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ABSTRACT 22 

Recent work suggests that machine learning models predicting psychiatric 23 

treatment outcomes based on clinical data may fail when applied to unharmonized 24 

samples. Neuroimaging predictive models offer the opportunity to incorporate 25 

neurobiological information, which may be more robust to dataset shifts. Yet, among the 26 

minority of neuroimaging studies that undertake any form of external validation, there is 27 

a notable lack of attention to generalization across dataset-specific idiosyncrasies. 28 

Research settings, by design, remove the between-site variations that real-world and, 29 

eventually, clinical applications demand. Here, we rigorously test the ability of a range of 30 

predictive models to generalize across three diverse, unharmonized samples: the 31 

Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network 32 

(n=1110), and the Human Connectome Project in Development (n=428). These 33 

datasets have high inter-dataset heterogeneity, encompassing substantial variations in 34 

age distribution, sex, racial and ethnic minority representation, recruitment geography, 35 

clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. We 36 

demonstrate that reproducible and generalizable brain-behavior associations can be 37 

realized across diverse dataset features with sample sizes in the hundreds. Results 38 

indicate the potential of functional connectivity-based predictive models to be robust 39 

despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, 40 

the best predictions were not from training and testing in the same dataset (i.e., cross-41 

validation) but across datasets. This result suggests that training on diverse data may 42 

improve prediction in specific cases. Overall, this work provides a critical foundation for 43 
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future work evaluating the generalizability of neuroimaging predictive models in real-44 

world scenarios and clinical settings. 45 

  46 
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INTRODUCTION 47 

Machine learning offers the potential to augment clinical decision-making, 48 

individualize care, and improve patient outcomes (Johnson et al., 2021). Despite this 49 

promise, clinical neurosciences, particularly psychiatry, have yet to realize the advances 50 

in care that have been achieved by other medical disciplines. Recent work highlights 51 

that machine learning models predicting psychiatric treatment outcomes may be 52 

context-dependent and fail when applied to unharmonized samples (i.e., across dataset 53 

shifts) (Chekroud et al., 2024). Given these models rely exclusively on clinical data, the 54 

addition of neurobiologically-grounded data, such as neuroimaging, may help overcome 55 

limitations due to inter-dataset variability (Sui et al., 2020). 56 

In light of this, it is imperative to assess whether neuroimaging predictive models 57 

generalize across diverse dataset shifts. Only a minority of neuroimaging studies 58 

undertake any form of external validation. Among those that do, the median external 59 

sample size is only n=108 and is underpowered in most cases (Rosenblatt et al., 2023; 60 

Yeung et al., 2022). Further, real-world and eventual clinical applications demand not 61 

only external validation but also generalization across different imaging and phenotypic 62 

features (Dockès et al., 2021; Woo et al., 2017). By design, many consortium-level 63 

neuroimaging studies remove these variations, creating harmonization that does not 64 

exist in other scenarios. The inclusion of multiple datasets with different imaging 65 

parameters, patient demographics, and behavioral measures is necessary to truly 66 

evaluate a neuroimaging predictive model, as harmonization is not always possible 67 

(Chow et al., 2023; Torres-Espín and Ferguson, 2022). Models will only be clinically 68 

valuable if they can predict effectively on top of these dataset-specific idiosyncrasies. 69 
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In this work, we rigorously evaluate the external validation of neuroimaging 70 

predictive models across unharmonized samples (Figure 1). We use three distinct, 71 

large-scale developmental datasets: the Philadelphia Neurodevelopmental Cohort 72 

(PNC), the Healthy Brain Network (HBN), and the Human Connectome Project in 73 

Development (HCPD) (Alexander et al., 2017; Satterthwaite et al., 2016; Somerville et 74 

al., 2018). These datasets have high inter-dataset heterogeneity, encompassing 75 

substantial variations in participant characteristics (age distribution, sex, racial and 76 

ethnic minority representation, recruitment geography, clinical symptom burdens), 77 

imaging parameters (fMRI tasks and sequences), and behavioral measures. We used 78 

language abilities and function (EF) as two developmentally and clinically relevant 79 

phenotypes for prediction (Adise et al., 2023; Casey, 2023; Godfrey et al., 2022; Qi et 80 

al., 2021). We demonstrate that reproducible and generalizable brain-behavior 81 

associations using functional connectivity and connectome-based predictive modeling 82 

can be realized across diverse dataset features with sample sizes smaller than 83 

consortium-levels. Results indicate the potential of functional connectivity to be robust 84 

despite various dataset shifts. Further, they provide a critical foundation for future work 85 

evaluating the generalizability of brain-behavior associations in real-world scenarios 86 

and, eventually, clinical settings. 87 
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 88 

