

1 **Title:** Frontal noradrenergic and cholinergic transients exhibit distinct spatiotemporal dynamics
2 during competitive decision-making

3

4 **Abbreviated Title:** NE and ACh signals during matching pennies

5

6 **Author List:** Hongli Wang^{1,*}, Heather K. Ortega^{1,*}, Emma B. Kelly^{2,3}, Jonathan Indajang³, Jiesi
7 Feng⁴, Yulong Li^{4,5,6,7}, Alex C. Kwan^{2,3,8}

8

9 ¹Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven,
10 Connecticut, 06511, USA

11 ²Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511,
12 USA

13 ³Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA

14 ⁴State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing,
15 China

16 ⁵PKU-IDG/McGovern Institute for Brain Research, Beijing, China

17 ⁶Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies,
18 Peking University, Beijing, China

19 ⁷Chinese Institute for Brain Research, Beijing, China

20 ⁸Department of Psychiatry, Weill Cornell Medicine, New York, New York, 10065, USA

21 *These authors contributed equally to the work

22

23 **Author Contributions:** H.W., H.K.O., and A.C.K. designed research; H.W., H.K.O., E.B.K., and
24 J.I. performed research. H.W., H.K.O., and A.C.K. analyzed data. J.F. and Y.L. contributed new
25 reagents. H.W. and H.K.O. wrote the first draft of the paper; H.W., H.K.O., E.B.K., J.I., and
26 A.C.K. edited the paper; H.W., H.K.O., and A.C.K. wrote the paper.

27

28 **Correspondence:** Alex C. Kwan at alex.kwan@cornell.edu

29 **Abstract**

30 Norepinephrine (NE) and acetylcholine (ACh) are neuromodulators that are crucial for learning
31 and decision-making. In the cortex, NE and ACh are released at specific sites along
32 neuromodulatory axons, which would constrain their spatiotemporal dynamics at the subcellular
33 scale. However, how the fluctuating patterns of NE and ACh signaling may be linked to
34 behavioral events is unknown. Here, leveraging genetically encoded NE and ACh indicators, we
35 use two-photon microscopy to visualize neuromodulatory signals in the superficial layer of the
36 mouse medial frontal cortex during decision-making. Head-fixed mice engage in a competitive
37 game called matching pennies against a computer opponent. We show that both NE and ACh
38 transients carry information about decision-related variables including choice, outcome, and
39 reinforcer. However, the two neuromodulators differ in their spatiotemporal pattern of task-
40 related activation. Spatially, NE signals are more segregated with choice and outcome encoded
41 at distinct locations, whereas ACh signals can multiplex and reflect different behavioral
42 correlates at the same site. Temporally, task-driven NE transients were more synchronized and
43 peaked earlier than ACh transients. To test functional relevance, using optogenetics we found
44 that evoked elevation of NE, but not ACh, in the medial frontal cortex increases the propensity of
45 the animals to switch and explore alternate options. Taken together, the results reveal distinct
46 spatiotemporal patterns of rapid ACh and NE transients at the subcellular scale during decision-
47 making in mice, which may endow these neuromodulators with different ways to impact neural
48 plasticity to mediate learning and adaptive behavior.

49

50 **Introduction**

51 Neuromodulators including acetylcholine (ACh) and norepinephrine (NE) play pivotal roles in
52 various behavioral functions (Everitt and Robbins, 1997; Aston-Jones and Cohen, 2005;
53 Picciotto et al., 2012). One function associated with central cholinergic tone is arousal and
54 vigilance (Buzsaki et al., 1988), which relate to sensory sensitivity and selective attention
55 (Dalley et al., 2001; Yu and Dayan, 2002). These functions are supported by many experiments
56 that manipulated cholinergic signaling using pharmacology, lesions, and optogenetics
57 (McGaughy et al., 2002; Chudasama et al., 2004; Parikh et al., 2007; Herrero et al., 2008; Pinto
58 et al., 2013; Gritton et al., 2016). Classically, perceptual effects are associated with slow
59 fluctuation of ACh levels, although recent evidence indicates control can also occur at more
60 rapid timing (Parikh et al., 2007; Goard and Dan, 2009). Relatedly, NE has also been implicated
61 in arousal and vigilance (Jouvet, 1969; McCormick et al., 1991), and improved sensitivity to
62 sensory cues (Berridge and Waterhouse, 2003). This is possibly achieved by NE elevating the

63 signal-to-noise ratio and/or gain in neural networks (Servan-Schreiber et al., 1990; Eldar et al.,
64 2013). The neuromodulatory effects on behavior, such as those exerted by NE, exhibit an
65 inverted U-shaped curve (Aston-Jones et al., 1999). Indeed, activity of cortical cholinergic and
66 noradrenergic axons correlate well with pupil diameter, which is an indicator of the arousal level
67 of an animal (Reimer et al., 2016).

68

69 In addition to arousal and vigilance, it is established that ACh and NE may be important for
70 learning and decision-making (Hasselmo and Bower, 1993; Doya, 2002; Bouret and Sara, 2005;
71 Dayan and Yu, 2006; Sara, 2009). For instance, cholinergic neurons in the basal forebrain
72 exhibit fast and transient increase in spiking activity after primary reinforcements including
73 rewards and punishments (Lin and Nicolelis, 2008; Hangya et al., 2015). In support, optogenetic
74 activation of cortical cholinergic axons could substitute for actual rewards in associative learning
75 (Liu et al., 2015). Memory deficits have been observed when cholinergic transmission was
76 abolished in animals (Chudasama et al., 2004; Croxson et al., 2011). NE may be similarly
77 crucial for learning and decision-making because a loss of adrenergic receptors in the prefrontal
78 cortex contributes to the memory loss in aged animals (Arnsten and Goldman-Rakic, 1985;
79 Arnsten et al., 2012). More specifically, locus coeruleus neurons fire at specific epochs during
80 decision tasks (Clayton et al., 2004) and may be sensitive to reward values (Bouret and
81 Richmond, 2015). Presumably, neuronal firing changes in cholinergic or noradrenergic nuclei
82 reflect the altered phasic release of these neuromodulators that have been observed in the
83 cortex (Teles-Grilo Ruivo et al., 2017), which may drive long-term synaptic plasticity in cortical
84 circuits (Kilgard, 1998; Froemke et al., 2007; Martins and Froemke, 2015). Therefore, growing
85 evidence indicate functions of ACh and NE signaling in higher cognitive functions.

86

87 Despite the large body of literature showing that ACh and NE can have multiple behavioral
88 functions and act at multiple timescales, less is known about the spatial pattern of the
89 neuromodulatory signal. At the level of brain regions, the neuromodulatory signals come from
90 different sources and have distinct projection patterns. The major source of ACh in the
91 neocortex comes from the basal forebrain. The axonal projections are organized topographically
92 (Saper, 1984; Zaborszky et al., 2015; Kim et al., 2016), and exhibit rich spatiotemporal
93 dynamics across regions (Lohani et al., 2022). By contrast, a major source of NE is locus
94 coeruleus, which sends axons to innervate much of the forebrain – though with some
95 exceptions, such as the basal ganglia (Amaral and Sinnamon, 1977; Moore and Bloom, 1979).
96 Unlike the cholinergic system, each locus coeruleus neuron projects broadly to many brain

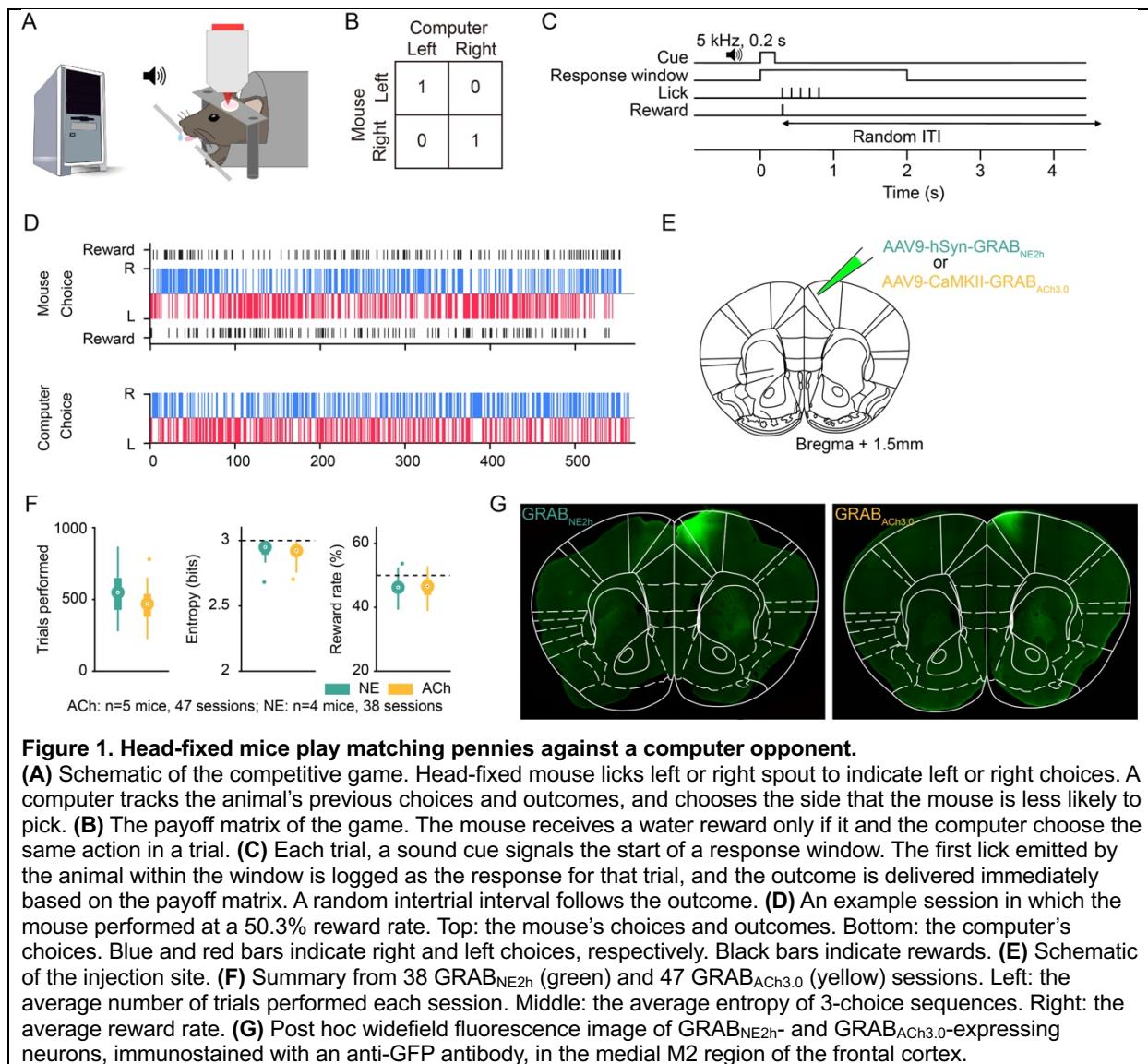
97 regions (Loughlin et al., 1982; Schwarz et al., 2015) with a high divergence of >20,000 terminals
98 (Descarries and Lapierre, 1973). At a finer spatial scale, within a single brain region, ACh and
99 NE signaling must be heterogeneous in space because neuromodulator levels elevate at
100 locations of release sites of the respective neuromodulatory axonal fiber terminals (Zhu et al.,
101 2020). However, the extent to which the spatial patterns of ACh and NE signals at the
102 subcellular resolution may reflect behavioral events is unknown.

103

104 In this study, we address this knowledge gap by leveraging the latest generation of genetically
105 encoded fluorescent indicators of ACh (Jing et al., 2020) and NE (Feng et al., 2019; Feng et al.,
106 2023), which permit sensitive and spatially resolved imaging of neuromodulatory signals. We
107 trained head-fixed mice to play a competitive game called matching pennies against a computer
108 opponent (Wang et al., 2022). In the medial frontal cortex, we found that although both NE and
109 ACh transients encoded the same set of task-related variables on a trial-by-trial basis, their
110 spatiotemporal dynamics are different. NE at a location would encode often only one decision
111 variable, whereas ACh at one site tends to multiplex and be driven by different behavioral
112 events. To determine behavioral relevance, we activate cholinergic or noradrenergic fibers in the
113 medial frontal cortex using optogenetics to show that increased NE availability selectively
114 promotes exploration during decision-making.

115

116 **Results**


117

118 **Head-fixed mice play matching pennies against a computer opponent**

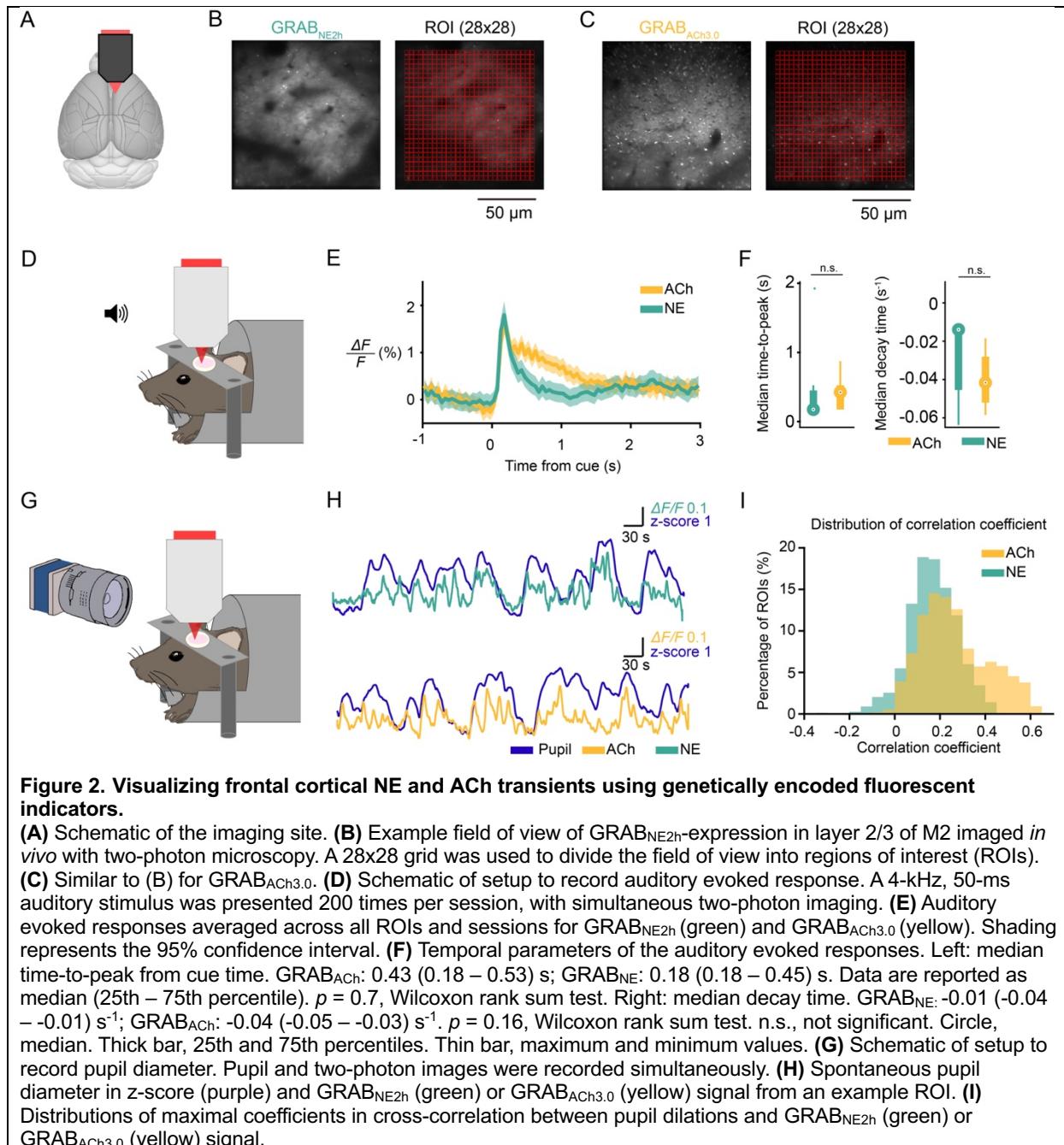
119 Matching pennies is a competitive game that involves social and strategic decision-making (Lee,
120 2008; Wang and Kwan, 2023). We previously developed a behavioral paradigm for head-fixed,
121 fluid-restricted mice to play matching pennies against a computer opponent and characterized
122 the behavioral performance in detail (Wang et al., 2022). Briefly, in this iterated version of
123 matching pennies, for each trial, the animal and the computer chose simultaneously the left or
124 right option (**Fig. 1A**). Outcome was determined by a payoff matrix: if the mouse chose the
125 same option as the computer, the mouse received a water reward; otherwise, there was no
126 reward (**Fig. 1B**). The computer opponent was programmed to predict the animal's upcoming
127 choice using the choice and outcome history over the session (see **Methods**). Based on the
128 prediction, the computer aimed to provide competitive pressure by selecting the option that the
129 mouse is less likely to pick. At the beginning of each trial, a 0.2-s, 5-kHz sound cue was played
130 to initiate a 2-s response window, during which the mouse could indicate its choice by licking

