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Abstract

Multiomic profiling of single cells by sequencing is a powerful technique for investigating cellular
diversity in complex biological systems. Although the existing droplet-based microfluidic
methods have advanced single-cell sequencing, they produce a plethora of cell-free droplets
and underutilize barcoding capacities due to their low cell concentration prerequisites.
Meanwhile, combinatorial indexing on microplates can index cells in a more effective way;
however, it requires time-consuming and laborious protocols involving multiple splitting and
pooling steps. Addressing these constraints, we have developed "Overloading And unpacKing"
(OAK). With reduced labor intensity, OAK can provide cost-effective multiomic profiling for
hundreds of thousands of cells, offering detection sensitivity on par with commercial droplet-
based methods. To demonstrate OAK's versatility, we conducted single-cell RNA sequencing
(scRNA-Seq) as well as joint single-nucleus RNA sequencing (SnRNA-Seq) and single-nucleus
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Assay for Transposase Accessible Chromatin with sequencing (SnATAC-Seq) using cell lines.
We further showcased OAK's performance on more complex samples, including in vitro
differentiated bronchial epithelial cells and primary retinal tissues. Finally, we examined
transcriptomic responses of 408,000 melanoma cells across around 1,000 starting lineages over
a 90-day treatment with a RAF inhibitor, belvarafenib. We discovered a rare cell population
(0.12%) that underwent a sequence of transcriptomic changes, resulting in belvarafenib
resistance. Ultra-high throughput, broad compatibility with diverse molecular modalities, high
detection sensitivity, and simplified experimental procedures distinguish OAK from previous
methods, and render OAK a powerful tool for large-scale analysis of molecular signatures, even
for rare cells.

Main

The technological landscape of single-cell sequencing is rapidly evolving, encompassing newly
developed methods'™ that offer an unprecedented view of cellular heterogeneity. This technical
evolution is fueled by the need to achieve more precise cell type or state identification, capture
rare cell states or cellular lineages, and conduct comprehensive perturbation screens for new
drug target discovery, all of which have steered technological development toward analyzing a
greater number of cells at a reduced cost.

Droplet-based microfluidic approaches co-encapsulate a barcoded bead and a cell within an
emulsion to enable parallel analysis of thousands of individual cells®”’. These methods have
been an important advancement in streamlining high-throughput single cell sequencing.
However, the low cell concentration required to minimize the number of multi-cell droplets leads
to a large number of cell-free droplets and underutilized barcoding capacity. Alternatively,
combinatorial indexing on microwell plates®® provides a strategy for barcoding over 100,000
cells'®™*2. However, this ultra-high throughput approach comes with long and laborious
protocols, involving multiple rounds of splitting and pooling cells for indexing.

Inspired by the strengths and limitations of these two families of single cell sequencing methods,
we have developed OAK, a novel approach that combines droplets with combinatorial indexing
to achieve both elevated throughput and experimental simplicity. OAK can be used to measure
gene expression, accessible chromatin, and antibody conjugated oligonucleotides, either
separately or jointly. With OAK, we performed paired shRNA-Seq and shATAC-Seqg on complex
retinal tissue. Furthermore, we undertook a lineage tracing experiment capturing RNA and
lineage barcodes for 408,000 cells, revealing the longitudinal response of melanoma cells to a
RAF inhibitor, belvarafenib. Compatibility with diverse molecular modalities, high detection
sensitivity, and easier experimental procedures distinguish OAK from previous methods™*™° that
conduct combinatorial indexing with the use of microfluidics.

Results

Principles and performance of OAK
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84
85  OAK relies on fixed cells or nuclei to serve as individualized reaction chambers for two rounds
86  of indexing (Fig. 1a). The first round is conducted within droplets, for which we utilized a
87 commercially available system, the Chromium system by 10x Genomics. In this and other
88 droplet-based single-cell sequencing systems®>"*°, the cells are loaded at a low concentration to
89  minimize the possibility of encapsulating multiple cells within a single droplet. Based on the
90 Poisson distribution, this is estimated to result in over 80% of droplets devoid of a cell (Fig. 1b),
91 leaving their barcoding potential untapped and reagent wasted. To more efficiently utilize the
92 droplets, we overloaded the microfluidic chip in the Chromium system, resulting in reduced cell-
93 free droplets, concomitant with increased single- and multi-cell droplets (Fig. 1b). To resolve
94  single cells in multi-cell droplets, after the first round of indexing mediated by in-situ reverse
95 transcription of mMRNA, we unpacked droplets by breaking emulsions (Fig. 1a). Thus, all
96 encapsulated cells are released, mixed, and randomly distributed into multiple aliquots. The
97  number of aliquots to generate can be tuned based on the scale of cell loading and the number
98 of droplets made by the microfluidic system, in order to achieve a desirable theoretical multiplet
99 rate (Extended Data Fig. 1a). Each aliquot will receive a unique secondary index integrated to
100 molecules that already carry primary indexes (Fig. 1a). From this secondary indexing step,
101 researchers can select any scale of cell subsets to create sub-libraries for sequencing, a feature
102  only shared by select droplet-based methods®. This enables an increasing number of cells to be
103  sequenced in a stepwise manner to assess data quality, to receive sufficient sequencing depth,
104  orto avoid sequencing excessive cells, which will be further described in the subsequent
105 sections of this study.

106  First, to assess the impact of cell overloading, we performed experiments in parallel by loading
107  to a channel on the microfluidic chip 150,000 and 450,000 cells respectively, and compared

108 scRNA-Seq performance at these two cell inputs (Fig. 1c). After sequencing a subset of cells
109 from each experiment, we estimate that 87,864 cells were recovered from the 150,000-cell

110 loading, while 223,680 cells were recovered from the 450,000-cell loading (Fig. 1c). At the same
111  sequencing depth per cell, more genes per cell were detected when 150,000 cells were loaded
112  compared to 450,000 cells (Fig 1d, Extended Data Fig. 1b). The input cells consisted of a 1:1
113  mixture of a mouse and a human cell line, enabling us to identify collision events when a mouse
114  and a human cell share the same combinatorial indices. When loading 150,000 cells, we found
115 3.3% cells in the sequencing results to be mix-species multiplets, indicating an overall multiplet
116 rate of 6.6% (Extended Data Fig. 1c), closely aligning with the theoretical expected collision rate
117  (Extended Data Fig. 1a). At the higher loading of 450,000 cells, while we recovered a higher
118 number of cells (Fig. 1c), the overall multiplet rate was 10.6% (Extended Data Fig. 1d). In

119 summary, OAK is flexible to operate with a broad spectrum of loaded cell quantities. The choice
120 on the number of cells to load should be guided by research objectives, balancing between

121  detection sensitivity and cell yield.

