

Single-domain antibodies reveal unique borreliacidal epitopes on the Lyme disease vaccine antigen, Outer surface protein A (OspA)

David J Vance^{1,2,*}, Saiful Basir², Carol Lyn Piazza¹, Graham Willsey¹, H M Emranul Haque³,
Jacque M Tremblay⁴, Michael J Rudolph⁵, Beatrice Muriuki⁶, Lisa A Cavacini⁶, David D Weis³,
†, Charles B Shoemaker⁴, and Nicholas J Mantis^{1,2,*}

¹Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany NY, ²University at Albany, Department of Biomedical Sciences, Albany NY,

³Department of Chemistry, The University of Kansas, Lawrence, KS, ⁴Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton MA, ⁵New York Structural Biology Center, New York, NY, ⁶University of Massachusetts Chan School of Medicine, Worcester, MA

*To whom correspondence should be addressed:

David J. Vance, david.vance@health.ny.gov

Nicholas J. Mantis, nicholas.mantis@health.ny.gov

[†], present address: Bristol Myers Squibb, Lawrenceville, NJ

Running Title: Nanobodies targeting the Lyme vaccine antigen, OspA

30

31

ABSTRACT

32 Camelid-derived, single-domain antibodies (V_HHs) have proven to be extremely powerful tools
33 in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this
34 report, we generated a phage-displayed V_HH library directed against the candidate Lyme disease
35 vaccine antigen, Outer surface protein A (OspA). Two alpacas were immunized with
36 recombinant OspA serotype 1 (ST1) from *Borrelia burgdorferi* sensu stricto strain B31, in
37 combination with the canine vaccine RECOMBITEK[®] Lyme containing lipidated OspA. The
38 phage library was subjected to two rounds of affinity enrichment (“panning”) against
39 recombinant OspA, yielding 21 unique V_HHs within two epitope bins, as determined through
40 competition ELISAs with a panel of OspA-specific human monoclonal antibodies. Epitope
41 refinement was conducted by hydrogen exchange-mass spectrometry (HX-MS). Six of the
42 monovalent V_HHs were expressed as human IgG1-Fc fusion proteins and shown to have
43 functional properties associated with protective human monoclonal antibodies, including *B.*
44 *burgdorferi* agglutination, outer membrane damage, and complement-dependent borreliacidal
45 activity. The V_HHs displayed unique reactivity profiles with the seven OspA serotypes associated
46 with *B. burgdorferi* genospecies in the United States and Europe consistent with there being
47 conserved epitopes across OspA serotypes that should be considered when designing and
48 evaluating multivalent Lyme disease vaccines.

49

50

51

52 **INTRODUCTION**

53 Lyme disease is the most common vector-borne infection in the United States, with an
54 estimated 450,000 cases per year (1). The primary etiologic agent of Lyme disease in the US is
55 the spirochetal bacterium, *Borrelia burgdorferi* sensu stricto (herein referred to as simply *B.*
56 *burgdorferi*) with other genospecies responsible for disease in Europe and Asia. The spirochete
57 is transmitted to humans by the black legged tick, *Ixodes scapularis* in the eastern US and *Ixodes*
58 *pacificus* in the western part of the country. During the course a blood meal, *B. burgdorferi*
59 migrates from the tick midgut, where it normally resides, to the salivary glands where it is
60 deposited into the skin of a host. In humans, the spirochete proliferates at the site of the tick bite,
61 typically resulting in an expanding skin lesion commonly referred to as a bull's eye rash or
62 erythema migrans (2, 3). In the absence of antibiotic intervention, *B. burgdorferi* disseminates to
63 peripheral tissues, organs, large joints, and central nervous system, potentially resulting in severe
64 complications including neuroborreliosis, carditis and/or Lyme arthritis weeks, months or even
65 years later (2, 4).

66 A myriad of Lyme disease vaccine candidates in various stages of preclinical and clinical
67 development are focused on a single *B. burgdorferi* antigen known as outer surface protein A
68 (**OspA**) (5-14). OspA is a ~31 kDa lipoprotein expressed by *B. burgdorferi* during habitation of
69 the tick midgut, then down regulated during transmission or upon entry into a vertebrate host
70 (15). Decades ago, it was recognized that OspA vaccination or passive transfer of OspA antisera
71 prevented *B. burgdorferi* infection in mouse and guinea pig models of tick-mediated
72 transmission (16-20). Subsequent studies demonstrated that OspA antibodies inhibit one or more
73 steps in spirochete migration from tick-to-mammal, although the exact mechanism(s) by which
74 antibodies interrupt this process have not been fully elucidated (21-23). Nonetheless,
75 recombinant OspA vaccines proved highly efficacious in Phase III clinical trials and one
76 (LYMErix™) was licensed in the United States from 1998 to 2002 before being discontinued
77 (14, 24, 25).

