

1 **Brain-phenotype predictions can survive across diverse real-world data**

2

3 Brendan D. Adkinson¹, Matthew Rosenblatt², Javid Dadashkarimi^{3,4}, Link Tejavibulya¹, Rongtao

4 Jiang⁵, Stephanie Noble^{5,6,7}, Dustin Scheinost^{1,2,5,8,9,10}

5

6 ¹ Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510,

7 USA

8 ² Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA

9 ³ Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts

10 General Hospital, Charlestown, MA, 02129, USA.

11 ⁴ Department of Radiology, Harvard Medical School, Boston, MA, 02129, USA.

12 ⁵ Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT,

13 06510, USA

14 ⁶ Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA

15 ⁷ Department of Psychology, Northeastern University, Boston, MA, 02115, USA

16 ⁸ Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA

17 ⁹ Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA

18 ¹⁰ Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA

19

20

21 *Corresponding author: Brendan Adkinson (brendan.adkinson@yale.edu)

22 ABSTRACT

23 Recent work suggests that machine learning models predicting psychiatric
24 treatment outcomes based on clinical data may fail when applied to unharmonized
25 samples. Neuroimaging predictive models offer the opportunity to incorporate
26 neurobiological information, which may be more robust to dataset shifts. Yet, among the
27 minority of neuroimaging studies that undertake any form of external validation, there is
28 a notable lack of attention to generalization across dataset-specific idiosyncrasies.
29 Research settings, by design, remove the between-site variations that real-world and,
30 eventually, clinical applications demand. Here, we rigorously test the ability of a range of
31 predictive models to generalize across three diverse, unharmonized samples: the
32 Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network
33 (n=1110), and the Human Connectome Project in Development (n=428). These
34 datasets have high inter-dataset heterogeneity, encompassing substantial variations in
35 age distribution, sex, racial and ethnic minority representation, recruitment geography,
36 clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. We
37 demonstrate that reproducible and generalizable brain-behavior associations can be
38 realized across diverse dataset features with sample sizes in the hundreds. Results
39 indicate the potential of functional connectivity-based predictive models to be robust
40 despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets,
41 the best predictions were not from training and testing in the same dataset (i.e., cross-
42 validation) but across datasets. This result suggests that training on diverse data may
43 improve prediction in specific cases. Overall, this work provides a critical foundation for

44 future work evaluating the generalizability of neuroimaging predictive models in real-

45 world scenarios and clinical settings.

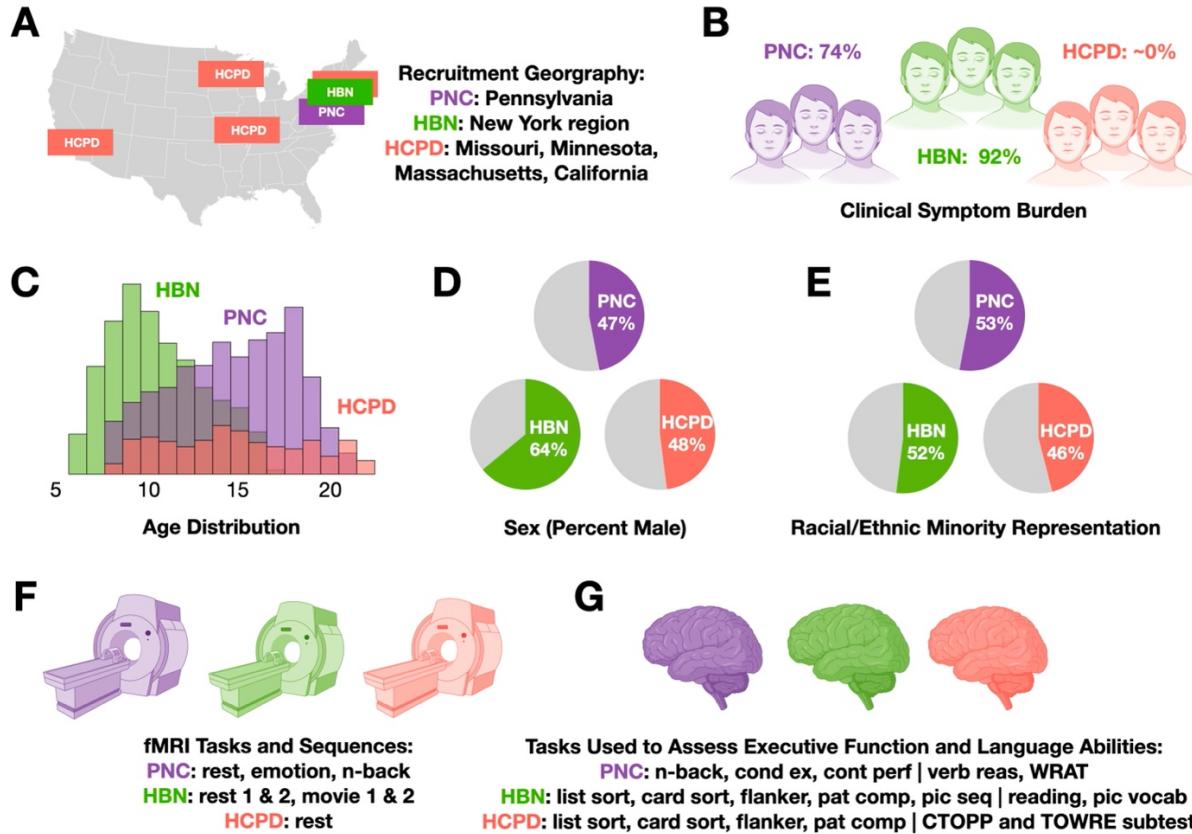
46

47 INTRODUCTION

48 Machine learning offers the potential to augment clinical decision-making,
49 individualize care, and improve patient outcomes (Johnson et al., 2021). Despite this
50 promise, clinical neurosciences, particularly psychiatry, have yet to realize the advances
51 in care that have been achieved by other medical disciplines. Recent work highlights
52 that machine learning models predicting psychiatric treatment outcomes may be
53 context-dependent and fail when applied to unharmonized samples (*i.e.*, across dataset
54 shifts) (Chekroud et al., 2024). Given these models rely exclusively on clinical data, the
55 addition of neurobiologically-grounded data, such as neuroimaging, may help overcome
56 limitations due to inter-dataset variability (Sui et al., 2020).

57 In light of this, it is imperative to assess whether neuroimaging predictive models
58 generalize across diverse dataset shifts. Only a minority of neuroimaging studies
59 undertake any form of external validation. Among those that do, the median external
60 sample size is only $n=108$ and is underpowered in most cases (Rosenblatt et al., 2023;
61 Yeung et al., 2022). Further, real-world and eventual clinical applications demand not
62 only external validation but also generalization across different imaging and phenotypic
63 features (Dockès et al., 2021; Woo et al., 2017). By design, many consortium-level
64 neuroimaging studies remove these variations, creating harmonization that does not
65 exist in other scenarios. The inclusion of multiple datasets with different imaging
66 parameters, patient demographics, and behavioral measures is necessary to truly
67 evaluate a neuroimaging predictive model, as harmonization is not always possible
68 (Chow et al., 2023; Torres-Espín and Ferguson, 2022). Models will only be clinically
69 valuable if they can predict effectively on top of these dataset-specific idiosyncrasies.

70 In this work, we rigorously evaluate the external validation of neuroimaging
71 predictive models across unharmonized samples (Figure 1). We use three distinct,
72 large-scale developmental datasets: the Philadelphia Neurodevelopmental Cohort
73 (PNC), the Healthy Brain Network (HBN), and the Human Connectome Project in
74 Development (HCPD) (Alexander et al., 2017; Satterthwaite et al., 2016; Somerville et
75 al., 2018). These datasets have high inter-dataset heterogeneity, encompassing
76 substantial variations in participant characteristics (age distribution, sex, racial and
77 ethnic minority representation, recruitment geography, clinical symptom burdens),
78 imaging parameters (fMRI tasks and sequences), and behavioral measures. We used
79 language abilities and function (EF) as two developmentally and clinically relevant
80 phenotypes for prediction (Adise et al., 2023; Casey, 2023; Godfrey et al., 2022; Qi et
81 al., 2021). We demonstrate that reproducible and generalizable brain-behavior
82 associations using functional connectivity and connectome-based predictive modeling
83 can be realized across diverse dataset features with sample sizes smaller than
84 consortium-levels. Results indicate the potential of functional connectivity to be robust
85 despite various dataset shifts. Further, they provide a critical foundation for future work
86 evaluating the generalizability of brain-behavior associations in real-world scenarios
87 and, eventually, clinical settings.



88 **Figure 1. Differences across the PNC, HBN, and HCPD datasets.** The Philadelphia
89 Neurodevelopmental Cohort (PNC), Healthy Brain Network (HBN), and Human
90 Connectome Project in Development (HCPD) datasets exhibit a notable lack of
91 harmonization across recruitment geography (A), participant clinical symptom burden
92 (B), age distribution (C), sex (D), racial and ethnic minority representation (E), fMRI
93 tasks and sequences (F), and measures used to assess language abilities and
94 executive function (G).

95

96

97

98

99

100

101 **RESULTS**

102 We generated models of language abilities and EF in the PNC (n=1291), HBN
103 (n=1110), and HCPD (n=428) datasets using ridge regression connectome-based
104 predictive modeling (CPM) (Shen et al., 2017). Connectomes were created using the
105 Shen 268 atlas. Each participant's connectome included all available resting-state and
106 task fMRI data with low motion (<0.2 mm). Combining connectomes across fMRI data
107 improves reliability and predictive power (Elliott et al., 2019; Gao et al., 2019).

