

1 **Thiosulfinate tolerance gene clusters are common features of *Burkholderia* onion pathogens.**

2 Sujan Paudel¹, Mei Zhao^{2,3}, Shaun P. Stice¹, Bhabesh Dutta², Brian H. Kvitko^{1*}

3 ¹Department of Plant Pathology, University of Georgia, Athens, GA, USA

4 ²Department of Plant Pathology, University of Georgia, Tifton, GA, USA

5 ³Department of Plant Pathology, College of Plant Protection, China Agricultural University,

6 Beijing, China

7

8 *Corresponding author: Brian H. Kvitko, email: bkvitko@uga.edu

9 **Abstract**

10 *Burkholderia gladioli* pv. *alliicola*, *B.cepacia*, and *B. orbicola* are common bacterial pathogens of
11 onion. Onions produce organosulfur thiosulfinate defensive compounds after cellular
12 decompartmentalization. Using whole genome sequencing and *in silico* analysis, we identified
13 putative thiosulfinate tolerance gene (TTG) clusters in multiple onion-associated *Burkholderia*
14 species similar to those characterized in other *Allium*-associated bacterial endophytes and
15 pathogens. Sequence analysis revealed the presence of three *Burkholderia* TTG cluster types
16 with both Type A and Type B being broadly distributed in *B. gladioli*, *B. cepacia*, and *B. orbicola*
17 in both the chromosome and plasmids. Based on isolate natural variation and generation of
18 isogenic strains, we determined the *in vitro* and *in vivo* contribution of TTG clusters in *B. gladioli*,
19 *B. cepacia*, and *B. orbicola*. The *Burkholderia* TTG clusters contributed to enhanced allicin
20 tolerance and improved growth in filtered onion extract by all three species. TTG clusters also

21 made clear contributions to *B. gladioli* foliar necrosis symptoms and bacterial populations.
22 Surprisingly, the TTG cluster did not contribute to bacterial populations in onion bulb scales by
23 these three species. Based on our findings, we hypothesize onion-associated *Burkholderia* may
24 evade or inhibit the production of thiosulfinates in onion bulb tissues.

25 Keywords: onion, thiosulfinate, cell death, *Burkholderia gladioli*, *Burkholderia orbicola*,
26 *Burkholderia cepacia*, Slippery skin of onion, Sour Skin of onion, virulence

27

28 **Introduction**

29 Onion (*Allium cepa* L.) production industry, valued at US \$1 billion is a major contributor to the
30 USA economy (Belo et al., 2023). Bacterial pathogens can infect onions at different stages of
31 production from seedling to storage posing a serious challenge to growers (Mark et al., 2002;
32 Zhao et al., 2022). Upon conducive environmental conditions, bacterial pathogens can cause
33 more than 50% losses in production (Belo et al., 2023). Members in the *Burkholderia* genus are
34 historically associated with onion disease with its first report dating back to 1940s (Burkholder,
35 1942). *Burkholderia cepacia* complex (Bcc) group causes sour skin of onion whereas
36 *Burkholderia gladioli* pv. *alliicola* (Bga) causes slippery skin (Burkholder, 1950). In addition to the
37 common onion pathogenic members *B. cepacia*, *B. cenocepacia*, and *B. ambifaria*, three new
38 onion pathogenic species *B. orbicola*, *B. semiarida*, and *B. sola* were recently described as
39 members of the Bcc complex (Morales-Ruiz et al., 2022; Velez et al., 2023). While all described
40 onion pathogenic members in *Burkholderia* infect bulbs and are storage pathogens, Bga is also
41 associated with foliar necrosis (Kawamoto and Lorbeer, 1974; Lee et al., 2005).

42 Plants utilize different chemical compounds as a defense response against the attack of
43 pathogens and pests. In many cases, the inactive form of these compounds is converted into the
44 active form only after the pathogen/insect attack. Onion, garlic, and other *Allium* species
45 produce rapid and potent organosulfur compounds as a consequence of tissue damage
46 (Lancaster and Collin, 1981; Rose et al., 2005). In garlic, the thiosulfinate allicin produced by the
47 reaction of alliinase on alliin is a primary volatile antimicrobial compound that inactivates
48 enzymes and depletes the reduced glutathione pool. Allicin is the compound responsible for the
49 odor of crushed garlic. Onion, on the other hand, when disrupted produces asymmetric 1-

50 propenyl methyl thiosulfinate in onion extracts. The action of alliinase and another enzyme,
51 lachrymatory factor synthase (LFS) converts isoalliin into syn-propanethial-S-oxide, which is an
52 irritant that induces tears (Silvaroli et al., 2017).

53 A plasmid-borne cluster of eleven-genes named the allicin tolerance (*alt*) cluster was found to
54 confer increased tolerance to allicin and enhance virulence in *P. ananatis* on onion (Stice et al.,
55 2020). Mutation in the *alt*/TTG region resulted in a smaller clearing zone in red onion scale
56 necrosis assay and caused approximately 100-fold reduced bacterial population in onion tissue,
57 and increased sensitivity to allicin and endogenous onion thiosulfinate. The PNA 97-1 mutant
58 strain lacking the *alt* TTG cluster was severely reduced in the bacterial colonization of onion
59 bulbs and scales suggesting the role of *alt* clusters in the virulence of the bacterium. Multiple
60 chromosomal TTG clusters conferring allicin tolerance were also characterized in the garlic
61 saprophyte *Pseudomonas fluorescens* PfAR-1, with similar clusters identified in the garlic
62 pathogen *Pseudomonas salomonii* (Borlinghaus et al., 2020; Stice et al., 2020). The *Pantoea* and
63 *Pseudomonas* TTG clusters had similar gene content but dissimilar gene cluster syntenies.

64 TTG clusters have not been reported in onion pathogenic members of *Burkholderia* genus. The
65 *Burkholderia* pathogens are likely exposed to thiosulfinate during the infection process. In this
66 study, we sequenced representative onion-isolated *Burkholderia* strains from Georgia, USA., and
67 explored the distribution and function of putative TTG-like clusters from *Burkholderia*. Using
68 allicin Zone of Inhibition (ZOI) and onion juice growth assays, we demonstrated the contribution
69 of the putative TTG-like cluster to allicin tolerance and filtered onion extract growth in multiple
70 onion-associated *Burkholderia* species. Engineered TTG mutant and TTG encoding heterologous
71 expression plasmid derivatives were generated to determine the contribution of TTG cluster to

72 onion foliar/red scale necrosis and *in planta* bacterial populations. Our results suggest that the
73 TTG cluster contributes to variable virulence roles in onion depending on onion tissue-type and
74 *Burkholderia* species.

75 **Results**

76 **Identification of putative TTG-like cluster in *Burkholderia* species.**

77 Using *Pantoea ananatis* (Pan) PNA 97-1R TTG cluster gene sequences as a query, we performed
78 a multigene blastX analysis to check the presence or absence of corresponding protein
79 homologs in *Burkholderia*. Hits were obtained in the *Burkholderia* genus for multiple TTG gene
80 sequences in the reference Pan PNA 97-1R *alt* TTG cluster. Further analysis of the hits in the
81 whole genome sequence of *B. cepacia* 561 revealed the presence of putative TTG genes *altB*,
82 *altC*, *altA*, *altE*, *altR*, *altI*, and *altJ*. The *altA*, *altB*, and *altC* genes are predicted to function as
83 putative thiol/oxidoreductases, and *altJ* and *altE* encode for predicted peroxidase-like enzymes.
84 The *altI* gene encodes for a putative carbon-sulfur lyase and *altR* encodes a putative repressor.
85 Homolog of Pan TTG genes *altD*, *altG*, *altH*, *altJ*, and *gorB* were not found in the screened *B.*
86 *cepacia* cluster. Similar TTG cluster genes were identified in the onion-isolated Bga strain
87 20GA0385. Clinker gene synteny analysis revealed the seven TTG genes were conserved in both
88 Bga strain 20GA0385 and Pan strain PNA 97-1R. Amino acid (aa) percent identity between the
89 two strains for *altB*, *altA*, and *altC* genes was 81%, 67%, and 37%, respectively. The peroxidase-
90 like *altE* and *altJ* shared 63% and 29% aa identities, respectively. The putative C-S lyase encoding
91 *altI* and the putative repressor *altR* shared 48% and 39% identity, respectively. The gene synteny
92 between the two clusters; however, was not conserved (Figure 1).

93 **TTG clusters are widespread in *Burkholderia* species commonly isolated from onion.**

94 To study the distribution of putative TTG clusters in onion-associated strains, we conducted
95 whole genome sequencing and assembly of 66 *Burkholderia* strains isolated from symptomatic
96 onion. The species of sequenced strain was confirmed using the Type Strain Genome Server
97 platform (Meier-Kolthoff and Göker, 2019). Out of the 66 sequenced strains, 22 were identified
98 as *B. orbicola*, 20 were *B. cepacia*, 20 were *B. gladioli*, and 4 were *B. ambifaria* (Supplementary
99 Table S3). Putative TTG-like clusters were found in 55 of the sequenced strains. All sequenced *B.*
100 *orbicola* and *B. ambifaria* strains had TTG clusters. Among the 11 TTG negative strains, 2 were
101 from *B. cepacia* species and 9 were from *B. gladioli* species. Interestingly, we discovered four
102 strains that had two putative TTG clusters in a single strain, with three of these strains belonging
103 to *B. orbicola* and one to *B. gladioli* (strain 20GA0350) (Figure 2).

104 **Three distinct TTG cluster types are found based on nucleotide homology.**

105 To analyze the distribution and phylogeny of the TTG clusters, the identified putative TTG
106 clusters were extracted from the respective genomes and aligned against each other. An
107 additional 24 *Burkholderia* TTG sequences from closed genomes in the NCBI GenBank database
108 were included in the alignment. The synteny of TTG cluster genes *altI* to *altB* was conserved for
109 all the sequenced strains in our study. Among the NCBI GenBank extracted sequences, a slight
110 difference in gene arrangement was observed in three *B. gladioli* strains and one
111 *Paraburkholderia graminis* strain. The putative C-S lyase gene *altI* was present downstream of
112 *altB* gene in the four strains. In the rest of the strains, the *altI* gene was present upstream of
113 *altA* gene. The maximum-likelihood phylogenetic tree revealed the presence of three distinct

114 TTG clades among the strains (Figure 2). The first branch had 63 TTG sequences with relatively
115 less diversity among them. The second cluster had 13 sequences and the third cluster had four
116 TTG sequences from *B. gladioli* and *P. graminis* species. The three clusters were named Type A,
117 Type B, and Type C TTG clusters based on nucleotide homology and branching in the
118 phylogenetic tree. The *B. gladioli* strains in the Type A and Type B branches formed a distinct
119 sub-clade and showed species-specific branching (Figure 2). No species-specific branching was
120 observed for other *Burkholderia* species. Among strains with two putative TTG-like clusters,
121 three *B. orbicola* strains had one TTG cluster sequence each in Type A and Type B branches
122 while *B. orbicola* strain HI2424 had both clusters in the Type A clade.

123 **The TTG-like cluster in *Burkholderia* contributes to allicin tolerance *in vitro*.**

124 To test the functional role of TTG-like clusters in sequenced strains, an allicin zone of inhibition
125 (ZOI) assay was performed. Firstly, representative natural variant strains in *B. gladioli*, *B.*
126 *cepacia*, and *B. orbicola* species with or without endogenous TTG clusters were tested for allicin
127 tolerance. The TTG negative variant in all three species was highly sensitive to allicin based on
128 the larger relative zones of inhibitions compared with the strains possessing the endogenous
129 TTG cluster in the respective species group. (Figure 3A, 3D, 3F). There was no significant
130 difference in ZOI area between endogenous Type A and Type B cluster types in *B. gladioli* and *B.*
131 *orbicola* representative strains (Figure 3A, 3F). The presence of two TTG clusters in a single
132 strain was not observed to contribute to significantly higher allicin tolerance in *B. gladioli* and *B.*
133 *orbicola* (Fig 3A, D, F). The functional role of the TTG cluster was further assessed by
134 engineering a TTG deletion mutant in the Bga strain 20GA0385. The TTG mutant was more
135 sensitive to allicin than the WT strain (Figure 3B). Although extensive attempts were made, we

136 were unable to generate corresponding TTG mutants in *B. cepacia* and *B. orbicola* in part due to
137 their high intrinsic resistance to aminoglycoside antibiotics creating challenges for clean
138 selection and recalcitrance to *sacB*-mediated counter-selection. Thus we cloned the Type A TTG
139 cluster (from *B. orbicola* strain 20GA0385) and TTG Type B cluster (from *B. orbicola* strain
140 BC93_12) into pBBR1MCS-2 for complementation and heterologous expression in strains lacking
141 a native TTG cluster. Plasmid-based expression of either cluster type in the TTG mutant
142 background restored the ZOI phenotype to WT level. The TTG Type B complementing plasmid
143 conferred significantly higher allicin tolerance compared to the WT strain and the TTG Type A
144 complementation clones (Fig 3B). To test if the functional role of TTG cluster is conserved
145 across major onion pathogenic *Burkholderia* species, we transformed TTG Type A and Type B
146 expression plasmids separately into TTG negative natural variant backgrounds: BC83-1 (*B.*
147 *cepacia*), LMG 30279^T (*B. orbicola*), and BG92_3 (*B. gladioli*). The TTG expression isogenic lines
148 were significantly more tolerant to allicin in all three species groups compared to their
149 respective TTG negative WT (Fig 3C, E, G). In *B. cepacia* BC83_1, TTG Type B expression plasmid
150 contributed significantly to enhanced allicin tolerance as compared to the TTG Type A (data not
151 shown) and the WT strain (Figure 3E). No statistical difference in allicin tolerance was observed
152 between Type A and TTG Type B expression plasmids in *B. orbicola* strain LMG 30279 and *B.*
153 *gladioli* strain BG92_3 (Figure 3C, 3G).

154 **TTG-negative strains have impaired growth in filtered onion juice.**

155 Stice et al. 2020 demonstrated that endogenous onion thiosulfinate in onion juice restricted
156 bacterial growth in a manner similar to synthesized allicin. To test if endogenous thiosulfinate
157 affect the growth of TTG derivatives in different *Burkholderia* species, we conducted a filtered

158 onion juice growth assay. In half-strength onion juice diluted with water, the Bga 20GA0385 TTG
159 mutant had a dramatic growth slower than the WT strain over 48 h. The growth of the TTG
160 mutant improved significantly when complemented with the plasmid harboring TTG gene
161 cluster (Figure 4A). The TTG Type A and Type B plasmid derivatives grew significantly better in
162 onion juice than the TTG negative natural WT variant in *B. cepacia* and *B. orbicola* (Fig 4B, 4C).
163 When analyzed across the three experimental repeats, the OD₆₀₀ values recovered for *B.*
164 *orbicola* LMG 30279 Type B strain were significantly higher compared to the TTG Type A strain
165 derivative 16 to 48 hours post-inoculation (Supplementary Table S4). The *B. cepacia* TTG Type B
166 derivative growth was similar to the TTG Type A strain over 48 h across the three experimental
167 repeats (Supplementary Table S4).

