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Abstract (312/400)

Alzheimer’s disease (AD) is primarily characterized by the accumulation of amyloid and tau
pathologies. However, alterations in the detailed organization and composition of neural
tissue also contribute to the disease's early stages. Here, we sought to explore whether
hippocampal and cortical microstructural changes, such as myelin alterations and
inflammation-mediated increases in iron, could serve as indices of AD-related
pathophysiology. In this study, we included 158 participants across the AD spectrum: from
individuals without cognitive impairment, at high risk for AD, in the prodromal phase with
mild cognitive impairment, and suffering from clinical dementia. We measured atrophy using
structural magnetic resonance imaging (MRI) and estimated myelin and iron content using
quantitative MRI (QMRI) metrics derived from T1 and T2* relaxation, times respectively. We
integrated these contrasts to estimate a joint multivariate signature of tissue alterations across
the cortex and hippocampus using non-negative matrix factorization. The relevance of these
signatures to AD-spectrum measures of medical history, lifestyle, and cognition were further
explored using partial least squares correlation. Our results reveal lower disease-related
cortical thickness over large areas of the cortex while T2* provided specific variation across
the brain (lower in dorsomedial and superior temporal areas, superior frontal cortex, and
premotor cortex, and higher in the occipital lobe). Additionally, we observed longer T1 and
T2* times in the hippocampus associated with specific lifestyle risk factors like past smoking,
high blood pressure, high cholesterol levels, and higher anxiety. These patterns were
significantly related to older age, associated with AD progression, being female, and being an
APOE-[14 carrier. Taken together, our results suggest that gMRI metrics could serve as a

valuable non-invasive tool for exploring the role of myelin and inflammation in AD-related
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pathophysiology and could be sensitive to modifiable risk factors related to lifestyle and
medical history. Future studies may use these signatures to investigate their relationship in

investigations related to lifestyle interventions or novel therapeutics.
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1. Introduction

As the global population ages, the proportion of elderly individuals is increasing a an
unprecedented rate. Advanced age is the most significant risk factor for neurodegenerative
diseases, such as Alzheimer’s disease (AD)™. The recently approved AD-related therapies®®
mostly target extracellular deposition of 3-amyloid (Af3) with modest effect sizes on outcome
measures that are important to patients: namely cognition and activities of daily living®.
Further, while AR and intracellular accumulation of hyperphosphorylated microtubule
associated protein tau (p-tau) are the main pathological hallmarks of AD, the disease is
known to be multifactorial and to involve other microstructural changes such as myelin
deterioration and inflanmation-mediated increases in iron®. Additionaly, the above
pathological processes are likely initiated several years if not decades before the first clinical

manifestations of the disease®. Here, we propose to examine microstructural and
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morphological signatures of the disease across the AD spectrum: from individuas not
suffering from cognitive impairment, those at high risk for AD, those in the prodromal phase

with mild cognitive impairment (MCI), and those suffering from clinical dementia.

To assess the multifactorial aspect of AD progression, we used a combination of
neuroimaging measures that index both local brain atrophy and microstructure. Specifically,
quantitative MRI (QMRI) techniques were used to estimate the biophysical properties of the
underlying tissue sample (i.e amount of myelin and iron) through the use of relaxation times.
While gMRI has been increasingly used in some clinical research related to multiple
sclerosis’ or musculoskeletal diseases®, it has been under-explored in the context of the AD
spectrum®. Nonetheless, it has been demonstrated that myelin breakdown and inflammation-
induced iron accumulation may promote amyloid accumulation’®** and that individuals in
the earliest stages of AD harbour a higher iron load™™". These previous findings strongly
suggest that myelin and iron are two pathologically-relevant microstructural properties in the
context of AD, and their in vivo measurement could add neurobiological insights regarding
disease pathophysiology and complement treatment targets.

In this study, we used a data integration technique, namely non-negative matrix factorization
(NMF), to derive components defined by groupings of voxels sharing common modes of
covariation across MRI-based measures'®. This strategy is ideal to identify relevant brain
regions while simultaneously providing insight into biological sensitivity and specificity
within these regions. For example, morphological measures lack a precise biological
interpretation, and incorporation of microstructural information from gMRI can provide
insights into the putative underlying causes of volume changes. Here, we specifically studied
the hippocampus™®® and cortex”® because structural MRI studies have repeatedly
identified that morphometric changes in these areas are reliable indicators of AD pathology.
To better understand the association between NMF-derived brain patterns and relevant factors
in the AD-spectrum, we examined their multi-variate relationship to demographics, medical,

cognitive information and lifestyle risk factors.

Our findings suggest that the cortical morphometry and hippocampal microstructure patterns
may sensitively index AD progression. Specifically, our microstructural findings reveal lower
tissue integrity, decreased myelin, higher water content, and iron reduction in the
hippocampus, all of which are associated with disease stage. Cortical findings revealed a

reduction of cortical thickness (CT) and surface area (SA), but no myelin changes, suggesting
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a neuronal loss more than a glial ateration related to the progression of AD. Finaly,
multivariate analyses demonstrate an association between some of these patterns that were
preferentially associated with AD-related risk factors like smoking, high cholesterol levels,
blood pressure, and anxiety. We believe that this approach can be further refined to examine

the impact of trials related to lifestyle interventions or novel therapeutics.

2. Methods

A workflow of the key methodological steps employed in our study is depicted in Figure 1.
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Figure 1: Schematic representation of the methods. From the 219 initial participants, 61
were excluded due to motion quality control (QC), leaving 158 participants with high-quality
MRI images that were included in the final sample. The MP2RAGE sequence provides a T1w
image and a quantitative T1 map. The minc-bpipe-library is used to preprocess the T1lw
images and obtain a brain mask. CIVET is used to extract CT, SA and cortical surfaces.
Additional surfaces were created to sample the maps at different cortical depths (12.5%, 25%,
37.5%, 50%, 62.5%, 75% and 87.5%). 1 is defined as the angle between  and the cortical
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normal at each vertex. The multi-echo gradient echo sequence provides 12 magnitude images.

