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Abstract

Renal oncocytoma and chromophobe renal cell carcinoma are two kidney cancer types that
present a diagnostic challenge to pathologists and other clinicians due to their microscopic
similarities. While RO is a benign renal neoplasm, ChRCC is considered malignant.
Therefore, the differentiation between the two is crucial. In this study, we introduce an
explainable framework to accurately differentiate ChRCC from RO, histologically. Our
approach examined H&E-stained images of 656 ChRCC and 720 RO, and achieved a
diagnostic accuracy of 88.2%, the sensitivity of 87%, and 100% specificity for explainable
Al, which either outperforms or operate on par with convolutional neural network (CNN)
models.

Besides, we enrolled 44 pathology experts (including pathologists and pathology trainees)
to differentiate the two tumors. The average accuracy of pathologists was 73%, which is
15.2% lower than our framework.

These results indicate that the combination of human expert along with explainable Al
achieve higher accuracy in differentiating the two tumors, while it reduces the workload of
experts and offers the desired explainability for the medical experts.
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Introduction

Chromophobe Renal Cell Carcinoma (ChRCC) is the most common malignant renal
neoplasm”. ChRCC subtype constitutes about 5-7% of all ChRCCs. A well-known benign
mimicker of ChRCC, known as Renal Oncocytoma (RO), accounts for up to 6-9% of all
adult renal tumors®. Proper differentiation between ChRCC and benign RO is very
challenging task for pathologists, as they have similar histo-morphological features
possi%l)y because of their similar cell of origin known as intercalated cells of the collecting
ducts .

A crucial step in this process is histologic examination. While the pathologic diagnosis can
be straightforward for many cases of ChRCC with classic histology, the oncocytic variant
of the ChRCC may look like an oncocytoma. These mimickers need additional studies for
an accurate diagnosis. These studies have limited specificity, are costly, mostly limited to
the tested tumor fragment, and highly time-consuming. New advances in fast and
high-resolution slide scanning, along with machine learning techniques, have provided
pathologists with unique opportunities to have a 24/7 expert assistant aid with a fast and
accurate diagnosis.

Along with other medical fields, there is an increasing integration of computer-aided
systems and automated tools in histopathology to enhance the precision of image
interpretation. The emergence of explainable artificial intelligence (Al) in medical imaging
holds promise to not only booster the accuracy and consistency of computer-aided
diagnoses but also to amplify the trust and reliance placed by healthcare professionals on
Al-driven medical solutions*®.

Our study aims to explore four key research questions in this domain: (a) To what extent
can an automated system assist pathologists in accurately diagnosing and distinguishing
between RO and ChRCC, including hybrid cases? (b) Whether a Convolutional Neural
Network (CNN) model, which is not explainable, may demonstrate superior accuracy
compared to the explainable approach, while using small sample size, or (c) if a
combination of CNN and explainable approach synergistically enhances our diagnostic
accuracy? Finally, (d) What is the accuracy differences between human expert and our
explainable framework?

To address these questions, we developed a high-precision, explainable, diagnostic
framework based on traditional image preprocessing and human generated rules
capabilities of OpenCV, a well-established image processing library® '”). In addition, we
implemented a CNN to juxtapose the outcomes of the explainable approach with deep
neural networks. In our study, CNN models and explainable model were assessed on sets
of H&E-stained images of 656 ChRCC and 720 RO. The explainable model demonstrated
the following performance metrics: 87% sensitivity, 100% specificity, and 88.2% overall
accuracy. Meanwhile, the best CNN model achieved 88% sensitivity, 90% specificity, and
88% accuracy. Finally, 21 images of ChRCC and RO were

examined by 44 pathologists and pathology trainees, where they achieved an average
accuracy of

73%. Sixteen percent of pathologist performed close or slightly better than AI at 81-90%
accuracy, while around 48% of pathologist achieved an accuracy of 71-80%. The rest
(38%) scored below 70% for the accuracy.