122  We benchmarked OAK to the widely used 10x Genomics' Chromium NextGEM scRNA-Seq
123  procedure (standard Chromium)’, which generates droplet-based RNA-Seq data for up to
124 10,000 cells per channel on the microfluidic chip. From the 150,000 cells loaded, OAK

125 recovered 87,864 cells per channel (Fig. 1c), a more than eightfold increase in throughput
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126  compared to the standard Chromium procedure. With a matched sequencing depth per cell,
127 OAK detected a mean of 3,014 genes per cell for the K562 cell line, while the standard

128  Chromium procedure detected 3,905 genes indicating a mild reduction in sensitivity by OAK
129  (Fig. 1le). Further investigation into the gene detection difference revealed that reduced

130 detection primarily occurred for the lowly expressed genes (Extended Data Fig. 1e). In addition,
131  OAK exhibited a lower percentage of reads that map to mitochondrial DNA (Extended Data Fig.
132  1f), which is likely attributed to the fixation and permeabilization process that led to partial loss
133  of mitochondria as well as cytoplasmic RNA. This was substantiated by the higher percentage
134  of reads mapping to intronic regions in comparison to the data derived from the standard

135 Chromium procedure (Extended Data Fig. 1g), which also suggests that the permeabilization
136  process could cause an overrepresentation of nuclear mRNA over cytoplasmic mRNA. Overall,
137  astrong correlation between OAK and the standard Chromium method was observed in terms
138 of mean UMI detected across cells for each gene (Spearman correlation coefficient = 0.92,

139  Extended Data Fig. 1h). We compared OAK with scifi-RNA-seq*, another combinatorial

140  indexing method utilizing the Chromium system, and observed that OAK exhibited

141  approximately ten times higher sensitivity as measured by number of genes per cell (Fig. 1e).
142

143  Leveraging ultra-high throughput for sample multiplexing

144

145  Since OAK enables profiling of hundreds of thousands of cells, it is suitable for ultra-high

146  throughput assays that include many different samples, donors and conditions. Cell hashing
147  with barcoded antibodies is frequently used for multiplexing as it enables pooling of cells from
148  different sources for single-cell profiling'’. We evaluated antibody hashing within OAK using
149  human bronchial epithelial cells differentiated in transwell plates. We split a sample of antibody
150 stained cells between the OAK and standard Chromium workflow and asked whether cell

151  assignment was comparable. We found that 80% of cells were assigned a hashtag identity in
152 OAK, compared to 81% in the standard Chromium. Furthermore, we found a strong correlation
153  (Pearson correlation coefficient=0.98, Fig. 1f) in the abundance of each hashtag between OAK
154  and standard Chromium. We then clustered cells based on gene expression (Extended Data
155  Fig. 1i). After cell annotation, all expected cell types were present in both data sets, and their
156  proportions correlated between OAK and the standard Chromium (Extended Data Fig. 1j).

157  Therefore, OAK was compatible with the cell hashing approach for sample multiplexing, and did
158 notintroduce any biases in cellular composition.

159

160  Flexibility in multimodal single cell profiling

161

162  We next investigated whether OAK can perform joint profiling of transcriptome and chromatin
163  accessibility. Since the beads from the Chromium Next GEM Single Cell Multiome kit readily
164  provide barcoding capacity for both mRNA and ATAC fragments, only adjustments in secondary
165 indexing primers were necessary to make OAK compatible with the Chromium multiome

166  workflow (Extended Data Fig. 1k). In order to identify a suitable fixative for joint ShRNA-Seq and
167 snATAC-Seq, we evaluated methanol and formaldehyde. Compared to formaldehyde fixation,
168 methanol fixation led to a lower transcription start site (TSS) fragment percentage in the

169 sequencing data (Extended Data Fig. 1), likely due to methanol's chromatin denaturing effect.
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170  Formaldehyde fixation generated high quality gene expression data (Fig. 1g) and chromatin
171  accessibility data for K562 cells (Fig. 1h). These results underscore OAK's adaptability in

172  supporting multiple molecular modalities.

173

174  Paired snRNA-Seq and snATAC-Seq for human retinal cells

175

176 A common scenario in collecting single-cell data from tissue, is that the most abundant cell

177  types are orders of magnitude higher than the rarest cell types. A couple of examples include
178  recovering neurons from the enteric nervous system, where they represent less than 1% of

179  colon cells'®, or tuft cells which represent 0.2% of dissociated lung cells'®. The human retina is
180 another example of a primary tissue with high cellular heterogeneity. Effectively capturing types
181 and states of all cellular subtypes is key to understanding health and disease of the eye;

182  however, the overwhelming presence of rod photoreceptors (around 60% of cells) often

183 impedes the efficient recovery of other cells, such as retinal ganglion cells (less than 1%). Some
184  techniques can be employed for depleting rod cells, however this adds experimental complexity
185 and may unintentionally affect representation of other cell types, for example depletion of bipolar
186  cells®. Utilizing a method such as OAK to perform paired snRNA-Seq and snATAC-Seq on

187 retinal samples enables generation of large scale high-resolution data from these precious

188  samples, which are obtained only from careful dissection of post-mortem donations.

189

190 We transposed 100,000 fixed peripheral retinal nuclei for overloading (see Methods). We

191 recovered snATAC-Seq data from 42,632 nuclei, and shnRNA-Seq data from 46,487 nuclei, with
192  an overlap for 40,691 nuclei. In the snRNA-Seq data we observed a mean of 1,666 genes per
193 cell (Extended Data Fig. 2a). In the shnATAC-Seq data we observed the expected fragment

194  distribution pattern (Extended Data Fig. 2b) with a mean of 12,539 fragments per cell and a
195 mean transcription start site (TSS) enrichment of 14.71 (Extended Data Fig. 2c). This compared
196  well to the quality of standard Chromium data generated in parallel for 5,586 nuclei. Standard
197 snRNA-Seq generated a mean of 2,029 genes per cell, whilst the standard snATAC-Seq

198 generated a mean of 14,217 fragments per cell and a mean TSS enrichment score of 12.37.
199

200  Using the snRNA-Seq data we clustered and annotated the main cell types of the retina based
201  on known marker genes (Extended Data Fig. 2d, Fig. 2a). With a single donor sample, we

202  obtained thousands of rod, cone, Miiller glia, amacrine and bipolar cells, as well as hundreds of
203  horizontal cells, astrocytes and retinal ganglion cells, representing the major cell types of the
204  retina®®?%. We used the snRNA-Seq annotations with the OAK snATAC-Seq data (Extended
205 Data Fig. 2e) to call open chromatin regions (OCRS) in each cell subtype (Fig. 2b, Extended
206 Data Fig. 2f). We found unique OCR signatures even for the least abundant cell types, including
207 retinal ganglion cells and astrocytes®. Peaks called were primarily in intronic and promoter

208 regions as expected (Extended Data Fig. 2g). Looking in more detail at the chromatin peaks in
209  specific cell types we observed differential chromatin accessibility in ARR3 in cone cells (Fig.
210 2c), and DOKS5 in DB5 bipolar cells (Fig. 2d), consistent with previous findings?".

211

212  Utilizing paired snRNA-Seq and snATAC-Seq data, we identified putative candidates for master
213  regulators in the different cell types using Epiregulon® (Fig. 2e). Epiregulon infers regulatory
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214  elements to target genes based on correlated gene expression and chromatin accessibility in
215 clustered cells, matching these elements to known transcription factor binding sites from

216  repositories of public CHIP-Seq data. As a proxy for the strength of the interaction, Epiregulon
217  uses the correlation between transcription factor expression and target gene expression. We
218 plotted the activity for each transcription factor based on the expression of target genes
219 combined with the strength of regulation. We identified elevated BLIMP1/PRDM1 regulation
220  activity in cone cells (Fig. 2e), previously found to be transiently expressed in developing

221  photoreceptors, likely preventing bipolar cell fate®. Another example of expected transcription
222  factor activity is of the ONECUT1 and ONECUT?2 paralogs activated downstream of PAX6 (Fig.
223  2e), previously found to be important in the differentiation and maintenance of horizontal cells®.
224  Many functional roles of transcription factors in the human retina have been identified by

225  studying early development in analogous animal models or in organoids?’. Multiomic data

226  generated from post-mitotic cells, as obtained from this retinal sample, offers an intriguing

227  window into ongoing regulation of gene activity decades after initial differentiation events.