A denoising using adaptive non-local means denoising %

is applied on each echo. An
exponential fit was used to extract T2* relaxation times from the 12 echoes and the angle
was used to residualized the cortical T2* values. Deformation based morphometry (DBM)
was used to calculate jacobians (J) using the T1w scans. Using the average template created
from DBM, we manually defined a hippocampal mask to extract hippocampal voxel-wise

metrics.
2.1. Participants

Individuals from two datasets collected at the Douglas Research Center were included. This
data acquisition was approved by McGill Ingtitutional Review Board and Douglas Mental
Health University Institute Research Ethics Board. 219 participants were originally included:

168 individuals were part of the Alzheimer’s disease biomarker cohort®>2°

and 51 were part
of the “Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer
Disease” (PREVENT-AD) cohort®. Inclusion and exclusion criteria are described in
Supplementary methods. Demographics of our participants are reported in Table 1. After
quality control (QC) of the image processing (described in Sections 2.2, 2.4 and 2.6), we
included 158 individuals across the AD spectrum: 38 healthy controls (HC), 58 cognitively
healthy individuals with a parental AD history (FAMHX), 41 with mild cognitive impairment

(MCI) and 21 with AD.
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Table 1: Demographic information of the 158 participants who passed QC and included in

the study.

Education - Median (5D)
MOCA—Median (5D)
APOE4-n (%)

High BP - n (%)

High Chol-n (%)
Diabetes-n (96)
Smoking current - (%)
Smoking past- n (%)

Alcohol - n (%)

25.3(2.65)
g (23.7%)
14 (36.8%)
13 (34.2%)
3(7.9%)
0 (0%)
33(86.8%)

37 (84 29%)

23 (39.7%)
8 (13.8%)
11 (19.0%)
3(5.2%)
1(1.7%)
57 (58.3%)

53 (91.4%)

8.46 (6.1)
237 (3.65)
18 (43.9%)
19 (46.3%)
21(51.2%)
1(2.4%)
1(2.4%)
40 (97.6%)

#1 (100%)

AD
(n=21)

70.2 [58,84]
11(52.4%)
14.7(9-7)
10.9 (6.26)
11 (52.4%)
9 (42.9%)
10 (47.6%0)
2(9.5%)

o (0%)
20 (g95.2%)

14 (66.7%)

248 (4.25)
61 (38.6%)
50 (31.6%0)
55 (34.8%)
9 (5.7%)
2 (1.3%0)
150 (94.9%)

140 (88.6%0)

Depression - n (%4) 3 (7.9%) 14 (24.2%) 10 (24.4%0) 8 (38.1%) 35 (22.2%0)
Anxiety - n (%) 3 (7.9%0) 11 (19.0%) g (22.0%) 7 (33.3%) 30 (19.0%)
2.2. Demographic variables

Trained research assistants used questionnaires to gather information in four broad categories:
cognitive, psychological, medical, and lifestyle. All this information will be collectively
referred to as 'demographic variables for the remainder of this study for the sake of
readability.

e Cognition was assessed using the Montreal cognitive assessment (MOCA)* and the
repeatable battery for the assessment of neuropsychological status (RBANS)®, (see
supplementary methods for additional information about the tests).
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e For psychiatric variables, binary variables for depression and anxiety were used. A
value of 1 indicates that an individua reported ever having an anxiety or depressive
episode that required the care of a physician and pharmacological treatment, while a
value of O indicates that they never had such an episode.

e Weincluded information on medical history known to be comorbid with risk for AD
or maladaptive aging, including hearing problems®, concussion®, transient ischemic
attack®, brain injury®, headaches®, seizures®, heart disease®, liver disease™, kidney
disease™, thyroid disease™, cancer®, arthritis™, neck/back problems™, and allergies™.

e We aso examined modifiable lifestyle-related risk factors known to increase risk for
AD; these included: alcohol use®, smoking™®, drug use®, high blood pressure™, high

cholesterol®, and diabetes™.

Because some variables had a limited amount (< 10.75%) of missing data (see
supplementary table 1, we imputed missing values with Random Forest imputation using

the missForest package (version 1.4) on R (version 3.5.1) for the 158 included individuals.

2.3. Imaging acquisition

Participants of the two datasets were scanned on the same 3T Siemens Tim Trio MRI scanner

at the Douglas Research Center using a 32-channel head coil.

e We acquired whole brain magnetization prepared 2 rapid acquisitions by gradient
echo (MP2RAGE) sequence at 1 mm isotropic resolution®. T1w uniform image
(UNI; unbiased from B1 inhomogeneity, T2* and PD) was used for morphological
characterization, and a map of the longitudinal spin-lattice relaxation time T1 was
used for microstructural characterization of the myelin content. The MP2RAGE
acquisition parameters are: inversion time (T1)1/TI2 = 700/2500 ms, echo time
(TE)/repetition time (TR) = 2.92/5000 ms, flip angle ((7)1/T"2 = 4/5 deg, field-of-view
(FOV) =256 x 256 mm2, 176 slices, 1 mm isotropic voxel dimensions. The image
acquisition is accelerated in the phase encode direction by a GeneRalized
Autocalibrating Partial Parallel Acquisition (GRAPPA) factor of 3, for a total scan
time of 8 min 22 sec. QC of the T1w raw images were performed using a standardized
procedure™ (https://github.com/CoBrA L ab/documentati on/wiki/M otion-Quality-



https://doi.org/10.1101/2024.01.24.576996
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.24.576996; this version posted January 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Control-Manual) to limit the well-known confounds of motion on downstream MRI-
55,56
S,

derived measurement
e A 3D multi-echo T2*-weighted gradient echo scan was acquired with the following
parameters: 12 TE = [2.84, 6.2, 9.56, 12.92, 16.28, 19.64, 23, 26.36, 29.72, 33.08,
36.44, 39.8] ms, TR = 44 ms, bandwidth = 500 Hz/Px, [ = 15 deg, FOV = 180 x 192,
144 slices, 1 mm isotropic resolution, phase partial Fourier 6/8, GRAPPA acceleration
factor = 2, for a total scan time of 9 min 44 sec. Estimation of the transverse T2*
relaxation time is explained in Section 2.6 and is considered a marker of iron

content’.