108 Participants without one low-motion fMRI run were excluded.

109 A disparate set of behavioral tasks assessed language and EF in the three
110 datasets (Table S1). We used principal component analysis (PCA) to derive “latent”
111 factors of language abilities and EF within each dataset. Participants with missing
112 language and EF measures were excluded. Importantly, the PCA was estimated using
113 participants who did not have imaging data to maintain proper separation of training and
114 testing data. The first principal component explained 70%, 55%, and 77% of language
115 ability measure variance in PNC, HBN, and HCPD, respectively. For executive function,
116 the first principal component of all behavioral measures explained 53%, 48%, and 40%
117 of the variance in PNC, HBN, and HCPD, respectively. Contributions of individual
118 measures to the first principal component are presented in Table S1. Behavioral data
119 from participants with imaging data were projected onto the first principal component.
120 This projection was used in all CPM analyses unless otherwise specified.

121 Predictive models were trained and tested within each dataset using 100
122 iterations of 10-fold cross-validation. Model performance was evaluated with Pearson's
123 correlation (r), representing the correspondence between predicted and observed

124 behavioral scores, along with the cross-validation coefficient of determination (q^2) and
125 mean square error (MSE). Significance was assessed using permutation testing with
126 1000 iterations of randomly shuffled behavioral data labels. Cross-dataset predictions
127 were evaluated with Pearson's correlation.

128

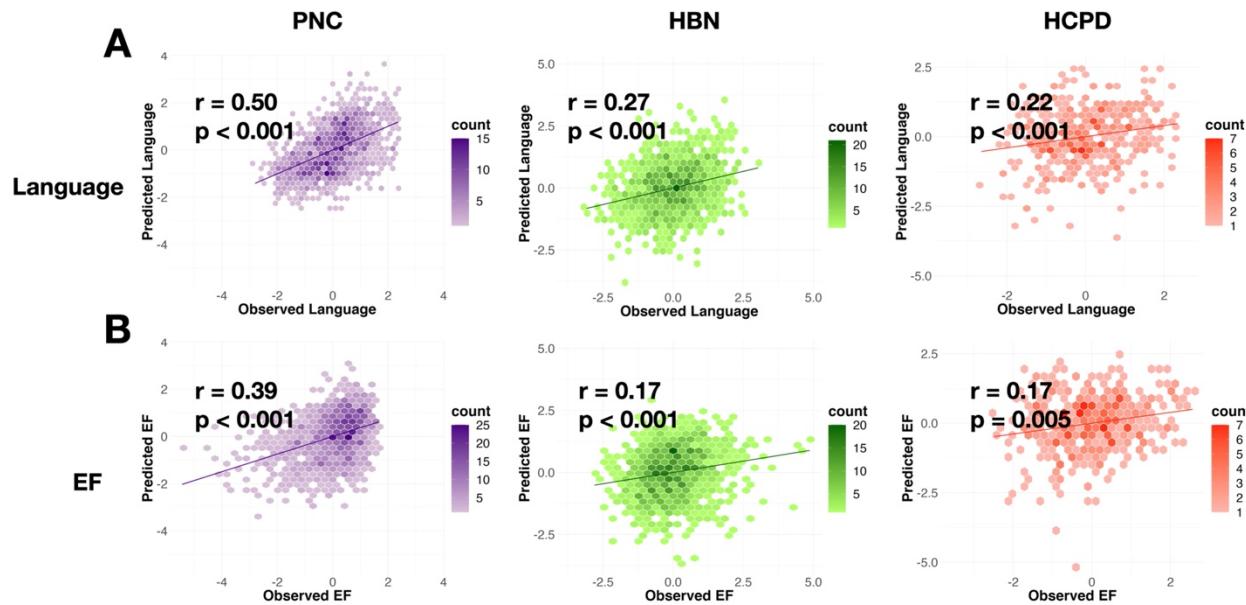
129 **Connectome-based prediction of language abilities**

130 Models successfully predicted language abilities within each dataset (Figures 2A
131 and S1A; PNC: $r=0.50$, $p<0.001$, $q2=0.24$, $MSE=1.05$; HBN: $r=0.27$, $p<0.001$, $q2=0.06$,
132 $MSE=4.42$; HCPD: $r=0.22$, $p<0.001$, $q2=0.01$, $MSE=1.47$). Model performance was
133 similar to original predictions when controlling for age, sex, racial/ethnic minority
134 representation, socioeconomic status, head motion, and clinical symptom burden (Table
135 S2).

136

137 **Connectome-based prediction of executive function**

138 The performance of EF models closely resembled the performance of language
139 models (Figures 2B and S1B; PNC: $r=0.39$, $p<0.001$, $q2=0.14$, $MSE=1.17$; HBN: $r=0.17$,
140 $p<0.001$, $q2=0.02$, $MSE=2.03$; HCPD: $r=0.17$, $p=0.005$, $q2=-0.01$, $MSE=1.98$). The
141 addition of covariates into the model yielded similar results for age, sex, racial/ethnic
142 minority representation, socioeconomic status, head motion, and clinical symptom
143 burden (Table S2).



144

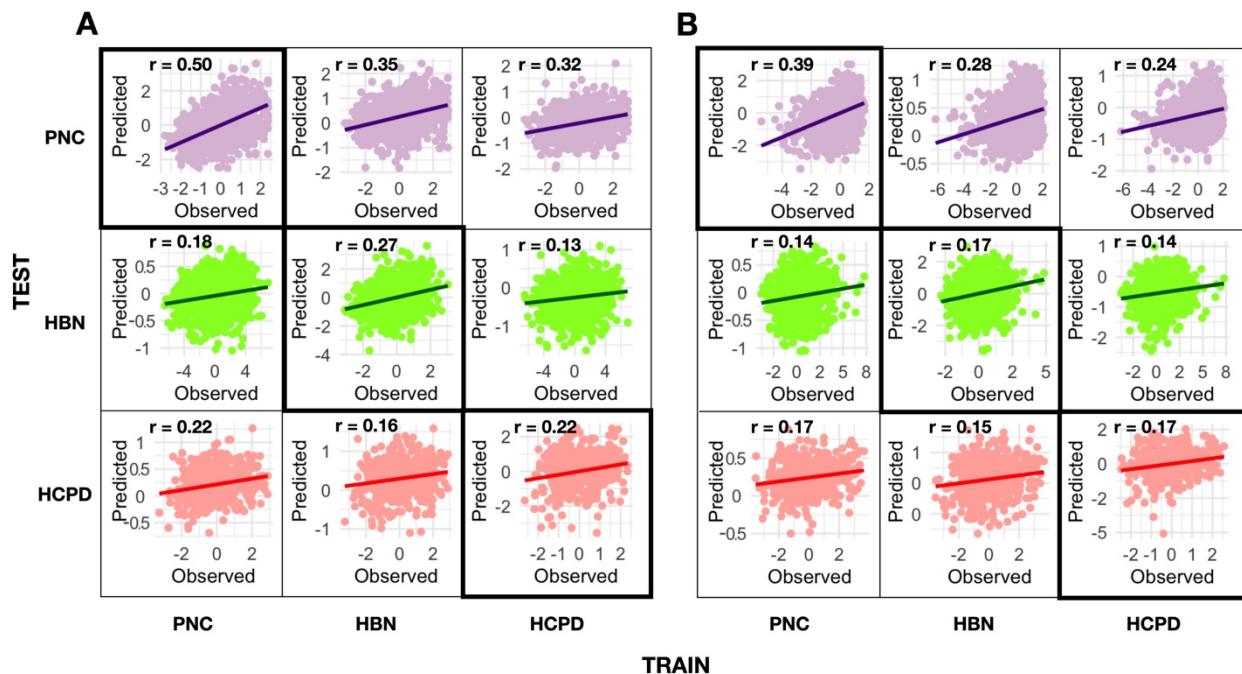
145 **Figure 2. Connectome-based predictive model performance within-dataset.**

146 Scatter plot of observed 1st principal component scores on the x-axis and predicted 1st
147 principal component scores on the y-axis for language abilities (A) and executive
148 function (B) across PNC (purple), HBN (green), and HCPD (red). Counts represent
149 individual participant data.

150

151 **Models generalize across datasets despite notable lack of harmonization**

152 Cross-dataset predictions were performed across the three datasets to ensure
153 our models' generalizability. Importantly, PNC, HBN, and HCPD are characterized by a
154 notable lack of inter-dataset harmonization (Figure 1). Despite such substantial
155 differences, we achieved cross-dataset prediction of language abilities and EF (Figure
156 3). Language abilities were predicted with r 's=0.13-0.35. EF was predicted with
157 r 's=0.14-0.28. Testing on the PNC produced the best cross-dataset predictions for
158 language abilities and EF. As a result, the best predictions for the HCPD and HBN were
159 not from training and testing in the same dataset (i.e., cross-validation).



160

161 **Figure 3. Model performances across unharmonized datasets.** Scatter plots of true
162 versus predicted PCA-derived language abilities (A) and executive function (B) scores
163 for cross-dataset predictions. Purple (PNC), green (HBN), and red (HCPD) colors
164 indicate the dataset in which predictions were tested. Diagonals represent within-
165 dataset prediction performances.