78 Despite ongoing investments in next-generation OspA vaccines, there remains a
79 considerable gap in our understanding of the regions (epitopes) on OspA responsible for eliciting
80 protective immunity to *B. burgdorferi* (26, 27). This was not necessarily an impediment with the
81 first generation OspA vaccines like LYMErix™ because they were based on the single OspA

82 serotype (ST1) that predominates in the United States. Globally, however, there are at least seven
83 OspA serotypes associated with Lyme disease-causing *B. burgdorferi* genospecies: *B.*
84 *burgdorferi* (ST 1), *B. afzelii* (ST 2), *B. garinii* (ST 3, 5, 6, 7) and *B. bavariensis* (ST 4) (28, 29).
85 Concerns about the lack of serotype cross protection has prompted the engineering of hexavalent
86 and heptavalent vaccines consisting of recombinant full length and truncated OspA derivatives
87 (10, 11, 30, 31). An alternative strategy would be to identify common or even conserved epitopes
88 across the two or more of the OspA serotypes and use this information in the rational design of
89 novel vaccine antigens (32). With this goal in mind, we recently generated an epitope map of
90 OspA ST 1 using a collection of borreliacidal and transmission blocking human and mouse
91 monoclonal antibodies (MAbs) revealing four distinct epitope bins or clusters (32, 33). Structural
92 analysis of a subset of MAbs in complex with OspA ST1 has revealed detailed information about
93 the nature of a select number of protective epitopes within these bins (26, 27, 34, 35).

94 Camelid-derived, single-domain antibodies, technically known as V_H Hs, have emerged as
95 tools to define the antigenic landscape of immunologically heterogeneous surface proteins,
96 including notoriously polymorphic influenza virus hemagglutinin and the SARS-CoV-2 RBD
97 (36-38). V_H Hs derive from heavy chain-only antibodies (HCabs) that exist with the Camelidae
98 family, including llamas and alpacas (39). HCabs consist of two heavy chains (homodimers)
99 without light chain partners. The terminal V_H domain or V_H H confer antigen binding activity
100 with properties and affinities not dissimilar to conventional IgG (40). V_H Hs are small, stable and
101 amenable to expression on the surface of bacteriophage M13 (“phage display”), thereby allowing
102 antibody panning and affinity enrichment against targets of interest. In this report, we generated
103 a phage-displayed V_H H library directed against OspA ST1 and identified 21 unique V_H Hs within
104 two epitope bins. Six of the monovalent V_H Hs were expressed as human IgG1-Fc fusion proteins
105 and been shown to have functional properties associated with protective human monoclonal
106 antibodies, including *B. burgdorferi* agglutination, outer membrane damage, and complement-
107 dependent borreliacidal activity. Finally, the V_H Hs displayed unique reactivity profiles with the
108 seven OspA serotypes associated with *B. burgdorferi* genospecies in the United States and
109 Europe consistent with there being conserved epitopes across OspA serotypes that should be
110 considered when designing and evaluating multivalent Lyme disease vaccines.

111

112 **RESULTS**

113 **Isolation of distinct families of OspA-specific V_HHs.** A phage-displayed V_HH library was
114 constructed from two alpacas that had been immunized with recombinant OspA (rOspA)
115 serotype 1 (ST1) from *B. burgdorferi* strain B31 in combination with the canine vaccine
116 RECOMBITEK® Lyme, which contains lipidated OspA. The resulting phage library was
117 subjected to 2 rounds of panning against rOspA, as described in the Materials and Methods. In
118 total, 74 phages were isolated and subjected to DNA sequencing, revealing 21 unique clones
119 (**Table 1**). Thirteen of the 21 clones were assigned to five different families based on
120 complementarity determining region 3 (CDR3) sequence similarities. As an example, the
121 alignment of the four members of the L8H8 family, along with the inferred germline V_H and J_H
122 genes, is shown in **Figure S1**. The remaining 8 V_HHs were designated as “orphans” because they
123 had no significant amino acid similarity to other V_HHs. Sequence analysis further suggests that
124 20 of 21 V_HHs likely derived from V_H 3-3 germline, with the exception (L8H7) derived from V_H
125 41 (41). From a structural standpoint, V_H 3-3-derived antibodies tend to have CDR3 elements
126 that are pinned back towards the core of the antibody (42). The V_HHs were cloned into a
127 pET32b-based vector and expressed as E-tagged thioredoxin fusion proteins in *E. coli* Rosetta
128 Gami 2 cells. All 21 V_HHs bound to rOspA by ELISA with EC₅₀ values that ranged from 1.8 nM
129 to >1 μM (**Table 1**; **Figure 1**). V_HH dissociation constants (K_D) ranged from 0.28 to 457 nM, as
130 determined by biolayer interferometry (**Table 1**; **Figure S2-S3**).

