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Abstract 

Renal oncocytoma and chromophobe renal cell carcinoma are two kidney cancer types that 

present a diagnostic challenge to pathologists and other clinicians due to their microscopic 

similarities. While RO is a benign renal neoplasm, ChRCC is considered malignant. 

Therefore, the differentiation between the two is crucial. In this study, we introduce an 

explainable framework to accurately differentiate ChRCC from RO, histologically. Our 

approach examined H&E-stained images of 656 ChRCC and 720 RO, and achieved a 

diagnostic accuracy of 88.2%, the sensitivity of 87%, and 100% specificity for explainable 

AI, which either outperforms or operate on par with convolutional neural network (CNN) 

models. 

Besides, we enrolled 44 pathology experts (including pathologists and pathology trainees) 

to differentiate the two tumors. The average accuracy of pathologists was 73%, which is 

15.2% lower than our framework. 

These results indicate that the combination of human expert along with explainable AI 

achieve higher accuracy in differentiating the two tumors, while it reduces the workload of 

experts and offers the desired explainability for the medical experts.  
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Introduction 

Chromophobe Renal Cell Carcinoma (ChRCC) is the most common malignant renal 

neoplasm
(1)

. ChRCC subtype constitutes about 5-7% of all ChRCCs. A well-known benign 

mimicker of ChRCC, known as Renal Oncocytoma (RO), accounts for up to 6-9% of all 

adult renal tumors
(2)

. Proper differentiation between ChRCC and benign RO is very 

challenging task for pathologists, as they have similar histo-morphological features 

possibly because of their similar cell of origin known as intercalated cells of the collecting 

ducts
 (3)

.  

A crucial step in this process is histologic examination. While the pathologic diagnosis can 

be straightforward for many cases of ChRCC with classic histology, the oncocytic variant 

of the ChRCC may look like an oncocytoma. These mimickers need additional studies for 

an accurate diagnosis. These studies have limited specificity, are costly, mostly limited to 

the tested tumor fragment, and highly time-consuming. New advances in fast and 

high-resolution slide scanning, along with machine learning techniques, have provided 

pathologists with unique opportunities to have a 24/7 expert assistant aid with a fast and 

accurate diagnosis.  

Along with other medical fields, there is an increasing integration of computer-aided 

systems and automated tools in histopathology to enhance the precision of image 

interpretation. The emergence of explainable artificial intelligence (AI) in medical imaging 

holds promise to not only booster the accuracy and consistency of computer-aided 

diagnoses but also to amplify the trust and reliance placed by healthcare professionals on 

AI-driven medical solutions(4-8). 

Our study aims to explore four key research questions in this domain: (a) To what extent 

can an automated system assist pathologists in accurately diagnosing and distinguishing 

between RO and ChRCC, including hybrid cases? (b) Whether a Convolutional Neural 

Network (CNN) model, which is not explainable, may demonstrate superior accuracy 

compared to the explainable approach, while using small sample size, or (c) if a 

combination of CNN and explainable approach synergistically enhances our diagnostic 

accuracy? Finally, (d) What is the accuracy differences between human expert and our 

explainable framework?  

To address these questions, we developed a high-precision, explainable, diagnostic 

framework based on traditional image preprocessing and human generated rules 

capabilities of OpenCV, a well-established image processing library
(9, 10)

. In addition, we 

implemented a CNN to juxtapose the outcomes of the explainable approach with deep 

neural networks. In our study, CNN models and explainable model were assessed on sets 

of H&E-stained images of 656 ChRCC and 720 RO. The explainable model demonstrated 

the following performance metrics: 87% sensitivity, 100% specificity, and 88.2% overall 

accuracy. Meanwhile, the best CNN model achieved 88% sensitivity, 90% specificity, and 

88% accuracy. Finally, 21 images of ChRCC and RO were 

examined by 44 pathologists and pathology trainees, where they achieved an average 

accuracy of 

73%. Sixteen percent of pathologist performed close or slightly better than AI at 81-90% 

accuracy, while around 48% of pathologist achieved an accuracy of 71-80%. The rest 

(38%) scored below 70% for the accuracy. 

