (described in Sections 2.2, 2.4 and 2.6), we 

included 158 individuals across the AD spectrum: 38 healthy controls (HC), 58 cognitively 

healthy individuals with a parental AD history (FAMHX), 41 with mild cognitive impairment 

(MCI) and 21 with AD. 
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Table 1: Demographic information of the 158 participants who passed QC and included in 

the study. 

 

 

2.2. Demographic variables  

Trained research assistants used questionnaires to gather information in four broad categories: 

cognitive, psychological, medical, and lifestyle. All this information will be collectively 

referred to as 'demographic variables' for the remainder of this study for the sake of 

readability. 

● Cognition was assessed using the Montreal cognitive assessment (MOCA)31 and the 

repeatable battery for the assessment of neuropsychological status (RBANS)32, (see 

supplementary methods for additional information about the tests). 
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● For psychiatric variables, binary variables for depression and anxiety were used. A 

value of 1 indicates that an individual reported ever having an anxiety or depressive 

episode that required the care of a physician and pharmacological treatment, while a 

value of 0 indicates that they never had such an episode. 

● We included information on medical history known to be comorbid with risk for AD 

or maladaptive aging, including hearing problems33, concussion34, transient ischemic 

attack35, brain injury36, headaches37, seizures38, heart disease39, liver disease40, kidney 

disease41, thyroid disease42, cancer43, arthritis44, neck/back problems45, and allergies46. 

● We also examined modifiable lifestyle-related risk factors known to increase risk for 

AD; these included: alcohol use47, smoking48, drug use49, high blood pressure50, high 

cholesterol51, and diabetes52. 

Because some variables had a limited amount (≤ 10.75%) of missing data (see 

supplementary table 1, we imputed missing values with Random Forest imputation using 

the missForest package (version 1.4) on R (version 3.5.1) for the 158 included individuals. 

 

2.3. Imaging acquisition 

Participants of the two datasets were scanned on the same 3T Siemens Tim Trio MRI scanner 

at the Douglas Research Center using a 32-channel head coil.  

● We acquired whole brain magnetization prepared 2 rapid acquisitions by gradient 

echo (MP2RAGE) sequence at 1 mm isotropic resolution53. T1w uniform image 

(UNI; unbiased from B1 inhomogeneity, T2* and PD) was used for morphological 

characterization, and a map of the longitudinal spin-lattice relaxation time T1 was 

used for microstructural characterization of the myelin content. The MP2RAGE 

acquisition parameters are: inversion time (TI)1/TI2 = 700/2500 ms, echo time 

(TE)/repetition time (TR) = 2.91/5000 ms, flip angle (�)1/�2 = 4/5 deg, field-of-view 

(FOV) =256 x 256 mm2, 176 slices, 1 mm isotropic voxel dimensions. The image 

acquisition is accelerated in the phase encode direction by a GeneRalized 

Autocalibrating Partial Parallel Acquisition (GRAPPA) factor of 3, for a total scan 

time of 8 min 22 sec. QC of the T1w raw images were performed using a standardized 

procedure54 (https://github.com/CoBrALab/documentation/wiki/Motion-Quality-
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Control-Manual) to limit the well-known confounds of motion on downstream MRI-

derived measurements55,56.  

● A 3D multi-echo T2*-weighted gradient echo scan was acquired with the following 

parameters: 12 TE = [2.84, 6.2, 9.56, 12.92, 16.28, 19.64, 23, 26.36, 29.72, 33.08, 

36.44, 39.8] ms, TR = 44 ms, bandwidth = 500 Hz/Px, � = 15 deg, FOV = 180 x 192, 

144 slices, 1 mm isotropic resolution, phase partial Fourier 6/8, GRAPPA acceleration 

factor = 2, for a total scan time of 9 min 44 sec. Estimation of the transverse T2* 

relaxation time is explained in Section 2.6 and is considered a marker of iron 

content57. 

While it is true that the correlation between T1 and T2* times with myelin and iron, 

respectively, are frequently acknowledged, the biological specificity to these mechanisms is 

far more complex. We delve into a more comprehensive description of the putative biological 

specificity underlying the observed signal in Discussion 4.3. 

 

2.4. Image processing 

2.4.1. Preprocessing 

The minc-bpipe-library pipeline (https://github.com/CobraLab/minc-bpipe-library) was 

employed to preprocess T1w images and performed N4 bias field correction58,  standardized 

the FOV and head orientation, extracted the brain and created brain masks using BEaST59. 

QC at every step of the pipeline was performed 

(https://github.com/CoBrALab/documentation/wiki/Motion-Quality-Control-(QC)-Manual). 

2.4.2. T2* map extraction 

Each GRE echo was denoised using an adaptive non-local means algorithm24 to improve the 

signal-to-noise ratio of the scans (see Supplementary Figure 1). The T2* exponential decay 

constant was estimated voxel-wise using the Levenberg-Marquardt curve fit function 

(https://github.com/CoBrALab/minc-toolkit-extras/blob/master/t2star_fit_simpleitk.py) using 

a single exponential model of the T2* decay equation: 
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, 

where  is the transverse magnetization at time t. 