168 **TTG cluster in *B. gladioli* pv. *alliicola* contributes to foliar necrosis and bacterial populations.**

169 The *B. gladioli* TTG mutant and the TTG plasmid derivatives in TTG-negative WT background
170 were tested for their contribution to onion foliar necrosis and bacterial populations. The
171 20GA0385 ΔTTG was significantly reduced in onion seedling lesion length and bacterial
172 population compared to the WT strain. The necrosis length and bacterial population were
173 restored to the WT level when the TTG mutant was expressed with a TTG Type A
174 complementing plasmid (Fig 5A, 5B). The TTG Type A plasmid also contributed to significantly
175 higher necrosis length and bacterial populations when transformed in a TTG-negative natural
176 variant strain BG92_3 (Fig 5A, 5B). In addition, a time course bacterial population growth assay
177 for both Bga 20GA0385 and ΔTTG was performed. Bacterial populations at six hours post-
178 inoculation were in the range of 10⁴ CFU/mg of onion tissue. Bacterial populations for the WT
179 strain increased gradually and reached the maximum plateau from day 3 to day 5 post-

180 inoculation in the range of 10^6 - 10^8 CFU per mg of infected leaf tissue. The bacterial population
181 recovered for Δ TTG Day 3 to Day 5 post-infection was significantly lower compared to the WT
182 strain (Fig 6A).

183 **TTG cluster in *Burkholderia* does not contribute to symptom production or bacterial**
184 **populations in onion scale tissue.**

185 The Red Scale Necrosis (RSN) assay was conducted with strains in three *Burkholderia* species to
186 study the role of TTG cluster in lesion area and scale bacterial population. The *B. gladioli*
187 20GA0385 Δ TTG was not altered in the RSN area compared to the WT. The TTG Type A
188 complementing plasmid clone had a significantly larger necrosis area compared to the TTG
189 mutant. Bacterial populations for three *B. gladioli* 20GA0385 treatments (WT, Δ TTG, and
190 Δ TTG::p^{TTGA}) were not significantly different from each other 4 h and 3 days post-inoculation (Fig
191 5D). In the case of the *B. cepacia* strain BC83_1, the TTG Type B expression clone contributed to
192 the RSN area, but the TTG Type A clone did not affect the RSN area (Fig 5E). Onion scale
193 bacterial population for *B. cepacia* and *B. orbicola* TTG Type A expression clone was significantly
194 reduced at 4 hours post-inoculation compared to the respective WT and TTG Type B expression
195 clones (Fig 5F, 5H). No significant difference in bacterial population and the RSN area was
196 observed for *B. cepacia* and *B. orbicola* WT and TTG plasmid derivatives at day 3 post-infection
197 (Fig 5F, 5G,5H). Onion scale bacterial population for *B. gladioli* 20GA0385 WT and Δ TTG strains
198 from day 0 to day 5 were not significantly different from each other (Figure 6B).

199 **Discussion**

200 Using whole genome sequencing and phenotypic assays, we studied the distribution and
201 functional role of TTG-like clusters in *Burkholderia* species commonly isolated from onion. RSN
202 and foliar necrosis assays were conducted to investigate the role of TTG-like clusters in tissue-
203 specific symptom production and bacterial population. A putative TTG-like cluster was
204 identified in onion-isolated Bga strain 20GA0385. The genes present in the cluster had similar
205 predicted functions compared to TTG cluster genes in *P. ananatis* strain PNA 97-1 but the gene
206 synteny and orientation were different (Figure 1). Whole genome sequencing revealed the
207 widespread distribution of TTG-like clusters in onion-isolated *Burkholderia* species. Maximum
208 likelihood-based phylogeny of whole genome sequenced and NCBI GenBank extracted
209 representative TTG sequences highlighted the presence of three distinct clades (Figure 2). These
210 three clades were named Type A, Type B, and Type C TTG clusters based on nucleotide
211 homology. The TTG Type A and Type B clusters both contributed to allicin tolerance in tested *B.*
212 *gladioli*, *B. cepacia*, and *B. orbicola* strains (Figure 3). The clusters also contributed to improved
213 bacterial growth in half-strength onion-filtered extract (Figure 4). In the onion foliar assay, the
214 Bga 20GA0385 TTG cluster contributed to necrosis length and bacterial *in planta* population
215 count (Figure 5A, 6A). The TTG Type A cluster when expressed in the *B. gladioli* TTG negative
216 strain BG92_3 background contributed significantly to onion foliar necrosis length and *in planta*
217 bacterial population count (Figure 5A). The TTG clusters Type A and Type B, however, were not
218 required for red-scale necrosis area and scale bacterial load in *B. gladioli* and *B. orbicola* (Figure
219 5). The TTG Type B cluster in *B. cepacia* strain BC83_1 contributed significantly to the RSN area
220 but was inconsequential for the red scale *in planta* population count. The *B. cepacia* BC83_1
221 TTG Type A cluster was not required for the RSN area or in-planta bacterial load (Figure 6E,6F).

222 The role of the TTG cluster in conferring allicin tolerance in bacterial onion pathogen *P. ananatis*
223 is well correlated with the bacterium's ability to colonize necrotized onion tissue. As members
224 of the bacterial genus *Burkholderia* are routinely isolated from infected onion, we hypothesized
225 they might utilize a similar strategy to combat and colonize the hostile onion environment. We
226 sequenced and assembled the genomes for a panel of onion-isolated *Burkholderia* strains
227 collected over 40 years from Georgia, USA. A majority of the sequenced strains belonged to the
228 three common onion-associated *Burkholderia* species: *B. gladioli*, *B. cepacia*, and *B. orbicola*.
229 Putative TTG-like clusters were distributed in all three species. No congruence was observed
230 between the core-gene-based species tree and the TTG cluster-based tree suggesting the TTG
231 clusters might be horizontally acquired. Multiple genes in *P. ananatis* TTG cluster have also been
232 predicted to be involved in horizontal gene transfer (Stice et al., 2018). Upon alignment of the
233 TTG sequence region, three distinct groups were formed based on homology with the
234 consensus. The grouping was also reflected in the phylogenetic tree. The Type A cluster was the
235 most common while no Type C cluster was found in our sequenced panel of strains. Similarly, no
236 Type B cluster was found in *B. cepacia* strains. Four strains harbored two putative TTG clusters
237 simultaneously in their genome. The presence of multiple TTG clusters in the same strain is not
238 exclusive to *Burkholderia* genus. The *Pseudomonas fluorescens* strain *PfAR-1* has three copies of
239 TTG clusters that confer resistance to allicin when expressed heterologously in *E. coli*
240 (Borlinghaus et al., 2020). The *B. orbicola* strain HI2424 harbors two Type A TTG clusters, one on
241 the chromosome and the other in the plasmid. The Type C cluster was found in four strains
242 deposited in the NCBI GenBank database but was not identified in our strain panel. The three
243 strains harboring Type C cluster were from *B. gladioli* and they grouped closely to TTG cluster

244 from *Paraburkholderia graminis* strain PHS1. The number of nucleotide substitutions in the
245 Type C TTG strains suggests the TTG cluster might have existed before the differentiation of
246 *Paraburkholderia* genus from *Burkholderia*. The Type C cluster type was peculiar in the sense
247 that the putative *altI* C-S lyase encoding gene was present downstream of *altJ* gene and
248 transcribed in the same direction as *altJ*. Apart from this gene, the gene organization of other
249 genes in the *Burkholderia* TTG cluster is conserved. One clinical *B. gladioli* strain BCC0507 had
250 an insertion of a putative IS3 family transposase CDS in between the *altA* and *altC* gene (data
251 not shown).

252 The gene synteny of the TTG cluster among different bacterial genera is not conserved. The
253 *Burkholderia* TTG cluster is compact with seven genes as opposed to the bacterial onion
254 pathogen *P. ananatis* which has eleven genes in its TTG cluster. The *gor* gene encoding
255 glutathione reductase is associated with TTG clusters in some *Pantoea*, *Erwinia*, and
256 *Pseudomonas* species but is absent in the *Burkholderia* TTG cluster (Couto et al., 2016;
257 Borlinghaus et al., 2020). Similarly, three additional TTG genes *altD*, *altH*, and *altG* present in *P.*
258 *ananatis* PNA 97-1 are absent in *Burkholderia*. The TTG cluster in *P. ananatis* shares some
259 notable differences in gene synteny with the TTG cluster described in representative strains
260 from *Pseudomonas* genus. Despite the differences between the two genera, the TTG cluster
261 gene synteny is conserved among the *P. fluorescens* strain *PfAR-1*, *P. salomonii* strain ICMP
262 14252, and *P. syringae* pv. *tomato* strain DC3000 within the *Pseudomonas* genus.

263 Although widely distributed in onion-isolated bacterial species, it is important to note that the
264 TTG cluster is not exclusive to onion-pathogenic species. Members in the *P. fluorescens* group
265 are common saprophytes. Analysis of the TTG clusters in *Burkholderia* species deposited in NCBI

266 GenBank database suggests the putative cluster is present in strains isolated from diverse
267 ecosystems such as reactor sludge, clinical patient, soil, sputum, and plant hosts such as
268 *Dendrobium* and *Gladiolus*. As the sequenced strains in our study are draft genomes, we were
269 not able to definitively determine the chromosomal or plasmid origin of the TTG cluster. We
270 used TTG clusters from NCBI closed genomes as a reference to analyze the genomic context of
271 TTG clusters in our panel. In all *B. gladioli* and *B. cepacia* closed genomes in the database, the
272 TTG cluster was harbored in a plasmid. *B. orbicola* strains harbored TTG clusters in both
273 chromosomes or plasmids. We used BLAST analysis to compare 35 kb regions in the *B. cepacia*
274 ATCC 25416 including the TTG Type A clusters, and its upstream and downstream gene region
275 against the whole genome sequenced strains in our panel. The gene synteny of the 35 kb region
276 was conserved and shared high nucleotide identity among the 24 strains harboring TTG clusters.
277 Out of the 24 hits obtained from BLAST analysis, 6 were from *B. cepacia* strains and the
278 remaining 18 were from *B. orbicola* species. The 35 kb plasmid region harbored in *B. cepacia*
279 strain ATCC 25416 was also 100% identical to the region harbored in chromosome 2 of *B.*
280 *orbicola* strain HI2424. Although no conclusion can be drawn on the origin of TTG clusters in
281 these strains, it can be predicted that the TTG clusters can be present in both chromosome or
282 plasmids in *Burkholderia* strains.

283 The presence of two TTG cluster types in a single *Burkholderia* strain was found in four
284 instances. When two of these strains were tested against the natural variant strains harboring a
285 single or no TTG cluster using the allicin ZOI assay, enhanced resistance to allicin was not
286 observed. This was in contrast to *P. fluorescens* strain PfAR-1 and garlic pathogen *P. salomonii*
287 strain ICMP14252, where the presence of two or more endogenous TTG clusters correlated with

288 enhanced tolerance compared to the single TTG cluster harboring *P. syringae* pv. *tomato* strain
289 DC3000. The TTG Type B cluster conferred enhanced tolerance to allicin in *B. gladioli* strain
290 20GA0385 and *B. cepacia* strain BC83_1 compared to Type A TTG and WT strains. The enhanced
291 phenotype by Type B cluster was not observed in *B. orbicola* strain LMG 30279 and *B. gladioli*
292 strain BG92_3. Although variation was seen among the experimental repeats, we saw a
293 qualitative growth difference between *B. cepacia* TTG Type A and Type B clusters in a couple of
294 onion-filtered extract growth assay repeats (Figure 4B). The *B. orbicola* TTG Type B cluster grew
295 significantly better in onion extract compared to the TTG Type A cluster (Supplementary Table
296 S4). It is not clear what might have contributed to enhanced tolerance by TTG Type B clusters as
297 gene synteny is conserved in both cluster types.

298 The virulence role of the TTG cluster was analyzed using onion foliar and red scale necrosis and
299 population assays. We observed contrasting virulence roles of *B. gladioli* TTG cluster depending
300 on onion tissue type. The *in planta* foliar population count for Bga 20GA0385 WT strain
301 increased consistently from Day 0 and reached the plateau on Day 3 (Figure 6A). The foliar
302 necrosis symptoms by Bga WT strain started appearing on Day 2 and by Day 3, the necrosis
303 extended across the tip with leaves appearing wilted and turned brittle in the subsequent days.
304 The foliar population levels for the TTG mutant remained constant throughout the sampled
305 period. The necrosis symptoms observed with the TTG mutant were restricted around the
306 region of the point of inoculation. Although a 100-fold diluted suspension was used for scale
307 time course assay, the population count for both WT and TTG mutant in red scale reached the
308 peak at the same time as in the foliar tissue (Figure 6B). The necrosis area for the majority of
309 both WT and TTG inoculated scales continued to increase even after the population count

310 reached the plateau. Unlike in the foliar tissue, the TTG mutant population count from the red
311 scale assay was comparable to WT across all the sampling points (Figure 6B). These findings
312 from the *in planta* population assay, contradict the results of the onion filtered extract growth
313 assay, where the TTG mutant was severely impaired in the onion juice growth compared to the
314 WT strain (Figure 4A). The differences in *in vitro* and *in planta* experiment results suggest that
315 bacteria in onion scale tissue may utilize mechanisms to inhibit the onion-produced
316 thiosulfinates in necrotized tissue. Alternatively, as thiosulfinates are produced by mixing of CSO
317 precursors and alliinase following the disruption of the vacuole, bacteria may exhibit a
318 hemibiotrophic lifestyle keeping the cells intact in the early stages of invasion.–This is in line with
319 what we observed in the red scale time course assay where the maximum necrosis area
320 followed after the bacterial population reached the plateau. Based on these observations, we
321 can speculate that the *Burkholderia* strain might be in a hemibiotrophic survival mode in onion
322 scales.

323 The TTG clusters Type A and Type B were inconsequential for the population on red scale in
324 both *B. orbicola* and *B. cepacia*. As we inoculated a relatively high number of bacteria ($\sim 10^8$
325 CFU/ml) in the scales for all three tested species, we sampled a set of scales four hours post-
326 inoculation to check if bacteria have enough threshold for growth inside the scale tissue. The
327 bacterial count four hours post-inoculation was similar for all the treatments tested across the
328 three species. Although not dramatic, we did see a significant population count reduction for
329 TTG Type A plasmid derivative in both *B. cepacia* and *B. orbicola* compared to their respective
330 WT strain. Surprisingly, this trend was not observed for the TTG Type B plasmid derivative that
331 has the same plasmid backbone and was selected under the same conditions. The reduction in

332 Day 0 bacterial population was not observed for *B. gladioli* treatments where a much lower
333 antibiotic concentration (50 µg/ml) was used for selection. It is unclear why the Day 0
334 population reduction phenotype is specific only to TTG Type A plasmid derivative.

335 Through this study, we have shown the functional role of the TTG cluster is conserved in
336 distantly related onion pathogenic members of the *Burkholderia* genus. Thiosulfinates are
337 broad-acting antimicrobials. Bacteria in the *Burkholderia* genus may have acquired tolerance
338 mechanisms to evade or inhibit the produced thiosulfinates in a tissue-specific manner.
339 Functional characterization of the TTG constituent genes and their interaction mechanisms with
340 bacteria could open up details on how bacteria can survive and replicate in a challenging onion
341 environment.

342 **Materials and Methods**

343 **Bacterial growth conditions**

344 Bacterial strains used for cloning, mutagenesis, and construction of the TTG expression plasmid
345 in this study are listed in Supplementary Table S1. Primers and synthesized dsDNA fragments
346 used in the study are listed in Supplementary Table S2. *Escherichia coli* strains DH5 α and RHO5
347 and all *Burkholderia* strains used for the *in vitro* experiments were grown in LB (per liter, 10 g of
348 tryptone, 5 g of yeast extract, 5 g of NaCl) broth or agar (15 g of agar) at 37°C and 28°C,
349 respectively. Antibiotics and chemicals were supplemented with the growth media at the
350 following final concentrations, per milliliter: 50 – 1000 µg of kanamycin, 10 µg of gentamicin,
351 100 – 200 µg of Diaminopimelic acid (DAP), 50 µg of X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-

352 galacto-pyranoside), 100 µg of Xgluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid), and
353 40-60 µg of rifampicin, as appropriate.