While it is true that the correlation between T1 and T2* times with myelin and iron,
respectively, are frequently acknowledged, the biological specificity to these mechanisms is
far more complex. We delve into a more comprehensive description of the putative biological

specificity underlying the observed signal in Discussion 4.3.

2.4. |mage processing

24.1. Preprocessing

The minc-bpipe-library pipeline (https://github.com/Cobral ab/minc-bpipe-library) was

employed to preprocess T1w images and performed N4 bias field correction®, standardized
the FOV and head orientation, extracted the brain and created brain masks using BEaST.
QC at every step of the pipeline was performed
(https://github.com/CoBrA L ab/documentati on/wiki/M otion-Quality-Control -(QC)-Manual).

24.2. T2* map extraction

Each GRE echo was denoised using an adaptive non-local means agorithm®* to improve the
signal-to-noise ratio of the scans (see Supplementary Figure 1). The T2* exponential decay
constant was estimated voxel-wise using the Levenberg-Marquardt curve fit function
(https://github.com/CoBrA L ab/minc-tool kit-extras/blob/master/t2star_fit_simpleitk.py) using
asingle exponential model of the T2* decay equation:
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L 12*
M_(t+ A =M () xe

where M X is the transverse magnetization at time't.

QC of the T2* maps was performed to examine the scan quality based on motion artifacts and
to remove scans with signal drop off (mostly in the temporal lobe) or spurious signal intensity
variation throughout the map (see examples of good and bad quality T2* maps in
Supplementary Figure 2).

24.3. Morphometricand gMRI cortical feature extraction

All Tlw UNI images were processed with the CIVET pipeline (version 2.1.1)%° to estimate
vertex-wise CT and SA. Vertex-wise T1 and T2* values were sampled across the different
depths with increments of 12.5% from the pial surface (“0% surface’) to the gray matter
(GM) and white matter (WM) interface (“100% surface”) following similar approaches
described by others®*®® and averaged. To correct for the T2* dependence on myelinated fiber
orientation relativeto  , T2* values were residualized from the angle I between the vertex
normal and . All cortical measurements (morphometric and gMRI) were performed at
each vertex of the 40,962 vertices per hemisphere and were spatially smoothed with a 30 mm
surface-based heat diffusion kernel®. The medial wall was masked and therefore only 38,561
vertices per hemisphere were considered in the analyses. More details about the processing
are available in Supplementary methods.

24.4. Morphometric and gMRI  hippocampal feature

extraction

To derive voxel-wise volumetric measurements of the hippocampus, we used a python
pipeline for deformation based morphometry (DBM), developed by the CoBrA Lab
https.//github.com/Cobral ab/twolevel _ants dom. This technique uses the ANTs tools to

obtain aminimally biased template using a group-wise registration strategy®, reproducing the
approach employed in previous neurodegeneration studies conducted within our research
group ®. We calculated voxel-wise volume differences by estimating the Jacobian

determinant at each voxel from the individual non-linear displacement fields®®. In this study,
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we used the relative Jacobian (J) determinant to account for overall differences in brain size
(explicitly modeling the non-linear part of the deformations after linear scaling to the
template). J values were log-transformed to aid statistical analysis: positive values indicate

volumetric expansion whereas negative values indicated relative decrease volume.

To ensure that DBM outputs, T2* and T1 maps have voxel-wise correspondence across
participants, we applied the transforms to T2* and T1 maps. A hippocampa mask was
created on the average T1w brain to extract voxel-wise hippocampal information: J, T1 and
T2* values (more information about the mask creation in Supplementary methods and
Supplementary figure 3).

2.5. Statistics

2.5.1. Non-negative matrix factorization

To integrate the multi ple measures from morphometry and microstructure, we sought to use a
multivariate method that detects covariance patterns that jointly describe all metrics used. To
do this we leveraged non-negative matrix factorization (NMF) ® as previously done in other
publications in our group #2%72 NMF detects underlying patterns of covariation from
complex data while promoting sparsity in the solution, resulting in spatially non-overlapping

regions of covarying metrics.

This method decomposes an input matrix of vertices by subjects into two matrices: (i)
representing spatial parcellation (vertices by components, Figure 2A.1 and Figure 2B.1), and
(i) reflecting metrics for each subject within each component (components by subjects,
Figure 2A.2-3 and Figur e 2B.2-3). We determined the number of components by assessing
reconstruction stability and accuracy across different granularities as described in
Supplementary methods, represented in Supplementary Figures 4 and 5, and in

accordance with our previous work 57072,
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2.5.2. Univariate analyses

To examine the relationship between NMF weights and our groups, we used ANCOVASs
while correcting for age. Each component and metric were tested independently, totaling 52
models (4 * 10 cortical components + 3 * 4 hippocampal components). Subsequently, post-
hoc Tukey Honestly Significant Difference (HSD) tests were employed to assess pairwise
group differences. The resulting p-values from al models were corrected for False Discovery
Rate (FDR) correction (g=0.05). Additionally, ANCOVA 95% confidence intervals for

overall group differences are shown in Figure 3.