The performance metrics of the explainable approach operates on par to the CNN models, 

suggesting that a less computationally intensive explainable platform can match, and 

potentially exceed, the diagnostic accuracy of pathologists. Furthermore, our results 

demonstrate the capability to rival the performance of more complex systems such as 

CNN. The reason that we outperform the CNN originates in accurately identified rules 

designed by experts and this can manage the small cohort size of our study. In total, we 
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have used only 1376 image, which is impractical to even fine-tune a pre-trained CNN 

model. 

This strengthens the case for the explainable model as a reliable and robust assistance for 

diagnosing and differentiating renal tumors by pathologists. In particular, while leveraging 

a small dataset for training, our approach can assist pathologists in the challenging task of 

differentiating RO from ChRCC and hybrid tumors. 

 

Material & Methods 

Data: 

Images were acquired from the department of pathology at Baylor College of Medicine 

(Houston, TX) under institutional review board (IRB) approval H-40965. 

In total, 656 ChRCC and 720 RO of H&E-stained images from 13 cases of oncocytoma 

and 15 cases of ChRCC were used to develop both explainable and deep-learning 

platforms. 

 

Results 

The results section is organized into three primary subsections. First, we detailed the 

findings using explainable framework, followed by results from the CNN models. Lastly, 

outcomes from human assessments, conducted in parallel, to benchmark and compare with 

our approach is presented. 

 

Explainable Approach 

In our effort to design and apply the explainable platform, the images ran through extensive 

histology image preprocessing steps. The preprocessing procedure comprises the 

following steps: (i) nucleus identification, (ii) cell membrane detection, (iii) noise removal 

and cell shape detection, (iv) cytoplasm intensity, (v) nucleus density and perinuclear halo 

space identification, (vi) automated report generation, and annotation.  

 

Histopathology Image pre-processing 

Feature engineering is a crucial preprocessing step to develop an explainable approach or 

any other model that is not leveraging a neural network. However, due to known 

similarities between RO and ChRCC, identifying the most pertinent features posed real 

challenges. Table 1 explains distinct features of RO and ChRCC evaluated by a pathologist 

(i.e. MH). These features are generally accepted among pathologists and described in 

literature 
(11, 12)

. 
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Chromophobe Renal Cell Carcinoma 

 

Renal Oncocytoma 

 

- Prominent cell membrane, precise cell 

segmentation cell–like morphology”) and 

perinuclear halo. 

- Pleomorphic, raisinoid nuclei (>3x variation in the 

nuclei diameter) with multinucleated cells. 

- Pleomorphic, elongated cell shape and irregular 

size with sheet-like architecture  

-Irregular cell distribution (cell numbers are 

significantly less and distributed irregularly in 5 

cm). 

- Presence of cells with the membrane but without 

nuclei. 

-Well nested and reticulated islands of cells could be 

seen on the slide. 

- Oncocytic (pink-to-red) cytoplasm with faded and 

not detectable cell border, no prominent perinuclear 

halo. 

- Mostly round uniform nuclei and more evenly 

distributed cytoplasm in cells/around the nuclei. 

- Mostly uniform, round, and polygonal cell shape 

and regular size with a nested architecture. 

- Regular cell distribution (cell numbers are more in 

5 cm and predictable). 

- Majority of cells have nuclei. 

-Very tight and back-to-back connected cells and no 

significant disconnection among the cells. 

Table1| Presents the distinct features and differences of RO and ChRCC. 

 

Through extensive feature evaluation by expert pathologists, we determined the cell 

membrane, cell shape, cytoplasm color/intensity, and halo space to be the most 

discriminative and impactful features. These features consistently produced superior 

outcomes. To conduct our analysis, we employed the Gaussian Blur
(13)

, Gray Scaling, 

Binarization and Erosion features
(14)

 implemented by OpenCV image processing library
(9, 

10)
, as depicted in Figure 1. 
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Figure1| The process flow of proposed framework for RO and ChRCC image 

classification. 