131 either the left or right spout with its tongue (**Fig. 1C**). Based on the choices of the animal and
132 the computer, a water reward might be delivered at the chosen spout according to the payoff
133 matrix. A random intertrial interval was presented to suppress pre-cue licks, which would be
134 prolonged if the animal emitted one or more licks during the interval (see **Methods**).
135

136 In preparation for characterizing noradrenergic and cholinergic transients, adult C57BL/6J mice
137 were injected with AAV9-hSyn-GRAB_{NE2h} or AAV9-CaMKII-GRAB_{ACh3.0} to express genetically
138 encoded fluorescent indicators of NE (Feng et al., 2019; Feng et al., 2023) and ACh (Jing et al.,
139 2020) in the medial secondary motor cortex (M2) region of the medial frontal cortex (**Fig. 1E**).
140 We focused on the medial M2 region because of its role in flexible decision-making (Siniscalchi
141 et al., 2016; Barthas and Kwan, 2017; Yang and Kwan, 2021). Headplate and cranial glass
142 window were implanted to enable head fixation and cellular-resolution optical imaging. Animals
143 were trained to reach a stable performance of >40% reward rate for 3 consecutive sessions.
144 The Nash equilibrium of matching pennies suggests that the optimal play is a mixed strategy:
145 players should choose left and right with equal probabilities, which would yield a 50% reward
146 rate in the long run. Indeed, the animals made choices with a high degree of stochasticity in a
147 session (**Fig. 1D**). In total, the data set involving two-photon imaging during matching pennies
148 included 47 sessions from 5 animals expressing GRAB_{ACh3.0} and 38 sessions from 4 animals
149 expressing GRAB_{NE2h}. On average, animals expressing GRAB_{NE2h} and GRAB_{ACh3.0} sensors
150 performed 550 ± 25 and 459 ± 17 trials per session respectively (mean \pm s.e.m.; **Fig. 1F**). Both
151 groups exhibited a high level of stochasticity in choice behavior, exemplified by the mean
152 entropy values of 2.93 ± 0.01 and 2.91 ± 0.01 for the NE and ACh groups. Accordingly, the
153 animals received reward rates of $46.2 \pm 0.5\%$ and $46.2 \pm 0.5\%$, which were near but lower than
154 the optimal reward rate of 50% ($p=4.5 \times 10^{-10}$ for NE; $p=4.5 \times 10^{-10}$ for ACh; Wilcoxon rank sum
155 test). Post hoc histology showed the spatial extent of the GRAB_{NE2h} and GRAB_{ACh3.0} expression
156 in the medial frontal cortex (**Fig. 1G**). Together, these results showed that animals undergoing
157 two-photon imaging can play matching pennies at an expert level.
158

159

160 **Visualizing frontal cortical NE and ACh transients using genetically encoded fluorescent**
161 **indicators**

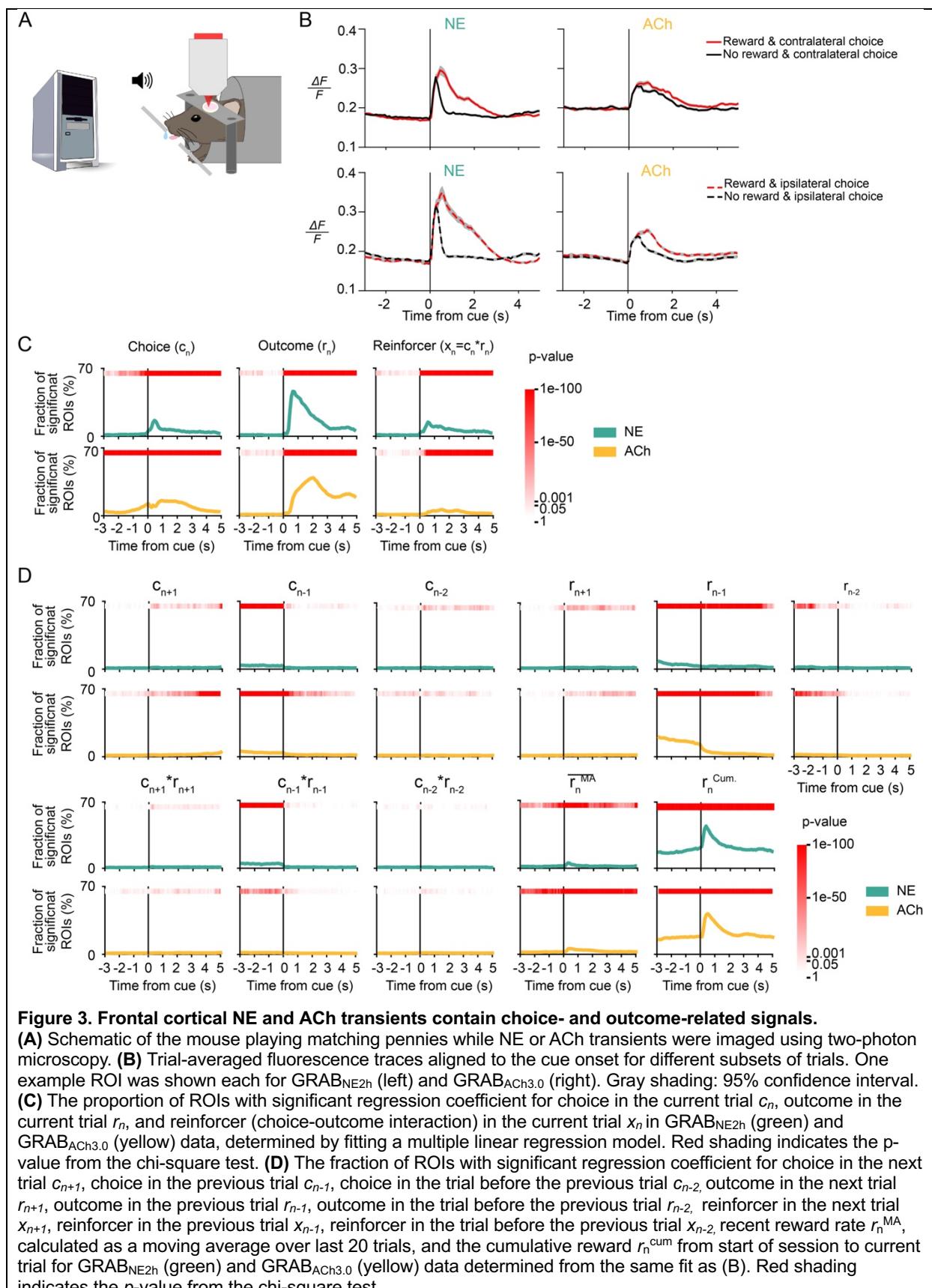

162 We used a two-photon microscope to record fluorescence signals from GRAB_{NE2h} and
163 GRAB_{ACh3.0} sensors at a depth of 100-150 μ m below the dura (Fig. 2A). The fluorescence
164 signals were diffuse across the field of view (Fig. 2B, C), presumably because the sensors
165 express densely in cell bodies as well as neuropil. There were typically several dark areas in a
166 field of view, which were likely blood vessels and capillaries. Because of the diffuse signal, we
167 decided to divide the field of view in an unbiased manner by using an evenly spaced grid of
168 28 \times 28 regions of interest (ROI). Each ROI had an area of 4.46 \times 4.46 μ m. We tested several

169 coarser and finer grid spacings, and found that it did not affect the conclusions of the
170 subsequent analyses.

171

172 We performed two experiments to confirmed that the fluorescence signals arising from
173 GRAB_{NE2h} and GRAB_{ACh3.0} sensors reflect NE and ACh transients in the medial frontal cortex.
174 One, we recorded auditory evoked response, because previous studies showed that both
175 noradrenergic neurons in LC and cholinergic neurons in basal forebrain respond to auditory
176 stimuli, particularly novel and unexpected cues (Moore and Bloom, 1979; Maho et al., 1995).
177 Indeed, presentation of 4-kHz, 50-ms auditory cues led to a sharp-rising fluorescent transient
178 from animals that expressed GRAB_{NE2h} or GRAB_{ACh3.0} sensor (**Fig. 2D-F**). Two, cortical
179 cholinergic and noradrenergic axonal activities are correlated with pupillary fluctuations (Reimer
180 et al., 2016). We measured spontaneous fluctuations in pupil diameter while imaging GRAB_{NE2h}
181 and GRAB_{ACh3.0} signals in the medial frontal cortex (**Fig. 2G**). As expected, periods of pupil
182 dilation corresponded roughly to periods of elevated fluorescence signals (**Fig. 2H**). Collating
183 data from all ROIs across all fields of view, pupil size and fluorescence signals were positively
184 correlated in most ROIs for both GRAB_{NE2h} and GRAB_{ACh3.0} (**Fig. 2I**). These results provided
185 evidence that the fluorescence signals from GRAB_{NE2h} and GRAB_{ACh3.0} sensors acquired with
186 two-photon microscopy reported fluctuations of NE and ACh levels in the medial frontal cortex.

187

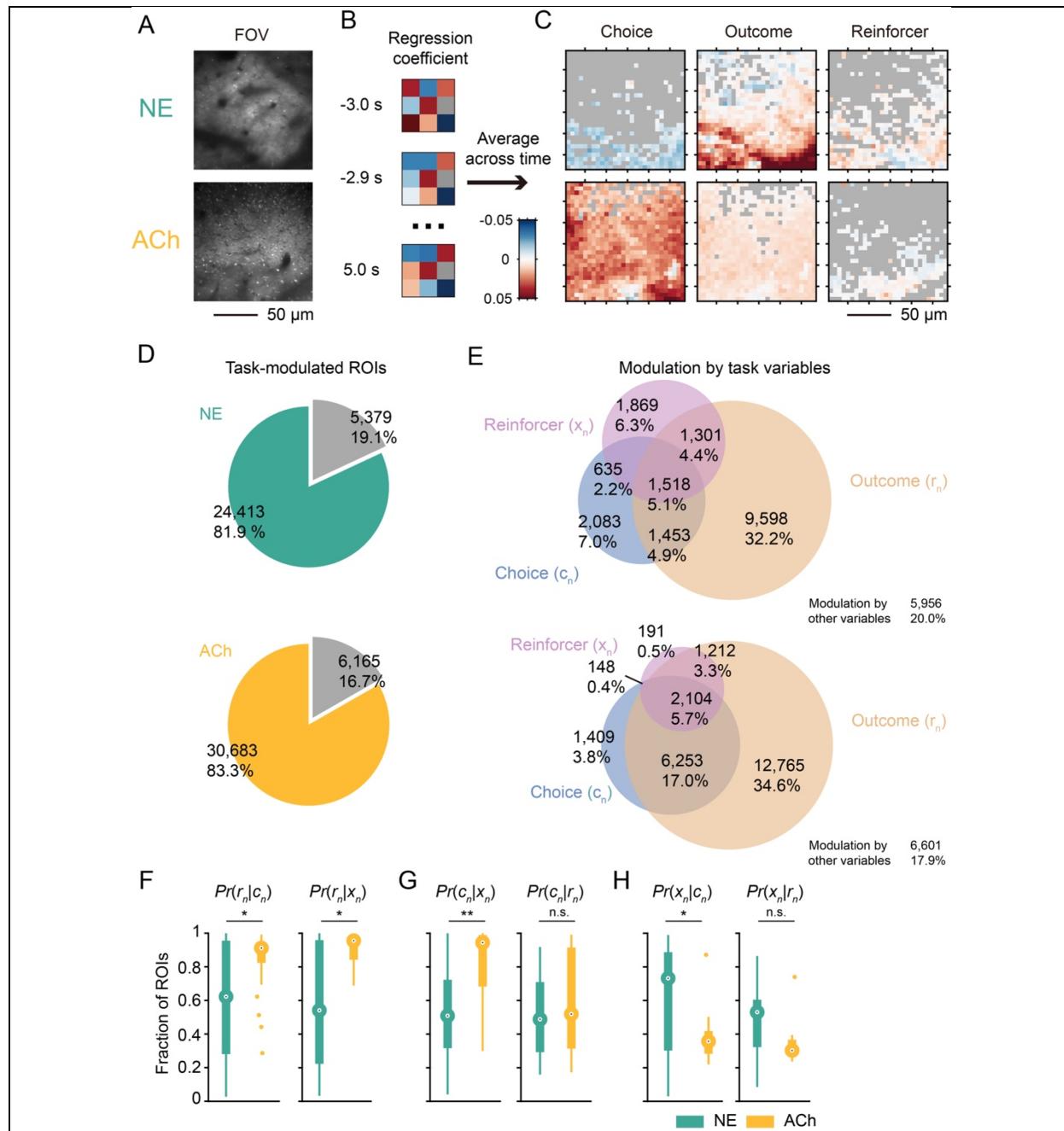


188

189 Frontal cortical NE and ACh transients contain choice- and outcome-related signals

190 We imaged fluorescence signals to determine NE and ACh transients in the medial frontal
 191 cortex as mice played matching pennies against a computer opponent (**Fig. 3A**). We observed
 192 NE and ACh transients that differed for rewarded versus unrewarded trials and contralateral
 193 versus ipsilateral choices (**Fig. 3B**). To determine more quantitatively how NE and ACh
 194 transients in all ROIs relate to behavioral events, we fitted a multiple linear regression model
 195 (see **Methods**) for each ROI to determine how its fluorescence signal may be explained by

196 choices, outcomes, and reinforcers (choice-outcome interactions) of past two, current, and next
197 trials as well as recent reward rate and cumulative reward sum in a session. The results
198 revealed that NE and ACh transients in a sizable fraction of ROIs were modulated by choice,
199 outcome, and reinforcer of the current trial (**Fig. 3C**). We noted several differences between NE
200 and ACh. For choice, the ACh signal rose before the cue, while it was detected in NE only after
201 the cue onset. This is consistent with our earlier finding that pupil-related arousal contained
202 choice information prior to cue (Wang et al., 2022) and indicates that cortical ACh, but not NE,
203 may be involved in the preparation of the upcoming action. There were also differences in the
204 temporal profiles of the outcome-related ACh and NE signals, which will be examined
205 quantitatively in the next sections. To a lesser degree, frontal cortical ACh and NE levels were
206 modulated by other behavioral predictors including previous choice, previous outcome, recent
207 reward rate, and cumulative reward sum (**Fig. 3D**). This analysis showed that NE and ACh
208 transients in the medial frontal cortex vary with decisions during the competitive game.


