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Highlights

Intrinsic-Dimension analysis for guiding dimensionality reduction and data-

fusion in multi-omics data processing

Jessica Gliozzo, Valentina Guarino, Arturo Bonometti, Alberto Cabri, Emanuele

Cavalleri, Mauricio Soto-Gomez, Justin Reese, Peter N Robinson, Marco Mesiti,

Giorgio Valentini, Elena Casiraghi

• We introduce a flexible pipeline to guide in a principled way feature selec-

tion and feature extraction methods to reduce the high dimensions and to

contrast the curse of dimensionality that affects multi-omics data.

• We harness the power of cutting-edge Intrinsic Dimensionality (id) estima-

tion through block-analysis, providing an unbiased estimation of the indi-

vidual ids for each view within a multi-modal dataset.

• We use an exhaustive set of diverse multi-omics cancer datasets from the

well-known TCGA dataset to show that the automatic analysis of the dis-

tribution of the block-ids characterizing each omics-view leverages dimen-

sionality reduction, by (1) evidencing feature noise and redundancy, and (2)

providing an unbiased estimate of the id for each view, to be used for set-

ting the dimension of the reduced space. This avoids empirical or heuristic

choices and allows tailoring the reduction to each data-view.

• The crucial information gained by block-analysis allowed proposing a two-

step dimensionality-reduction approach combining feature selection and fea-

ture extraction. Our comparative evaluation shows the effectiveness of the

proposed technique and its synergy with state-of-the-art data-fusion tech-

niques applied in a multi-omics context.

• We show that the proposed reduction pipeline leverages traditional dimen-

sionality reduction and state-of-the-art data-fusion algorithms. Indeed, it

obtains effective performance when predicting overall survival events with

simple random forest classifiers, often preferred in the biomedical field due

to their robustness, efficiency, and interpretable nature.
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Abstract

The advent of high-throughput sequencing technologies has revolutionized the

field of multi-omics patient data analysis. While these techniques offer a wealth

of information, they often generate datasets with dimensions far surpassing the

number of available cases. This discrepancy in size gives rise to the challenging

“small-sample-size” problem, significantly compromising the reliability of any

subsequent estimate, whether supervised or unsupervised.

This calls for effective dimensionality reduction techniques to transform high-

dimensional datasets into lower-dimensional spaces, making the data manageable

and facilitating subsequent analyses. Unfortunately, the definition of a proper di-

mensionality reduction pipeline is not an easy task; besides the problem of iden-

tifying the best dimensionality reduction method, the definition of the dimension

of the lower-dimensional space into which each dataset should be transformed is

a crucial issue that influences all the subsequent analyses and should therefore be

carefully considered.

∗corresponding author - email: elena.casiraghi@unimi.it

Preprint submitted to Artificial Intelligence in Medicine October 24, 2023

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.23.576822doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.576822
http://creativecommons.org/licenses/by-nc-nd/4.0/


Further, the availability of multi-modal data calls for proper data-fusion tech-

niques to produce an integrated patient-view into which redundant information is

removed while salient and complementary information across views is leveraged

to improve the performance and reliability of both unsupervised and supervised

learning techniques.

This paper proposes leveraging the intrinsic dimensionality of each view in a

multi-modal dataset to define the dimensionality of the lower-dimensional space

where the view is transformed by dimensionality reduction algorithms. Further, it

presents a thorough experimental study that compares the traditional application

of a unique-step of dimensionality reduction with a two-step approach, involving

a prior feature selection followed by feature extraction.

Through this comparative evaluation, we scrutinize the performance of widely

used dimensionality reduction algorithms. Importantly, we also investigate their

impact on unsupervised data-fusion techniques, which are pivotal in biomedical

research. Our findings shed light on the most effective strategies for handling

high-dimensional multi-omics patient data, offering valuable insights for future

studies in this domain.

Keywords: Dimensionality Reduction, Intrinsic Dimensionality, Feature

Selection, Feature Extraction, Data Fusion, Multi-omics Datasets

1. Introduction

In the biomedical research field, the emergence of high-throughput technolo-

gies has revolutionized the acquisition of vast and diverse omics data types such

as genomic, transcriptomic, proteomic, and methylomic data [1, 2]. These distinct

modalities (views) provide valuable insights into the intricate molecular landscape

governing biological processes and diseases; if appropriately processed and inte-

grated they can uncover crucial disease triggers and enhance our understanding of

various health conditions [3, 4, 5, 6].

However, the analysis of multi-omics data presents significant challenges due

to their high dimensional nature and multi-modality. In particular, the high-dimensional

nature of omics data results in high computational costs, data sparsity, and over-

fitting due to the presence of noisy, uninformative, and redundant features. These

problems collectively are referred to as the “curse of dimensionality”, and can

bias practically all results obtained from these data. This is particularly true in

bio-medical datasets, often characterized by high-dimension and small-sample-

size, that is by a large number of features relative to the number of samples. Such
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datasets may easily reach a level of sparsity that causes samples to appear dis-

tributed on the boundaries of the hyperspace, affecting the reliability of subse-

quent supervised or unsupervised analyses [7, 8, 9].

To address these issues, unsupervised Dimensionality Reduction (DR) gained

a lot of interest over the past decade and is now recognized as being a crucial pre-

liminary phase in various fields [10]. DR techniques, including feature selection

and feature extraction methods, mitigate the curse of dimensionality by reducing

the dimension of the input dataset so that it concisely conveys similar information.

In case of bio-medical multi-modal datasets, DR may be individually applied to

reduce each input modality (view) and better expose its characterizing informative

content. This would aid the following data-fusion task, for which several promis-

ing algorithms have been already presented in the bio-medical literature [11].

However, while feature selection and feature extraction methods have shown

their own advantages and several reviews describe and eventually compare their

successful results [12], to the best of our knowledge no paper investigated the fol-

lowing two crucial choices that should be carefully considered when analyzing

and reducing high-dimensional datasets, potentially affected by the curse of di-

mensionality. First, there is no rule of thumb that allows claiming that a dataset is

affected by the curse of dimensionality/small-sample-size problem. Second, the

choice of the dimension of the reduced space is one of the most crucial choices;

too low values would cause the loss of information, while too large values would

not consistently reduce the curse of dimensionality. In practice, literature works

in the field of bioinformatics either avoid any dimensionality reduction [13] or

make some empirical/heuristic decisions [14, 15] not motivated by any theoretical

justification. However, the careful design of the DR step affects all the subsequent

computations and the reliability of the obtained results [16, 17, 18].

Further, when applying dimensionality reduction in a multi-omics setting, few

works consider that different views might carry different amounts of information.

Neglecting this fact, most works blindly apply any of the successful data-fusion

techniques proposed in literature [19, 11] (supplementary section S. A.3) without

any prior view-reduction, or when a reduction is applied, the same (often empiri-

cal) dimension is chosen for all the views.

Instead, a prior view-specific reduction would better emphasize and expose

the information within each view, therefore improving the effectiveness of the

following data-fusion task, whose aim is to uncover the salient information across

views, while removing the (between-)view redundancy [20, 21].