 

As it is shown in Figure 1, the preprocessing steps are used to build train the model. Later 

while the model is ready, we use the preprocessing steps as well. However, for the sake of 

understanding, we did to present them in the inference stage. 

 

1. Nucleus identification 

The nuclei identification was one of the crucial features of the explainable approach, as 

underscored by differences between ChRCC and RO nuclei illustrated in Figure 2a. To 

pinpoint the nucleus, we applied a trio of standard image preprocessing steps: grayscale 

conversion, gaussian blur, and image erosion. The subsequent step involved setting a 

binarization threshold to underscore the nucleus while filtering out unnecessary elements 

like the cell membrane. This thresholding ensured that any pixel values between [0, 255] 

were either designated as 0 (black, indicating the nucleus) or 255 (white, indicating the 

surrounding area of the nucleus). A sharp increment in black pixel proportions, represented 

by an elbow point in each curve (Fig 2b), highlights the most significant transition point in 

pixel ratios. 

Given the varied Hematoxylin and Eosin (H&E) stain color variations in oncocytoma and 

chromophore images, we abandoned a rigid preprocessing protocol. Instead, we iteratively 

tested threshold values, ranging from 155 to 230, in increments of 5. This method aimed to 

identify the threshold by rendering the maximum cell count. For instance, a suboptimal 

threshold would either under-represent the nucleus or erode the cell's intrinsic shape and 

roundedness, leading to its wrong exclusion or inclusion. Our threshold parameter 

sensitivity analysis, which spanned thresholds from 160 to 205 (Fig 2d), was corroborated 

by cell detection. It ensures that pixels exceeding the set threshold are identified as black 

(indicating cell), with the rest labeled white. 

Characteristic cellular distinctions are evident when contrasting RO (Fig 2c) and ChRCC 

cells (Fig 2d). Specifically, the delayed rise in ChRCC cell values signifies their 

characteristically lighter cytoplasmic hue. Following threshold establishment, we refine 

the native image into a rendition seen in Fig. 2e, left. Each nucleus is subsequently 

assigned a unique identifier (ID), prepping them for subsequent border delineation. 
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Figure2| Highlighting the Significance of Nucleus Intensity in Image Analysis. (a) Original 

images showcasing ChRCC (left) and RO (right). (b) Depicts two ChRCC cells, illustrating 

the process of threshold setting and display the outcomes of thresholding at values of 185, 

200, and 215, respectively. (c-d) Illustrating the rising proportion of black pixels as the 

threshold value escalates. The x-axis represents the threshold value, while the y-axis 

indicates the ratio of black pixels. (e) Image after binarization (left); the processed image 

with marked areas (right). 

 

2. Cell membrane detection 

The distinctiveness of the cell membrane is a primary feature in differentiating ChRCC 

from RO
(11, 15)

. To accurately detect the cell membrane, we devised an algorithm that casts 

rays outwardly from the center of a nucleus towards the adjacent cell nuclei. The algorithm 

initiates by projecting a central vertical ray (illustrated as the thicker line in Fig3a) and 

subsequently casts additional rays at intervals of 5 degrees, totaling 72 rays. For illustrative 

simplicity, Fig3a displays only 12 of these rays and not all of them. 

As each ray traverses through the grayscale image, pixel values are computed. Given the 

pathway of the ray through the nucleus, cytoplasm, and cell membrane, varying pixel 

values are encountered. When the distance from the nucleus center exceeds 24 (denoted as 

point B in Fig 3b), there's a notable increase in color depth. This lowest color depth (point 

B) is identified as the cell membrane location, indicating the point where a ray intersects 

the neighboring cell. The trigonometric function was used to determine the endpoints of 

the ray and the ray coordinates. 