Figure 1. Differences across the PNC, HBN, and HCPD datasets. The Philadelphia 89 

Neurodevelopmental Cohort (PNC), Healthy Brain Network (HBN), and Human 90 

Connectome Project in Development (HCDP) datasets exhibit a notable lack of 91 

harmonization across recruitment geography (A), participant clinical symptom burden 92 

(B), age distribution (C), sex (D), racial and ethnic minority representation (E), fMRI 93 

tasks and sequences (F), and measures used to assess language abilities and 94 

executive function (G). 95 

 96 

 97 

 98 

 99 

 100 
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RESULTS 101 

We generated models of language abilities and EF in the PNC (n=1291), HBN 102 

(n=1110), and HCPD (n=428) datasets using ridge regression connectome-based 103 

predictive modeling (CPM) (Shen et al., 2017). Connectomes were created using the 104 

Shen 268 atlas. Each participant's connectome included all available resting-state and 105 

task fMRI data with low motion (<0.2 mm). Combining connectomes across fMRI data 106 

improves reliability and predictive power (Elliott et al., 2019; Gao et al., 2019). 107 

Participants without one low-motion fMRI run were excluded. 108 

A disparate set of behavioral tasks assessed language and EF in the three 109 

datasets (Table S1). We used principal component analysis (PCA) to derive <latent= 110 

factors of language abilities and EF within each dataset. Participants with missing 111 

language and EF measures were excluded. Importantly, the PCA was estimated using 112 

participants who did not have imaging data to maintain proper separation of training and 113 

testing data. The first principal component explained 70%, 55%, and 77% of language 114 

ability measure variance in PNC, HBN, and HCPD, respectively. For executive function, 115 

the first principal component of all behavioral measures explained 53%, 48%, and 40% 116 

of the variance in PNC, HBN, and HCPD, respectively. Contributions of individual 117 

measures to the first principal component are presented in Table S1. Behavioral data 118 

from participants with imaging data were projected onto the first principal component. 119 

This projection was used in all CPM analyses unless otherwise specified. 120 

Predictive models were trained and tested within each dataset using 100 121 

iterations of 10-fold cross-validation. Model performance was evaluated with Pearson9s 122 

correlation (r), representing the correspondence between predicted and observed 123 
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behavioral scores, along with the cross-validation coefficient of determination (q2) and 124 

mean square error (MSE). Significance was assessed using permutation testing with 125 

1000 iterations of randomly shuffled behavioral data labels. Cross-dataset predictions 126 

were evaluated with Pearson9s correlation. 127 

 128 

Connectome-based prediction of language abilities 129 

Models successfully predicted language abilities within each dataset (Figures 2A 130 

and S1A; PNC: r=0.50, p<0.001, q2=0.24, MSE=1.05; HBN: r=0.27, p<0.001, q2=0.06, 131 

MSE=4.42; HCPD: r=0.22, p<0.001, q2=0.01, MSE=1.47). Model performance was 132 

similar to original predictions when controlling for age, sex, racial/ethnic minority 133 

representation, socioeconomic status, head motion, and clinical symptom burden (Table 134 

S2). 135 

 136 

Connectome-based prediction of executive function 137 

      The performance of EF models closely resembled the performance of language 138 

models (Figures 2B and S1B; PNC: r=0.39, p<0.001, q2=0.14, MSE=1.17; HBN: r=0.17, 139 

p<0.001, q2=0.02, MSE=2.03; HCPD: r=0.17, p=0.005, q2=-0.01, MSE=1.98). The 140 

addition of covariates into the model yielded similar results for age, sex, racial/ethnic 141 

minority representation, socioeconomic status, head motion, and clinical symptom 142 

burden (Table S2). 143 
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 144 

Figure 2. Connectome-based predictive model performance within-dataset. 145 

Scatter plot of observed 1st principal component scores on the x-axis and predicted 1st 146 

principal component scores on the y-axis for language abilities (A) and executive 147 

function (B) across PNC (purple), HBN (green), and HCPD (red). Counts represent 148 

individual participant data.149 

 150 

Models generalize across datasets despite notable lack of harmonization 151 

Cross-dataset predictions were performed across the three datasets to ensure 152 

our models' generalizability. Importantly, PNC, HBN, and HCPD are characterized by a 153 

notable lack of inter-dataset harmonization (Figure 1). Despite such substantial 154 

differences, we achieved cross-dataset prediction of language abilities and EF (Figure 155 

