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ABSTRACT

Recent work suggests that machine learning models predicting psychiatric
treatment outcomes based on clinical data may fail when applied to unharmonized
samples. Neuroimaging predictive models offer the opportunity to incorporate
neurobiological information, which may be more robust to dataset shifts. Yet, among the
minority of neuroimaging studies that undertake any form of external validation, there is
a notable lack of attention to generalization across dataset-specific idiosyncrasies.
Research settings, by design, remove the between-site variations that real-world and,
eventually, clinical applications demand. Here, we rigorously test the ability of a range of
predictive models to generalize across three diverse, unharmonized samples: the
Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network
(n=1110), and the Human Connectome Project in Development (n=428). These
datasets have high inter-dataset heterogeneity, encompassing substantial variations in
age distribution, sex, racial and ethnic minority representation, recruitment geography,
clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. We
demonstrate that reproducible and generalizable brain-behavior associations can be
realized across diverse dataset features with sample sizes in the hundreds. Results
indicate the potential of functional connectivity-based predictive models to be robust
despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets,
the best predictions were not from training and testing in the same dataset (i.e., cross-
validation) but across datasets. This result suggests that training on diverse data may

improve prediction in specific cases. Overall, this work provides a critical foundation for
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44  future work evaluating the generalizability of neuroimaging predictive models in real-
45  world scenarios and clinical settings.

46


https://doi.org/10.1101/2024.01.23.576916
http://creativecommons.org/licenses/by-nd/4.0/

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576916; this version posted January 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

INTRODUCTION

Machine learning offers the potential to augment clinical decision-making,
individualize care, and improve patient outcomes (Johnson et al., 2021). Despite this
promise, clinical neurosciences, particularly psychiatry, have yet to realize the advances
in care that have been achieved by other medical disciplines. Recent work highlights
that machine learning models predicting psychiatric treatment outcomes may be
context-dependent and fail when applied to unharmonized samples (i.e., across dataset
shifts) (Chekroud et al., 2024). Given these models rely exclusively on clinical data, the
addition of neurobiologically-grounded data, such as neuroimaging, may help overcome
limitations due to inter-dataset variability (Sui et al., 2020).

In light of this, it is imperative to assess whether neuroimaging predictive models
generalize across diverse dataset shifts. Only a minority of neuroimaging studies
undertake any form of external validation. Among those that do, the median external
sample size is only n=108 and is underpowered in most cases (Rosenblatt et al., 2023;
Yeung et al., 2022). Further, real-world and eventual clinical applications demand not
only external validation but also generalization across different imaging and phenotypic
features (Dockeés et al., 2021; Woo et al., 2017). By design, many consortium-level
neuroimaging studies remove these variations, creating harmonization that does not
exist in other scenarios. The inclusion of multiple datasets with different imaging
parameters, patient demographics, and behavioral measures is necessary to truly
evaluate a neuroimaging predictive model, as harmonization is not always possible
(Chow et al., 2023; Torres-Espin and Ferguson, 2022). Models will only be clinically

valuable if they can predict effectively on top of these dataset-specific idiosyncrasies.
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In this work, we rigorously evaluate the external validation of neuroimaging
predictive models across unharmonized samples (Figure 1). We use three distinct,
large-scale developmental datasets: the Philadelphia Neurodevelopmental Cohort
(PNC), the Healthy Brain Network (HBN), and the Human Connectome Project in
Development (HCPD) (Alexander et al., 2017; Satterthwaite et al., 2016; Somerville et
al., 2018). These datasets have high inter-dataset heterogeneity, encompassing
substantial variations in participant characteristics (age distribution, sex, racial and
ethnic minority representation, recruitment geography, clinical symptom burdens),
imaging parameters (fMRI tasks and sequences), and behavioral measures. We used
language abilities and function (EF) as two developmentally and clinically relevant
phenotypes for prediction (Adise et al., 2023; Casey, 2023; Godfrey et al., 2022; Qi et
al., 2021). We demonstrate that reproducible and generalizable brain-behavior
associations using functional connectivity and connectome-based predictive modeling
can be realized across diverse dataset features with sample sizes smaller than
consortium-levels. Results indicate the potential of functional connectivity to be robust
despite various dataset shifts. Further, they provide a critical foundation for future work
evaluating the generalizability of brain-behavior associations in real-world scenarios