Upon analyzing the entire set of 72 rays, as visualized in Figure 3c, the deepest color depth 

for each ray was calculated. In Fig 3c, these membrane intersections are highlighted using 

blue dots in the image. As shown in Fig 3d, certain data points (labeled A, B, C, and D) 

appeared anomalous, suggesting noise, which we address in the subsequent noise-removal 

phase. 
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Figure3| Ray-based Cell Membrane Detection. (a) Representation of 12 equidistant rays, 

each 30° apart, originating from the cell center (Note: 5° spacing used in actual 

computations). (b) Point b is detected and generated by algorithm as the crises point when 

the ray faces the membrane. (c) Highlighted regions A-D indicate algorithmic false 

positives in cell membrane identification. (d) Profiling pixel intensity (grayscale) as a 

function of distance from the cell center in a plot. 

 

3. Noise (anomaly) removal and cell shape detection 

Our approach employs a common noise reduction, signal smoothing via averaging. In 

particular, it averages the values of adjacent data points when a spike in distance to the 

center is detected. Given the inherent continuity of cell boundaries, anomalies are 

indicative of noise (Fig 3d). The interrupted points (A-D) and anomalies in continuity are 

shown in Fig. 3d, and they are presented in Fig. 4a with respect to their distances from 

identified points and the cell nucleus. Points exhibiting substantial deviation from their 

neighboring points are counted as noise. Fig. 4d shows the refined cell membrane in both 

ChRCC and RO. A continuous cell membrane is characteristic of ChRCC (Fig. 4d, Left), 

whereas a fragmented cell membrane aligns with RO's features (Fig. 4d, Right). The 

distinct morphological differences, with ChRCC displaying an elongated, spindle-shaped 

cellular form and RO a rounded, polygonal morphology, further enhance the precision of 

the differentiation between the two. The red dot line is the original data, and the yellow dot 

line is the average of points, and the line is supposed to serve as a standard circle. The green 

line is the cell membrane generated by our algorithm after adding the standard circle. To 

calculate the difference between each cell’s distance and the standard circle’s radius, the 

algorithm uses the following equation: Circular Error= ((�# 	2 	�)/�*
#+, , In this 

equation, n represents the number of rays, Pi represents the distance between each point 

and the center of the circle, and S represents the standard radius, which is the average 

distance of all the points from the center of the circle. The formula calculates the difference 

between each point's distance and the standard radius and then sums up these differences 

divided by the number of rays. 
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Figure4| Noise detection and removal in cell membrane identification. (a) Illustrates 

interruptions in the continuity of cell boundaries, signaling potential noise or anomalies. 

(b) A graphical representation of the distances between highlighted points (red in 4c) and 

the cell nucleus. Points A-D, mark distances from their neighbors, are identified as noise. 

(c) The cell depiction with identified points in red, used for assessing the noise based on 

their radial distances from the cell center. (d) Comparison of refined cell membrane 

identification in ChRCC (left) and RO (right). 

 

4. Cytoplasm intensity 

To delineate color intensity variations, our algorithm traces a path between the centers of 

adjacent nuclei. The ChRCC (Fig. 5a left) is characterized by its paler cytoplasm and 

nuclei, resulting in an RGB signature (Fig. 5b) distinct from that of the RO cell (Fig. 5c). 

The notable decline in the ChRCC RGB curve (Fig. 5c) signifies a pronounced cell 

membrane. Fluctuations in color density, as depicted between Fig. 5c-d, manifest as 

oscillations in the RGB curve, termed changing points. Our refined algorithm is tailored to 

detect and capture these abrupt minima and maxima in the curve. 
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Figure5| Cytoplasm Intensity Analysis in Chromophobe and RO Cells. (a) Microscopic 

visualization of the chromophobe (left) showing its characteristic lighter cytoplasm and 

nuclei compared to RO (right). (b) The RGB curve for the chromophobe, with a marked 

decline, indicates a distinct cell membrane. (c) Variations in the RGB curve represent 

changing points caused by shifts in color density. 

