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Abstract 32 

 33 
Multiomic profiling of single cells by sequencing is a powerful technique for investigating cellular 34 
diversity in complex biological systems. Although the existing droplet-based microfluidic 35 
methods have advanced single-cell sequencing, they produce a plethora of cell-free droplets 36 
and underutilize barcoding capacities due to their low cell concentration prerequisites. 37 
Meanwhile, combinatorial indexing on microplates can index cells in a more effective way; 38 
however, it requires time-consuming and laborious protocols involving multiple splitting and 39 
pooling steps. Addressing these constraints, we have developed "Overloading And unpacKing" 40 
(OAK). With reduced labor intensity, OAK can provide cost-effective multiomic profiling for 41 
hundreds of thousands of cells, offering detection sensitivity on par with commercial droplet-42 
based methods. To demonstrate OAK's versatility, we conducted single-cell RNA sequencing 43 
(scRNA-Seq) as well as joint single-nucleus RNA sequencing (snRNA-Seq) and single-nucleus 44 
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Assay for Transposase Accessible Chromatin with sequencing (snATAC-Seq) using cell lines. 45 
We further showcased OAK's performance on more complex samples, including in vitro 46 
differentiated bronchial epithelial cells and primary retinal tissues. Finally, we examined 47 
transcriptomic responses of 408,000 melanoma cells across around 1,000 starting lineages over 48 
a 90-day treatment with a RAF inhibitor, belvarafenib. We discovered a rare cell population 49 
(0.12%) that underwent a sequence of transcriptomic changes, resulting in belvarafenib 50 
resistance. Ultra-high throughput, broad compatibility with diverse molecular modalities, high 51 
detection sensitivity, and simplified experimental procedures distinguish OAK from previous 52 
methods, and render OAK a powerful tool for large-scale analysis of molecular signatures, even 53 
for rare cells. 54 
  55 

Main 56 

 57 
The technological landscape of single-cell sequencing is rapidly evolving, encompassing newly 58 
developed methods1–4 that offer an unprecedented view of cellular heterogeneity. This technical 59 
evolution is fueled by the need to achieve more precise cell type or state identification, capture 60 
rare cell states or cellular lineages, and conduct comprehensive perturbation screens for new 61 
drug target discovery, all of which have steered technological development toward analyzing a 62 
greater number of cells at a reduced cost.  63 

Droplet-based microfluidic approaches co-encapsulate a barcoded bead and a cell within an 64 
emulsion to enable parallel analysis of thousands of individual cells5–7. These methods have 65 
been an important advancement in streamlining high-throughput single cell sequencing. 66 
However, the low cell concentration required to minimize the number of multi-cell droplets leads 67 
to a large number of cell-free droplets and underutilized barcoding capacity. Alternatively, 68 
combinatorial indexing on microwell plates8,9 provides a strategy for barcoding over 100,000 69 
cells10–12. However, this ultra-high throughput approach comes with long and laborious 70 
protocols, involving multiple rounds of splitting and pooling cells for indexing.  71 

Inspired by the strengths and limitations of these two families of single cell sequencing methods, 72 
we have developed OAK, a novel approach that combines droplets with combinatorial indexing 73 
to achieve both elevated throughput and experimental simplicity. OAK can be used to measure 74 
gene expression, accessible chromatin, and antibody conjugated oligonucleotides, either 75 
separately or jointly. With OAK, we performed paired snRNA-Seq and snATAC-Seq on complex 76 
retinal tissue. Furthermore, we undertook a lineage tracing experiment capturing RNA and 77 
lineage barcodes for 408,000 cells, revealing the longitudinal response of melanoma cells to a 78 
RAF inhibitor, belvarafenib. Compatibility with diverse molecular modalities, high detection 79 
sensitivity, and easier experimental procedures distinguish OAK from previous methods13–15 that 80 
conduct combinatorial indexing with the use of microfluidics. 81 

Results 82 

Principles and performance of OAK 83 
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 84 
OAK relies on fixed cells or nuclei to serve as individualized reaction chambers for two rounds 85 
of indexing (Fig. 1a). The first round is conducted within droplets, for which we utilized a 86 
commercially available system, the Chromium system by 10x Genomics. In this and other 87 
droplet-based single-cell sequencing systems5–7,16, the cells are loaded at a low concentration to 88 
minimize the possibility of encapsulating multiple cells within a single droplet. Based on the 89 
Poisson distribution, this is estimated to result in over 80% of droplets devoid of a cell (Fig. 1b), 90 
leaving their barcoding potential untapped and reagent wasted. To more efficiently utilize the 91 
droplets, we overloaded the microfluidic chip in the Chromium system, resulting in reduced cell-92 
free droplets, concomitant with increased single- and multi-cell droplets (Fig. 1b). To resolve 93 
single cells in multi-cell droplets, after the first round of indexing mediated by in-situ reverse 94 
transcription of mRNA, we unpacked droplets by breaking emulsions (Fig. 1a). Thus, all 95 
encapsulated cells are released, mixed, and randomly distributed into multiple aliquots. The 96 
number of aliquots to generate can be tuned based on the scale of cell loading and the number 97 
of droplets made by the microfluidic system, in order to achieve a desirable theoretical multiplet 98 
rate (Extended Data Fig. 1a). Each aliquot will receive a unique secondary index integrated to 99 
molecules that already carry primary indexes (Fig. 1a). From this secondary indexing step, 100 
researchers can select any scale of cell subsets to create sub-libraries for sequencing, a feature 101 
only shared by select droplet-based methods5. This enables an increasing number of cells to be 102 
sequenced in a stepwise manner to assess data quality, to receive sufficient sequencing depth, 103 
or to avoid sequencing excessive cells, which will be further described in the subsequent 104 
sections of this study.  105 

First, to assess the impact of cell overloading, we performed experiments in parallel by loading 106 
to a channel on the microfluidic chip 150,000 and 450,000 cells respectively, and compared 107 
scRNA-Seq performance at these two cell inputs (Fig. 1c). After sequencing a subset of cells 108 
from each experiment, we estimate that 87,864 cells were recovered from the 150,000-cell 109 
loading, while 223,680 cells were recovered from the 450,000-cell loading (Fig. 1c). At the same 110 
sequencing depth per cell, more genes per cell were detected when 150,000 cells were loaded 111 
compared to 450,000 cells (Fig 1d, Extended Data Fig. 1b). The input cells consisted of a 1:1 112 
mixture of a mouse and a human cell line, enabling us to identify collision events when a mouse 113 
and a human cell share the same combinatorial indices. When loading 150,000 cells, we found 114 
3.3% cells in the sequencing results to be mix-species multiplets, indicating an overall multiplet 115 
rate of 6.6% (Extended Data Fig. 1c), closely aligning with the theoretical expected collision rate 116 
(Extended Data Fig. 1a). At the higher loading of 450,000 cells, while we recovered a higher 117 
number of cells (Fig. 1c), the overall multiplet rate was 10.6% (Extended Data Fig. 1d). In 118 
summary, OAK is flexible to operate with a broad spectrum of loaded cell quantities. The choice 119 
on the number of cells to load should be guided by research objectives, balancing between 120 
detection sensitivity and cell yield. 121 