354 **Plant growth conditions**

355 Onion sets (*Allium cepa* L. cv. Century) were planted in 10 cm x 8 cm (diameter x height) plastic
356 pots filled with SunGrow 3B potting soil and maintained at greenhouse conditions with 25–28°C,
357 12L:12D photoperiod for 5 months from January to May until inoculation. To grow the onion
358 seedlings, onion seeds (*Allium cepa* var. Texas Grano 1015Y) were sown in (5 cm x 5 cm) pots with
359 SunGrow 3B potting soil and maintained at the same conditions as described above in the
360 greenhouse for 8-12 weeks.

361 **Identification of TTG-like cluster in *Burkholderia***

362 The nucleotide sequences of the individual genes in the TTG-like cluster in *P. ananatis* strain
363 PNA 97-1R (NCBI Accession number: NZ_CP020945.2) were blasted against the *Burkholderia*
364 genome database (taxid: 32008) in NCBI GenBank database using blastX web interface platform.
365 The whole genome sequences of the hits obtained from the blastX search were screened for the
366 presence of a putative TTG-like cluster. The locus tag numbers for the putative genes in the
367 *Burkholderia* TTG-like alt cluster were determined using Geneious Prime v 2023.2.1.

368 The synteny analysis of the TTG cluster in Bga representative strain 20GA0385 was performed
369 with Clinker web-based platform CAGECAT using *P. ananatis* PNA 97-1 (GenBank Accession:
370 CP020945.2) TTG cluster as a reference (van den Belt et al., 2023). Bakta annotated TTG
371 nucleotide clusters from PNA 97-1 and Bga strain 20GA0385 were used as input for CAGECAT
372 synteny analysis (Schwengers et al., 2021). The identity threshold was set at 0.3 for the analysis.

373 **Whole genome sequencing of select *Burkholderia* strains**

374 A total of 66 *Burkholderia* strains isolated from onions in different regions of Georgia state, USA

375 were sent for whole genome sequencing using Novogene Co., Ltd (Beijing, China) and

376 MicrobesNG Illumina sequencing (Microbes NG, Birmingham, UK). Raw sequences were filtered

377 using fastp v 0.20.0 (Chen et al., 2018), and quality checks were conducted using fastqc v 0.11.9

378 (Andrews, 2010). The processed reads were assembled using SPAdes v 3.14 (--isolate --cov-

379 cutoff auto mode) (Bankevich et al., 2012) and filtered for a minimum contig size of 500 bp.

380 Assembled contigs were annotated using the Prokka annotation pipeline (Seemann, 2014). All

381 whole genome sequences were uploaded to the NCBI GenBank database under BioProject ID

382 PRJNA1048086. Strain metadata information is presented in Supplementary Table S3.

383 The species identity of the sequenced strains was confirmed using the Type Strain Genome

384 Server (TYGS) (Meier-Kolthoff and Göker, 2019). Assemblies were uploaded to the server as

385 inputs. A pairwise GGDC formula 2 (d_4) value of >70% was used as the cutoff for species

386 identification. Bga strain 20GA0385 was also confirmed using a 727 bp partial *recA* gene-based

387 phylogeny (Supplementary Figure S1).

388 **Phylogeny of TTG-like clusters based on whole genome and NCBI extracted sequences**

389 The presence/absence of TTG cluster sequence in the assembled genome sequences was

390 determined using Map to Reference (Bowtie) and/or custom BLAST plugin in Geneious Prime v

391 2023.2.1 (Langmead, 2010). The TTG cluster sequence from *B. gladioli* pv. *alliicola* strain

392 FDAARGOS_389 (GenBank: CP023524.1) was used as a query sequence for both Map to

393 Reference and custom BLAST analysis. All genome sequenced strains were used to create a

394 custom BLAST database and the query sequence was used as input against the custom database
395 to perform the analysis. The matched regions obtained from the map to reference analysis and
396 custom BLAST analysis were extracted and aligned using the MAFFT plugin in Geneious Prime.
397 Putative *Burkholderia* TTG clusters from closed genomes in the NCBI GenBank database were
398 also extracted and included in the alignment. Obtained hits smaller than 4952 bp corresponding
399 to *altA – altR* gene region were excluded from further analysis. Metadata for the strains used in
400 the analysis is presented in Supplementary Table S3. The aligned and trimmed sequence was
401 used as input in MEGA X software for maximum likelihood method-based phylogenetic analysis
402 (Kumar et al., 2018). Nucleotide substitution type with the Tajima-Nei substitution model was
403 used and 1000 bootstrap replicates were used as a test of phylogeny. The obtained Newick
404 (.nwk) tree was uploaded to the interactive Tree of Life (iTOL) database for further formatting
405 (Letunic and Bork, 2021).

406 Identity confirmation of *B. gladioli* strains FDAARGOS_389 and 20GA0385 was done using a 727
407 bp partial *recA*-based phylogenetic analysis. Genome assemblies from representative strains in
408 *B. gladioli* Clade 1A, 1B, 1C, 2, and 3 as described in (Jones et al., 2021) were downloaded from
409 the NCBI GenBank database. Assemblies from *B. cepacia* strain ATCC 25416 and *B. cenocepacia*
410 J2315 were also downloaded from the NCBI GenBank database. The presence of partial *recA*
411 gene sequence was determined in the downloaded assemblies using Bowtie Map to Reference
412 plugin in Geneious Prime v 2023.9.0, with the FDAARGOS_389 partial *recA* gene sequence as a
413 query. The mapped regions in the target assemblies were extracted and aligned using the
414 MAFFT multiple align plugin in Geneious Prime. The aligned sequences were used as input to
415 generate a maximum likelihood based phylogenetic tree using MEGA-X. For the test of

416 phylogeny, 1000 replicates of the bootstrap method were used. The identity of strains
417 FDAARGOS_389 and 20GA0385 was confirmed by analyzing their grouping in the phylogenetic
418 tree relative to reference strains from different clades as described in (Jones et al., 2021)

419 **Creation of *B. gladioli* TTG mutant strain**

420 The unmarked deletion of the TTG cluster in Bga strain 20GA0385 was generated using an allelic
421 exchange strategy. The 450 bp upstream (including 2 aa downstream of the stop codon in *altB*
422 ORF) and 450 bp downstream flanking region (including 1 aa upstream of the stop codon in *altI*
423 ORF) of TTG cluster from *B. gladioli* strain FDAARGOS_389 (GenBank: CP023522.1) along with
424 attached attB1 and attB2 site was synthesized as a double-stranded DNA gblocks from Twist
425 Biosciences. An AvrII restriction site was also included in between the deletion flank. The
426 synthesized TTG fragment was BP cloned into suicide vector pR6KT2G using Gateway BP
427 Clonase II enzyme mix (Thermo Fisher Scientific) (Stice et al., 2020). The cloned reaction
428 following the treatment with Proteinase K was placed on the VMWP membrane (Millipore) and
429 floated on top of sterile distilled water (dH₂O) for 30 minutes. The de-salted mix was
430 electroporated into *E. coli* MAH1 cells and transformants were selected on LB agar amended
431 with gentamicin and Xgluc followed by incubation at 37°C overnight (Kvitko et al., 2012).
432 Selected transformants were grown overnight and the plasmid was prepped with GeneJet
433 Plasmid Miniprep Kit (ThermoScientific, Watham, WA). The correct recombinant plasmid was
434 confirmed with a HindIII restriction enzyme digest reaction and compared to a simulated
435 pattern obtained using NEBcutter V2.0. One clone with the correct restriction digest size, was
436 selected and sent for sequencing using pR6KT2GW-F and pR6KT2GW-R primer pair
437 (Supplementary Table S2). The sequenced reads were aligned with the simulated vector created

438 in Geneious Prime V 2021.1.6 to confirm the insert. The confirmed plasmid was then cloned
439 into an LR-clonase compatible pK18mobsacB plasmid derivative pDEST1k18ms following the
440 manufacturer's recommendations (Mijatović et al., 2021). Following the Proteinase K treatment,
441 the cloned reaction product was transformed into chemically competent *E. coli* DH5 α cells, and
442 the transformants were selected on LB amended with kanamycin, and screened for the correct
443 insert using BsrGI restriction digest. The clone with the correct digest pattern was sent for
444 sequencing with M13R49 primer and the sequence was analyzed as described above using
445 Geneious Prime to confirm the insert. The confirmed insert was then transformed into E.
446 competent *E. coli* RHO5 pir+ mating strain and selected on LB plate amended with DAP and
447 kanamycin plates. *E. coli* no DAP liquid culture control and parental controls were also included.
448 The plasmid with the deletion construct in the RHO5 strain was mated with WT 20GA0385
449 strain and merodiploids were selected on LB plate amended with rifampicin and kanamycin. For
450 the sucrose-based counter selection, 10 merodiploid colonies were selected and suspended in 5
451 ml of sterile LB media. 50 μ l of the suspension was spread on an LB plate amended with
452 rifampicin and 10% 1M sucrose followed by incubation at 30 $^{\circ}$ C for 48 hours. Isolated
453 exconjugant colonies on the sucrose plate were patch-plated into both LB and LB amended with
454 kanamycin plates to check the sensitivity of exconjugant clones to kanamycin. Kanamycin-
455 sensitive exconjugants were screened for the mutant with colony PCR using altgenoF and
456 altgenoR primers designed outside of the deletion flanks with the following PCR reaction mix:
457 10 μ l of GoTaq Green master mix (Promega), 0.5 μ l of each primer at 10 μ M concentration, 3 μ l
458 of colony DNA template and 6 μ l of sterile Milli-Q water to make a total of 20 μ l single reaction.
459 To prepare the colony DNA template for PCR, a sterile pipette tip was used to scrap kanamycin-

460 sensitive exconjugants and suspended in 100 μ l of sterile Milli-Q water. The suspension was
461 denatured at 95 $^{\circ}$ C for 10 minutes. The denatured mix was centrifuged for 2 minutes. The
462 supernatant was then used as a DNA template for PCR reaction. The PCR conditions used were:
463 95 $^{\circ}$ C for 5 minutes followed by 35 cycles of 95 $^{\circ}$ C at 20 s, 60 $^{\circ}$ C at 30 s, 72 $^{\circ}$ C for 1 minute
464 followed by a final extension at 72 $^{\circ}$ C for 5 minutes. Amplicon was expected only from the TTG
465 mutants. The PCR amplicon was visualized in 1.5% agarose gel stained with SYBR Safe DNA gel
466 stain (Thermo Fisher Scientific). The PCR product of the selected deletion mutant was purified
467 using Monarch PCR and DNA cleanup kit (NEB) and sent for sequencing at Eurofins Genomics
468 LLC (Louisville, KY, USA). The sequenced reads were aligned with the extended TTG cluster
469 region of strain 20GA0385 to confirm the deletion mutant.

470 **Construction of TTG complementation plasmid**

471 A broad host range pBBR1 derived plasmid pBBR1MCS-2 (GenBank: U23751.1) was used for
472 building the TTG complementation plasmid. Primer pair altcomplngibF2 and altcomplngibR2
473 was designed to amplify the TTG gene cluster and 489 nucleotide region upstream of *altB* and
474 405 bp region downstream of *altI* gene region. A 35 bp Gibson overhang upstream and
475 downstream of unique XbaI restriction site in the multiple cloning site (MCS) of the plasmid
476 pBBR1MCS-2 was added to 5' region and 3' region of altcomplngibF2 and altcomplngibR2
477 primers respectively. The gene region was amplified from the *B. gladioli* strain FDAARGOS_389
478 strain using Q5 High-Fidelity DNA polymerase PCR (New England Biolabs) following 20 μ l final
479 volume and reaction components mentioned in the manufacturer's protocol
480 ([https://www.neb.com/en-us/protocols/2013/12/13/pcr-using-q5-high-fidelity-dna-](https://www.neb.com/en-us/protocols/2013/12/13/pcr-using-q5-high-fidelity-dna-polymerase-m0491)
481 polymerase-m0491). The PCR conditions used were: 98 $^{\circ}$ C for 30 s followed by 30 cycles of 98 $^{\circ}$ C

482 for 10s, 59⁰C for 30 s, 72⁰C for 4 minutes, and final extension for 2 minutes. The PCR amplicon
483 was visualized in 1.5% agarose gel and the band obtained in the expected region was excised
484 and purified using a Monarch NEB Gel extraction kit. The PCR product from the repeated
485 reaction was purified using Monarch NEB PCR cleanup kit and purified product was digested
486 with AvrII and XbaI restriction enzyme. The visualized digest pattern in the gel was compared
487 with the simulated *in silico* pattern to confirm the TTG gene cluster-specific PCR product. The
488 pBBR1MCS-2 plasmid was linearized with XbaI restriction enzyme and the gel product was
489 excised and purified as described above. Gel-purified TTG PCR product and XbaI linearized
490 plasmid were mixed in a reaction with NEB Hifi DNA assembly polymerase master mix following
491 the manufacturer's protocol to perform the ligation reaction. The ligation mix was then
492 transformed into chemically competent DH5 α cells and selected on an LB plate amended with
493 kanamycin and Xgal. The clone with insert was expected to be white on Xgal plates. White
494 clones obtained on the plates were screened for the correct insert using genotyping primer pair
495 altcomplnF designed upstream of the attB2 site and M13R49 primer binding region in the
496 plasmid backbone. A product size of 544 bp was expected for the correct insert. The PCR
497 conditions used were: 95⁰C for 5 minutes followed by 35 cycles of 95⁰C for 20 s, 55⁰C for 30 s,
498 72⁰C for 45 s, and a final extension for 5 minutes. Similarly, a second PCR primer set
499 altgenocomplnR was designed downstream of the attB1 site and used with M13F43 primer in
500 the plasmid backbone to genotype the TTG insert. The expected product size was 514 bp. PCR
501 was performed in 20 μ l reaction using GoTaq green master mix with reaction mix followed as
502 described before. The PCR conditions used were: 95⁰C for 5 minutes followed by 35 cycles of
503 95⁰C for 20 s, 62⁰C for 30 s, 72⁰C for 45 s, and a final extension for 5 minutes. The insert was

504 also confirmed using BsrGI restriction digest and whole plasmid sequencing at Plasmidsaurus
505 (Plasmidsaurus, Eugene, OR).

506 For the construction of TTG Type B complementation plasmid, a primer pair with 35 bp
507 overhang from upstream and downstream sequence region of unique XbaI restriction site was
508 designed targeting 6842 bp of the TTG cluster gene region in the strain BC93_12. Colony PCR
509 was performed in a 20 μ l reaction using the Q5 polymerase protocol as described in the
510 manufacturer's protocol. The following PCR conditions were used: 98 0 C for 30 s followed by 30
511 cycles of 98 0 C for 10s, 61 0 C for 30 s, 72 0 C for 210 s, and final extension for 2 minutes. The gel
512 purified PCR product was ligated to XbaI linearized pBBR1MCS-2 plasmid using NEB Hifi DNA
513 assembly reaction and the reaction mixture was transformed to chemically competent DH5 α
514 cells and selected on LB plates amended with kanamycin and Xgal. Colonies appearing white on
515 the Xgal kanamycin plates were screened for the insert using primer pair typeBgenocomplnR
516 designed upstream of the attB2 sequence and standard primer M13F43 in the plasmid
517 backbone. The expected product size was 627 bp. PCR conditions followed were the same as
518 described above for primer pair altgenocomplnR and M13F43. A plasmid clone with the
519 expected amplicon size was sent for sequencing at Plasmidsaurus.