228  Obtaining this type of data is especially valuable when considering potential treatments for age-
229 related eye diseases.

230

231 Melanomaresistance to RAF inhibitor belvarafenib
232
233  Understanding therapy response and resistance in cancer is crucial for improving treatment

234  outcomes. Belvarafenib is a pan-RAF inhibitor with clinical activity in melanoma®. Resistance to
235  belvarafenib arises spontaneously in IPC-298 cells at low frequency?®. To track emergence of
236 these rare events that could be as infrequent as 0.1%, a substantial cell population is necessary
237  to ensure sufficient representation of the resistant lineages at baseline. By leveraging the high-
238  throughput capabilities of OAK and a lineage tracing technique?®, we examined transcriptomic
239 response of IPC-298 melanoma cells to a 90-day treatment course with vemurafenib in multiple
240  time points including Day 0, Day 10, Day 20, and Day 90.

241

242  We transduced IPC-298 cells with a lentivirus-based library containing 100,000 unique barcode
243  sequences for lineage tracing®. A subsample of 1,000 transduced cells, each expected to carry
244  aunique lineage barcode, was expanded. Prior to belvarafenib treatment (Day 0), we collected
245  transcriptomic profiles and lineage barcodes from 144,300 cells (Fig. 3a). The representation of
246  each lineage within the single-cell data displayed a strong correlation with the quantity of reads
247  in bulk sequencing data (Spearman correlation coefficient = 0.93, Extended Data Fig. 3a),

248  confirming accurate lineage recovery with OAK. Furthermore, as the sequenced population of
249 cells increased, the level of correlation between the single cell data and bulk data also

250 increased (Extended Data Fig. 3b), emphasizing the benefit of sampling a high number of cells
251  in systems with such a high lineage diversity.

252

253  Further, we took samples on Day 10 and Day 20 of belvarafenib treatment (Fig. 3a). Five

254  lineages demonstrated over tenfold increase in their relative abundance from Day 0 to Day 20,
255  and therefore were categorized as enriched lineages that are drug tolerant (Fig. 3b).

256  Conversely, 61 lineages, each representing less than 1% of Day 20's total cells, were defined
257 as depleted lineages (Fig. 3b). After Day 20, as the number of cells continued to drop, we
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258 observed the emergence of a belvarafenib-resistant clone among the five enriched lineages
259 (Extended Data Fig. 3c). This clone underwent expansion as a single colony on the plate, and
260 accounted for all of the captured cells on Day 90 (Fig. 3a). Consistent with previous

261  characterization of belvarafenib resistance?, this resistant clone only accounted for 0.12% of
262  the cells on Day 0 (Fig. 3a). Thus, cells of that lineage could only be captured with sufficient
263  representation through massive-scale sampling techniques such as OAK. Specifically, for Day
264 0, we performed stepwise sequencing of sub-libraries, until enough cells from this lineage were
265  recovered for downstream analysis (Extended Data Fig. 3d), and sufficient lineage diversity was
266  achieved (Extended Data Fig. 3e).

267

268  To interrogate the transcriptional features associated with drug-tolerance, we computed the
269  marker genes that distinguish the enriched and the depleted lineages on Day 20. We found
270  Fibronectin 1 (FN1) among the overexpressed genes in the enriched lineages (Fig. 3c).

271  Fibronectin-rich extracellular matrix has been shown to provide tolerance for melanoma cells in
272 BRAF inhibition®. Moreover, FN1 has been shown to be associated with a mesenchymal

273  phenotype® in melanoma cells. Interestingly, the epithelial mesenchymal transition (EMT)

274  hallmark gene set® emerged as one of the features for Day 90 within the resistant lineage

275 (Extended Data Fig. 3f). In addition, in the depleted lineages FN1 levels remained stable along
276  the course of belvarafenib treatment, while in the enriched lineages the gain of this

277  mesenchymal marker was observed on Day 20 already (Fig. 3d). Moreover, the longitudinal
278  feature of our experiment enabled us to probe for potential pre-existing transcriptional

279  differences between the enriched and depleted lineages. We observed that many of the

280 differentially expressed genes on Day 20 showed differences in expression levels as early as
281 Day 0 (Fig. 3e). This indicates that distinct lineages may possess inherent transcriptional

282  programs for responding to belvarafenib treatment. Furthermore, sustained exposure to

283  Dbelvarafenib led to amplification of selective pre-existing differences, as exemplified by

284  increased fold changes on Day 20 in some of the most differentially expressed genes, such as
285 FN1 and NRG3 (Fig. 3e).

286

287  Belvarafenib directly inhibits kinase activity of the RAF kinases, which are responsible for MAPK
288  pathway activation downstream of an oncogenic NRAS mutation in the IPC-298 cells®®. To

289  assess how the resistant clone adapted to belvarafenib treatment, we specifically compared the
290 activity of the MAPK pathways and several related pathways within the resistant lineage across
291  different time points. We observed an initial downregulation of MAPK, PI3K, and EGFR pathway
292  signatures at early time points, which suggested an initial response to belvarafenib. However,
293  on Day 20 we noticed a rebound of EGFR pathway activity (Fig. 3f). During the same time

294  frame, we observed activation of the transforming growth factor-g (TGF-8) pathway (Fig. 3f),
295  which is a known driver of resistance against MAPK pathway inhibitors in melanoma cells®.
296  Furthermore, from Day 20 to Day 90 we observed significant rebound of MAPK and PI3K

297  pathway activities (Fig. 3f), suggesting that reactivation of these pathways may be essential for
298 the establishment of the resistant phenotype.

299

300 TGF-Bis known to induce EMT** and de-differentiation in melanoma®®. Given a

301 mesenchymal-like state suggested by FN1 upregulation (Fig. 3c), increased TGF- signaling
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302  (Fig. 3f) as early as Day 20, and the enrichment of EMT hallmark genes on Day 90 (Extended
303 Data Fig. 3f), we examined whether the resistant cells switched to a less differentiated state in
304 response to belvarafenib. Despite the initial shift towards a more differentiated melanocyte-like
305 state on Day 10 (Fig. 3g), the resistant cells ultimately reverted to an undifferentiated state (Fig.
306  3g), resembling the state transitions seen in patient-derived BRAF mutant melanoma cell lines
307 that accompany RAF inhibitor resistance®**’.

308

309 In summary, our data suggest a progression of transcriptomic alterations along development of
310 belvarafenib resistance. Initial tolerance is associated with activation of EGFR and TGF-3

311  signaling as well as FN1 upregulation. This is followed by MAPK and PI3K pathway reactivation
312  and a shift towards an undifferentiated state, thereby promoting expansion of the resistant cells.
313  OAK's ultra-high throughput and stepwise sequencing capability render it an exceptionally

314  suitable tool for investigating transcriptomic signatures within rare cell populations that lead to
315 drug resistance in cancer.