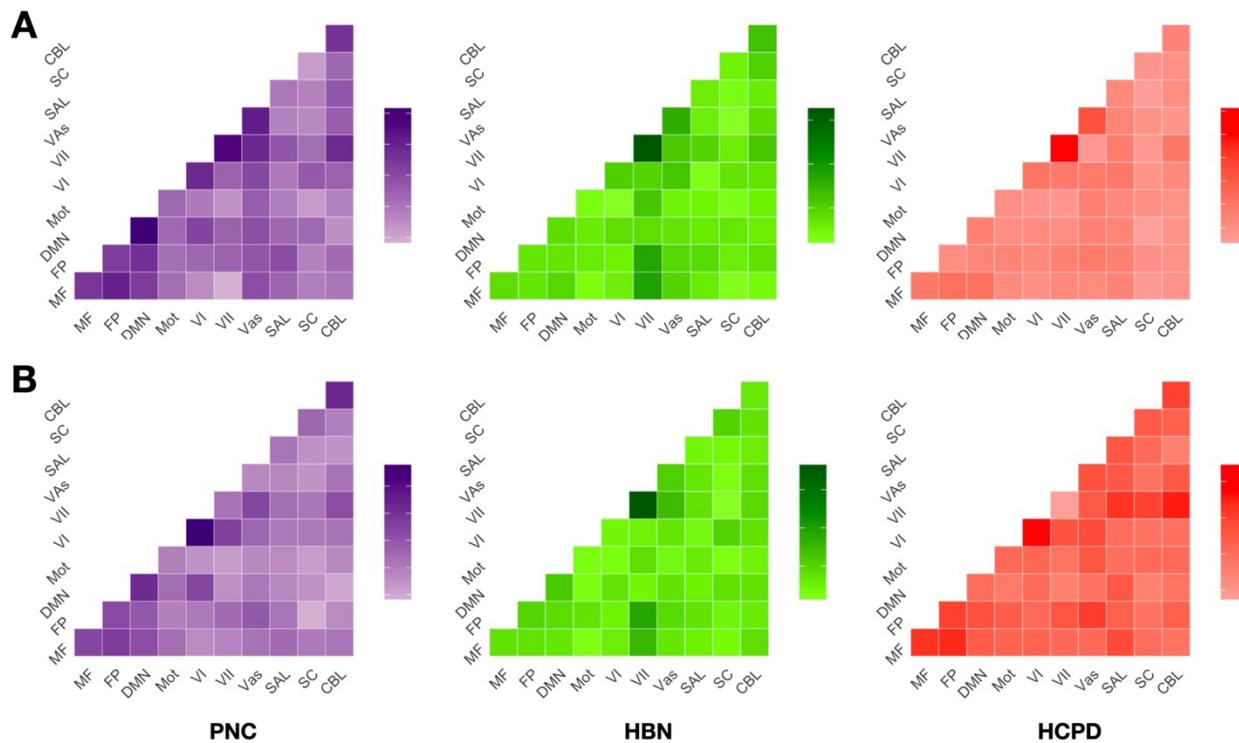
166

167 **Brain features underlying language abilities and executive function**

168 In line with previous CPM results, predictive models of language abilities and EF
169 were complex, with contributions from every node and canonical brain network (Figures
170 4, S2). Virtual lesioning analyses confirmed the predictive utility of every brain network
171 but also suggested the importance of the medial frontal and frontoparietal networks in
172 predicting language abilities and EF (Figure S3). These networks contain noted regions
173 for language (e.g., Broca's and Wernicke's) and EF (e.g., prefrontal cortex). We
174 compared the brain features that predicted language abilities and EF in one dataset to

175 those that predicted the same construct in the other two. All edgewise regression
176 coefficients were normalized by the standard deviation of edges and summed for each
177 canonical brain network. At the network level, predictive features from each dataset
178 were correlated between $r=0.48$ – 0.74 for language abilities and $r=-0.03$ – 0.30 for EF.
179 The correlations between the HCPD and the HBN or PNC were the lowest (Table S3).
180

180



181

182 **Figure 4. Network-level contributions to language abilities and executive function**

183 **predictions.** Canonical network contributions to predicted language abilities (A) and

184 executive function (B) across PNC (purple), HBN (green), and HCPD (red).

185 Contributions of edges within a single network (diagonals) and between networks (off-

186 diagonals) were defined as the sum of edgewise regression coefficients normalized by

187 network size. Darker colors indicate networks with larger model coefficients. Network

188 Labels: MF, medial frontal; FP, frontoparietal; DMN, default mode; Mot, motor cortex;

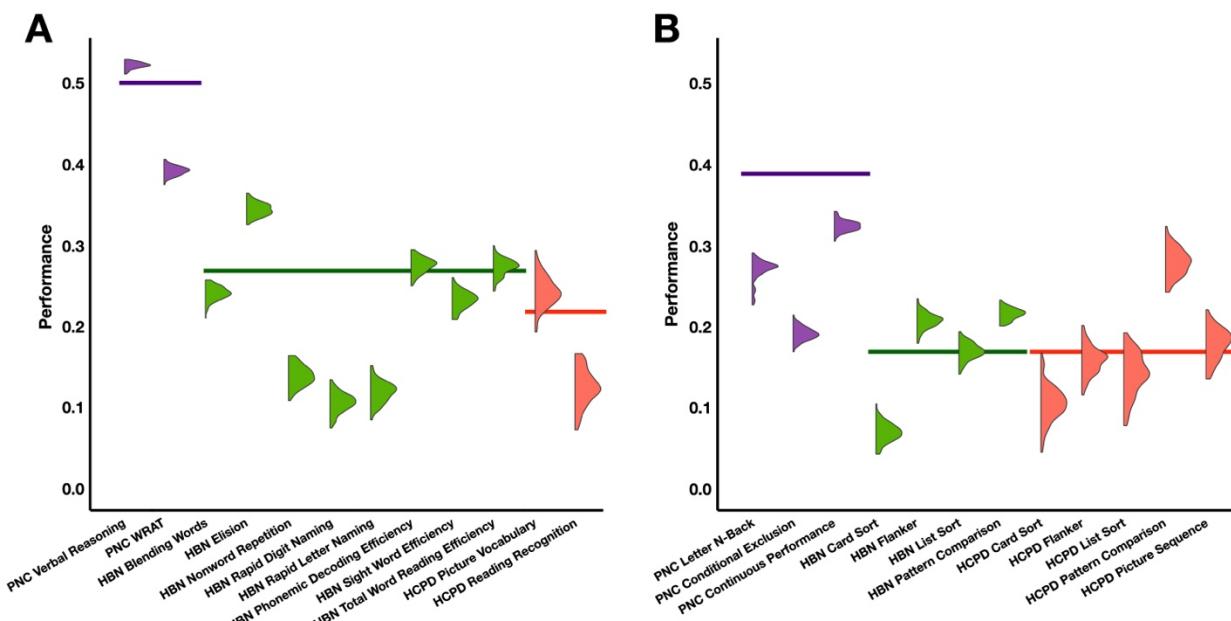
189 VI, visual A; VII, visual B; VAs, visual association; SAL, salience; SC, subcortical; CBL,
190 cerebellum.

191

192 **Prediction of individual language and EF measures**

193 Finally, we tested within and cross-dataset predictions for each measure used in
194 the PCA. This analysis ensures that the strong cross-dataset predictions are not solely
195 a function of combining disparate measures. Within-dataset predictions were significant
196 across all individual measures, with the lowest being the HBN Card Sort task ($r=0.07$,
197 $p=0.05$, Figure 5).

198



199
200 **Figure 5. Within-dataset predictions of individual measures.** Distributions of
201 prediction performance Pearson's r values across 100 iterations for each individual
202 language (A) and EF (B) measure. PNC measures are purple, HBN measures are

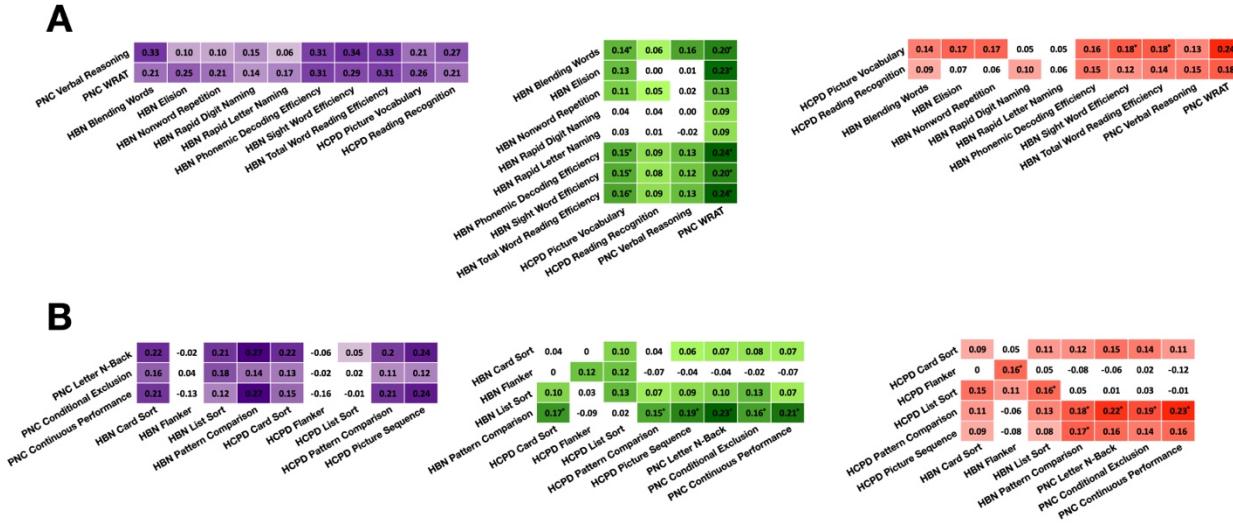
203 green, and HCPD measures are red. Solid lines indicate PCA prediction performances
204 for comparison.