The performance metrics of the explainable approach operates on par to the CNN models,
suggesting that a less computationally intensive explainable platform can match, and
potentially exceed, the diagnostic accuracy of pathologists. Furthermore, our results
demonstrate the capability to rival the performance of more complex systems such as
CNN. The reason that we outperform the CNN originates in accurately identified rules
designed by experts and this can manage the small cohort size of our study. In total, we
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have used only 1376 image, which is impractical to even fine-tune a pre-trained CNN
model.

This strengthens the case for the explainable model as a reliable and robust assistance for
diagnosing and differentiating renal tumors by pathologists. In particular, while leveraging
a small dataset for training, our approach can assist pathologists in the challenging task of
differentiating RO from ChRCC and hybrid tumors.

Material & Methods

Data:

Images were acquired from the department of pathology at Baylor College of Medicine
(Houston, TX) under institutional review board (IRB) approval H-40965.

In total, 656 ChRCC and 720 RO of H&E-stained images from 13 cases of oncocytoma
and 15 cases of ChRCC were used to develop both explainable and deep-learning
platforms.

Results

The results section is organized into three primary subsections. First, we detailed the
findings using explainable framework, followed by results from the CNN models. Lastly,
outcomes from human assessments, conducted in parallel, to benchmark and compare with
our approach is presented.

Explainable Approach

In our effort to design and apply the explainable platform, the images ran through extensive
histology image preprocessing steps. The preprocessing procedure comprises the
following steps: (i) nucleus identification, (ii) cell membrane detection, (iii) noise removal
and cell shape detection, (iv) cytoplasm intensity, (v) nucleus density and perinuclear halo
space identification, (vi) automated report generation, and annotation.

Histopathology Image pre-processing

Feature engineering is a crucial preprocessing step to develop an explainable approach or
any other model that is not leveraging a neural network. However, due to known
similarities between RO and ChRCC, identifying the most pertinent features posed real
challenges. Table 1 explains distinct features of RO and ChRCC evaluated by a pathologist
(i.e. MH). These features are generally accepted among pathologists and described in
literature 12,
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Chromophobe Renal Cell Carcinoma Renal Oncocytoma

- Prominent cell ~membrane, precise cell | Oncocytic (pink-to-red) cytoplasm with faded and
segmentation  cell-like  morphology”) and | not detectable cell border, no prominent perinuclear
perinuclear halo. halo.

- Pleomorphic, raisinoid nuclei (>3x variation in the | Mostly round uniform nuclei and more evenly
nuclei diameter) with multinucleated cells. distributed cytoplasm in cells/around the nuclei.

- Pleomorphic, elongated cell shape and irregular F Mostly uniform, round, and polygonal cell shape
size with sheet-like architecture and regular size with a nested architecture.
Hrregular cell distribution (cell numbers are fRegular cell distribution (cell numbers are more in
significantly less and distributed irregularly in 5 | 5 cm and predictable).

cm). - Majority of cells have nuclei.
- Presence of cells with the membrane but without [Very tight and back-to-back connected cells and no
nuclei. significant disconnection among the cells.

- Well nested and reticulated islands of cells could be
seen on the slide.

Tablel| Presents the distinct features and differences of RO and ChRCC.

Through extensive feature evaluation by expert pathologists, we determined the cell
membrane, cell shape, cytoplasm color/intensity, and halo space to be the most
discriminative and impactful features. These features consistently produced superior
outcomes. To conduct our analysis, we employed the Gaussian Blur''®, Gray Scaling,
Binarization and Erosion features''” implemented by OpenCV image processing library”
19 as depicted in Figure 1.
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Figurel| The process flow of proposed framework for RO and ChRCC image
classification.

As it is shown in Figure 1, the preprocessing steps are used to build train the model. Later
while the model is ready, we use the preprocessing steps as well. However, for the sake of
understanding, we did to present them in the inference stage.