209

210 **Spatial organization of the decision-related NE and ACh transients**

211 A key advantage of two-photon imaging is to obtain micron-scale maps of the ACh and NE
212 signals (**Fig. 4A**). We can average coefficients obtained from multiple linear regression across
213 time and ask how fluorescent transients at different subcellular locations in the medial frontal
214 cortex were linked to behavioral variables (**Fig. 4B**). **Fig. 4C** shows such analysis applied to one
215 field of view, revealing heterogeneity in the spatial distribution of the task representations in the
216 ACh and NE fluctuations. Across all sessions, we found that 81.9% and 83.3% of the ROIs had
217 GRAB_{NE2h} and GRAB_{ACh3.0} transients that were modulated by at least one of the behavioral
218 variables in the multiple linear regression model (**Fig. 4D**). Focusing on the choice, outcome,
219 and reinforcer in the current trial that constitute the most predictive behavioral variables, 19.2%
220 and 26.9% of the NE and ACh ROIs were significantly modulated by choice (**Fig. 4E**).
221 Meanwhile, more locations encoded outcomes, encompassing 46.6% and 60.6% of the ACh
222 and NE ROIs. Finally, a minority of 18.0% and 9.9% of the NE and ACh ROIs were associated
223 with reinforcer. A single ROI may be significantly modulated by more than one behavioral
224 variable. This might happen because (1) locations represent behavioral variables with
225 independent probabilities and overlap by chance or (2) locations may preferentially have
226 correlated representation of multiple behavioral variables. The second explanation was
227 supported by statistical tests, because the overlap of ROIs modulated by different behavioral
228 variables occurred at a rate higher than chance for both ACh and NE ($p=0$, $p=0$, $p=0$, for overlap
229 between choice- and outcome-, choice- and reinforcer-, and outcome-and reinforcer-modulated
230 ROIs respectively, Pearson independent test; **Supplementary Table 4-1**).
231

232 To gain insight into the spatial integration of behaviorally relevant ACh and NE signals, we
233 calculated the conditional probabilities that an ROI encoded one variable v_1 given that it also
234 encoded another variable v_2 ($Pr(v_1|v_2)$). A head-to-head comparison of these conditional
235 probabilities between NE and ACh highlighted a significantly higher degree of multiplexed
236 coding of task information by ACh transients, as evident from the higher $Pr(r_n|c_n)$, $Pr(r_n|x_n)$, and
237 $Pr(c_n|x_n)$ values ($p=0.044$, $p=0.034$, and $p=0.030$; median test; **Fig. 4F, G; Supplementary**
238 **Table 4-2**). We did not detect a difference in $Pr(c_n|r_n)$ ($p=0.864$; median test. **Fig. 4G**). The
239 $Pr(x_n|c_n)$ and $Pr(x_n|r_n)$ values were shown for completeness ($p=0.002$ and $p=0.072$; median test.
240 **Fig. 4H**), but they represented a small number of ROIs due to fewer locations encoding
241 reinforcer. Taken together, frontal cortical ACh transients are more likely to multiplex task-

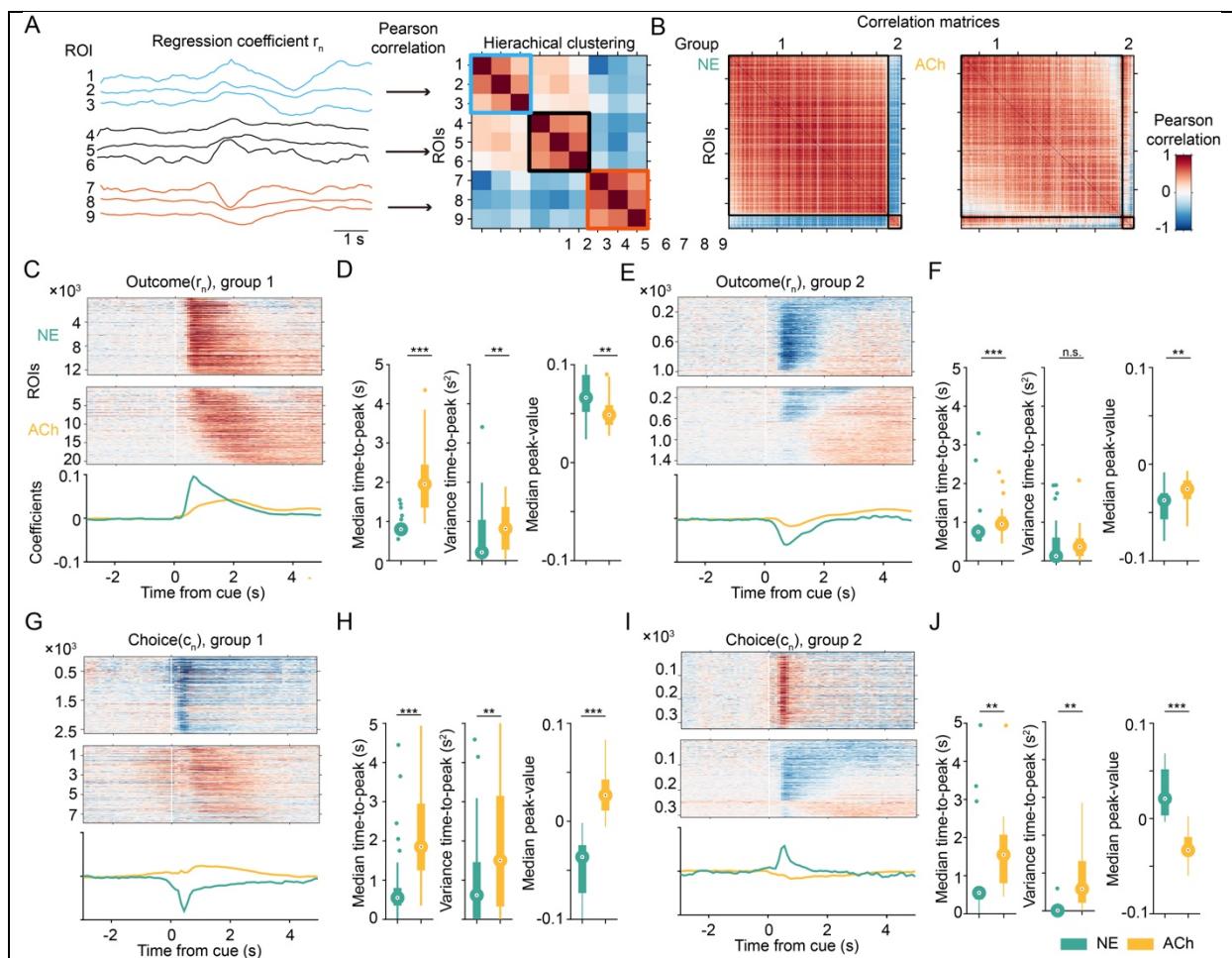
242 related information, where NE transients encode behavioral events in a more spatially
 243 segregated manner.

Figure 4. Spatial organization of the decision-related NE and ACh transients.

(A) Example field of views of GRAB_{NE2h} (top) and GRAB_{ACh3.0} (bottom) expression in layer 2/3 of M2. **(B)** Schematic illustrating the analysis: for each ROI in a field of view, the regression coefficients over $t = -3 - 5$ s was averaged and plotted in pseudo-color. **(C)** Spatial maps of mean regression coefficients for choice (left), outcome (middle), and reinforcer (right) for the GRAB_{NE2h} (top row) and GRAB_{ACh3.0} (bottom row) fields of view shown in (A). **(D)** Venn diagrams showing the number and percentage of ROIs that were significantly modulated by at least one task-related variable. **(E)** Venn diagrams showing the number and percentage of ROIs that were significantly modulated by the current choice, outcome, and reinforcer. **(F)** Boxplot of the conditional probabilities in GRAB_{NE2h} (green) and GRAB_{ACh3.0} (yellow) data. Median test, $Pr(r_n|c_n)$: $p=0.044$; $Pr(r_n|x_n)$: $p=0.034$. * $p<0.05$; ** $p<0.01$; n.s., not significant.

not significant. Large circles, medians. Thick bars denote 25th and 75th percentiles. Lines end at maximum and minimum value. Small circles: outliers. (G) Same as (F) for $Pr(c_n|x_n)$: $p=0.002$; and $Pr(c_n|r_n)$: $p = 0.864$. (H) Same as (F) for $Pr(x_n|c_n)$: $p=0.002$; and $Pr(x_n|r_n)$: $p = 0.072$.

244


245 **Distinct temporal dynamics of the task-related NE and ACh signals**

246 The most prominent behavioral readout linked to frontal cortical NE and ACh transients was
247 outcome, therefore we asked how the reward-related signals evolve over time at different
248 locations. To understand the spatiotemporal dynamics, we used the regression coefficient for
249 outcome extracted for each ROI that was significantly modulated by outcome. These traces
250 were sorted using hierarchical clustering based on Pearson correlation (Fig. 5A). The
251 correlation matrices of the sorted regression coefficients revealed two clusters of ROIs for NE
252 and ACh (Fig. 5B). For group 1, which captured 92.4% and 93.4% of the ROIs for NE and ACh
253 respectively, the occurrence of a reward increased fluorescence signal (Fig. 5C). The temporal
254 dynamics of NE and ACh signals differ, because NE signals rose faster and were more
255 temporally aligned than ACh as reflected by the shorter median time-to-peak and smaller
256 variance of time-to-peak ($p = 1.54 \times 10^{-13}$, and $p = 0.002$, respectively; Wilcoxon rank sum test;
257 Fig. 5D, left and middle; Supplementary Table 5-1). The peak value of the regression
258 coefficient was larger in NE than ACh ($p = 0.003$; Wilcoxon rank sum test; Fig. 5F, right;
259 Supplementary Table 5-1), although this magnitude depended on experimental factors such as
260 fluorophore expression level (Ali and Kwan, 2020) and therefore should be interpreted with
261 caution. For group 2, which only captured 7.6% and 6.6% of the ROIs for NE and ACh
262 respectively, the occurrence of a reward reduced fluorescence signal (Fig. 3E). There were
263 similar differences in temporal dynamics for ROIs in group 2 as for those in group 1, except the
264 difference in variance of time-to-peak was not statistically significant (median time-to-peak, $p =$
265 1.43×10^{-4} ; variance time-to-peak, $p = 0.108$; median peak-value, $p = 0.002$; Wilcoxon rank sum
266 test; Fig. 5F; Supplementary Table 5-1).

267

268 We clustered the ROIs based on their regression coefficient for outcome, but what about the
269 choice-related signals, given that there is spatially correlated encoding of behavioral variables?
270 We plotted the subset of ROIs with significant choice encoding using the same grouping and
271 sorted ranking (Fig. 5G, I). The timing of the choice-related ACh and NE signals was also
272 different: the choice-related NE signals emerged earlier and were more synchronized than ACh
273 (group 1: median time-to-peak, $p=1.06 \times 10^{-7}$; variance time-to-peak, $p=0.003$; median peak-
274 value, $p=3.53 \times 10^{-14}$; group 2: median time-to-peak, $p=0.022$; variance time-to-peak, $p=0.001$;
275 median peak-value, $p=1.88 \times 10^{-7}$; Wilcoxon rank sum test; Fig. 5H, J; Supplementary Table 5-

276 1). Strikingly, the sign of the regression coefficients for choice was opposite for NE and ACh.
 277 Although choice led to elevations of both NE and ACh in the medial frontal cortex, NE was
 278 preferentially driven by ipsilateral choice whereas ACh was more responsive to contralateral
 279 choice (Fig. 5H). These results reveal that decision-related NE signals were more synchronized
 280 and peaked earlier than ACh transients in the medial frontal cortex.

Figure 5. Distinct temporal dynamics of the task-related NE and ACh signals.

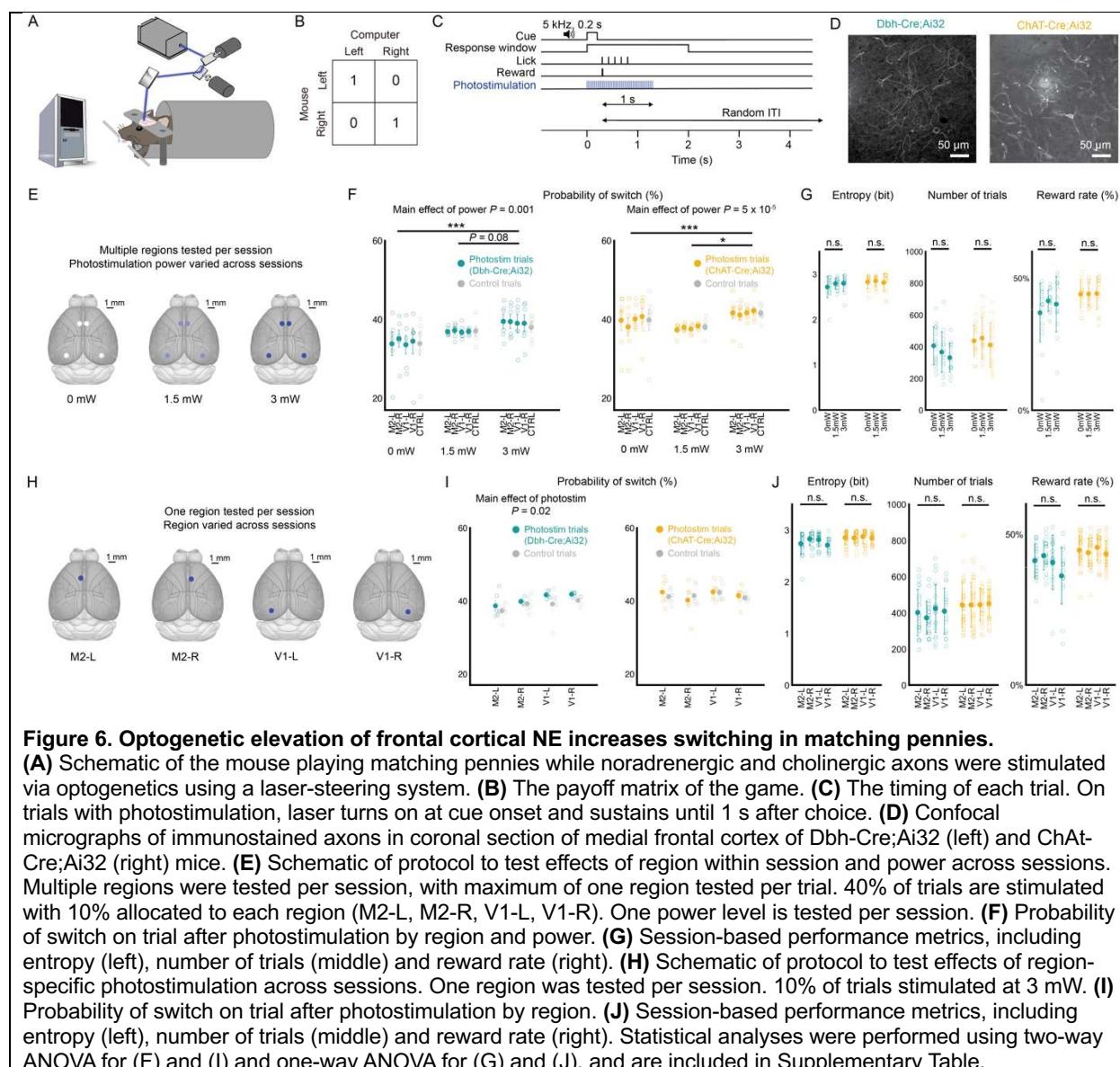
(A) Schematic illustrating the analysis: regression coefficients for current outcome were clustered into different groups using hierarchical clustering based on Pearson correlation. (B) Correlation matrices showing the clustering results for GRAB_{NE2h} (left) and GRAB_{ACh3.0} (right). (C) Top: heat map of regression coefficients for current outcome for ROIs in group 1. Bottom: average regression coefficient for current outcome for ROIs in group 1 for GRAB_{NE2h} (green) and GRAB_{ACh3.0} (yellow). (D) Temporal parameters of outcome-related activity in group 1 for GRAB_{NE2h} (green) and GRAB_{ACh3.0} (yellow) data. Wilcoxon rank sum test. Left: median time-to-peak, $p=1.54\times 10^{-13}$. Middle: variance time-to-peak, $p=0.002$. Right: median peak-value, $p=0.003$. * $p<0.05$; ** $p<0.01$; *** $p<0.001$; n.s., not significant. Large circle, median. Thick bar, 25th and 75th percentiles. Thin line, maximum and minimum values. Small circle, outlier. (E, F) Similar to (E) for ROIs in group 2. Median time-to-peak, $p=1.43\times 10^{-4}$. Variance time-to-peak, $p=0.108$. Median peak-value, $p=0.002$. (G, H) Similar to (E) for regression coefficient for current choice for ROIs in group 1. Median time-to-peak, $p=1.06\times 10^{-7}$. Variance time-to-peak, $p=0.003$. Median peak-value, $p=3.53\times 10^{-14}$. (I, J) Similar to (E) for regression coefficient for current choice for ROIs in group 2. Median time-to-peak, $p=0.022$. Variance time-to-peak, $p=0.001$. Median peak-value, $p=1.88\times 10^{-7}$.

281

282 Optogenetic elevation of frontal cortical NE increases switch probability

283 Given that NE and ACh transients exhibit task-related signals with distinct spatial and temporal
284 dynamics, we wanted to know if their levels in the medial frontal cortex may differentially
285 contribute to behavioral performance. To causally test the roles of the neuromodulators, we
286 used optogenetics to stimulate noradrenergic and cholinergic axons in the medial frontal cortex
287 as mice engaged in the matching pennies game (**Fig. 6A, B**). The payoff matrix and trial
288 structure were the same as the one used in imaging experiments except for the additional laser
289 photostimulation on select trials (**Fig. 6C**). Photostimulation (473 nm, 40 Hz) would start at cue
290 onset and sustain until 1 s after the mouse makes a choice (i.e., the first lick within the response
291 window). This was designed to roughly mimic the time course of the observed NE and ACh
292 transients in the medial frontal cortex. We used a laser steering system that can rapidly re-
293 position the laser beam and mice were implanted with a clear-skull cap (see **Methods**), which
294 allowed us to photostimulate a different region in the dorsal cortex on each trial. To target
295 noradrenergic neurons, we crossed a knock-in Dbh-Cre mouse (Tillage et al., 2020) with the
296 Ai32 strain (Madisen et al., 2012) for Cre-dependent expression of ChR2. To target
297 noradrenergic neurons, we crossed a ChAT-Cre mouse (Rossi et al., 2011) with the Ai32 strain
298 for Cre-dependent expression of ChR2. Post hoc immunostaining and confocal microscopy of
299 fixed coronal sections confirmed ChR2 expression in axons in the mouse medial frontal cortex
300 (**Fig. 6D**).