The aim of this work is to propose a novel block-analysis technique leverag-

ing one of the most promising and recent Intrinsic Dimensionality (id) estimators
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([22], supplementary section S. A.2), namely the two-nn estimator (supplemen-

tary section S. A.2.1) to understand when and how a feature selection or feature

extraction method could improve the data representation. If curse of dimension-

ality is detected, the block-analysis allows defining the dimension of the lower-

dimensional space where each view should be transformed by any of the promis-

ing feature selection or feature extraction approaches proposed at the state of the

art (supplementary section S. A.1). Further, by exploiting the information pro-

vided by block-analysis, we propose and experiment with a novel two-step DR

process that improves results by combining the advantages of the first application

of feature selection followed by feature extraction.

The proposed DR technique is applied in the context of multi-omics data anal-

ysis, where effective multi-omics data-fusion algorithms have been recently de-

veloped. In particular, we compared some of the most promising and effective

unsupervised multi-omics data-fusion techniques (i.e. MOFA+ [21], uMKL [23],

and SNF [13], all summarized in supplementary section S. A.3) to assess their

strengths and compare their robustness across different settings. Indeed, while

the effectiveness of these data integration approaches is undoubted, we wanted

to investigate (1) the effect of using subsets of the input multi-omics views, to

understand whether a subset of the input views could suffice to provide effective

results, or (2) whether the integration of not-omics patients’ views, e.g. patients’

demographics views carrying a completely different semantic, would enhance the

salient and discriminative information, therefore facilitating the following super-

vised/unsupervised analysis.

To perform our comparative evaluation we selected nine (high-dimensional)

multi-omics datasets from the well-known TCGA repository (more details in sec-

tion 2) and designed a supervised machine learning pipeline that reduces all the

omics views in the input dataset, fuses them (by eventually integrating also the

demographic view or concatenating it to the integrated view), and finally uses a

random forest classifier for analyzing the fused information to predict patients’

survival. By using a supervised classification task the obtained performance can

be compared using well-established performance measures, such as the area under

the ROC curve (AUROC) and the area under the Precision-Recall curve (AUCPR).

Results show that, in our classification problem, DR guided by block-analysis

outperforms traditional DR approaches that use heuristics to set the dimensional-

ity of the reduced space. Further, the robustness of DR improves when a two-step

DR approach is applied, or when non-omics patients’ descriptors are also inte-

grated into the analysis. On the other hand, when a prior (and properly designed)

step of DR is applied to effectively remove intra-view redundancy and noise, there
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is no need to spare computational time for testing the usage of subsets of the input

views, because the data-fusion algorithms can produce effective integrated repre-

sentations that achieve robust classification results.

2. TCGA datasets

To obtain reliable results, we mined the following nine multi-omics datasets

from the TCGA cancer repository1 (see tables 1 and 2): the BLadder urothelial

Carcinoma dataset (BLCA); the BReast infiltrating ductal CArcinoma (BRCA1)

and the BReast infiltrating lobular CArcinoma (BRCA2) datasets, composed by

splitting all the samples in the BReast nvasive CArcinoma dataset (BRCA); the

KIdney Renal Clear cell carcinoma dataset (KIRC); the LUng ADenocarcinoma

dataset (LUAD); the LUng Squamous Cell carcinoma datset (LUSC); the PRostate

ADenocarcinoma dataset (PRAD); the OVarian serous cystadenocarcinoma dataset

(OV); the SKin Cutaneous Melanoma dataset (SKCM).

For each dataset, we considered miRNA and mRNA (RNA-Sequencing ex-

pression values), protein expression (Reverse Phase Protein Arrays), and DNA

methylation (Methylation Array) views, which were pre-processed to filter vari-

ables mainly carrying noise or highly redundant information (see supplementary

section S. B for further details).

We also complemented the omics information with demographic patient data

(age at first pathological diagnosis, gender, race, ethnicity, see supplementary ta-

bles S. B.1-S. B.3 for further details). Patients in the TCGA dataset may be clas-

sified based on their Overall Survival (OS) event, which is available from the

TCGA-CDR [25] dataset. We used the overall survival label to perform a super-

vised classification task.

Note that some literature studies using TCGA datasets for testing classifica-

tion models [26, 27, 28, 29, 30] already exist. However, these studies typically

restrict their analysis to a maximum of four TCGA datasets, without providing

clear justification for their choices. In contrast, our approach involved the se-

lection of nine diverse datasets, that were chosen to encompass a wide range of

heterogeneity, not only in terms of different tumor types being investigated, but

also in the ratio between the number of cases and variables within each dataset,

and the balance between positive (patients with OS event equal to 1) and negative

1The R package “curatedTCGAData” [24] was used to download the tumor datasets from the

TCGA repository (dataset version 2.0.1).

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.23.576822doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.576822
http://creativecommons.org/licenses/by-nc-nd/4.0/


patients (OS = 0). By adopting this comprehensive approach, we aimed to capture

a more nuanced and representative perspective in our analysis.

Dataset view N D (raw) D N
D

Npos Nneg
Npos

N

BLCA miRNA 335 469 469 0.7143 151 184 0.45

mRNA 12276 12276 0.027

proteins 183 183 1.831

methy 315551 30000 0.012

BRCA1 miRNA 317 496 496 0.6391 42 275 0.13

mRNA 12242 12242 0.026

proteins 202 202 1.569

methy 289962 30000 0.011

BRCA2 miRNA 128 502 502 0.255 14 114 0.11

mRNA 8128 8128 0.016

proteins 192 192 0.667

methy 278099 30000 0.004

KIRC miRNA 169 364 364 0.464 48 121 0.28

mRNA 7942 7942 0.021

proteins 186 186 0.909

methy 319740 30000 0.006

LUAD miRNA 300 465 465 0.645 120 180 0.40

mRNA 11131 11131 0.027

proteins 179 179 1.676

methy 331828 30000 0.01

Table 1: Descriptive statistics for BLCA, BRCA1, BRCA2, KIRC, and LUAD datasets. Column N

reports the number of cases; column D (raw) reports the original dimension of each view; column

D reports the dimension of each view after data pre-filtering to remove noise and high pairwise-

redundancy (see supplementary file S. B); column N
D

reports the ratio between the number of cases

and the dimension of each view; columns Nneg, Npos, and
Npos

N
report, respectively, the number

of negative (OS = 0) and positive (OS = 1) patients, and the balance ratio, measured as the ratio

between the number of positive cases and all the cases in the dataset. “methy” stands for DNA

methylation data.
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Dataset view N D (raw) D N
D

Npos Nneg
Npos

N

LUSC miRNA 228 491 491 0.464 93 135 0.41

mRNA 11473 11473 0.02

proteins 178 178 1.281

methy 273884 30000 0.008

OV miRNA 226 308 308 0.734 143 83 0.63

mRNA 11731 11731 0.019

proteins 186 186 1.215

methy 13296 13296 0.017

PRAD miRNA 337 457 457 0.737 6 331 0.02

mRNA 8887 8887 0.038

proteins 169 169 1.994

methy 301920 30000 0.011

SKCM miRNA 334 523 523 0.639 150 184 0.45

mRNA 13050 13050 0.026

proteins 186 186 1.796

methy 311405 30000 0.011

Table 2: Descriptive statistics for LUSC, OV, PRAD, and SKCM datasets.

3. Dimensionality reduction approach

In this section, we describe the block-analysis we propose to provide unbiased

estimates of the id of a data-view (subsection 3.1).