25.3. Investigating joint-brain and demographic signatures

using partial least squares

Upon extracting our joint patterns of covariance in the MRI data, we examined their
relevance to AD-related disease progression. To accomplish this we used partial least squares
(PLS) analysis to relate the NMF-component individual metric weights to demographic
signatures, as done in previous studies by our group*®’®"2. PLS is a multivariate statistical
technique commonly used to investigate the relationships between brain measures and
demographic measures. This technique identifies patterns of covariance between two
matrices. one matrix represents brain measures, and the other matrix includes demographic
information. By decomposing these matrices into a set of orthogonal latent variables (LV),
PLS analysis identifies the most prominent patterns of covariance between the two matrices.
Each LV in PLS analysis represents a linear combination of the brain and demographic
matrices providing a representation of brain regions and demographic measures that are most
closely related. Here, our brain matrix included NMF weights, and the other matrix included
demographic variables described in Section 2.2, and no information about the clinical
grouping APOE4 status, age, sex and years of education of the individuals was provided. The
goal of this approach was to capture a pattern of brain and demographic information which
could explain the most covariance without giving information about our participant’s status.
Our brain data included the NMF weights from the cortex (10 components x 4 metrics) and
the hippocampus (4 components x 3 metrics) combined (i.e., 52 metrics for 158 participants).
The values in the demographic matrices were z-scored prior to performing PLS (i.e., z-score

the values of each demographic variable across al subjects). Each LV was tested statistically
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using permutation testing and split haf analyses and variable contribution was assessed with

bootstrap resampling following asimilar protocol asin previous studies'®?%°"">-7°,

Brain and demographic scores obtained from PLS analyses were further anayzed to
determine if they were associated with key demographic and clinical variables not included in
the PLS analysis. The relationship between PLS scores and demographic/clinical variables
(group, age, sex, APOE4 and education) were assessed using ANCOVAs. Each model
included all of these demographic/clinical variables simultaneously, resulting in a total of six
models (one for each brain and demographic scores of the 3 LVs). Post-hoc Tukey Honestly
Significant Difference (HSD) tests were performed to examine pairwise group differences.
False discovery rate (FDR) corrected p-values can be found in Supplementary table 2. The
goal of these analyses was to determine if PLS successfully captured, using a data-driven

approach, patterns of brain and demographic that are clinically relevant in the context of AD.

2.6. Dataand code availability statement

Raw data from this cohort can be obtained through collaborative agreement and reasonable
request but is not publicly available due to the lack of informed consent by these human

participants.

The code used to run NMF is available at
https://github.com/CoBrA L ab/documentati on/wiki/opNM F-for-vertex-data. For executing

PLS, please refer to the instructions provided in
https:.//github.com/CoBrA L ab/documentati on/wiki/Running-PLS-in-MATL AB-with-cross-
sectional-data. The repository containing all NMF and PLS outputs, as well asthe main R

scripts used to plot the figures in this paper, can be found at
https://qgithub.com/AurelieBussy/Cortex hippocampus Alzheimer project.

3. Results
3.1. Demographics

The final sample after quality control included 158 participants, with a mean age of 66.9
years, an age range between 53 and 84 years and 62% of females (Table 1). The FAMHX
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group was significantly younger than the other groups (p < 0.001) and education was lower
for the MCI group compared to HC and AD (p < 0.01).

3.2. NMF decomposition
3.2.1. Cortical decomposition

The outputs of the cortical NMF analyses are shown in Figure 2A. Although we initialy
considered including 4 components because of its high stability score, we found that the
corresponding spatial outputs were confined to the primary lobar regions (see
Supplementary Figure 6). Because this did not offer an expansive representation of the
cortex, we opted to investigate more components. Since NMF maintained a reasonable
stability and accuracy for an increasing number of components, we proceeded with 10
components. Each component qualitatively demonstrated bilateral patterns in distinct cortical
regions described in Figure 2A.
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Figure 2: Visualization of the spatial components. A | 1 Visualization of the 10 spatial
components where each component is specific to a brain region. Component 1 is in the
dorsomedial and superior temporal regions, component 2 in the occipital lobe, component 3
in the superior frontal cortex, component 4 in the auditory/motor cortices, component 5 in the

inferior/medial temporal lobe, component 6 in the frontal lobe, component 7 in the
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cingulate/somatosensory regions, component 8 in the precuneus, component 9 is the premotor
cortex and component 10 in the temporo-parietal junction. A | 2 Raw subject-metric weights
matrix, where each line corresponds to a spatial component, and each column represents a
subject-metric weight. A | 3 Standardized subject-metric matrix by z-scoring across rows (i.e
per component) to better visualize which metric contributes the maost to each component. For
example, across our individuals, CT contributes the most to component 1 while SA
contributes the most to component 2. B | 1 Visualization of the 4 hippocampal components,
where each component is specific to a hippocampal region. Component 1 is in the body and
tail, component 2 in the head, component 3 in the lateral regions, and component 4 in the
medial regions of the hippocampus. B | 2 Raw subject-metric weights matrix and B | 3

standardized subject-metric matrix by z-scoring across rows.
3.2.2. Hippocampal decomposition

The outputs of the hippocampal stability analyses are shown in Figure 2B. We selected 4
components as per previous work examining hippocampal neuroanatomy™ and replicated
here with our stability analysis. The 4 components of the hippocampus consisted of the body
and tail (component 1), the head (component 2), the lateral areas (component 3), and the

medial areas (component 4).

3.3. NMF components
3.3.1. Cortical components

Each component can be described by their spatial pattern and their subject-wise and MRI
metric-wise weights. For example, component 1 corresponds to the dorsomedial and superior
temporal regions, high CT weights, low SA weights, and medium T1 and T2* weights. These
values are gpparent in both the raw subject-weight (Figure 2 A| 2) and standardized subject-
weight matrices (Figure 2 A| 3). Accordingly, these patterns suggest that CT plays a greater
contribution than SA in the spatial component 1.

However, comparing the contribution of a metric across different components (as shown in
Figure 2) is not possible because the subject-wise weights are standardized per component.

Nevertheless, we can compare the NMF weights of individuals within the same component
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and interpret the weights as raw values (e.g., average CT in each spatial region). To compare
each metric across components, refer to Supplementary Section 6 and Supplementary

figure7.
3.3.2. Hippocampal components

In the same way, each hippocampa component can be described with the subject-metric
weights. J mostly contributed in component 1 and 2 patterns (hippocampal body and head)
while T1 contributed the most to component 4 (medial hippocampus) and both T1 and T2*

contributed more than Jin component 3 (lateral hippocampus).