and, eventually, clinical settings.
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89 Figure 1. Differences across the PNC, HBN, and HCPD datasets. The Philadelphia
90  Neurodevelopmental Cohort (PNC), Healthy Brain Network (HBN), and Human

91  Connectome Project in Development (HCDP) datasets exhibit a notable lack of

92  harmonization across recruitment geography (A), participant clinical symptom burden
93 (B), age distribution (C), sex (D), racial and ethnic minority representation (E), fMRI
94 tasks and sequences (F), and measures used to assess language abilities and

95 executive function (G).
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101 RESULTS

102 We generated models of language abilities and EF in the PNC (n=1291), HBN
103  (n=1110), and HCPD (n=428) datasets using ridge regression connectome-based

104  predictive modeling (CPM) (Shen et al., 2017). Connectomes were created using the
105 Shen 268 atlas. Each participant's connectome included all available resting-state and
106  task fMRI data with low motion (<0.2 mm). Combining connectomes across fMRI data
107  improves reliability and predictive power (Elliott et al., 2019; Gao et al., 2019).

108  Participants without one low-motion fMRI run were excluded.

109 A disparate set of behavioral tasks assessed language and EF in the three

110 datasets (Table S1). We used principal component analysis (PCA) to derive “latent”
111 factors of language abilities and EF within each dataset. Participants with missing

112  language and EF measures were excluded. Importantly, the PCA was estimated using
113  participants who did not have imaging data to maintain proper separation of training and
114  testing data. The first principal component explained 70%, 55%, and 77% of language
115  ability measure variance in PNC, HBN, and HCPD, respectively. For executive function,
116  the first principal component of all behavioral measures explained 53%, 48%, and 40%
117  of the variance in PNC, HBN, and HCPD, respectively. Contributions of individual

118  measures to the first principal component are presented in Table S1. Behavioral data
119  from participants with imaging data were projected onto the first principal component.
120  This projection was used in all CPM analyses unless otherwise specified.

121 Predictive models were trained and tested within each dataset using 100

122  iterations of 10-fold cross-validation. Model performance was evaluated with Pearson’s

123  correlation (r), representing the correspondence between predicted and observed
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124  behavioral scores, along with the cross-validation coefficient of determination (g2) and
125 mean square error (MSE). Significance was assessed using permutation testing with
126 1000 iterations of randomly shuffled behavioral data labels. Cross-dataset predictions
127  were evaluated with Pearson’s correlation.

128

129 Connectome-based prediction of language abilities

130 Models successfully predicted language abilities within each dataset (Figures 2A
131 and S1A; PNC: r=0.50, p<0.001, g2=0.24, MSE=1.05; HBN: r=0.27, p<0.001, q2=0.06,
132 MSE=4.42; HCPD: r=0.22, p<0.001, g2=0.01, MSE=1.47). Model performance was

133  similar to original predictions when controlling for age, sex, racial/ethnic minority

134  representation, socioeconomic status, head motion, and clinical symptom burden (Table
135 S2).

136

137 Connectome-based prediction of executive function

138 The performance of EF models closely resembled the performance of language
139  models (Figures 2B and S1B; PNC: r=0.39, p<0.001, q2=0.14, MSE=1.17; HBN: r=0.17,
140 p<0.001, g2=0.02, MSE=2.03; HCPD: r=0.17, p=0.005, q2=-0.01, MSE=1.98). The

141  addition of covariates into the model yielded similar results for age, sex, racial/ethnic
142  minority representation, socioeconomic status, head motion, and clinical symptom

143  burden (Table S2).
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145  Figure 2. Connectome-based predictive model performance within-dataset.