The automated analysis of the block-id distribution provides a quantitative

information about the amount of feature noise and redundancy affecting the view

(subsection 3.2) and, based on that, it allows tailoring the dimensionality reduction

of the analyzed view.

To guide the reader, Figure 1 sketches the DR pipeline guided by block-

analysis.

In the whole section, we consider an input view (dataset), X ∈ ℜN×D, with N

being the number of cases, and D the number of features (dimension) of the view.
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Figure 1: Experimented DR and data-integration pipelines.

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.23.576822doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.576822
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.1. Block analysis and block-ID estimate

Several of the most promising id estimators produce unstable global estimates

on real datasets, often affected by the small-sample-size causing sample-sparsity,

outliers, and noise [31, 32, 22] (see supplementary section S. A.2 for further de-

tails). This is particularly true for nearest-neighbor id estimators, which base

their estimation on the analysis of the distribution of points withing small data-

neighborhoods. Due to the unreliability of pairwise-distances in datasets charac-

terized by the small-sample-size, these estimators often suffer from high variance

or overestimation when, e.g., the considered point-neighborhood size increases.

Furthermore, since all the id estimators contain some randomness, most of them

suffer from an added factor of variance, particularly evident when working in high

dimensions.

To account for such variance as well as the presence of outlier and boundary

points that could bias the estimates, authors of two-nn [22] proposed experiments

on simulated datasets (with a large number of samples, i.e. not affected by the

small-sample-size) where they apply a classic block-analysis [33]. In particular,

authors compute (sub-optimal) id estimates (and their standard deviation) by av-

eraging the estimates obtained on under-sampled, non-intersecting datasets com-

posed of a number n < N of samples. Plotting the distribution of the obtained

estimates for increasing values of n, a plateau is found, corresponding to an un-

biased (optimal) estimate of the id characterizing the informative content of the

dataset.

The above-mentioned approach is effective on simulated experiments, where

enough samples can be generated to avoid the curse of dimensionality. On the

other hand, when dealing with real bio-medical datasets, often limited in sample-

size and potentially affected by the curse of dimensionality, we propose to reduce

the bias due to the presence of noisy and outlier points by averaging all the two-

nn id estimates computed on M under-sampled versions of the dataset, where

the under-sampling randomly selects (with repetition) a fixed percentage, t, of

the dataset points2. Choosing a proper value for the percentage t allows to have

enough samples in each sub-dataset M, so that the average (and the standard de-

viation) of all the M id-estimates may be a first, more robust, two-nn id-estimate

(and standard deviation of the estimate) of the input dataset.

2In all our experiments we set M = 11 and t = 90%. The low value of M limits the

computational-time costs of the algorithm; however, the higher this value, the lower the vari-

ability of the estimate and the higher the precision of the estimate. The value of t = 90% is chosen

to obtain under-sampled datasets with enough samples.
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In the following, any reference to the two-nn id-estimate of a dataset X,

d̂twonn (X) (and its standard deviation σ
(

d̂twonn (X)
)

) refers to this unbiased es-

timate.

While the aforementioned procedure mitigates the problems affecting real,

noisy datasets, it still cannot cope with the possible curse of dimensionality, which

practically shows up with a large number of features being noisy or redundant.

Unfortunately, given an input view X ∈ ℜN×D there is no rule of thumb for de-

ciding when a dataset characterized by low values of the ratio N
D

is affected by the

curse of dimensionality. To provide such understanding and to obtain an unbiased

id-estimate of the view even in the presence of noisy and redundant features we

propose applying the block-analysis feature-wise, as detailed in this section.

In particular, we start by using the two-nn id-estimate for the input view,

d̂twonn (X), to set the dimension L0 of the smaller block as L0 = 3× d̂twonn (X).
Though we are aware that this id estimate might still be biased by redundant and

noisy features, if any, it can be a valid aid to guarantee that even smaller blocks

can contain enough information to produce reliable estimates.

Once L0 is set, we perform the block-analysis by iterating over blocks with

increasing dimensions, estimating the two-nn id of each block, and then analyzing

the distribution of all the block-ids.

More precisely, at the jth iteration ( j-th block B j), when the block size is

L j = L0 + j×L0, L j ≤ D, we estimate the id (and its fluctuations) for B j by:

(I) creating ntry blocks, B j(i) ∈ ℜN×L j , i ∈ [1, . . . ,ntry], each representing all

the samples in the input view with L j randomly sampled features;

(II) estimating the two-nn id of each B j(i), d̂twonn(B j(i)) and then computing

the mean (and variance) of all the computed estimates to obtain the block-

id estimate, d̂L j
(and its variance, var

(

d̂L j

)

) for B j, being var the variance

operator.

This step essentially provides an estimate of the id (and its variance) that

would be obtained if the data was represented by L j randomly selected features3.

3.2. Automatic analysis of Block-ids allows tailoring dimensionality reduction

The red dotted lines in figure 2 (and supplementary figures S. C.1-S. C.4)

plot the block-ids, d̂L j
for increasing block dimensions in the miRNA and pro-

3We set ntry = 31 to reduce time costs of the algorithm; however, the higher this value, the

higher the precision of the estimate.
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Figure 2: Block-analysis performed by using the two-nn estimator on the SKCM dataset. Left:

miRNA view (SKCM dataset). Right: protein view (SKCM dataset). Point L j of the red-dotted

line (and the vertical bars) represents d̂L j
(and its standard deviation σ

(

d̂L j

)

), that is the estimated

block-id for block B j, computed as the mean (and standard deviation) of the ids estimated on ntry

blocks with dimension L j (and its standard deviation). The block-id increases as the block dimen-

sion increases, suggesting that each of the added features increases the amount of information.

Therefore, the id of the whole view, i.e. the id of the block covering all the features, is a reliable

estimate of the dimensionality of the space where the data should be transformed by a feature-

extraction algorithm (figure 1 - light green box - FE option). On the other hand, considering that

each feature adds novel information, if feature-selection is the chosen dimensionality reduction

approach (figure 1 - light green box - FS option), the view is not reduced and it is returned as it is;

in other words, feature-selection is avoided because it would necessarily spare information.

tein views (SKCM dataset); red bars in the figure represent standard deviations,

computed as the square root of the variance σ
(

d̂L j

)

=
√

var
(

d̂L j

)

.

When observing the miRNA and protein views, which are characterized by

higher ratios N
D

when compared to the mRNA and methylation data-views, we note

that the block-id keeps increasing until the block size includes all the features in

the view, L j = D, that is, the block-id equals the two-nn id-estimate of the whole

view: d̂L j=D = d̂twonn(X) and σ
(

d̂L j

)

= σ
(

d̂twonn (X)
)

.

This suggests that each new feature adds novel information. In other words,

the view contains a limited amount of noise and redundancy, supposedly due to

the data-view belonging to a real dataset. In this case, the two-nn-id of the whole
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view, d̂twonn (X) (and its standard deviation, σ
(

d̂twonn (X)
)

) is an unbiased esti-

mate of the id of the whole view (and its fluctuations).

In practice, when no plateau is automatically detected by block-analysis (see

figure 1 - light green box) no DR via feature-selection is applied because the

selection of a subset of features would surely cause loss of information. Instead,

we allow performing DR via feature extraction, which considers (and combines)

all the features in the dataset (all the original information in the dataset) while

computing the reduced view. In this case, the dimension of the reduced space, d

where the view is transformed is computed by using the id estimate of the whole

view: d = d̂twonn (X)+3σ
(

d̂twonn (X)
)

.