We benchmarked OAK to the widely used 10x Genomics' Chromium NextGEM scRNA-Seq 122 
procedure (standard Chromium)7, which generates droplet-based RNA-Seq data for up to 123 
10,000 cells per channel on the microfluidic chip. From the 150,000 cells loaded, OAK 124 
recovered 87,864 cells per channel (Fig. 1c), a more than eightfold increase in throughput 125 
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compared to the standard Chromium procedure. With a matched sequencing depth per cell, 126 
OAK detected a mean of 3,014 genes per cell for the K562 cell line, while the standard 127 
Chromium procedure detected 3,905 genes indicating a mild reduction in sensitivity by OAK 128 
(Fig. 1e). Further investigation into the gene detection difference revealed that reduced 129 
detection primarily occurred for the lowly expressed genes (Extended Data Fig. 1e). In addition, 130 
OAK exhibited a lower percentage of reads that map to mitochondrial DNA (Extended Data Fig. 131 
1f), which is likely attributed to the fixation and permeabilization process that led to partial loss 132 
of mitochondria as well as cytoplasmic RNA. This was substantiated by the higher percentage 133 
of reads mapping to intronic regions in comparison to the data derived from the standard 134 
Chromium procedure (Extended Data Fig. 1g), which also suggests that the permeabilization 135 
process could cause an overrepresentation of nuclear mRNA over cytoplasmic mRNA. Overall, 136 
a strong correlation between OAK and the standard Chromium method was observed in terms 137 
of mean UMI detected across cells for each gene (Spearman correlation coefficient = 0.92, 138 
Extended Data Fig. 1h). We compared OAK with scifi-RNA-seq14, another combinatorial 139 
indexing method utilizing the Chromium system, and observed that OAK exhibited 140 
approximately ten times higher sensitivity as measured by number of genes per cell (Fig. 1e).  141 
 142 
Leveraging ultra-high throughput for sample multiplexing 143 
 144 
Since OAK enables profiling of hundreds of thousands of cells, it is suitable for ultra-high 145 
throughput assays that include many different samples, donors and conditions. Cell hashing 146 
with barcoded antibodies is frequently used for multiplexing as it enables pooling of cells from 147 
different sources for single-cell profiling17. We evaluated antibody hashing within OAK using 148 
human bronchial epithelial cells differentiated in transwell plates. We split a sample of antibody 149 
stained cells between the OAK and standard Chromium workflow and asked whether cell 150 
assignment was comparable. We found that 80% of cells were assigned a hashtag identity in 151 
OAK, compared to 81% in the standard Chromium. Furthermore, we found a strong correlation 152 
(Pearson correlation coefficient=0.98, Fig. 1f) in the abundance of each hashtag between OAK 153 
and standard Chromium. We then clustered cells based on gene expression (Extended Data 154 
Fig. 1i). After cell annotation, all expected cell types were present in both data sets, and their 155 
proportions correlated between OAK and the standard Chromium (Extended Data Fig. 1j). 156 
Therefore, OAK was compatible with the cell hashing approach for sample multiplexing, and did 157 
not introduce any biases in cellular composition.  158 
 159 
Flexibility in multimodal single cell profiling  160 
 161 
We next investigated whether OAK can perform joint profiling of transcriptome and chromatin 162 
accessibility. Since the beads from the Chromium Next GEM Single Cell Multiome kit readily 163 
provide barcoding capacity for both mRNA and ATAC fragments, only adjustments in secondary 164 
indexing primers were necessary to make OAK compatible with the Chromium multiome 165 
workflow (Extended Data Fig. 1k). In order to identify a suitable fixative for joint snRNA-Seq and 166 
snATAC-Seq, we evaluated methanol and formaldehyde. Compared to formaldehyde fixation, 167 
methanol fixation led to a lower transcription start site (TSS) fragment percentage in the 168 
sequencing data (Extended Data Fig. 1l), likely due to methanol's chromatin denaturing effect. 169 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2024. ; https://doi.org/10.1101/2024.01.23.576918doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.576918
http://creativecommons.org/licenses/by-nc-nd/4.0/


Formaldehyde fixation generated high quality gene expression data (Fig. 1g) and chromatin 170 
accessibility data for K562 cells (Fig. 1h). These results underscore OAK's adaptability in 171 
supporting multiple molecular modalities. 172 
 173 
Paired snRNA-Seq and snATAC-Seq for human retinal cells 174 
 175 
A common scenario in collecting single-cell data from tissue, is that the most abundant cell 176 
types are orders of magnitude higher than the rarest cell types. A couple of examples include 177 
recovering neurons from the enteric nervous system, where they represent less than 1% of 178 
colon cells18, or tuft cells which represent 0.2% of dissociated lung cells19.  The human retina is 179 
another example of a primary tissue with high cellular heterogeneity. Effectively capturing types 180 
and states of all cellular subtypes is key to understanding health and disease of the eye; 181 
however, the overwhelming presence of rod photoreceptors (around 60% of cells) often 182 
impedes the efficient recovery of other cells, such as retinal ganglion cells (less than 1%). Some 183 
techniques can be employed for depleting rod cells, however this adds experimental complexity 184 
and may unintentionally affect representation of other cell types, for example depletion of bipolar 185 
cells20. Utilizing a method such as OAK to perform paired snRNA-Seq and snATAC-Seq on 186 
retinal samples enables generation of large scale high-resolution data from these precious 187 
samples, which are obtained only from careful dissection of post-mortem donations. 188 
 189 
We transposed 100,000 fixed peripheral retinal nuclei for overloading (see Methods). We 190 
recovered snATAC-Seq data from 42,632 nuclei, and snRNA-Seq data from 46,487 nuclei, with 191 
an overlap for 40,691 nuclei. In the snRNA-Seq data we observed a mean of 1,666 genes per 192 
cell (Extended Data Fig. 2a). In the snATAC-Seq data we observed the expected fragment 193 
distribution pattern (Extended Data Fig. 2b) with a mean of 12,539 fragments per cell and a 194 
mean transcription start site (TSS) enrichment of 14.71 (Extended Data Fig. 2c). This compared 195 
well to the quality of standard Chromium data generated in parallel for 5,586 nuclei. Standard 196 
snRNA-Seq generated a mean of 2,029 genes per cell, whilst the standard snATAC-Seq 197 
generated a mean of 14,217 fragments per cell and a mean TSS enrichment score of 12.37. 198 
 199 
Using the snRNA-Seq data we clustered and annotated the main cell types of the retina based 200 
on known marker genes (Extended Data Fig. 2d, Fig. 2a). With a single donor sample, we 201 
obtained thousands of rod, cone, Müller glia, amacrine and bipolar cells, as well as hundreds of 202 
horizontal cells, astrocytes and retinal ganglion cells, representing the major cell types of the 203 
retina20–22. We used the snRNA-Seq annotations with the OAK snATAC-Seq data (Extended 204 
Data Fig. 2e) to call open chromatin regions (OCRs) in each cell subtype (Fig. 2b, Extended 205 
Data Fig. 2f). We found unique OCR signatures even for the least abundant cell types, including 206 
retinal ganglion cells and astrocytes23. Peaks called were primarily in intronic and promoter 207 
regions as expected (Extended Data Fig. 2g). Looking in more detail at the chromatin peaks in 208 
specific cell types we observed differential chromatin accessibility in ARR3 in cone cells (Fig. 209 
2c), and DOK5 in DB5 bipolar cells (Fig. 2d), consistent with previous findings21. 210 
 211 
Utilizing paired snRNA-Seq and snATAC-Seq data, we identified putative candidates for master 212 
regulators in the different cell types using Epiregulon24 (Fig. 2e). Epiregulon infers regulatory 213 
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elements to target genes based on correlated gene expression and chromatin accessibility in 214 
clustered cells, matching these elements to known transcription factor binding sites from 215 
repositories of public CHIP-Seq data. As a proxy for the strength of the interaction, Epiregulon 216 
uses the correlation between transcription factor expression and target gene expression. We 217 
plotted the activity for each transcription factor based on the expression of target genes 218 
combined with the strength of regulation. We identified elevated BLIMP1/PRDM1 regulation 219 
activity in cone cells (Fig. 2e), previously found to be transiently expressed in developing 220 
photoreceptors, likely preventing bipolar cell fate25. Another example of expected transcription 221 
factor activity is of the ONECUT1 and ONECUT2 paralogs activated downstream of PAX6 (Fig. 222 
2e), previously found to be important in the differentiation and maintenance of horizontal cells26. 223 
Many functional roles of transcription factors in the human retina have been identified by 224 
studying early development in analogous animal models or in organoids27. Multiomic data 225 
generated from post-mitotic cells, as obtained from this retinal sample, offers an intriguing 226 
window into ongoing regulation of gene activity decades after initial differentiation events. 227 
Obtaining this type of data is especially valuable when considering potential treatments for age-228 
related eye diseases. 229 