146  Scatter plot of observed 1st principal component scores on the x-axis and predicted 1st
147  principal component scores on the y-axis for language abilities (A) and executive

148  function (B) across PNC (purple), HBN (green), and HCPD (red). Counts represent

149  individual participant data.

150

151 Models generalize across datasets despite notable lack of harmonization

152 Cross-dataset predictions were performed across the three datasets to ensure
153  our models' generalizability. Importantly, PNC, HBN, and HCPD are characterized by a
154  notable lack of inter-dataset harmonization (Figure 1). Despite such substantial

155  differences, we achieved cross-dataset prediction of language abilities and EF (Figure
156  3). Language abilities were predicted with r's=0.13-0.35. EF was predicted with

157  r's=0.14-0.28. Testing on the PNC produced the best cross-dataset predictions for

158 language abilities and EF. As a result, the best predictions for the HCPD and HBN were

159  not from training and testing in the same dataset (i.e., cross-validation).


https://doi.org/10.1101/2024.01.23.576916
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576916; this version posted January 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

r=0.50 or= 0.35 2 r=0.32 r=0.39 r=0.28 r=0.24
o o o o 2 o 1 o 1
L2 L 2 1 ] 2 L 0
3} 3} o 3} 005 O
= 2 =0 S 0 2 14
PNC 50/50/5 e 3 /@0/@1/
T, a -1 a ! a -2 a o
= 2 -2 05 2
321012 2 0 2 2 0 2 4 2 0 2 6-4-20 2 6-4-20 2
Observed Observed Observed Observed Observed Observed
r=0.18 r=0.27 41 r=0.13 r=0.14 r=0.17 1r=0.14
E Bos B2 EO Fo5 52/ 2o
(&} (] o o (8] o
- E 0 g 0 / g e g 0 / g 0 g 1 T i
HBN | £-05 &2 & -1 &% &2 g
-1 1
-4
-4 0 4 2 0 2 -4 0 4 20258 2 0 2 5 20258
Observed Observed Observed Observed Observed Observed
r=0.22 r=0.16 2r=0.22 r=0.17 r=0.15 2r=0.17
3 3 3 Bos 3 3
505 B B 0 3 L — |3 g 0 —
5 a5 g — .|S a—— 5 5 0 Cemm—— |.=
HCPD | o 0 o ® ©0 3 o -2
o5 o o - o ao o
-1 05 5
2 0 2 2 0 2 21012 20 2 2 0 2 2-1012
Observed Observed Observed Observed Observed Observed
PNC HBN HCPD PNC HBN HCPD
160 TRAIN

161  Figure 3. Model performances across unharmonized datasets. Scatter plots of true
162  versus predicted PCA-derived language abilities (A) and executive function (B) scores
163  for cross-dataset predictions. Purple (PNC), green (HBN), and red (HCPD) colors

164  indicate the dataset in which predictions were tested. Diagonals represent within-

165 dataset prediction performances.

166

167  Brain features underlying language abilities and executive function

168 In line with previous CPM results, predictive models of language abilities and EF
169  were complex, with contributions from every node and canonical brain network (Figures
170 4, S2). Virtual lesioning analyses confirmed the predictive utility of every brain network
171  but also suggested the importance of the medial frontal and frontoparietal networks in
172  predicting language abilities and EF (Figure S3). These networks contain noted regions
173  for language (e.g., Broca’'s and Wernicke’s) and EF (e.g., prefrontal cortex). We

174  compared the brain features that predicted language abilities and EF in one dataset to
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175  those that predicted the same construct in the other two. All edgewise regression

176  coefficients were normalized by the standard deviation of edges and summed for each
177  canonical brain network. At the network level, predictive features from each dataset
178  were correlated between r=0.48-0.74 for language abilities and r=-0.03-0.30 for EF.