QC of the T2* maps was performed to examine the scan quality based on motion artifacts and 

to remove scans with signal drop off (mostly in the temporal lobe) or spurious signal intensity 

variation throughout the map (see examples of good and bad quality T2* maps in 

Supplementary Figure 2). 

2.4.3. Morphometric and qMRI cortical feature extraction 

All T1w UNI images were processed with the CIVET pipeline (version 2.1.1)60,61 to estimate 

vertex-wise CT and SA. Vertex-wise T1 and T2* values were sampled across the different 

depths with increments of 12.5% from the pial surface (“0% surface”) to the gray matter 

(GM) and white matter (WM) interface (“100% surface”) following similar approaches 

described by others62,63 and averaged. To correct for the T2* dependence on myelinated fiber 

orientation relative to , T2* values were residualized from the angle � between the vertex 

normal and 64. All cortical measurements (morphometric and qMRI) were performed at 

each vertex of the 40,962 vertices per hemisphere and were spatially smoothed with a 30 mm 

surface-based heat diffusion kernel65. The medial wall was masked and therefore only 38,561 

vertices per hemisphere were considered in the analyses. More details about the processing 

are available in Supplementary methods.  

 

2.4.4. Morphometric and qMRI hippocampal feature 

extraction 

To derive voxel-wise volumetric measurements of the hippocampus, we used a python 

pipeline for deformation based morphometry (DBM),  developed by the CoBrA Lab 

https://github.com/CobraLab/twolevel_ants_dbm. This technique uses the ANTs tools to 

obtain a minimally biased template using a group-wise registration strategy66, reproducing the 

approach employed in previous neurodegeneration studies conducted within our research 

group 67. We calculated voxel-wise volume differences by estimating the Jacobian 

determinant at each voxel from the individual non-linear displacement fields68. In this study, 
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we used the relative Jacobian (J) determinant to account for overall differences in brain size 

(explicitly modeling the non-linear part of the deformations after linear scaling to the 

template). J values were log-transformed to aid statistical analysis: positive values indicate 

volumetric expansion whereas negative values indicated relative decrease volume. 

To ensure that DBM outputs, T2* and T1 maps have voxel-wise correspondence across 

participants, we applied the transforms to T2* and T1 maps. A hippocampal mask was 

created on the average T1w brain to extract voxel-wise hippocampal information: J, T1 and 

T2* values (more information about the mask creation in Supplementary methods and 

Supplementary figure 3).  

 

2.5. Statistics 

2.5.1. Non-negative matrix factorization 

To integrate the multiple measures from morphometry and microstructure, we sought to use a 

multivariate method that detects covariance patterns that jointly describe all metrics used. To 

do this we leveraged non-negative matrix factorization (NMF) 69 as previously done in other 

publications in our group 18,29,69–72. NMF detects underlying patterns of covariation from 

complex data while promoting sparsity in the solution, resulting in spatially non-overlapping 

regions of covarying metrics.  

This method decomposes an input matrix of vertices by subjects into two matrices: (i) 

representing spatial parcellation (vertices by components, Figure 2A.1 and Figure 2B.1), and 

(ii) reflecting metrics for each subject within each component (components by subjects, 

Figure 2A.2-3 and Figure 2B.2-3). We determined the number of components by  assessing 

reconstruction stability and accuracy across different granularities as described in 

Supplementary methods, represented in Supplementary Figures 4 and 5, and in 

accordance with our previous work 18,70,72. 
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2.5.2. Univariate analyses 

To examine the relationship between NMF weights and our groups, we used ANCOVAs 

while correcting for age. Each component and metric were tested independently, totaling 52 

models (4 * 10 cortical components + 3 * 4 hippocampal components). Subsequently, post-

hoc Tukey Honestly Significant Difference (HSD) tests were employed to assess pairwise 

group differences. The resulting p-values from all models were corrected for False Discovery 

Rate (FDR) correction (q=0.05). Additionally, ANCOVA 95% confidence intervals for 

overall group differences are shown in Figure 3. 

 

2.5.3. Investigating joint-brain and demographic signatures 

using partial least squares 

Upon extracting our joint patterns of covariance in the MRI data, we examined their 

relevance to AD-related disease progression. To accomplish this we used partial least squares 

(PLS) analysis to relate the NMF-component individual metric weights to demographic 

signatures, as done in previous studies by our group18,70–72.  PLS is a multivariate statistical 

technique commonly used to investigate the relationships between brain measures and 

demographic measures. This technique identifies patterns of covariance between two 

matrices: one matrix represents brain measures, and the other matrix includes demographic 

information. By decomposing these matrices into a set of orthogonal latent variables (LV), 

PLS analysis identifies the most prominent patterns of covariance between the two matrices. 

Each LV in PLS analysis represents a linear combination of the brain and demographic 

matrices providing a representation of brain regions and demographic measures that are most 

closely related. Here, our brain matrix included NMF weights, and the other matrix included 

demographic variables described in Section 2.2, and no information about the clinical 

grouping APOE4 status, age, sex and years of education of the individuals was provided. The 

goal of this approach was to capture a pattern of brain and demographic information which 

could explain the most covariance without giving information about our participant’s status. 