205

206 Cross-dataset predictions for the individual measures followed patterns similar to
207 PCA-derived predictions and, in general, were significant (Figure 6). Mirroring PCA
208 results, cross-dataset language abilities predictions (median $r=0.14$, interquartile range
209 (IQR)=0.09) were more accurate than executive function predictions (median $r=0.11$,
210 IQR=0.10). For language abilities, all individual measures were predicted in at least one
211 cross-dataset model. 58 out of 72 cross-dataset models were significant, including all
212 models tested in the PNC. For EF, 61 out of 94 cross-dataset models were significant.
213 Models built on the flanker task showed the worst generalization. Most predictions used
214 different measures in the training and testing data, showing strong generalization of
215 language and EF models.

216 Finally, we correlated within-dataset and cross-dataset performance. The ability
217 of a measure to predict measures in another dataset did not correlate with its within-
218 dataset performance ($r=0.21$, $p=0.34$). However, the ability of a measure to be predicted
219 by measures in another dataset strongly correlated with within-dataset performance
220 ($r=0.72$, $p<0.001$). These results indicate that a measure's within-dataset performance
221 estimates its predictability from other models, but not the predictive ability of its model
222 on other measures.

223



224

PNC

HBN

HCPD

225 **Figure 6. Cross-dataset predictions of individual measures.** Models were trained on
226 a single measure in one dataset (x-axis) and independently tested on each individual
227 measure of the other dataset (y-axis) for language abilities (A) and executive function
228 (B). Performance r values are shown for PNC (purple), HBN (green), and HCPD (red).
229 Darker colors indicate higher prediction performances. White indicates non-significant
230 performances. Asterisks indicate predictions greater than PCA-derived cross-dataset
231 predictions.

232

233

234

235

236

237

238 **DISCUSSION**

239 We used connectome-based predictive modeling to test the generalizability of
240 neuroimaging predictive models across diverse dataset features. Predictions of
241 language abilities and EF survived testing across three unharmonized, large-scale
242 developmental samples. These results suggest reproducible associations that
243 overcome individual dataset idiosyncrasies can be achieved with sample sizes (n=500-
244 1000's) below consortium-level magnitudes. Further, many models based on an
245 individual measure of language or EF generalized to different language or EF
246 measures. Interestingly, both PCA and individual measure results indicate that a
247 model's within-dataset performance estimates its predictability from other models but
248 not the predictive ability of its model on other measures. Testing brain-behavior
249 associations across diverse data remains necessary to strengthen the generalizability of
250 findings beyond a particular dataset and assess applicability to real-world settings.

251 Our results highlight the potential of pooling neuroimaging data without
252 harmonization. Notably, for the HCPD and HBN datasets, the best predictions were not
253 from training and testing in the same dataset (i.e., cross-validation) but from external
254 validation. This result suggests that training on diverse data may improve prediction in
255 specific cases. Of course, strictly harmonized data collection efforts by consortiums
256 remain essential (Casey et al., 2018; Sudlow et al., 2015). They maximize statistical
257 power by minimizing unexplained variance (i.e., experimental noise). Nevertheless,
258 harmonization is expensive and not always possible (Chow et al., 2023; Torres-Espín
259 and Ferguson, 2022). It also prevents testing a model's robustness to different
260 experimental factors. Thus, testing on non-harmonized data is needed. While post-hoc

261 harmonization (i.e., ComBat) is often applied in these studies, we avoided this step to
262 test how brain-behavior associations can generalize without explicit harmonization
263 (Chen et al., 2022; Yan et al., 2023). Using non-harmonized sources is a strength of
264 neuroimaging predictive modeling. Recent work suggests that machine learning models
265 predicting treatment outcomes from clinical data may fail when applied to unharmonized
266 samples (Chekroud et al., 2024). Our results point to the potential value of incorporating
267 neuroimaging data to improve generalization across unharmonized samples.

268 Though our models generalize well, lacking generalization is not inherently bad.
269 A single model will not be appropriate in all cases. For example, models designed for
270 adults likely should not work on infants and young children (Scheinost et al., 2023).
271 Many brain-behavior associations may exhibit sex differences, where sex-specific
272 models could be needed (Dhamala et al., 2023; Greene et al., 2018; Jiang et al., 2020;
273 Yip et al., 2023). Further, evidence suggests that those who defy stereotypes (such as
274 minoritized populations) could require different models (Greene et al., 2022). Rigorously
275 testing a model on diverse data, regardless of whether it generalizes, produces valuable
276 information. Null results motivate future studies to understand the lack of generalization
277 and should be published (Munafò and Neill, 2016). As a field, we should encourage
278 testing models on diverse data to understand the effects of dataset shift and if models
279 generalize.

280 We employed state-of-the-field methodology to use as much data as possible.
281 This approach includes using large sample sizes to create and externally validate
282 models. In contrast to most studies using external validation, the sample sizes for
283 external validation were of the same order as the training data (Rosenblatt et al., 2023;

284 Yeung et al., 2022). In fact, given that two external datasets were used to validate each
285 model, more data was used to test a model than train it. This approach ensured we had
286 adequate power for external validation. In all cases, we had at least 80% power for
287 effects as low as $r=0.15$. In addition to using large sample sizes, we also used several
288 fMRI runs and multiple behavior measures for each individual. Combining fMRI and
289 behavior data improves prediction likely by averaging out the idiosyncrasies of each
290 data point and increasing reliability. These latent factors also allow diverse data types
291 (i.e., different fMRI tasks and behavioral measures) to be used for prediction. Finally, we
292 preserved participants without imaging data to derive principal components (e.g., using
293 6745 PNC and 1281 HBN participants) to increase the representation. These results
294 follow the growing appreciation of large (i.e., many participants) and deep (i.e., many
295 measures per participant) data (Gordon et al., 2017; Marek et al., 2022).

296 Statistical power remains a fundamental consideration in neuroimaging (Cremers
297 et al., 2017). A rule of thumb is often desired (i.e., 1,000 participants are needed for an
298 fMRI experiment). However, a simple answer is often insufficient given the complexities
299 of relating neuroimaging data to behavior. There are too many modalities, behaviors,
300 and analysis methods. Though, some generalities can be made. Our results
301 demonstrate that predictive models can generalize across diverse, unharmonized data.
302 These findings underscore the potential to employ neuroimaging models for predicting
303 personalized outcomes and finding robust brain-behavior associations (Spisak et al.,
304 2023). Of course, results will likely be case-specific. Language and EF exhibit large
305 effect sizes for brain-behavior associations. Other behaviors and phenotypes, such as

306 clinical symptoms, may need larger samples or improved methodology to create robust
307 associations.

308 Executive function and language abilities are core cognitive processes that are
309 critical for everyday functioning. Executive function supports manipulating information to
310 plan, organize, and execute decisions towards goal-directed tasks (Cristofori et al.,
311 2019; Diamond, 2013). Language abilities support the effective production and
312 comprehension of communication toward meaningful interaction (Kidd et al., 2018).

313 Cognitive deficits are associated with a range of psychiatric and developmental
314 disorders (Millan et al., 2012; Zelazo, 2020). Achieving robust predictions of these
315 constructs is meaningful for cognitive and clinical neuroscience (Barron et al., 2020;
316 Boyle et al., 2023; Sui et al., 2020). However, the observed effect sizes are still smaller
317 than necessary for real-world utility. Further, even if our models were actionable, ethical
318 concerns related to their implementation in developmental populations exist (Scheinost
319 et al., 2023). For example, false positives lead to unnecessary interventions, while false
320 negatives divert resources from those who need them. Another consideration is model
321 interpretability. Clinicians may be more hesitant to trust and integrate less interpretable
322 models into their practice (Chekroud et al., 2021). The edges we observed contributing
323 to language abilities and executive function predictions were distributed throughout the
324 brain. It is difficult to pinpoint a single canonical network responsible for individual
325 variation in performance (Kohoutová et al., 2020). However, these models align with
326 recent literature that appreciates complex brain-wide networks rather than the simple
327 networks often identified by traditional association studies (Dubois et al., 2018).

328 The strength of this study is the rigorous validation of the models. First, we used
329 three large developmental datasets to maximize statistical power. Few large-scale
330 neuroimaging studies incorporate any form of external validation (Rosenblatt et al.,
331 2023; Yeung et al., 2022). In addition to internal cross-validation, each model was
332 validated in two independent large-scale datasets. Future applications of brain-based
333 predictive modeling methods must overcome demographics, imaging, and behavioral
334 data differences. The three datasets exhibited substantial variability in participant
335 demographics, geographic distribution, and clinical symptoms. Further, the notable lack
336 of harmonization suggests that these models are not dependent upon specific study
337 designs or measurement features. Thus, our results are highly generalizable and robust
338 to dataset shift.

339 Several limitations exist. Using PCA on disparate behavioral measures may
340 inadvertently remove some elements that make each measure unique. For example,
341 unique components of EF include working memory, cognitive flexibility, and inhibitory
342 control. Thus, latent measures from PCA might not represent these components but
343 instead represent general cognition (Dyer and Kording, 2023). Similarly, we define
344 language abilities broadly, including receptive language, expressive language, speech,
345 and reading measures. These broad definitions may also explain the models' lack of
346 localization. More specific phenotypes will likely improve a model's interpretability
347 (Enkavi et al., 2019; Greene and Constable, 2023). We also see strong cross-dataset
348 predictions for individual measures, so testing this hypothesis is plausible for future
349 work. While our models generalized across various factors, all datasets were

350 developmental samples from the United States. It is unclear if models would generalize
351 to older individuals or those from non-western countries.