520 **Construction of TTG expression clone in TTG negative natural variant strains background**

521 The sequenced confirmed Type A and TTG Type B gene clusters in pBBR1MCS-2 plasmid were
522 transformed to electrocompetent RHO5 cells and selected on LB plate amended with DAP and
523 kanamycin following incubation at 37 0 C overnight. No DNA control was also included. The
524 pBBR1MCS-2 Empty Vector (EV) was also transformed into electrocompetent RHO5 cells and

525 selected following the same procedure. Single transformant Type A, Type B, and EV colonies
526 growing on LB DAP kanamycin plate were inoculated to start an overnight culture and
527 conjugated with representative TTG negative *Burkholderia* natural variant strains using
528 biparental mating. *B. cepacia* natural variant BC83_1 conjugants were selected on LB plate
529 amended with 1000 µg of kanamycin per mililitre, *B. orbicola* natural variant LMG 30279 TTG
530 conjugants were selected on LB plate amended with 200 µg of kanamycin per mililitre whereas
531 *B. gladioli* natural variant BG92_3 TTG conjugants and engineered 20GA0385 TTG mutants were
532 selected on LB amended with rifampicin and 50 µg of kanamycin. Each of the TTG negative
533 natural variant strains and engineered TTG mutants were conjugated with pBBR1MCS-2 plasmid
534 harboring both Type A and TTG Type B clusters. The insert was confirmed using the genotyping
535 primers described in the previous section following the same procedure.

536 **Preparation of allicin stock solution**

537 The allicin stock preparation procedure was followed as described by (Stice et al., 2020) with
538 slight modifications. Briefly, 15 µl of diallyl disulfide 96% (Carbosynth), 25 µl of glacial acetic acid
539 (Sigma Aldrich), and 15 µl of 30% H₂O₂ were mixed in a 200 ul PCR tube. The tube was sealed
540 with parafilm, attached to a 500 ml beaker, and agitated at a 28⁰C shaker for 6 h. The reaction
541 mix was then suspended in 1 ml of methanol. The methanol allicin mix was used as a
542 synthesized allicin stock for the ZOI assay.

543 **Zone of inhibition assay**

544 The ZOI assay was performed to test the quantitative/qualitative differences in resistance
545 between the strains harboring endogenous or plasmid-based TTG clusters relative to the TTG-

546 negative engineered strains or natural variant strains. The LB overnight cultures (O/N) (~24 hr)
547 amended with appropriate antibiotics were started from a single colony of the representative
548 strains. Polystyrene petri plates (100 mm x 15 mm) with 20 mL of LB agar and appropriate
549 antibiotics as needed were spread with 300 μ l of bacterial suspension. All natural variant strains
550 were plated on LB media. *B. gladioli* BG92_3 strain was plated on LB amended with rifampicin
551 and its TTG plasmid derivatives were plated on LB amended with kanamycin and rifampicin. *B.*
552 *cepacia* TTG negative variant was plated on LB and its TTG plasmid derivatives were plated on LB
553 amended with 1000 μ g/ml kanamycin. *B. orbicola* strain LMG 30279 TTG plasmid derivatives
554 were plated on LB amended with 200 μ g/ml kanamycin plate and its WT was plated on LB. The
555 WT *B. gladioli* strain 20GA0385 and its engineered TTG mutant derivative were plated on LB and
556 the Type A and TTG Type B plasmid complement derivatives were plated on LB amended with
557 rifampicin and kanamycin for the ZOI assay. Three plate replicates were used per treatment. A
558 circular well was poked at the center of the plate using the back end of sterile 10 μ l pipette tips
559 and 50 μ l of the synthesized allicin stock was added to the wells. Plates were incubated at 28°C
560 for 24 h. The ZOI area was measured using ImageJ software (Abràmoff et al., 2004). The
561 experiment was repeated at least 3 times. The statistical difference in the ZOI area among
562 different natural variants within a species was determined using one-way Analysis of Variance
563 (ANOVA) and Tukey's Honestly Significant Difference (HSD) test using agricolae library and the
564 box plot was generated using ggplot2 function in RStudio v 2023.9.0.

565 **Preparation of onion juice**

566 Yellow onions were purchased from the grocery store and the crude juice was extracted
567 following the procedure described by Stice et al., 2020. Briefly, a consumer-grade juicer (Breville

568 Juice Fountain Elite) was used to crush the onion bulb which yielded 200-300 ml of crude onion
569 extract. The extract was centrifuged (Sorvall RC5B Plus, Marshall Scientific, Hampton, NH) in a
570 250 ml centrifuge bottle (14000 g, 2 h, 4°C). The upper phase liquid was sterilized using a
571 Nalgene disposable 0.2 micron vacuum filter sterilization unit. The prepared juice was aliquoted
572 and stored at -20°C for less than 1 week for experimental use.

573 **Preparation of bacterial inoculum**

574 Bacterial inocula for the ZOI assays, onion foliar assays, RSN assays, and foliar and scale time
575 course experiments were prepared following the same procedure for all tested *Burkholderia*
576 strains. The test strains were streaked on an LB plate amended with appropriate antibiotics and
577 incubated at 28°C for 24 h. A day after, colony growth from the lawn was suspended in 300 µl of
578 sterile Milli-Q water and incubated for 24 h overnight. A day after, colony growth from the lawn
579 was scooped and suspended in 1 ml of ddH₂O /MgCl₂ and standardized to OD₆₀₀ = 0.7 (~2.4 x
580 10⁸ CFU/ml, *B. gladioli* 20GA0385). The standardized suspension was used for inoculation.

581 **Onion filtered extract growth assay**

582 The growth assay experiment was performed in 100-well honeycomb plates using the Bioscreen
583 C system (Lab Systems, Helsinki, Finland). The standardized suspension volume of 40 µl was
584 added to 360 µl of half-strength filtered onion extract (180 µl of onion juice diluted with 180 µl
585 of sterile ddH₂O). Each honeycomb well was loaded with 380 µl of the mix and each treatment
586 had six well replicates. The bioscreen experiment was run for 48 h with shaking at 28°C and the
587 absorbance values were recorded every 30 minutes. The experiment was repeated three times
588 for each tested species. Statistical analysis of OD₆₀₀ values at each time point for different

589 treatments was performed using the pairwise t-test function in RStudio 2023.09.0. The average
590 OD₆₀₀ reading of water-onion extract negative control treatment for each time point was
591 subtracted from the OD₆₀₀ reading values obtained for each well for all the treatments at the
592 corresponding time point.

593 **Onion foliar/seedling necrosis assay**

594 Onion seedlings (*Allium cepa* L. cv Texas grano 1015 Y supersweet onions) of 8-12 weeks were
595 used for the foliar assay. Inoculum for strains 20GA0385 pBBR1MCS-2 EV, 20GA0385 ΔTTG
596 pBBR1MCS-2 EV, 20GA0385 ΔTTG pBBR1MCS-2:: TTG Type A, BG92-3 and its Type A and TTG
597 Type B plasmid derivatives were prepared as previously described. Onion seedlings were
598 trimmed to keep the oldest blade intact and approximately the midpoint of the blade was
599 poked on one side with a sterile 20 µl pipette tip to create a wound. The normalized bacterial
600 suspension of 10 µl prepared with 0.25 mM MgCl₂ was deposited into the wounded tissue.
601 Negative controls were inoculated with sterile 0.25 mM MgCl₂. Maximum lesion length was
602 measured 3 days post inoculation (dpi). Each treatment had six biological repeats and the
603 experiment was repeated at least three times.

604 For quantification of bacterial population in the infected blade tissue, a section of the infected
605 tissue measuring 0.5 cm above and below the point of inoculation was cut and resuspended in
606 200 µl of Milli-Q H₂O in a 2-ml SARSTEDT microtube (SARSTEDT AG & Co., Numbrecht,
607 Germany). The tissue was manually crushed using a sterile blue pestle and then ground with a
608 SpeedMill PIUS homogenizer (AnalytiK Jena) two times for 1 minute each. To facilitate the
609 maceration, three 3-mm zirconia beads (Glen Mills grinding media) and one 4.5 mm bead

610 (store-bought) were added to the tissue and water mix. Serial dilutions were performed using
611 10 μ l of the ground tissue and diluents were plated on LB plates amended with rifampicin and
612 kanamycin. The number of colony-forming units (CFUs) was back-calculated to determine the
613 bacterial population levels in the infected tissue.

614 The time course foliar assay was performed using 4-6 months old onion plants (cv. Century)
615 grown in the greenhouse. *B. gladioli* strain 20GA0385 and its TTG mutant derivative were used
616 for the study. The onion blades were trimmed to keep the oldest two leaves intact that were
617 used for inoculation. The midpoint of the blade (measured from the tip to the base of the blade)
618 was marked with a sharpie and a sterile 20 μ l pipette tip was used to poke a hole on one side of
619 the leaf to create wounding. Bacterial inoculum concentration of $OD_{600} = 0.7$, $\sim 2.4 \times 10^8$ colony
620 forming units (CFU)/ml for *B. gladioli* 20GA0385 WT and the TTG mutant, was used. Normalized
621 bacterial suspension (10 μ l) was deposited to the wounding site. Three plants were inoculated
622 per treatment (six blades total). A total of 36 onion plants (72 blades in total) were inoculated
623 and sampled daily from 0 to 5 dpi. Day 0 samples were processed for bacterial quantification 6
624 hours post-inoculation.

625 The bacterial population in the infected tissue was quantified by sampling the tissue samples
626 0.5 cm above and 0.5 cm below the point of inoculation. The tissue was weighed in 200 μ l of
627 sterile Milli-Q H₂O in a 2-ml SARSTEDT microtube. The tube was filled with 3-mm zirconia beads
628 for maceration with a GenoGrinder and an additional 4.5 mm bead was added for grinding with
629 the SpeedMill PLUS homogenizer. For grinding with GenoGrinder, 30 seconds was used and the
630 SpeedMill homogenizer was used for maceration two runs of 1 minute each. The resulting
631 macerate was serially diluted to 10^8 in 0.25 mM MgCl₂ in 96-well styrene plates (20 μ l, 180 μ l).

632 The dilutions were plated on LB square plates amended with rifampicin and cfu per mg was
633 back-calculated for each treatment. The cfu/mg value for two inoculated leaves from the same
634 plant was averaged to get a single cfu/mg value per biological replicate per treatment. The log
635 folded cfu/mg values of three biological replicates per treatment were plotted against days post-
636 inoculation. The statistical difference in bacteria population levels each day between the two
637 treatments was analyzed using a pairwise t-test function in RStudio. The experiment was
638 repeated two times.

639 **RSN assay**

640 The RSN assay was set up following the procedure described in (Stice et al., 2018), and (Shin et
641 al., 2023) with slight modifications. Red onion bulbs were purchased from a grocery store and
642 sliced into 3-5 x 3-5 cm-sized scales. The scales were surface sterilized in a 3% sodium
643 hypochlorite solution for 2 minutes and rinsed in deionized water six times. After drying on a
644 sterile paper towel for a few minutes, the scales were placed on an ethanol wiped pipette tip
645 rack. Each scale was wounded using a sterile 20 μ l pipette tip, and then inoculated with 10 μ l of
646 a standardized bacterial suspension. Sterile 0.25 mM MgCl₂ was inoculated as a negative
647 control. The scales were placed on a flat potting tray (27 x 52 cm) lined with two layers of paper
648 towel that had been moistened with 50 ml of deionized water. Another flat was placed on top of
649 the tray to maintain humidity and the entire setup was incubated at room temperature for 72 h.
650 Six scales were inoculated per treatment and the experiment was repeated three times.
651 The scale necrosis area after 72 h was measured using ImageJ. For quantification of bacteria in
652 the necrotic onion tissue, approximately 0.5 x 0.5 cm area around the point of inoculation was

653 excised with a sterile scalpel, suspended, and weighed in a 1.5 ml microcentrifuge tube with 200
654 μ l of sterile water after 4- and 72-hour post-inoculation. The tissue was crushed manually with
655 the end of a sterile wooden cocktail stick. The resulting macerate was diluted ten-fold in a
656 dilution series with sterile 0.25 mM MgCl₂ in 96-well styrene plates (20 μ l, 180 μ l). The diluents
657 (10 μ l) were plated on LB amended with rifampicin and kanamycin as appropriate and incubated
658 at 28°C for 36 h. Colonies were counted and cfu per milligram was back-calculated for each
659 sampled scale. Three scales treated with the negative control were processed 4 h post-
660 inoculation and three were processed 72 h post-inoculation. For the rest of the treatments, six
661 inoculated scales were processed. Statistical analysis of the differences between species-specific
662 treatments was performed using the pairwise t-test function in RStudio.

663 The inoculum preparation, assay setup, and quantification of bacteria in infected onion tissues
664 for the RSN time course experiment were conducted as described in the previous section. The *B.*
665 *gladioli* strain 20GA0385 pBBR1MCS-2 EV and its TTG mutant derivative were used for the
666 experiment. The bacterial suspension was normalized to OD₆₀₀ value of 0.7 followed by 100-
667 fold dilution. Each scale was inoculated with 10 μ l of diluted suspension. A total of 72 individual
668 scales were inoculated and six scales per treatment were sampled daily from day 0 to day 5
669 post-inoculation. Subsequently, a dilution series ranging from 10⁻¹ to 10⁻³ of the TTG mutant
670 treatment was plated on an LB square plate amended with rifampicin and kanamycin. The
671 statistical analysis of the difference in log₁₀ fold cfu per milligram bacterial recovery between
672 the two treatments at each time point was performed using a pairwise t-test function in
673 RStudio.

674

675 **Acknowledgements**

676 We acknowledge George Sundin for graciously proving the *B. orbicola* strain AU 1054, Gi Yoon
677 Shin and all the Kvitko, Dutta, and Yang lab members for their helpful comments and
678 suggestions during the preparation of this manuscript.

679 **Funding**

680 This work was supported in part by USDA-NIFA-ORG 2019-51106-30191 to BD, USDA-NIFA-OREI
681 2023-51300-40913 to BD and BK, and by HATCH project 7002999 from the USDA National
682 Institute of Food and Agriculture to BK. SP received support from the University of Georgia
683 Graduate School.

684 **Literature Cited**

685 Abràmoff, M., Magalhães, P.J., and Ram, S.J. 2004. Image processing with ImageJ. *J. Biophotonics*
686 international 11:36-42.

687 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data (Babraham
688 Bioinformatics, Babraham Institute, Cambridge, United Kingdom).

689 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,
690 Nikolenko, S.I., Pham, S., and Prjibelski, A.D. 2012. SPAdes: a new genome assembly
691 algorithm and its applications to single-cell sequencing. *Journal of Computational
692 Biology* 19:455-477.

693 Belo, T., du Toit, L., Waters, T., Derie, M., Schacht, B., and LaHue, G.T. 2023. Reducing the risk of
694 onion bacterial diseases through managing irrigation frequency and final irrigation
695 timing. *Agricultural Water Management* 288:108476.