 

5. Nucleus density and perinuclear halo space identification 

Nuclear morphology is still an important indicator that distinguishes the two types of 

cancers. The perinuclear halo, a distinct white space surrounding the nuclei, is a 

characteristic feature of ChRCC cells. This feature leads to noticeable color distribution 

variations between ChRCC and RO cells. In ChRCC, the nucleus is surrounded by clear 

halo spaces, whereas in RO the nucleus is solid and darker (fig6 a and e, ChRCC and RO, 

respectively). After running experimental comparisons (during our formative evaluation), 

we found that there was a difference in the mean color depth between two types of cells. 

Upon applying a binarization threshold test (fig6 b, c, f and g), the initial turning point in 

the ChRCC profile necessitates a higher threshold than that of the RO cells. As the 

threshold value increases, an expansive shift in color depth becomes evident, underscoring 

the irregular cytoplasmic content, including the perinuclear halo, in ChRCC cells. 
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Figure6| Perinuclear halo analysis in ChRCC and RO cells. (a) and (e) display the ChRCC 

and RO cells. (b), (c), (f) and (g) represent binarization threshold test highlighting the 

disparate color distributions in ChRCC compared to RO cells. (d) and (h), ChRCC profile 

requires a higher initial threshold due to its distinct perinuclear halo and uneven 

cytoplasmic content. 

 

6. Automated report generation and annotation 

All the steps of the above-mentioned framework bring us to a simplified and streamlined 

functionality of our framework: the generation of an automated report. As depicted in 

Figure 7, when a pathological image is processed, the framework produces an annotated 

image with a concise textual summary of the results. This ensures that the insights derived 

from our analysis are explainable and easy to interpret by expert, facilitating their 

application in diagnostic settings. 

  

 
Figure7| Automated single cell report generation that consolidates the results from our 

analysis. Upon processing a pathological image through our framework, an annotated 

image is automatically produced. 
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Convolutional Neural Network  

Our study incorporated different convolutional neural network models to juxtapose the 

performance of an explainable AI methodology against a fully autonomous classification 

framework
(16)

. To intensify the specificity of our analysis, we employed a patching 

approach, dissecting tumors into numerous sub-regions for close-up scrutiny. This 

micro-focused strategy is particularly advantageous for identifying distinct types of cancer 

cells, shown in Figure 8.  

It's imperative to note that the neural network models were fine-tuned to differentiate RO 

and ChRCC cells, deliberately excluding non-cancerous components such as vascular 

structures, adipose cells, and intravascular blood cells.  

The patching process, while useful, is not without its challenges. Certain patches might 

inadvertently encompass peripheral areas of the tumor, which may harbor less cancer cells. 

These boundary regions produce patches with a mix of cancer and non-cancer elements, 

muddling the model's output and diminishing predictive accuracy.  

First, we used UNET and MaskRCNN for patching, which resulted in low accuracy as 

86.3% and 85.1% for each, respectively
(17, 18)

. To counteract this, we adopted a hands-on 

approach to patch selection in these ambiguous zones, improving the model's precision. 

The dimension of the patches is also a factor of significant consequence. Optimal patch 

sizes are essential for a nuanced understanding of cellular morphology and mitotic activity. 

However, the inherent size variability within ChRCC and RO cells complicates the 

standardization of patch dimensions. Despite the availability of automated object detection 

methods such as the Feature Pyramid Network
(19-21)

, our strategy favored human experts 

for patch selection.  

Our pathologist meticulously identified 40 patches from each chromophobe specimen and 

selected approximately 51 images from each oncocytoma sample, to ensure a rich cellular 

detail is given to the model. After the patches were selected carefully, they were fed into 

three different pre-trained CNN classifiers ResNet101, ResNet50, VGG19 and VGG16. As 

a result, those models are fine-tuned with our image samples. 

Figure 8 illustrates the procedural workflow of the using the fine-tuned CNN models and 

table 2 enumerates the results yielded by three distinct classifiers. 

Compiling our data, the dataset consists of 1440 images - an even split between 

chromophobe and oncocytoma. Data distribution was slated at 70% for training, 20% for 

validation, and the final 10% for test.  