316

317 Discussion

318

319 OAK combines droplet microfluidics with combinatorial indexing, enabling massive-scale single-
320 cell profiling. Our study underscores its efficacy across diverse experimental designs and

321 modalities, including scRNA-Seq, sample multiplexing, and paired profiling of SnRNA-Seq and
322  snATAC-Seq. Moreover, with minor adjustments in the secondary indexing primers and library
323  preparation, broad compatibility can be expected within the full spectrum of applications offered
324 by the Chromium platform, encompassing immune profiling, cell surface protein detection and
325 CRISPR perturbations. In addition, the experimental feature of distributing a large number of
326 cells into smaller aliquots enables sequencing of each sub-library separately. Such stepwise
327  sequencing allows sequencing of a smaller number of cells for quality assessment prior to

328 embarking on large-scale sequencing. Furthermore, sub-libraries provide the opportunity to
329  sequence the number of cells desired for analysis, while preserving unprocessed ones for future
330 data acquisition. Finally, OAK data processing is compatible with analysis pipelines that have
331 been developed for the prevailing commercial Chromium platform. This aspect facilitates a

332 seamless integration of OAK into researchers' existing data processing workflows.

333

334  OAK presents multiple steps for cost savings. First, overloading a single microfluidic channel
335 enables more efficient utilization of costly reagents, including the barcoding beads. Secondly, in
336 contrast to other combinatorial indexing methods®****'4* OAK avoids a substantial upfront
337 investment in synthesizing plates of indexing oligos or assembling pre-indexed transposome for
338 the ATAC modality - thereby also streamlining benchwork. Thirdly, unlike some overloading
339 methods that identify and discard multi-cell droplets without being able to recover single cells
340 encapsulated within'!"***! OAK is able to resolve single cells in multi-cell droplets, maximizing
341  usage of sequencing data. Ultra-high throughput, extensive versatility for molecular modalities,
342  experimental convenience, and cost efficiency distinguish OAK from alternative technologies in
343  the field.

344
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345  The single-cell sequencing field is undergoing rapid transformation and growth. Recent

346  examples include innovations like 10x Genomics' Single Cell Gene Expression High Throughput
347  (HT) and Flex products, both exhibiting superior throughput compared to the regular Chromium
348  products. However, these products are currently unable to perform paired snRNA-Seq and

349  snATAC-Seq. Nevertheless, it is expected that OAK will be adaptable to these evolving

350 platforms, and thereby leveraging improvements in droplet generation technologies to deliver
351 even higher throughput. In this study, our focus rests primarily on validating OAK on the

352  Chromium platform. We expect OAK to be also compatible with other droplet systems with

353  barcoding primers releasable from microspheres, such as the inDrops system® and Hydrop

354  system®™.

355

356 In summary, we developed a new single-cell multiomic profiling method, OAK, which empowers
357 extensive characterization of complex tissues and cellular systems, while maintaining a

358 streamlined and cost-efficient experimental approach. We anticipate that OAK will readily scale
359  with ongoing advances in droplet generation platforms, and will be flexible to accommodate
360 measurement of additional molecular modalities.

361

362 Methods

363
364  Cell culture and single-cell suspension preparation

365 K562 cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM) with 10% fetal bovine
366  serum (FBS). NIH/3T3 cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) with
367 10% FBS. IPC-298 cells were cultured in RPMI medium with 10% FBS, 21 /mM L-glutamine, and
368 1% penicillin/streptomycin. Cells were incubated at 37°C with 95% Air and 5% CO2. TrypLE™
369  Express (Thermo Fisher Scientific 12604013) was used to detach adherent cells from culture
370 flasks. Harvested cells were washed twice with phosphate-buffered saline (PBS) with 0.04%
371  Bovine albumin Fraction V (Thermo Fisher Scientific 15260037), and resuspended with PBS to
372  achieve single-cell suspensions.

373

374  Culture and staining of normal human bronchial epithelial cells

375

376  Normal human bronchial epithelial cells (Lonza, Epithelix) were differentiated in transwell plates
377 atan air-liquid interface. Cells were dissociated with accutase and then washed twice with

378 PBS/1% Bovine Serum Albumin (BSA). Cells were resuspended in 50 pL PBS/1% BSA and one
379  well of each donor was combined. Nine sample wells were stained with 1 uL of TotalSeq-A

380 antibody, a different hashing antibody was added to each well and incubated at 4°C for 20

381  minutes. Cells were washed 3x in PBS/1% BSA and then all wells were pooled together. Pooled
382  cells were stained with Sytox Green for 5 minutes at room temperature before sorting for live
383  cells on a Sony SH800S into PBS.

384

385 Retinal tissue nuclei preparation

386
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387  Human donor eye collection was followed according to a standardized protocol*. In brief, the
388 isolated peripheral retinal sample was obtained within a 6-hour post-mortem interval, defined as
389 death-to-preservation time, in collaboration with the Utah Lions Eye Bank. The sample was

390 placed in a cryotube and flash frozen in liquid nitrogen prior to storage at -80°C. The sample
391  was dissociated by douncing ten times in a glass homogenizer in 1 mL ice cold NIM4 buffer (9.9
392 mL NIM1, 10 pL 100mM DTT, 1 tablet protease inhibitor, 100 pL 10% Triton X-100, 100 pL

393 RNAselN, 100 pL SUPERasin) and incubated on wet ice for 10 min. Tissue homogenate was
394  centrifuged in at 1500 rpm for 5 min 4°C. Supernatant was removed and 500 L ice-cold wash
395  buffer (400 pL salt buffer [200 pL 1M Tris pH 7.4, 40 uL 5 M NaCl, 40 uL 5 M NaCl, 60 uL 1 M
396  MgCl;, 1.7 mL dH,0], 4 pL 100 mM DTT, 40 puL 10% Tween 20, 800 pL 5% RNAse-free BSA,
397 100 pL RNAse inhibitor, 2.66 mL dH,0) was added to the nuclei and the sample pipet mixed
398 five times. The nuclei were passed through a 40 um filter then counted.

399

400 OAK scRNA-Seq

401

402  Single-cell suspension in 400 pl PBS was transferred to a 2 mL round-bottom tube and fixed by
403 adding 1600 uL chilled methanol drop by drop with gentle stirring. Cells were then incubated at -
404  20°C for 30 min. After fixing, cells were placed on ice for 5 min and then pelleted at 1000G for 5
405 min at 4°C in a pre-cooled swinging bucket centrifuge. Supernatant was removed and the pellet
406  was resuspended with appropriate volume of resuspension buffer to target 30,000 cells/pl or
407  higher. Resuspension buffer is composed of 3X saline sodium citrate (SSC), 1-2% BSA, 0.2
408 U/uL Protector RNAse inhibitor, and 1mM DTT. Cells were counted and a desired number of
409 cells (typically 150,000) were loaded per channel. Other reagents were used for loading

410  according to standard 10x Genomics' Chromium 3' RNA-Seq protocol. After droplet generation,
411 reactions were transferred to microfuge tubes for reverse transcription at 53°C for 45min.

412  Immediately after reverse transcription, the droplets were unpacked by adding the recovery

413 agent as described in the standard protocol. After phase separation, the aqueous phase was
414  transferred to a 2 mL microfuge tube. 800 uL 3X SSC was added to the cell suspension. The
415  cells were spun at 650G at 4°C for 5 min. Supernatant was carefully removed. 1 mL 3X SSC
416  was added to the cell pellet with gentle tapping on the tube to dislodge the pellet. Cells were
417  spun again at 650G at 4°C for 5 min. The pellet was resuspended in 215 pL 3X SSC with gentle
418  pipette mixing. A 10 pl solution was used for cell counting to estimate the number of cells per
419  aliguot. The remaining solution was evenly distributed into multiple aliquots (typically 20 aliquots
420  per 150,000 cells loaded to aim for 4,000 cells per aliquot). The aliquots were immediately

421  stored at -80°C until ready for sequencing library preparation.