On the other hand, for the mRNA and the methylation view (figure 3) the

distribution of the block-ids (red-dotted line) is more noisy, and increases until it

reaches a (noisy) plateau. The dimension Lp of the block where the plateau starts

(horizontal axis in figure 3, automatically detected as described in supplementary

section S. C) can be regarded as an estimate of the minimum number of (salient)

features that can be used to represent the salient information in the data-view, and

after which the addition of extra features mainly adds redundancy and/or noise.

In practice, Lp is the number of the original features to be selected by an unsu-

pervised feature selection algorithm to reduce noise and redundancy. While this

step reduces the curse of dimensionality effects, the value of Lp is often high. To

reduce the computational costs of the following algorithms and compute a data-

representation concisely conveying similar information, we therefore propose ap-

plying a two-step DR approach where the reduced Lp-dimensional view is input

to a feature extraction algorithm4.

The feature extraction transforms the data into a space whose dimension, d, is

computed based on an unbiased estimate of the view id, computed by considering

that the block-id distribution is very noisy for views affected by the curse of

dimensionality. To reduce noise effects by averaging, we compute the cumulative

mean of the block-ids (green-dotted line in figure 3).

More precisely, the cumulative mean for block B j, cum(d̂L j
), is computed

4Note that most feature-extraction techniques are based on the computation of pairwise sam-

ple distances, which are biased under the curse of dimensionality due to the high level of

sample-sparsity. Besides the reduction of computational costs, the prior application of a feature-

selection algorithm reducing the amount of redundancy and noise facilitates the task of the follow-

ing feature-extraction algorithm by allowing the computation of more reliable pairwise sample-

distances.
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Figure 3: Block-analysis performed by using the two-nn estimator on the SKCM dataset.

Left: mRNA; right: methylation data. The block-ids (red-dotted line) are more noisy than those

in the miRNA and protein views. The effect of noise is reduced by the computation of the cumu-

lative mean (green-dotted line), soon reaching stability (plateau), providing a reliable estimate of

the view id. The analysis of the cumulative mean allows the automatic detection of the position

of the plateau (Lp = 4228 and Lp = 1920 for, respectively, the mRNA and the methylation view),

corresponding to the number of features that may be selected from the dataset to reduce the in-

formation loss. In other words, the block-analysis of the mRNA and methylation views allows to

detect signs of the curse of dimensionality in terms of the presence of feature redundancy. More-

over, it provides an unbiased estimate of the id characterizing the information content of view, and

an estimate of the number of features that could be retained by any unsupervised feature selection

algorithm to avoid information loss.

as the average of all the block-ids computed for blocks B0, . . . ,B j: cum(d̂L j
) =

mean
(

d̂Lt

)

, t = [1, . . . , j]. Eve’s law of total variance [34] allows computing the

total variance of cum(d̂L j
), var

(

cum(d̂L j
)
)

, as the sum of the (unexplained) vari-

ance UVL j
due to the id-estimator, and the (explained) variance EVL j

due to the

sampling process5.

In practice, each point of the cumulative mean represents the average block-id

that would be obtained on a view composed by randomly sampling a number of

features that is equal to (or lower than) the dimension of block B j.

Further, assuming some features are mostly carrying noise and/or redundant

5UVL j
is computed as the mean of the block-id variances for blocks B0, . . . ,B j: UVL j

=

mean
(

var
(

d̂Lt

))

, t = 1, . . . , j; EVL j
is computed as the variance for blocks B0, . . . ,B j: EVL j

=

var
(

d̂Lt

)

, t = 1, . . . , j
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information, the random under-sampling of features that is performed to compose

blocks with varied and increasing dimensions, as well as the evaluation of the id

for increasing block dimensions, is able to reduce (by averaging) biasing effects

due to noise and redundancy. This is also visible in the plot of the cumulative

mean, which approaches the block-id (red-dotted line) plot and is less noisy. This

suggests that the (cumulative) value corresponding to the plateau of the block-id,

cum(d̂Lp
), and its total standard deviation, σ

(

cum(d̂Lp
)
)

=
√

UVLp
+EVLp

, can

be considered as an unbiased estimate of the id (and its fluctuations) of the whole

view.

Summarizing, when a plateau is automatically detected in position Lp of the

block-id distribution (see figure 1 - light orange box) we reduce the curse of di-

mensionality by applying any of the following three DR options: (1) if feature

selection is the preferred approach, we select Lp salient features; (2) if feature

extraction is the preferred DR approach, the data-view is transformed to a lower

dimensional space with dimension d = cum(d̂Lp
)+ 3σ

(

cum(d̂Lp
)
)

; (3) if a two

phase DR is chosen, feature selection is applied to select Lp features and the re-

duced view is input to a feature extraction algorithm that transforms the dataset

into a space with dimension d = cum(d̂Lp
)+3σ

(

cum(d̂Lp
)
)

.

Tables 3 and 4 report, for each dataset and view used in our experiments (sec-

tion 2), the number of features Lp corresponding to the plateau, if any is found,

the id estimate d̂, which equals either d̂twonn(X) - when no plateau is found -

or cum(d̂Lp
) - when a plateau is found, and its total standard deviation, σ

(

d̂
)

,

computed as the square root of the total variance, var
(

cum(d̂Lp
)
)

.

4. Results

In this section we first summarize the DR+data-fusion pipelines we devised

and experimented (subsection 4.1); next, we detail the experimental settings of

the supervised classification task we exploited to objectively compare the different

pipelines (subsection 4.2); finally we report and discuss the results obtained by our

comparative evaluation (subsection 4.3).

4.1. Dimensionality reduction guided by block-analysis and multi-omics data fu-

sion

In this section, we detail the (one-step or two-step) DR+data-fusion pipelines

we designed and compared by their application for supervised prediction. To help

readers’ comprehension, figure 1 sketches all of them.
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Dataset view Lp d̂ σ
(

d̂
)

BLCA miRNA 53.72 1.81

mRNA 2835 42.75 2.85

proteins 28.83 1.19

methy 4238 52 3.48

BRCA1 miRNA 51.11 1.68

mRNA 4640 46.61 3.18

proteins 35.04 1.26

methy 5738 48.57 3.55

BRCA2 miRNA 35.21 3.69

mRNA 4216 42.26 3.57

proteins 27.75 1.23

methy 3000 39.87 3.04

KIRC miRNA 53.26 5.55

mRNA 4340 39.28 3.35

proteins 31.1 1.6

methy 2208 47.35 4.74

LUAD miRNA 44.15 1.12

mRNA 3168 43.32 2.72

proteins 33.26 1.44

methy 1677 43.27 3.36

Table 3: Block-id estimates for BLCA, BRCA1, BRCA2, KIRC and LUAD datasets. For each

dataset-view the table reports the number of features Lp corresponding to the plateau (if any is

found), and the id estimate d̂ with its corresponding standard deviation σ
(

d̂
)

.

DR is performed by either a unique step of unsupervised feature selection (FS

in figure 1), a unique step of unsupervised feature extraction (FE in figure 1), or

by a 2-step DR process where the ouput of feature selection is input to feature

extraction (FS+FE in figure 1).