 230 
Melanoma resistance to RAF inhibitor belvarafenib  231 
 232 
Understanding therapy response and resistance in cancer is crucial for improving treatment 233 
outcomes. Belvarafenib is a pan-RAF inhibitor with clinical activity in melanoma28. Resistance to 234 
belvarafenib arises spontaneously in IPC-298 cells at low frequency28. To track emergence of 235 
these rare events that could be as infrequent as 0.1%, a substantial cell population is necessary 236 
to ensure sufficient representation of the resistant lineages at baseline. By leveraging the high-237 
throughput capabilities of OAK and a lineage tracing technique29, we examined transcriptomic 238 
response of IPC-298 melanoma cells to a 90-day treatment course with vemurafenib in multiple 239 
time points including Day 0, Day 10, Day 20, and Day 90. 240 
 241 
We transduced IPC-298 cells with a lentivirus-based library containing 100,000 unique barcode 242 
sequences for lineage tracing29. A subsample of 1,000 transduced cells, each expected to carry 243 
a unique lineage barcode, was expanded. Prior to belvarafenib treatment (Day 0), we collected 244 
transcriptomic profiles and lineage barcodes from 144,300 cells (Fig. 3a). The representation of 245 
each lineage within the single-cell data displayed a strong correlation with the quantity of reads 246 
in bulk sequencing data (Spearman correlation coefficient = 0.93, Extended Data Fig. 3a), 247 
confirming accurate lineage recovery with OAK. Furthermore, as the sequenced population of 248 
cells increased, the level of correlation between the single cell data and bulk data also 249 
increased (Extended Data Fig. 3b), emphasizing the benefit of sampling a high number of cells 250 
in systems with such a high lineage diversity.  251 
 252 
Further, we took samples on Day 10 and Day 20 of belvarafenib treatment (Fig. 3a). Five 253 
lineages demonstrated over tenfold increase in their relative abundance from Day 0 to Day 20, 254 
and therefore were categorized as enriched lineages that are drug tolerant (Fig. 3b). 255 
Conversely, 61 lineages, each representing less than 1% of Day 20's total cells, were defined 256 
as depleted lineages (Fig. 3b). After Day 20, as the number of cells continued to drop, we 257 
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observed the emergence of a belvarafenib-resistant clone among the five enriched lineages 258 
(Extended Data Fig. 3c). This clone underwent expansion as a single colony on the plate, and 259 
accounted for all of the captured cells on Day 90 (Fig. 3a). Consistent with previous 260 
characterization of belvarafenib resistance28, this resistant clone only accounted for 0.12% of 261 
the cells on Day 0 (Fig. 3a). Thus, cells of that lineage could only be captured with sufficient 262 
representation through massive-scale sampling techniques such as OAK. Specifically, for Day 263 
0, we performed stepwise sequencing of sub-libraries, until enough cells from this lineage were 264 
recovered for downstream analysis (Extended Data Fig. 3d), and sufficient lineage diversity was 265 
achieved (Extended Data Fig. 3e).  266 
 267 
To interrogate the transcriptional features associated with drug-tolerance, we computed the 268 
marker genes that distinguish the enriched and the depleted lineages on Day 20. We found 269 
Fibronectin 1 (FN1) among the overexpressed genes in the enriched lineages (Fig. 3c). 270 
Fibronectin-rich extracellular matrix has been shown to provide tolerance for melanoma cells in 271 
BRAF inhibition30. Moreover, FN1 has been shown to be associated with a mesenchymal 272 
phenotype31 in melanoma cells. Interestingly, the epithelial mesenchymal transition (EMT) 273 
hallmark gene set32 emerged as one of the features for Day 90 within the resistant lineage 274 
(Extended Data Fig. 3f). In addition, in the depleted lineages FN1 levels remained stable along 275 
the course of belvarafenib treatment, while in the enriched lineages the gain of this 276 
mesenchymal marker was observed on Day 20 already (Fig. 3d). Moreover, the longitudinal 277 
feature of our experiment enabled us to probe for potential pre-existing transcriptional 278 
differences between the enriched and depleted lineages. We observed that many of the 279 
differentially expressed genes on Day 20 showed differences in expression levels as early as 280 
Day 0 (Fig. 3e). This indicates that distinct lineages may possess inherent transcriptional 281 
programs for responding to belvarafenib treatment. Furthermore, sustained exposure to 282 
belvarafenib led to amplification of selective pre-existing differences, as exemplified by 283 
increased fold changes on Day 20 in some of the most differentially expressed genes, such as 284 
FN1 and NRG3 (Fig. 3e). 285 
 286 
Belvarafenib directly inhibits kinase activity of the RAF kinases, which are responsible for MAPK 287 
pathway activation downstream of an oncogenic NRAS mutation in the IPC-298 cells28. To 288 
assess how the resistant clone adapted to belvarafenib treatment, we specifically compared the 289 
activity of the MAPK pathways and several related pathways within the resistant lineage across 290 
different time points. We observed an initial downregulation of MAPK, PI3K, and EGFR pathway 291 
signatures at early time points, which suggested an initial response to belvarafenib. However, 292 
on Day 20 we noticed a rebound of EGFR pathway activity (Fig. 3f). During the same time 293 
frame, we observed activation of the transforming growth factor-β (TGF-β) pathway (Fig. 3f), 294 
which is a known driver of resistance against MAPK pathway inhibitors in melanoma cells33. 295 
Furthermore, from Day 20 to Day 90 we observed significant rebound of MAPK and PI3K 296 
pathway activities (Fig. 3f), suggesting that reactivation of these pathways may be essential for 297 
the establishment of the resistant phenotype. 298 
 299 
TGF-β is known to induce EMT34 and de-differentiation in melanoma33,35. Given a 300 
mesenchymal-like state suggested by FN1 upregulation (Fig. 3c), increased TGF-β signaling 301 
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(Fig. 3f) as early as Day 20, and the enrichment of EMT hallmark genes on Day 90 (Extended 302 
Data Fig. 3f), we examined whether the resistant cells switched to a less differentiated state in 303 
response to belvarafenib. Despite the initial shift towards a more differentiated melanocyte-like 304 
state on Day 10 (Fig. 3g), the resistant cells ultimately reverted to an undifferentiated state (Fig. 305 
3g), resembling the state transitions seen in patient-derived BRAF mutant melanoma cell lines 306 
that accompany RAF inhibitor resistance36,37. 307 
 308 
In summary, our data suggest a progression of transcriptomic alterations along development of 309 
belvarafenib resistance. Initial tolerance is associated with activation of EGFR and TGF-β 310 
signaling as well as FN1 upregulation. This is followed by MAPK and PI3K pathway reactivation 311 
and a shift towards an undifferentiated state, thereby promoting expansion of the resistant cells. 312 
OAK's ultra-high throughput and stepwise sequencing capability render it an exceptionally 313 
suitable tool for investigating transcriptomic signatures within rare cell populations that lead to 314 
drug resistance in cancer.  315 