352 In conclusion, we show that brain-behavior associations generated from
353 functional connectivity data can generalize over non-harmonized data. These results
354 highlight that generalizable models can be achieved with datasets below consortium-
355 level sample sizes and the potential of using non-harmonized data. Mimicking real-world
356 dataset shifts in training and testing predictive models may accelerate their
357 development into clinical tools and practice.

358

359

360 **METHODS**

361 *Datasets*

362 PNC participants were 1291 individuals ages 8-21 recruited from the greater
363 Philadelphia, Pennsylvania area (Satterthwaite et al., 2016). Participants completed
364 rest, emotion task, and n-back task fMRI runs (Satterthwaite et al., 2014). Measures of
365 language abilities were the Penn Verbal Reasoning Task from the Penn Computerized
366 Neurocognitive Battery (CNB) and the total standard score from the Wide Range
367 Assessment Test (WRAT) Reading Subscale (Gur et al., 2010; Wilkinson and
368 Robertson, 2006). Executive function measures were the Letter N-Back, Conditional
369 Exclusion, and Continuous Performance tasks from the CNB.

370 HBN participants were 1110 individuals ages 6-17 recruited from the New York
371 City, New York region (Alexander et al., 2017). Participants completed two rest fMRI
372 runs as well as 'Despicable Me' and 'The Present' movie-watching scan sessions.
373 Measures of language abilities were the Elision, Blending Words, Nonword Repetition,
374 Rapid Digit Naming, and Rapid Letter Naming scaled scores from the Comprehensive
375 Test of Phonological Processing (CTOPP-2) and the Phonemic Decoding Efficiency,
376 Sight Word Efficiency, and Total Word Reading Efficiency scaled scores from the Test
377 of Word Reading Efficiency (TOWRE-2) (Dickens et al., 2015; Tarar et al., 2015).
378 Executive function measures were the Flanker Inhibitory Control and Attention, List
379 Sorting Working Memory, Pattern Comparison Processing Speed, and Dimensional
380 Change Card Sort age-corrected standard scores from the NIH Toolbox (Weintraub et
381 al., 2013).

382

383 HCPD participants were 428 individuals ages 8-22 recruited from St. Louis,
384 Missouri, Twin Cities, Minnesota, Boston, Massachusetts, and Los Angeles, California
385 (Somerville et al., 2018). Participants completed rest fMRI runs (Harms et al., 2018).
386 Measures of language abilities were the Picture Vocabulary and Oral Reading
387 Recognition age-corrected standard scores from the NIH Toolbox. Executive function
388 measures were the Flanker Inhibitory Control and Attention, List Sorting Working
389 Memory, Pattern Comparison Processing Speed, Dimensional Change Card Sort, and
390 Picture Sequence Memory age-corrected standard scores from the NIH Toolbox.

391

392 *Preprocessing*

393 In all datasets, data were motion-corrected. Additional preprocessing steps were
394 performed using BiolImage Suite (Papademetris et al., 2006). This included regression
395 of covariates of no interest from the functional data, including linear and quadratic drifts,
396 mean cerebrospinal fluid signal, mean white matter signal, and mean global signal.
397 Additional motion control was applied by regressing a 24-parameter motion model,
398 which included six rigid body motion parameters, six temporal derivatives, and the
399 square of these terms, from the data. Subsequently, we applied temporal smoothing
400 with a Gaussian filter (approximate cutoff frequency=0.12 Hz) and gray matter masking,
401 as defined in common space. Then, the Shen 268-node atlas was applied to parcellate
402 the denoised data into 268 nodes (Shen et al., 2013). Finally, we generated functional
403 connectivity matrices by correlating each node time series data pair and applying the
404 Fisher transform. Data were excluded for poor data quality, missing nodes due to lack of

405 full brain coverage, high motion (>0.2mm mean frame-wise motion), or missing
406 behavioral/phenotypic data.

407

408 *Creating latent factors of language abilities and EF*

409 A principal components analysis (PCA) combined language abilities and EF
410 measures, respectively, for each dataset. Here, a single behavioral measurement
411 represents a noisy approximation of the behavioral construct. Combining across
412 multiple measures reduces this noise. To maintain separate train and test groups in
413 PNC and HBN, each PCA was limited to participants who did not have usable
414 neuroimaging data (n=6745 for PNC, n=1281 for HBN).

415

416 *Ridge regression Connectome-based Predictive Modeling*

417 Based on ridge regression, we modify the original CPM framework to better suit
418 the high-dimensional nature of connectivity data (Gao et al., 2019). Specifically, due to
419 the positive semi-definite nature of a functional connectivity matrix, the edges are not
420 independent. Ridge regression is more robust than OLS in this case. Instead of
421 summing selected edges and fitting a one-dimensional OLS model, we directly fit a
422 ridge regression model with training individuals using the selected edges from all the
423 tasks and apply the model to testing individuals in the cross-validation framework. We
424 trained a ridge regression model using 10-fold cross-validation for the within-dataset
425 models. We used Pearson's correlation and a feature selection threshold of $p < 0.05$.
426 When controlling for confounds, partial correlation was used for feature selection. The
427 L2 regularization parameter λ parameter was chosen by an inner 10-fold cross-

428 validation which uses only the training individuals. The largest λ value with a mean
429 squared error (MSE) within one standard error of the minimum MSE is chosen. This
430 cross-validation was repeated for 100 random divisions.

431

432 *Model performance*

433 Within dataset prediction was evaluated with a cross-validated coefficient of
434 determination (q^2), and the median q^2 for 100 random 10-fold divisions is reported,
435 along with Pearson's correlation (r) and mean square error (MSE) (Poldrack et al.,
436 2020). To generate null distributions for significance testing, we randomly shuffled the
437 correspondence between behavioral variables and connectivity matrices 1,000 times
438 and re-ran the CPM analysis with the shuffled data. Based on these null distributions,
439 the p-values for predictions were calculated as in prior work. Only a positive association
440 between predicted and actual values indicates prediction above chance (with negative
441 associations indicating a failure to predict), so one-tailed p-values are reported.
442 Pearson's correlation was tested between actual and predicted values to evaluate
443 cross-dataset prediction.

444

445 *Model contribution*

446 Predictive networks identified using CPM are complex and composed of multiple
447 brain regions and networks. To quantify the contribution of each edge to a given
448 predictive model, we calculated the k^{th} edge's weight (labeled $W_{k,}$) to the model as:
449 $W_k = \text{abs}(\beta^{-k}) \text{std}(E_k)$, where $\text{std}(E_k)$ represents the standard deviation of the k^{th}
450 edge, and β^{-k} represents the weight learned by CPM for the k^{th} edge. To quantify the

451 contribution of each node to a given predictive model, we calculated the n^{th} node's
452 weight summed across all edges (labeled W_n) to the model as: $W_n = \sum_{k=1}^{35,778} W_k$, for all
453 k edges connected to the n^{th} node. Next, for the network level, W_k was averaged over
454 each edge within or between canonical functional networks.

455

456 *Virtual lesioning*

457 CPM predictive networks are typically widespread and complex, so we
458 conducted a virtual lesion analysis. For a CPM-based virtual lesion analysis, predictive
459 networks can be set to zero to examine the degradation in predictive performance
460 attributed to a virtual lesion of that network (Yip et al., 2020). We iteratively set each
461 functional network to zero and examined how this impacted the model performance. We
462 conducted this virtual lesion analysis for the canonical functional networks: medial
463 frontal (MF), frontoparietal (FP), default mode (DMN), motor (MOT), visual I (VI), visual
464 II (VII), visual association (VA), salience (SAL), subcortical (SC), and cerebellum (CBL).

465

466 *Data availability*

467 Data are available through the Healthy Brain Network Dataset
468 (<https://data.healthybrainnetwork.org/main.php>), the Human Connectome Project in
469 Development Dataset (<https://nda.nih.gov/>), and the Philadelphia Neurodevelopmental
470 Cohort Dataset (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2).

472

473 *Code availability*

474 Preprocessing was carried out using Bioimage Suite, which is freely available:

475 <https://medicine.yale.edu/bioimaging/suite/>. Code for the analyses is available at:

476 <https://github.com/brendan-adkinson/generalization/>.

477

478 *Acknowledgements*

479 Funding: This work was supported by funding from the Wellcome Leap 1kD

480 Program (obtained by D.S.). B.A. was supported by NIH Medical Scientist Training

481 Program Training Grant T32GM136651. M.R. was supported by the National Science

482 Foundation Graduate Research Fellowship under grant DGE2139841. L.T. was

483 supported by the Gruber Science Fellowship. S.N. was supported by the National

484 Institute of Mental Health under grant K00MH122372. Any opinions, findings, and

485 conclusions or recommendations expressed in this material are those of the authors

486 and do not necessarily reflect those of the funding agencies.

487 Competing Interests: B.A. holds equity in Elevation Prep. The authors report no

488 other competing interests.