The unsupervised feature selection algorithms we adopt were chosen based on

their documented promising results, their limited computational costs, and consid-

ering preliminary experiments we ran, which showed their robustness with respect

to datasets characterized by a limited cardinality. For interested readers, a brief
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Dataset view Lp d̂

LUSC miRNA 50.77 1.41

mRNA 4350 48.38 3.55

proteins 35.79 0.84

methy 3400 43.19 3.26

OV miRNA 33.97 2.22

mRNA 3173 55.19 4.78

proteins 38.07 2.08

methy 3614 44.14 2.93

PRAD miRNA 54.04 1.95

mRNA 3645 43.57 2.66

proteins 27.43 0.97

methy 7760 61.92 4.23

SKCM miRNA 57.11 3.14

mRNA 4228 48.6 3.39

RPPA 32.45 1.07

methy 1920 40.86 2.88

Table 4: Block-id estimates for LUSC, OV, PRAD and SKCM datasets. For each dataset-view

the table reports the number of features Lp corresponding to the plateau (if any is found), and the

id estimate d̂ with its corresponding standard deviation σ
(

d̂
)

.

literature background about unsupervised feature selection is reported in supple-

mentary section S. A.1.1. In particular, the following algorithms were selected,

and eventually optimized to reduce their computational costs:

• A parallel feature clustering algorithm returning the features that are the

centroids of the identified clusters. Given the high computational costs of

feature clustering methods at the state-of-the-art, the algorithm we imple-

mented splits the input view into non-intersecting feature subsets that are

distributed on multiple cores. Each core applies the Genie agglomerative

clustering algorithm [35] to cluster the input feature subset, and then re-

turns the features that are centroids of each cluster (feature medoids). The

main algorithm recollects and concatenates all the feature medoids and iter-

ates the algorithm on the concatenated feature medoids to perform a further

selection until a number Lp of feature medoids is reached. More details are
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reported in supplementary section S. D.1.

• An iterative version of the RCUR [36] algorithm, whose parallel schema is

similar to the one applied for feature clustering (more details are reported in

supplementary section S. E); it allows selecting an Lp-dimensional subset

of the original features, based on their potential to represent the information

in the input view.

• A simple entropy filtering algorithm that selects the Lp features with the

highest entropy.

When a unique step of unsupervised feature selection is applied to reduce all

the multi-omics views in the input dataset, only views for which the block-analysis

identified a plateau (that is, views affected by feature redundancy - light red box

in figure 1) are reduced by selecting a number of features corresponding to the

position Lp of the plateau of the block-id. The other views are kept as they are to

avoid loss of information (light-green box in figure 1).

Feature-extraction algorithms were similarly chosen based on their promising

and successful results (supplementary section S. A.1.2). In detail, we compared

Randomized PCA (RPCA, alias RSVD), laplacian eigenmaps, UMAP, and t-SNE

and defined the dimension of the lower-dimensional space as d = d̂ + 3×σ
(

d̂
)

,

where d̂ (and σ
(

d̂
)

) is the estimated id (and its standard deviation). We recall that

(section 3.1) a reliable id estimate (and standard deviation) of views not affected

by feature redundancy is obtained as the mean (and standard deviation) of the

two-nn estimates computed on M undersampled sets (light-green box in figure

1). When instead the block-analysis detects feature redundancy (light-red box in

figure 1), the cumulative value at the plateau of the block-id distribution (and its

total standard deviation) provides a reliable id estimate.

When we apply the two-step DR pipelines we simply perform a preliminary

unsupervised feature selection method among those listed above followed by any

of the unsupervised feature extraction methods listed above. This practically

means that only views where a plateau is found (light-red box in figure 1) un-

dergo feature-selection and then feature-extraction; the other views undergo only

feature-extraction.

Once all the views in the input dataset have been individually reduced, they

are input to a data-fusion algorithm to leverage the related and complementary

information across views and produce an integrated view that may be input to any
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further analysis. Besides the basic concatenation of the reduced views, which can

be considered as a simple benchmark for comparison, we exploited and compared

data-fusion approaches that showed their promise in several multi-omics data-

analysis tasks and are applied in different stages of the data analysis [37, 11] (de-

tails in supplementary section S. A.3). In particular, we experimented with: (1) an

input-data fusion technique, namely MOFA+ [21], which applies a Bayesian ap-

proach to derive a set of latent factors capturing and representing the information

content of the input multi-modal representation; two Patient-Similarity-Network

(PSN) fusion techniques, that are (2a) the widely used Similarity Network Fu-

sion algorithm (SNF, [13]), which applies a smart diffusion process that merges

the similarities between pairs of samples that have “shared” neighbors across

views, and (2b) an unsupervised Multiple Kernel Learning technique (uMKL,

[23]), which outputs the (integrated) kernel that best aligns with all the unimodal

kernels (i.e. the Gram matrices) representing the topological structure of each

input view.

Overall, we experimented with nineteen DR methods; seven of them (one-step

DR approach) applied either one of the three unsupervised feature-selection meth-

ods (feature clustering, iterative RCUR - par rcur in the following, entropy fil-

tering) or four unsupervised feature-extraction methods (RPCA, Laplacian Eigen-

maps, t-SNE, and UMAP); twelve were two-step DR pipelines obtained by all

the combinations of the four feature-selection algorithms and the three feature-

extraction algorithms. Considering that the reduced data is input to any of the

four data integration methods we experimented (SNF, uMKL, MOFA+, and the

simple concatenation), for each multi-omics dataset we run about eighty different

DR+data-fusion pipelines (experiments).

4.2. Experimental settings

Each DR+data-fusion pipeline was tested on a binary classification task across

all the nine multi-omics cancer datasets (section 2). To this aim, a random forest

classifier (RF, [38]) was trained and tested to predict the overall survival event of

patients.

Besides their interpretable nature [39], their often superior effectiveness with

respect to even the (less efficient) deep neural network models [40], and their ca-

pability of handling a set of heterogeneous variables [38], we chose RF classifiers

due to their robustness to the input feature set and the choice of hyper-parameter

values. This makes it easier to apply them consistently across different datasets,
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DR, and data-fusion approaches, and allows an objective assessment of the infor-

mativeness of the (reduced) input-data representation and the effectiveness of the

data-fusion algorithms, without the confounding effects due to the prior applica-

tion of supervised feature selection or hyper-parameter tuning steps6.

To obtain an unbiased evaluation, the RF training and testing phase was re-

peated across fifteen stratified holdouts (80:20 train:test ratio) that obviously dif-

fered for each dataset but were kept fixed across all the experiments run on the

same dataset. To avoid confounding effects that could hamper an objective com-

parison, we avoided the application of any supervised feature selection algorithm

and we instead set all the RF parameters to their default values.

Paired-samples Wilcoxon test, alias Wilcoxon signed-rank test, at the 95% of

confidence (i.e. α = 0.05) was used for comparison. If not specified, the test was

performed by pooling the results obtained on all the nine TCGA datasets (supple-

mentary files report also the details per dataset); for each comparison, we consid-

ered AUCPR and AUC for hypothesis testing and exploited win-tie-loss tables to

summarize the statistical comparison between each method against all the others7.