696 Borlinghaus, J., Bolger, A., Schier, C., Vogel, A., Usadel, B., Gruhlke, M.C., and Slusarenko, A.J.

697 2020. Genetic and molecular characterization of multicomponent resistance of

698 *Pseudomonas* against allicin. *Life Sci Alliance* 3. e202000670

699 Burkholder, W. 1942. Three bacterial plant pathogens: *Phytomonas earyophylli* sp. n.,

700 *Phytomonas alliicola* sp. n., and *Phytomonas manihotis* (Arthaud-Berthet et Sondar)

701 Viégas. *Phytopathology* 32:141-149.

702 Burkholder, W. 1950. Sour skin, a bacterial rot of Onion bulbs. *Phytopathology* 40.

703 Chen, S., Zhou, Y., Chen, Y., and Gu, J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor.

704 *Bioinformatics* 34:i884-i890.

705 Jones, C., Webster, G., Mullins, A.J., Jenner, M., Bull, M.J., Dashti, Y., Spilker, T., Parkhill, J.,

706 Connor, T.R., and LiPuma, J.J. 2021. Kill and cure: genomic phylogeny and bioactivity of

707 *Burkholderia gladioli* bacteria capable of pathogenic and beneficial lifestyles. *Microbial*

708 *genomics* 7.

709 Katagiri, F., Thilmony, R., and He, S. 2002. The *Arabidopsis thaliana*-*Pseudomonas syringae*

710 interaction. *The Arabidopsis Book/American Society of Plant Biologists* 1.

711 Kawamoto, S., and Lorbeer, J. 1974. Infection of onion leaves by *Pseudomonas cepacia*.

712 *Phytopathology* 64:1440-1445.

713 Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. MEGAX: molecular evolutionary

714 genetics analysis across computing platforms; . *Molecular Biology and Evolution*

715 35:1547-1549.

716 Kvitko, B.H., Bruckbauer, S., Prucha, J., McMillan, I., Breland, E.J., Lehman, S., Mladinich, K.,

717 Choi, K., Karkhoff-Schweizer, R., and Schweizer, H. 2012. A simple method for

718 construction of pir+ Enterobacterial hosts for maintenance of R6K replicon plasmids.

719 BMC research notes 5:1-7.

720 Lancaster, J., and Collin, H. 1981. Presence of alliinase in isolated vacuoles and of alkyl cysteine

721 sulphoxides in the cytoplasm of bulbs of onion (*Allium cepa*). Plant Science Letters

722 22:169-176.

723 Langmead, B. 2010. Aligning short sequencing reads with Bowtie. Current protocols in

724 bioinformatics 32:11.17. 11-11.17. 14.

725 Lee, C.J., Lee, J.T., Kwor, J., Kim, B., and Park, W. 2005. Occurrence of bacterial soft rot of onion

726 plants caused by *Burkholderia gladioli* pv. *alliicola* in Korea. Australasian Plant Pathology

727 34:287-292.

728 Letunic, I., and Bork, P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic

729 tree display and annotation. Nucleic acids research 49:W293-W296.

730 Mark, G., Gitaitis, R., and Lorbeer, J. 2002. Bacterial diseases of onion. *Allium* crop science:

731 recent advances:267-292.

732 Meier-Kolthoff, J., and Göker, M. 2019. TYGS is an automated high-throughput platform for

733 state-of-the-art genome-based taxonomy. Nature Communications 10:2182.

734 Mijatović, J., Severns, P.M., Kemerait, R.C., Walcott, R.R., and Kvitko, B.H. 2021. Patterns of seed-

735 to-seedling transmission of *Xanthomonas citri* pv. *malvacearum*, the causal agent of

736 cotton bacterial blight. Phytopathology 111:2176-2184.

737 Morales-Ruiz, L.M., Rodríguez-Cisneros, M., Kerber-Díaz, J.C., Rojas-Rojas, F.U., Ibarra, J.A., and

738 Estrada-de Los Santos, P. 2022. *Burkholderia orbicola* sp. nov., a novel species within the

739 *Burkholderia cepacia* complex. Arch Microbiol 204:178.

740 Rose, P., Whiteman, M., Moore, P., and Zhu, Y. 2005. Bioactive S-alk (en) yl cysteine sulfoxide
741 metabolites in the genus *Allium*: the chemistry of potential therapeutic agents. Natural
742 product reports 22:351-368.

743 Schwengers, O., Jelonek, L., Dieckmann, M.A., Beyvers, S., Blom, J., and Goesmann, A. 2021.
744 Bakta: rapid and standardized annotation of bacterial genomes via alignment-free
745 sequence identification. Microbial genomics 7:000685.

746 Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-2069.

747 Shin, G.Y., Dutta, B., and Kvitko, B. 2023. The genetic requirements for HiVir-mediated onion
748 necrosis by *Pantoea ananatis*, a necrotrophic plant pathogen. Molecular Plant-Microbe
749 Interactions 36:381-391.

750 Silvaroli, J., Pleshinger, M., Banerjee, S., Kiser, P., and Golczak, M. 2017. Enzyme that makes you
751 cry-crystal structure of lachrymatory factor synthase from *Allium cepa*. ACS chemical
752 biology 12:2296-2304.

753 Stice, S., Stumpf, S., Gitaitis, R., Kvitko, B., and Dutta, B. 2018. *Pantoea ananatis* genetic diversity
754 analysis reveals limited genomic diversity as well as accessory genes correlated with
755 onion pathogenicity. Frontiers in microbiology 9:184.

756 Stice, S., Thao, K., Khang, C., Baltrus, D., Dutta, B., and Kvitko, B. 2020. Thiosulfinate tolerance is
757 a virulence strategy of an atypical bacterial pathogen of onion. Current Biology 30:3130-
758 3140. e3136.

759 van den Belt, M., Gilchrist, C., Booth, T.J., Chooi, Y., Medema, M.H., and Alanjary, M. 2023.
760 CAGECAT: The CompArative GEne Cluster Analysis Toolbox for rapid search and
761 visualisation of homologous gene clusters. BMC bioinformatics 24:1-8.

762 Velez, L., Aburjaile, F., Farias, A.G., Baia, A.D.B., Oliveira, W., Silva, A.F., Benko-Iseppon, A.,
763 Azevedo, V., Brenig, B., Ham, J., Souza, E., and Gama, M.S. 2023. *Burkholderia semiarida*
764 sp. nov. and *Burkholderia sola* sp. nov., two novel *B. cepacia* complex species causing
765 onion sour skin. *Systematic and Applied Microbiology* 46:126415.
766 Zhao, M., Tyson, C., Gitaitis, R., Kvitko, B., and Dutta, B. 2022. *Rouxiella badensis*, a new bacterial
767 pathogen of onion causing bulb rot. *Frontiers in Microbiology* 13.
768

769 Table S1: Bacterial strains and plasmids used in cloning and mutagenesis

Name	Description	Reference
1. <i>Burkholderia</i> species		
20GA0385	TTG+, spontaneous rifampicin mutant (Rf ^R) <i>B. gladioli</i> pv. <i>alliicola</i> (Bga) strain	This study
20GA0385 pBBR1MCS-2::EV	TTG+, spontaneous rifampicin mutant (Rf ^R) of <i>B. gladioli</i> pv. <i>alliicola</i> 20GA0385 harboring empty vector pBBR1MCS2 (Km ^R)	This study
20GA0385 ΔTTG	TTG-, TTG clusters deletion mutant of Bga strain 20GA0385	This study
20GA0385 ΔTTG pBBR1MCS-2::EV	TTG-, TTG clusters deletion mutant of Bga strain 20GA0385 harboring empty vector pBBR1MCS2 (Km ^R)	This study

20GA0385 ΔTTG	TTG+, TTG clusters deletion mutant of Bga strain	This study
pBBR1MCS-2::TTG Type A	20GA0385 harboring Type A TTG cluster complementation construct, Km ^R	
20GA0385 ΔTTG	TTG+, TTG clusters deletion mutant of Bga strain	This study
pBBR1MCS-2::TTG Type B	20GA0385 harboring TTG Type B cluster complementation construct from <i>B. orbicola</i> strain BC93_12, Km ^R	
BG92_3 pBBR1MCS-2::TTG	TTG negative spontaneous rifampicin mutant	This study
Type A	(Rf ^R) of <i>B. gladioli</i> strain BG92_3 harboring Type A TTG cluster expression construct from Bga strain 20GA0385, Km ^R	
BG92_3 pBBR1MCS-2::TTG	TTG negative spontaneous rifampicin mutant (Rf ^R)	
Type B	of <i>B. gladioli</i> strain BG92_3 harboring TTG Type B	This study
	cluster expression construct from <i>B. orbicola</i> strain BC93_12, Km ^R	
BC83_1 pBBR1MCS-2::TTG	TTG negative <i>B. cepacia</i> strain BC83_1 harboring	This study
Type A	Type A TTG cluster expression construct from Bga strain 20GA0385, Km ^R	
BG92_3 pBBR1MCS-2::TTG	TTG negative of <i>B. cepacia</i> strain BC83_1	This study
Type B	harboring TTG Type B cluster expression construct from <i>B. orbicola</i> strain BC93_12, Km ^R	

LMG 30279 ^T pBBR1MCS-	TTG negative <i>B. orbicola</i> Type strain LMG 30279	This study
2::TTG Type A	harboring Type A TTG cluster expression construct from Bga strain 20GA0385, Km ^R	
LMG 30279 ^T pBBR1MCS-	TTG negative <i>B. orbicola</i> Type strain LMG 30279	This study
2::TTG Type B	harboring TTG Type B cluster expression construct from <i>B. orbicola</i> strain BC93_12, Km ^R	

2. *E. coli* strains

DH5 α	General cloning strain	Liss, 1987
MaH1	DH5 α derivative, attTn7 pir116 R6K replicon plasmids	Kvitko et al. 2012
RHO5	SM10 derivative, pir116, DAP-dependent conjugation strain	Kvitko et al. 2012

3. Plasmids

pR6KT2G	Gateway-derivative of pR6KT2 with BP clonase compatible cassette, <i>sacB</i> , Gm ^R , <i>gus</i> , Cm ^R	Stice et al. 2020
pDONR1k18ms	Gateway-compatible sucrose counter-selection allelic exchange vector, Km ^R , Cm ^R	Mijatovic et al., 2022
pDEST1k18ms	LR clonase compatible derivative of pDONR1k18ms	Mijatovic et al., 2022
pBBR1MCS-2	pBBR1 origin-based mobilizable shuttle and expression vector with blue/white selection function. Km ^R	Kovach et al., 1995

pBBR1MCS-2::EV

Empty expression vector, Km^R

Kovach et
al., 1995

770 ^R-Resistant, Km – Kanamycin, Gm – Gentamicin, Cm – Chloramphenicol, Rf – Rifampicin

771

772

773 Table S2: Primers and dsDNA gene blocks used in the study

Name	Sequence (5' – 3')	Description
recAgladF	GTG CCG GAA CTG CTG ATC T	To confirm the identity of
recAgladR	TTC GTC CAG GAT CTC GGC TT	<i>Burkholderia</i> strains and
		differentiate <i>pv. alliicola</i>
		within the <i>B. gladioli</i>
		genus
attB1	GGGGACAAGTTGTACAAAAAAGCAGGCTTA	For Gateway
attB2	GGGGACCACTTGTACAAGAAAGCTGGGTA	recombination
TTG deletion construct	attB1- CP023524.1, 37745 – 38144 bp – <u>CCTAGG</u> – CP023524.1, 44589 – 44988 bp – attB2	Deletion construct for TTG clusters synthesized from Twist Biosciences.
		Underlined is the AvrII restriction site
altgenoF	ACG CCG CCA TTG CTC AAT GA	Genotyping primers to
altgenoR	TGC TCA CTT TGG CAC AGC GCG	confirm the TTG mutant
altcomplngibF2	AGG GCG AAT TGG AGC TCC ACC GCG GTG GCG GCC GCT TTG AAC AGT ATT GCT GCT T	TTG complementation primers with 35 bp Gibson
altcomplngibR2	ATA TCG AAT TCC TGC AGC CCG GGG GAT CCA CTA GTT AAT TCG GAG CAG TGA CCT	overhangs from plasmid pBBR1MCS-2
altcomplngenoF	TTA TGC CGC TCA TTA ATG TA	

altgenocomplnR	TGCAAGCGCCAAGGAGTAA	Primers to genotype the TTG Type A insert in the plasmid pBBR1MCS-2
typeBgenocomplnR	TGA CCG AAG AGT GCG ACT	Primers to genotype TTG Type B insert in the plasmid pBBR1MCS-2

774

775

776

777

778

779

780

781

782

783

784

785

786 Table S3: Description of the whole genome sequenced and NCBI GenBank extracted strains used
 787 for the phylogenetic analysis

TTG								
Strain	Species*	cluster	year of isolation	Host	location of isolation	replicon	Contig/Chromosome	Coordinates
20GA0385	<i>B. gladioli</i>	A	2020	<i>Allium cepa</i>	GA		Scaffold 22	110664
Ba93_1	<i>B. ambifaria</i>	A	1993	<i>Allium cepa</i>	GA		Contig 19	57684
Ba93_11	<i>B. ambifaria</i>	A	1993	<i>Allium cepa</i>	GA		Contig 19	57684
Ba93_5	<i>B. ambifaria</i>	A	1993	<i>Allium cepa</i>	GA		Contig 20	57684
BC10_1	<i>B. orbicola</i>	A	2010	<i>Allium cepa</i>	Tifton, GA		Contig 43	34984
BC10_2	<i>B. cepacia</i>	A	2010	<i>Allium cepa</i>	Tifton, GA		Contig 8	5707-12448
BC10_3	<i>B. cepacia</i>	A	2010	<i>Allium cepa</i>	Tifton, GA		Contig 39	5722-12469
BC10_5	<i>B. orbicola</i>	A	2010	<i>Allium cepa</i>	Tifton, GA		Contig 25	35034
BC11_2	<i>B. orbicola</i>	A	2011	<i>Allium cepa</i>	County, GA	Toombs	Contig 18	76468

							25457-
BC19_1	<i>B. cepacia</i>	A	2019	<i>Allium cepa</i>	GA	Contig 29	32198
					Toombs		
BC83_1	<i>B. cepacia</i>	0	1983	<i>Allium cepa</i>	County, GA		
					Toombs		28293-
BC89_4	<i>B. orbicola</i>	A	1989	<i>Allium cepa</i>	County, GA	Contig 37	34757
					Toombs		
BC89_5	<i>B. cepacia</i>	0	1989	<i>Allium cepa</i>	County, GA		
							16983-
BC90_2	<i>B. orbicola</i>	A	1990	<i>Allium cepa</i>	GA	Contig 37	23724
BC92_10	<i>B. cepacia</i>	A	1992	<i>Allium cepa</i>	GA	Contig 36	2863- 9604
							25457-
BC92_15	<i>B. cepacia</i>	A	1992	<i>Allium cepa</i>	GA	Contig 36	32198
							28294-
BC92_16	<i>B. orbicola</i>	A	1992	<i>Allium cepa</i>	GA	Contig 31	35035
							25507-
BC92_17	<i>B. cepacia</i>	A	1992	<i>Allium cepa</i>	GA	Contig 40	32248
							25507-
BC92_19	<i>B. cepacia</i>	A	1992	<i>Allium cepa</i>	GA	Contig 42	32248
							25507-
BC92_20	<i>B. cepacia</i>	A	1992	<i>Allium cepa</i>	GA	Contig 42	32248
BC92_21	<i>B. cepacia</i>	A	1992	<i>Allium cepa</i>	GA	Contig 45	2642-9383