Our brain data included the NMF weights from the cortex (10 components x 4 metrics) and 

the hippocampus (4 components x 3 metrics) combined (i.e., 52 metrics for 158 participants). 

The values in the demographic matrices were z-scored prior to performing PLS (i.e., z-score 

the values of each demographic variable across all subjects). Each LV was tested statistically 
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using permutation testing and split half analyses and variable contribution was assessed with 

bootstrap resampling following a similar protocol as in previous studies18,28,67,73–76. 

Brain and demographic scores obtained from PLS analyses were further analyzed to 

determine if they were associated with key demographic and clinical variables not included in 

the PLS analysis. The relationship between PLS scores and demographic/clinical variables 

(group, age, sex, APOE4 and education) were assessed using ANCOVAs. Each model 

included all of these demographic/clinical variables simultaneously, resulting in a total of six 

models (one for each brain and demographic scores of the 3 LVs). Post-hoc Tukey Honestly 

Significant Difference (HSD) tests were performed to examine pairwise group differences. 

False discovery rate (FDR) corrected p-values can be found in Supplementary table 2. The 

goal of these analyses was to determine if PLS successfully captured, using a data-driven 

approach, patterns of brain and demographic that are clinically relevant in the context of AD. 

2.6. Data and code availability statement 

Raw data from this cohort can be obtained through collaborative agreement and reasonable 

request but is not publicly available due to the lack of informed consent by these human 

participants.  

The code used to run NMF is available at 

https://github.com/CoBrALab/documentation/wiki/opNMF-for-vertex-data. For executing 

PLS, please refer to the instructions provided in 

https://github.com/CoBrALab/documentation/wiki/Running-PLS-in-MATLAB-with-cross-

sectional-data. The repository containing all NMF and PLS outputs, as well as the main R 

scripts used to plot the figures in this paper, can be found at 

https://github.com/AurelieBussy/Cortex_hippocampus_Alzheimer_project.  

 

3. Results 

3.1. Demographics 

The final sample after quality control included 158 participants, with a mean age of 66.9 

years, an age range between 53 and 84 years and 62% of females (Table 1). The FAMHX 
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group was significantly younger than the other groups (p < 0.001) and education was lower 

for the MCI group compared to HC and AD (p < 0.01).  

3.2. NMF decomposition 

3.2.1. Cortical decomposition 

The outputs of the cortical NMF analyses are shown in Figure 2A. Although we initially 

considered including 4 components because of its high stability score, we found that the 

corresponding spatial outputs were confined to the primary lobar regions (see 

Supplementary Figure 6). Because this did not offer an expansive representation of the 

cortex, we opted to investigate more components. Since NMF maintained a reasonable 

stability and accuracy for an increasing number of components, we proceeded with 10 

components. Each component qualitatively demonstrated bilateral patterns in distinct cortical 

regions described in Figure 2A.  
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Figure 2: Visualization of the spatial components. A | 1 Visualization of the 10 spatial 

components where each component is specific to a brain region. Component 1 is in the 

dorsomedial and superior temporal regions, component 2 in the occipital lobe, component 3 

in the superior frontal cortex, component 4 in the auditory/motor cortices, component 5 in the 

inferior/medial temporal lobe, component 6 in the frontal lobe, component 7 in the 
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cingulate/somatosensory regions, component 8 in the precuneus, component 9 is the premotor 

cortex and component 10 in the temporo-parietal junction. A | 2 Raw subject-metric weights 

matrix, where each line corresponds to a spatial component, and each column represents a 

subject-metric weight. A | 3 Standardized subject-metric matrix by z-scoring across rows (i.e 

per component) to better visualize which metric contributes the most to each component. For 

example, across our individuals, CT contributes the most to component 1 while SA 

contributes the most to component 2. B | 1 Visualization of the 4 hippocampal components, 

where each component is specific to a hippocampal region. Component 1 is in the body and 

tail, component 2 in the head, component 3 in the lateral regions, and component 4 in the 

medial regions of the hippocampus. B | 2 Raw subject-metric weights matrix and B | 3 

standardized subject-metric matrix by z-scoring across rows. 

3.2.2. Hippocampal decomposition 

The outputs of the hippocampal stability analyses are shown in Figure 2B. We selected 4 

components as per previous work examining hippocampal neuroanatomy18 and replicated 

here with our stability analysis. The 4 components of the hippocampus consisted of the body 

and tail (component 1), the head (component 2), the lateral areas (component 3), and the 

medial areas (component 4).  

 

3.3. NMF components 

3.3.1. Cortical components 

Each component can be described by their spatial pattern and their subject-wise and MRI 

metric-wise weights. For example, component 1 corresponds to the dorsomedial and superior 

temporal regions, high CT weights, low SA weights, and medium T1 and T2* weights. These 

values are apparent in both the raw subject-weight (Figure 2 A| 2) and standardized subject-

weight matrices (Figure 2 A| 3). Accordingly, these patterns suggest that CT plays a greater 

contribution than SA in the spatial component 1.  