 316 

Discussion 317 

 318 
OAK combines droplet microfluidics with combinatorial indexing, enabling massive-scale single-319 
cell profiling. Our study underscores its efficacy across diverse experimental designs and 320 
modalities, including scRNA-Seq, sample multiplexing, and paired profiling of snRNA-Seq and 321 
snATAC-Seq. Moreover, with minor adjustments in the secondary indexing primers and library 322 
preparation, broad compatibility can be expected within the full spectrum of applications offered 323 
by the Chromium platform, encompassing immune profiling, cell surface protein detection and 324 
CRISPR perturbations. In addition, the experimental feature of distributing a large number of 325 
cells into smaller aliquots enables sequencing of each sub-library separately. Such stepwise 326 
sequencing allows sequencing of a smaller number of cells for quality assessment prior to 327 
embarking on large-scale sequencing. Furthermore, sub-libraries provide the opportunity to 328 
sequence the number of cells desired for analysis, while preserving unprocessed ones for future 329 
data acquisition. Finally, OAK data processing is compatible with analysis pipelines that have 330 
been developed for the prevailing commercial Chromium platform. This aspect facilitates a 331 
seamless integration of OAK into researchers' existing data processing workflows. 332 
 333 
OAK presents multiple steps for cost savings. First, overloading a single microfluidic channel 334 
enables more efficient utilization of costly reagents, including the barcoding beads. Secondly, in 335 
contrast to other combinatorial indexing methods8–11,13,14,38, OAK avoids a substantial upfront 336 
investment in synthesizing plates of indexing oligos or assembling pre-indexed transposome for 337 
the ATAC modality - thereby also streamlining benchwork. Thirdly, unlike some overloading 338 
methods that identify and discard multi-cell droplets without being able to recover single cells 339 
encapsulated within17,39–41, OAK is able to resolve single cells in multi-cell droplets, maximizing 340 
usage of sequencing data. Ultra-high throughput, extensive versatility for molecular modalities, 341 
experimental convenience, and cost efficiency distinguish OAK from alternative technologies in 342 
the field.  343 
 344 
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The single-cell sequencing field is undergoing rapid transformation and growth. Recent 345 
examples include innovations like 10x Genomics' Single Cell Gene Expression High Throughput 346 
(HT) and Flex products, both exhibiting superior throughput compared to the regular Chromium 347 
products. However, these products are currently unable to perform paired snRNA-Seq and 348 
snATAC-Seq. Nevertheless, it is expected that OAK will be adaptable to these evolving 349 
platforms, and thereby leveraging improvements in droplet generation technologies to deliver 350 
even higher throughput. In this study, our focus rests primarily on validating OAK on the 351 
Chromium platform. We expect OAK to be also compatible with other droplet systems with 352 
barcoding primers releasable from microspheres, such as the inDrops system6 and Hydrop 353 
system16.  354 
 355 
In summary, we developed a new single-cell multiomic profiling method, OAK, which empowers 356 
extensive characterization of complex tissues and cellular systems, while maintaining a 357 
streamlined and cost-efficient experimental approach. We anticipate that OAK will readily scale 358 
with ongoing advances in droplet generation platforms, and will be flexible to accommodate 359 
measurement of additional molecular modalities. 360 
 361 