179  The correlations between the HCPD and the HBN or PNC were the lowest (Table S3).
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182  Figure 4. Network-level contributions to language abilities and executive function
183  predictions. Canonical network contributions to predicted language abilities (A) and
184  executive function (B) across PNC (purple), HBN (green), and HCPD (red).
185  Contributions of edges within a single network (diagonals) and between networks (off-
186  diagonals) were defined as the sum of edgewise regression coefficients normalized by
187  network size. Darker colors indicate networks with larger model coefficients. Network
188 Labels: MF, medial frontal; FP, frontoparietal; DMN, default mode; Mot, motor cortex;
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VI, visual A; VII, visual B; VAs, visual association; SAL, salience; SC, subcortical; CBL,

cerebellum.

Prediction of individual language and EF measures

Finally, we tested within and cross-dataset predictions for each measure used in
the PCA. This analysis ensures that the strong cross-dataset predictions are not solely
a function of combining disparate measures. Within-dataset predictions were significant
across all individual measures, with the lowest being the HBN Card Sort task (r=0.07,

p=0.05, Figure 5).
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Figure 5. Within-dataset predictions of individual measures. Distributions of
prediction performance Pearson’s r values across 100 iterations for each individual

language (A) and EF (B) measure. PNC measures are purple, HBN measures are
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203 green, and HCPD measures are red. Solid lines indicate PCA prediction performances
204  for comparison.

205

206 Cross-dataset predictions for the individual measures followed patterns similar to
207 PCA-derived predictions and, in general, were significant (Figure 6). Mirroring PCA

208 results, cross-dataset language abilities predictions (median r=0.14, interquartile range
209 (IQR)=0.09) were more accurate than executive function predictions (median r=0.11,
210 1QR=0.10). For language abilities, all individual measures were predicted in at least one
211 cross-dataset model. 58 out of 72 cross-dataset models were significant, including all
212  models tested in the PNC. For EF, 61 out of 94 cross-dataset models were significant.
213  Models built on the flanker task showed the worst generalization. Most predictions used
214  different measures in the training and testing data, showing strong generalization of
215 language and EF models.

216 Finally, we correlated within-dataset and cross-dataset performance. The ability
217  of a measure to predict measures in another dataset did not correlate with its within-
218 dataset performance (r=0.21, p=0.34). However, the ability of a measure to be predicted
219 by measures in another dataset strongly correlated with within-dataset performance
220 (r=0.72, p<0.001). These results indicate that a measure's within-dataset performance
221  estimates its predictability from other models, but not the predictive ability of its model
222 on other measures.

223
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225 Figure 6. Cross-dataset predictions of individual measures. Models were trained on
226 a single measure in one dataset (x-axis) and independently tested on each individual
227  measure of the other dataset (y-axis) for language abilities (A) and executive function
228 (B). Performance r values are shown for PNC (purple), HBN (green), and HCPD (red).
229  Darker colors indicate higher prediction performances. White indicates non-significant
230 performances. Asterisks indicate predictions greater than PCA-derived cross-dataset
231  predictions.

232

233

234

235

236

237


https://doi.org/10.1101/2024.01.23.576916
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576916; this version posted January 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

238 DISCUSSION

239 We used connectome-based predictive modeling to test the generalizability of
240 neuroimaging predictive models across diverse dataset features. Predictions of

241  language abilities and EF survived testing across three unharmonized, large-scale

242  developmental samples. These results suggest reproducible associations that

243  overcome individual dataset idiosyncrasies can be achieved with sample sizes (n=500-
244 1000’s) below consortium-level magnitudes. Further, many models based on an

245 individual measure of language or EF generalized to different language or EF

246  measures. Interestingly, both PCA and individual measure results indicate that a

247  model's within-dataset performance estimates its predictability from other models but
248 not the predictive ability of its model on other measures. Testing brain-behavior

249  associations across diverse data remains necessary to strengthen the generalizability of
250 findings beyond a particular dataset and assess applicability to real-world settings.