 

Figure8| 

Workflow of analysis with neural network. This figure presents a schematic representation 

of the patching and classification process used to differentiate between chromophobe and 

oncocytoma cells in kidney tumor samples. 
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In the development of our model for ChRCC, we utilized 466 images for training, 121 for 

validation, and 69 for testing. For Renal RO, the corresponding distribution was 492 

images for training, 153 for validation, and 75 for testing. 

Table 2 consolidates the performance metrics (accuracy, specificity, and sensitivity) of the 

explainable AI and the four additional classifiers deployed in the deep learning platform. 

These metrics reflect the outcomes from the final testing phase, which was conducted on 

the images evaluated by the pathologists. The overall accuracy achieved among 

pathologists in this study was 73%. 

 

Model/Classifier  Accuracy Specificity Sensitivity 

VGG16 82%  84% 82% 

VGG19 88% 90% 88% 

Resnet50 88% 90% 88% 

ResNet100 82% 88% 81% 

Explainable 88% 100% 87% 

Table2 | Comparative performance of classifiers in tumor analysis. This table summarizes 

the results of three different classifiers used to discriminate between chromophobe and 

oncocytoma cells within kidney tumor samples.  

 

Human assessment 

Forty-four pathologists and pathology trainees were asked to differentiate ChRCC from 

renal oncocytoma (RO) by examination of images prepared at a magnification comparable 

to 200X with an inset image comparable to 400X. 

Twenty-one images were selected by a pathologist (M.H.) from 7 cases of ChRCC and 8 

cases of renal oncocytoma, initially generated from H&E-stained slides. Image selection 

was based on presence of the tumor in more than 70% of the image, minimal out-of-focus 

regions present in the image, absence of any artifacts, proper and uniform H&E stain and 

absence of folded tissues. Nine images of RO and 12 images of ChRCC were included in 

the survey with the imbalance to prevent bias. The images were limited to 21 for practical 

considerations to encourage careful examination of the image without fatigue. Our 

preliminary studies suggested that more than 25-30 images can lead to loss of interest to 

make the accurate differentiation. There was no time limit to finish the survey.   

The participants were recruited by email invitations to do the survey. All participants were 

instructed to look at the tutorial images of the two tumors at the beginning of the survey to 

become familiar with the morphology and staining of each tumor. Following the initial 

step, they were asked to review each image and vote for either the ChRCC or RO. The total 

number of ChRCC and RO cases was not released to participants to prevent bias. The input 

from each participant was recorded for further analysis. 

 

Discussion 

Pathologic diagnosis in histopathology is the process of reaching a diagnosis by 

microscopic examination of cells and tissues from the sampled specimen. Pathologic 

diagnosis is a complex process starting with reviewing the patient’s medical history, 

imaging and laboratory studies, among other diagnostic report before the procedure of 

tissue sampling. The examination of the tissue during the sampling procedure is usually 

performed to reassure proper tissue sampling. Pathologists examine the hematoxylin and 
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eosin stain (H&E) slides and would request additional sections, additional 

immunohistochemistry and/or special stains, and/or additional molecular studies based on 

standard guidelines. The final diagnostic description will be issued after assembling all the 

data into the final integrated pathology report. 

Despite its similar histomorphology to RO, the ChRCC is considered a malignant renal 

tumor while RO is benign. This poses a challenge for pathologist to accurately differentiate 

the two and report it to clinicians. New molecular signatures are described in RO, ChRCC 

and also in hybrid oncocytic/chromophobe tumors (HOCT). Accordingly, the 

chromosomal alteration in RO can be null or with 1, 14, 21, Y deletions. The ChRCC 

demonstrates, null or a wide range of chromosomal alterations (1, 2, 3, 5, 6, 9, 10, 11, 13, 

17, 21, Y del Other mutations and varied RNA expression profiles have also been 

reported
(22)

. However, there is no reliable molecular method for accurate differentiation of 

the two tumors.  