1. Nucleus identification

The nuclei identification was one of the crucial features of the explainable approach, as
underscored by differences between ChRCC and RO nuclei illustrated in Figure 2a. To
pinpoint the nucleus, we applied a trio of standard image preprocessing steps: grayscale
conversion, gaussian blur, and image erosion. The subsequent step involved setting a
binarization threshold to underscore the nucleus while filtering out unnecessary elements
like the cell membrane. This thresholding ensured that any pixel values between [0, 255]
were either designated as 0 (black, indicating the nucleus) or 255 (white, indicating the
surrounding area of the nucleus). A sharp increment in black pixel proportions, represented
by an elbow point in each curve (Fig 2b), highlights the most significant transition point in
pixel ratios.

Given the varied Hematoxylin and Eosin (H&E) stain color variations in oncocytoma and
chromophore images, we abandoned a rigid preprocessing protocol. Instead, we iteratively
tested threshold values, ranging from 155 to 230, in increments of 5. This method aimed to
identify the threshold by rendering the maximum cell count. For instance, a suboptimal
threshold would either under-represent the nucleus or erode the cell's intrinsic shape and
roundedness, leading to its wrong exclusion or inclusion. Our threshold parameter
sensitivity analysis, which spanned thresholds from 160 to 205 (Fig 2d), was corroborated
by cell detection. It ensures that pixels exceeding the set threshold are identified as black
(indicating cell), with the rest labeled white.

Characteristic cellular distinctions are evident when contrasting RO (Fig 2c¢) and ChRCC
cells (Fig 2d). Specifically, the delayed rise in ChRCC cell values signifies their
characteristically lighter cytoplasmic hue. Following threshold establishment, we refine
the native image into a rendition seen in Fig. 2e, left. Each nucleus is subsequently
assigned a unique identifier (ID), prepping them for subsequent border delineation.
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Figure2| Highlighting the Significance of Nucleus Intensity in Image Analysis. (a) Original
images showcasing ChRCC (left) and RO (right). (b) Depicts two ChRCC cells, illustrating
the process of threshold setting and display the outcomes of thresholding at values of 185,
200, and 215, respectively. (c-d) Illustrating the rising proportion of black pixels as the
threshold value escalates. The x-axis represents the threshold value, while the y-axis
indicates the ratio of black pixels. (e) Image after binarization (left); the processed image
with marked areas (right).

2. Cell membrane detection

The distinctiveness of the cell membrane is a primary feature in differentiating ChRCC
from RO"" '), To accurately detect the cell membrane, we devised an algorithm that casts
rays outwardly from the center of a nucleus towards the adjacent cell nuclei. The algorithm
initiates by projecting a central vertical ray (illustrated as the thicker line in Fig3a) and
subsequently casts additional rays at intervals of 5 degrees, totaling 72 rays. For illustrative
simplicity, Fig3a displays only 12 of these rays and not all of them.

As each ray traverses through the grayscale image, pixel values are computed. Given the
pathway of the ray through the nucleus, cytoplasm, and cell membrane, varying pixel
values are encountered. When the distance from the nucleus center exceeds 24 (denoted as
point B in Fig 3b), there's a notable increase in color depth. This lowest color depth (point
B) is identified as the cell membrane location, indicating the point where a ray intersects
the neighboring cell. The trigonometric function was used to determine the endpoints of
the ray and the ray coordinates.

Upon analyzing the entire set of 72 rays, as visualized in Figure 3c, the deepest color depth
for each ray was calculated. In Fig 3¢, these membrane intersections are highlighted using
blue dots in the image. As shown in Fig 3d, certain data points (labeled A, B, C, and D)
appeared anomalous, suggesting noise, which we address in the subsequent noise-removal
phase.
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Figure3| Ray-based Cell Membrane Detection. (a) Representation of 12 equidistant rays,
each 30° apart, originating from the cell center (Note: 5° spacing used in actual
computations). (b) Point b is detected and generated by algorithm as the crises point when
the ray faces the membrane. (¢) Highlighted regions A-D indicate algorithmic false
positives in cell membrane identification. (d) Profiling pixel intensity (grayscale) as a
function of distance from the cell center in a plot.