251 Our results highlight the potential of pooling neuroimaging data without

252  harmonization. Notably, for the HCPD and HBN datasets, the best predictions were not
253 from training and testing in the same dataset (i.e., cross-validation) but from external
254  validation. This result suggests that training on diverse data may improve prediction in
255  specific cases. Of course, strictly harmonized data collection efforts by consortiums
256 remain essential (Casey et al., 2018; Sudlow et al., 2015). They maximize statistical
257  power by minimizing unexplained variance (i.e., experimental noise). Nevertheless,
258 harmonization is expensive and not always possible (Chow et al., 2023; Torres-Espin
259 and Ferguson, 2022). It also prevents testing a model’s robustness to different

260 experimental factors. Thus, testing on non-harmonized data is needed. While post-hoc
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261  harmonization (i.e., ComBat) is often applied in these studies, we avoided this step to
262 test how brain-behavior associations can generalize without explicit harmonization

263 (Chenetal., 2022; Yan et al., 2023). Using non-harmonized sources is a strength of
264 neuroimaging predictive modeling. Recent work suggests that machine learning models
265 predicting treatment outcomes from clinical data may fail when applied to unharmonized
266 samples (Chekroud et al., 2024). Our results point to the potential value of incorporating
267 neuroimaging data to improve generalization across unharmonized samples.

268 Though our models generalize well, lacking generalization is not inherently bad.
269 A single model will not be appropriate in all cases. For example, models designed for
270 adults likely should not work on infants and young children (Scheinost et al., 2023).

271 Many brain-behavior associations may exhibit sex differences, where sex-specific

272  models could be needed (Dhamala et al., 2023; Greene et al., 2018; Jiang et al., 2020;
273  Yip etal.,, 2023). Further, evidence suggests that those who defy stereotypes (such as
274  minoritized populations) could require different models (Greene et al., 2022). Rigorously
275 testing a model on diverse data, regardless of whether it generalizes, produces valuable
276 information. Null results motivate future studies to understand the lack of generalization
277  and should be published (Munafo and Neill, 2016). As a field, we should encourage

278  testing models on diverse data to understand the effects of dataset shift and if models
279  generalize.

280 We employed state-of-the-field methodology to use as much data as possible.
281  This approach includes using large sample sizes to create and externally validate

282  models. In contrast to most studies using external validation, the sample sizes for

283 external validation were of the same order as the training data (Rosenblatt et al., 2023;
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284 Yeung et al., 2022). In fact, given that two external datasets were used to validate each
285 model, more data was used to test a model than train it. This approach ensured we had
286 adequate power for external validation. In all cases, we had at least 80% power for

287 effects as low as r=0.15. In addition to using large sample sizes, we also used several
288 fMRI runs and multiple behavior measures for each individual. Combining fMRI and
289  behavior data improves prediction likely by averaging out the idiosyncrasies of each
290 data point and increasing reliability. These latent factors also allow diverse data types
291  (i.e., different fMRI tasks and behavioral measures) to be used for prediction. Finally, we
292  preserved participants without imaging data to derive principal components (e.g., using
293 6745 PNC and 1281 HBN participants) to increase the representation. These results
294  follow the growing appreciation of large (i.e., many participants) and deep (i.e., many
295 measures per participant) data (Gordon et al., 2017; Marek et al., 2022).

296 Statistical power remains a fundamental consideration in neuroimaging (Cremers
297 etal., 2017). A rule of thumb is often desired (i.e., 1,000 participants are needed for an
298 fMRI experiment). However, a simple answer is often insufficient given the complexities
299 of relating neuroimaging data to behavior. There are too many modalities, behaviors,
300 and analysis methods. Though, some generalities can be made. Our results

301 demonstrate that predictive models can generalize across diverse, unharmonized data.
302 These findings underscore the potential to employ neuroimaging models for predicting
303 personalized outcomes and finding robust brain-behavior associations (Spisak et al.,
304 2023). Of course, results will likely be case-specific. Language and EF exhibit large

305 effect sizes for brain-behavior associations. Other behaviors and phenotypes, such as
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306 clinical symptoms, may need larger samples or improved methodology to create robust
307  associations.