Methods 362 

 363 
Cell culture and single-cell suspension preparation 364 

K562 cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM) with 10% fetal bovine 365 
serum (FBS). NIH/3T3 cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) with 366 
10% FBS. IPC-298 cells were cultured in RPMI medium with 10% FBS, 2�mM L-glutamine, and 367 
1% penicillin/streptomycin. Cells were incubated at 37°C with 95% Air and 5% CO2. TrypLE™ 368 
Express (Thermo Fisher Scientific 12604013) was used to detach adherent cells from culture 369 
flasks. Harvested cells were washed twice with phosphate-buffered saline (PBS) with 0.04% 370 
Bovine albumin Fraction V (Thermo Fisher Scientific 15260037), and resuspended with PBS to 371 
achieve single-cell suspensions. 372 
 373 
Culture and staining of normal human bronchial epithelial cells 374 
 375 
Normal human bronchial epithelial cells (Lonza, Epithelix) were differentiated in transwell plates 376 
at an air-liquid interface. Cells were dissociated with accutase and then washed twice with 377 
PBS/1% Bovine Serum Albumin (BSA). Cells were resuspended in 50 µL PBS/1% BSA and one 378 
well of each donor was combined. Nine sample wells were stained with 1 µL of TotalSeq-A 379 
antibody, a different hashing antibody was added to each well and incubated at 4°C for 20 380 
minutes. Cells were washed 3x in PBS/1% BSA and then all wells were pooled together. Pooled 381 
cells were stained with Sytox Green for 5 minutes at room temperature before sorting for live 382 
cells on a Sony SH800S into PBS. 383 
 384 
Retinal tissue nuclei preparation 385 
 386 
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Human donor eye collection was followed according to a standardized protocol42. In brief, the 387 
isolated peripheral retinal sample was obtained within a 6-hour post-mortem interval, defined as 388 
death-to-preservation time, in collaboration with the Utah Lions Eye Bank. The sample was 389 
placed in a cryotube and flash frozen in liquid nitrogen prior to storage at -80°C. The sample 390 
was dissociated by douncing ten times in a glass homogenizer in 1 mL ice cold NIM4 buffer (9.9 391 
mL NIM1, 10 µL 100mM DTT, 1 tablet protease inhibitor, 100 µL 10% Triton X-100, 100 µL 392 
RNAseIN, 100 µL SUPERasin) and incubated on wet ice for 10 min. Tissue homogenate was 393 
centrifuged in at 1500 rpm for 5 min 4°C. Supernatant was removed and 500 µL ice-cold wash 394 
buffer (400 µL salt buffer [200 µL 1M Tris pH 7.4, 40 µL 5 M NaCl, 40 µL 5 M NaCl, 60 µL 1 M 395 
MgCl2, 1.7 mL dH2O], 4 µL 100 mM DTT, 40 µL 10% Tween 20, 800 µL 5% RNAse-free BSA, 396 
100 µL RNAse inhibitor, 2.66 mL dH2O) was added to the nuclei and the sample pipet mixed 397 
five times. The nuclei were passed through a 40 μm filter then counted. 398 
 399 
OAK scRNA-Seq  400 
 401 
Single-cell suspension in 400 µl PBS was transferred to a 2 mL round-bottom tube and fixed by 402 
adding 1600 µL chilled methanol drop by drop with gentle stirring. Cells were then incubated at -403 
20°C for 30 min. After fixing, cells were placed on ice for 5 min and then pelleted at 1000G for 5 404 
min at 4°C in a pre-cooled swinging bucket centrifuge. Supernatant was removed and the pellet 405 
was resuspended with appropriate volume of resuspension buffer to target 30,000 cells/µl or 406 
higher. Resuspension buffer is composed of 3X saline sodium citrate (SSC), 1-2% BSA, 0.2 407 
U/µL Protector RNAse inhibitor, and 1mM DTT. Cells were counted and a desired number of 408 
cells (typically 150,000) were loaded per channel. Other reagents were used for loading 409 
according to standard 10x Genomics' Chromium 3' RNA-Seq protocol. After droplet generation, 410 
reactions were transferred to microfuge tubes for reverse transcription at 53°C for 45min. 411 
Immediately after reverse transcription, the droplets were unpacked by adding the recovery 412 
agent as described in the standard protocol. After phase separation, the aqueous phase was 413 
transferred to a 2 mL microfuge tube. 800 µL 3X SSC was added to the cell suspension. The 414 
cells were spun at 650G at 4°C for 5 min. Supernatant was carefully removed. 1 mL 3X SSC 415 
was added to the cell pellet with gentle tapping on the tube to dislodge the pellet. Cells were 416 
spun again at 650G at 4°C for 5 min. The pellet was resuspended in 215 µL 3X SSC with gentle 417 
pipette mixing. A 10 µl solution was used for cell counting to estimate the number of cells per 418 
aliquot. The remaining solution was evenly distributed into multiple aliquots (typically 20 aliquots 419 
per 150,000 cells loaded to aim for 4,000 cells per aliquot). The aliquots were immediately 420 
stored at -80°C until ready for sequencing library preparation. 421 
 422 
To prepare sequencing libraries, a desired number of aliquots were heated to 80°C for 5 min to 423 
aid release of 1st strand cDNA. DynabeadsTM Silane Viral NA kit (ThermoFisher, 37011D) was 424 
used to purify 1st strand cDNA according to manufacturer's instructions. The cDNA was eluted 425 
in 35 µL of the elution buffer. For cDNA amplification PCR, a TSO recognition primer 426 
(AAGCAGTGGTATCAACGCAGAGT) and a primer that adds a secondary index (e.g., with 427 
barcode underlined: 428 
AATGATACGGCGACCACCGAGATCTACACAACGTGATACACTCTTTCCCTACACGACGCTC429 
TTCCGATCT) were used. For capturing antibody-derived fragments in cell hashing 430 
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experiments, a single relevant primer can be added, for example, the HTO primer in the case of 431 
TotalSeqA hashing. cDNA from multiple aliquots (typically 2-4) can be pooled for sub-library 432 
construction by following the standard Chromium protocol, exception in the library PCR where a 433 
partial P5 primer (AATGATACGGCGACCACCGAGA) was used alongside an i7 index primer 434 
(e.g., with barcode underlined: 435 
CAAGCAGAAGACGGCATACGAGATCGCATGTTACGTGACTGGAGTTCAGACGTGT.  436 
 437 
After QC, sub-libraries with unique secondary index (i5) and i7 index were pooled for 438 
sequencing on Illumina platforms, with 28 cycles for Read 1, 10 cycles for i7 index, 8 cycles for 439 
i5 index, and 90 cycles for Read 2. Targeted sequencing depth was 20,000 read pairs per cell. 440 
Cell counting at the aliquoting step was used to estimate the number of cells expected to 441 
recover. 442 
 443 
OAK paired snRNA-Seq and snATAC-Seq 444 
 445 
Nuclei were centrifuged at 500G in a 2 mL round-bottom microfuge tube. After removing the 446 
supernatant, the pellet was resuspended in a fixation solution of 1 mL calcium-free PBS with 447 
0.3% formaldehyde. Nuclei in fixation solution were placed on ice for 10 min and then 448 
centrifuged for 5 min at 500G at 4°C. After supernatant was removed, 1.5 mL wash buffer was 449 
added. The wash buffer was 10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA, 450 
0.1% Tween-20, 1 mM DTT, 1 U/μL RNase inhibitor in nuclease-free water. After 5 min 500G at 451 
4°C, the supernatant was removed and the nuclei were resuspended in the appropriate volume 452 
of nuclei resuspension buffer to target 2,400 nuclei/μL or more. The nuclei resuspension buffer 453 
was 1X Nuclei Buffer (from a 20X stock, 10x Genomics, PN2000207), 1mM DTT, and 1 U/μL 454 
RNase inhibitor in nuclease-free water.  455 
 456 
After fixation, we typically transpose 75,000-200,000 nuclei, with an expected cell recovery rate 457 
of 38%-42%. This recovery rate may be dependent on sample type and quality. We found that 458 
TDE1 enzyme (Illumina Tagment DNA Enzyme and Buffer Small Kit, 20034197) could be used 459 
for the additional tagmentation reactions required to support processing large numbers of nuclei. 460 
Each transposition reaction was composed of 12,000 nuclei in 5 μL 1X nuclei buffer, 3 μL TDE1 461 
enzyme, and 7 μL ATAC Buffer B (10x Genomics, PN 2000193). Reactions were incubated at 462 
37°C for 1 hr. All transposition reactions were combined to a 2 mL round-bottom microfuge tube 463 
and spun at 500 G in a pre-cooled centrifuge at 4°C for 5 min. Supernatant was removed, 464 
leaving transposed nuclei in 15 μL of solution which was used for loading 1 channel. Other 465 
reagents were used for loading according to standard 10x Genomics' Chromium Next GEM 466 
Single Cell Multiome protocol. After GEM generation, barcoding, and quenching according to 467 
the standard protocol, 125 μL recovery agent (10x Genomics, PN 220016) was added to break 468 
the emulsion. The aqueous layer was carefully transferred to a 2 mL round-bottom microfuge 469 
tube. 800 µL 3X SSC was added to the cell suspension. The cells were spun at 650G at 4°C for 470 
5 min. Supernatant was carefully removed. 1 mL 3X SSC was added to the cell pellet with 471 
gentle tapping on the tube to dislodge the pellet. Cells were spun again at 650G at 4°C for 5 472 
min. The pellet was resuspended in 215 µL 3X SSC with gentle pipette mixing. A 10 µl solution 473 
was used for cell counting to estimate the number of cells per aliquot. The remaining solution 474 
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was evenly distributed into multiple aliquots (typically 20 aliquots per 150,000 cells loaded to 475 
aim for 4,000 cells per aliquot). The aliquots were immediately stored at -80°C until ready for 476 
sequencing library preparation. 477 
 478 
To prepare sequencing libraries, a desired number of aliquots were heated to 80°C for 5 min to 479 
aid release of 1st strand cDNA and ATAC fragments. DynabeadsTM Silane Viral NA kit 480 
(ThermoFisher, 37011D) was used to purify 1st strand cDNA and ATAC fragments according to 481 
manufacturer's instructions. The resulting products were pre-amplified in a 100 μL reaction 482 
using 10 cycles with 4 μL pre-amp primers (10x Genomics PN 20002714) and 50 μL of 483 
NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541S). Reactions were cleaned with 1.6X 484 
SPRI and eluted in 40 μL EB. 10 μL of the product was used for constructing snATAC-Seq 485 
libraries. One PCR reaction was set up for each aliquot, with 0.6 μL of 100 μM partial P5 primer, 486 
50 μL NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541S), 36.9 μL nuclease-free water 487 
and 2.5 μL of 10 μM sample index N (10x Genomics, PN 1000212). The PCR program was 488 
98°C 30s, n cycles [98°C 10s, 67°C 30s, 72°C 20s], 72°C 2 min, held at 4°C. N is typically 489 
recommended cycles for standard Chromium protocol for the number of cells. Extra cycles can 490 
be added if ATAC library yield is low. A double-sided size selection was performed as instructed 491 
in the standard Chromium protocol. cDNA library amplification, sequencing library construction 492 
and sequencer operation were conducted in the same way as described in OAK scRNA-Seq.  493 
 494 
For snATAC-Seq libraries, sub-libraries with unique i7 index were pooled for sequencing on 495 
Illumina platforms. Targeted sequencing depth was 25,000 read pairs per cell, with 50 cycles for 496 
Read 1, 8 cycles for i7 index, 24 cycles for i5 index, and 49 cycles for Read 2. Cell counting at 497 
the aliquoting step was used to estimate the number of cells expected to recover. 498 
 499 
Sequencing read processing 500 
 501 
Illumina Miseq, Nextseq 2000, and NovaSeq 6000 were used for sequencing. Raw sequencing 502 
data was demultiplexed by Illumina's Bcl2Fastq software to resolve reads per OAK sub-libraries. 503 
Fastq files for each sub-library were processed with Cell Ranger software v6 (single-cell 504 
RNAseq) or Cell Ranger ARC software v2 (paired snRNA-Seq and snATAC-Seq) to generate 505 
gene and chromatin fragment counts.  506 
 507 
Simulation for cell distribution in droplets 508 
 509 
The percentage of having k cells in a droplet is approximated by p(k, λ)=e^(-λ)*λ^k/(k)! based on 510 
Poisson distribution, where λ is the loading rate approximated as the number of loaded cells 511 
divided by the number of generated droplets. 512 
 513 
Multiplet rate theoretical estimation 514 
 515 
The expected number of events when more than one cell share the same combinatorial 516 
barcodes is N-D+D*[(D-1)/D]^N based on the closed form solution for expected number of 517 
collisions in the birthday paradox11, where N is the number of cells loaded and D is the total 518 
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number of barcode combinations. We used 100,000 as the number of droplets generated per 519 
channel on the Chromium microfluidic chip. Hence D was calculated as 100000*n_aliquot, 520 
where n_aliquot is the number of aliquots generated.  521 