Explainable artificial intelligence are computer algorithms and models trained to provide 

answer along with a human understandable explanation. On the other hand, computer 

assisted diagnosis have shown promising results in other cancer types such as breast and 

lung cancer diagnoses
(23, 24)

. We utilized similar approach to assist differentiation of 

malignant ChRCC and benign RO; which have different clinical management. We 

reviewed several cases with diagnoses of ChRCC and RO in our institution between 2001 

and 2016. Multiple images from different foci of each tumor were captured and analyzed 

by image processing software performing nuclear segmentation followed by detecting 

nearest-neighbor, nuclear shape/size and nuclear densities/area algorithms. Overall score 

for each was calculated, analyzed and compared
(25)

. In that study, nuclear segmentation 

step approached ~94% accuracy for both ChRCC and RO using binary mode or Fourier 

transform/band pass filter setting. Cell boundaries detection showed similar results. A 

scoring system utilizing a combination of nearest-neighbor, nuclear shape/size and nuclear 

densities/area was also used and showed ~93% accuracy in differentiation between 

ChRCC and RO in well-fixed/prepared section. While this approach held promise for good 

results, however the diagnostic accuracy was reduced when the image contained normal 

renal tissue adjacent to the tumor. This was an approach to utilize traditional machine 

learning for detection of histological features associated with specific type of tumors to 

reach an accurate diagnosis based on accepted criteria.  

This evidence-based computer aided diagnosis explains the steps of reaching to a 

diagnosis. In this study, a complete different explainable AI was employed in parallel with 

a conventional Convolutional Neural Network (CNN) to enhance the precision of tumor 

differentiation. CNN was used as it already confirmed the liability in challenging cases and 

studies
(26)

. Operating concurrently, these two models yield diagnostic results 

independently, without reliance on external systems. This combination increases the 

precision while still has the histological evidence for making the diagnosis.  

We further compared the pathologists and the framework for differentiation of the two 

tumors and showed that our framework outperformed human experts in making an 

accurate diagnosis. However, a group of pathologists managed to become as good as 

machine in terms of precision, when they collaboratively analyze the image. Computer 

assisted diagnosis can be used as an ancillary tool to differentiate ChRCC from renal RO 

and to reduce the cost of immunohistochemical stains. Our current image processing 

algorithm has managed to differentiate ChRCC and RO with high accuracy in 

well-fixed/prepared sections. Adoption of additional nuclear/cellular features to modify 

this algorithm will improve the specificity of this method.  
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To our knowledge, this is the first work of utilizing an image processing algorithm to 

differentiate between the two ChRCC and RO kidney cancers by an explainable AI 

showing the histological features leading to the diagnosis.  

Our framework stands out not just for its accuracy but also for its reasonable reporting 

pace. It highlights the exact location and boundaries of each nucleus and differentiates 

between RO and ChRCC. Unlike other approaches, this allows pathologists to directly 

verify specific areas, streamlining their review process. 

 

Conclusion 

In conclusion, our study XKidneyOnco: An Explainable Approach to classify Renal 

Oncocytoma and Chromophobe Renal Cell Carcinoma with a small sample size has 

demonstrated the potential of an explainable AI to assist pathologists in the challenging 

task of differentiating between RO and ChRCC. Despite the histological similarities that 

complicate the diagnosis, our explainable framework, supported by a CNN, achieved high 

diagnostic accuracy, sensitivity, and specificity. The rule based model alongside with CNN 

model outperformed individual pathologist assessments and presented a reliable 

alternative to more resource-intensive molecular methods. Furthemore, our study success 

in applying leveraging to a relatively small dataset underscores the models' robustness and 

the viability of this method in clinical practice. Despite high accuracy of neural network 

models, they require large dataset for training.  

Our approach maintains transparency in its decision-making process, which is crucial for 

clinical acceptance. The insights gained from this research pave the way for further 

development of AI-assisted diagnostic tools in nephropathology. Such tools can provide 

valuable second opinions, reduce the time and cost associated with traditional human-only 

diagnostic methods, and ultimately, enhance patient care by ensuring accurate and timely 

diagnoses. Our findings advocate for the continued integration of computer aided 

diagnosis in pathology. 
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