3.4. Group differences

We assessed whether our NMF components could differentiate our groups by using cortical
and hippocampal weights, as shown in Figure 3. Comparing AD to FAMHX, we observed
lower CT throughout the brain, reduced SA in component 5 and 10 (which correspond to the
temporal lobe and the temporo-parietal junction), and longer T1 and T2* in components 2, 3,
and 4 of the hippocampi (which correspond to the head, lateral, and medial regions). A
similar but more widespread pattern was observed when comparing AD and HC, with
reductions in SA observed in more regions of the cortex and longer in T1 and T2* seen
throughout the entire hippocampus. Additionally, T2* was longer in the occipital regions of
individuals with AD vs HC. Comparing AD and MCI, we observed fewer significant
differences, but we still found lower CT in the occipital, temporal, and temporo-parietal
junction, as well as longer T2* in the lateral region of the hippocampus. Comparing MCI and
HC, we found lower CT in the dorsomedial and superior tempora regions, in the
auditory/motor cortices, and in the precuneus, as well as longer T1 and T2* in the lateral and
medial regions of the hippocampus. When comparing MCI and FAMHX, we only observed
lower CT in the precuneus, and no significant differences were found between FAMHX and
HC. Our results suggest that cortical morphometry and hippocampal microstructure are the
metrics the most sensitive to AD progression, making it possible to distinguish between MCI
and controls for example. Indeed, individuals with AD showed greater cortical thickness and
surface reduction as well as longer hippocampal T1 and T2* compared to those with MCI,

who in turn demonstrated significant differences from the control group.
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Figure 3: Pairwise NMF weights comparisons. NMF metric-wise and component-wise
weights were compared pairwise across all combinations of groups The metrics included
cortical CT, SA, T1, T2*, and hippocampal J, T1, and T2*. The mean group difference was
indicated by circles, with white circles representing non-significant differences, and colored
circles representing significant differences after FDR correction across all p-values. The plots
are color coded by metric and the 95% confidence interval of the group difference is
represented by vertical bars.
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3.5. Brain and demographic relationships
35.1. Latent variables

Our PLS results demonstrated three significant LVs, explaining 76.9% (p<0.0001), 7.5%
(p<0.001) and 5.2% (p<0.001) of the covariance respectively. The results of the first LV are
shown in Figure 4 (LV2 and LV3 in Supplementary Figure 8 and 10; both LVs
predominantly captured patterns associated with sex but showed no significant correlation
with age or AD progression). Figure 4A shows the brain pattern, describing a lower CT, SA
in the entire brain, shorter T2* in the dorsomedial and superior temporal regions, superior
frontal cortex and in the premotor cortex and longer T2* in the occipital lobe. We found a
decreased J in the body and tail, an increased J in the most lateral region as well as longer T1
and T2* values in al regions of the hippocampus. Importantly, we observed that the
hippocampal microstructure exhibits stronger contributions to AD-relevant variables
compared to its volumes. We observed that cortical morphometry and hippocampal
microstructure were linked to a pattern of past smoking consumption, high blood pressure
(BP) and cholesterol, lower scoresin all cognitive domains, and higher anxiety levels (Figure
4B).
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Figure 4. Relationship between brain and cognitive, psychological, medical and lifestyle
information of the LV 1. The first LV explained 76.9% of the covariance between brain and
cognitive, psychological, medical, and lifestyle information. The brain pattern on the left (A)
illustrates spatially the contribution of each metric to the pattern with bootstrap ratio (BSR)
values on each brain structure. Blue color indicates negative BSR values and red indicates
positive BSR values. Components with absolute BSR values higher than 1.96 are colored to
show significant contribution. The bar plot in the middle of the figure shows more precisely
the BSR values for each component, with black vertical lines representing a BSR of 1.96
(equivalent to p=0.05) and gray lines representing a BSR of 2.58 (equivalent to p=0.01). On
the right-hand side (B), we show the cognitive, psychological, medical, and lifestyle patterns
associated with the brain pattern on the left. Bars are colored if they are significant (when
error bars do not cross zero) and are white if non-significant. The brain pattern is associated
with past smoking consumption, high BP and cholesterol, lower cognitive scores, and higher

anxiety.
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3.5.2. Brain/demographic pattern sensitive of disease

progression, age and genetic risk

Lastly, we explored how age, group, APOE4 status, sex, and education related to the brain
and demographic patterns of the LV 1. Similar analyses were performed for the LV2 and LV3
pattern (Supplementary Figure 9 and 11). We observed significant group differences
between each pair of groups, except for HC vs FAMHX in the brain and HC vs FAMHX and
HC vs MCI in the demographic scores. Our findings indicated that both brain and
demographic were positively associated with age while only brain scores were significantly
associated with female sex. Additionally, APOE4 carriers demonstrated a stronger expression
of the brain pattern than non-carriers. No significant effect of education was observed in
relation to brain and demographic scores. In summary, the results demonstrate a significant
association between the highlighted brain and demographic patterns in LV1 and AD
progression, particularly among older individuals, females, and carriers of the APOE4 allele.
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Figure 5: Post-hoc analyses of the PLS brain and demographic scores of LV1. (A)

pairwise group comparisons of the brain and demographic scores. Results of the linear
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models illustrating the brain and demographic relationships with age (B), sex (C), APOE4
status (D) and education (E). * p < 0.05, ** p < 0.01, *** p < 0.001 after FDR correction

across all p-values.
4. Discussion

In this study, we examined if brain morphometry and gMRI markers of iron and myelin could
be sensitive to AD progression and AD-related risk factors. First, we took a data-driven
approach to parcellate the cortex and the hippocampus using NMF by integrating multimodal
MRI data to take advantage of the complementary information conveyed by these indices.
Overal, our results suggest that combining multi-contrast MRI metrics is critical for gaining
a more nuanced understanding of the properties of the brain and is well-adapted to identify

their differential susceptibility to adaptive and maladaptive aging and AD.
4.1. Brain patternsassociated with AD