Species-mixing experiment and multiplet rate estimate  522 

In the species-mixing experiment when 150,000 cells (Fig. 1c) were loaded in one channel of 523 
the Chromium chip, all cells were unpacked into 12 aliquots. In the experiment when 450,000 524 
cells (Fig. 1c) were loaded in one channel, all cells were unpacked into 40 aliquots. In each 525 
experiment, one aliquot was processed to generate a sequencing library. Reads were mapped 526 
to a hybrid Human-Mouse reference genome that consists of GRCh38 and mm10. Cells were 527 
classified into observed multiplets (human+mouse), mouse cells, and human cells by Cell 528 
Ranger software v6. Since the input cells consisted of a 1:1 mixture of a mouse and a human 529 
cell line, true multiplet rate was estimated as (observed multiplet rate)*2 to include those 530 
inferred human+human and mouse+mouse multiplets. 531 

 532 
Hashtag assignment and cell annotation in human bronchial epithelial cells 533 
 534 
The Cell Ranger package was used to determine hashtag assignment rate for the human 535 
bronchial epithelial cell experiment using a matching antibody-derived tag and gene expression 536 
library for each of four (out of 22) OAK aliquots, and for standard comparison data generated in 537 
parallel. We imported and merged the data from the multiple OAK aliquots in Seurat, then 538 
integrated the OAK and standard scRNA-Seq data with Harmony43 prior to clustering using the 539 
Seurat FindClusters function (resolution = 0.6) and assigning cluster identity (Club/Goblet, 540 
Basal, Ciliated, Basal cycling, Neuroendocrine or Unknown) based on gene scores for known 541 
markers. 542 
 543 
Retinal paired snRNA-Seq and snATAC-Seq data analysis 544 
 545 
snATAC-Seq and gene expression data from each sub-library were combined using cell ranger-546 
arc aggr with -normalize=none. Gene expression data was first imported into a Seurat (Version 547 
4.3.0.1) object for assessment of snRNA-Seq quality and comprehensive annotation. Cells with 548 
>200 genes and <10000 genes were retained. Cells were clustered, then marker gene scores 549 
were used to validate assignment of clusters to the major known cell types. For cones, 550 
horizontal, amacrine and bipolar cells, further sub-clustering was performed prior to annotation 551 
and propagation into the master Seurat object. The snRNA-Seq annotations were added as 552 
metadata into an ArchR project containing both snATAC-Seq and snRNA-Seq data, based on 553 
cell barcodes. For further analysis of snATAC-Seq data, only cells with data passing filters from 554 
both modalities were kept. 555 
 556 
In ArchR (Version 1.0.2), hg38 was used as the reference genome and barcodes were filtered 557 
for TSS enrichment >4 and nFrags >1000. Peaks of open chromatin were identified by using 558 
ArchR tools. First addReproduciblePeakSet was utilized with MACSr, which uses the MACS3 559 
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algorithm for peak-calling 44, on the snRNA-Seq annotation, excluding chrMT and 'chrY, 560 
followed by addPeakMatrix. Marker peaks were called using this matrix for each cell type with 561 
getMarkerFeatures with options bias = c("TSSEnrichment", "log10(nFrags)") and 562 
testMethod="wilcoxon". Peaks called were filtered for FDR cutOff of 0.01 and Log2FC >= 1. The 563 
plotMarkerHeatmap function was used to plot a heatmap of the markers with FDR <= 0.001 and 564 
Log2FC >= 1. The plotBrowserTrack function in ArchR was used to plot example chromatin 565 
tracks and peaks for each annotated cell group. 566 
 567 
Epiregulon infers regulatory elements to target genes based on correlated gene expression and  568 
chromatin accessibility in clustered cells, matching these elements to known transcription factor 569 
binding sites from repositories of public ChIP-Seq data. In Epiregulon (Version 1.0.34) we 570 
extracted the normalized gene expression counts and peak matrices from the ArchR project, 571 
removing unannotated cells, and calculated the peak to gene expression linkages using the LSI 572 
snRNA-Seq and snATAC-Seq combined dimensions from ArchR. We annotated the linkages as 573 
regulons with known motifs from the human ChIP-Atlas and Encode databases. We further 574 
pruned the regulons by setting a correlation test cutoff for for all components (peaks, gene 575 
expression and TFs in the same cells) using the following parameters to the pruneRegulon 576 
function (test = "chi.sq", prune_value = "pval", regulon_cutoff = 0.05 and defined clusters by the 577 
major cell types). We used the addWeights function to add an estimate and multiplier for the 578 
strength of regulation, using the parameters tf_re.merge = FALSE, method = "corr". We 579 
calculated a score for each regulon using calculateActivity to combine weights with activity of 580 
linked genes (mode = "weight", method = "weightedMean", exp_assay = "normalizedCounts", 581 
normalize = FALSE). To find the transcription factors with differential regulation activity 582 
associated with each major cell type we used the findDifferentialActivity function with 583 
parameters, pval.type = "some", direction = "up" and test.type = "t"). We filtered these by 584 
significant transcription factors with an FDR cutoff of 0.05 and a logFC cutoff of 0.1. With this list 585 
in hand, we added information on the proportion of cells that have expression of the identified 586 
transcription factor in the significant group. We filtered the transcription factors to those that 587 
have >30% expression in the associated cell type. We took the top ten transcription factors with 588 
the highest calculated activity in each cell type and ordered them by the proportion of cells 589 
expressing within the cell type. We then used the plotBubble function to plot the top seven 590 
transcription factors with the highest calculated activity for each cell type. 591 
 592 
TraCe-seq cell preparation and scRNA-Seq 593 
 594 
TraCe-seq barcode lentivirus was produced, and cells were infected and sorted as described in 595 
the previous publication 29. After sorting, 1,000 IPC-298 cells were used to form the starting 596 
population. This population was expanded for 17 doublings. A subculture was used for the Day 597 
0 experiment, while the rest of cells were treated with 10 µM belvarafenib. Medium containing 598 
belvarafenib was replenished twice a week. Subcultures of cells were taken for OAK on Day 0 599 
and Day 10 as lineage diversity was highest before and early in treatment. For Day 0, 2 600 
channels on the Chromium chip were loaded, each with 138,000 cells. 39 aliquots were 601 
generated, each contained 3700 cells. 20 aliquots were processed into sub-libraries and 602 
sequenced. For Day 10, 3 channels were loaded, each with 180,000 cells. 44 aliquots were 603 
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generated, each contained 6000 cells. 12 aliquots were processed into sub-libraries and 604 
sequenced. The remaining aliquots were stocked in -80°C for potential future data acquisition. 605 
Standard Chromium scRNAseq was performed according to manufacturer's instructions for cells 606 
collected on Day 20 and Day 90 of treatment as lineage diversity dropped.  607 
 608 
TraCe-seq single-cell lineage barcode library generation 609 
 610 
OAK indexed cDNA libraries from multiple aliquots can be pooled for the generation of lineage 611 
barcode libraries. Typically, 7.5 µl cDNA from each aliquot is used and 2 aliquots were pooled 612 