However, comparing the contribution of a metric across different components (as shown in 

Figure 2) is not possible because the subject-wise weights are standardized per component. 

Nevertheless, we can compare the NMF weights of individuals within the same component 
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and interpret the weights as raw values (e.g., average CT in each spatial region). To compare 

each metric across components, refer to Supplementary Section 6 and Supplementary 

figure 7.  

3.3.2. Hippocampal components 

In the same way, each hippocampal component can be described with the subject-metric 

weights. J mostly contributed in component 1 and 2 patterns (hippocampal body and head) 

while T1 contributed the most to component 4 (medial hippocampus) and both T1 and T2* 

contributed more than J in component 3 (lateral hippocampus).  

 

3.4. Group differences 

We assessed whether our NMF components could differentiate our groups by using cortical 

and hippocampal weights, as shown in Figure 3. Comparing AD to FAMHX, we observed 

lower CT throughout the brain, reduced SA in component 5 and 10 (which correspond to the 

temporal lobe and the temporo-parietal junction), and longer T1 and T2* in components 2, 3, 

and 4 of the hippocampi (which correspond to the head, lateral, and medial regions). A 

similar but more widespread pattern was observed when comparing AD and HC, with 

reductions in SA observed in more regions of the cortex and longer in T1 and T2* seen 

throughout the entire hippocampus. Additionally, T2* was longer in the occipital regions of 

individuals with AD vs HC. Comparing AD and MCI, we observed fewer significant 

differences, but we still found lower CT in the occipital, temporal, and temporo-parietal 

junction, as well as longer T2* in the lateral region of the hippocampus. Comparing MCI and 

HC, we found lower CT in the dorsomedial and superior temporal regions, in the 

auditory/motor cortices, and in the precuneus, as well as longer T1 and T2* in the lateral and 

medial regions of the hippocampus. When comparing MCI and FAMHX, we only observed 

lower CT in the precuneus, and no significant differences were found between FAMHX and 

HC. Our results suggest that cortical morphometry and hippocampal microstructure are the 

metrics the most sensitive to AD progression, making it possible to distinguish between MCI 

and controls for example. Indeed, individuals with AD showed greater cortical thickness and 

surface reduction as well as longer hippocampal T1 and T2* compared to those with MCI, 

who in turn demonstrated significant differences from the control group. 
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Figure 3: Pairwise NMF weights comparisons. NMF metric-wise and component-wise 

weights were compared pairwise across all combinations of groups The metrics included 

cortical CT, SA, T1, T2*, and hippocampal J, T1, and T2*. The mean group difference was 

indicated by circles, with white circles representing non-significant differences, and colored 

circles representing significant differences after FDR correction across all p-values. The plots 

are color coded by metric and the 95% confidence interval of the group difference is 

represented by vertical bars. 
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3.5. Brain and demographic relationships 

3.5.1. Latent variables 

Our PLS results demonstrated three significant LVs, explaining 76.9% (p<0.0001), 7.5% 

(p<0.001) and 5.2% (p<0.001) of the covariance respectively. The results of the first LV are 

shown in Figure 4 (LV2 and LV3 in Supplementary Figure 8 and 10; both LVs 

predominantly captured patterns associated with sex but showed no significant correlation 

with age or AD progression). Figure 4A shows the brain pattern, describing a lower CT, SA 

in the entire brain, shorter T2* in the dorsomedial and superior temporal regions, superior 

frontal cortex and in the premotor cortex and longer T2* in the occipital lobe. We found a 

decreased J in the body and tail, an increased J in the most lateral region as well as longer T1 

and T2* values in all regions of the hippocampus. Importantly, we observed that the 

hippocampal microstructure exhibits stronger contributions to AD-relevant variables 

compared to its volumes. We observed that cortical morphometry and hippocampal 

microstructure were linked to a pattern of past smoking consumption, high blood pressure 

(BP) and cholesterol, lower scores in all cognitive domains, and higher anxiety levels (Figure 

4B).  
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Figure 4: Relationship between brain and cognitive, psychological, medical and lifestyle 

information of the LV1. The first LV explained 76.9% of the covariance between brain and 

cognitive, psychological, medical, and lifestyle information. The brain pattern on the left (A) 

illustrates spatially the contribution of each metric to the pattern with bootstrap ratio (BSR) 

values on each brain structure. Blue color indicates negative BSR values and red indicates 

positive BSR values. Components with absolute BSR values higher than 1.96 are colored to 

show significant contribution. The bar plot in the middle of the figure shows more precisely 

the BSR values for each component, with black vertical lines representing a BSR of 1.96 

(equivalent to p=0.05) and gray lines representing a BSR of 2.58 (equivalent to p=0.01). On 

the right-hand side (B), we show the cognitive, psychological, medical, and lifestyle patterns 

associated with the brain pattern on the left. Bars are colored if they are significant (when 

error bars do not cross zero) and are white if non-significant. The brain pattern is associated 

with past smoking consumption, high BP and cholesterol, lower cognitive scores, and higher 

anxiety. 
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3.5.2. Brain/demographic pattern sensitive of disease 

progression, age and genetic risk 

Lastly, we explored how age, group, APOE4 status, sex, and education related to the brain 

and demographic patterns of the LV1. Similar analyses were performed for the LV2 and LV3 

pattern (Supplementary Figure 9 and 11). We observed significant group differences 

between each pair of groups, except for HC vs FAMHX in the brain and HC vs FAMHX and 