In particular, when two specific DR+data-fusion experiments were compared, we

paired the results obtained on each of the nine TCGA datasets and the fifteen strat-

ified holdouts. When, instead, we performed more generic comparisons to asses

each DR approach (or each data-fusion method), we paired the results obtained

across the nine different datasets, the fifteen holdouts, and the four data-fusion

methods (or nineteen DR pipelines).

Wilcoxon signed-rank test summarize and compare the performance of dif-

ferent pipelines across multiple settings. Therefore, pipelines that achieve the

highest/lowest number of wins/losses can be regarded as being, on the average of

all the experimented settings, the top-performing and most robust.

However, under specific settings, some other pipelines may achieve promis-

6If the input-data contains discriminative information and a limited amount of redundancy,

default RF parameters can achieve decent results. Moreover, while it is undoubted that supervised

feature selection and hyper-parameter tuning increase RF performance, it is also true that the

increase also depends on some randomness; by avoiding preliminary feature selection and hyper-

parameter tuning, we could more directly focus on comparing the performance of the DR+data-

fusion pipelines, which are not confounded by the effects of feature selection and hyper-parameter

tuning choices.
7When using sided-hypothesis tests to compare the performance of two methods A and B, a

win/loss (or tie) is assigned if the sided-test is below (above) the α-value. When assessing multiple

methods, all pairwise comparisons are performed, and a three-column table is computed that lists,

for each method, the number of wins, ties, and losses
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ing results; to provide a more exhaustive and detailed description of the obtained

results, for each of the considered comparative evaluations we collected and an-

alyzed the list of the top-performing experiments; in simpler words, for each of

the nine TCGA datasets, we collected the three (DR+data-fusion) experiments that

obtained the highest AUC or AUCPR values. This allowed counting the frequency

of the DR and data-fusion pipelines occurring among the top-performers.

4.3. Comparative evaluation results

After performing data-fusion tests with no prior DR that evidenced the need of

a properly designed DR approach (supplementary section S. F.1), we conducted

tests to compare the proposed DR approach (guided by block-analysis) to meth-

ods that exploit heuristics or empirical measures to set the dimension of the lower

dimensional space (section 4.3.1). Next, we compared the results obtained by

the block-analysis guided DR+data-fusion pipelines to gain insights about differ-

ent data-fusion settings, ranging from the traditional multi-omics fusion setting

(subsection 4.3.2), to those settings where we fused subsets of omics (subsection

4.3.3), and omics plus non-omics views (subsection 4.3.4).

4.3.1. When compared to heuristics, the usage of block-analysis and the id esti-

mate obtain better results

Besides comparing the described DR+data-fusion pipelines, in our experi-

ments we also aimed to assess the effectiveness of using the id estimate to set

the dimension of the lower dimensional space.

To this aim, we initially experimented with DR pipelines exploiting a unique

step of either feature-selection or feature-extraction (1-step DR, section 4.1) to

choose the better performing among two heuristically set dimensions, d̄HD1 and

d̄HD2. In particular, the heuristic dimensions we chose to compare are based on

the rationale that most of the feature extraction algorithms allow to compute a

reduced space whose number of dimensions is lower or equal than min(N,D)−1

[36, 41, 42]. Based on this consideration, we run all the one-step DR+data-fusion

pipelines by using two heuristics, HD1 and HD2. In particular, HD1 sets the

dimension of the reduced space to d̄HD1 = min(N,D)− 1; HD2 halves d̄HD1, i.e.

for HD2 we used d̄HD2 =
min(N,D)

2
.

In supplementary section S. F.2 we report details about the experiments we

performed to compare the results obtained by using HD1, HD2, and our block-

analysis to guide the reduction. Besides avoiding empirical or heuristic choices,

the assessment showed the promise of our proposal.
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Further, the obtained results hint that the most robust and effective results are

obtained by a two-step DR pipeline combining the iterative version of RCUR we

implemented with RPCA.

On the other hand, when comparing the performance and robustness of the

data-fusion algorithms, SNF is undoubtedly among the most promising techniques

in all the comparative evaluations; howver, also uMKL and MOFA+ show their

promise.

4.3.2. Comparison of DR and data integration pipelines guided by the block-

analysis

To assess and compare the robustness of the DR+data-fusion pipelines guided

by block analysis we applied the paired samples Wilcoxon test to compare: (1)

each DR pipeline against each other, by pairing all results across datasets, hold-

outs, and data-fusion algorithms; (2) each data-fusion algorithm against each

other, by pairing all results across datasets, holdouts, and DR pipelines. Figures 4

and figure 5 show the win-tie-loss tables obtained when the AUC or the AUCPR

measures are used for comparison.

For what regards DR approaches, the two-step DR approaches using RPCA

are in the list of top-winning pipelines that have zero losses (three up to five

approaches when the AUC is used, and, most importantly, three up to four ap-

proaches when the AUCPR measure is used); generally speaking, all DR meth-

ods exploiting RPCA are the top-winners, confirming the experiments reported

in [18]. The superiority of two-step DR approaches using RPCA was also con-

firmed by the Wilcoxon signed-rank tests we ran to compare each DR+data-fusion

pipeline against each other (supplementary figures S. F.13 and S. F.14 and supple-

mentary tables S7 and S8).

Among the data integration methods, SNF seems the most robust algorithm

with respect to different settings. However, when observing the pairwise DR+data-

fusion comparisons where the AUCPR is used as the evaluation measure (supple-

mentary figure S. F.14), uMKL also shows its promise.

Further, for each dataset, we collected the top-performing pipelines, that is the

list of DR+data-fusion pipelines that obtain the three highest AUCs or AUCPRs.

Next, we counted the frequency of occurrence of each DR and data-fusion algo-

rithm in the top-performing list (the detailed list of top-performers is reported in

supplementary file S9). Figure 6 shows that the majority of top-performers use a

two-step reduction schema, including RPCA and fusing data by means of SNF.
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Figure 4: Win-tie-loss tables obtained by Wilcoxon signed-rank test when using the AUC measure

to compare (top table) all the DR pipelines exploiting the information provided by block-analysis

to guide the reduction of each of the four omics views, and (bottom table) the data-fusion algo-

rithms that fuse the reduced views (bottom table).

4.3.3. The usage of all the available omics improves robustness with respect to

noise and data unbalance

While performing the experiments we reasoned that the usage of all four omics

might provide redundant and/or misleading information for the problem at hand.

Moreover, some data-fusion algorithms might profit when fewer views are in-

tegrated. Therefore, we ran experiments to compare the usage of all the avail-

able (four) omics to the usage of multi-omics datasets containing at least two

omics. Win-tie-loss tables comparing results obtained when using multi-omics

combinations, DR pipelines, and data-fusion algorithms are shown in figures 7

(when the AUC is used for evaluation) and figure 8 (when the AUCPR is used for

evaluation). Extracts of win-tie-loss tables comparing the whole DR+data-fusion

pipelines (also specified by the input multi-omics combination) are shown in sup-
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Figure 5: Win-tie-loss tables computed by Wilcoxon signed-rank test when using the AUCPR

measure to compare all the DR pipelines guided by block-analysis (top table) and the data-fusion

algorithms (bottom table). All the four omics are reduced and then integrated.

plementary figures S. F.15 and S. F.16, while supplementary files S10 and S11

report the complete win-tie-loss tables.