308 Executive function and language abilities are core cognitive processes that are
309 critical for everyday functioning. Executive function supports manipulating information to
310 plan, organize, and execute decisions towards goal-directed tasks (Cristofori et al.,

311 2019; Diamond, 2013). Language abilities support the effective production and

312  comprehension of communication toward meaningful interaction (Kidd et al., 2018).

313  Cognitive deficits are associated with a range of psychiatric and developmental

314  disorders (Millan et al., 2012; Zelazo, 2020). Achieving robust predictions of these

315  constructs is meaningful for cognitive and clinical neuroscience (Barron et al., 2020;
316 Boyle et al., 2023; Sui et al., 2020). However, the observed effect sizes are still smaller
317 than necessary for real-world utility. Further, even if our models were actionable, ethical
318 concerns related to their implementation in developmental populations exist (Scheinost
319 etal, 2023). For example, false positives lead to unnecessary interventions, while false
320 negatives divert resources from those who need them. Another consideration is model
321 interpretability. Clinicians may be more hesitant to trust and integrate less interpretable
322 models into their practice (Chekroud et al., 2021). The edges we observed contributing
323 tolanguage abilities and executive function predictions were distributed throughout the
324  brain. It is difficult to pinpoint a single canonical network responsible for individual

325 variation in performance (Kohoutova et al., 2020). However, these models align with
326 recent literature that appreciates complex brain-wide networks rather than the simple

327 networks often identified by traditional association studies (Dubois et al., 2018).
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328 The strength of this study is the rigorous validation of the models. First, we used
329 three large developmental datasets to maximize statistical power. Few large-scale

330 neuroimaging studies incorporate any form of external validation (Rosenblatt et al.,

331 2023; Yeung et al., 2022). In addition to internal cross-validation, each model was

332 validated in two independent large-scale datasets. Future applications of brain-based
333  predictive modeling methods must overcome demographics, imaging, and behavioral
334 data differences. The three datasets exhibited substantial variability in participant

335 demographics, geographic distribution, and clinical symptoms. Further, the notable lack
336  of harmonization suggests that these models are not dependent upon specific study
337 designs or measurement features. Thus, our results are highly generalizable and robust
338 to dataset shift.

339 Several limitations exist. Using PCA on disparate behavioral measures may

340 inadvertently remove some elements that make each measure unique. For example,
341 unique components of EF include working memory, cognitive flexibility, and inhibitory
342  control. Thus, latent measures from PCA might not represent these components but
343 instead represent general cognition (Dyer and Kording, 2023). Similarly, we define

344  language abilities broadly, including receptive language, expressive language, speech,
345 and reading measures. These broad definitions may also explain the models’ lack of
346 localization. More specific phenotypes will likely improve a model’s interpretability

347 (Enkavi et al., 2019; Greene and Constable, 2023). We also see strong cross-dataset
348 predictions for individual measures, so testing this hypothesis is plausible for future

349  work. While our models generalized across various factors, all datasets were
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350 developmental samples from the United States. It is unclear if models would generalize
351 to older individuals or those from non-western countries.

352 In conclusion, we show that brain-behavior associations generated from

353 functional connectivity data can generalize over non-harmonized data. These results
354  highlight that generalizable models can be achieved with datasets below consortium-
355 level sample sizes and the potential of using non-harmonized data. Mimicking real-world
356 dataset shifts in training and testing predictive models may accelerate their

357 development into clinical tools and practice.