Our analysis of pairwise group comparisons of NMF weighted demonstrated that cortical
thinning was apparent throughout the brain when we compared AD vs FAMHX or AD vs
HC. However, the cortical signature of AD is often characterized by regionally specific

s’ while

cortical thinning related to symptom severity in the temporal and frontal region
our results did not necessarily show stronger effects in these regions. A previous study from
our group using similar methodologies in a healthy aging population demonstrated a
widespread association between cortical SA and performance across cognitive domains in
midlife . Although not as widespread, our results demonstrated that some level of SA
reduction in the temporal/parietal lobe was observable in AD relative to HC. Further, our
results demonstrated that CT has larger effect size than SA in the LV. Notably, significant
differences were observed between MCI participants and controls for CT, although SA
showed significance solely in the more advanced disease stage comparisons (AD vs.
controls). These findings underscore the greater sensitivity of CT to AD progression when
compared to SA®. Overall, even though FAMHX carry a higher genetic risk, their
morphological patterns seemed to be similar with those from the HC group. The resemblance
between these groups may be attributable to the lower age of the FAMHX relative to

controls.*.
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Surprisingly, contrary to our cortical morphometry findings, no hippocampa volume
differences were found between groups in our univariate analyses. However, a volume
reduction of the hippocampal body and tail, and an increase in volume in the hippocampal
lateral region were found in LV 1. These results suggest that while hippocampa volume did
not show a specific relationship to a univariate group effect, it may be more useful to model
this variation using methods that capture disease spectrum rather than simply searching for
group differences. This is supported by the specificity of our demographic patterns (discussed
in Section 4.2). Interestingly, the hippocampal parcellation obtained in this study was similar
to the one we previously reported'®, suggesting that this organization is a consistent

microstructural pattern in the human hippocampus.

Cortical T1 and T2* did not differ between our groups, while hippocampal T1 and T2* did.
Therefore, we hypothesize that the cortical thinning might not be driven by intra-cortical
demyelination or iron accumulation but rather by neuronal death™. This further suggests that
lower myelin content associated with AD may initiate in the hippocampus prior to
manifesting in the cortex. This is in line with previous studies showing a specific myelin
decrease in the hippocampus using magnetization transfer measurements in MCI
individuals® and in AD individuals compared to controls’. Using T1w/T2w ratio to estimate
intracortical myelin, another study demonstrated that hippocampal demyelination was
consistently associated with AD progression®. Previous research showed lower T2* in the
hippocampus of those with AD, indicating an increase in iron levels®. However, our study
revealed the opposite pattern, with disease progression associated with a longer hippocampal

T2*. Further discussion on these findings can be found in Section 4.3.

4.2. Demographic alterations associated with AD

Our results demonstrated demographic variables that are well-described as risk factors for
AD; namely: lower cognitive scores, higher anxiety, BP, cholesterol and smoking®, were
associated with our brain alterations and overall AD progression.

About 70% of AD patients present anxiety symptoms® which have been linked to a higher
risk ratio of converting to MCI or dementia®’, worse mini mental state examination (MM SE)

scores and younger age at onset®®. Interestingly, in a healthy aging population, anxiety
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disorders have been previously related to a longer of T1 values in the hippocampus™. Thisis
consistent with our results showing a longer hippocampal T1 associated with higher anxiety
and AD progression. We also found that the pattern of increased anxiety was significantly
related to cortical thinning across the cortex. Similarly, previous research reported a
relationship between higher levels of anxiety symptoms and reduced thickness in several
cortical regions™.

A negative correlation between arterial hypertension and myelin content has been observed in
the WM¥. Late-life cortical and WM atrophy have been found to be linked with hypertension
during early adulthood®. In line with these findings, our study showed a similar effect, where
higher BP was associated with myelin reduction and cortical thinning®. Furthermore, our
findings indicated a significant association between the brain pattern, disease progression and

hypertension, aligning with existing research in this field***.

Elevated blood cholesterol levels have been reported to increase Ap production in the brain®®"
% Conversely, drugs that reduce blood cholesterol have been shown to lower the risks of
developing AD*'®. |t's worth noting that the blood-brain barrier (BBB) typically prevents
any exchange between the brain and the cholesterol, which means that most brain cholesterol
comes from local synthesis. Further, it has been shown that the hippocampus is a brain region
particularly susceptible to BBB breakdown'®, and as a result, there may be early alterations
in the level of hippocampal cholesterol in AD progression. However, while most studies
D98,102,103

report brain cholesterol increases related to aging and A
effect'™.

, others found the opposite

The identification of the APOE4 allele as a crucia genetic risk factor for AD is in accordance
with the involvement of cholesterol in AD's pathogenesis™'®'®. Notably, in APOE4
carriers, ApoE exhibits reduced binding capacity and transport affinity for lipids™®’, which
may decrease the transfer of cholesterol from astrocytes to neurons, eventually leading to
neuronal apoptosis. This aligns with our findings, which demonstrated that APOE4 carriers
were more heavily loaded in the pattern of brain and lifestyle risk factor association that we
observed. While there is a need to clarify the exact relationship between brain cholesterol
levels and AD, altered hippocampal cholesterol could explain the hippocampal demyelination
pattern related to being APOE4 carriers.
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Finally, research has shown that smoking was associated with an increased risk of dementia
and AD*®'%. Smoking has also been linked to reduced brain volume and atrophy in specific
cortical regions, including the frontal, occipital, and temporal lobes™***!. Even when taking
into account the amount of tobacco smoked over their lifetime, individuals who currently
smoke had greater hippocampal atrophy than those who never smoked or had quit smoking in
the past™*2. Smokers have also been found to have a greater rate of atrophy in regions that are
affected in the early stages of AD compared to non-smokers™. Furthermore, cigarette smoke
is known to trigger the production of endogenous oxidants by activating the immune response
pathway associated with inflammation™***°, Significant positive relationships between R2*
and smoking were found in certain brain regions such as the basal ganglia, but not in the
hippocampus®. Here, we found a longer hippocampal T2* being associated with past
smoking consumption. This difference of findings could be explained by the fact that our
pattern was found in the context of AD progression while Trofimova et al.* included healthy
participants. Although R2* is commonly interpreted as being solely related to iron content, in
Section 4.3, we discuss how other mechanisms linked to AD pathology can influence these