Regarding the comparison of the input-views (top tables in figures 7 and 8)

win-tie-loss tables obtained with AUC seem suggesting that specific combinations

of (mainly) three omics achieve results that are comparable and slightly better than

those obtained when using four omics. However, when observing the win-tie-loss

table obtained by using the AUCPR we note that the usage of four omics is com-

parable to only one combination of three omics (which, again, scores slightly

better) and one combination of two omics. Considering that most of the datasets

used for our tests are unbalanced, i.e. the AUCPR measure is less biased and

more informative while the AUC might be over-optimistic [43], we can infer that
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Figure 6: Frequencies of DR algorithms, DR approaches (one-step versus two-step), and data

integration methods that appear among the best models when block-analysis guides the DR of the

four omics composing the multimodal dataset.

the usage of a superior number of omics, i.e. a superior number of features po-

tentially adding more informative content but also some noise and redundancy,

does not affect performance but instead achieves results comparable to specific

combinations of omics and guarantees robustness with respect to data unbalance.

Note that, this performance is indirectly related to the effectiveness of the prior

DR step. Indeed, we recall that, when no DR is applied at all (supplementary

section S. F.1), the algorithms that fuse all the omics and then apply supervised

feature selection and hyper-parameter tuning achieve poor results (supplementary

section S. F.1). Therefore, provided that a proper DR is applied, the usage of all

the available omics allows to obtain robust results and to avoid costly experiments

to choose the most suitable combination of omics given the problem at hand.

Among the DR pipelines, we again note that feature clustering followed by

RPCA, the iterative RCUR (either alone or in combination with RPCA), or RPCA

alone were still the most robust DR approaches. When instead the paired-samples

Wilcoxon test was used to compare the four data-fusion algorithms, SNF con-

firmed its superiority for both AUC and AUCPR measures. On the other hand,

the simple integration via concatenation seemed to benefit from the reduction of

omics, which is probably due to the lower number of features when less than four

omics are considered.

To provide an exhaustive description of the obtained results, for each dataset

we collected the list of experiments that had the highest AUC or AUCPR. Figure 9

plots the frequency of appearance of each multi-omics combination, DR pipeline,

and data-fusion algorithm (supplementary table S12 lists all the best models and

their performance). For what regards the composition of the input multi-omics

combinations, all views but the miRNA-view equally contributed in obtaining
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Figure 7: Win-tie-loss tables computed by Wilcoxon signed-rank test when using the AUC mea-

sure to compare models guided by block-analysis, integrating at least two omics, and neglecting

demographic data.

a good performance. Moreover, while less robust when compared to combina-

tions of three/four omics by Wilcoxon signed-rank tests, also combinations of

two omics could appear among the top-performers; this suggests that, when hav-

ing enough samples and computing power, the combination of input views could

be regarded as a further hyper-parameter to be tuned to optimize performance.
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Figure 8: Win-tie-loss tables computed by Wilcoxon signed-rank test when using the AUCPR

measure to compare models guided by block-analysis, integrating at least two omics, and neglect-

ing demographic data.

4.3.4. Integration of demographic patient data may further improve results

The available TCGA datasets contain demographic descriptions (gender, age

at diagnosis, ethnicity, race) that might provide further useful information to im-

prove the performance of the supervised classification task.

Since several bio-medical studies provide both omics and non-omics patients’
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Figure 9: Frequencies of multi-omics combinations, DR pipelines, and data-fusion methods ap-

pearing among the best models when at least two omics are fused and the block-analysis guides

the DR.

descriptors, and considering the documented literature interest about challenges

regarding the integration of omics and non-omics views [44] (supplementary sec-

tion S. F.3.1), it was interesting to understand not only if patients’ descriptors

other than multi-omics may improve results of our supervised analysis, but also if

a simple approach that concatenates patients’ descriptors to the fused multi-omics

view could be more effective than using the patients’ descriptors as a further view

to be integrated.

In our classification pipeline, once the multi-omics views are integrated, con-

catenation of demographic descriptors is possible because RF can process hetero-

geneous data. On the other hand, to use SNF, uMKL for integrating multi-omics

and demographic views we used the Gower similarity8 to compute pairwise simi-

larities, and then used them as the fifth kernel to be integrated by SNF and uMKL.

When using MOFA+ we simply provided the demographic view as a further view

to guide the discovery of the latent components.

Based on the results from the previous experiment (section 4.3.3), in this com-

8Gower distance/similarity is a measure of dissimilarity or similarity between two individuals

(or data points) described by a set of heterogeneous variables, including categorical, binary, or-

dinal, and numerical variables. The Gower distance/similarity is computed as the average of all

the distances/similarities measured on each variable, taking into account the data types of those

variables.
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Figure 10: Top table: Win-tie-loss tables obtained when assessing the integration of omics and

non-omics descriptors (“4 omics+pt”) by comparing it to the usage of only the omics descriptors

(“4 omics”). Center table: DR pipelines are compared when 4 omics and demographic descriptors

are integrated. Bottom table: data-fusion algorithms are compared when 4 omics and demographic

descriptors are integrated either by concatenating demographic descriptors to the integrated rep-

resentation (“SNF”, “uMKL”, “MOFA+”, and “concatenation”), or by using the non-omics de-

scriptors as a further view to be integrated (“SNF + PT data”, “uMKL + PT data”, “MOFA+ + PT

data”). AUC is used when computing the Wilcoxon signed-rank test.

parative evaluation we limited the number of experiments to those that used all

the available omics.

Figures 10 and 11 report the win-tie-loss tables computed by Wilcoxon signed-

rank test when comparing the integration of omics and non-omics descriptors

to the usage of only omics-views. Supplementary figures S. F.17 and S. F.18

show the win-tie-loss tables obtained when comparing full pipelines character-

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.23.576822doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.576822
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 11: Win-tie-loss tables obtained when assessing the integration of omics and non-omics

descriptors (“4 omics+pt”) by comparing it to the usage of only the omics descriptors (“4 omics”).

AUCPR is used when computing the Wilcoxon signed-rank test.

ized by a specific set of views being integrated, and a specific DR+data-fusion

pipeline (complete tables can be found in supplementary tables S13 and S14).

In the figures, “4 omics+ pt” refers to the usage of omics and non-omics vari-

ables; “MOFA+ + PT data”, “SNF + PT data”, and “uMKL + PT data” refer

to the data-fusion algorithms also integrating the demographic view; “MOFA+”,

“SNF”, “uMKL”, and “concatenation” refer to the traditional application of the

data-fusion algorithms for integrating multi-omics, followed by concatenation

with the demographics views.

Figure 12 plots the frequency of each data view, DR algorithm, and data-fusion

method appearing in the top-performing experiments (listed in supplementary ta-
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Figure 12: Frequencies of DR methods, and data integration algorithms appearing among the top-

performing models when all the views (omics and non-omics) are analyzed.

ble S15).

Observing the results we understand that surely the inclusion of patient data

improves performance; indeed, for both AUC and AUCPR, combinations of views

including patient data always win with respect to combinations neglecting demo-

graphic predictors. The comparative performance of DR pipelines remains unal-

tered with respect to previous experiments; indeed, iterative RCUR (par rcur) and

feature clustering followed by RPCA, or the usage of a unique step of par rcur or

RPCA are the DR methods achieving the most robust results for both AUC and

AUCPR.