422

423  To prepare sequencing libraries, a desired number of aliquots were heated to 80°C for 5 min to
424  aid release of 1st strand cDNA. Dynabeads™ Silane Viral NA kit (ThermoFisher, 37011D) was
425  used to purify 1st strand cDNA according to manufacturer's instructions. The cDNA was eluted
426  in 35 pL of the elution buffer. For cDNA amplification PCR, a TSO recognition primer

427  (AAGCAGTGGTATCAACGCAGAGT) and a primer that adds a secondary index (e.g., with

428  barcode underlined:

429 AATGATACGGCGACCACCGAGATCTACACAACGTGATACACTCTTTCCCTACACGACGCTC
430 TTCCGATCT) were used. For capturing antibody-derived fragments in cell hashing
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431  experiments, a single relevant primer can be added, for example, the HTO primer in the case of
432  TotalSegA hashing. cDNA from multiple aliquots (typically 2-4) can be pooled for sub-library
433  construction by following the standard Chromium protocol, exception in the library PCR where a
434  partial P5 primer (AATGATACGGCGACCACCGAGA) was used alongside an i7 index primer
435 (e.g., with barcode underlined:

436 CAAGCAGAAGACGGCATACGAGATCGCATGTTACGTGACTGGAGTTCAGACGTGT.

437

438  After QC, sub-libraries with unique secondary index (i5) and i7 index were pooled for

439  sequencing on lllumina platforms, with 28 cycles for Read 1, 10 cycles for i7 index, 8 cycles for
440 i5index, and 90 cycles for Read 2. Targeted sequencing depth was 20,000 read pairs per cell.
441  Cell counting at the aliquoting step was used to estimate the number of cells expected to

442  recover.

443

444  OAK paired snRNA-Seq and snATAC-Seq

445

446  Nuclei were centrifuged at 500G in a 2 mL round-bottom microfuge tube. After removing the
447  supernatant, the pellet was resuspended in a fixation solution of 1 mL calcium-free PBS with
448  0.3% formaldehyde. Nuclei in fixation solution were placed on ice for 10 min and then

449  centrifuged for 5 min at 500G at 4°C. After supernatant was removed, 1.5 mL wash buffer was
450 added. The wash buffer was 10 mM Tris-HCI (pH 7.4), 10 mM NaCl, 3 mM MgCI2, 1% BSA,
451 0.1% Tween-20, 1 mM DTT, 1 U/uL RNase inhibitor in nuclease-free water. After 5 min 500G at
452  4°C, the supernatant was removed and the nuclei were resuspended in the appropriate volume
453  of nuclei resuspension buffer to target 2,400 nuclei/uL or more. The nuclei resuspension buffer
454  was 1X Nuclei Buffer (from a 20X stock, 10x Genomics, PN2000207), 1mM DTT, and 1 U/uL
455  RNase inhibitor in nuclease-free water.

456

457  After fixation, we typically transpose 75,000-200,000 nuclei, with an expected cell recovery rate
458  of 38%-42%. This recovery rate may be dependent on sample type and quality. We found that
459  TDE1 enzyme (lllumina Tagment DNA Enzyme and Buffer Small Kit, 20034197) could be used
460 for the additional tagmentation reactions required to support processing large numbers of nuclei.
461 Each transposition reaction was composed of 12,000 nuclei in 5 puL 1X nuclei buffer, 3 yL TDE1
462 enzyme, and 7 L ATAC Buffer B (10x Genomics, PN 2000193). Reactions were incubated at
463  37°C for 1 hr. All transposition reactions were combined to a 2 mL round-bottom microfuge tube
464  and spun at 500 G in a pre-cooled centrifuge at 4°C for 5 min. Supernatant was removed,

465 leaving transposed nuclei in 15 pL of solution which was used for loading 1 channel. Other

466  reagents were used for loading according to standard 10x Genomics' Chromium Next GEM

467  Single Cell Multiome protocol. After GEM generation, barcoding, and quenching according to
468 the standard protocol, 125 UL recovery agent (10x Genomics, PN 220016) was added to break
469 the emulsion. The aqueous layer was carefully transferred to a 2 mL round-bottom microfuge
470  tube. 800 pL 3X SSC was added to the cell suspension. The cells were spun at 650G at 4°C for
471 5 min. Supernatant was carefully removed. 1 mL 3X SSC was added to the cell pellet with

472  gentle tapping on the tube to dislodge the pellet. Cells were spun again at 650G at 4°C for 5
473  min. The pellet was resuspended in 215 puL 3X SSC with gentle pipette mixing. A 10 ul solution
474  was used for cell counting to estimate the number of cells per aliquot. The remaining solution
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475  was evenly distributed into multiple aliquots (typically 20 aliquots per 150,000 cells loaded to
476  aim for 4,000 cells per aliguot). The aliquots were immediately stored at -80°C until ready for
477  sequencing library preparation.

478

479  To prepare sequencing libraries, a desired number of aliquots were heated to 80°C for 5 min to
480  aid release of 1st strand cDNA and ATAC fragments. Dynabeads™ Silane Viral NA kit

481 (ThermoFisher, 37011D) was used to purify 1st strand cDNA and ATAC fragments according to
482  manufacturer's instructions. The resulting products were pre-amplified in a 100 pL reaction

483  using 10 cycles with 4 uL pre-amp primers (10x Genomics PN 20002714) and 50 uL of

484  NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541S). Reactions were cleaned with 1.6X
485  SPRI and eluted in 40 yL EB. 10 pL of the product was used for constructing SnATAC-Seq

486 libraries. One PCR reaction was set up for each aliquot, with 0.6 pyL of 100 uM partial P5 primer,
487 50 uL NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541S), 36.9 yL nuclease-free water
488 and 2.5 pL of 10 yM sample index N (10x Genomics, PN 1000212). The PCR program was

489  98°C 30s, n cycles [98°C 10s, 67°C 30s, 72°C 20s], 72°C 2 min, held at 4°C. N is typically

490 recommended cycles for standard Chromium protocol for the number of cells. Extra cycles can
491 be added if ATAC library yield is low. A double-sided size selection was performed as instructed
492  in the standard Chromium protocol. cDNA library amplification, sequencing library construction
493  and sequencer operation were conducted in the same way as described in OAK scRNA-Seq.
494

495  For snATAC-Seq libraries, sub-libraries with unique i7 index were pooled for sequencing on
496 lllumina platforms. Targeted sequencing depth was 25,000 read pairs per cell, with 50 cycles for
497 Read 1, 8 cycles for i7 index, 24 cycles for i5 index, and 49 cycles for Read 2. Cell counting at
498 the aliquoting step was used to estimate the number of cells expected to recover.

499

500 Sequencing read processing

501

502 lllumina Miseq, Nextseq 2000, and NovaSeq 6000 were used for sequencing. Raw sequencing
503 data was demultiplexed by lllumina's Bcl2Fastq software to resolve reads per OAK sub-libraries.
504  Fastq files for each sub-library were processed with Cell Ranger software v6 (single-cell

505 RNAseq) or Cell Ranger ARC software v2 (paired sSnRNA-Seq and snATAC-Seq) to generate
506 gene and chromatin fragment counts.