metrics.
4.3. Specificity of gMRI metrics

We employed two gqMRI methods giving important tissue relaxation times, namely T1 and
T2* maps. T1 maps offer insights into the longitudinal relaxation time constant (T1) at each
voxel, influenced by factors like myelin®*’  iron**®, and proton density (PD)™. Increased
myelin and iron content reduce T1, while increased water content extends T1, particularly
observed in subcortical gray matter where T1 variation is linked to myelin content™®.
Complementing T1 mapping, T2* relaxation time reflects dephasing due to molecular
interactions and local magnetic field inhomogeneities™, primarily influenced by iron

cont ent57'122’123.

Few validation studies have been performed in the context of diseased tissue. For example,

T1 has been almost only validated compared to myelin in multiple sclerosis brains*** or in
animal models with experimentally induced demyelination’®'?°. T2* (or R2*) has been
validated against iron in a larger range of applications, from cardiac studies™, hepatic
studies™, to neurologica studies in both multiple sclerosis’®**** and in healthy

individuals'?***. However, it is currently unclear what T1 and T2* metrics reflect in an AD
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brain where other microstructural changes, such as neuronal loss and increased amyloid and

tau accumulation, occur simultaneously.

Interpretation of T2* is complex as it combines the effects of transverse relaxation T2 and

magnetic susceptibility T2', where increased water content increases T2 and increased iron

content decreases T2' (é = é + %,). While severa studies have reported an extended T2 in

D% others have observed the opposite effect™® or

the hippocampus of individuals with A
no change at all**. Longer hippocampal T2 in the AD group has been postulated to be linked
to increased water reflecting tissue damage'®. Indeed, in neurodegenerative disorders, the
increased water content in degenerating tissue can also affect MRI relaxation times and
reduce R2, which opposes the effect of iron'*. Therefore, in AD, the increased water content

may make it difficult to detect increased iron levels with T2*%,

Our results demonstrated significantly longer T1 and T2* in the hippocampus of individuals
with AD compared to HC. T1 is primarily linked to myelin content, where a longer in T1
generally indicates lower myelin content™®. A reduction of glial cell density, including
astrocytes and oligodendrocytes could lead to a reduction of ferritin leading to a decreased

12 Therefore, we

iron**". Further, we know that T2* mostly reflects the amount of ferritin
postulate that our findings principally captures a reduction in hippocampal tissue integrity,

decreased myelin, increased water content and iron reduction.

4.4. Roleof myelinin AD progression

Starting with the pioneering work of Bartzokis ****

, myelin deterioration has been suggested
as being an important factor in the progression of AD. Several arguments highlight the link
between myelin and AD. First, humans are the only animal susceptible to AD pathology.
Indeed, even if some nonhuman primates and dogs develop amyloid, they do not present tau

or dementia-like symptoms'®.

Supporting the fact that amyloid might not be the main molecule triggering cognitive decline,
combined data from multiple trials has demonstrated that reducing amyloid levels do not
significantly enhance cognitive function'*. Another important criticism is that both

neuropathological and PET data reveal substantial evidence of AP pathology in older
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individuals who do not necessarily exhibit cognitive impai rment'*®

. Altogether, the presence
of AB deposition without any cognitive impairment, along with the reduction of Ap levels
without any cognitive improvement, raises significant concerns regarding the validity of Ap

as acausal factor of the clinical symptoms of AD**%,

Interestingly, there is a noticeable similarity between the pattern of neurofibrillary tangles
(NFT) changes observed in AD and the reverse order of cortical myelination'®. Indeed,
certain brain regions, such as the prefrontal cortex and association areas such as the parietal
and temporal lobes, which are characterized by late myelination, are particularly susceptible
to the development of amyloid and NFT. Late myelinated regions which have thinner myelin

sheaths™* are more susceptible to degeneration™

. Conversely, heavily and early myelinated
regions of the brain, such as the primary motor and sensory areas, appear to be more resistant
to the disease™®. In our results, while we did not find significant cortical T1 variation related
to the disease progression, we found high sensitivity of hippocampal demyelination to disease
progression. These findings are consistent with the hippocampus being one of the first

regions impacted by AD pathology™".

Studies have shown that higher amyloid deposition assessed by PET is associated with lower
T2* in the cortex®*. Therefore, our findings indicating a lower T2* in the dorsomedial and
superior temporal regions, superior frontal cortex, and premotor cortex are consistent with an
increased pathological burden in those areas. Notably, these regions correspond to late
myelinated regions, which aligns with the theory that late myelinated regions are at higher
risk of developing AD pathology. In contrast, we observed an opposite pattern in early
myelinated regions such as the occipital lobe, which demonstrated a longer T2* value
associated with our brain pattern. The cause of this T2* lengthening is unclear, since it could
be related to the tissue water content, a myelin reduction, death of glial cells, an iron decrease

or potentially a methodological limitation.

4.5. Methodological limitations

The MP2RAGE sequence uses small flip angles and an adiabatic inversion pulse to
significantly mitigate theimpact of 11/* on resulting T1 maps™. Despite this, residual biases

linked to /% may persist, particularly near inferior temporal and frontal lobes. While
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proposed solutions involve acquiring additional /% maps to correct for these
inhomogeneities to enhance quantitative T1 mapping™’, our study lacked (/% map
acquisition, leaving the possibility that our results may be influenced by the presence of
1" inhomogeneity residuals. However, since our results demonstrate good consistency
between both hemispheres, we postulate that our results are not driven by this residual

inhomogeneity.