HC vs MCI in the demographic scores. Our findings indicated that both brain and 

demographic were positively associated with age while only brain scores were significantly 

associated with female sex. Additionally, APOE4 carriers demonstrated a stronger expression 

of the brain pattern than non-carriers. No significant effect of education was observed in 

relation to brain and demographic scores. In summary, the results demonstrate a significant 

association between the highlighted brain and demographic patterns in LV1 and AD 

progression, particularly among older individuals, females, and carriers of the APOE4 allele. 

 

Figure 5: Post-hoc analyses of the PLS brain and demographic scores of LV1. (A) 

pairwise group comparisons of the brain and demographic scores. Results of the linear 
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models illustrating the brain and demographic relationships with age (B), sex (C), APOE4 

status (D) and education (E). * p < 0.05, ** p < 0.01, *** p < 0.001 after FDR correction 

across all p-values. 

4. Discussion 

In this study, we examined if brain morphometry and qMRI markers of iron and myelin could 

be sensitive to AD progression and AD-related risk factors. First, we took a data-driven 

approach to parcellate the cortex and the hippocampus using NMF by integrating multimodal 

MRI data to take advantage of the complementary information conveyed by these indices. 

Overall, our results suggest that combining multi-contrast MRI metrics is critical for gaining 

a more nuanced understanding of the properties of the brain and is well-adapted to identify 

their differential susceptibility to adaptive and maladaptive aging and AD.  

4.1. Brain patterns associated with AD 

Our analysis of pairwise group comparisons of NMF weighted demonstrated that cortical 

thinning was apparent throughout the brain when we compared AD vs FAMHX or AD vs 

HC. However, the cortical signature of AD is often characterized by regionally specific 

cortical thinning related to symptom severity in the temporal and frontal regions77,78, while 

our results did not necessarily show stronger effects in these regions. A previous study from 

our group using similar methodologies in a healthy aging population demonstrated a 

widespread association between cortical SA and performance across cognitive domains in 

midlife 71. Although not as widespread, our results demonstrated that some level of SA 

reduction in the temporal/parietal lobe was observable in AD relative to HC79. Further, our 

results demonstrated that CT has larger effect size than SA in the LV. Notably, significant 

differences were observed between MCI participants and controls for CT, although SA 

showed significance solely in the more advanced disease stage comparisons (AD vs. 

controls). These findings underscore the greater sensitivity of CT to AD progression when 

compared to SA80. Overall, even though FAMHX carry a higher genetic risk, their 

morphological patterns seemed to be similar with those from the HC group. The resemblance 

between these groups may be attributable to the lower age of the FAMHX relative to 

controls.30. 
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Surprisingly, contrary to our cortical morphometry findings, no hippocampal volume 

differences were found between groups in our univariate analyses. However, a volume 

reduction of the hippocampal body and tail, and an increase in volume in the hippocampal 

lateral region were found in LV1. These results suggest that while hippocampal volume did 

not show a specific relationship to a univariate group effect, it may be more useful to model 

this variation using methods that capture disease spectrum rather than simply searching for 

group differences. This is supported by the specificity of our demographic patterns (discussed 

in Section 4.2). Interestingly, the hippocampal parcellation obtained in this study was similar 

to the one we previously reported18, suggesting that this organization is a consistent 

microstructural pattern in the human hippocampus.  

Cortical T1 and T2* did not differ between our groups, while hippocampal T1 and T2* did. 

Therefore, we hypothesize that the cortical thinning might not be driven by intra-cortical 

demyelination or iron accumulation but rather by neuronal death81. This further suggests that 

lower myelin content associated with AD may initiate in the hippocampus prior to 

manifesting in the cortex. This is in line with previous studies showing a specific myelin 

decrease in the hippocampus using magnetization transfer measurements in MCI 

individuals82 and in AD individuals compared to controls9. Using T1w/T2w ratio to estimate 

intracortical myelin, another study demonstrated that hippocampal demyelination was 

consistently associated with AD progression83. Previous research showed lower T2* in the 

hippocampus of those with AD, indicating an increase in iron levels84. However, our study 

revealed the opposite pattern, with disease progression associated with a longer hippocampal 

T2*. Further discussion on these findings can be found in Section 4.3.  

 

4.2. Demographic alterations associated with AD 

Our results demonstrated demographic variables that are well-described as risk factors for 

AD; namely: lower cognitive scores, higher anxiety, BP, cholesterol and smoking85, were 

associated with our brain alterations and overall AD progression. 