358
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360 METHODS

361 Datasets

362 PNC participants were 1291 individuals ages 8-21 recruited from the greater
363 Philadelphia, Pennsylvania area (Satterthwaite et al., 2016). Participants completed
364 rest, emotion task, and n-back task fMRI runs (Satterthwaite et al., 2014). Measures of
365 language abilities were the Penn Verbal Reasoning Task from the Penn Computerized
366  Neurocognitive Battery (CNB) and the total standard score from the Wide Range

367 Assessment Test (WRAT) Reading Subscale (Gur et al., 2010; Wilkinson and

368 Robertson, 2006). Executive function measures were the Letter N-Back, Conditional
369  Exclusion, and Continuous Performance tasks from the CNB.

370 HBN participants were 1110 individuals ages 6-17 recruited from the New York
371 City, New York region (Alexander et al., 2017). Participants completed two rest fMRI
372  runs as well as ‘Despicable Me’ and ‘The Present’ movie-watching scan sessions.

373 Measures of language abilities were the Elision, Blending Words, Nonword Repetition,
374 Rapid Digit Naming, and Rapid Letter Naming scaled scores from the Comprehensive
375 Test of Phonological Processing (CTOPP-2) and the Phonemic Decoding Efficiency,
376  Sight Word Efficiency, and Total Word Reading Efficiency scaled scores from the Test
377 of Word Reading Efficiency (TOWRE-2) (Dickens et al., 2015; Tarar et al., 2015).

378  Executive function measures were the Flanker Inhibitory Control and Attention, List
379  Sorting Working Memory, Pattern Comparison Processing Speed, and Dimensional
380 Change Card Sort age-corrected standard scores from the NIH Toolbox (Weintraub et
381 al., 2013).

382
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383 HCPD participants were 428 individuals ages 8-22 recruited from St. Louis,

384  Missouri, Twin Cities, Minnesota, Boston, Massachusetts, and Los Angeles, California
385 (Somerville et al., 2018). Participants completed rest fMRI runs (Harms et al., 2018).
386 Measures of language abilities were the Picture Vocabulary and Oral Reading

387 Recognition age-corrected standard scores from the NIH Toolbox. Executive function
388 measures were the Flanker Inhibitory Control and Attention, List Sorting Working

389 Memory, Pattern Comparison Processing Speed, Dimensional Change Card Sort, and
390 Picture Sequence Memory age-corrected standard scores from the NIH Toolbox.

391

392  Preprocessing

393 In all datasets, data were motion-corrected. Additional preprocessing steps were
394 performed using Biolmage Suite (Papademetris et al., 2006). This included regression
395 of covariates of no interest from the functional data, including linear and quadratic drifts,
396 mean cerebrospinal fluid signal, mean white matter signal, and mean global signal.

397  Additional motion control was applied by regressing a 24-parameter motion model,

398  which included six rigid body motion parameters, six temporal derivatives, and the

399 square of these terms, from the data. Subsequently, we applied temporal smoothing
400 with a Gaussian filter (approximate cutoff frequency=0.12 Hz) and gray matter masking,
401 as defined in common space. Then, the Shen 268-node atlas was applied to parcellate
402 the denoised data into 268 nodes (Shen et al., 2013). Finally, we generated functional
403  connectivity matrices by correlating each node time series data pair and applying the

404  Fisher transform. Data were excluded for poor data quality, missing nodes due to lack of
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405  full brain coverage, high motion (>0.2mm mean frame-wise motion), or missing

406 behavioral/phenotypic data.

407

408 Creating latent factors of language abilities and EF

409 A principal components analysis (PCA) combined language abilities and EF
410 measures, respectively, for each dataset. Here, a single behavioral measurement

411  represents a noisy approximation of the behavioral construct. Combining across

412  multiple measures reduces this noise. To maintain separate train and test groups in
413 PNC and HBN, each PCA was limited to participants who did not have usable

414  neuroimaging data (n=6745 for PNC, n=1281 for HBN).