3. Noise (anomaly) removal and cell shape detection

Our approach employs a common noise reduction, signal smoothing via averaging. In
particular, it averages the values of adjacent data points when a spike in distance to the
center is detected. Given the inherent continuity of cell boundaries, anomalies are
indicative of noise (Fig 3d). The interrupted points (A-D) and anomalies in continuity are
shown in Fig. 3d, and they are presented in Fig. 4a with respect to their distances from
identified points and the cell nucleus. Points exhibiting substantial deviation from their
neighboring points are counted as noise. Fig. 4d shows the refined cell membrane in both
ChRCC and RO. A continuous cell membrane is characteristic of ChRCC (Fig. 4d, Left),
whereas a fragmented cell membrane aligns with RO's features (Fig. 4d, Right). The
distinct morphological differences, with ChRCC displaying an elongated, spindle-shaped
cellular form and RO a rounded, polygonal morphology, further enhance the precision of
the differentiation between the two. The red dot line is the original data, and the yellow dot
line is the average of points, and the line is supposed to serve as a standard circle. The green
line is the cell membrane generated by our algorithm after adding the standard circle. To
calculate the difference between each cell’s distance and the standard circle’s radius, the
algorithm uses the following equation: Circular Error= Y, ((P; — S)/n, In this
equation, n represents the number of rays, P; represents the distance between each point
and the center of the circle, and S represents the standard radius, which is the average
distance of all the points from the center of the circle. The formula calculates the difference
between each point's distance and the standard radius and then sums up these differences
divided by the number of rays.
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Figure4| Noise detection and removal in cell membrane identification. (a) Illlustrates
interruptions in the continuity of cell boundaries, signaling potential noise or anomalies.
(b) A graphical representation of the distances between highlighted points (red in 4c) and
the cell nucleus. Points A-D, mark distances from their neighbors, are identified as noise.
(¢) The cell depiction with identified points in red, used for assessing the noise based on

their radial distances from the cell center. (d) Comparison of refined cell membrane
identification in ChRCC (left) and RO (right).

4. Cytoplasm intensity

To delineate color intensity variations, our algorithm traces a path between the centers of
adjacent nuclei. The ChRCC (Fig. 5a left) is characterized by its paler cytoplasm and
nuclei, resulting in an RGB signature (Fig. 5b) distinct from that of the RO cell (Fig. 5c).
The notable decline in the ChRCC RGB curve (Fig. 5c) signifies a pronounced cell
membrane. Fluctuations in color density, as depicted between Fig. 5c-d, manifest as
oscillations in the RGB curve, termed changing points. Our refined algorithm is tailored to
detect and capture these abrupt minima and maxima in the curve.
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Figure5| Cytoplasm Intensity Analysis in Chromophobe and RO Cells. (a) Microscopic
visualization of the chromophobe (left) showing its characteristic lighter cytoplasm and
nuclei compared to RO (right). (b) The RGB curve for the chromophobe, with a marked
decline, indicates a distinct cell membrane. (c¢) Variations in the RGB curve represent
changing points caused by shifts in color density.