Regarding the data integration models, SNF is still among the top-performing

models. When comparing the two (multi-omics plus demographic) integration

approaches, we note that both “SNF + PT data” and “MOFA + PT data” (using the

demographic descriptors as a further view to be integrated) score better than their

counterparts (“SNF” and “MOFA+”) that simply concatenate the demographic

variables to the integrated multi-omics views. This is not true for uMKL, which,

according to the win-tie-loss tables, obtained more robust results when we first

integrated omics descriptors and then concatenated demographic variables to the

fused kernel representation. This might be due to the fact that the Gower similarity

measure is not a proper kernel similarity, as required by uMKL. Despite this fact,

we note that “uMKL” and “uMKL + PT data” appear with the highest frequency in

the list of top-performing models (supplementary table S15 and figure 12), which

evidence the potentials of the uMKL data-fusion strategy and suggests that the

transformation of Gower similarity into a kernel matrix might further improve

results.

Overall, these results suggest that integration of omics and non-omics vari-

ables, when opportunely designed, might be a promising way. Indeed, When
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considering the more detailed comparison between DR+data-fusion pipelines (ex-

tracts of the top twenty-five winners in figures S. F.17 and S. F.18) we note that

the best fusion algorithm is MOFA+ integrating demographic descriptors. Con-

sidering that one of the advantages of MOFA+ relies on its ability to integrate

heterogeneous data type, its superiority is not a surprise and further supports our

belief that the integration of omic and non-omics data is a promising way that

needs a careful design.

5. Discussion and Conclusions

In this paper, we have described a novel application of block-analysis to lever-

age any of the most promising id estimators and obtain an unbiased id-estimate

of the views in a multi-modal dataset. We also proposed an automatic analysis of

the block-id distribution computed by the block-analysis to detect feature noise

and redundancy contributing to the curse of dimensionality and therefore evidence

the need to apply a view-specific dimensionality reduction phase (guided by the

id estimate) prior to any subsequent analysis to reduce curse-of-dimensionality

effects.

Using the proposed id analysis we can therefore automatically take view-

specific decisions so that views containing higher levels of noise and redundancy

can undergo a two-step dimensionality reduction approach combining the advan-

tages of feature-selection and feature-extraction; on the other hand, views less

affected by the curse of dimensionality may be reduced by traditional feature-

extraction approaches.

Besides assessing our proposal by using nine heterogeneous multi-omics can-

cer datasets from the TCGA repository, we analyzed and compared the DR ef-

fects on the subsequent application of data-fusion techniques that have shown

their promise in the field of multi-omics. To this aim, we used the fused view

to predict overall survival events by means of RF classifiers, often preferred in

the biomedical field due to their interpretable nature, relative robustness to hyper-

parameter settings, superior efficiency, and effectiveness in many competitions

[40].

The results we obtained first evidenced that a properly designed DR step is cru-

cial and should never be neglected when complex multi-omics data is processed.

Secondly, we showed that DR approaches guided by block-analysis were superior

to traditional DR approaches setting the dimension of the reduced space by some

heuristics or by preliminary empirical experiments.
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When analyzing the impact of the proposed DR approach on different multi-

omics fusion settings we first noticed that the two-step DR approach can be an

effective solution. Particularly, in our classification task the most robust and ef-

fective results were achieved when combining the iterative version of RCUR we

implemented (or feature clustering) with RPCA, whose formulation is simpler and

more explainable than, e.g., UMAP and t-SNE.

When observing the robustness and performance of the experimented data-

fusion algorithm we confirmed the efficiency and effectiveness of SNF, which

showed its robustness with respect to different settings. MOFA+ also showed

its promise, though its robustness and efficiency were lower than that of SNF.

However, the advantage of MOFA+ relies on its ability to deal with heterogeneous

data types, so that it can effectively integrate omics and non-omics views.

Regarding two different and crucial data-fusion settings we were interested in

investigating, we noted that comparable results can be obtained when using all

four omics or specific subsets of (at least) two omics. This suggests that, in our

experiments, the DR and data-fusion steps are able to cope with the presence of

potentially redundant information within and between the four omics views, so

that all the available omics types can be used without the need to try all their

different combinations. In other words, the design of a proper DR can facilitate

the following data-fusion task by effectively removing redundancies within indi-

vidual data types, while better exposing their characterizing informative content.

This facilitates the task of the following data-fusion algorithms, which must only

deal with redundancies across views while uncovering the shared and individual

informative content of the multiple omics. This allows to avoid costly empirical

experiments to choose the subset of omics to be integrated.

We further assessed the addition of patients’ demographic descriptors in the

analysis and showed that it effectively increases the classification performance.
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Figure 13: Classification performance obtained one the BLCA, BRCA1, BRCA2, KIRC, LUAD,

and LUSC datasets when using the block-analysis to guide the DR of all four omics. After reduced

data-fusion the demographics views are concatenated and used as input for supervised feature

selection, RF tuning, RF training, and sample classification.
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Figure 14: Classification performance obtained on the OV, PRAD, and SKCM datasets when using

the block-analysis to guide the DR of all four omics. After reduced data-fusion the demographics

views are concatenated and used as input for supervised feature selection, RF tuning, RF training,

and sample classification.

Concluding, all the experiments led us to the definition of a DR+data-fusion

pipeline that obtains promising results without the need for empirical and heuris-

tically based choices. In particular, considering that all the results reported in

our experiments (besides being averaged across all the nine TCGA datasets) were

obtained when applying neither supervised feature selection nor hyper-parameter

tuning to avoid confounding effects that would bias the comparative assessment,

we ran the last experiment where we used all the four omics as input to data fu-

sion, we concatenated the fused representation with demographic descriptors and

then optimized the RF performance by supervised feature selection through RF

importance [39] and hyper-parameter tuning through internal stratified holdout

validation (more details are reported in supplementary section S. F.4).

This procedure allowed obtaining more than satisfactory results (see figures

13 and 14), with AUCs often greater than 0.70/0.75 and large AUCPRs even

for datasets characterized by a low (≤ 0.2) ratio between the number of positive
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Figure 15: Classification performance obtained when integrating all four omics and then concate-

nating the demographics views. No prior DR is performed but supervised feature selection and

hyper-parameter tuning are applied prior to RF training.

cases and the total number of cases. Of note, these results greatly outperform the

results we obtained when we avoided any DR step prior to data-fusion, eventual

concatenation of demographic descriptors, and RF optimization via supervised

feature selection and hyper-parameter tuning (supplementary figure S. F.6 and

figure 15).
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tonino, S. Santoro, L. Ferré, M. Cannizzaro, et al., Intrinsic-dimension anal-

ysis for guiding dimensionality reduction in multi-omics data, in: Proceed-

ings of the 16th International Joint Conference on Biomedical Engineering

Systems and Technologies. 3: Bioinformatics, Scitepress, 2023, pp. 243–

251.

[74] M. Gönen, E. Alpaydın, Multiple kernel learning algorithms, The Journal of

Machine Learning Research 12 (2011) 2211–2268.

[75] Y.-R. Yeh, T.-C. Lin, Y.-Y. Chung, Y.-C. F. Wang, A novel multiple kernel

learning framework for heterogeneous feature fusion and variable selection,

IEEE Transactions on multimedia 14 (3) (2012) 563–574.
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