About 70% of AD patients present anxiety symptoms86 which have been linked to a higher 

risk ratio of converting to MCI or dementia87, worse mini mental state examination (MMSE) 

scores and younger age at onset88,89. Interestingly, in a healthy aging population, anxiety 
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disorders have been previously related to a longer of T1 values in the hippocampus90. This is 

consistent with our results showing a longer hippocampal T1 associated with higher anxiety 

and AD progression. We also found that the pattern of increased anxiety was significantly 

related to cortical thinning across the cortex. Similarly, previous research reported a 

relationship between higher levels of anxiety symptoms and reduced thickness in several 

cortical regions91. 

A negative correlation between arterial hypertension and myelin content has been observed in 

the WM90. Late-life cortical and WM atrophy have been found to be linked with hypertension 

during early adulthood92. In line with these findings, our study showed a similar effect, where 

higher BP was associated with myelin reduction and cortical thinning93. Furthermore, our 

findings indicated a significant association between the brain pattern, disease progression and 

hypertension, aligning with existing research in this field94,95. 

Elevated blood cholesterol levels have been reported to increase Aβ production in the brain96–

98. Conversely, drugs that reduce blood cholesterol have been shown to lower the risks of 

developing AD99,100. It's worth noting that the blood-brain barrier (BBB) typically prevents 

any exchange between the brain and the cholesterol, which means that most brain cholesterol 

comes from local synthesis. Further, it has been shown that the hippocampus is a brain region 

particularly susceptible to BBB breakdown101, and as a result, there may be early alterations 

in the level of hippocampal cholesterol in AD progression. However, while most studies 

report brain cholesterol increases related to aging and AD98,102,103, others found the opposite 

effect104.  

The identification of the APOE4 allele as a crucial genetic risk factor for AD is in accordance 

with the involvement of cholesterol in AD's pathogenesis51,104,105. Notably, in APOE4 

carriers, ApoE exhibits reduced binding capacity and transport affinity for lipids106,107, which 

may decrease the transfer of cholesterol from astrocytes to neurons, eventually leading to 

neuronal apoptosis. This aligns with our findings, which demonstrated that APOE4 carriers 

were more heavily loaded in the pattern of brain and lifestyle risk factor association that we 

observed. While there is a need to clarify the exact relationship between brain cholesterol 

levels and AD, altered hippocampal cholesterol could explain the hippocampal demyelination 

pattern related to being APOE4 carriers.  
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Finally, research has shown that smoking was associated with an increased risk of dementia 

and AD108,109. Smoking has also been linked to reduced brain volume and atrophy in specific 

cortical regions, including the frontal, occipital, and temporal lobes110,111. Even when taking 

into account the amount of tobacco smoked over their lifetime, individuals who currently 

smoke had greater hippocampal atrophy than those who never smoked or had quit smoking in 

the past112. Smokers have also been found to have a greater rate of atrophy in regions that are 

affected in the early stages of AD compared to non-smokers113. Furthermore, cigarette smoke 

is known to trigger the production of endogenous oxidants by activating the immune response 

pathway associated with inflammation114,115. Significant positive relationships between R2* 

and smoking were found in certain brain regions such as the basal ganglia, but not in the 

hippocampus90. Here, we found a longer hippocampal T2* being associated with past 

smoking consumption. This difference of findings could be explained by the fact that our 

pattern was found in the context of AD progression while Trofimova et al.90 included healthy 

participants. Although R2* is commonly interpreted as being solely related to iron content, in 

Section 4.3, we discuss how other mechanisms linked to AD pathology can influence these 

metrics. 

4.3. Specificity of qMRI metrics 

We employed two qMRI methods giving important tissue relaxation times, namely T1 and 

T2* maps. T1 maps offer insights into the longitudinal relaxation time constant (T1) at each 

voxel, influenced by factors like myelin116,117, iron118, and proton density (PD)119. Increased 

myelin and iron content reduce T1, while increased water content extends T1, particularly 

observed in subcortical gray matter where T1 variation is linked to myelin content120. 

Complementing T1 mapping, T2* relaxation time reflects dephasing due to molecular 

interactions and local magnetic field inhomogeneities121, primarily influenced by iron 

content57,122,123.  

Few validation studies have been performed in the context of diseased tissue. For example, 

T1 has been almost only validated compared to myelin in multiple sclerosis brains124–127 or in 

animal models with experimentally induced demyelination128,129. T2* (or R2*) has been 

validated against iron in a larger range of applications, from cardiac studies130, hepatic 

studies131, to neurological studies in both multiple sclerosis132,133 and in healthy 

individuals123,134. However, it is currently unclear what T1 and T2* metrics reflect in an AD 
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brain where other microstructural changes, such as neuronal loss and increased amyloid and 

tau accumulation, occur simultaneously.  

Interpretation of T2* is complex as it combines the effects of transverse relaxation T2 and 

magnetic susceptibility T2', where increased water content increases T2 and increased iron 

content decreases T2' (
1

�2�
�

1

�2
�

1

�2′
). While several studies have reported an extended T2 in 

the hippocampus of individuals with AD135–137, others have observed the opposite effect138 or 

no change at all139. Longer hippocampal T2 in the AD group has been postulated to be linked 

to increased water reflecting tissue damage16. Indeed, in neurodegenerative disorders, the 

increased water content in degenerating tissue can also affect MRI relaxation times and 

reduce R2, which opposes the effect of iron135. Therefore, in AD, the increased water content 

may make it difficult to detect increased iron levels with T2*140. 