301
302 Initially, we tested how optogenetic stimulation of noradrenergic and cholinergic axons in
303 different brain regions may contribute to performance in matching pennies. We stimulated four
304 regions including left and right secondary motor cortex and left and right primary visual cortex
305 (left M2, right M2, left V1, and right V1; 40% chance of photostimulation on a given trial, equally
306 allocated to each region) in a single session, while fixing the power at one of three levels for the
307 session (0, 1.5, and 3 mW) (**Fig. 6E**). The most obvious effect of photostimulation was to alter
308 the probability of a choice switch on the subsequent trial (i.e., if the mouse chose left and
309 received a photostimulation, then the next trial it would choose right, and vice versa). With
310 increasing power, we observed that evoking NE release in medial frontal cortex increased the
311 tendency for the mouse to change its choice (main effect of power: $F(75, 2) = 7.57, p = 0.001$,
312 two-way ANOVA and post-hoc Tukey test) (**Fig. 6F; Supplementary Table 6-1**). Curiously, this
313 consequence of NE manipulation was equally effective for all regions stimulated (main effect of
314 region: $F(75, 4) = 0.11, p = 0.98$; interaction of region and power: $F(75, 8) = 0.05, p = 1.00$).
315 Similarly, there was a significant effect of photostimulation power on the switch probability ($F(90,$
316 $2) = 8.39, p = 0.0005$). We wanted to know if this photostimulation-induced propensity to


317 alternate choices affected performance. Comparing sessions with increasing laser power, we
318 did not detect any difference on performance metrics including entropy (NE: $F(41, 2) = 0.90, p =$
319 0.42 ; ACh: $F(43, 2) = 0.20, p = 0.82$; one-way ANOVA), number of trials performed per session
320 (NE: $F(44, 2) = 1.64, p = 0.21$; ACh: $F(43, 2) = 0.48, p = 0.62$), or reward rate (NE: $F(44, 2) =$
321 $1.09, p = 0.35$; ACh: $F(43, 2) = 0.009, p = 0.99$) (**Fig. 6G; Supplementary Table 6-2**).

322 Collectively, this photostimulation protocol increases the switch probability for both the Dbh-
323 Cre;Ai32 and ChAT-Cre;Ai32 mice. The behavioral alterations lacked region and temporal
324 specificity, because the choice behavior was altered on trials when any region was stimulated or
325 even when photostimulation was absent.

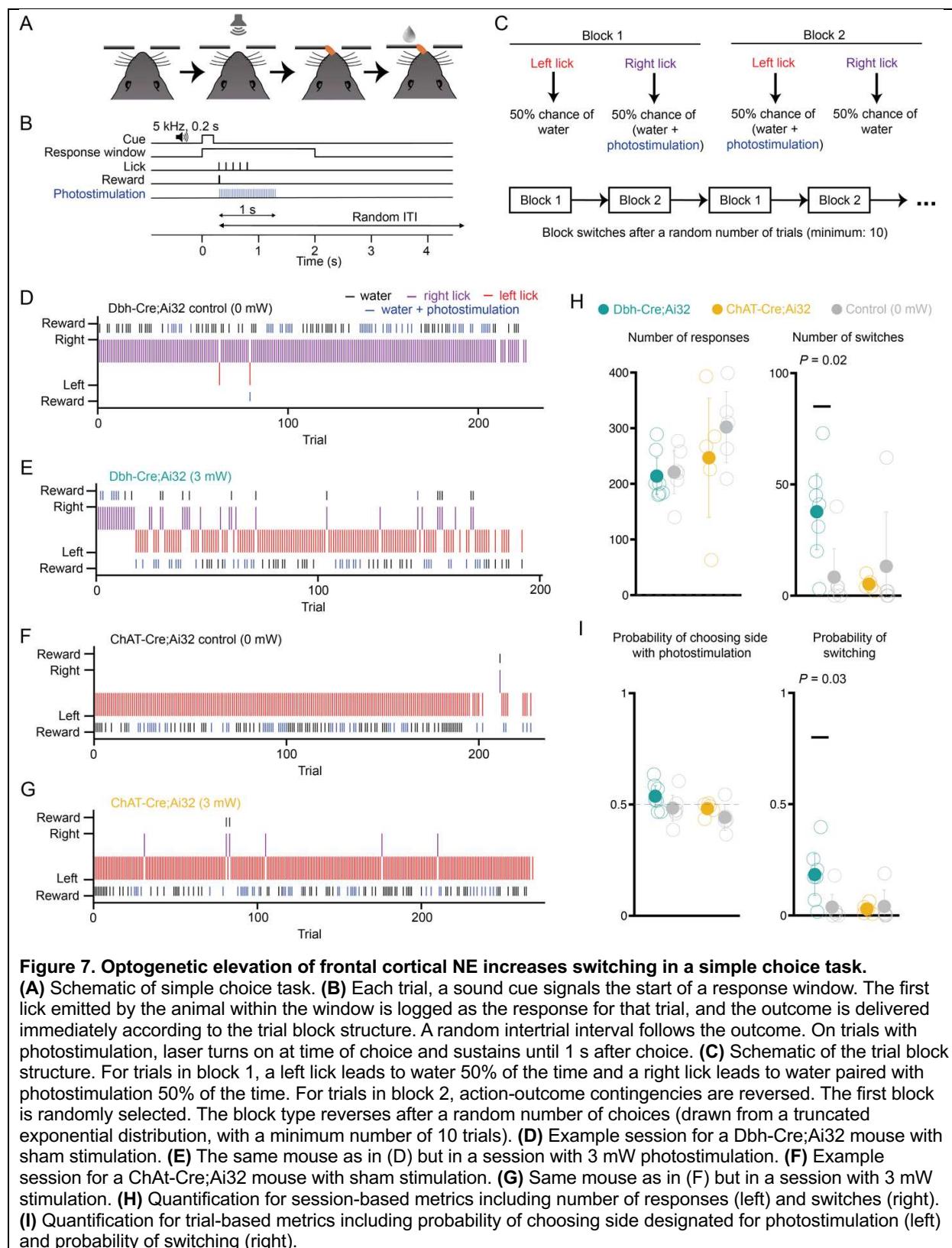
326

327 We speculated that the lack of region and temporal specificity may be because the
328 photostimulation trials were too frequent. Therefore, we modified the protocol to activate only
329 one region at 3 mW on 10% of the trials per session (**Fig. 6H**). With this revised
330 photostimulation protocol, we observed a within-session difference for NE between the
331 photostimulation and control trials (main effect of photostimulation: $F(40, 1) = 5.62, p = 0.02$,
332 two-way ANOVA), with the mouse switching its choice significantly more on trials following
333 optogenetic stimulation of noradrenergic axons compared to trials without ($p = 0.022$, post-hoc
334 Tukey test; **Fig. 6I; Supplementary Table 6-3**). There was difference across region (main effect
335 of region: $F(40, 3) = 4.03, p = 0.01$), with mice switching more during sessions when left M2 was
336 stimulated compared to left and right V1 sessions ($p = 0.06$ and 0.01 respectively, post-hoc
337 Tukey test). Although it was clear that within V1 sessions, photostimulation trials increased
338 switching relative to control trials, suggesting that there is regional preference but not
339 exclusivity. This is likely due to the interconnected, branching afferents of NE neurons, and our
340 photostimulation is activating collaterals to project to multiple other cortical regions (Schwarz et
341 al., 2015; Kim et al., 2016). With this protocol, we did not detect behavioral changes when
342 manipulating ACh levels (main effect of region: $F(48, 3) = 0.99, p = 0.40$; main effect of
343 stimulation: $F(48, 1) = 0.07, p = 0.80$). There was likewise no impact of the photostimulation on
344 the whole-session performance metrics (**Fig. 6J; Supplementary Table 6-4**). Altogether,
345 considering the results from both photostimulation protocols, we concluded that optogenetic
346 stimulation of noradrenergic axons increases the switch probability on the subsequent trial, with
347 regional preference and temporal specificity if the photostimulation was applied sparsely.

348

Figure 6. Optogenetic elevation of frontal cortical NE increases switching in matching pennies.

(A) Schematic of the mouse playing matching pennies while noradrenergic and cholinergic axons were stimulated via optogenetics using a laser-steering system. **(B)** The payoff matrix of the game. **(C)** The timing of each trial. On trials with photostimulation, laser turns on at cue onset and sustains until 1 s after choice. **(D)** Confocal micrographs of immunostained axons in coronal section of medial frontal cortex of Dbh-Cre;Ai32 (left) and ChAt-Cre;Ai32 (right) mice. **(E)** Schematic of protocol to test effects of region within session and power across sessions. Multiple regions were tested per session, with maximum of one region tested per trial. 40% of trials are stimulated with 10% allocated to each region (M2-L, M2-R, V1-L, V1-R). One power level is tested per session. **(F)** Probability of switch on trial after photostimulation by region and power. **(G)** Session-based performance metrics, including entropy (left), number of trials (middle) and reward rate (right). **(H)** Schematic of protocol to test effects of region-specific photostimulation across sessions. One region was tested per session. 10% of trials stimulated at 3 mW. **(I)** Probability of switch on trial after photostimulation by region. **(J)** Session-based performance metrics, including entropy (left), number of trials (middle) and reward rate (right). Statistical analyses were performed using two-way ANOVA for (F) and (I) and one-way ANOVA for (G) and (J), and are included in Supplementary Table.


349

350 Optogenetic elevation of frontal cortical NE in a simple choice task

351 Because optogenetic activation of frontal cortical noradrenergic axons promoted switching
 352 without improving reward rate, we wondered if the impact of the perturbation was specific to
 353 decision-making with competitive pressure like matching pennies or if the effect would
 354 generalize to a simplified task. We trained the same mice, after matching pennies experiments,
 355 on a simple choice task where there is no inherent benefit to switching. The structure and timing
 356 of each trial was nearly identical to matching pennies (**Fig. 7A, B**). Photostimulation (473 nm, 40
 357 Hz, 3 mW) applied to M2 occurred on select trials starting at the choice and sustained for 1 s.
 358 Different from matching pennies, instead of a payoff matrix, reward availability followed a block
 359 structure (**Fig. 7C**). In block 1, left choices have a 50% chance of water reward while right

360 choices have a 50% chance of water reward paired with photostimulation. After a random
361 number of trials, without external cue informing the mouse of the block reversal, block 2 began
362 with the opposite action-outcome contingencies. Each mouse was tested on multiple sessions
363 with either sham photostimulation (0 mW) or photostimulation at 3 mW in a randomized order.
364 Example sessions illustrated the typical behavior: without photostimulation, Dbh-Cre;Ai32 and
365 ChAT-Cre;Ai32 mice tended to stick to one option and would persist in making the same choice
366 repeatedly (**Fig. 7D, F**). However, a Dbh-Cre;Ai32 mouse switched more frequently when the
367 water reward was paired with photostimulation than control (**Fig. 7E**). By contrast, a ChAt-
368 Cre;Ai32 mouse switched rarely even when photostimulation was active (**Fig. 7G**). Summarizing
369 the data across all animals, mice completed a similar number of trials per session regardless of
370 photostimulation (Dbh-Cre;Ai32: $t(11) = 0.28, p = 0.79$; ChAt-Cre;Ai32: $t(8) = 0.88, p = 0.40$; **Fig.**
371 **7H, left**). Dbh-Cre;Ai32 mice overall explored the options more by switching choices during a
372 session with photostimulation ($t(11) = -2.68, p = 0.02$), while ChAt-Cre;Ai32 mice switched
373 infrequently in both conditions ($t(8) = 0.65, p = 0.53$; **Fig. 7H, right**). Analyzing the data on a
374 per-trial basis, neither strain showed a preference for the side designated for photostimulation
375 (Dbh-Cre;Ai32: $t(11) = -1.45, p = 0.18$; ChAt-Cre;Ai32: $t(8) = -1.24, p = 0.25$, **Fig. 7I, left**). Dbh-
376 Cre;Ai32 mice were more likely to switch on any given trial in sessions with photostimulation
377 ($t(11) = -2.55, p = 0.03$) while ChAt-Cre;Ai32 mice showed no difference ($t(8) = 0.30, p = 0.77$;
378 **Fig. 7I, right**). These results indicate that the evoked elevation of NE in the medial frontal cortex
379 causes the mouse to switch choices more frequently, even though there is no preference for
380 photostimulation per se and there is no incentive in this simple choice task for exploring.

381

384 This study yielded three main findings. First, during a competitive game, both NE and ACh in
385 the mouse medial frontal cortex encode task-relevant information including choice and outcome.
386 The noradrenergic representation is more spatially segregated at the subcellular scale, whereas
387 the cholinergic representation tends to multiplex multiple behavioral variables at the same
388 location. Second, the decision-related NE transients are more synchronized and peak earlier
389 than the ACh signals. Third, elevating NE levels in the medial frontal cortex promotes
390 exploratory behavior by spurring the animal to switch choices on the subsequent trial. Together,
391 these findings reveal distinct spatiotemporal dynamics for NE and ACh signaling in the frontal
392 cortex, which may underpin their differential contributions to learning and decision-making.
393

394 **Imaging considerations**

395 We can visualize the dynamic fluctuation of neuromodulator levels at subcellular resolution
396 owing to advances in novel genetically encoded fluorescent sensors of NE and ACh. However,
397 there are limitations to consider. Two-photon-excited fluorescence enables deep-tissue imaging,
398 but the dense expression and relatively weak brightness of the current generation of sensors
399 restrict the imaging depth. Therefore, we are only sampling NE and ACh transients in the
400 supragranular layers of the medial frontal cortex. For NE, the majority of the LC inputs to the
401 cortex resides in layer I (Swanson and Hartman, 1975). However, we are likely missing a
402 substantial fraction of cholinergic inputs because afferents from the basal forebrain
403 predominantly reside in infragranular layers, with 77% found in layers V and VI, and only 14%
404 and 9% in layer I and layer II/III respectively (Henny and Jones, 2008). We obtained ~10%
405 change in fractional fluorescence from the most responsive ROIs and ~1-2% change in
406 fractional fluorescence averaged across a field of view. We were concerned that fluorescence
407 signals may arise from motion artifact, rather than biological sources. This is why we performed
408 the auditory evoked response and spontaneous pupillary measurements to confirm that the
409 fluorescence signals agree with known physiological correlates of cortical NE and ACh levels.
410

411 A main finding of this study is the difference in timing, where task-related elevation of NE was
412 significantly more aligned and peaked shortly after the decision. The τ_{on} and τ_{off} are 0.11 s and
413 0.58 s for GRAB_{ACh3.0} for 100 μ M ACh (Jing et al., 2020), while the τ_{on} and τ_{off} are 0.09 s and
414 1.93 s for GRAB_{NE2h} for 100 μ M NE (Feng et al., 2023). The sensors have similar rise times and
415 GRAB_{NE2h} has slower decay time than GRAB_{ACh3.0}, therefore the intrinsic kinetics of the sensors
416 cannot account for the temporal dynamics observed in this study. There is effort to expand the
417 color palette of the genetically encoded fluorescent sensors. Red-shifted sensors are available

418 now for dopamine (Patriarchi et al., 2020; Zhuo et al., 2023) and has just been developed for
419 NE (Kagiampaki et al., 2023). Future studies may leverage wavelength-shifted sensors to
420 simultaneously monitor multiple neuromodulators at the same time, to further determine whether
421 the spatial organization of ACh and NE transients may be coordinated and the potential
422 interplay between different neuromodulators.

423

424 **Spatial organization of decision-related NE and ACh transients in the medial frontal
425 cortex**

426 Our results reveal that NE and ACh transients in the mouse medial frontal cortex occur when
427 animals made choices and received rewards during a competitive decision-making task.
428 Fluctuations of cholinergic and noradrenergic activities are intimately linked to pupil-associated
429 arousal state (Reimer et al., 2016), therefore our results are consistent with prior works showing
430 that pupil size changes are correlated with choice, outcome, and reward prediction error
431 (Einhauser et al., 2010; de Gee et al., 2014; Van Slooten et al., 2018; Wang et al., 2022).
432 Moreover, the finding of this study is in agreement with a recent study reporting that cholinergic
433 basal forebrain neurons provide reinforcement signals to its axonal targets (Sturgill et al., 2020).