415

416  Ridge regression Connectome-based Predictive Modeling

417 Based on ridge regression, we modify the original CPM framework to better suit
418 the high-dimensional nature of connectivity data (Gao et al., 2019). Specifically, due to
419 the positive semi-definite nature of a functional connectivity matrix, the edges are not
420 independent. Ridge regression is more robust than OLS in this case. Instead of

421  summing selected edges and fitting a one-dimensional OLS model, we directly fit a
422  ridge regression model with training individuals using the selected edges from all the
423 tasks and apply the model to testing individuals in the cross-validation framework. We
424  trained a ridge regression model using 10-fold cross-validation for the within-dataset
425 models. We used Pearson’s correlation and a feature selection threshold of p<0.05.
426  When controlling for confounds, partial correlation was used for feature selection. The

427 L2 regularization parameter A parameter was chosen by an inner 10-fold cross-
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428 validation which uses only the training individuals. The largest A value with a mean

429  squared error (MSE) within one standard error of the minimum MSE is chosen. This
430 cross-validation was repeated for 100 random divisions.

431

432  Model performance

433 Within dataset prediction was evaluated with a cross-validated coefficient of

434  determination (g?), and the median g2 for 100 random 10-fold divisions is reported,

435 along with Pearson’s correlation (r) and mean square error (MSE) (Poldrack et al.,

436  2020). To generate null distributions for significance testing, we randomly shuffled the
437  correspondence between behavioral variables and connectivity matrices 1,000 times
438 and re-ran the CPM analysis with the shuffled data. Based on these null distributions,
439 the p-values for predictions were calculated as in prior work. Only a positive association
440 between predicted and actual values indicates prediction above chance (with negative
441  associations indicating a failure to predict), so one-tailed p-values are reported.

442  Pearson’s correlation was tested between actual and predicted values to evaluate

443  cross-dataset prediction.

444

445  Model contribution

446 Predictive networks identified using CPM are complex and composed of multiple
447  brain regions and networks. To quantify the contribution of each edge to a given

448  predictive model, we calculated the k' edge’s weight (labeled W, ) to the model as:

449 W, = abs(B *)std(E,), where std(E,) represents the standard deviation of the k"

450 edge, and g *represents the weight learned by CPM for the k™" edge. To quantify the


https://www.zotero.org/google-docs/?MPiGbJ
https://www.zotero.org/google-docs/?MPiGbJ
https://doi.org/10.1101/2024.01.23.576916
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576916; this version posted January 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

451  contribution of each node to a given predictive model, we calculated the n* node’s

452  weight summed across all edges (labeled W) to the model as: W, = ¥3>778 W, for all

453  k edges connected to the nt* node. Next, for the network level, W, was averaged over
454  each edge within or between canonical functional networks.

455

456  Virtual lesioning

457 CPM predictive networks are typically widespread and complex, so we

458  conducted a virtual lesion analysis. For a CPM-based virtual lesion analysis, predictive
459  networks can be set to zero to examine the degradation in predictive performance

460  attributed to a virtual lesion of that network (Yip et al., 2020). We iteratively set each
461 functional network to zero and examined how this impacted the model performance. We
462  conducted this virtual lesion analysis for the canonical functional networks: medial

463  frontal (MF), frontoparietal (FP), default mode (DMN), motor (MOT), visual I (VI), visual
464 I (VII), visual association (VA), salience (SAL), subcortical (SC), and cerebellum (CBL).
465

466  Data availability

467 Data are available through the Healthy Brain Network Dataset

468  (https://data.healthybrainnetwork.org/main.php), the Human Connectome Project in
469 Development Dataset (https://nda.nih.gov/), and the Philadelphia Neurodevelopmental
470  Cohort Dataset (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

471  bin/study.cgi?study_id=phs000607.v3.p2).

472

473  Code availability
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474 Preprocessing was carried out using Bioimage Suite, which is freely available:

475  https://medicine.yale.edu/bioimaging/suite/. Code for the analyses is available at:

476  https://qithub.com/brendan-adkinson/generalization/.

477
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