5. Nucleus density and perinuclear halo space identification

Nuclear morphology is still an important indicator that distinguishes the two types of
cancers. The perinuclear halo, a distinct white space surrounding the nuclei, is a
characteristic feature of ChRCC cells. This feature leads to noticeable color distribution
variations between ChRCC and RO cells. In ChRCC, the nucleus is surrounded by clear
halo spaces, whereas in RO the nucleus is solid and darker (fig6 a and e, ChRCC and RO,
respectively). After running experimental comparisons (during our formative evaluation),
we found that there was a difference in the mean color depth between two types of cells.
Upon applying a binarization threshold test (figb b, c, f and g), the initial turning point in
the ChRCC profile necessitates a higher threshold than that of the RO cells. As the
threshold value increases, an expansive shift in color depth becomes evident, underscoring
the irregular cytoplasmic content, including the perinuclear halo, in ChRCC cells.
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Figure6| Perinuclear halo analysis in ChRCC and RO cells. (a) and (e) display the ChRCC
and RO cells. (b), (¢), (f) and (g) represent binarization threshold test highlighting the
disparate color distributions in ChRCC compared to RO cells. (d) and (h), ChRCC profile
requires a higher initial threshold due to its distinct perinuclear halo and uneven
cytoplasmic content.

6. Automated report generation and annotation

All the steps of the above-mentioned framework bring us to a simplified and streamlined
functionality of our framework: the generation of an automated report. As depicted in
Figure 7, when a pathological image is processed, the framework produces an annotated
image with a concise textual summary of the results. This ensures that the insights derived
from our analysis are explainable and easy to interpret by expert, facilitating their
application in diagnostic settings.

Total cell#: 352

Total cell density: 1.59

Average of cell nucleus depth: 160.78
Non-circle value: 0.266

Running time: 317.16 sec

Figure7| Automated single cell report generation that consolidates the results from our
analysis. Upon processing a pathological image through our framework, an annotated
image is automatically produced.
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Convolutional Neural Network

Our study incorporated different convolutional neural network models to juxtapose the
performance of an explainable Al methodology against a fully autonomous classification
framework!'”. To intensify the specificity of our analysis, we employed a patching
approach, dissecting tumors into numerous sub-regions for close-up scrutiny. This
micro-focused strategy is particularly advantageous for identifying distinct types of cancer
cells, shown in Figure 8.

It's imperative to note that the neural network models were fine-tuned to differentiate RO
and ChRCC cells, deliberately excluding non-cancerous components such as vascular
structures, adipose cells, and intravascular blood cells.

The patching process, while useful, is not without its challenges. Certain patches might
inadvertently encompass peripheral areas of the tumor, which may harbor less cancer cells.
These boundary regions produce patches with a mix of cancer and non-cancer elements,
muddling the model's output and diminishing predictive accuracy.

First, we used UNET and MaskRCNN for patching, which resulted in low accuracy as
86.3% and 85.1% for each, respectively!'”'®. To counteract this, we adopted a hands-on
approach to patch selection in these ambiguous zones, improving the model's precision.
The dimension of the patches is also a factor of significant consequence. Optimal patch
sizes are essential for a nuanced understanding of cellular morphology and mitotic activity.
However, the inherent size variability within ChRCC and RO cells complicates the
standardization of patch dimensions. Despite the availability of automated object detection
methods such as the Feature Pyramid Network!'*", our strategy favored human experts
for patch selection.

Our pathologist meticulously identified 40 patches from each chromophobe specimen and
selected approximately 51 images from each oncocytoma sample, to ensure a rich cellular
detail is given to the model. After the patches were selected carefully, they were fed into
three different pre-trained CNN classifiers ResNet101, ResNet50, VGG19 and VGG16. As
a result, those models are fine-tuned with our image samples.

Figure 8 illustrates the procedural workflow of the using the fine-tuned CNN models and
table 2 enumerates the results yielded by three distinct classifiers.

Compiling our data, the dataset consists of 1440 images - an even split between
chromophobe and oncocytoma. Data distribution was slated at 70% for training, 20% for
validation, and the final 10% for test.