							25507-
BC92_22	<i>B. cepacia</i>	A	1992	<i>Allium cepa</i>	GA	Contig 53	32248
BC92_24	<i>B. cepacia</i>	A	1992	<i>Allium cepa</i>	GA	Contig 46	3064-9805
BC92_31	<i>B. orbicola</i>	B	1992	<i>Allium cepa</i>	GA	Contig 42	6901-11888
							57688-
							64409;
						Contig	19000-
BC92_33	<i>B. orbicola</i>	A+B	1992	<i>Allium cepa</i>	GA	32/Contig 42	23997
							57667-
BC92_35	<i>B. orbicola</i>	A	1992	<i>Allium cepa</i>	GA	Contig 42	64408
							56518-
						Contig	63259;5-
BC93_10	<i>B. orbicola</i>	A+B	1993	<i>Allium cepa</i>	GA	23/Contig 43	4152
							12956-
BC93_12	<i>B. orbicola</i>	B	1993	<i>Allium cepa</i>	GA	Contig 44	17944
							15837-
						Contig	22578;2108
BC93_16	<i>B. orbicola</i>	A+B	1993	<i>Allium cepa</i>	GA	32/Contig 41	1-26078
							28293-
BC93_20	<i>B. orbicola</i>	A	1993	<i>Allium cepa</i>	GA	Contig 36	35034
							28293-
BC97_3	<i>B. orbicola</i>	A	1997	<i>Allium cepa</i>	GA	Contig 40	35034

BC98_1	<i>B. cepacia</i>	A	1997	<i>Allium cepa</i>	GA	Contig 30	3064-9805
BC98_2	<i>B. cepacia</i>	A	1998	<i>Allium cepa</i>	GA	Contig 36	3064-9805
							59292-
BC98_4	<i>B. orbicola</i>	A	1998	<i>Allium cepa</i>	Vidalia, GA	Contig 24	66033
					Tattnall		28293-
BC99_1	<i>B. orbicola</i>	A	1999	<i>Allium cepa</i>	County, GA	Contig 36	35034
					Tattnall		
BC99_2	<i>B. cepacia</i>	A	1999	<i>Allium cepa</i>	County, GA	Contig 28	3064-9805
					Toombs		22763-
BG01_01	<i>B. gladioli</i>	B	2001	<i>Allium cepa</i>	County, GA	Contig 19	27759
					Toombs		
BG88_4	<i>B. gladioli</i>	0	1988	<i>Allium cepa</i>	County, GA		
BG92_10	<i>B. gladioli</i>	0	1992	<i>Allium cepa</i>	GA		
BG92_12	<i>B. gladioli</i>	0	1992	<i>Allium cepa</i>	GA		
BG92_13	<i>B. gladioli</i>	0	1992	<i>Allium cepa</i>	GA		
BG92_14	<i>B. gladioli</i>	0	1992	<i>Allium cepa</i>	GA		
BG92_18	<i>B. gladioli</i>	0	1992	<i>Allium cepa</i>	GA		
BG92_3	<i>B. gladioli</i>	0	1992	<i>Allium cepa</i>	GA		
BG92_9	<i>B. gladioli</i>	0	1992	<i>Allium cepa</i>	GA		
BG93_9	<i>B. gladioli</i>	0	1993	<i>Allium cepa</i>	GA		55798-
20GA0287	<i>B. ambifaria</i>	A	2020	<i>Allium cepa</i>	Tifton, GA	Contig 19	62904

					Tattnall		16983-
20GA0296	<i>B. orbicola</i>	A	2020	<i>Allium cepa</i>	County, GA	Contig 37	23724
					Tattnall		
20GA0297	<i>B. cepacia</i>	A	2020	<i>Allium cepa</i>	County, GA	Contig 32	3064-9805
					Tattnall		254649-
20GA0300	<i>B. orbicola</i>	A	2020	<i>Allium cepa</i>	County, GA	Contig 9	247908
					Tattnall		16401-
20GA0314	<i>B. gladioli</i>	B	2020	<i>Allium cepa</i>	County, GA	Contig 17	21391
					Tattnall		
20GA0321	<i>B. cepacia</i>	A	2020	<i>Allium cepa</i>	County, GA	Contig 38	3155-9896
					Tattnall		
20GA0327	<i>B. gladioli</i>	B	2020	<i>Allium cepa</i>	County, GA	Contig 39	8283-13273
					Tattnall		Multiple
20GA0329	<i>B. orbicola</i>	A	2020	<i>Allium cepa</i>	County, GA	contigs	
					Tattnall		16983-
20GA0336	<i>B. orbicola</i>	A	2020	<i>Allium cepa</i>	County, GA	Contig 34	23724
					Tattnall		50885-
20GA0338	<i>B. cepacia</i>	A	2020	<i>Allium cepa</i>	County, GA	Contig 29	57623
					Tattnall		Multiple
20GA0341	<i>B. orbicola</i>	A	2020	<i>Allium cepa</i>	County, GA	contigs	

								54371-
					Toombs		Contig	59361;4177
20GA0350	<i>B. gladioli</i>	A+B	2020	<i>Allium cepa</i>	County, GA		39/Contig 55	-10915
					Toombs			114349-
20GA0374	<i>B. gladioli</i>	A	2020	<i>Allium cepa</i>	County, GA		Contig 19	121087
					Toombs			25507-
20GA0379	<i>B. cepacia</i>	A	2020	<i>Allium cepa</i>	County, GA		Contig 26	32248
					Toombs			58973-
21GA0638	<i>B. gladioli</i>	A	2021	<i>Allium cepa</i>	County, GA		Contig 31	65711
21GA0685	<i>B. gladioli</i>	A	2021	<i>Allium cepa</i>	GA		Contig 49	2072-8534
					Tattnall			
21GA0686	<i>B. gladioli</i>	A	2021	<i>Allium cepa</i>	County, GA		Contig 47	1795-8533
					Tattnall			58973-
21GA0688	<i>B. gladioli</i>	A	2021	<i>Allium cepa</i>	County, GA		Contig 33	65711
					Tattnall			17046-
21GA0689	<i>B. gladioli</i>	A	2021	<i>Allium cepa</i>	County, GA		Contig 28	23784
					Toombs			29204-
21GA0693	<i>B. orbicola</i>	A	2021	<i>Allium cepa</i>	County, GA		Contig 31	35938
					New York,	Chromoso		103538-
HI2424	<i>B. orbicola</i>	A		Soil	USA	me 2	CP000459.1	110002
					New York,			123493-
HI2424	<i>B. orbicola</i>	A		Soil	USA	Plasmid	CP000461.1	129954

			Reactor				370835-
IDO3	<i>B. anthina</i>	A	Sludge	China	Plasmid	CP028965.1	377296
			<i>Gladiolus</i>				116721-
KACC 11889	<i>B. gladioli</i>	C	sp.		Plasmid	CP022007.1	122936
			Maize				
			rhizosphere	Michigan,	Chromoso		1404971-
MC0-3	<i>B. orbicola</i>	B	e	USA	me 2	CP000959.1	1411319
			Maize				
			rhizosphere	Michigan,	Chromoso		343413-
MC40-6	<i>B. ambifaria</i>	B	2004	e	USA	me 2	CP001026.1
N149	<i>B. dolosa</i>	A	2021	Clinical	Vietnam	Plasmid	CP132925.1
						Chromoso	2356645-
PC184	<i>B. orbicola</i>	B		Sputum	USA	me 1	CP021067.1
			<i>Paraburkhol</i>				2362993
			<i>deria</i>		Netherland		48150-
PHS1	<i>graminis</i>	C		Soil	s	Plasmid	CP024936.1
							54562
							12901-
PS27	<i>B. orbicola</i>	A		Soil	India	Plasmid	CP060042.1
				Bacterial			19362
			<i>Caballeronia</i>	Outgr	gut		185771-
RPE67	<i>cordobensis</i>	oup		symbiont		Plasmid	AP014581.1
							192232

<i>Dendrobiu</i>								
<i>m</i>								
ZN-S4	<i>B. gladioli</i>	A	2019	<i>officinale</i>	China	Plasmid	CP104217.1	124062
				<i>Gladiolus</i>				117601-
ATCC 10248	<i>B. gladioli</i>	C	1913	<i>sp.</i>	USA	Plasmid	CP009321.1	189356-
				<i>Allium</i>				195572
ATCC 25416	<i>B. cepacia</i>	A		<i>cepa</i>	USA	Plasmid	CP034556.1	3110-9574
						Chromoso		2166248-
AU 1054	<i>B. orbicola</i>	A		Clinical	USA	me 2	CP000379	2159754
	<i>Burkholderia</i>				Quebec,	Chromoso		3125534-
B21-005	<i>sp.</i>	B		Soil	Canada	me 1	CP086301.1	3131884
				Fermented				23994-
Co14	<i>B. gladioli</i>	A		Corn Meal	China	Plasmid	CP033429.1	30456
						Chromoso		1945836-
DSM 10685	<i>B. pyrrocinia</i>	A	1965	Soil	Japan	me 2	CP011504.1	1952294
FDAARGOS								141436-
_188	<i>B. gladioli</i>	C				Plasmid	CP022209.1	147652
FDAARGOS								157264-
_345	<i>B. cepacia</i>	A		<i>Allium cepa</i>	USA	Plasmid	CP022081.2	163728
FDAARGOS								161482-
_388	<i>B. cepacia</i>	A		<i>Allium cepa</i>		Plasmid	CP023519.1	167946

FDAARGOS						38136-
_389	<i>B. gladioli</i>	A	<i>Allium cepa</i>	Plasmid	CP023524.1	44611
FDAARGOS				Chromoso		2101400-
_720	<i>B. orbicola</i>	A	Clinical	me 2	CP050979.1	2107866
	<i>B.</i>					
FDAARGOS	<i>vietnamiensis</i>					138220 -
_721	<i>s</i>	B	Clinical	Plasmid	CP091982.1	142952

788 ^a- Species identity of the NCBI GenBank downloaded strains confirmed using TYGS Web Server.

789

790

791

792

793

794 Table S4: Level of significance between OD₆₀₀ values of different treatments at different time
795 points across the three experimental repeats of onion juice assay. The average value of six data
796 points of Onion Juice water negative control at each time point of each experimental repeat is
797 subtracted from every single well of other treatments at the same corresponding time point.
798 Total number of data points n = 18 per treatment. Analysis was done using a pairwise t-test
799 function in RStudio.

Hours	0.5	4	8	12	16	20	24	28	32	36	40	44	48
<i>B. gladioli</i> 20GA0385 ΔTTG Vs													
WT	ns	ns	ns	ns	ns	ns	**	***	***	***	***	***	***
ΔTTG p ^{TTGA}	ns	ns	ns	ns	ns	***	***	***	***	***	***	***	***
<i>B. cepacia</i> BC83_1 (TTG-) vs													
p ^{TTGA}	ns	***	***	***	***	***	***	***	***	***	***	***	***
p ^{TTGB}	ns	***	***	***	***	***	***	***	***	***	***	***	***
<i>B. cepacia</i> BC83_1 p ^{TTGA} vs													
p ^{TTGB}	ns	*	ns	ns	**	ns							
<i>B. orbicola</i> LMG 30279 (TTG-) vs													
p ^{TTGA}	ns	ns	ns	ns	ns	***	**	***	***	***	***	***	***
p ^{TTGB}	ns	ns	ns	***	***	***	***	***	***	***	***	***	***
<i>B. orbicola</i> LMG 30279 p ^{TTGA} vs													
p ^{TTGB}	ns	ns	ns	ns	**	***	***	***	***	***	***	***	***

800 ns – non-significant, level of significance: 0 '***' 0.001 '**' 0.01 '*' 0.05

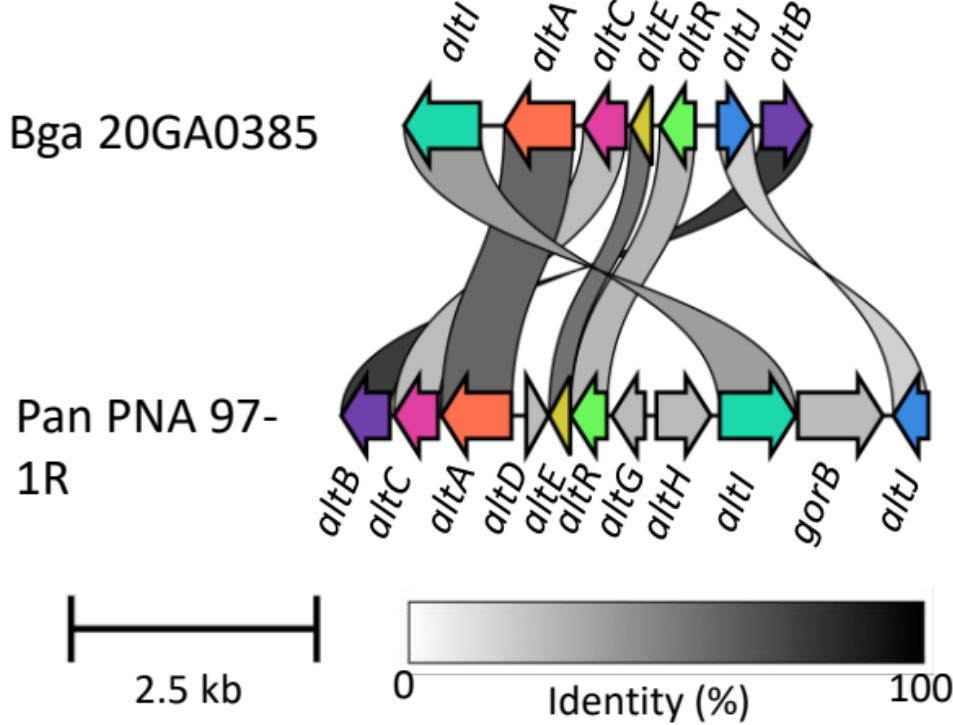
801 **Figure 1:** Gene cluster organization representing seven genes in the putative Thiosulfinate
802 Tolerance Gene (TTG) cluster in *Burkholderia gladioli* pv. *alliicola* strain 20GA0385. Gene synteny
803 of the Bga cluster relative to *Pantoea ananatis* strain PNA 97-1 is shown using the Clinker arrow
804 diagram. Genes are color-coded based on nucleotide homology between the two gene clusters,
805 the percentage of which is shown in the gradient scale. The proposed function of the genes in
806 the cluster based on Stice et al., 2020 is listed.

807 **Figure 2:** TTG cluster is widely distributed in *Burkholderia* species. A maximum-Likelihood
808 method-based phylogenetic tree of n= 4952-bp partial TTG cluster consensus nucleotide
809 sequences corresponding to the *altA-altB* gene region derived from whole genome sequenced
810 *Burkholderia* isolates in the study and NCBI GenBank extracted TTG cluster sequences. 1000
811 bootstrap replicates were used as a test of phylogeny. Bootstrap support value on the scale of 0
812 to 1 is represented as a circle on the branch. Strain labels are color-coded based on species and
813 branches are color-coded based on TTG cluster type. The accession number of the GenBank
814 extracted sequences is provided in parentheses next to the strain name. Strains with two
815 putative TTG clusters is noted with an asterisk next to its name. Letter T indicates a Type strain.
816 The tree is rooted in the *Caballeronia cordobensis* strain RPE67 branch. Strain 20GA0329,
817 20GA0341, and TTG cluster Type B sequence of *B. gladioli* strain BC93_10 are omitted from the
818 alignment as the entire TTG sequence was not present in a single contig. Information about the
819 strains used is presented in Supplementary Table S3. Identity confirmation of the strains
820 extracted from the NCBI GenBank database was confirmed using the TYGS webserver.