3). Language abilities were predicted with r9s=0.13-0.35. EF was predicted with 156 

r9s=0.14-0.28. Testing on the PNC produced the best cross-dataset predictions for 157 

language abilities and EF. As a result, the best predictions for the HCPD and HBN were 158 

not from training and testing in the same dataset (i.e., cross-validation). 159 
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 160 

Figure 3. Model performances across unharmonized datasets. Scatter plots of true 161 

versus predicted PCA-derived language abilities (A) and executive function (B) scores 162 

for cross-dataset predictions. Purple (PNC), green (HBN), and red (HCPD) colors 163 

indicate the dataset in which predictions were tested. Diagonals represent within-164 

dataset prediction performances. 165 

 166 

Brain features underlying language abilities and executive function 167 

In line with previous CPM results, predictive models of language abilities and EF 168 

were complex, with contributions from every node and canonical brain network (Figures 169 

4, S2). Virtual lesioning analyses confirmed the predictive utility of every brain network 170 

but also suggested the importance of the medial frontal and frontoparietal networks in 171 

predicting language abilities and EF (Figure S3). These networks contain noted regions 172 

for language (e.g., Broca9s and Wernicke9s) and EF (e.g., prefrontal cortex). We 173 

compared the brain features that predicted language abilities and EF in one dataset to 174 
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those that predicted the same construct in the other two. All edgewise regression 175 

coefficients were normalized by the standard deviation of edges and summed for each 176 

canonical brain network. At the network level, predictive features from each dataset 177 

were correlated between r=0.4830.74 for language abilities and r=-0.0330.30 for EF. 178 

The correlations between the HCPD and the HBN or PNC were the lowest (Table S3). 179 

 180 

 181 

Figure 4. Network-level contributions to language abilities and executive function 182 

predictions. Canonical network contributions to predicted language abilities (A) and 183 

executive function (B) across PNC (purple), HBN (green), and HCPD (red). 184 

Contributions of edges within a single network (diagonals) and between networks (off-185 

diagonals) were defined as the sum of edgewise regression coefficients normalized by 186 

network size. Darker colors indicate networks with larger model coefficients. Network 187 

Labels: MF, medial frontal; FP, frontoparietal; DMN, default mode; Mot, motor cortex; 188 
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VI, visual A; VII, visual B; VAs, visual association; SAL, salience; SC, subcortical; CBL, 189 

cerebellum. 190 

 191 

Prediction of individual language and EF measures 192 

Finally, we tested within and cross-dataset predictions for each measure used in 193 

the PCA. This analysis ensures that the strong cross-dataset predictions are not solely 194 

a function of combining disparate measures. Within-dataset predictions were significant 195 

across all individual measures, with the lowest being the HBN Card Sort task (r=0.07, 196 

p=0.05, Figure 5).  197 

 198 

 199 

Figure 5. Within-dataset predictions of individual measures. Distributions of 200 

prediction performance Pearson9s r values across 100 iterations for each individual 201 

language (A) and EF (B) measure. PNC measures are purple, HBN measures are 202 
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green, and HCPD measures are red. Solid lines indicate PCA prediction performances 203 

for comparison. 204 

 205 

Cross-dataset predictions for the individual measures followed patterns similar to 206 

PCA-derived predictions and, in general, were significant (Figure 6). Mirroring PCA 207 

results, cross-dataset language abilities predictions (median r=0.14, interquartile range 208 

(IQR)=0.09) were more accurate than executive function predictions (median r=0.11, 209 

IQR=0.10). For language abilities, all individual measures were predicted in at least one 210 

cross-dataset model. 58 out of 72 cross-dataset models were significant, including all 211 

models tested in the PNC. For EF, 61 out of 94 cross-dataset models were significant. 212 

Models built on the flanker task showed the worst generalization. Most predictions used 213 

different measures in the training and testing data, showing strong generalization of 214 

language and EF models. 215 

Finally, we correlated within-dataset and cross-dataset performance. The ability 216 

of a measure to predict measures in another dataset did not correlate with its within-217 

dataset performance (r=0.21, p=0.34). However, the ability of a measure to be predicted 218 

by measures in another dataset strongly correlated with within-dataset performance 219 