for 1 reaction. A semi-nested PCR strategy was used to ensure the specificity of the resulting 613 
lineage barcode library. In the first round of PCR, the partial P5 primer and GPF_F1_outer 614 
primer (GTGCACTTAGTAAGGACCCAAACG) were used. In the second round of PCR, the 615 
partial P5 primer and an i7 indexed GFP_F2_inner primer (e.g., with index 616 
underlined:CAAGCAGAAGACGGCATACGAGATCCGCGGTTGTGACTGGAGTTCAGACGTGT617 
GCTCTTCCGATCTGATAACCCTCGGGATGGATGAACTG) were used. 618 
 619 
TraCe-seq bulk lineage library generation  620 
 621 
Cells from Day 0 were used to amplify the lineage transcripts. The reverse transcription mix was 622 
composed of 5 µL Maxima H minus Reverse Transcriptase (Thermo Fisher Scientific EP0753), 623 
20 µL 5X RT buffer, 5 µL dNTP (10 mM each), 1.5 µL TraCe_libABC_end_RT primer 624 
(GTGGATCCACCGAACGCAACGCAC, 100 µM), 1.5 µL Protector RNase Inhibitor (Sigma PN 625 
3335399001), 5 µl methanol fixed cells, and 62 µl water. The reaction was incubated at 50°C for 626 
30 min, followed by 85°C for 5 min, and held at 4°C briefly. The product was subsequently 627 
amplified by PCR with P5 indexed primer (e.g., with index underlined: 628 
AATGATACGGCGACCACCGAGATCTACACGATATCGACGAACGCAACGCACGCACACT) 629 
and i7 indexed GFP_F2_inner primer. The SPRISelect beads were used to perform a 0.6X-1.6X 630 
double sided size selection for the PCR product.  631 
 632 
Drug response curve generation 633 
 634 
Cells were seeded at 2,000 cells per well in 96-well plate, and were treated with belvarafenib 24 635 
hours after seeding. Cells were treated with a 9-point titration (1:3) and DMSO control using the 636 
HP D300 drug dispenser. Cell growth was assessed using CellTiter-Glo Luminescent Cell 637 
Viability Assays (Promega G7570), and luminescence was read by a 2104 EnVision Multilabel 638 
Plate Reader (PerkinElmer) five days after treatment. All cell viability data was collected and 639 
calculated for 4 replicates per condition. Data from the DMSO control was set to 100%. 640 
Nonlinear regression curves were generated by GraphPad Prism to fit the viability data. 641 
 642 
TraCe-seq data analysis 643 
 644 
Cells were assigned to a lineage when the UMI count for one lineage barcode was at least two-645 
fold higher than the other ones detected in the given cell. Single-cell gene expression matrix 646 
was analyzed with Scanpy45. Gene set enrichment for MSigDB's hallmark sets32 was performed 647 
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with decoupleR46. MAPK, EGFR, PI3K, and TGF-β pathway scores were generated with 648 
PROGENy47. P values were calculated using the Mann-Whitney-Wilcoxon test (two-sided) with 649 
Bonferroni adjustment. Genes representing differentiation and dedifferentiation states were 650 
based on an established melanoma four-stage differentiation model48. The melanocytic, 651 
transitory-melanocytic, transitory, and neural crest-like-transitory signatures were grouped as 652 
the differentiation signature. The undifferentiated, undifferentiated-neural crest-like, and neural 653 
crest-like signatures were grouped as the de-differentiation signature. The signature scores 654 
were generated by Scanpy's tl.score_genes function. 655 
 656 
Schematics used in this manuscript were created with BioRender.com. 657 
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Figure 1: Principle and performance of OAK in single cell profiling of multiple molecular 692 
modalities. 693 
 694 
a, A schematic of the OAK's scRNA-Seq workflow. During the first indexing step, mRNA 695 
molecules hybridize with poly-dT containing bead oligos within droplets in fixed cells or nuclei. 696 
Following reverse transcription and emulsion break, fixed cells or nuclei are pooled and re-697 
distributed in individual aliquots where the second index is integrated via a polymerase chain 698 
reaction (PCR). TSO: template switch oligo. UMI: unique molecular identifier. pR1: primer 699 
binding sequence for TrueSeq Read 1.  700 
b, Simulated representation of the percentage of droplets that contain zero (blue), one 701 
(magenta), and more than one (yellow) cell, as a function of varying numbers of cells loaded per 702 
microfluidic chip channel. Pink and green highlighted areas indicate the range of cell loading in 703 
regular 10x Genomics' Chromium scRNA-Seq and in OAK respectively.  704 
c, Droplet images and results of overloading during OAK with different numbers of cells per 705 
channel. Scale bars are 75 µm. 706 
d, Number of genes detected in K562 cells as a function of the total number of reads per cell. 707 
Each data point represents one cell. Green: 150,000 cells loaded, same as in c. Yellow: 708 
450,000 cells loaded, same as in c. 709 
e, Number of genes detected in K562 cells with regular Chromium NextGEM 3' RNA-Seq, OAK 710 
scRNA-Seq with 150,000 cells loaded, and scifi-RNA-seq14. Boxplots' center lines represent 711 
medians. Box limits denote Q1 (lower) and Q3 (higher) quartiles, and whiskers extend to either 712 
1.5 times the interquartile range (IQR) or to the last data points if they are within these limits. 713 
f, Percentage of human bronchial epithelial cells assigned to each sample hashtag (n=9) by the 714 
standard Chromium method and OAK for the same sample pool. Each dot corresponds to a 715 
different sample hashtag. 716 
g, Number of genes detected in K562 cells by joint snRNA-Seq and snATAC-Seq using OAK 717 
(red), and standard Chromium (dark green), as a function of the total number of reads per cell. 718 
Each data point is a cell. 719 
h, Total number of ATAC fragments detected in K562 cells by joint snRNA-Seq and snATAC-720 
Seq using OAK (red) and standard Chromium (dark green), as a function of the total number of 721 
reads per cell. Each data point is a cell. 722 
 723 
Figure 2. OAK paired snRNA-Seq and snATAC-Seq on the human peripheral retina. 724 
 725 
a, Uniform Manifold Approximation and Projection (UMAP) of annotated snRNA-Seq data with 726 
table of number and percentage of each cell type. The color of the dot for each cell group 727 
indicates the position in the UMAP. 728 
b, Heatmap displaying detected OCRs in each cell type with FDR <= 0.01 & Log2FC >= 1 using 729 
Wilcoxon test for the cell type against a null cell group. 730 
c, Chromatin tracks in major cell types for the genomic region (chrX:70253304-70288305) 731 
spanning the ARR3 gene, a known cone cell marker, with a Ridge plot (expression values are 732 
normalized and log transformed) indicating corresponding gene expression of ARR3 from 733 
snRNA-Seq data. 734 
d, Chromatin tracks in bipolar cell types for the genomic region (chr20:54455596-54505597) 735 
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including the TSS of the DOK5 gene, a known marker in DB5 bipolar cells, with a Ridge plot 736 
(expression values are normalized and log transformed) indicating corresponding gene 737 
expression of DOK5 from snRNA-Seq data. 738 
e, Up to seven expressed significant transcription factors by weighted gene activity for each 739 
major cell type, as identified by Epiregulon. Transcription factors identified in multiple cell groups 740 
are plotted only once. These include transcription factors associated with neuronal cell types: 741 
AHR (Horizontal, RGC, Bipolar), BACH1 (RGC, Bipolar) and photoreceptors: CDR73 (Rod, 742 
Cone). 743 
 744 
Figure 3: OAK single-cell lineage tracing and transcriptome profiling for melanoma cells 745 
during belvarafenib treatment. 746 
 747 
a, Diagram of the lineage tracing experiment. IPC-298 cells labeled with lineage barcodes were 748 