821 **Figure 3:** TTG cluster contributes to allicin thiosulfinate tolerance in *Burkholderia* species. **A**,
822 Allicin zone of inhibition (ZOI) area of select natural variant isolates of *B. gladioli*; **B** ZOI area of

823 engineered TTG mutant and Type A and TTG Type B cluster complementing strains of *B. gladioli*
824 strain 20GA0385. **C**, ZOI area of TTG negative *B. gladioli* strain BG92_3 relative to its TTG Type A
825 and Type B plasmid derivatives. **D** ZOI area of select natural variant isolates of *B. cepacia*. **E**, ZOI
826 inhibition area of TTG negative *B. cepacia* strain BC83_1 compared to its TTG Type A and Type B
827 plasmid derivatives. **F**, ZOI inhibition area comparison of representative natural variants of *B.*
828 *orbicola*. **G**, ZOI inhibition area of *B. orbicola* TTG negative type strain LMG 30279 and its Type A
829 and TTG Type B plasmid derivatives. Cyan colored bar represents a strain with endogenous TTG
830 Type A cluster, brown bar represents a TTG negative engineered or natural variant strain, the
831 purple bar represents TTG negative strains with TTG Type A expression plasmid, the orange bar
832 represents TTG negative strain with TTG Type B expression plasmid or strains with endogenous
833 TTG Type B cluster and salmon bar represents strain with both Type A and TTG Type B cluster.
834 Representative images of ZOI plates tested with corresponding treatments are presented above
835 the box. The scale bar in the image represents 1 cm length. Significance grouping based on
836 ANOVA followed by Tukey's post-test is shown as letters above the boxes in natural variants
837 experiments. A pairwise t-test was done to determine the significant differences in ZOI area
838 between the isogenic TTG-lacking strains and plasmid-expressed TTG cluster strains. Level of
839 significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05. The experiment was repeated at least three times
840 or as represented by n = number of independent experimental repeats. The depicted data point
841 represents all biological replicates from independent experimental repeats. Each experiment
842 was conducted with three biological replicates.

843 **Figure 4:** TTG negative strains are impaired in onion juice growth. Growth comparison of **A**, *B*,
844 *gladioli* strain 20GA0385, TTG mutant derivative and TTG Type A complementing strain **B**.


845 *cepacia* TTG negative natural variant BC83_1 and TTG Type A and Type B plasmid derivatives **C**,
846 *B. orbicola* natural variant type strain LMG 30279 and TTG Type A and Type B plasmid
847 derivatives, *in* half strength yellow onion juice for 48 h. Error bars represent \pm Standard Error.
848 Representative experimental data out of three performed independent experimental repeats
849 are shown in the figure. Color coding is as in Figure 3. An average of six technical replicates per
850 treatment is shown per time point. The Y axis crosses at 0.5 h post-inoculation. The test of
851 significance was done with recorded OD₆₀₀ values at each time point in between the treatment
852 strains and is presented in Supplementary Table S4.

853 **Figure 5:** Onion foliar /Red Scale Necrosis (RSN) assay and corresponding *in planta* population
854 quantification of natural variants, engineered mutants, and TTG plasmid transformed strains of
855 three *Burkholderia* species. **A, B** Box plot showing onion foliar necrosis length and *in planta* *B.*
856 *gladioli* bacterial population in onion leaf tissue at 3 days post inoculation (dpi). EV = Strain
857 carrying empty vector pBBR1MCS-2. Box plot showing RSN area and *in planta* bacterial
858 population count log (CFU/mg) of onion scale tissue at 4 h and 3 dpi for representative samples
859 **C, D** *B. gladioli* strain 20GA0385, its engineered TTG mutant derivative and TTG Type A
860 complementation clone; **E, F** *B. cepacia* TTG negative natural variant BC83_1 and TTG Type A
861 and Type B plasmid derivatives; **G, H** *B. orbicola* TTG negative natural variant Type Strain LMG
862 30279 and TTG Type A and Type B plasmid derivatives. Color coding is described in Figure 3. The
863 significant difference in necrosis length, RSN necrosis area, and *in planta* bacterial load of
864 endogenous TTG cluster or plasmid-based TTG cluster harboring strain was compared to its
865 engineered TTG mutant or TTG negative Wild Type (WT) natural variant using pairwise t-test
866 applying Bonferroni coefficient. Each jitter point represents a biological replicate of all the

867 experiments. The image above the box plot highlights tissue necrosis from representative
868 samples for corresponding inoculated treatment. The scale bar in the figure represents a 1 cm
869 length. The experiment was repeated at least three times or as represented by n = number of
870 independent experimental repeats. Each experiment had six technical replicates. Level of
871 significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

872 **Figure 6:** *B. gladioli* TTG cluster contributes to onion foliar bacterial load. In planta population
873 quantification of TTG mutant and WT 20GA0385 strain from **A**, onion leaves and **B**, Red scales
874 from Day 0 (5 hr) to Day 5 post-infection. A representative image of leaves or scales inoculated
875 with $\sim 2.4 \times 10^6$ CFU of WT and TTG mutant strain at each dpi is shown above the box plot.
876 Significant differences in log (CFU/mg) of leaf or scale tissue between the two treatments for
877 each day of sampling were calculated using a pairwise t-test applying the Bonferroni probability
878 adjustment method. Level of significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05. The scale bar
879 represents 1 cm in length. The experiment was repeated two times.

880 **Supplementary Figure S1:** Maximum likelihood phylogenetic tree of 727-bp partial *recA* gene
881 differentiates *Burkholderia gladioli* pv. *alliicola* group from other pathovars in *B. gladioli*. *B.*
882 *gladioli* 20GA0385 and NCBI GenBank extracted FDAARGOS_389 test strains for identity
883 confirmation are represented by starburst symbol. Information about the strain and their
884 pathovar designation is retrieved from Jones et al., 2021. The letter/number in parentheses
885 represents the clade of the reference strain. The black circle represents bootstrap support of
886 the branching on a scale of 0 to 1. T denotes a type strain. The tree is rooted in the branch of *B.*
887 *cepacia* complex representative strains.

altB : D-glucose:NAD⁺ 1-oxidoreductase

altC : DsbA family oxidoreductase

altA : N-ethylmaleimide reductase

altE : CMD-like domain-containing protein

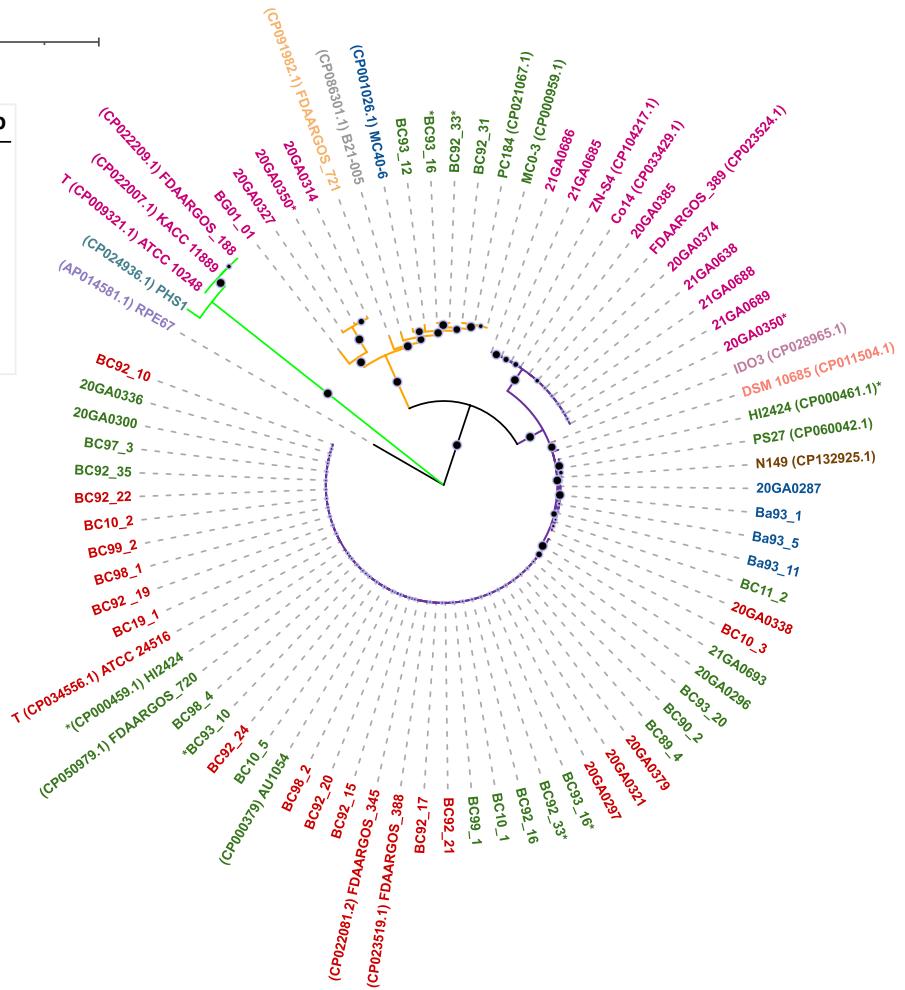
altR : HTH TetR family transcriptional regulator