(r=0.72, p<0.001). These results indicate that a measure's within-dataset performance 220 

estimates its predictability from other models, but not the predictive ability of its model 221 

on other measures. 222 

 223 
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 224 

Figure 6. Cross-dataset predictions of individual measures. Models were trained on 225 

a single measure in one dataset (x-axis) and independently tested on each individual 226 

measure of the other dataset (y-axis) for language abilities (A) and executive function 227 

(B). Performance r values are shown for PNC (purple), HBN (green), and HCPD (red). 228 

Darker colors indicate higher prediction performances. White indicates non-significant 229 

performances. Asterisks indicate predictions greater than PCA-derived cross-dataset 230 

predictions. 231 

 232 

 233 

 234 

 235 

 236 

  237 
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DISCUSSION 238 

We used connectome-based predictive modeling to test the generalizability of 239 

neuroimaging predictive models across diverse dataset features. Predictions of 240 

language abilities and EF survived testing across three unharmonized, large-scale 241 

developmental samples. These results suggest reproducible associations that 242 

overcome individual dataset idiosyncrasies can be achieved with sample sizes (n=500-243 

10009s) below consortium-level magnitudes. Further, many models based on an 244 

individual measure of language or EF generalized to different language or EF 245 

measures. Interestingly, both PCA and individual measure results indicate that a 246 

model's within-dataset performance estimates its predictability from other models but 247 

not the predictive ability of its model on other measures. Testing brain-behavior 248 

associations across diverse data remains necessary to strengthen the generalizability of 249 

findings beyond a particular dataset and assess applicability to real-world settings. 250 

Our results highlight the potential of pooling neuroimaging data without 251 

harmonization. Notably, for the HCPD and HBN datasets, the best predictions were not 252 

from training and testing in the same dataset (i.e., cross-validation) but from external 253 

validation. This result suggests that training on diverse data may improve prediction in 254 

specific cases. Of course, strictly harmonized data collection efforts by consortiums 255 

remain essential (Casey et al., 2018; Sudlow et al., 2015). They maximize statistical 256 

power by minimizing unexplained variance (i.e., experimental noise). Nevertheless, 257 

harmonization is expensive and not always possible (Chow et al., 2023; Torres-Espín 258 

and Ferguson, 2022). It also prevents testing a model9s robustness to different 259 

experimental factors. Thus, testing on non-harmonized data is needed. While post-hoc 260 
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harmonization (i.e., ComBat) is often applied in these studies, we avoided this step to 261 

test how brain-behavior associations can generalize without explicit harmonization 262 

(Chen et al., 2022; Yan et al., 2023). Using non-harmonized sources is a strength of 263 

neuroimaging predictive modeling. Recent work suggests that machine learning models 264 

predicting treatment outcomes from clinical data may fail when applied to unharmonized 265 

samples (Chekroud et al., 2024). Our results point to the potential value of incorporating 266 

neuroimaging data to improve generalization across unharmonized samples. 267 

Though our models generalize well, lacking generalization is not inherently bad. 268 

A single model will not be appropriate in all cases. For example, models designed for 269 

adults likely should not work on infants and young children (Scheinost et al., 2023). 270 

Many brain-behavior associations may exhibit sex differences, where sex-specific 271 

models could be needed (Dhamala et al., 2023; Greene et al., 2018; Jiang et al., 2020; 272 

Yip et al., 2023). Further, evidence suggests that those who defy stereotypes (such as 273 

minoritized populations) could require different models (Greene et al., 2022). Rigorously 274 

testing a model on diverse data, regardless of whether it generalizes, produces valuable 275 

information. Null results motivate future studies to understand the lack of generalization 276 

and should be published (Munafò and Neill, 2016). As a field, we should encourage 277 

testing models on diverse data to understand the effects of dataset shift and if models 278 

generalize.  279 

We employed state-of-the-field methodology to use as much data as possible. 280 

This approach includes using large sample sizes to create and externally validate 281 

models. In contrast to most studies using external validation, the sample sizes for 282 

external validation were of the same order as the training data (Rosenblatt et al., 2023; 283 
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Yeung et al., 2022). In fact, given that two external datasets were used to validate each 284 

model, more data was used to test a model than train it. This approach ensured we had 285 

adequate power for external validation. In all cases, we had at least 80% power for 286 

effects as low as r=0.15. In addition to using large sample sizes, we also used several 287 

fMRI runs and multiple behavior measures for each individual. Combining fMRI and 288 

behavior data improves prediction likely by averaging out the idiosyncrasies of each 289 

data point and increasing reliability. These latent factors also allow diverse data types 290 