sampled for scRNA-Seq on Days 0, 10, 20, and 90. Belvarafenib treatment commenced 749 
following the Day 0 subculture collection. 750 
b, Fold change in cell count for each lineage at each time point. Cell counts from Day 0 served 751 
as the baseline. Enriched (yellow) includes lineages with over tenfold increase from Day 0 to 752 
Day 20, except the resistant lineage. Resistant (enriched) refers to the lineage with over tenfold 753 
increase from Day 0 to Day 20, and resistant on Day 90. Stable refers to lineages categorized 754 
as neither depleted nor enriched.  755 
c, Volcano plot depicting differentially expressed genes identified on Day 20 between depleted 756 
and enriched lineages. Genes with adjusted p values lower than 1e-8 and log2 fold changes 757 
beyond ±0.5 are labeled.  758 
d, Violin plots for FN1 expression level (normalized and log-transformed) at each time point in 759 
cells within depleted and enriched lineages.  760 
e, Fold changes on Day 0 and Day 20 between the depleted and the enriched lineages. Each 761 
data point represents a gene with an adjusted p value <0.05 on Day 20, with specific genes 762 
labeled the same as in d. Green dashed lines denote ±1.5-fold changes. 763 
f, Scores for PROGENy pathways at each time point for cells within the resistant lineage. ns: 764 
adjusted p value > 0.05; ****: adjust p value <=1e-04. Boxplots' center lines represent medians. 765 
Box limits denote Q1 (lower) and Q3 (higher) quartiles, and whiskers extend to either 1.5 times 766 
IQR or to the last data points if they are within these limits.  767 
g, De-differentiation and differentiation scores for cells within the resistant lineage. Data points 768 
are colored based on time points. 769 
 770 
Extended Data Figure 1: OAK assay performance and compatibility with multiple 771 
molecular modalities. 772 
 773 
a, Collision rate corresponding to each number of total aliquots generated per channel, with 774 
150,000 cells (green) or 450,000 cells (yellow) loaded per channel. 775 
b, Number of genes detected in NIH/3T3 cells as a function of the total number of reads. Each 776 
data point represents one cell. 150,000 cells (green) and 450,000 cells (yellow) were loaded 777 
respectively, same as in Fig. 1c. 778 
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c-d, Total number of mouse UMIs and human UMIs detected in each combinatorial index, when 779 
150,000 cells (in c) or 450,000 cells (in d) were loaded per channel. Combinatorial indexes were 780 
classified as human cells (red), mouse cells (blue), or observed multiplets (green). 781 
e, Percentage of genes expressed in K562 cells detected by the standard Chromium method 782 
that were recovered by OAK in each of the expression percentile bins set by expression levels. 783 
f, Percentage of reads mapping to the mitochondrial genome in K562 data collected by the 784 
standard Chromium 3' RNA-Seq and OAK's scRNA-Seq. 785 
g, Percentage of reads mapping to intronic regions in K562 data collected by the standard 786 
Chromium 3' RNA-Seq method and OAK's scRNA-Seq. 787 
h, Number of UMIs per gene in K562 cells detected by the standard Chromium 3' RNA-Seq and 788 
OAK's scRNA-Seq. Each data point is a gene. 789 
i, UMAPs for in vitro differentiated bronchial airway cells profiled by OAK and standard 790 
Chromium method. For comparative visualization, data from both methods was integrated with 791 
Harmony43 and the clusters were annotated using markers for major cell types.  792 
j, Percentage of cells for each cell type annotated within the OAK and the standard Chromium 793 
dataset. Basal (cycl.): Basal cycling cells. NE: Neuroendocrine cells.  794 
k, Schematic diagram of the experimental procedure for OAK's multiome (joint snRNA-Seq and 795 
snATAC-Seq). Building on Fig 1.a, cells or nuclei are fixed and then transposed to generate 796 
ATAC fragments before droplet generation. First indexing occurs in each droplet by hybridizing 797 
the poly-dT containing bead oligos with mRNA molecules, as well as by ligating spacer 798 
sequence containing bead oligos with transposed chromatin fragments through a bridge oligo. 799 
Second indexing occurs in each aliquot by PCR with a pair of barcoded primers for the cDNA 800 
and a pair of barcoded primers for the chromatin fragments. 801 
l, Percentage of fragments in K562 data that overlap transcription start sites (TSS). Chromium: 802 
standard Chromium multiome (joint snRNA-Seq and snATAC-Seq); OAK_FA: OAK-multiome 803 
(joint snRNA-Seq and snATAC-Seq) with formaldehyde as fixative; OAK_MeOH: OAK-multiome 804 
with methanol as fixative. 805 
 806 
Extended Data Figure 2: OAK data analysis of paired snRNA-Seq and snATAC-Seq on 807 
human peripheral retina. 808 
 809 
a, Number of genes detected in human retinal cells as a function of the total number of reads 810 
per cell. Each data point represents one cell. The dotted line represents the mean value. 811 
b, The snATAC-Seq fragment size distribution for all cells for 535.36 million fragments. 812 
c, Density plot with histogram of TSS enrichment and number of unique fragments for each cell 813 
in snATAC-Seq data. Vertical line represents the mean number of fragments per cell and the 814 
horizontal dotted line represents the mean TSS score per cell. 815 
d, UMAP of unannotated RNA clustering.  816 
e, UMAPs of snATAC-Seq data showing cluster assignment (left) and transfer of snRNA-Seq 817 
annotations (right) based on cell barcodes. 818 
f, Heatmap of snATAC-Seq peaks clustered for each bipolar cell type. 819 
g, Number of snATAC-Seq peaks called for each cell type in relation to annotated intronic, 820 
promoter, exonic and distal gene regions. 821 
 822 
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Extended Data Figure 3: OAK enables lineage tracing, identifying temporal gene 823 
signatures within a resistant melanoma cell lineage. 824 
 825 
a, Correlation of lineage abundance between measurements by the number of cells in OAK data 826 
and by the number of reads in bulk sequencing data on Day 0. Each data point represents a 827 
lineage.  828 
b, Spearman correlation coefficients between lineage abundance measured by OAK and by 829 
bulk sequencing against varying numbers of cells sequenced for Day 0. Each data point's cells 830 
were generated by randomly downsampling from the total number of sequenced cells (74,000). 831 
Each downsampling was iterated 10 times. Boxplots' center lines represent medians. Box limits 832 
denote Q1 (lower) and Q3 (higher) quartiles, and whiskers extend to either 1.5 times the IQR or 833 
to the last data points if they are within these limits. 834 
c, Cellular viability of parental cells and the belvarafenib-resistant clone treated by increasing 835 
concentrations of belvarafenib. Data are mean ± s.e.m, with 4 replicates per concentration per 836 
group of cells. 837 
d, The cumulative number of cells detected within the resistant lineage on Day 0 when a varying 838 
number of sub-libraries were sequenced. 839 
e, The cumulative percentage of lineages recovered on Day 0 when a different subset of sub-840 
libraries (X-axis, bottom) were sequenced. The total number of cells sequenced in the 841 
corresponding number of sub-libraries are indicated on the top. 842 
f, Heatmap for gene set scores at each time point for cells within the resistant lineage. At each 843 
time point, hallmark gene sets with mean score changes >0.3 and adjusted p values < 0.01 844 
were displayed. 845 
 846 
 847 
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