434

435 A notable conclusion of this study is that the decision-related signals carried by NE is more
436 spatially distributed at the subcellular scale, whereas ACh can be modified by multiple
437 behavioral variables at the same location. This has important implications because it suggests
438 that ACh can influence neural plasticity and cortical computation specifically and only following
439 more complex events that involve a conjunction of behavioral conditions. By contrast, a more
440 segregated representation, like NE, would transmit task-related information in parallel to distinct
441 elements of the cortical microcircuit. Representation of different behavioral variables at the
442 subcellular scale has been observed previously in the dopamine system. Using two-photon
443 microscopy to visualize calcium transients, individual dopaminergic axons in dorsal striatum
444 were found to encode either locomotion onset or reward (Howe and Dombeck, 2016). The
445 heterogeneity in behavioral correlates mapped onto genetically defined subtypes of
446 dopaminergic neurons (Azcorra et al., 2023). Recent studies have likewise revealed subtypes of
447 noradrenergic neurons in the LC, with distinct firing patterns during decision-making (Su and
448 Cohen, 2022) and preferential long-range projection targets (Uematsu et al., 2017; Totah et al.,
449 2018). There are also subtypes of cholinergic neurons in the basal forebrain, which differ in
450 physiological properties and behavioral correlates (Laszlovszky et al., 2020). It is plausible that

451 the spatial organization of ACh and NE transients arises due to various degree of spatial
452 overlap of axons in the medial frontal cortex from different subtypes of NE or ACh neurons.

453

454 **Noradrenergic system promotes switching and exploratory behavior**

455 After photostimulation of frontal cortical NE axons, animals increased tendency to switch their
456 choice during both matching pennies and a simple choice task. Our results echo the central
457 conclusion of an earlier study that used chemogenetics to activate LC inputs into the anterior
458 cingulate cortex in rats, which increased behavioral variability (Tervo et al., 2014). However,
459 unlike the earlier work, in our task there is no incentive to switch in the simple choice task,
460 suggesting that this causally evoked behavioral change was not adaptive for improving
461 performance. Recent study has shown that silencing the mouse anterior cingulate cortex
462 decreases stochasticity in a foraging task (Vertechi et al., 2020), suggesting that the impact of
463 frontal cortical NE on exploratory behavior may be bidirectional, in agreement with a theoretical
464 proposal that NE may relate to the inverse temperature parameter in reinforcement learning
465 (Doya, 2002).

466

467 One may ask: given the prominent task-related ACh transients, why was it that stimulating the
468 cholinergic axons yielded no detectable change in behavior? This can be due to technical
469 limitations, because photostimulation was applied broadly to entire brain regions. We cannot
470 recapitulate the precise fine-scale spatiotemporal patterns observed for the neuromodulatory
471 transients. Unlike NE, we show that ACh transients are staggered with varying peak times at
472 different locations, which could not be mimicked by wide field optogenetic stimulation. Moreover,
473 ACh and medial frontal cortex have roles in decision making and learning that are not captured
474 by the behavioral tasks in this study. ACh contributes to cue-guided responses (Gritton et al.,
475 2016) and working memory (Chudasama et al., 2004). Furthermore, medial frontal cortex
476 including anterior cingulate cortex is involved in tracking volatility and uncertainty (Behrens et
477 al., 2007), as well as risk aversion (van Holstein and Floresco, 2020) and belief or strategy
478 updating (Starkweather et al., 2018; Tervo et al., 2021; Atilgan et al., 2022). These are aspects
479 of decision-making that are not emphasized in matching pennies, which may be why
480 optogenetic stimulation of cholinergic axons in medial frontal cortex yielded a null effect.

481

482 **Conclusion**

483 Norepinephrine and acetylcholine are major neurotransmitters in the brain. Here, taking
484 advantage of novel fluorescent sensors and *in vivo* two-photon microscopy, we characterized

485 noradrenergic and cholinergic signaling in subcellular resolution in the medial frontal cortex in
486 mice while they were engaging in a competitive decision-making game. We uncovered that
487 decision-related events are associated with NE and ACh transients with distinct spatiotemporal
488 dynamics. Causal manipulation of frontal cortical NE heightened exploratory behavior. Our
489 study contributes to the emerging understanding of the functions of these neuromodulators in
490 value-based decision-making and provides clues into why their dysfunction may underlie
491 cognitive symptoms of neuropsychiatric disorders.

492

493 **Acknowledgements**

494 We thank Patricia Jensen for generating and sharing the Dbh-Cre mice, Neil Savalia for help
495 with the two-photon microscope, and Stephan Thibierge, Lucas Pinto, and David Tank for
496 sharing the design of the laser steering system.

497

498 **Conflict of Interest**

499 A.C.K. has been a scientific advisor or consultant for Empyrean Neuroscience, Freedom
500 Biosciences, and Psylo. A.C.K. has received research support from Intra-Cellular Therapies.
501 These duties had no influence on the content of this article.

502

503 **Funding source**

504 This work was supported by NIH/NIMH R01MH112750 (A.C.K.), NIH/NIMH R21MH118596
505 (A.C.K.), China Scholarship Council-Yale World Scholars Fellowship (H.W.), Gruber Science
506 Fellowship (H.K.O.), NIH training grant T32NS007224 (H.K.O.), and Cornell Engineering
507 Learning Initiatives award (J.I.). The work used the Cornell Institute of Biotechnology's Imaging
508 Facility, supported by NIH 1S10RR025502 for the Zeiss LSM 710 Confocal Microscope.

509 **Methods**

510

511 **Animal**

512 All animal procedures were conducted in accordance with procedures approved by the
513 Institutional Animal Care and Use Committees at Yale University and Cornell University. For
514 imaging, adult male C57BL/6J mice were used (postnatal day 56 or older; #000664, Jackson
515 Laboratory). For photostimulation, adult male and female Dbh-Cre;Ai32 and ChAT-Cre;Ai32
516 mice were used (postnatal day 42 or older). Dbh-Cre;Ai32 mice were generated by crossing
517 B6.Cg-*Dbh*^{tm3.2(cre)Pjen}/J (Tillage et al., 2020) and B6.Cg-*Gt(ROSA)26Sor*^{tm32(CAG-}
518 *COP4*^{*H134R/EYFP}*Hze*/J (#024109, Jackson Laboratory) (Madisen et al., 2012). ChAt-Cre;Ai32 mice
519 were generated by crossing B6.129S-*Chat*^{tm1(cre)Low}/MwarJ (#031661, Jackson Laboratory)
520 (Rossi et al., 2011) and B6.Cg-*Gt(ROSA)26Sor*^{tm32(CAG-COP4*H134R/EYFP)Hze}/J (#024109, Jackson
521 Laboratory). Mice were housed in groups of three to five animals with 12/12 h light/dark cycle
522 control (lights off at 7 P.M.).

523

524 **Surgical procedures**

525 To prepare for imaging, animals underwent surgery for viral injection and cranial window
526 implant. At the start of surgery, the animal was anesthetized with 2% isoflurane, which was
527 reduced to 1-1.2% as the surgery progressed. The mouse was placed on a water-circulating
528 heating pad (TP-700, Gaymar Stryker) in a stereotaxic frame (David Kopf Instruments). After
529 injecting carprofen (5 mg/kg, s.c.; #024751, Butler Animal Health) and dexamethasone (3 mg/kg,
530 s.c.; Dexaject SP, #002459, Henry Schein Animal Health), the scalp of the animal was removed
531 to expose the skull, which was cleaned with 70% ethanol and povidone-iodine three times. For
532 the first part of procedure, a custom-made stainless-steel head plate was glued to the skull with
533 transparent Metabond (C&B, Parkell Inc.). For the second part of procedure, a 3-mm-diameter
534 craniotomy was made over the longitudinal fissure (centered on AP + 1.5 mm, ML 0.0 mm
535 relative to Bregma) using a high-speed rotatory drill (K.1070; Foredom). The dura was left intact
536 and irrigated frequently with artificial cerebrospinal fluid (ACSF; in mM: 5 KCl, 5 HEPES, 135
537 NaCl, 1 MgCl₂ and 1.8 CaCl₂; pH 7.3) over the remainder of the procedure. The injection sites
538 were located on the 4 vertices of a square with 0.2 mm side length, centered on a medial target
539 within M2 (AP + 1.5 mm, ML ± 0.5 mm relative to Bregma). Either AAV9-CaMKII-GRAB_{ACh3.0} or
540 AAV9-hSyn-GRAB_{NE2h} (titer >10¹³ GC/mL, WZ Biosciences Inc.) was infused at the four-
541 injection site through a glass micropipette attached to a microinjection unit (Nanoject II;

542 Drummond). Each site was injected with 46 nL of the aforementioned viruses 8 times over 2
543 min, at a depth of 0.4 mm from the dura. To minimize backflow of the injected solution, the
544 micropipette was left in place for 5 min after each infusion. The cranial window consisted of one
545 piece of 4-mm-diameter, #1 thickness prefabricated glass coverslip (#64-0720-CS-4R; Warner
546 Instruments) and three pieces of 3-mm-diameter, #1 thickness prefabricated glass coverslips
547 (#64-0720-CS-3R; Warner Instruments), glued together concentrically with UV-activated optical
548 adhesive (NOA 61; Norland Products, Inc.). The window was placed on the cortical surface with
549 the glass plug facing down with gentle downward pressure provided by a wooden stick attached
550 to the stereotaxic frame. The window was then secured by cyanoacrylate glue and Metabond.
551 Post-operative analgesia (carprofen, 5mg/kg, s.c.) was provided immediately and for three
552 consecutive days following surgery. For most animals, the first and second parts of procedure
553 were done in the same surgery, prior to behavioral training and imaging. We were concerned
554 that this sequence prolongs the time of viral-mediated expression which may affect the signal.
555 Therefore, for a few animals, the first and second parts of the procedure were done in separate
556 surgeries, each with its own set of pre- and post-operative steps. The initial head plate implant
557 allowed for training, then once the animals were proficient, we injected viruses and prepared
558 cranial window for imaging. We did not detect differences in the two approaches and therefore
559 present only the combined data set.

560
561 To prepare for photostimulation, the steps closely followed procedures described previously
562 (Pinto et al., 2019). At the start of surgery, the animal was anesthetized with 2% isoflurane,
563 which was reduced to 1-1.2% as the surgery progressed. The mouse was placed on a water-
564 circulating heating pad (TP-700, Gaymar Stryker) in a stereotaxic frame (David Kopf
565 Instruments). After injecting carprofen (5 mg/kg, s.c.; #024751, Butler Animal Health) and
566 dexamethasone (3 mg/kg, s.c.; Dexaject SP, #002459, Henry Schein Animal Health), the scalp of
567 the animal was removed to expose the skull, which was cleaned with 70% ethanol and
568 povidone-iodine for three times. After removing the scalp, the skull was lightly polished using
569 acrylic polish kit (S23-0735, Pearson Dental) to remove residual tissue. A custom-made
570 stainless steel headplate (eMachineShop) was glued onto the skull with Vetbond and the center
571 well filled with transparent Metabond (1 scoop purple powder, 7 drops base, 2 drops catalyst;
572 C&B, Parkell) to obtain a ~1 to 2 mm thick layer. After waiting for about 20 minutes for the
573 Metabond to cure, the surface of the Metabond layer was polished with progressively finer bits
574 from the acrylic polish kit. After polishing, the well was covered with a very thin layer of clear nail
575 polish (72180, Electron Microscopy Services) and allowed to dry fully. Post-operative analgesia

576 (carprofen, 5mg/kg, s.c.) was provided immediately and for three consecutive days following
577 surgery. Animals were implanted with this clear skull cap for at least 2 weeks before the start of
578 behavioral training.

579

580 **Behavioral setup**

581 The same training apparatus was used in our prior studies (Siniscalchi et al., 2019; Wang et al.,
582 2022). Detailed instruction to construct the apparatus is available at <https://github.com/Kwan-Lab/behavioral-rigs>. Briefly, the mouse with a head plate implant was head-fixed to a stainless-
583 steel holder (eMachineShop). The animal, restrained by an acrylic tube (8486K433; McMaster-
584 Carr), was able to adjust its posture with limited gross movements. Two lick spouts made of
585 blunted 20-gauge stainless-steel needles were positioned in front of the subject near its mouth.
586 The animal indicated its choice by licking the spout with its tongue. The contact with the lick
587 spout formed a closed loop with wires that were soldered onto the spout and a battery-powered
588 lick detection electronic circuit, which generated an output electrical signal. A computer received
589 the signal via a data acquisition unit (USB-201, Measurement Computing) and logged it with the
590 Presentation software (Neurobehavioral Systems). Two solenoid fluid valves (MB202-V-A-3-0-
591 L-204; Gems Sensors & Controls) controlled the water delivery from the two lick ports
592 independently. The amount of water was calibrated to ~4 µl per delivery by adjusting the
593 duration of the electrical pulse sent by the Presentation software through a second data
594 acquisition unit (USB-201, Measurement Computing). The sound cue signaling the trial start
595 was played by two speakers (S120, Logitech) placed in front of the mouse. The whole setup
596 was placed inside an audiovisual cart with walls covered by soundproof acoustic foams
597 (5692T49, McMaster-Carr).

598

599 **Two-photon imaging**

600 The behavioral setup described above was placed under the two-photon microscope. The two-
601 photon microscope (Movable Objective Microscope, Sutter Instrument) was controlled using
602 ScanImage software 5.1. The excitation source was a Ti:Sapphire femtosecond laser
603 (Chameleon Ultra II, Coherent). Laser intensity was controlled by a Pockels cell (350-80-LA-02,
604 Conoptics) and an optical shatter (LS6ZM2; Uniblitz/Vincent Associates). The beam was
605 focused onto the sample with a 20×, N.A. 1.00 water immersion objective (N20X-PFH, Thorlabs
606 via Olympus). The time-averaged excitation laser intensity was 120–180 mW after the objective.
607 To image fluorescence transients from GRAB_{NE2h} or GRAB_{ACh3.0} sensors, excitation wavelength
608 was set at 920 nm and emission was collected from 475–550 nm with a GaAsP photomultiplier

610 tube. Time-lapse images were acquired at a resolution of 256 × 256 pixels and a frame rate of
611 30.03 Hz using bidirectional scanning with resonant scanners. To synchronize behavioral and
612 imaging data, a TTL pulse was sent by the Presentation software at the beginning of each trial
613 from the USB-201 board of the behavioral system that controlled the water valves. The imaging
614 system used the TTL pulse as an external trigger to initiate the imaging acquisition.

615

616 **Photostimulation**

617 The photostimulation apparatus had a design based on earlier work (Pinto et al., 2019) and is
618 the exact same configuration used in previous study (Atilgan et al., 2022). Briefly, a 473nm
619 fiber-coupled laser (473 nm, 75mW; Obis LX, Coherent) was controlled by a pulse sequence
620 generator (Pulse Pal, Sanworks). The fiber output was directed to a galvanometer-galvanometer
621 scanner (6210H, Cambridge Technologies), which were driven by power supplies (SPD-3606,
622 Cole-Parmer) and installed in a 60-mm cage system (ThorLabs). The excitation beam then
623 passes through an F-theta scan lens ($f = 160$ mm; FTH160-1064-M39, ThorLabs) and is
624 directed onto the animal's head. Calibration of the laser beam's position relative to bregma is
625 achieved by visualizing the cortical surface using a monochromatic camera (Grasshopper3;
626 GS3-U3-23S6M-C, Point Grey) with a telecentric lens (TEC-55, Computar). A blue LED (470
627 nm) aimed at the animal's head was used as a masking light. Control of the laser, scanner,
628 camera, and LED was executed through a data acquisition board (PCIe-6343, National
629 Instruments) utilizing custom software written in MATLAB (Mathworks). The behavior setup
630 described above was placed under the photostimulation apparatus. The entire system is housed
631 inside a custom T-slot frame box (80/22 LLC), shielded with soundproof foam panels, on a
632 vibration isolation table (CleanTop 781-651-02R, TMC).

633

634 **Matching pennies**

635 Animals were trained to play the matching pennies game with a component opponent (Wang et
636 al., 2022). All procedures were written using the programming language in the Presentation
637 software. The animals were fluid restricted with water provided during the daily behavioral
638 session. On the days when the subjects were not trained (typically 1 day per week), a water
639 bottle was placed in the home cage, allowing for ad libitum water access for 5 minutes.