Fiber orientation in relation to the main magnetic field 1, affects T2* relaxation times in
WM™, To reduce angle dependency in cortical T2*, we applied a suggested method®*.
However, estimating myelinated fiber orientation in the complex-shaped hippocampus
proved impractical, and advanced metrics like diffuson tensor imaging were
unavailable™ ', Due to the intricate nature of T2* correction, clinical papers often omit this
step in applications. Consequently, we believe that our results are comparable to most
findingsin the field.

Unfortunately, our exploration of age and AD progression was constrained to cross-sectional
data. We acknowledge the inherent limitations of this approach and recognize that future

studies using longitudinal datawould be necessary to validate our findings.

Futureresearch

This work has several potential avenues for future investigation. First, to further validate our
interpretation, additional gMRI markers, such as PD and magnetization transfer metrics,
could be used alongside T2* and T1. PD, in particular, could provide valuable information
about the water content in the tissue. Second, the relationship between gMRI and AD
pathology is not yet well characterized, and thus, including amyloid and tau PET scans
aongside gMRI protocols would shed light on the impact of these pathological molecules on
gMRI metrics. Finally, a longitudinal dataset with both PET and gMRI measurements in
preclinical AD individuals would be ideal to determine the interplay between myelin, iron,

amyloid, and tau.
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5. Conclusion

In conclusion, by using gMRI to investigate the underlying biological processes that could
drive morphological changes, our study suggests that hippocampal T1 and T2* could serve as
potential biomarkers for AD. Further, significant associations between certain risk factors and
AD-related brain pattern aterations demonstrate that public health initiatives aimed at
reducing smoking, cholesterol levels, blood pressure, and anxiety in the population should be

expanded to slow the progression of AD.
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Figure legend

Figure 1: Schematic representation of the methods. From the 219 initial participants, 61
were excluded due to motion quality control (QC), leaving 158 participants with high-quality
MRI images that were included in the final sample. The MP2RAGE sequence provides a T1w
image and a quantitative T1 map. The minc-bpipe-library is used to preprocess the Tlw
images and obtain a brain mask. CIVET is used to extract CT, SA and cortical surfaces.
Additional surfaces were created to sample the maps at different cortical depths (12.5%, 25%,
37.5%, 50%, 62.5%, 75% and 87.5%). LI is defined as the angle between LI, and the cortical
normal at each vertex. The multi-echo gradient echo sequence provides 12 magnitude images.

A denoising using adaptive non-local means denoising %

is applied on each echo. An
exponential fit was used to extract T2* relaxation times from the 12 echoes and the angle |
was used to residualized the cortical T2* values. Deformation based morphometry (DBM)
was used to calculate jacobians (J) using the T1w scans. Using the average template created
from DBM, we manually defined a hippocampal mask to extract hippocampal voxel-wise

metrics.

Figure 2: Visualization of the spatial components. A | 1 Visuaization of the 10 spatial
components where each component is specific to a brain region. Component 1 is in the
dorsomedial and superior temporal regions, component 2 in the occipital lobe, component 3
in the superior frontal cortex, component 4 in the auditory/motor cortices, component 5 in the
inferior/medial temporal lobe, component 6 in the frontal lobe, component 7 in the
cingulate/somatosensory regions, component 8 in the precuneus, component 9 is the premotor
cortex and component 10 in the temporo-parietal junction. A | 2 Raw subject-metric weights
matrix, where each line corresponds to a spatial component, and each column represents a
subject-metric weight. A | 3 Standardized subject-metric matrix by z-scoring across rows (i.e
per component) to better visualize which metric contributes the most to each component. For
example, across our individuals, CT contributes the most to component 1 while SA

contributes the most to component 2. B | 1 Visualization of the 4 hippocampal components,
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where each component is specific to a hippocampal region. Component 1 is in the body and
tail, component 2 in the head, component 3 in the lateral regions, and component 4 in the
medial regions of the hippocampus. B | 2 Raw subject-metric weights matrix and B | 3

standardized subject-metric matrix by z-scoring across rows.

Figure 3: Pairwise NMF weights comparisons. NMF metric-wise and component-wise
weights were compared pairwise across all combinations of groups The metrics included
cortical CT, SA, T1, T2*, and hippocampal J, T1, and T2*. The mean group difference was
indicated by circles, with gray circles representing non-significant differences, and colored
circles representing significant differences after FDR correction across all p-values. The plots
are color coded by metric and the 95% confidence interval of the group difference is
represented by vertical bars.

Figure 4: Relationship between brain and cognitive, psychological, medical and lifestyle
information of the LV1. Thefirst LV explained 76.9% of the covariance between brain and
cognitive, psychological, medical, and lifestyle information. The brain pattern on the left (A)
illustrates spatially the contribution of each metric to the pattern with bootstrap ratio (BSR)
values on each brain structure. Blue color indicates negative BSR values and red indicates
positive BSR values. Components with absolute BSR values higher than 1.96 are colored to
show significant contribution. The bar plot in the middle of the figure shows more precisely
the BSR values for each component, with black vertical lines representing a BSR of 1.96
(equivalent to p=0.05) and gray lines representing a BSR of 2.58 (equivalent to p=0.01). On
the right-hand side (B), we show the cognitive, psychological, medical, and lifestyle patterns
associated with the brain pattern on the left. Bars are colored if they are significant (when
error bars do not cross zero) and are white if non-significant. The brain pattern is associated
with past smoking consumption, high BP and cholesterol, lower cognitive scores, and higher
anxiety.

Figure 5: Post-hoc analyses of the PLS brain and demographic scores of LV1. (A)
pairwise group comparisons of the brain and demographic scores. Results of the linear
models illustrating the brain and demographic relationships with age (B), sex (C), APOE4
status (D) and education (E). * p < 0.05, ** p < 0.01, *** p < 0.001 after FDR correction

across al p-values.
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Table 1: Demographic information of the 158 participants who passed QC and included in
the study.
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