507

508 Simulation for cell distribution in droplets

509

510 The percentage of having k cells in a droplet is approximated by p(k, A)=e”(-A\)*A"k/(k)! based on
511  Poisson distribution, where A is the loading rate approximated as the number of loaded cells
512  divided by the number of generated droplets.

513

514  Multiplet rate theoretical estimation

515

516 The expected number of events when more than one cell share the same combinatorial

517  barcodes is N-D+D*[(D-1)/D]*N based on the closed form solution for expected number of

518 collisions in the birthday paradox**, where N is the number of cells loaded and D is the total
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519  number of barcode combinations. We used 100,000 as the number of droplets generated per
520 channel on the Chromium microfluidic chip. Hence D was calculated as 100000*n_aliquot,
521  where n_aliquot is the number of aliquots generated.

522  Species-mixing experiment and multiplet rate estimate

523  In the species-mixing experiment when 150,000 cells (Fig. 1c) were loaded in one channel of
524  the Chromium chip, all cells were unpacked into 12 aliquots. In the experiment when 450,000
525 cells (Fig. 1c) were loaded in one channel, all cells were unpacked into 40 aliquots. In each
526  experiment, one aliquot was processed to generate a sequencing library. Reads were mapped
527  to a hybrid Human-Mouse reference genome that consists of GRCh38 and mm10. Cells were
528 classified into observed multiplets (human+mouse), mouse cells, and human cells by Cell

529  Ranger software v6. Since the input cells consisted of a 1:1 mixture of a mouse and a human
530 cell line, true multiplet rate was estimated as (observed multiplet rate)*2 to include those

531 inferred human+human and mouse+mouse multiplets.

532

533 Hashtag assignment and cell annotation in human bronchial epithelial cells

534

535 The Cell Ranger package was used to determine hashtag assignment rate for the human

536  bronchial epithelial cell experiment using a matching antibody-derived tag and gene expression
537 library for each of four (out of 22) OAK aliquots, and for standard comparison data generated in
538 parallel. We imported and merged the data from the multiple OAK aliquots in Seurat, then

539 integrated the OAK and standard scRNA-Seq data with Harmony*® prior to clustering using the
540  Seurat FindClusters function (resolution = 0.6) and assigning cluster identity (Club/Goblet,

541  Basal, Ciliated, Basal cycling, Neuroendocrine or Unknown) based on gene scores for known
542  markers.

543

544  Retinal paired snRNA-Seq and snATAC-Seq data analysis

545

546  snATAC-Seq and gene expression data from each sub-library were combined using cell ranger-
547  arc aggr with -normalize=none. Gene expression data was first imported into a Seurat (Version
548 4.3.0.1) object for assessment of sSnRNA-Seq quality and comprehensive annotation. Cells with
549  >200 genes and <10000 genes were retained. Cells were clustered, then marker gene scores
550 were used to validate assignment of clusters to the major known cell types. For cones,

551  horizontal, amacrine and bipolar cells, further sub-clustering was performed prior to annotation
552  and propagation into the master Seurat object. The ShRNA-Seq annotations were added as
553 metadata into an ArchR project containing both snATAC-Seq and snRNA-Seq data, based on
554  cell barcodes. For further analysis of snATAC-Seq data, only cells with data passing filters from
555  both modalities were kept.

556

557 In ArchR (Version 1.0.2), hg38 was used as the reference genome and barcodes were filtered
558 for TSS enrichment >4 and nFrags >1000. Peaks of open chromatin were identified by using
559  ArchR tools. First addReproduciblePeakSet was utilized with MACSr, which uses the MACS3
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560 algorithm for peak-calling **, on the snRNA-Seq annotation, excluding chrMT and ‘chrY,

561 followed by addPeakMatrix. Marker peaks were called using this matrix for each cell type with
562  getMarkerFeatures with options bias = c("TSSEnrichment", "log10(nFrags)") and

563 testMethod="wilcoxon". Peaks called were filtered for FDR cutOff of 0.01 and Log2FC >=1. The
564  plotMarkerHeatmap function was used to plot a heatmap of the markers with FDR <= 0.001 and
565 Log2FC >= 1. The plotBrowserTrack function in ArchR was used to plot example chromatin
566 tracks and peaks for each annotated cell group.

567

568  Epiregulon infers regulatory elements to target genes based on correlated gene expression and
569 chromatin accessibility in clustered cells, matching these elements to known transcription factor
570  binding sites from repositories of public ChIP-Seq data. In Epiregulon (Version 1.0.34) we

571  extracted the normalized gene expression counts and peak matrices from the ArchR project,
572  removing unannotated cells, and calculated the peak to gene expression linkages using the LSI
573 snRNA-Seq and snATAC-Seq combined dimensions from ArchR. We annotated the linkages as
574  regulons with known motifs from the human ChIP-Atlas and Encode databases. We further

575  pruned the regulons by setting a correlation test cutoff for for all components (peaks, gene

576  expression and TFs in the same cells) using the following parameters to the pruneRegulon

577  function (test = "chi.sq", prune_value = "pval", regulon_cutoff = 0.05 and defined clusters by the
578  major cell types). We used the addWeights function to add an estimate and multiplier for the
579  strength of regulation, using the parameters tf_re.merge = FALSE, method = "corr". We

580 calculated a score for each regulon using calculateActivity to combine weights with activity of
581 linked genes (mode = "weight", method = "weightedMean", exp_assay = "normalizedCounts”,
582 normalize = FALSE). To find the transcription factors with differential regulation activity

583  associated with each major cell type we used the findDifferential Activity function with

584  parameters, pval.type = "some", direction = "up" and test.type = "t"). We filtered these by

585  significant transcription factors with an FDR cutoff of 0.05 and a logFC cutoff of 0.1. With this list
586 in hand, we added information on the proportion of cells that have expression of the identified
587  transcription factor in the significant group. We filtered the transcription factors to those that
588 have >30% expression in the associated cell type. We took the top ten transcription factors with
589 the highest calculated activity in each cell type and ordered them by the proportion of cells

590 expressing within the cell type. We then used the plotBubble function to plot the top seven

591 transcription factors with the highest calculated activity for each cell type.

592

593 TraCe-seq cell preparation and scRNA-Seq

594

595 TraCe-seq barcode lentivirus was produced, and cells were infected and sorted as described in
596 the previous publication #. After sorting, 1,000 IPC-298 cells were used to form the starting

597  population. This population was expanded for 17 doublings. A subculture was used for the Day
598 0 experiment, while the rest of cells were treated with 10 uM belvarafenib. Medium containing
599  Dbelvarafenib was replenished twice a week. Subcultures of cells were taken for OAK on Day 0
600 and Day 10 as lineage diversity was highest before and early in treatment. For Day 0, 2

601 channels on the Chromium chip were loaded, each with 138,000 cells. 39 aliquots were

602 generated, each contained 3700 cells. 20 aliquots were processed into sub-libraries and

603  sequenced. For Day 10, 3 channels were loaded, each with 180,000 cells. 44 aliquots were
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604  generated, each contained 6000 cells. 12 aliquots were processed into sub-libraries and

605 sequenced. The remaining aliquots were stocked in -80°C for potential future data acquisition.
606  Standard Chromium scRNAseq was performed according to manufacturer's instructions for cells
607  collected on Day 20 and Day 90 of treatment as lineage diversity dropped.