640

641 Animals were trained in 3 phases. For phase 1 (2 days), the animals were habituated to the
642 behavior apparatus. They may lick either spout for water. A water reward would be delivered
643 after every lick at the corresponding spout with a minimal time interval of 1 s. The session would

644 terminate after the animal collected 100 rewards. For phase 2 (approximately 4 weeks), the
645 animals were trained to follow the trial structure and withhold impulsive licks before the trial
646 started. In each trial, a 5-kHz sound cue lasting for 0.2 s signaled the start of the trial. Then the
647 animal was given a 2-s window to lick either port. The 2-s response window would give a naïve
648 mouse more time to act when they had not learnt the trial timing, therefore helping the animals
649 to acquire the task faster. Once the first lick was detected, the 2-s response window would be
650 terminated immediately. A water reward would be presented at the corresponding spout,
651 following which a fixed 3-s period was presented for the animal to collect the reward. In the trials
652 when the animal did not lick, the 3-s interval was still presented in full. A random intertrial
653 interval (ITI) began after the 3-s consumption window. A number was drawn from a truncated
654 exponential distribution with $\lambda=0.333$ and boundaries of 1 and 5, which was used as the
655 duration of the ITI in seconds. If one or more licks were detected during the ITI, an additional ITI
656 with duration redrawn from the same distribution would be appended to the end of current ITI,
657 with a maximum of 5 ITIs. After the ITIs ended, the next trial would begin. The animal would be
658 advanced into phase 3 to play the matching pennies game when the average number of ITI
659 draws per trial was lower than 1.2 for 3 consecutive sessions. In phase 3 (approximately 4
660 weeks), the animals were trained to play the matching pennies game against a computer
661 opponent whose behavior was controlled by a script written in the programming language of the
662 Presentation software. The trial timing is the same as phase 2: each trial begins with a 5-kHz,
663 0.2-s sound cue. Within a 2-s response window, the animal indicated its choice by licking either
664 the left or right spout. A water reward would be delivered in the corresponding spout if the
665 animal chose the same choice as the computer. Otherwise, there would be no reward. The
666 computer opponent was programmed to provide competitive pressure in a way the same as
667 “algorithm 2” described in previous studies (Barraclough et al., 2004; Lee et al., 2004; Wang et
668 al., 2022). Specifically, the computer opponent kept a record of all the animal’s past choices and
669 outcomes within the current session and ran 9 binomial tests on the conditional probability of the
670 animal choosing left given the sequence of previous N choices (N=0-4) and previous M choices
671 and outcomes (M = 1-4), against the null hypotheses that the conditional probabilities of the
672 animal choosing left was 0.5. If at least one of the tests rejected the null hypotheses with alpha
673 < 0.05 , the computer then chose right with the significant conditional probability that was most
674 biased from 0.5. If none of the null hypothesis was rejected, the computer randomly generated
675 either choice with equal probabilities. The animal could play for as many trials as it desires, and
676 a session would terminate when no response was detected for 10 consecutive trials. Mice

677 reached stable performance when they played matching pennies for 3 consecutive sessions
678 with a minimum of 40% reward rate.

679

680 Initially, mice were trained in dedicated behavioral setups. After reaching criterion, animals were
681 trained to play the same matching pennies game in the behavioral setup within the two-photon
682 imaging or photostimulation rig. They would be deemed to have adapted when mice played
683 matching pennies for 3 consecutive sessions with a minimum of 40% reward rate, which was
684 when imaging or photostimulation experiments would commence.

685

686 **Matching pennies and photostimulation**

687 During matching pennies, laser was turned on for photostimulation (frequency: 40 Hz; pulse
688 duration: 0.1 ms) on select trials from onset of cue to 1 s after choice was made (i.e., first lick
689 within response window). Photostimulation was applied to one of four possible locations: left
690 secondary motor cortex (M2-L; +1.5 mm AP, -0.3 mm ML from bregma), right secondary motor
691 cortex (M2-R; +1.5, +0.3), left primary visual cortex (V1-L; -3.0, -2.0), or right primary visual
692 cortex (V1-R; -3.0, +2.0). On trials without photostimulation, the masking blue LED would be
693 turned on from onset of cue to 1 s after choice was made. For the “varying power” paradigm,
694 photostimulation occurred on 40% of the trials randomly with 10% allocated to each region (M2-
695 L, M2-R, V1-L, and V1-R). One power was used for a session, but power changed across
696 sessions in a pseudorandom order between 0, 1.5, and 3 mW. For the “varying region”
697 paradigm, photostimulation occurred on 10% of the trials at 3 mW. One region was tested for a
698 session, but region changed across sessions in a pseudorandom order between M2-L, M2-R,
699 V1-L, and V1-R.

700

701 **Simple choice task**

702 Each trial begins with a 5-kHz, 0.2-s sound cue. Within a 2-s response window, the animal
703 indicated its choice by licking either the left or right spout. In trial type 1, left spout has 50%
704 chance of delivering water and photostimulation (from choice to 1 s after choice was made)
705 while right spout has 50% chance of delivering only water. In trial type 2, left spout has 50%
706 chance of delivering only water while right spout has 50% chance of delivering photostimulation
707 and water. A session begins with a first trial of trial type 1 or 2 randomly. The next trial has a
708 1/11 probability to switch trial type. There were no external stimuli beyond the probabilistic
709 photostimulation and water delivery to inform the mouse of the trial type switch. The animal

710 could play for as many trials as it desires, and a session would terminate when no response
711 was detected for 20 consecutive trials.

712

713 **Pupillometry**

714 A monochrome camera (GigE G3-GM11-M1920, Dalsa) with a 55 mm telecentric lens (TEC-55,
715 Computar) was aimed at the eye of the animal contralateral to the hemisphere where imaging
716 was performed. Video was acquired at 20 Hz. The computer running the Presentation software
717 sent TTL pulses every 30 s to another computer controlling the camera through a USB data
718 acquisition device (USB-201; Measurement Computing). The timestamp of the TTL pulse was
719 logged by MATLAB 2019b (MathWorks) with a custom script, such that the video could be
720 aligned to behavioral events post hoc. The computer running the Presentation software sent
721 TTL pulses every 30 s to the two-photon microscope to trigger imaging. Each session lasted 30
722 minutes. Animals were tested either naïve or after going through the entire behavioral training
723 protocol for matching pennies.

724

725 **Auditory evoked responses**

726 This measurement relied on the same behavioral setup as the matching pennies. A 4-kHz, 50-
727 ms auditory stimulus was played at the beginning of each trial. A random ITI was presented
728 following the stimulus. The duration of the ITI in seconds was drawn from a continuous uniform
729 distribution with boundaries of 1 and 4. The next trial would begin after the ITI. Each session
730 lasted 200 trials.

731

732 **Histology**

733 Following imaging experiments, mice were transcardially perfused with chilled phosphate-
734 buffered saline (PBS) followed by formaldehyde solution (4% in PBS). The brains were then
735 fixed in 4% formaldehyde solution for 1 hour before they were transferred to 30% sucrose
736 solution at 4 °C. After about 24 hours, the brains were cut into 50-µm thick coronal sections with
737 a vibratome (VT 1000S, Leica). The brain sections were washed 3 times with PBS solution
738 before being immersed with chicken anti-GFP antibody (1:500; ab13970, Abcam) for 12 hours
739 at 4 °C. Then Alexa 488-conjugated goat anti-chicken secondary antibody (1:50; ab209487,
740 Abcam) was used to label the primary antibody for 3 hours at room temperature. The sections
741 were then mounted with DPX and imaged with an inverted wide-field fluorescence microscope.

742

743 Following photostimulation experiments, mice were transcardially perfused with chilled PBS
744 then formaldehyde solution (4% in PBS). The brains were fixed in 4% formaldehyde solution for
745 24 hours at 4 °C before being transferred to PBS. Then brains were processed using the
746 vibratome into 30-µm thick coronal sections. Sections were washed 5 times with PBS and
747 incubated in PBS with 0.3% Triton X (PBST) for 20 minutes at room temperature. Slices were
748 blocked with 10% normal goat serum in PBST for 1 hour at room temperature followed by
749 incubation with primary anti-GFP antibody (1:200, ab290, Abcam) in 10% normal goat serum in
750 PBST at 4 °C overnight. Sections were washed 3 times in PBS then incubated with Alexa 488-
751 conjugated goat anti-rabbit secondary antibody (1:500; ab150077, Abcam) for 2 hours at room
752 temperature. Slices were mounted with Vectashield Antifade Mounting Medium with DAPI (H-
753 1200-10, VectorLabs) and imaged with a Zeiss LSM 710 confocal microscope.

754

755 **Preprocessing of matching pennies data**

756 To quantify the randomness in the animals' choices, the 3-choice entropy of the choice
757 sequence is calculated by:

758

$$759 \quad Entropy = - \sum_k p_k \log_2 p_k$$

760

761 where p_k is the frequency of occurrence of a 3-choice pattern in a session. Because there were
762 2 options to choose from, there were $2^3 = 8$ potential patterns possible (e.g., left-left-left, left-left-
763 right, left-right-left, etc.). The maximum value for entropy is 3 bits. For matching pennies, the
764 animals tended to select the same option for around 30 trials towards the end of each session.
765 The 3-choice entropy over a moving 30-trial window was calculated for each session, and the
766 MATLAB function *ischange* was used to fit with a piecewise linear function. The trials after the
767 fitted curve fell below a value of 1 were discarded to exclude the repetitive trials in the analyses.
768 In cases where the curve recovered to a value greater than 1 after it dropped below 1, or if it
769 never fell below a value of 1, the entire session was used for analysis.

770

771 **Preprocessing of pupillometry data**

772 The preprocessing of pupillometry data was similar to a previous work (Wang et al., 2022). To
773 extract the diameters of the pupil from the video recordings, we used DeepLabCut (DLC) 2.0
774 (Mathis et al., 2018; Nath et al., 2019). Five labels including the central, uppermost, leftmost,
775 lowermost, and rightmost points of the pupil were manually labelled by the experimenter on a

776 small subset of the video frames. The annotated frames were used to train DLC to automatically
777 label the 5 points on the remainder of the video. The absolute pupil diameter was calculated by
778 taking the distance between the leftmost and rightmost labels. The other labels were not
779 considered because we found the labelling of the lowermost points were interfered by the lower
780 eyelid, resulting in an inaccurate estimation. The absolute pupil diameter was passed through a
781 4 Hz lowpass filter with the MATLAB function *lowpass*. Using the MATLAB function *isoutlier*, we
782 detected and deleted any data points that were greater than 3 scaled median absolute deviation
783 (MAD) from the median. The baseline of the signal was computed with a 10-minute moving
784 window, which was used to convert the signal to z-score to account for drift over a session.
785

786 **Preprocessing of imaging data**

787 Time-lapse images were processed for x-y motion correction using customized MATLAB scripts
788 based on NoRMCorre (Pnevmatikakis and Giovannucci, 2017). The field of view (FOV) spans
789 142.66×142.66 μm , or 256×256 in pixels. For analysis, we only use the 124.83×124.83 μm , or
790 224×224 pixels, portion at the center of the FOV to avoid artifacts near the FOV edges due to
791 motion correction processing. The analyzed region was divided into 28×28 grids. Each grid was
792 a 4.46×4.46 μm , or 8×8 pixels, square, which was considered as a region of interest (ROI). We
793 decided to use grids to subdivide the FOV as an unbiased way to analyze spatial dependence,
794 rather than neural morphology because the GRAB_{NE2h} and GRAB_{ACh3.0} sensors labeled primarily
795 neuropils that are indistinct for manual drawing of ROIs. For each ROI, the fractional change in
796 fluorescence, $\Delta F/F(t)$, was calculated as:

797

$$798 \frac{\Delta F}{F}(t) = \frac{F(t) - F_0(t)}{F_0(t)}$$

799

800 where $F_0(t)$ is the baseline fluorescence as a function of time, which was the 10th percentile of
801 the fluorescent intensity within a 2-minute running window centered at time t .

802

803 **Analysis of imaging data – Peristimulus time histogram**

804 To obtain trial-averaged activity traces (peristimulus time histogram, PSTH) aligned to the cue
805 onset for different trial types, we first aligned $\Delta F/F(t)$ traces based on their timing relative to the
806 cue onset of the corresponding trials and then took the mean across traces. We then estimated
807 the average and 95% confidence interval over mean traces of all recorded ROIs with
808 bootstrapping procedure to get the average PSTH for a single session.

809

810 Analysis of imaging data – Linear regression

811 To determine how fluorescence signals may relate to task-related variables such as choices and
812 outcomes, we used a multiple linear regression equation adapted from our previous study
813 (Wang et al., 2022):

814

$$\frac{\Delta F}{F}(t) = b_0 + b_1 c_{n+1} + b_2 r_{n+1} + b_3 c_{n+1} r_{n+1} \\ + b_4 c_n + b_5 r_n + b_6 c_n r_n \\ + b_7 c_{n-1} + b_8 r_{n-1} + b_9 c_{n-1} r_{n-1} \\ + b_{10} c_{n-2} + b_{11} r_{n-2} + b_{12} c_{n-2} r_{n-2} \\ + b_{13} \overline{r_n^{\text{MA}}} + b_{14} r_n^{\text{Cum.}} + \varepsilon(t)$$

815

816 where $\frac{\Delta F}{F}(t)$ is the fractional changes in fluorescence at time t in trial n , $c_{n+1}, c_n, c_{n-1}, c_{n-2}$ are
817 the choices made on the next trial, the current trial, the previous trial, and the trial before the
818 previous trial, respectively, $r_{n+1}, r_n, r_{n-1}, r_{n-2}$ are the outcomes for the next trial, the current trial,
819 the previous trial, and the trial before the previous trial, respectively, b_0, \dots, b_{14} are the
820 regression coefficients, and $\varepsilon(t)$ is the error term. Choices were dummy-coded as 0 for
821 ipsilateral responses and 1 for contralateral responses. Outcomes were dummy-coded as 0 for
822 no-reward and 1 for reward. For the last 2 predictors, $\overline{r_n^{\text{MA}}}$ is the average reward over the
823 previous 20 trials, given by the equation:

824

$$\overline{r_n^{\text{MA}}} = \frac{\sum_{i=0}^{19} r_{n-i}}{20}$$

825

826 And $r_n^{\text{Cum.}}$ is the normalized cumulative reward during the session, calculated by:

827

828 where n denotes the current trial number and N is the total number of trials in the session.

829

830 $r_n^{\text{Cum.}} = \frac{\sum_{i=1}^n r_i}{\sum_{i=1}^N r_i}$

831

832 where n denotes the current trial number and N is the total number of trials in the session.

833

834 For each session, the regression coefficients were determined by fitting the equations to data

835 using the MATLAB function *fitlm*. The fit was done in 100-ms time bins that span from -3 to 5 s

836 relative to cue onset, using mean $\Delta F/F$ within the time bins. For a given predictor and an ROI, if

837 the regression coefficients were significant ($P < 0.01$) for at least 3 consecutive or 10 total time
838 points, the ROI was considered significantly modulated by the predictor. To summarize the
839 results, for each predictor, we calculated the proportion of ROIs in which the regression
840 coefficient was significantly different from zero ($P < 0.01$). To determine if the proportion was
841 significantly different from chance, we performed a chi-square test against the null hypothesis
842 that there was a 1% probability that a given predictor was mischaracterized as significant by
843 chance in a single session.

844

845 **Analysis of imaging data – Hierarchical clustering**

846 To analyze the degree of similarity in task-related activity across ROIs, within each session, we
847 applied hierarchical clustering on the regression coefficients for the current outcome for the
848 ROIs that were significantly modulated by the current outcome. We clustered the ROIs within
849 each session into 2 clusters based on the cross-correlation of the regression coefficients within -
850 3 to 5 seconds from cue using the MATLAB function *clusterdata*. The optimal number of clusters
851 was validated with silhouette analysis. Note that the *clusterdata* function would always cluster
852 any given dataset into two clusters, yet in some sessions the data were better fitted with only
853 one cluster. Therefore, we identified two distinct groups *post hoc* based on the direction of
854 modulation, then placed every cluster identified by *clusterdata* into either of these two groups as
855 follows: first we calculated the mean coefficients as a function of time of each cluster over
856 different ROIs; we then calculated the area under the curve of the average coefficients between
857 0-2 s from cue. Clusters with a positive area under the curve were considered Group 1, and
858 clusters with a negative area under the curve were considered Group 2. Once all the ROIs from
859 all sessions were categorized into either group, we then identified the ROIs that were
860 significantly modulated by current choice and/or current reinforcer (choice-outcome interaction)
861 within the groups. For visualization, the ROIs were sorted by the center-of-mass of the
862 regression coefficients for the current outcome. The hierarchical clustering procedures
863 described above were performed for GRAB_{NE2h} and GRAB_{ACh3.0} data separately.

864

865 **Analysis of imaging data – Temporal dynamics of the task-related activity**

866 To quantify the temporal dynamics of the task-related activity, the time-to-peak value was
867 calculated for each ROI as the duration from cue onset time to the peak coefficient time (the
868 time when the regression coefficient reached the maximum magnitude). Afterwards, the median
869 and variance of time-to-peak and the median of peak-value were taken for each session. This

870 quantification was performed for different regression coefficients (e.g., choice, outcome, and
871 reinforcer) separately.

872

873 **Analysis of imaging data – Information encoding of single ROIs**

874 To examine the spatial patterns of task-related activity, we calculated the average regression
875 coefficients over time for the current choice, current outcome, and current reinforcer (choice-
876 outcome interaction) separately for each session. We used the Pearson's chi-square test for
877 independence to test whether the event that a given ROI was modulated by one predictor was
878 independent from the event that the same ROI was modulated by another predictor.