489

490 **REFERENCES**

491 Adise, S., Ottino-Gonzalez, J., Goedde, L., Marshall, A.T., Kan, E., Rhee, K.E., Goran,
492 M.I., Sowell, E.R., 2023. Variation in executive function relates to BMI increases
493 in youth who were initially of a healthy weight in the ABCD Study. *Obesity* 31,
494 2809–2821. <https://doi.org/10.1002/oby.23811>

495 Alexander, L.M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., Vega-Potler,
496 N., Langer, N., Alexander, A., Kovacs, M., Litke, S., O'Hagan, B., Andersen, J.,
497 Bronstein, B., Bui, A., Bushey, M., Butler, H., Castagna, V., Camacho, N., Chan,
498 E., Citera, D., Clucas, J., Cohen, S., Dufek, S., Eaves, M., Fradera, B., Gardner,
499 J., Grant-Villegas, N., Green, G., Gregory, C., Hart, E., Harris, S., Horton, M.,
500 Kahn, D., Kabotyanski, K., Karmel, B., Kelly, S.P., Kleinman, K., Koo, B., Kramer,
501 E., Lennon, E., Lord, C., Mantello, G., Margolis, A., Merikangas, K.R., Milham, J.,
502 Minniti, G., Neuhaus, R., Levine, A., Osman, Y., Parra, L.C., Pugh, K.R.,
503 Racanello, A., Restrepo, A., Saltzman, T., Septimus, B., Tobe, R., Waltz, R.,
504 Williams, A., Yeo, A., Castellanos, F.X., Klein, A., Paus, T., Leventhal, B.L.,
505 Craddock, R.C., Koplewicz, H.S., Milham, M.P., 2017. An open resource for
506 transdiagnostic research in pediatric mental health and learning disorders. *Sci.*
507 *Data* 4, 170181. <https://doi.org/10.1038/sdata.2017.181>

508 Barron, D.S., Gao, S., Dadashkarimi, J., Greene, A.S., Spann, M.N., Noble, S., Lake,
509 E.M.R., Krystal, J.H., Constable, R.T., Scheinost, D., 2020. Transdiagnostic,
510 Connectome-Based Prediction of Memory Constructs Across Psychiatric
511 Disorders. *Cereb. Cortex N. Y.* 31, 2523–2533.
512 <https://doi.org/10.1093/cercor/bhaa371>

513 Boyle, R., Connaughton, M., McGlinchey, E., Knight, S.P., De Looze, C., Carey, D.,
514 Stern, Y., Robertson, I.H., Kenny, R.A., Whelan, R., 2023. Connectome-based
515 predictive modelling of cognitive reserve using task-based functional connectivity.
516 *Eur. J. Neurosci.* 57, 490–510. <https://doi.org/10.1111/ejn.15896>

517 Casey, B.J., 2023. Executive functions in the brain, development and social context:
518 Early contributions by neuroscientist, Adele Diamond. *Dev. Cogn. Neurosci.* 62,
519 101272. <https://doi.org/10.1016/j.dcn.2023.101272>

520 Casey, B.J., Cannonier, T., Conley, M.I., Cohen, A.O., Barch, D.M., Heitzeg, M.M.,
521 Soules, M.E., Teslovich, T., Dellarco, D.V., Garavan, H., Orr, C.A., Wager, T.D.,
522 Banich, M.T., Speer, N.K., Sutherland, M.T., Riedel, M.C., Dick, A.S., Bjork, J.M.,
523 Thomas, K.M., Chaarani, B., Mejia, M.H., Hagler, D.J., Daniela Cornejo, M.,
524 Sicat, C.S., Harms, M.P., Dosenbach, N.U.F., Rosenberg, M., Earl, E., Bartsch,
525 H., Watts, R., Polimeni, J.R., Kuperman, J.M., Fair, D.A., Dale, A.M., ABCD
526 Imaging Acquisition Workgroup, 2018. The Adolescent Brain Cognitive
527 Development (ABCD) study: Imaging acquisition across 21 sites. *Dev. Cogn.*
528 *Neurosci.* 32, 43–54. <https://doi.org/10.1016/j.dcn.2018.03.001>

529 Chekroud, A.M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., Cohen,
530 Z., Belgrave, D., DeRubeis, R., Iniesta, R., Dwyer, D., Choi, K., 2021. The
531 promise of machine learning in predicting treatment outcomes in psychiatry.
532 *World Psychiatry* 20, 154–170. <https://doi.org/10.1002/wps.20882>

533 Chekroud, A.M., Hawrilenko, M., Loho, H., Bondar, J., Gueorguieva, R., Hasan, A.,
534 Kambeitz, J., Corlett, P.R., Koutsouleris, N., Krumholz, H.M., Krystal, J.H.,

535 Paulus, M., 2024. Illusory generalizability of clinical prediction models. *Science*
536 383, 164–167. <https://doi.org/10.1126/science.adg8538>

537 Chen, A.A., Luo, C., Chen, Y., Shinohara, R.T., Shou, H., Alzheimer's Disease
538 Neuroimaging Initiative, 2022. Privacy-preserving harmonization via distributed
539 ComBat. *NeuroImage* 248, 118822.
540 <https://doi.org/10.1016/j.neuroimage.2021.118822>

541 Chow, S.-M., Nahum-Shani, I., Baker, J.T., Spruijt-Metz, D., Allen, N.B., Auerbach,
542 R.P., Dunton, G.F., Friedman, N.P., Intille, S.S., Klasnja, P., Marlin, B., Nock,
543 M.K., Rauch, S.L., Pavel, M., Vrieze, S., Wetter, D.W., Kleiman, E.M., Brick,
544 T.R., Perry, H., Wolff-Hughes, D.L., Intensive Longitudinal Health Behavior
545 Network (ILHBN), 2023. The ILHBN: challenges, opportunities, and solutions
546 from harmonizing data under heterogeneous study designs, target populations,
547 and measurement protocols. *Transl. Behav. Med.* 13, 7–16.
548 <https://doi.org/10.1093/tbm/ibac069>

549 Cremers, H.R., Wager, T.D., Yarkoni, T., 2017. The relation between statistical power
550 and inference in fMRI. *PLoS One* 12, e0184923.
551 <https://doi.org/10.1371/journal.pone.0184923>

552 Cristofori, I., Cohen-Zimerman, S., Grafman, J., 2019. Chapter 11 - Executive functions,
553 in: D'Esposito, M., Grafman, J.H. (Eds.), *Handbook of Clinical Neurology, The*
554 *Frontal Lobes*. Elsevier, pp. 197–219. <https://doi.org/10.1016/B978-0-12-804281-6.00011-2>

555 Dhamala, E., Rong Ooi, L.Q., Chen, J., Ricard, J.A., Berkeley, E., Chopra, S., Qu, Y.,
556 Zhang, X.-H., Lawhead, C., Yeo, B.T.T., Holmes, A.J., 2023. Brain-Based
557 Predictions of Psychiatric Illness-Linked Behaviors Across the Sexes. *Biol.*
558 *Psychiatry* 94, 479–491. <https://doi.org/10.1016/j.biopsych.2023.03.025>

559 Diamond, A., 2013. Executive Functions. *Annu. Rev. Psychol.* 64, 135.
560 <https://doi.org/10.1146/annurev-psych-113011-143750>

561 Dickens, R.H., Meisinger, E.B., Tarar, J.M., 2015. Test Review: Comprehensive Test of
562 Phonological Processing–2nd ed. (CTOPP-2) by Wagner, R. K., Torgesen, J. K.,
563 Rashotte, C. A., & Pearson, N. A. *Can. J. Sch. Psychol.* 30, 155–162.
564 <https://doi.org/10.1177/0829573514563280>

565 Dockès, J., Varoquaux, G., Poline, J.-B., 2021. Preventing dataset shift from breaking
566 machine-learning biomarkers. *GigaScience* 10, giab055.
567 <https://doi.org/10.1093/gigascience/giab055>

568 Dubois, J., Adolphs, R., 2016. Building a Science of Individual Differences from fMRI.
569 *Trends Cogn. Sci.* 20, 425–443. <https://doi.org/10.1016/j.tics.2016.03.014>

570 Dubois, J., Galdi, P., Paul, L.K., Adolphs, R., 2018. A distributed brain network predicts
571 general intelligence from resting-state human neuroimaging data. *Philos. Trans. R. Soc. B Biol. Sci.* 373, 20170284. <https://doi.org/10.1098/rstb.2017.0284>

572 Dyer, E.L., Kording, K., 2023. Why the simplest explanation isn't always the best. *Proc. Natl. Acad. Sci.* 120, e2319169120. <https://doi.org/10.1073/pnas.2319169120>

573 Elliott, M.L., Knodt, A.R., Cooke, M., Kim, M.J., Melzer, T.R., Keenan, R., Ireland, D.,
574 Ramrakha, S., Poulton, R., Caspi, A., Moffitt, T.E., Hariri, A.R., 2019. General
575 functional connectivity: Shared features of resting-state and task fMRI drive
576 reliable and heritable individual differences in functional brain networks.
577 *NeuroImage* 189, 516–532. <https://doi.org/10.1016/j.neuroimage.2019.01.068>

581 Enkavi, A.Z., Eisenberg, I.W., Bissett, P.G., Mazza, G.L., MacKinnon, D.P., Marsch,
582 L.A., Poldrack, R.A., 2019. Large-scale analysis of test-retest reliabilities of self-
583 regulation measures. *Proc. Natl. Acad. Sci.* 116, 5472–5477.
584 <https://doi.org/10.1073/pnas.1818430116>

585 Gao, S., Greene, A.S., Constable, R.T., Scheinost, D., 2019. Combining multiple
586 connectomes improves predictive modeling of phenotypic measures.
587 *NeuroImage* 201, 116038. <https://doi.org/10.1016/j.neuroimage.2019.116038>