(i.e., different fMRI tasks and behavioral measures) to be used for prediction. Finally, we 291 

preserved participants without imaging data to derive principal components (e.g., using 292 

6745 PNC and 1281 HBN participants) to increase the representation. These results 293 

follow the growing appreciation of large (i.e., many participants) and deep (i.e., many 294 

measures per participant) data (Gordon et al., 2017; Marek et al., 2022). 295 

Statistical power remains a fundamental consideration in neuroimaging (Cremers 296 

et al., 2017). A rule of thumb is often desired (i.e., 1,000 participants are needed for an 297 

fMRI experiment). However, a simple answer is often insufficient given the complexities 298 

of relating neuroimaging data to behavior. There are too many modalities, behaviors, 299 

and analysis methods. Though, some generalities can be made. Our results 300 

demonstrate that predictive models can generalize across diverse, unharmonized data. 301 

These findings underscore the potential to employ neuroimaging models for predicting 302 

personalized outcomes and finding robust brain-behavior associations (Spisak et al., 303 

2023). Of course, results will likely be case-specific. Language and EF exhibit large 304 

effect sizes for brain-behavior associations. Other behaviors and phenotypes, such as 305 
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clinical symptoms, may need larger samples or improved methodology to create robust 306 

associations. 307 

Executive function and language abilities are core cognitive processes that are 308 

critical for everyday functioning. Executive function supports manipulating information to 309 

plan, organize, and execute decisions towards goal-directed tasks (Cristofori et al., 310 

2019; Diamond, 2013). Language abilities support the effective production and 311 

comprehension of communication toward meaningful interaction (Kidd et al., 2018). 312 

Cognitive deficits are associated with a range of psychiatric and developmental 313 

disorders (Millan et al., 2012; Zelazo, 2020). Achieving robust predictions of these 314 

constructs is meaningful for cognitive and clinical neuroscience (Barron et al., 2020; 315 

Boyle et al., 2023; Sui et al., 2020). However, the observed effect sizes are still smaller 316 

than necessary for real-world utility. Further, even if our models were actionable, ethical 317 

concerns related to their implementation in developmental populations exist (Scheinost 318 

et al., 2023). For example, false positives lead to unnecessary interventions, while false 319 

negatives divert resources from those who need them. Another consideration is model 320 

interpretability. Clinicians may be more hesitant to trust and integrate less interpretable 321 

models into their practice (Chekroud et al., 2021). The edges we observed contributing 322 

to language abilities and executive function predictions were distributed throughout the 323 

brain. It is difficult to pinpoint a single canonical network responsible for individual 324 

variation in performance (Kohoutová et al., 2020). However, these models align with 325 

recent literature that appreciates complex brain-wide networks rather than the simple 326 

networks often identified by traditional association studies (Dubois et al., 2018). 327 
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The strength of this study is the rigorous validation of the models. First, we used 328 

three large developmental datasets to maximize statistical power. Few large-scale 329 

neuroimaging studies incorporate any form of external validation (Rosenblatt et al., 330 

2023; Yeung et al., 2022). In addition to internal cross-validation, each model was 331 

validated in two independent large-scale datasets. Future applications of brain-based 332 

predictive modeling methods must overcome demographics, imaging, and behavioral 333 

data differences. The three datasets exhibited substantial variability in participant 334 

demographics, geographic distribution, and clinical symptoms. Further, the notable lack 335 

of harmonization suggests that these models are not dependent upon specific study 336 

designs or measurement features. Thus, our results are highly generalizable and robust 337 

to dataset shift. 338 

Several limitations exist. Using PCA on disparate behavioral measures may 339 

inadvertently remove some elements that make each measure unique. For example, 340 

unique components of EF include working memory, cognitive flexibility, and inhibitory 341 

control. Thus, latent measures from PCA might not represent these components but 342 

instead represent general cognition (Dyer and Kording, 2023). Similarly, we define 343 

language abilities broadly, including receptive language, expressive language, speech, 344 

and reading measures. These broad definitions may also explain the models9 lack of 345 

localization. More specific phenotypes will likely improve a model9s interpretability 346 