879 To compare the level of information integration between GRAB_{NE2h} and GRAB_{ACh3.0} data, we
880 calculated 6 conditional probabilities that an ROI is modulated by one variable (v_1) given that the
881 same ROI is modulated by another variable v_2 for each session, given by the equation:

882

$$883 Pr(v_1|v_2) = \frac{N(v_1 \& v_2)}{N(v_2)}$$

884

885 where $N(v_1 \& v_2)$ denotes the number of ROIs that were modulated by v_1 and v_2 ; $N(v_2)$ denotes
886 the number of ROIs that were modulated by v_2 ; v_1 and v_2 can be either c_n , r_n , or x_n ($v_1 \neq v_2$).

887 The median test was used to determine if the conditional probabilities of an ROI was modulated
888 by one predictor given the ROI was modulated by another predictor were significantly different
889 between the GRAB_{NE2h} and GRAB_{ACh3.0} data, because the median test is more robust with small
890 sample size and less sensitive to asymmetry.

891

892 **Analysis for auditory evoked responses**

893 To obtain the mean auditory evoked responses, we first aligned the $\Delta F/F(t)$ based on the times
894 of auditory stimulus onset, then calculated the peri-stimulus time histogram (PSTH) over all 200
895 trials for each ROI. To examine the temporal dynamics of the auditory evoked response, the
896 time-to-peak- $\Delta F/F$ value was calculated for each ROI as the duration from cue onset time to the
897 peak- $\Delta F/F$ time (the time when the PSTH reached the highest value). The decay time was the
898 decay constant obtained by fitting the PSTH from the peak time to the end of trial (3 s after the
899 cue time) to single exponential decay. Afterwards, the median of time-to-peak and decay time
900 were taken for each session.

901

902 **Analysis for pupillary fluctuation**

903 For plotting example traces of fluorescent and pupil signals, we smoothed the $\Delta F/F(t)$ and pupil
904 z-score traces using a Gaussian kernel with the MATLAB function *smooth*. To characterize the
905 relationship between $\Delta F/F(t)$ and pupil z-score, we first determine the cross-correlation between
906 $\Delta F/F(t)$ and pupil z-score from lag of -2 to 2 seconds for each ROI, then determine the
907 maximum cross-correlation value within this lag range, and finally tabulate a histogram for the
908 maximum coefficients for all ROIs separately for GRAB_{NE2h} and GRAB_{ACh3.0} data.

909

910 **Analysis for photostimulation**

911 For the mouse's probability to stay on the next trial, a multi-variate ANOVA was performed for
912 each condition (ChAt-Cre;Ai32 or Dbh-Cre;Ai32) to determine the effect of region and power or
913 stimulation. Post-hoc Tukey test was used as needed. For analyzing session-wide metrics such
914 as entropy, number of trials completed, and reward rate, a one-way ANOVA was performed for
915 each condition to determine the effect of power or region. Post-hoc Tukey test was used as
916 needed. For the simple choice task, a t-test was performed to compare sessions with and
917 without stimulation (3 mW vs. 0 mW) for each condition on metrics of number of
918 responses/switches, probability of choosing side with stimulation, and probability of switching on
919 the next trial.

920

921 **Animal numbers**

922 For two-photon imaging, the data set for matching pennies included 47 sessions from 5 animals
923 expressing GRAB_{ACh3.0} and 38 sessions from 4 animals expressing GRAB_{NE2h}. Auditory evoked
924 responses included 7 sessions from 5 animals expressing GRAB_{ACh3.0} and 7 sessions from 7
925 animals expressing GRAB_{NE2h}. Spontaneous pupil fluctuation included 10 sessions from 5
926 animals expressing GRAB_{ACh3.0} and 7 sessions from 7 animals expressing GRAB_{NE2h}. For
927 photostimulation, the data set came from 7 ChAt-Cre;Ai32 and 6 Dbh-Cre;Ai32 mice. The
928 varying power paradigm included 91 sessions from 7 ChAt-Cre;Ai32 mice and 76 sessions from
929 6 Dbh-Cre;Ai32 mice. The varying region paradigm included 49 sessions from the same 7 ChAt-
930 Cre;Ai32 mice and 41 sessions from the same 6 Dbh-Cre;Ai32 mice. The simple choice task
931 included 8 sessions from 4 ChAt-Cre;Ai32 mice and 12 sessions from 6 Dbh-Cre;Ai32.

932

933 **Code accessibility**

934 The data and code that support the findings of this study will be made publicly available at
935 <https://github.com/Kwan-Lab>.

936

937 **Reference**

938 Ali F, Kwan AC (2020) Interpreting in vivo calcium signals from neuronal cell bodies, axons, and
939 dendrites: a review. *Neurophotonics* 7:011402.

940 Amaral DG, Sinnamon HM (1977) The locus coeruleus: neurobiology of a central noradrenergic
941 nucleus. *Prog Neurobiol* 9:147-196.

942 Arnsten A, Goldman-Rakic PS (1985) Alpha 2-adrenergic mechanisms in prefrontal cortex
943 associated with cognitive decline in aged nonhuman primates. *Science* (New York, NY)
944 230:1273-1276.

945 Arnsten AF, Wang MJ, Paspalas CD (2012) Neuromodulation of thought: flexibilities and
946 vulnerabilities in prefrontal cortical network synapses. *Neuron* 76:223-239.

947 Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine
948 function: adaptive gain and optimal performance. *Annu Rev Neurosci* 28:403-450.

949 Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and
950 behavioral flexibility. *Biological psychiatry* 46:1309-1320.

951 Atilgan H, Murphy CE, Wang H, Ortega HK, Pinto L, Kwan AC (2022) Change point estimation
952 by the mouse medial frontal cortex during probabilistic reward learning. *bioRxiv*.

953 Azcorra M, Gaertner Z, Davidson C, He Q, Kim H, Nagappan S, Hayes CK, Ramakrishnan C,
954 Fenno L, Kim YS, Deisseroth K, Longnecker R, Awatramani R, Dombeck DA (2023)
955 Unique functional responses differentially map onto genetic subtypes of dopamine
956 neurons. *Nat Neurosci* 26:1762-1774.

957 Barraclough DJ, Conroy ML, Lee D (2004) Prefrontal cortex and decision making in a mixed-
958 strategy game. *Nat Neurosci* 7:404-410.

959 Barthas F, Kwan AC (2017) Secondary Motor Cortex: Where 'Sensory' Meets 'Motor' in the
960 Rodent Frontal Cortex. *Trends Neurosci* 40:181-193.

961 Behrens TE, Woolrich MW, Walton ME, Rushworth MF (2007) Learning the value of information
962 in an uncertain world. *Nat Neurosci* 10:1214-1221.

963 Berridge CW, Waterhouse BD (2003) The locus coeruleus–noradrenergic system: modulation of
964 behavioral state and state-dependent cognitive processes. *Brain Research Reviews*
965 42:33-84.

966 Bouret S, Sara SJ (2005) Network reset: a simplified overarching theory of locus coeruleus
967 noradrenaline function. *Trends Neurosci* 28:574-582.

968 Bouret S, Richmond BJ (2015) Sensitivity of locus ceruleus neurons to reward value for goal-
969 directed actions. *J Neurosci* 35:4005-4014.

970 Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis
971 and thalamic control of neocortical activity in the freely moving rat. *J Neurosci* 8:4007-
972 4026.

973 Chudasama Y, Dalley JW, Nathwani F, Bouger P, Robbins TW (2004) Cholinergic modulation of
974 visual attention and working memory: dissociable effects of basal forebrain 192-IgG-
975 saporin lesions and intraprefrontal infusions of scopolamine. *Learn Mem* 11:78-86.

976 Clayton EC, Rajkowski J, Cohen JD, Aston-Jones G (2004) Phasic activation of monkey locus
977 ceruleus neurons by simple decisions in a forced-choice task. *J Neurosci* 24:9914-9920.

978 Croxson PL, Kyriazis DA, Baxter MG (2011) Cholinergic modulation of a specific memory
979 function of prefrontal cortex. *Nat Neurosci* 14:1510-1512.

980 Dalley JW, McGaughy J, O'Connell MT, Cardinal RN, Levita L, Robbins TW (2001) Distinct
981 changes in cortical acetylcholine and noradrenaline efflux during contingent and
982 noncontingent performance of a visual attentional task. *J Neurosci* 21:4908-4914.

983 Dayan P, Yu AJ (2006) Phasic norepinephrine: a neural interrupt signal for unexpected events.
984 *Network* 17:335-350.

985 de Gee JW, Knapen T, Donner TH (2014) Decision-related pupil dilation reflects upcoming
986 choice and individual bias. *Proc Natl Acad Sci U S A* 111:E618-625.

987 Descarries L, Lapierre Y (1973) Noradrenergic axon terminals in the cerebral cortex of rat. I.
988 Radioautographic visualization after topical application of DL-[3H]Norepinephrine. *Brain*
989 *Res* 51:141-160.

990 Doya K (2002) Metalearning and neuromodulation. *Neural Netw* 15:495-506.

991 Einhäuser W, Koch C, Carter OL (2010) Pupil dilation betrays the timing of decisions. *Front Hum*
992 *Neurosci* 4:18.

993 Eldar E, Cohen JD, Niv Y (2013) The effects of neural gain on attention and learning. *Nat*
994 *Neurosci* 16:1146-1153.

995 Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. *Annu Rev Psychol*
996 48:649-684.

997 Feng J, Dong H, Lischinsky J, Zhou J, Deng F, Zhuang C, Miao X, Wang H, Xie H, Cui G, Lin D,
998 Li Y (2023) Monitoring norepinephrine release in vivo using next-generation GRABNE
999 sensors. *bioRxiv*.

1000 Feng J, Zhang C, Lischinsky JE, Jing M, Zhou J, Wang H, Zhang Y, Dong A, Wu Z, Wu H, Chen
1001 W, Zhang P, Zou J, Hires SA, Zhu JJ, Cui G, Lin D, Du J, Li Y (2019) A Genetically
1002 Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of
1003 Norepinephrine. *Neuron* 102:745-761 e748.

1004 Froemke RC, Merzenich MM, Schreiner CE (2007) A synaptic memory trace for cortical
1005 receptive field plasticity. *Nature* 450:425-429.

1006 Goard M, Dan Y (2009) Basal forebrain activation enhances cortical coding of natural scenes.
1007 *Nat Neurosci* 12:1444-1449.

1008 Gritton HJ, Howe WM, Mallory CS, Hetrick VL, Berke JD, Sarter M (2016) Cortical cholinergic
1009 signaling controls the detection of cues. *Proc Natl Acad Sci U S A* 113:E1089-1097.

1010 Hangya B, Ranade SP, Lorenc M, Kepecs A (2015) Central Cholinergic Neurons Are Rapidly
1011 Recruited by Reinforcement Feedback. *Cell* 162:1155-1168.

1012 Hasselmo ME, Bower JM (1993) Acetylcholine and memory. *Trends Neurosci* 16:218-222.

1013 Henny P, Jones BE (2008) Projections from basal forebrain to prefrontal cortex comprise
1014 cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. *Eur
1015 J Neurosci* 27:654-670.

1016 Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A (2008) Acetylcholine
1017 contributes through muscarinic receptors to attentional modulation in V1. *Nature*
1018 454:1110-1114.

1019 Howe MW, Dombeck DA (2016) Rapid signalling in distinct dopaminergic axons during
1020 locomotion and reward. *Nature* 535:505-510.

1021 Jing M et al. (2020) An optimized acetylcholine sensor for monitoring in vivo cholinergic activity.
1022 *Nat Methods* 17:1139-1146.

1023 Jouvet M (1969) Biogenic amines and the states of sleep. *Science (New York, NY)* 163:32-41.

1024 Kagiampaki Z et al. (2023) Sensitive multicolor indicators for monitoring norepinephrine in vivo.
1025 *Nat Methods* 20:1426-1436.

1026 Kilgard MP (1998) Cortical Map Reorganization Enabled by Nucleus Basalis Activity. *Science*
1027 279:1714-1718.

1028 Kim JH, Jung AH, Jeong D, Choi I, Kim K, Shin S, Kim SJ, Lee SH (2016) Selectivity of
1029 Neuromodulatory Projections from the Basal Forebrain and Locus Ceruleus to Primary
1030 Sensory Cortices. *J Neurosci* 36:5314-5327.

1031 Laszlovszky T, Schlingloff D, Hegedus P, Freund TF, Gulyas A, Kepecs A, Hangya B (2020)
1032 Distinct synchronization, cortical coupling and behavioral function of two basal forebrain
1033 cholinergic neuron types. *Nat Neurosci* 23:992-1003.

1034 Lee D (2008) Game theory and neural basis of social decision making. *Nat Neurosci* 11:404-
1035 409.

1036 Lee D, Conroy ML, McGreevy BP, Barraclough DJ (2004) Reinforcement learning and decision
1037 making in monkeys during a competitive game. *Brain Res Cogn Brain Res* 22:45-58.

1038 Lin SC, Nicolelis MA (2008) Neuronal ensemble bursting in the basal forebrain encodes
1039 salience irrespective of valence. *Neuron* 59:138-149.

1040 Liu CH, Coleman JE, Davoudi H, Zhang K, Hussain Shuler MG (2015) Selective activation of a
1041 putative reinforcement signal conditions cued interval timing in primary visual cortex.
1042 *Curr Biol* 25:1551-1561.

1043 Lohani S, Moberly AH, Benisty H, Landa B, Jing M, Li Y, Higley MJ, Cardin JA (2022)
1044 Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. *Nat*
1045 *Neurosci* 25:1706-1713.

1046 Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections to cortex: topography,
1047 morphology and collateralization. *Brain Res Bull* 9:287-294.

1048 Madisen L et al. (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-
1049 induced activation and silencing. *Nat Neurosci* 15:793-802.

1050 Maho C, Hars B, Edeline J-M, Hennevin E (1995) Conditioned changes in the basal forebrain:
1051 Relations with learning-induced cortical plasticity. *Psychobiology* 23:10-25.

1052 Martins AR, Froemke RC (2015) Coordinated forms of noradrenergic plasticity in the locus
1053 coeruleus and primary auditory cortex. *Nat Neurosci* 18:1483-1492.

1054 Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M (2018)
1055 DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
1056 *Nat Neurosci* 21:1281-1289.

1057 McCormick DA, Pape HC, Williamson A (1991) Actions of norepinephrine in the cerebral cortex
1058 and thalamus: implications for function of the central noradrenergic system. *Progress in*
1059 *brain research* 88:293-305.

1060 McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW (2002) Selective behavioral and
1061 neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192
1062 IgG-saporin on attentional performance in a five-choice serial reaction time task. *J*
1063 *Neurosci* 22:1905-1913.

1064 Moore R, Bloom F (1979) Central catecholamine neuron systems: anatomy and physiology of
1065 the norepinephrine and epinephrine systems. *Annual review of neuroscience* 2:113-168.

1066 Nath T, Mathis A, Chen AC, Patel A, Bethge M, Mathis MW (2019) Using DeepLabCut for 3D
1067 markerless pose estimation across species and behaviors. *Nat Protoc* 14:2152-2176.

1068 Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue
1069 detection on multiple timescales. *Neuron* 56:141-154.

1070 Patriarchi T, Mohebi A, Sun J, Marley A, Liang R, Dong C, Puhger K, Mizuno GO, Davis CM,
1071 Wiltgen B, von Zastrow M, Berke JD, Tian L (2020) An expanded palette of dopamine
1072 sensors for multiplex imaging in vivo. *Nat Methods* 17:1147-1155.

1073 Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic
1074 signaling shapes nervous system function and behavior. *Neuron* 76:116-129.

1075 Pinto L, Rajan K, DePasquale B, Thibierge SY, Tank DW, Brody CD (2019) Task-Dependent
1076 Changes in the Large-Scale Dynamics and Necessity of Cortical Regions. *Neuron*
1077 104:810-824 e819.

1078 Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC, Lee SH, Harrison TC, Feng G, Dan Y (2013)
1079 Fast modulation of visual perception by basal forebrain cholinergic neurons. *Nat*
1080 *Neurosci* 16:1857-1863.

1081 Pnevmatikakis EA, Giovannucci A (2017) NoRMCorre: An online algorithm for piecewise rigid
1082 motion correction of calcium imaging data. *Journal of neuroscience methods* 291:83-94.

1083 Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA, Tolias AS (2016) Pupil
1084 fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. *Nat*
1085 *Commun* 7:13289.

1086 Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, Choi MJ, Lauzon D, Lowell BB,
1087 Elmquist JK (2011) Melanocortin-4 receptors expressed by cholinergic neurons regulate
1088 energy balance and glucose homeostasis. *Cell Metab* 13:195-204.

1089 Saper CB (1984) Organization of cerebral cortical afferent systems in the rat. II. Magnocellular
1090 basal nucleus. *J Comp Neurol* 222:313-342.

1091 Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. *Nat Rev*
1092 *Neurosci* 10:211-223.

1093 Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbord B, DeLoach KE, Ren J, Ibanes S,
1094 Malenka RC, Kremer EJ, Luo L (2015) Viral-genetic tracing of the input-output
1095 organization of a central noradrenaline circuit. *Nature* 524:88-92.