Tissue detection =3 Tumor extraction |———p!{ Tumor patching

Cancer type Fine-tuned CNN | Patch
diagnosis - Model | < selection -

ResNet101 |
renal oncocytoma ResNets50
chromophobe renal cell VGG16
VGG19 ‘ .
At FigureS|

Workflow of analysis with neural network. This figure presents a schematic representation
of the patching and classification process used to differentiate between chromophobe and
oncocytoma cells in kidney tumor samples.
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In the development of our model for ChRCC, we utilized 466 images for training, 121 for
validation, and 69 for testing. For Renal RO, the corresponding distribution was 492
images for training, 153 for validation, and 75 for testing.

Table 2 consolidates the performance metrics (accuracy, specificity, and sensitivity) of the
explainable Al and the four additional classifiers deployed in the deep learning platform.
These metrics reflect the outcomes from the final testing phase, which was conducted on
the images evaluated by the pathologists. The overall accuracy achieved among
pathologists in this study was 73%.

Model/Classifier | Accuracy Specificity Sensitivity
VGG16 82% 84% 82%
VGG19 88% 90% 88%
Resnet50 88% 90% 88%
ResNet100 82% 88% 81%
Explainable 88% 100% 87%

Table2 | Comparative performance of classifiers in tumor analysis. This table summarizes
the results of three different classifiers used to discriminate between chromophobe and
oncocytoma cells within kidney tumor samples.

Human assessment

Forty-four pathologists and pathology trainees were asked to differentiate ChRCC from
renal oncocytoma (RO) by examination of images prepared at a magnification comparable
to 200X with an inset image comparable to 400X.

Twenty-one images were selected by a pathologist (M.H.) from 7 cases of ChRCC and 8
cases of renal oncocytoma, initially generated from H&E-stained slides. Image selection
was based on presence of the tumor in more than 70% of the image, minimal out-of-focus
regions present in the image, absence of any artifacts, proper and uniform H&E stain and
absence of folded tissues. Nine images of RO and 12 images of ChRCC were included in
the survey with the imbalance to prevent bias. The images were limited to 21 for practical
considerations to encourage careful examination of the image without fatigue. Our
preliminary studies suggested that more than 25-30 images can lead to loss of interest to
make the accurate differentiation. There was no time limit to finish the survey.

The participants were recruited by email invitations to do the survey. All participants were
instructed to look at the tutorial images of the two tumors at the beginning of the survey to
become familiar with the morphology and staining of each tumor. Following the initial
step, they were asked to review each image and vote for either the ChRCC or RO. The total
number of ChRCC and RO cases was not released to participants to prevent bias. The input
from each participant was recorded for further analysis.

Discussion

Pathologic diagnosis in histopathology is the process of reaching a diagnosis by
microscopic examination of cells and tissues from the sampled specimen. Pathologic
diagnosis is a complex process starting with reviewing the patient’s medical history,
imaging and laboratory studies, among other diagnostic report before the procedure of
tissue sampling. The examination of the tissue during the sampling procedure is usually
performed to reassure proper tissue sampling. Pathologists examine the hematoxylin and
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eosin stain (H&E) slides and would request additional sections, additional
immunohistochemistry and/or special stains, and/or additional molecular studies based on
standard guidelines. The final diagnostic description will be issued after assembling all the
data into the final integrated pathology report.

Despite its similar histomorphology to RO, the ChRCC is considered a malignant renal
tumor while RO is benign. This poses a challenge for pathologist to accurately differentiate
the two and report it to clinicians. New molecular signatures are described in RO, ChRCC
and also in hybrid oncocytic/chromophobe tumors (HOCT). Accordingly, the
chromosomal alteration in RO can be null or with 1, 14, 21, Y deletions. The ChRCC
demonstrates, null or a wide range of chromosomal alterations (1, 2, 3, 5, 6,9, 10, 11, 13,
17, 21, Y del Other mutations and varied RNA expression profiles have also been
reported®®. However, there is no reliable molecular method for accurate differentiation of
the two tumors.