588 Genon, S., Eickhoff, S.B., Kharabian, S., 2022. Linking interindividual variability in brain
589 structure to behaviour. *Nat. Rev. Neurosci.* 23, 307–318.
590 <https://doi.org/10.1038/s41583-022-00584-7>

591 Godfrey, K.J., Espenhahn, S., Stokoe, M., McMorris, C., Murias, K., McCrimmon, A.,
592 Harris, A.D., Bray, S., 2022. Autism interest intensity in early childhood
593 associates with executive functioning but not reward sensitivity or anxiety
594 symptoms. *Autism* 26, 1723–1736. <https://doi.org/10.1177/13623613211064372>

595 Gordon, E.M., Laumann, T.O., Gilmore, A.W., Newbold, D.J., Greene, D.J., Berg, J.J.,
596 Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J.M., Coalson, R.S.,
597 Nguyen, A.L., McDermott, K.B., Shimony, J.S., Snyder, A.Z., Schlaggar, B.L.,
598 Petersen, S.E., Nelson, S.M., Dosenbach, N.U.F., 2017. Precision Functional
599 Mapping of Individual Human Brains. *Neuron* 95, 791-807.e7.
600 <https://doi.org/10.1016/j.neuron.2017.07.011>

601 Greene, A.S., Constable, R.T., 2023. Clinical Promise of Brain-Phenotype Modeling: A
602 Review. *JAMA Psychiatry* 80, 848.
603 <https://doi.org/10.1001/jamapsychiatry.2023.1419>

604 Greene, A.S., Gao, S., Scheinost, D., Constable, R.T., 2018. Task-induced brain state
605 manipulation improves prediction of individual traits. *Nat. Commun.* 9, 2807.
606 <https://doi.org/10.1038/s41467-018-04920-3>

607 Greene, A.S., Shen, X., Noble, S., Horien, C., Hahn, C.A., Arora, J., Tokoglu, F., Spann,
608 M.N., Carrión, C.I., Barron, D.S., Sanacora, G., Srihari, V.H., Woods, S.W.,
609 Scheinost, D., Constable, R.T., 2022. Brain-phenotype models fail for individuals
610 who defy sample stereotypes. *Nature* 609, 109–118.
611 <https://doi.org/10.1038/s41586-022-05118-w>

612 Gur, R.C., Richard, J., Hughett, P., Calkins, M.E., Macy, L., Bilker, W.B., Brensinger, C.,
613 Gur, R.E., 2010. A cognitive neuroscience based computerized battery for
614 efficient measurement of individual differences: Standardization and initial
615 construct validation. *J. Neurosci. Methods* 187, 254–262.
616 <https://doi.org/10.1016/j.jneumeth.2009.11.017>

617 Harms, M.P., Somerville, L.H., Ances, B.M., Andersson, J., Barch, D.M., Bastiani, M.,
618 Bookheimer, S.Y., Brown, T.B., Buckner, R.L., Burgess, G.C., Coalson, T.S.,
619 Chappell, M.A., Dapretto, M., Douaud, G., Fischl, B., Glasser, M.F., Greve, D.N.,
620 Hodge, C., Jamison, K.W., Jbabdi, S., Kandala, S., Li, X., Mair, R.W., Mangia, S.,
621 Marcus, D., Mascali, D., Moeller, S., Nichols, T.E., Robinson, E.C., Salat, D.H.,
622 Smith, S.M., Sotiropoulos, S.N., Terpstra, M., Thomas, K.M., Tisdall, M.D.,
623 Ugurbil, K., van der Kouwe, A., Woods, R.P., Zöllei, L., Van Essen, D.C.,
624 Yacoub, E., 2018. Extending the Human Connectome Project across ages:
625 Imaging protocols for the Lifespan Development and Aging projects. *NeuroImage*
626 183, 972–984. <https://doi.org/10.1016/j.neuroimage.2018.09.060>

627 Jiang, R., Calhoun, V.D., Fan, L., Zuo, N., Jung, R., Qi, S., Lin, D., Li, J., Zhuo, C.,
628 Song, M., Fu, Z., Jiang, T., Sui, J., 2020. Gender Differences in Connectome-
629 based Predictions of Individualized Intelligence Quotient and Sub-domain
630 Scores. *Cereb. Cortex N. Y. N* 30, 888–900.
631 <https://doi.org/10.1093/cercor/bhz134>

632 Jiang, R., Woo, C.-W., Qi, S., Wu, J., Sui, J., 2022. Interpreting Brain Biomarkers:
633 Challenges and solutions in interpreting machine learning-based predictive
634 neuroimaging. *IEEE Signal Process. Mag.* 39, 107–118.
635 <https://doi.org/10.1109/MSP.2022.3155951>

636 Johnson, K.B., Wei, W., Weeraratne, D., Frisse, M.E., Misulis, K., Rhee, K., Zhao, J.,
637 Snowdon, J.L., 2021. Precision Medicine, AI, and the Future of Personalized
638 Health Care. *Clin. Transl. Sci.* 14, 86–93. <https://doi.org/10.1111/cts.12884>

639 Kidd, E., Donnelly, S., Christiansen, M.H., 2018. Individual Differences in Language
640 Acquisition and Processing. *Trends Cogn. Sci.* 22, 154–169.
641 <https://doi.org/10.1016/j.tics.2017.11.006>

642 Klapwijk, E.T., van den Bos, W., Tamnes, C.K., Raschle, N.M., Mills, K.L., 2020.
643 Opportunities for increased reproducibility and replicability of developmental
644 neuroimaging. *Dev. Cogn. Neurosci.* 47, 100902.
645 <https://doi.org/10.1016/j.dcn.2020.100902>

646 Kohoutová, L., Heo, J., Cha, S., Lee, S., Moon, T., Wager, T.D., Woo, C.-W., 2020.
647 Toward a unified framework for interpreting machine-learning models in
648 neuroimaging. *Nat. Protoc.* 15, 1399–1435. <https://doi.org/10.1038/s41596-019-0289-5>

649 Liu, S., Abdellaoui, A., Verweij, K.J.H., van Wingen, G.A., 2023. Replicable brain-
650 phenotype associations require large-scale neuroimaging data. *Nat. Hum.
651 Behav.* 7, 1344–1356. <https://doi.org/10.1038/s41562-023-01642-5>

652 Marek, S., Tervo-Clemmens, B., Calabro, F.J., Montez, D.F., Kay, B.P., Hatoum, A.S.,
653 Donohue, M.R., Foran, W., Miller, R.L., Hendrickson, T.J., Malone, S.M.,
654 Kandala, S., Feczko, E., Miranda-Dominguez, O., Graham, A.M., Earl, E.A.,
655 Perrone, A.J., Cordova, M., Doyle, O., Moore, L.A., Conan, G.M., Uriarte, J.,
656 Snider, K., Lynch, B.J., Wilgenbusch, J.C., Pengo, T., Tam, A., Chen, J.,
657 Newbold, D.J., Zheng, A., Seider, N.A., Van, A.N., Metoki, A., Chauvin, R.J.,
658 Laumann, T.O., Greene, D.J., Petersen, S.E., Garavan, H., Thompson, W.K.,
659 Nichols, T.E., Yeo, B.T.T., Barch, D.M., Luna, B., Fair, D.A., Dosenbach, N.U.F.,
660 2022. Reproducible brain-wide association studies require thousands of
661 individuals. *Nature* 603, 654–660. <https://doi.org/10.1038/s41586-022-04492-9>

662 Millan, M.J., Agid, Y., Brüne, M., Bullmore, E.T., Carter, C.S., Clayton, N.S., Connor, R.,
663 Davis, S., Deakin, B., DeRubeis, R.J., Dubois, B., Geyer, M.A., Goodwin, G.M.,
664 Gorwood, P., Jay, T.M., Joëls, M., Mansuy, I.M., Meyer-Lindenberg, A., Murphy,
665 D., Rolls, E., Saletu, B., Spedding, M., Sweeney, J., Whittington, M., Young, L.J.,
666 2012. Cognitive dysfunction in psychiatric disorders: characteristics, causes and
667 the quest for improved therapy. *Nat. Rev. Drug Discov.* 11, 141–168.
668 <https://doi.org/10.1038/nrd3628>

669 Munafò, M., Neill, J., 2016. Null is beautiful: On the importance of publishing null results.
670 *J. Psychopharmacol. (Oxf.)* 30, 585–585.
671 <https://doi.org/10.1177/0269881116638813>

673 Noble, S., Scheinost, D., Constable, R.T., 2020. Cluster failure or power failure?
674 Evaluating sensitivity in cluster-level inference. *NeuroImage* 209, 116468.
675 <https://doi.org/10.1016/j.neuroimage.2019.116468>

676 Papademetris, X., Jackowski, M.P., Rajeevan, N., DiStasio, M., Okuda, H., Constable,
677 R.T., Staib, L.H., 2006. BiolImage Suite: An integrated medical image analysis
678 suite: An update. *Insight J.* 2006, 209.