1096 Servan-Schreiber D, Printz H, Cohen JD (1990) A network model of catecholamine effects: gain,
1097 signal-to-noise ratio, and behavior. *Science (New York, NY)* 249:892-895.

1098 Siniscalchi MJ, Wang H, Kwan AC (2019) Enhanced Population Coding for Rewarded Choices
1099 in the Medial Frontal Cortex of the Mouse. *Cereb Cortex*.

1100 Siniscalchi MJ, Phoumthipphavong V, Ali F, Lozano M, Kwan AC (2016) Fast and slow
1101 transitions in frontal ensemble activity during flexible sensorimotor behavior. *Nat*
1102 *Neurosci* 19:1234-1242.

1103 Starkweather CK, Gershman SJ, Uchida N (2018) The Medial Prefrontal Cortex Shapes
1104 Dopamine Reward Prediction Errors under State Uncertainty. *Neuron* 98:616-629 e616.

1105 Sturgill J, Hegedus P, Li S, Chevy Q, Siebels A, Jing M, Li Y, Hangya B, Kepecs A (2020) Basal
1106 forebrain-derived acetylcholine encodes valence-free reinforcement prediction error.
1107 bioRxiv.

1108 Su Z, Cohen JY (2022) Two types of locus coeruleus norepinephrine neurons drive
1109 reinforcement learning. biorxiv.

1110 Swanson L, Hartman B (1975) The central adrenergic system. An immunofluorescence study of
1111 the location of cell bodies and their efferent connections in the rat utilizing dopamine-B-
1112 hydroxylase as a marker. *Journal of Comparative Neurology* 163:467-505.

1113 Teles-Grilo Ruivo LM, Baker KL, Conway MW, Kinsley PJ, Gilmour G, Phillips KG, Isaac JTR,
1114 Lowry JP, Mellor JR (2017) Coordinated Acetylcholine Release in Prefrontal Cortex and
1115 Hippocampus Is Associated with Arousal and Reward on Distinct Timescales. *Cell Rep*
1116 18:905-917.

1117 Tervo DG, Proskurin M, Manakov M, Kabra M, Vollmer A, Branson K, Karpova AY (2014)
1118 Behavioral variability through stochastic choice and its gating by anterior cingulate
1119 cortex. *Cell* 159:21-32.

1120 Tervo DGR, Kuleshova E, Manakov M, Proskurin M, Karlsson M, Lustig A, Behnam R, Karpova
1121 AY (2021) The anterior cingulate cortex directs exploration of alternative strategies.
1122 *Neuron* 109:1876-1887 e1876.

1123 Tillage RP, Sciolino NR, Plummer NW, Lustberg D, Liles LC, Hsiang M, Powell JM, Smith KG,
1124 Jensen P, Weinshenker D (2020) Elimination of galanin synthesis in noradrenergic
1125 neurons reduces galanin in select brain areas and promotes active coping behaviors.
1126 *Brain Struct Funct* 225:785-803.

1127 Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O (2018) The Locus Coeruleus Is a
1128 Complex and Differentiated Neuromodulatory System. *Neuron* 99:1055-1068 e1056.

1129 Uematsu A, Tan BZ, Ycu EA, Cuevas JS, Koivumaa J, Junyent F, Kremer EJ, Witten IB,
1130 Deisseroth K, Johansen JP (2017) Modular organization of the brainstem noradrenaline
1131 system coordinates opposing learning states. *Nat Neurosci* 20:1602-1611.

1132 van Holstein M, Floresco SB (2020) Dissociable roles for the ventral and dorsal medial
1133 prefrontal cortex in cue-guided risk/reward decision making. *Neuropsychopharmacology*
1134 45:683-693.

1135 Van Slooten JC, Jahfari S, Knapen T, Theeuwes J (2018) How pupil responses track value-
1136 based decision-making during and after reinforcement learning. PLoS Comput Biol
1137 14:e1006632.

1138 Vertechi P, Lottem E, Sarra D, Godinho B, Treves I, Quendera T, Oude Lohuis MN, Mainen ZF
1139 (2020) Inference-Based Decisions in a Hidden State Foraging Task: Differential
1140 Contributions of Prefrontal Cortical Areas. Neuron 106:166-176.e166.

1141 Wang H, Kwan AC (2023) Competitive and cooperative games for probing the neural basis of
1142 social decision-making in animals. Neurosci Biobehav Rev 149:105158.

1143 Wang H, Ortega HK, Atilgan H, Murphy CE, Kwan AC (2022) Pupil correlates of decision
1144 variables in mice playing a competitive mixed-strategy game. Eneuro 9.

1145 Yang JH, Kwan AC (2021) Secondary motor cortex: Broadcasting and biasing animal's
1146 decisions through long-range circuits. Int Rev Neurobiol 158:443-470.

1147 Yu AJ, Dayan P (2002) Acetylcholine in cortical inference. Neural Netw 15:719-730.

1148 Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, Nadasdy Z (2015) Neurons in
1149 the basal forebrain project to the cortex in a complex topographic organization that
1150 reflects corticocortical connectivity patterns: an experimental study based on retrograde
1151 tracing and 3D reconstruction. Cereb Cortex 25:118-137.

1152 Zhu PK, Zheng WS, Zhang P, Jing M, Borden PM, Ali F, Guo K, Feng J, Marvin JS, Wang Y,
1153 Wan J, Gan L, Kwan AC, Lin L, Looger LL, Li Y, Zhang Y (2020) Nanoscopic
1154 Visualization of Restricted Nonvolume Cholinergic and Monoaminergic Transmission
1155 with Genetically Encoded Sensors. Nano Lett 20:4073-4083.

1156 Zhuo Y et al. (2023) Improved green and red GRAB sensors for monitoring dopaminergic
1157 activity in vivo. Nat Methods.

1158

1159

1160 **Supplementary Material**

1161 **Supplementary Table 4-1. Statistical results for the level of information integration in**
1162 **GRAB_{NE2h} and GRAB_{ACh3.0} data**

	NE (Number of ROIs, %)	<i>p</i> -value (Chi-square test)	ACh (Number of ROIs, %)	<i>p</i> -value (Chi-square test)
Choice-outcome (Chance level)	2,917, 10.0% (9.0%)	0	8,357, 22.7% (16.3%)	0
Outcome-reinforcer (Chance level)	2,819, 9.5% (8.4%)	0	3,316, 9.0% (6.0%)	0
Choice-reinforcer (Chance level)	2,153, 7.3% (3.5%)	0	2,252, 6.1% (2.7%)	0

1163

1164 **Supplementary Table 4-2. Statistical results for the conditional probabilities $P(v_1|v_2)$**

		NE median (25, 75 percentile) (%)	ACh median (25, 75 percentile) (%)	p-value (median test)
Choice-outcome	$P(r_n c_n)$ (%)	62.3 (28.1, 95.6)	91.2 (82.4, 94.0)	0.044
	$P(c_n r_n)$ (%)	48.8 (29.3, 71.0)	51.9 (31.4, 91.5)	0.864
Outcome-reinforcer	$P(r_n x_n)$ (%)	54.1 (22.3, 95.9)	95.6 (84.3, 97.2)	0.034
	$P(x_n r_n)$ (%)	53.0 (32.2, 60.5)	30.3 (26.7, 36.6)	0.072
Choice-reinforcer	$P(c_n x_n)$ (%)	50.9 (31.6, 72.3)	94.4 (68.3, 98.9)	0.030
	$P(x_n c_n)$ (%)	73.2 (30.2, 88.8)	35.7 (28.3, 41.8)	0.002

1165

1166

1167 **Supplementary Table 5-1. Statistical results for the temporal parameters of different**
1168 **groups**

			NE median (25, 75 percentile)	ACh median (25, 75 percentile)	p-value (rank sum test)
Outcome	Group 1	Median time-to-peak (s)	0.80 (0.75, 0.85)	1.95 (1.35, 2.45)	1.54×10^{-13}
		Variance time-to-peak (s ²)	0.21 (0.08, 1.04)	0.82 (0.28, 1.37)	0.002
		Median peak-value (a.u.)	0.07 (0.05, 0.09)	0.05 (0.04, 0.06)	0.003
	Group 2	Median time-to-peak (s)	0.75 (0.75, 0.85)	0.95 (0.85, 1.15)	1.43×10^{-4}
		Variance time-to-peak (s ²)	0.12 (0.01, 0.60)	0.37 (0.12, 0.58)	0.108
		Median peak-value (a.u.)	-0.04 (-0.06, 0.03)	-0.03 (-0.04, -0.02)	0.002
Choice	Group 1	Median time-to-peak (s)	0.55 (0.35, 0.80)	1.85 (1.25, 2.95)	1.06×10^{-7}
		Variance time-to-peak (s ²)	0.62 (0.02, 1.46)	1.50 (0.33, 3.15)	0.003
		Median peak-value (a.u.)	-0.04 (-0.07, -0.02)	0.03 (0.01, 0.04)	3.53×10^{-14}
	Group 2	Median time-to-peak (s)	0.55 (0.38, 0.65)	1.55 (0.80, 2.08)	0.022
		Variance time-to-peak (s ²)	0.01 (0.00, 0.15)	0.58 (0.21, 1.32)	0.001
		Median time-to-peak (a.u.)	0.02 (0.00, 0.05)	-0.03 (-0.04, -0.02)	1.88×10^{-7}

1169

1170

1171

1172 **Supplementary Table 6-1. Statistical results for the effect of region and power on**
1173 **probability to switch, related to Fig. 6F**

1174 **Dbh-cre;Ai32**

Source	Sum Sq.	df	Singular?	Mean Sq.	F	Prob>F
power	0.03526439	2	0	0.01763219	7.56886624	0.00101344
region	0.00098233	4	0	0.00024558	0.10541969	0.98028781
power*region	0.00088444	8	0	0.00011055	0.04745728	0.99994653
Error	0.17471764	75	0	0.00232957		
Total	0.2118488	89	0			

1175 Post-Hoc

Group A	Group B	Lower Limit	A-B	Upper Limit	P-value
power=3mW	power=1.5mw	-0.0095731	0.02022529	0.05002365	0.24236299
power=3mw	power=0mW	0.01847739	0.04827575	0.07807411	0.00065928
power=1.5mW	power=0mW	-0.0017479	0.02805046	0.05784882	0.06931062

1176

1177 **ChAt-cre;Ai32**

Source	Sum Sq.	df	Singular?	Mean Sq.	F	Prob>F
power	0.02519462	2	0	0.01259731	8.38794621	0.00045669
region	0.00200658	4	0	0.00050165	0.33402191	0.85439824
power*region	0.00156262	8	0	0.00019533	0.13005928	0.99777634
Error	0.13516513	90	0	0.00150183		
Total	0.16392895	104	0			

1178 Post-Hoc

Group A	Group B	Lower Limit	A-B	Upper Limit	P-value
power=3mW	power=1.5mW	0.01586284	0.03793956	0.06001628	0.00026894
power=3mW	power=0mW	-0.0026469	0.01942986	0.04150658	0.0960785
power=1.5mw	power=0mW	-0.0405864	-0.0185097	0.00356702	0.11854034

1179

1180

1181 **Supplementary Table 6-2. Statistical results for the effect of power on overall session,**
1182 **related to Fig. 6G**

1183

1184 **Dbh-Cre;Ai32**

1185 Entropy

Source	SS	df	MS	F	Prob>F
Power	0.06082996	2	0.03041498	0.89538033	0.41628803
Error	1.39272013	41	0.03396878		
Total	1.4535501	43			

1186

1187 Number of Trials

Source	SS	df	MS	F	Prob>F
Power	43199.4181	2	21599.7091	1.63605203	0.2063718
Error	580902.795	44	13202.3362		
Total	624102.213	46			

1188

1189 Reward Rate

Source	SS	df	MS	F	Prob>F
Power	0.01813336	2	0.00906668	1.08632669	0.34633196
Error	0.36723201	44	0.00834618		
Total	0.38536537	46			

1190

1191 **ChAt-Cre;Ai32**

1192 Entropy

Source	SS	df	MS	F	Prob>F
Power	0.00983532	2	0.00491766	0.19571646	0.82297372
Error	1.08043694	43	0.02512644		

Total	1.09027226	45			
-------	------------	----	--	--	--

1193

1194 Number of Trials

Source	SS	df	MS	F	Prob>F
Power	15025.9321	2	7512.96603	0.48205245	0.62081147
Error	670170.938	43	15585.3706		
Total	685196.87	45			

1195

1196 Reward Rate

Source	SS	df	MS	F	Prob>F
Power	5.14E-05	2	2.57E-05	0.00906747	0.99097541
Error	0.12192428	43	0.00283545		
Total	0.1219757	45			

1197

1198

1199 **Supplementary Table 6-3. Statistical results for the effect of region and stimulation on**
1200 **probability to switch, related to Fig. 6I**

1201

1202 **Dbh-Cre;Ai32**

Source	Sum Sq.	df	Singular?	Mean Sq.	F	Prob>F
Power	0.00287031	1	0	0.00287031	5.61667048	0.02270168
Region	0.00617679	3	0	0.00205893	4.02895583	0.01353153
power*region	0.000573	3	0	0.000191	0.3737537	0.77237318
Error	0.02044133	40	0	0.00051103		
Total	0.03006143	47	0			

1203

1204 Post-Hoc for region

Group A	Group B	Lower Limit	A-B	Upper Limit	P-value
region=M2-L	region=M2-R	-0.0405306	-0.0157933	0.00894397	0.33137496
region=M2-L	region=V1-L	-0.0490326	-0.0242953	0.00044197	0.05584813
region=M2-L	region=V1-R	-0.0548628	-0.0301256	-0.0053883	0.01160543
region=M2-R	region=V1-L	-0.0332393	-0.008502	0.01623526	0.79367161
region=M2-R	region=V1-R	-0.0390695	-0.0143323	0.01040498	0.41647849
region=V1-L	region=V1-R	-0.0305675	-0.0058303	0.01890699	0.92119217

1205

1206 Post-Hoc for power

Group A	Group B	Lower Limit	A-B	Upper Limit	P-value
Power=0mW	Power=3mW	-0.0304981	-0.0168194	-0.0031406	0.01723266

1207

1208 **ChAt-Cre;Ai32**

Source	Sum Sq.	df	Singular?	Mean Sq.	F	Prob>F
stim	4.60E-05	1	0	4.60E-05	0.06706715	0.79676327
region	0.00204866	3	0	0.00068289	0.99466637	0.40338684

stim*region	0.00115308	3	0	0.00038436	0.55984416	0.64411262
Error	0.03295426	48	0	0.00068655		
Total	0.03620204	55	0			

1209

1210

1211 **Supplementary Table 6-4. Statistical results for the effect of region on overall session,**
1212 **related to Fig. 6J**

1213

1214 **Dbh-Cre;Ai32**

1215 Entropy

Source	SS	df	MS	F	Prob>F
Region	0.18972055	3	0.06324018	2.48832741	0.06710368
Error	1.85527574	73	0.02541474		
Total	2.0449963	76			

1216

1217 Number of Trials

Source	SS	df	MS	F	Prob>F
Region	29323.8377	3	9774.61255	0.67280948	0.57131416
Error	1118660.16	77	14528.0541		
Total	1147984	80			

1218

1219 Reward Rate

Source	SS	df	MS	F	Prob>F
Region	0.04258502	3	0.01419501	2.64214867	0.05522146
Error	0.41368431	77	0.00537252		
Total	0.45626932	80			

1220

1221 **ChAt-Cre;Ai32**

1222 Entropy

Source	SS	df	MS	F	Prob>F
Region	0.01488469	3	0.00496156	0.32650571	0.80619028
Error	1.77792625	117	0.01519595		

Total	1.79281094	120			
-------	------------	-----	--	--	--

1223

1224 Number of Trials

Source	SS	df	MS	F	Prob>F
Region	945.888715	3	315.296238	0.02759786	0.99378347
Error	1336685.63	117	11424.6635		
Total	1337631.52	120			

1225

1226 Reward Rate

Source	SS	df	MS	F	Prob>F
Region	0.00780693	3	0.00260231	1.23293022	0.30096393
Error	0.24694836	117	0.00211067		
Total	0.25475529	120			

1227

1228 Post-Hoc for Reward Rate

Group A	Group B	Lower Limit	A-B	Upper Limit	P-value
M2-L	M2-R	-0.057629	-0.0180601	0.0215088	0.64422361
M2-L	V1-L	-0.0588981	-0.0193292	0.02023972	0.59174233
M2-L	V1-R	-0.030134	0.0079956	0.04612516	0.94957223
M2-R	V1-L	-0.040838	-0.0012691	0.03829984	0.99979959
M2-R	V1-R	-0.0120738	0.02605572	0.06418528	0.29505019
V1-L	V1-R	-0.0108048	0.0273248	0.06545436	0.25405443

1229