Our results demonstrated significantly longer T1 and T2* in the hippocampus of individuals 

with AD compared to HC. T1 is primarily linked to myelin content, where a longer in T1 

generally indicates lower myelin content116. A reduction of glial cell density, including 

astrocytes and oligodendrocytes could lead to a reduction of ferritin leading to a decreased 

iron141. Further, we know that T2* mostly reflects the amount of ferritin142 Therefore, we 

postulate that our findings principally captures a reduction in hippocampal tissue integrity, 

decreased myelin, increased water content and iron reduction.  

 

4.4. Role of myelin in AD progression 

Starting with the pioneering work of Bartzokis' 10,11, myelin deterioration has been suggested 

as being an important factor in the progression of AD. Several arguments highlight the link 

between myelin and AD. First, humans are the only animal susceptible to AD pathology. 

Indeed, even if some nonhuman primates and dogs develop amyloid, they do not present tau 

or dementia-like symptoms143.  

Supporting the fact that amyloid might not be the main molecule triggering cognitive decline, 

combined data from multiple trials has demonstrated that reducing amyloid levels do not 

significantly enhance cognitive function144. Another important criticism is that both 

neuropathological and PET data reveal substantial evidence of Aβ pathology in older 
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individuals who do not necessarily exhibit cognitive impairment145. Altogether, the presence 

of Aβ deposition without any cognitive impairment, along with the reduction of Aβ levels 

without any cognitive improvement, raises significant concerns regarding the validity of Aβ 

as a causal factor of the clinical symptoms of AD146,147. 

Interestingly, there is a noticeable similarity between the pattern of neurofibrillary tangles 

(NFT) changes observed in AD and the reverse order of cortical myelination148. Indeed, 

certain brain regions, such as the prefrontal cortex and association areas such as the parietal 

and temporal lobes, which are characterized by late myelination, are particularly susceptible 

to the development of amyloid and NFT. Late myelinated regions which have thinner myelin 

sheaths149 are more susceptible to degeneration150. Conversely, heavily and early myelinated 

regions of the brain, such as the primary motor and sensory areas, appear to be more resistant 

to the disease149. In our results, while we did not find significant cortical T1 variation related 

to the disease progression, we found high sensitivity of hippocampal demyelination to disease 

progression. These findings are consistent with the hippocampus being one of the first 

regions impacted by AD pathology151.  

Studies have shown that higher amyloid deposition assessed by PET is associated with lower 

T2* in the cortex84. Therefore, our findings indicating a lower T2* in the dorsomedial and 

superior temporal regions, superior frontal cortex, and premotor cortex are consistent with an 

increased pathological burden in those areas. Notably, these regions correspond to late 

myelinated regions, which aligns with the theory that late myelinated regions are at higher 

risk of developing AD pathology. In contrast, we observed an opposite pattern in early 

myelinated regions such as the occipital lobe, which demonstrated a longer T2* value 

associated with our brain pattern. The cause of this T2* lengthening is unclear, since it could 

be related to the tissue water content, a myelin reduction, death of glial cells, an iron decrease 

or potentially a methodological limitation. 

 

4.5. Methodological limitations 

The MP2RAGE sequence uses small flip angles and an adiabatic inversion pulse to 

significantly mitigate the impact of �1� on resulting T1 maps53. Despite this, residual biases 

linked to �1� may persist, particularly near inferior temporal and frontal lobes. While 
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proposed solutions involve acquiring additional �1
� maps to correct for these 

inhomogeneities to enhance quantitative T1 mapping152, our study lacked �1� map 

acquisition, leaving the possibility that our results may be influenced by the presence of 

�1
� inhomogeneity residuals. However, since our results demonstrate good consistency 

between both hemispheres, we postulate that our results are not driven by this residual 

inhomogeneity. 

Fiber orientation in relation to the main magnetic field �0 affects T2* relaxation times in 

WM153. To reduce angle dependency in cortical T2*, we applied a suggested method64. 

However, estimating myelinated fiber orientation in the complex-shaped hippocampus 

proved impractical, and advanced metrics like diffusion tensor imaging were 

unavailable154,155. Due to the intricate nature of T2* correction, clinical papers often omit this 

step in applications. Consequently, we believe that our results are comparable to most 

findings in the field. 

Unfortunately, our exploration of age and AD progression was constrained to cross-sectional 

data. We acknowledge the inherent limitations of this approach and recognize that future 

studies using longitudinal data would be necessary to validate our findings.  