679 Poldrack, R.A., Huckins, G., Varoquaux, G., 2020. Establishment of Best Practices for
680 Evidence for Prediction: A Review. *JAMA Psychiatry* 77, 534–540.
681 <https://doi.org/10.1001/jamapsychiatry.2019.3671>

682 Qi, T., Schaadt, G., Friederici, A.D., 2021. Associated functional network development
683 and language abilities in children. *NeuroImage* 242, 118452.
684 <https://doi.org/10.1016/j.neuroimage.2021.118452>

685 Rosenberg, M.D., Finn, E.S., 2022. How to establish robust brain–behavior
686 relationships without thousands of individuals. *Nat. Neurosci.* 25, 835–837.
687 <https://doi.org/10.1038/s41593-022-01110-9>

688 Rosenblatt, M., Tejavibulya, L., Camp, C.C., Jiang, R., Westwater, M.L., Noble, S.,
689 Scheinost, D., 2023. Power and reproducibility in the external validation of brain-
690 phenotype predictions. *BioRxiv Prepr. Serv. Biol.* 2023.10.25.563971.
691 <https://doi.org/10.1101/2023.10.25.563971>

692 Satterthwaite, T.D., Connolly, J.J., Ruparel, K., Calkins, M.E., Jackson, C., Elliott, M.A.,
693 Roalf, D.R., Hopson, R., Prabhakaran, K., Behr, M., Qiu, H., Mentch, F.D.,
694 Chiavacci, R., Sleiman, P.M.A., Gur, R.C., Hakonarson, H., Gur, R.E., 2016. The
695 Philadelphia Neurodevelopmental Cohort: A publicly available resource for the
696 study of normal and abnormal brain development in youth. *NeuroImage* 124,
697 1115–1119. <https://doi.org/10.1016/j.neuroimage.2015.03.056>

698 Satterthwaite, T.D., Elliott, M.A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins,
699 M.E., Hopson, R., Jackson, C., Keefe, J., Riley, M., Mentch, F.D., Sleiman, P.,
700 Verma, R., Davatzikos, C., Hakonarson, H., Gur, R.C., Gur, R.E., 2014.
701 Neuroimaging of the Philadelphia neurodevelopmental cohort. *NeuroImage* 86,
702 544–553. <https://doi.org/10.1016/j.neuroimage.2013.07.064>

703 Scheinost, D., Pollatou, A., Dufford, A.J., Jiang, R., Farruggia, M.C., Rosenblatt, M.,
704 Peterson, H., Rodriguez, R.X., Dadashkarimi, J., Liang, Q., Dai, W., Foster, M.L.,
705 Camp, C.C., Tejavibulya, L., Adkinson, B.D., Sun, H., Ye, J., Cheng, Q., Spann,
706 M.N., Rolison, M., Noble, S., Westwater, M.L., 2023. Machine Learning and
707 Prediction in Fetal, Infant, and Toddler Neuroimaging: A Review and Primer. *Biol.*
708 *Psychiatry* 93, 893–904. <https://doi.org/10.1016/j.biopsych.2022.10.014>

709 Shen, X., Finn, E.S., Scheinost, D., Rosenberg, M.D., Chun, M.M., Papademetris, X.,
710 Constable, R.T., 2017. Using connectome-based predictive modeling to predict
711 individual behavior from brain connectivity. *Nat. Protoc.* 12, 506–518.
712 <https://doi.org/10.1038/nprot.2016.178>

713 Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T., 2013. Groupwise whole-brain
714 parcellation from resting-state fMRI data for network node identification.
715 *NeuroImage* 82, 403–415. <https://doi.org/10.1016/j.neuroimage.2013.05.081>

716 Somerville, L.H., Bookheimer, S.Y., Buckner, R.L., Burgess, G.C., Curtiss, S.W.,
717 Dapretto, M., Stine Elam, J., Gaffrey, M.S., Harms, M.P., Hodge, C., Kandala, S.,
718 Kastman, E.K., Nichols, T.E., Schlaggar, B.L., Smith, S.M., Thomas, K.M.,

719 Yacoub, E., Van Essen, D.C., Barch, D.M., 2018. The Lifespan Human
720 Connectome Project in Development: A large-scale study of brain connectivity
721 development in 5–21 year olds. *NeuroImage* 183, 456–468.
722 <https://doi.org/10.1016/j.neuroimage.2018.08.050>

723 Spisak, T., Bingel, U., Wager, T.D., 2023. Multivariate BWAS can be replicable with
724 moderate sample sizes. *Nature* 615, E4–E7. <https://doi.org/10.1038/s41586-023-05745-x>

725 Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P.,
726 Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman,
727 A., Young, A., Sprosen, T., Peakman, T., Collins, R., 2015. UK biobank: an open
728 access resource for identifying the causes of a wide range of complex diseases
729 of middle and old age. *PLoS Med.* 12, e1001779.
730 <https://doi.org/10.1371/journal.pmed.1001779>

731 Sui, J., Jiang, R., Bustillo, J., Calhoun, V., 2020. Neuroimaging-based Individualized
732 Prediction of Cognition and Behavior for Mental Disorders and Health: Methods
733 and Promises. *Biol. Psychiatry* 88, 818–828.
734 <https://doi.org/10.1016/j.biopsych.2020.02.016>

735 Tarar, J.M., Meisinger, E.B., Dickens, R.H., 2015. Test Review: Test of Word Reading
736 Efficiency—Second Edition (TOWRE-2) by Torgesen, J. K., Wagner, R. K., &
737 Rashotte, C. A. *Can. J. Sch. Psychol.* 30, 320–326.
738 <https://doi.org/10.1177/0829573515594334>

739 Torres-Espín, A., Ferguson, A., 2022. Harmonization-Information Trade-Offs for Sharing
740 Individual Participant Data in Biomedicine. *Harv. Data Sci. Rev.* 4.
741 <https://doi.org/10.1162/99608f92.a9717b34>

742 Weintraub, S., Dikmen, S.S., Heaton, R.K., Tulsky, D.S., Zelazo, P.D., Bauer, P.J.,
743 Carlozzi, N.E., Slotkin, J., Blitz, D., Wallner-Allen, K., Fox, N.A., Beaumont, J.L.,
744 Mungas, D., Nowinski, C.J., Richler, J., Deocampo, J.A., Anderson, J.E., Manly,
745 J.J., Borosh, B., Havlik, R., Conway, K., Edwards, E., Freund, L., King, J.W.,
746 Moy, C., Witt, E., Gershon, R.C., 2013. Cognition assessment using the NIH
747 Toolbox. *Neurology* 80, S54–S64.
748 <https://doi.org/10.1212/WNL.0b013e3182872ded>

749 Wilkinson, G.S., Robertson, G.J., 2006. Wide Range Achievement Test 4.
750 <https://doi.org/10.1037/t27160-000>

751 Woo, C.-W., Chang, L.J., Lindquist, M.A., Wager, T.D., 2017. Building better
752 biomarkers: brain models in translational neuroimaging. *Nat. Neurosci.* 20, 365–
753 377. <https://doi.org/10.1038/nn.4478>

754 Yan, W., Fu, Z., Jiang, R., Sui, J., Calhoun, V.D., 2023. Maximum Classifier
755 Discrepancy Generative Adversarial Network for Jointly Harmonizing Scanner
756 Effects and Improving Reproducibility of Downstream Tasks. *IEEE Trans.*
757 *Biomed. Eng.* 1–9. <https://doi.org/10.1109/TBME.2023.3330087>

758 Yarkoni, T., 2009. Big Correlations in Little Studies: Inflated fMRI Correlations Reflect
759 Low Statistical Power—Commentary on Vul et al. (2009). *Perspect. Psychol. Sci.*
760 4, 294–298. <https://doi.org/10.1111/j.1745-6924.2009.01127.x>

761 Yarkoni, T., Westfall, J., 2017. Choosing prediction over explanation in psychology:
762 Lessons from machine learning. *Perspect. Psychol. Sci. J. Assoc. Psychol. Sci.*
763 12, 1100–1122. <https://doi.org/10.1177/1745691617693393>

764

765 Yeung, A.W.K., More, S., Wu, J., Eickhoff, S.B., 2022. Reporting details of
766 neuroimaging studies on individual traits prediction: A literature survey.
767 *NeuroImage* 256, 119275. <https://doi.org/10.1016/j.neuroimage.2022.119275>

768 Yip, S.W., Kiluk, B., Scheinost, D., 2020. Toward Addiction Prediction: An Overview of
769 Cross-Validated Predictive Modeling Findings and Considerations for Future
770 Neuroimaging Research. *Biol. Psychiatry Cogn. Neurosci. Neuroimaging*,
771 Understanding the Nature and Treatment of Psychopathology: Letting the Data
772 Guide the Way 5, 748–758. <https://doi.org/10.1016/j.bpsc.2019.11.001>

773 Yip, S.W., Lichenstein, S.D., Liang, Q., Chaarani, B., Dager, A., Pearlson, G.,
774 Banaschewski, T., Bokde, A.L.W., Desrivières, S., Flor, H., Grigis, A., Gowland,
775 P., Heinz, A., Brühl, R., Martinot, J.-L., Martinot, M.-L.P., Artiges, E., Nees, F.,
776 Orfanos, D.P., Paus, T., Poustka, L., Hohmann, S., Millenet, S., Fröhner, J.H.,
777 Smolka, M.N., Vaidya, N., Walter, H., Whelan, R., Schumann, G., Garavan, H.,
778 2023. Brain Networks and Adolescent Alcohol Use. *JAMA Psychiatry* 80, 1131–
779 1141. <https://doi.org/10.1001/jamapsychiatry.2023.2949>

780 Zelazo, P.D., 2020. Executive Function and Psychopathology: A Neurodevelopmental
781 Perspective. *Annu. Rev. Clin. Psychol.* 16, 431–454.
782 <https://doi.org/10.1146/annurev-clinpsy-072319-024242>