608

609 TraCe-seq single-cell lineage barcode library generation

610

611 OAK indexed cDNA libraries from multiple aliquots can be pooled for the generation of lineage
612  barcode libraries. Typically, 7.5 ul cDNA from each aliquot is used and 2 aliquots were pooled
613 for 1 reaction. A semi-nested PCR strategy was used to ensure the specificity of the resulting
614 lineage barcode library. In the first round of PCR, the partial P5 primer and GPF_F1_outer

615 primer (GTGCACTTAGTAAGGACCCAAACG) were used. In the second round of PCR, the

616  partial P5 primer and an i7 indexed GFP_F2_inner primer (e.g., with index

617  underlined: CAAGCAGAAGACGGCATACGAGATCCGCGGTTGTGACTGGAGTTCAGACGTGT
618 GCTCTTCCGATCTGATAACCCTCGGGATGGATGAACTG) were used.

619

620 TraCe-seq bulk lineage library generation

621

622  Cells from Day O were used to amplify the lineage transcripts. The reverse transcription mix was
623  composed of 5 pL Maxima H minus Reverse Transcriptase (Thermo Fisher Scientific EP0753),
624 20 pL 5X RT buffer, 5 uL dNTP (10 mM each), 1.5 pL TraCe_libABC_end_RT primer

625 (GTGGATCCACCGAACGCAACGCAC, 100 uM), 1.5 pL Protector RNase Inhibitor (Sigma PN
626  3335399001), 5 ul methanol fixed cells, and 62 ul water. The reaction was incubated at 50°C for
627 30 min, followed by 85°C for 5 min, and held at 4°C briefly. The product was subsequently

628 amplified by PCR with P5 indexed primer (e.g., with index underlined:

629 AATGATACGGCGACCACCGAGATCTACACGATATCGACGAACGCAACGCACGCACACT)
630 andi7 indexed GFP_F2_inner primer. The SPRISelect beads were used to perform a 0.6X-1.6X
631  double sided size selection for the PCR product.

632

633  Drug response curve generation

634

635 Cells were seeded at 2,000 cells per well in 96-well plate, and were treated with belvarafenib 24
636  hours after seeding. Cells were treated with a 9-point titration (1:3) and DMSO control using the
637 HP D300 drug dispenser. Cell growth was assessed using CellTiter-Glo Luminescent Cell

638  Viability Assays (Promega G7570), and luminescence was read by a 2104 EnVision Multilabel
639 Plate Reader (PerkinElmer) five days after treatment. All cell viability data was collected and
640 calculated for 4 replicates per condition. Data from the DMSO control was set to 100%.

641  Nonlinear regression curves were generated by GraphPad Prism to fit the viability data.

642

643 TraCe-seq data analysis

644

645 Cells were assigned to a lineage when the UMI count for one lineage barcode was at least two-
646  fold higher than the other ones detected in the given cell. Single-cell gene expression matrix
647  was analyzed with Scanpy®. Gene set enrichment for MSigDB's hallmark sets* was performed


https://doi.org/10.1101/2024.01.23.576918
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576918; this version posted January 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

648  with decoupleR*. MAPK, EGFR, PI3K, and TGF-B pathway scores were generated with

649 PROGENy". P values were calculated using the Mann-Whitney-Wilcoxon test (two-sided) with
650 Bonferroni adjustment. Genes representing differentiation and dedifferentiation states were
651 based on an established melanoma four-stage differentiation model*®. The melanocytic,

652 transitory-melanocytic, transitory, and neural crest-like-transitory signatures were grouped as
653 the differentiation signature. The undifferentiated, undifferentiated-neural crest-like, and neural
654  crest-like signatures were grouped as the de-differentiation signature. The signature scores
655  were generated by Scanpy's tl.score_genes function.

656

657  Schematics used in this manuscript were created with BioRender.com.

658

659 Data and code availability

660

661  Sequencing data and code to be made available upon request.
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692  Figure 1: Principle and performance of OAK in single cell profiling of multiple molecular
693 modalities.

694

695 a, A schematic of the OAK's scRNA-Seq workflow. During the first indexing step, mMRNA

696  molecules hybridize with poly-dT containing bead oligos within droplets in fixed cells or nuclei.
697  Following reverse transcription and emulsion break, fixed cells or nuclei are pooled and re-
698  distributed in individual aliquots where the second index is integrated via a polymerase chain
699 reaction (PCR). TSO: template switch oligo. UMI: unique molecular identifier. pR1: primer

700 binding sequence for TrueSeq Read 1.

701 b, Simulated representation of the percentage of droplets that contain zero (blue), one

702  (magenta), and more than one (yellow) cell, as a function of varying numbers of cells loaded per
703  microfluidic chip channel. Pink and green highlighted areas indicate the range of cell loading in
704  regular 10x Genomics' Chromium scRNA-Seq and in OAK respectively.

705 ¢, Droplet images and results of overloading during OAK with different numbers of cells per
706  channel. Scale bars are 75 pm.

707  d, Number of genes detected in K562 cells as a function of the total number of reads per cell.
708 Each data point represents one cell. Green: 150,000 cells loaded, same as in c. Yellow:

709 450,000 cells loaded, same as in c.

710 e, Number of genes detected in K562 cells with regular Chromium NextGEM 3' RNA-Seq, OAK
711  scRNA-Seq with 150,000 cells loaded, and scifi-RNA-seq**. Boxplots' center lines represent
712  medians. Box limits denote Q1 (lower) and Q3 (higher) quartiles, and whiskers extend to either
713  1.5times the interquartile range (IQR) or to the last data points if they are within these limits.
714  f, Percentage of human bronchial epithelial cells assigned to each sample hashtag (n=9) by the
715  standard Chromium method and OAK for the same sample pool. Each dot corresponds to a
716  different sample hashtag.

717 g, Number of genes detected in K562 cells by joint sShRNA-Seq and snATAC-Seq using OAK
718 (red), and standard Chromium (dark green), as a function of the total number of reads per cell.
719 Each data pointis a cell.

720  h, Total number of ATAC fragments detected in K562 cells by joint ShDRNA-Seq and snATAC-
721  Seq using OAK (red) and standard Chromium (dark green), as a function of the total number of
722  reads per cell. Each data point is a cell.

723

724  Figure 2. OAK paired snRNA-Seq and snATAC-Seq on the human peripheral retina.

725

726  a, Uniform Manifold Approximation and Projection (UMAP) of annotated shRNA-Seq data with
727  table of number and percentage of each cell type. The color of the dot for each cell group

728 indicates the position in the UMAP.

729 b, Heatmap displaying detected OCRs in each cell type with FDR <= 0.01 & Log2FC >= 1 using
730  Wilcoxon test for the cell type against a null cell group.

731 ¢, Chromatin tracks in major cell types for the genomic region (chrX:70253304-70288305)

732  spanning the ARR3 gene, a known cone cell marker, with a Ridge plot (expression values are
733  normalized and log transformed) indicating corresponding gene expression of ARR3 from

734  snRNA-Seq data.

735 d, Chromatin tracks in bipolar cell types for the genomic region (chr20:54455596-54505597)
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736  including the TSS of the DOKS5 gene, a known marker in DB5 bipolar cells, with a Ridge plot
737  (expression values are normalized and log transformed) indicating corresponding gene

738  expression of DOK5 from snRNA-Seq data.