 

Future research 

This work has several potential avenues for future investigation. First, to further validate our 

interpretation, additional qMRI markers, such as PD and magnetization transfer metrics, 

could be used alongside T2* and T1. PD, in particular, could provide valuable information 

about the water content in the tissue. Second, the relationship between qMRI and AD 

pathology is not yet well characterized, and thus, including amyloid and tau PET scans 

alongside qMRI protocols would shed light on the impact of these pathological molecules on 

qMRI metrics. Finally, a longitudinal dataset with both PET and qMRI measurements in 

preclinical AD individuals would be ideal to determine the interplay between myelin, iron, 

amyloid, and tau. 
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5. Conclusion 

In conclusion, by using qMRI to investigate the underlying biological processes that could 

drive morphological changes, our study suggests that hippocampal T1 and T2* could serve as 

potential biomarkers for AD. Further, significant associations between certain risk factors and 

AD-related brain pattern alterations demonstrate that public health initiatives aimed at 

reducing smoking, cholesterol levels, blood pressure, and anxiety in the population should be 

expanded to slow the progression of AD. 
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Figure legend 

Figure 1: Schematic representation of the methods. From the 219 initial participants, 61 

were excluded due to motion quality control (QC), leaving 158 participants with high-quality 

MRI images that were included in the final sample. The MP2RAGE sequence provides a T1w 

image and a quantitative T1 map. The minc-bpipe-library is used to preprocess the T1w 

images and obtain a brain mask. CIVET is used to extract CT, SA and cortical surfaces. 

Additional surfaces were created to sample the maps at different cortical depths (12.5%, 25%, 

37.5%, 50%, 62.5%, 75% and 87.5%). � is defined as the angle between �0 and the cortical 

normal at each vertex. The multi-echo gradient echo sequence provides 12 magnitude images. 

A denoising using adaptive non-local means denoising 24 is applied on each echo. An 

exponential fit was used to extract T2* relaxation times from the 12 echoes and the angle � 

was used to residualized the cortical T2* values. Deformation based morphometry (DBM) 

was used to calculate jacobians (J) using the T1w scans. Using the average template created 

from DBM, we manually defined a hippocampal mask to extract hippocampal voxel-wise 

metrics. 

Figure 2: Visualization of the spatial components. A | 1 Visualization of the 10 spatial 

components where each component is specific to a brain region. Component 1 is in the 

dorsomedial and superior temporal regions, component 2 in the occipital lobe, component 3 

in the superior frontal cortex, component 4 in the auditory/motor cortices, component 5 in the 

inferior/medial temporal lobe, component 6 in the frontal lobe, component 7 in the 

cingulate/somatosensory regions, component 8 in the precuneus, component 9 is the premotor 

cortex and component 10 in the temporo-parietal junction. A | 2 Raw subject-metric weights 

matrix, where each line corresponds to a spatial component, and each column represents a 

subject-metric weight. A | 3 Standardized subject-metric matrix by z-scoring across rows (i.e 

per component) to better visualize which metric contributes the most to each component. For 

example, across our individuals, CT contributes the most to component 1 while SA 

contributes the most to component 2. B | 1 Visualization of the 4 hippocampal components, 
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where each component is specific to a hippocampal region. Component 1 is in the body and 

tail, component 2 in the head, component 3 in the lateral regions, and component 4 in the 

medial regions of the hippocampus. B | 2 Raw subject-metric weights matrix and B | 3 

standardized subject-metric matrix by z-scoring across rows. 

Figure 3: Pairwise NMF weights comparisons. NMF metric-wise and component-wise 

weights were compared pairwise across all combinations of groups The metrics included 

cortical CT, SA, T1, T2*, and hippocampal J, T1, and T2*. The mean group difference was 

indicated by circles, with gray circles representing non-significant differences, and colored 

circles representing significant differences after FDR correction across all p-values. The plots 

are color coded by metric and the 95% confidence interval of the group difference is 

represented by vertical bars. 

Figure 4: Relationship between brain and cognitive, psychological, medical and lifestyle 

information of the LV1. The first LV explained 76.9% of the covariance between brain and 

cognitive, psychological, medical, and lifestyle information. The brain pattern on the left (A) 

illustrates spatially the contribution of each metric to the pattern with bootstrap ratio (BSR) 

values on each brain structure. Blue color indicates negative BSR values and red indicates 

positive BSR values. Components with absolute BSR values higher than 1.96 are colored to 

show significant contribution. The bar plot in the middle of the figure shows more precisely 

the BSR values for each component, with black vertical lines representing a BSR of 1.96 

(equivalent to p=0.05) and gray lines representing a BSR of 2.58 (equivalent to p=0.01). On 

the right-hand side (B), we show the cognitive, psychological, medical, and lifestyle patterns 

associated with the brain pattern on the left. Bars are colored if they are significant (when 

error bars do not cross zero) and are white if non-significant. The brain pattern is associated 

with past smoking consumption, high BP and cholesterol, lower cognitive scores, and higher 

anxiety. 

Figure 5: Post-hoc analyses of the PLS brain and demographic scores of LV1. (A) 

pairwise group comparisons of the brain and demographic scores. Results of the linear 

models illustrating the brain and demographic relationships with age (B), sex (C), APOE4 

status (D) and education (E). * p < 0.05, ** p < 0.01, *** p < 0.001 after FDR correction 

across all p-values. 
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Table 1: Demographic information of the 158 participants who passed QC and included in 

the study. 
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