(Enkavi et al., 2019; Greene and Constable, 2023). We also see strong cross-dataset 347 

predictions for individual measures, so testing this hypothesis is plausible for future 348 

work. While our models generalized across various factors, all datasets were 349 
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developmental samples from the United States. It is unclear if models would generalize 350 

to older individuals or those from non-western countries. 351 

 In conclusion, we show that brain-behavior associations generated from 352 

functional connectivity data can generalize over non-harmonized data. These results 353 

highlight that generalizable models can be achieved with datasets below consortium-354 

level sample sizes and the potential of using non-harmonized data. Mimicking real-world 355 

dataset shifts in training and testing predictive models may accelerate their 356 

development into clinical tools and practice. 357 

 358 

  359 
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METHODS 360 

Datasets 361 

PNC participants were 1291 individuals ages 8-21 recruited from the greater 362 

Philadelphia, Pennsylvania area (Satterthwaite et al., 2016). Participants completed 363 

rest, emotion task, and n-back task fMRI runs (Satterthwaite et al., 2014). Measures of 364 

language abilities were the Penn Verbal Reasoning Task from the Penn Computerized 365 

Neurocognitive Battery (CNB) and the total standard score from the Wide Range 366 

Assessment Test (WRAT) Reading Subscale (Gur et al., 2010; Wilkinson and 367 

Robertson, 2006). Executive function measures were the Letter N-Back, Conditional 368 

Exclusion, and Continuous Performance tasks from the CNB. 369 

HBN participants were 1110 individuals ages 6-17 recruited from the New York 370 

City, New York region (Alexander et al., 2017). Participants completed two rest fMRI 371 

runs as well as 8Despicable Me9 and 8The Present9 movie-watching scan sessions. 372 

Measures of language abilities were the Elision, Blending Words, Nonword Repetition, 373 

Rapid Digit Naming, and Rapid Letter Naming scaled scores from the Comprehensive 374 

Test of Phonological Processing (CTOPP-2) and the Phonemic Decoding Efficiency, 375 

Sight Word Efficiency, and Total Word Reading Efficiency scaled scores from the Test 376 

of Word Reading Efficiency (TOWRE-2) (Dickens et al., 2015; Tarar et al., 2015). 377 

Executive function measures were the Flanker Inhibitory Control and Attention, List 378 

Sorting Working Memory, Pattern Comparison Processing Speed, and Dimensional 379 

Change Card Sort age-corrected standard scores from the NIH Toolbox (Weintraub et 380 

al., 2013). 381 

 382 
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HCPD participants were 428 individuals ages 8-22 recruited from St. Louis, 383 

Missouri, Twin Cities, Minnesota, Boston, Massachusetts, and Los Angeles, California 384 

(Somerville et al., 2018). Participants completed rest fMRI runs (Harms et al., 2018). 385 

Measures of language abilities were the Picture Vocabulary and Oral Reading 386 

Recognition age-corrected standard scores from the NIH Toolbox. Executive function 387 

measures were the Flanker Inhibitory Control and Attention, List Sorting Working 388 

Memory, Pattern Comparison Processing Speed, Dimensional Change Card Sort, and 389 

Picture Sequence Memory age-corrected standard scores from the NIH Toolbox. 390 

 391 

Preprocessing 392 

In all datasets, data were motion-corrected. Additional preprocessing steps were 393 

performed using BioImage Suite (Papademetris et al., 2006). This included regression 394 

of covariates of no interest from the functional data, including linear and quadratic drifts, 395 

mean cerebrospinal fluid signal, mean white matter signal, and mean global signal. 396 

Additional motion control was applied by regressing a 24-parameter motion model, 397 

which included six rigid body motion parameters, six temporal derivatives, and the 398 

square of these terms, from the data. Subsequently, we applied temporal smoothing 399 

with a Gaussian filter (approximate cutoff frequency=0.12 Hz) and gray matter masking, 400 

as defined in common space. Then, the Shen 268-node atlas was applied to parcellate 401 

the denoised data into 268 nodes (Shen et al., 2013). Finally, we generated functional 402 

connectivity matrices by correlating each node time series data pair and applying the 403 

Fisher transform. Data were excluded for poor data quality, missing nodes due to lack of 404 
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full brain coverage, high motion (>0.2mm mean frame-wise motion), or missing 405 

behavioral/phenotypic data. 406 

 407 

Creating latent factors of language abilities and EF 408 

A principal components analysis (PCA) combined language abilities and EF 409 

measures, respectively, for each dataset. Here, a single behavioral measurement 410 

represents a noisy approximation of the behavioral construct. Combining across 411 

multiple measures reduces this noise. To maintain separate train and test groups in 412 