739 e, Up to seven expressed significant transcription factors by weighted gene activity for each
740  major cell type, as identified by Epiregulon. Transcription factors identified in multiple cell groups
741  are plotted only once. These include transcription factors associated with neuronal cell types:
742  AHR (Horizontal, RGC, Bipolar), BACH1 (RGC, Bipolar) and photoreceptors: CDR73 (Rod,
743  Cone).

744

745  Figure 3: OAK single-cell lineage tracing and transcriptome profiling for melanoma cells
746  during belvarafenib treatment.

747

748  a, Diagram of the lineage tracing experiment. IPC-298 cells labeled with lineage barcodes were
749  sampled for scRNA-Seq on Days 0, 10, 20, and 90. Belvarafenib treatment commenced

750 following the Day O subculture collection.

751 Db, Fold change in cell count for each lineage at each time point. Cell counts from Day O served
752  as the baseline. Enriched (yellow) includes lineages with over tenfold increase from Day 0 to
753  Day 20, except the resistant lineage. Resistant (enriched) refers to the lineage with over tenfold
754  increase from Day 0 to Day 20, and resistant on Day 90. Stable refers to lineages categorized
755  as neither depleted nor enriched.

756 ¢, Volcano plot depicting differentially expressed genes identified on Day 20 between depleted
757  and enriched lineages. Genes with adjusted p values lower than 1e-8 and log2 fold changes
758 beyond £0.5 are labeled.

759 d, Violin plots for FN1 expression level (normalized and log-transformed) at each time point in
760  cells within depleted and enriched lineages.

761 e, Fold changes on Day 0 and Day 20 between the depleted and the enriched lineages. Each
762  data point represents a gene with an adjusted p value <0.05 on Day 20, with specific genes
763 labeled the same as in d. Green dashed lines denote +1.5-fold changes.

764  f, Scores for PROGENYy pathways at each time point for cells within the resistant lineage. ns:
765  adjusted p value > 0.05; ****: adjust p value <=1e-04. Boxplots' center lines represent medians.
766  Box limits denote Q1 (lower) and Q3 (higher) quartiles, and whiskers extend to either 1.5 times
767 IQR or to the last data points if they are within these limits.

768 g, De-differentiation and differentiation scores for cells within the resistant lineage. Data points
769 are colored based on time points.

770

771 Extended Data Figure 1: OAK assay performance and compatibility with multiple

772  molecular modalities.

773

774  a, Collision rate corresponding to each number of total aliquots generated per channel, with
775 150,000 cells (green) or 450,000 cells (yellow) loaded per channel.

776 b, Number of genes detected in NIH/3T3 cells as a function of the total number of reads. Each
777  data point represents one cell. 150,000 cells (green) and 450,000 cells (yellow) were loaded
778  respectively, same as in Fig. 1c.
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779 c-d, Total number of mouse UMIs and human UMIs detected in each combinatorial index, when
780 150,000 cells (in ¢) or 450,000 cells (in d) were loaded per channel. Combinatorial indexes were
781 classified as human cells (red), mouse cells (blue), or observed multiplets (green).

782 e, Percentage of genes expressed in K562 cells detected by the standard Chromium method
783  that were recovered by OAK in each of the expression percentile bins set by expression levels.
784  f, Percentage of reads mapping to the mitochondrial genome in K562 data collected by the

785  standard Chromium 3' RNA-Seq and OAK's scRNA-Seq.

786 g, Percentage of reads mapping to intronic regions in K562 data collected by the standard

787  Chromium 3' RNA-Seq method and OAK's scRNA-Seq.

788 h, Number of UMIs per gene in K562 cells detected by the standard Chromium 3' RNA-Seq and
789  OAK's scRNA-Seq. Each data point is a gene.

790 i, UMAPs for in vitro differentiated bronchial airway cells profiled by OAK and standard

791  Chromium method. For comparative visualization, data from both methods was integrated with
792  Harmony® and the clusters were annotated using markers for major cell types.

793 ], Percentage of cells for each cell type annotated within the OAK and the standard Chromium
794  dataset. Basal (cycl.): Basal cycling cells. NE: Neuroendocrine cells.

795 Kk, Schematic diagram of the experimental procedure for OAK's multiome (joint ShRNA-Seq and
796  snATAC-Seq). Building on Fig 1.a, cells or nuclei are fixed and then transposed to generate
797  ATAC fragments before droplet generation. First indexing occurs in each droplet by hybridizing
798  the poly-dT containing bead oligos with mRNA molecules, as well as by ligating spacer

799  sequence containing bead oligos with transposed chromatin fragments through a bridge oligo.
800 Second indexing occurs in each aliquot by PCR with a pair of barcoded primers for the cDNA
801 and a pair of barcoded primers for the chromatin fragments.

802 |, Percentage of fragments in K562 data that overlap transcription start sites (TSS). Chromium:
803 standard Chromium multiome (joint ShARNA-Seq and snATAC-Seq); OAK_FA: OAK-multiome
804  (joint snRNA-Seq and snATAC-Seq) with formaldehyde as fixative; OAK_MeOH: OAK-multiome
805  with methanol as fixative.

806

807 Extended Data Figure 2: OAK data analysis of paired snRNA-Seq and snATAC-Seq on
808 human peripheral retina.

809

810 a, Number of genes detected in human retinal cells as a function of the total number of reads
811  per cell. Each data point represents one cell. The dotted line represents the mean value.

812 b, The snATAC-Seq fragment size distribution for all cells for 535.36 million fragments.

813 ¢, Density plot with histogram of TSS enrichment and number of unique fragments for each cell
814  in snATAC-Seq data. Vertical line represents the mean number of fragments per cell and the
815 horizontal dotted line represents the mean TSS score per cell.

816 d, UMAP of unannotated RNA clustering.

817 e, UMAPs of snATAC-Seq data showing cluster assignment (left) and transfer of SnRNA-Seq
818  annotations (right) based on cell barcodes.

819 f, Heatmap of snATAC-Seq peaks clustered for each bipolar cell type.

820 g, Number of sSnATAC-Seq peaks called for each cell type in relation to annotated intronic,

821  promoter, exonic and distal gene regions.

822
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Extended Data Figure 3: OAK enables lineage tracing, identifying temporal gene
signatures within a resistant melanoma cell lineage.

a, Correlation of lineage abundance between measurements by the number of cells in OAK data
and by the number of reads in bulk sequencing data on Day 0. Each data point represents a
lineage.

b, Spearman correlation coefficients between lineage abundance measured by OAK and by
bulk sequencing against varying numbers of cells sequenced for Day 0. Each data point's cells
were generated by randomly downsampling from the total number of sequenced cells (74,000).
Each downsampling was iterated 10 times. Boxplots' center lines represent medians. Box limits
denote Q1 (lower) and Q3 (higher) quartiles, and whiskers extend to either 1.5 times the IQR or
to the last data points if they are within these limits.

¢, Cellular viability of parental cells and the belvarafenib-resistant clone treated by increasing
concentrations of belvarafenib. Data are mean + s.e.m, with 4 replicates per concentration per
group of cells.

d, The cumulative number of cells detected within the resistant lineage on Day 0 when a varying
number of sub-libraries were sequenced.

e, The cumulative percentage of lineages recovered on Day 0 when a different subset of sub-
libraries (X-axis, bottom) were sequenced. The total number of cells sequenced in the
corresponding number of sub-libraries are indicated on the top.

f, Heatmap for gene set scores at each time point for cells within the resistant lineage. At each
time point, hallmark gene sets with mean score changes >0.3 and adjusted p values < 0.01
were displayed.
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