altI : Aminotran-1-2 domain-containing protein

altJ : Osmotically inducible protein C

altD : Thioredoxin domain containing protein

altG : Thioredoxin-like protein

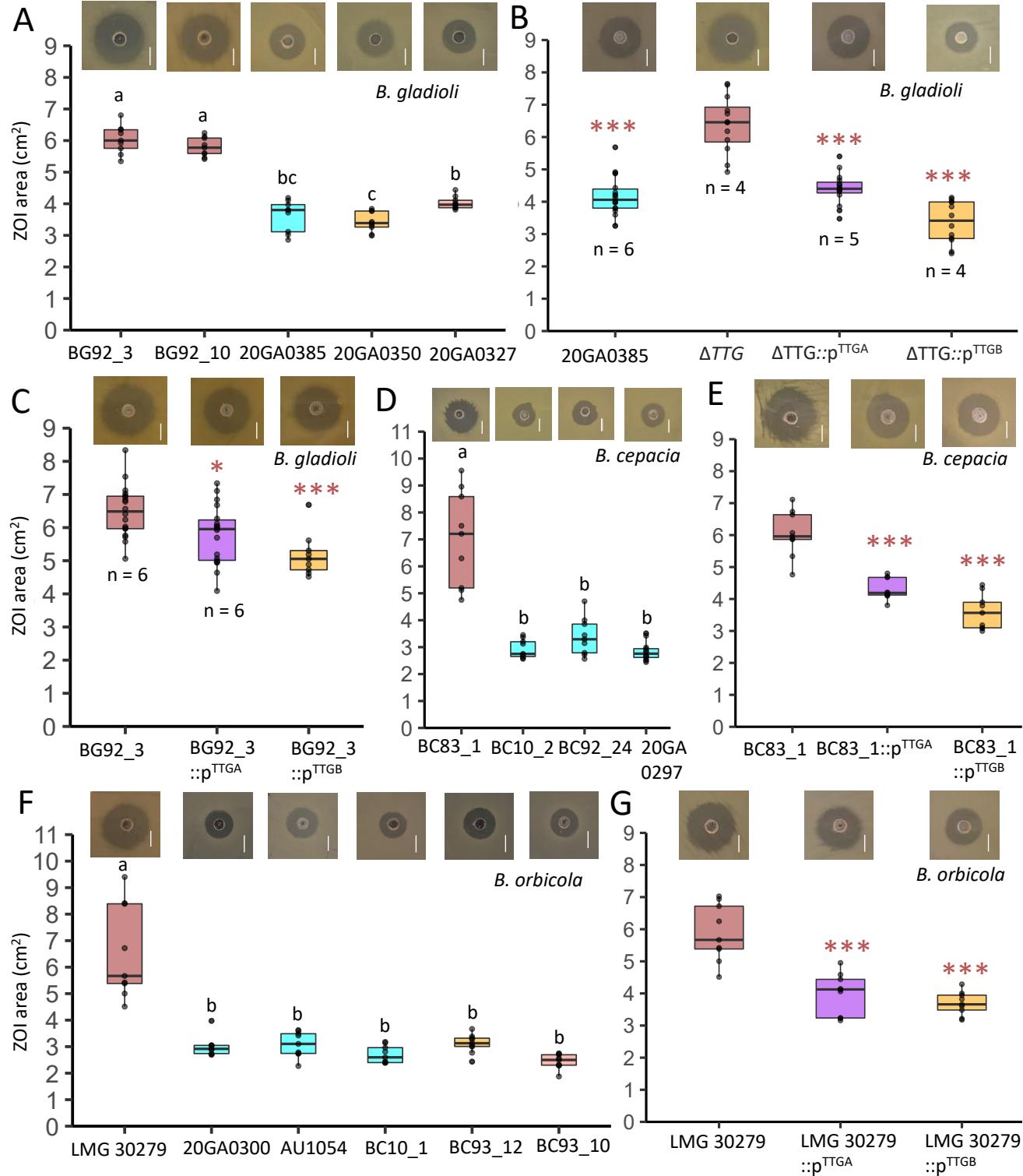

altH : DMT family transporter

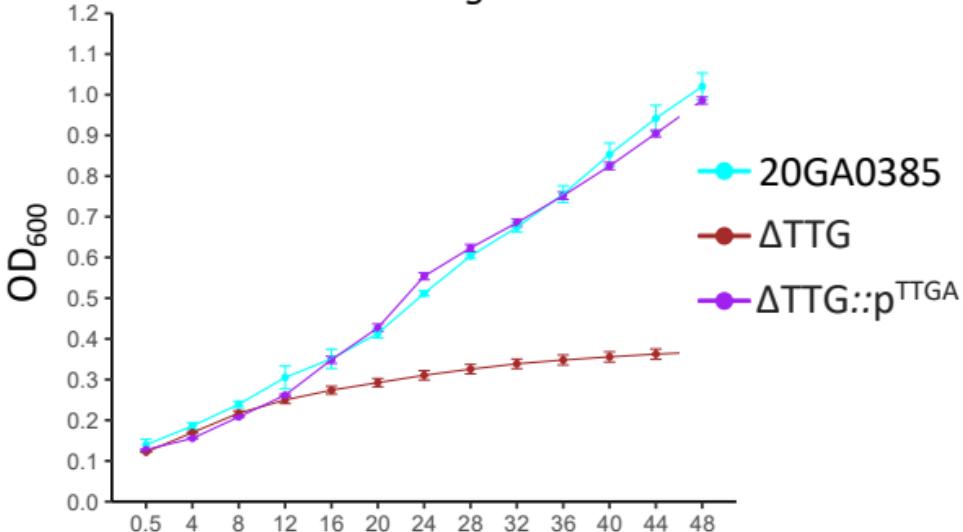
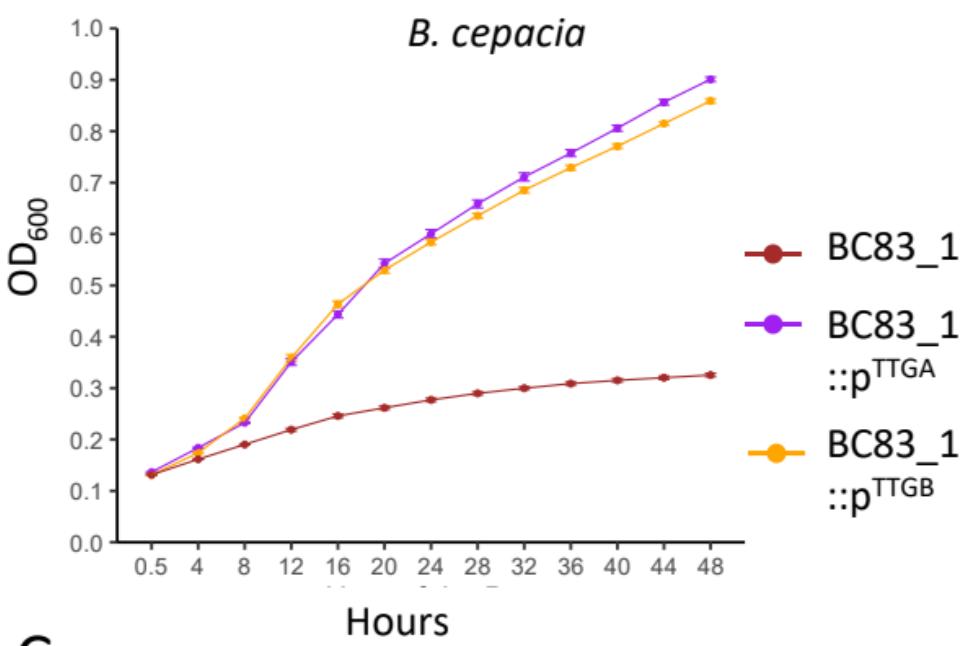
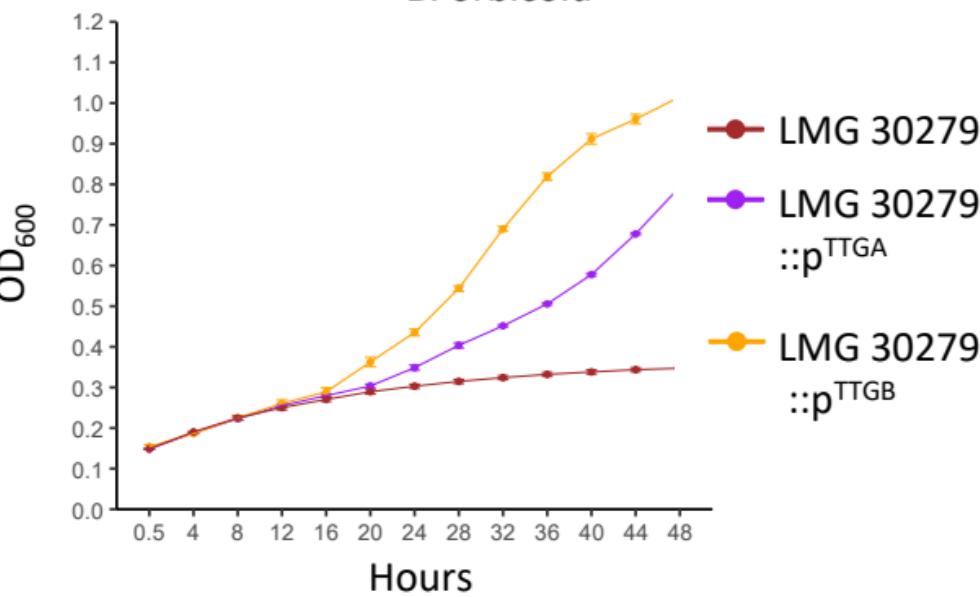
gorB : glutathione disulfide reductase

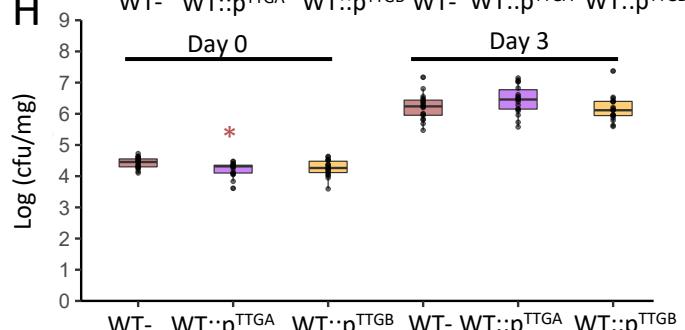
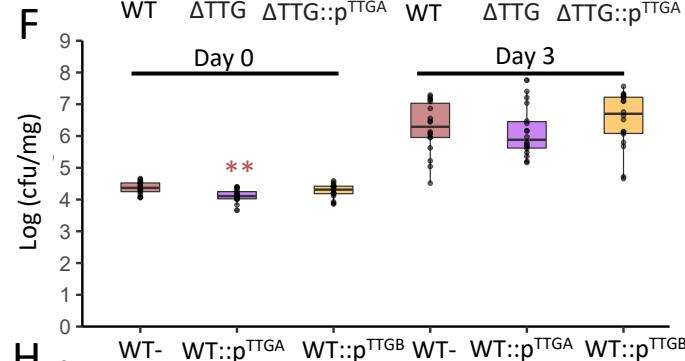
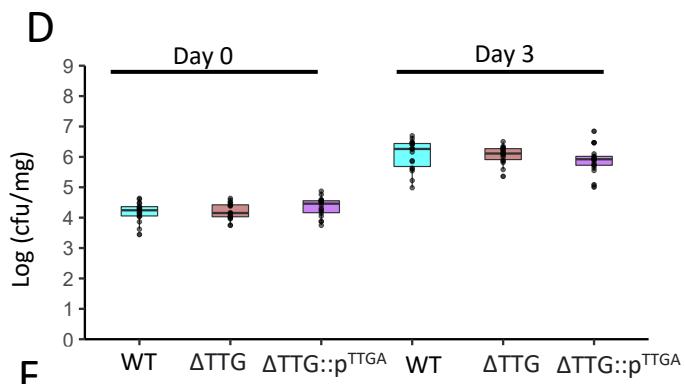
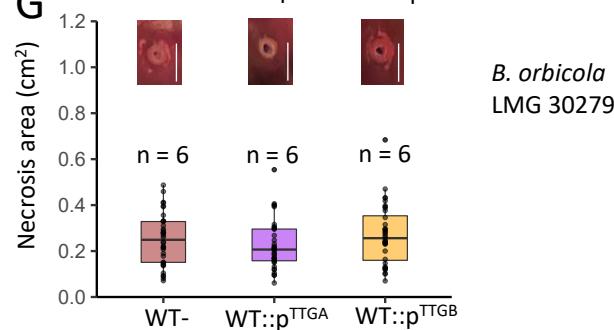
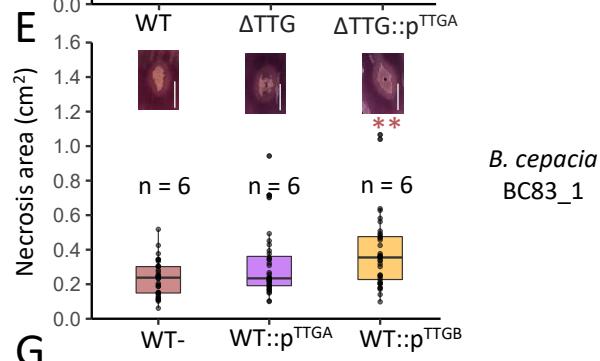
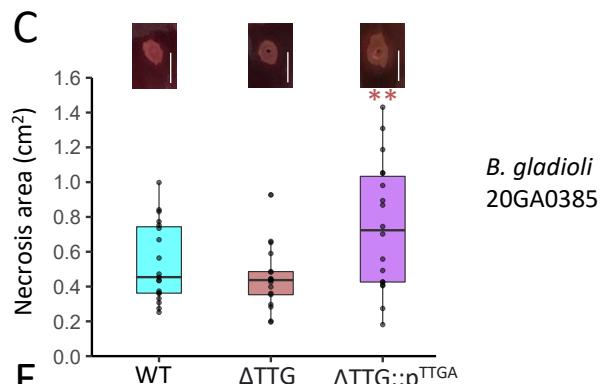
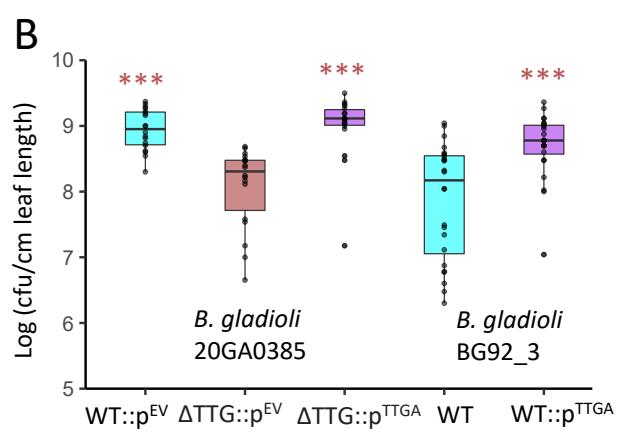
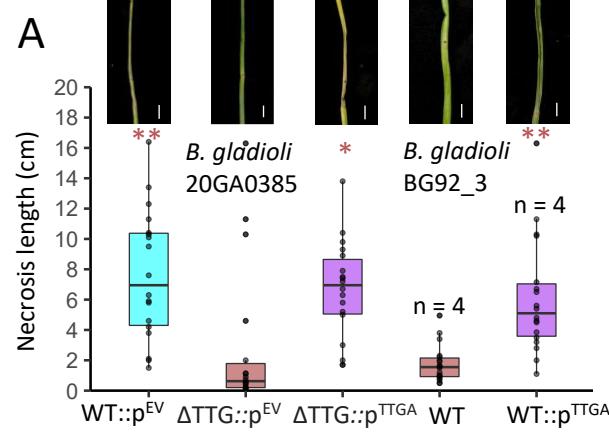
Tree scale: 0.1

bootstrap

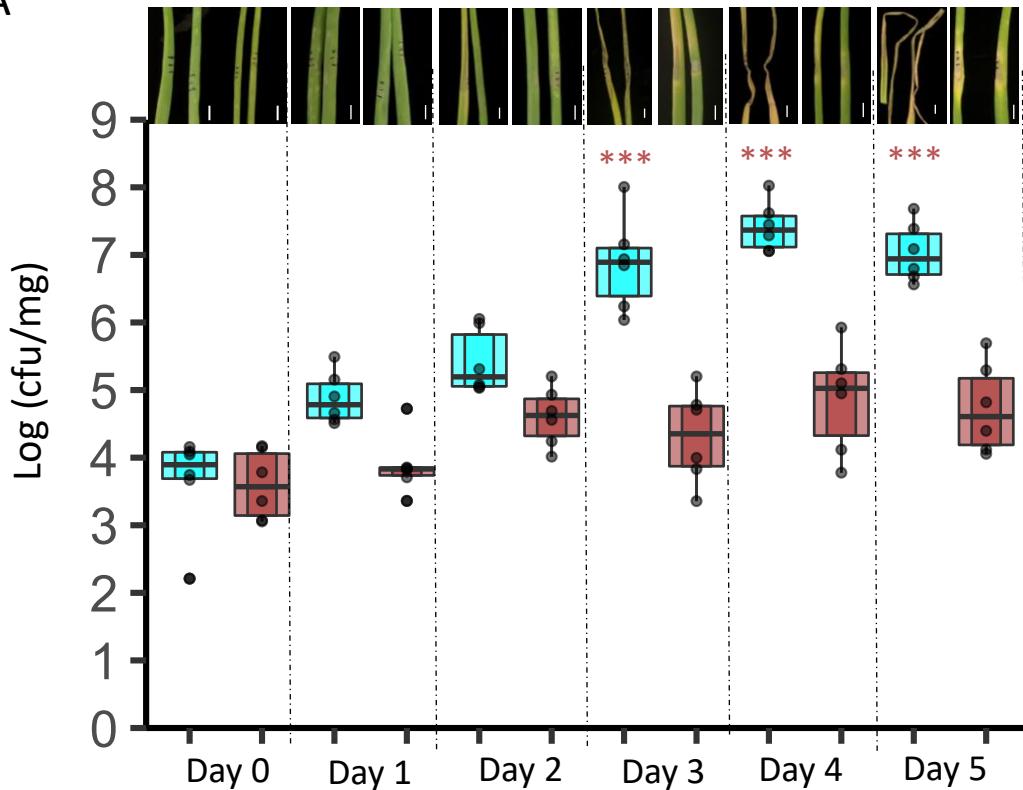
- 0
- 0.25
- 0.5
- 0.75
- 1

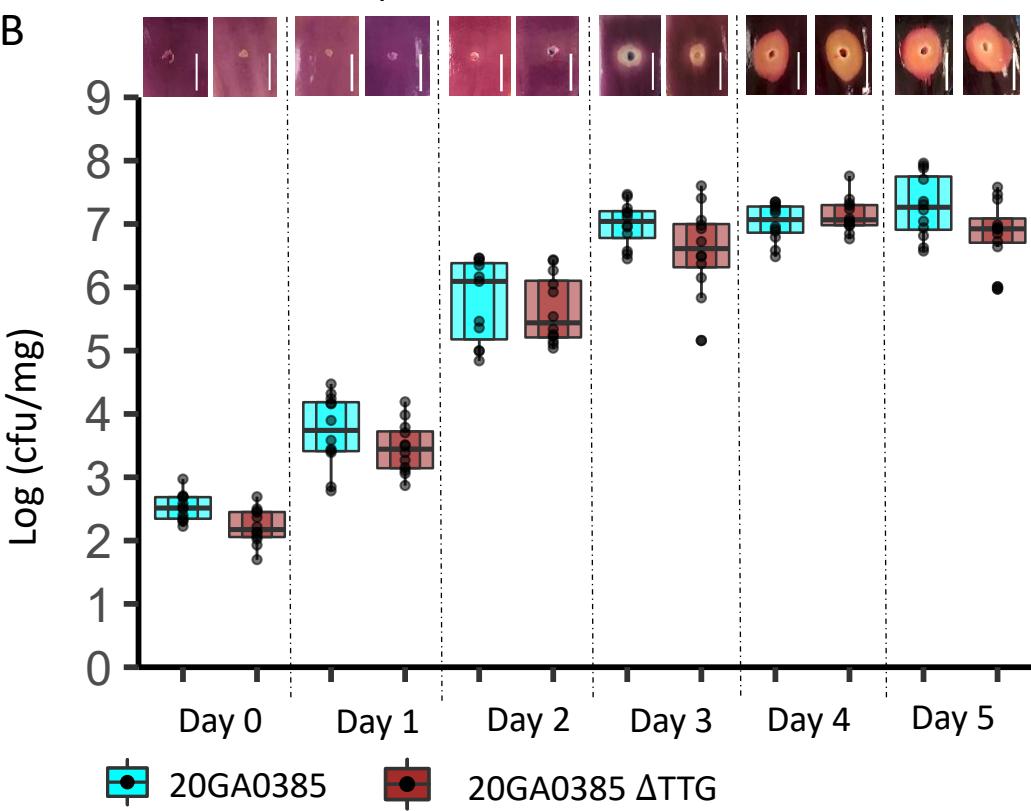





■ *B. gladioli* ■ *B. cepacia* ■ *B. orbicola* ■ *B. ambifaria*









■ *B. pyrrocinia* ■ *Burkholderia* sp. ■ *B. vietnamiensis* ■ *B. anthina*

■ *B. dolosa* ■ *Caballeronia cordobensis* ■ *Paraburkholderia graminis*


□ Type A TTG cluster □ Type B TTG cluster □ Type C TTG cluster


A*B. gladioli***B***B. cepacia***C***B. orbicola*

A

B

● 20GA0385 ■ 20GA0385 Δ TTG