PNC and HBN, each PCA was limited to participants who did not have usable 413 

neuroimaging data (n=6745 for PNC, n=1281 for HBN). 414 

 415 

Ridge regression Connectome-based Predictive Modeling  416 

Based on ridge regression, we modify the original CPM framework to better suit 417 

the high-dimensional nature of connectivity data (Gao et al., 2019). Specifically, due to 418 

the positive semi-definite nature of a functional connectivity matrix, the edges are not 419 

independent. Ridge regression is more robust than OLS in this case. Instead of 420 

summing selected edges and fitting a one-dimensional OLS model, we directly fit a 421 

ridge regression model with training individuals using the selected edges from all the 422 

tasks and apply the model to testing individuals in the cross-validation framework. We 423 

trained a ridge regression model using 10-fold cross-validation for the within-dataset 424 

models. We used Pearson9s correlation and a feature selection threshold of p<0.05. 425 

When controlling for confounds, partial correlation was used for feature selection. The 426 

L2 regularization parameter » parameter was chosen by an inner 10-fold cross-427 
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validation which uses only the training individuals. The largest » value with a mean 428 

squared error (MSE) within one standard error of the minimum MSE is chosen. This 429 

cross-validation was repeated for 100 random divisions.  430 

 431 

Model performance 432 

Within dataset prediction was evaluated with a cross-validated coefficient of 433 

determination (q2), and the median q2 for 100 random 10-fold divisions is reported, 434 

along with Pearson9s correlation (r) and mean square error (MSE) (Poldrack et al., 435 

2020). To generate null distributions for significance testing, we randomly shuffled the 436 

correspondence between behavioral variables and connectivity matrices 1,000 times 437 

and re-ran the CPM analysis with the shuffled data. Based on these null distributions, 438 

the p-values for predictions were calculated as in prior work. Only a positive association 439 

between predicted and actual values indicates prediction above chance (with negative 440 

associations indicating a failure to predict), so one-tailed p-values are reported. 441 

Pearson9s correlation was tested between actual and predicted values to evaluate 442 

cross-dataset prediction. 443 

 444 

Model contribution 445 

Predictive networks identified using CPM are complex and composed of multiple 446 

brain regions and networks. To quantify the contribution of each edge to a given 447 

predictive model, we calculated the �!" edge9s weight (labeled �#,) to the model as: 448 

�# = ���(�
#	
)���(�#), where ���(�#) represents the standard deviation of the �!" 449 

edge, and � #	represents the weight learned by CPM for the �!"  edge. To quantify the 450 
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contribution of each node to a given predictive model, we calculated the �!" node9s 451 

weight summed across all edges (labeled �&) to the model as:	�& = 3'(,))*

#+,
�#, for all 452 

� edges connected to the �!" node. Next, for the network level, �# was averaged over 453 

each edge within or between canonical functional networks. 454 

 455 

Virtual lesioning 456 

CPM predictive networks are typically widespread and complex, so we 457 

conducted a virtual lesion analysis. For a CPM-based virtual lesion analysis, predictive 458 

networks can be set to zero to examine the degradation in predictive performance 459 

attributed to a virtual lesion of that network (Yip et al., 2020). We iteratively set each 460 

functional network to zero and examined how this impacted the model performance. We 461 

conducted this virtual lesion analysis for the canonical functional networks: medial 462 

frontal (MF), frontoparietal (FP), default mode (DMN), motor (MOT), visual I (VI), visual 463 

II (VII), visual association (VA), salience (SAL), subcortical (SC), and cerebellum (CBL).  464 

 465 

Data availability 466 

Data are available through the Healthy Brain Network Dataset 467 

(https://data.healthybrainnetwork.org/main.php), the Human Connectome Project in 468 

Development Dataset (https://nda.nih.gov/), and the Philadelphia Neurodevelopmental 469 

Cohort Dataset (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-470 

bin/study.cgi?study_id=phs000607.v3.p2). 471 

 472 

Code availability 473 
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Preprocessing was carried out using Bioimage Suite, which is freely available: 474 

https://medicine.yale.edu/bioimaging/suite/. Code for the analyses is available at: 475 

https://github.com/brendan-adkinson/generalization/. 476 
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