Explainable artificial intelligence are computer algorithms and models trained to provide
answer along with a human understandable explanation. On the other hand, computer
assisted diagnosis have shown promising results in other cancer types such as breast and
lung cancer diagnoses™ **. We utilized similar approach to assist differentiation of
malignant ChRCC and benign RO; which have different clinical management. We
reviewed several cases with diagnoses of ChRCC and RO in our institution between 2001
and 2016. Multiple images from different foci of each tumor were captured and analyzed
by image processing software performing nuclear segmentation followed by detecting
nearest-neighbor, nuclear shape/size and nuclear densities/area algorithms. Overall score
for each was calculated, analyzed and compared®. In that study, nuclear segmentation
step approached ~94% accuracy for both ChRCC and RO using binary mode or Fourier
transform/band pass filter setting. Cell boundaries detection showed similar results. A
scoring system utilizing a combination of nearest-neighbor, nuclear shape/size and nuclear
densities/area was also used and showed ~93% accuracy in differentiation between
ChRCC and RO in well-fixed/prepared section. While this approach held promise for good
results, however the diagnostic accuracy was reduced when the image contained normal
renal tissue adjacent to the tumor. This was an approach to utilize traditional machine
learning for detection of histological features associated with specific type of tumors to
reach an accurate diagnosis based on accepted criteria.

This evidence-based computer aided diagnosis explains the steps of reaching to a
diagnosis. In this study, a complete different explainable Al was employed in parallel with
a conventional Convolutional Neural Network (CNN) to enhance the precision of tumor
differentiation. CNN was used as it already confirmed the liability in challenging cases and
studies®®. Operating concurrently, these two models yield diagnostic results
independently, without reliance on external systems. This combination increases the
precision while still has the histological evidence for making the diagnosis.

We further compared the pathologists and the framework for differentiation of the two
tumors and showed that our framework outperformed human experts in making an
accurate diagnosis. However, a group of pathologists managed to become as good as
machine in terms of precision, when they collaboratively analyze the image. Computer
assisted diagnosis can be used as an ancillary tool to differentiate ChRCC from renal RO
and to reduce the cost of immunohistochemical stains. Our current image processing
algorithm has managed to differentiate ChRCC and RO with high accuracy in
well-fixed/prepared sections. Adoption of additional nuclear/cellular features to modify
this algorithm will improve the specificity of this method.
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To our knowledge, this is the first work of utilizing an image processing algorithm to
differentiate between the two ChRCC and RO kidney cancers by an explainable Al
showing the histological features leading to the diagnosis.

Our framework stands out not just for its accuracy but also for its reasonable reporting
pace. It highlights the exact location and boundaries of each nucleus and differentiates
between RO and ChRCC. Unlike other approaches, this allows pathologists to directly
verify specific areas, streamlining their review process.

Conclusion

In conclusion, our study XKidneyOnco: An Explainable Approach to classify Renal
Oncocytoma and Chromophobe Renal Cell Carcinoma with a small sample size has
demonstrated the potential of an explainable Al to assist pathologists in the challenging
task of differentiating between RO and ChRCC. Despite the histological similarities that
complicate the diagnosis, our explainable framework, supported by a CNN, achieved high
diagnostic accuracy, sensitivity, and specificity. The rule based model alongside with CNN
model outperformed individual pathologist assessments and presented a reliable
alternative to more resource-intensive molecular methods. Furthemore, our study success
in applying leveraging to a relatively small dataset underscores the models' robustness and
the viability of this method in clinical practice. Despite high accuracy of neural network
models, they require large dataset for training.

Our approach maintains transparency in its decision-making process, which is crucial for
clinical acceptance. The insights gained from this research pave the way for further
development of Al-assisted diagnostic tools in nephropathology. Such tools can provide
valuable second opinions, reduce the time and cost associated with traditional human-only
diagnostic methods, and ultimately, enhance patient care by ensuring accurate and timely
diagnoses. Our findings advocate for the continued integration of computer aided
diagnosis in pathology.
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