131 **V_HHs cluster within two epitope bins on OspA.** Four spatially distinct epitope bins (0-
132 3) have been described along the length of OspA ST1 (33). Bin 0 constitutes a region of the N-
133 terminus of OspA that is normally buried in the bacterial outer membrane and only accessible
134 when OspA is released from the cell surface (26, 43). Bins 1 and 2 encompass OspA’s central β-
135 sheet (strands 8-13), while Bin 3 is situated within OspA’s C-terminus (β-strands 16-21) and
136 projects outward from the bacterial surface. MAbs capable of blocking *B. burgdorferi* tick to
137 mouse transmission have been identified in bins 1, 2 and 3 (32, 33).

138 To epitope map the new panel of antibodies, V_HHs representative of the different clonal
139 families were subjected to competitive BLI with MAbs from bin 1 (857-2), bin 2 (212-55), and
140 bin 3 (LA-2) (**Figure S4**). Of the 11 representative V_HHs tested, four (L8H8, L8D3, L8H7,
141 L8G12) were assigned to bin 1, based on competition with 857-2, and seven were assigned to bin
142 3, based on competition with LA-2 (**Table 1**; **Figure 2**). The seven V_HHs in bin 3 were subjected
143 to further competition with MAbs 3-24 and 319-44, which recognize epitopes flanking LA-2.

144 Specifically, LA-2 targets the three exposed loops between β -strands 16-17, 18-19, and 20-21, as
145 well as part of the C-terminal α -helix [**PDB ID** 1FJ1]. 3-24 targets β -strands 16-18, while 319-44
146 recognizes β -strands 19, 20, and 21, along with the loops between β -strands 16-17, 18-19, and
147 20-21 [**PDB ID** 7T25]. The seven V_H Hs competed with 3-24, but not 319-44, thereby
148 positioning their epitopes in proximity to β -strands 16-18 (pink shading; **Figure 2B**).

149 To better resolve antibody-OspA interactions within Bin 1, five V_H Hs were subjected to
150 epitope mapping by hydrogen exchange (HX)-mass spectrometry (MS) analysis using protocols
151 optimized for OspA (33, 44). HX-MS is an increasingly powerful tool for epitope mapping in
152 which the HX reaction is conducted in solution and captures antibody-induced changes in
153 antigen backbone flexibility; strong reductions in HX are interpreted as points of antigen-
154 antibody contact (45). As predicted, HX-MS indicated that all five V_H Hs in bin 1 protected
155 regions within OspA's central β -sheet (33). Specifically, L8H8 and two of its family members,
156 L8A4 and L8D10, protected nearly identical OspA peptides corresponding to β -strands 10-14
157 (**Table 2; Figure 3**). The “orphan” V_H H, L8G12, also protected β -strands 11-14, while L8D3 (a
158 member of the L8A10 family) protected β -strands 11-13 (**Table 2; Figure 3**). These results
159 demonstrate that β -strands 10-14 constitute a V_H H “hotspot” within bin 1.

160 **Functional activity associated with OspA-specific monovalent V_H Hs and bivalent**
161 **V_H H-IgG constructs.** A hallmark of OspA antibodies, and certain monovalent Fabs, is their
162 capacity to induce agglutination of *B. burgdorferi* in culture (46-48). We have postulated that
163 agglutination explains, at least in part, how OspA antibodies entrap *B. burgdorferi* within the tick
164 midgut and block transmission to vertebrate hosts (46). We employed a quantitative flow
165 cytometry-based assay to examine whether any of the 21 monovalent OspA V_H Hs induced
166 agglutination of live *B. burgdorferi* B31 (46). The handful of V_H Hs with dissociation constants
167 ≥ 1000 nM did not promote spirochete agglutination (**Table 1**). The remaining V_H Hs displayed a
168 range of agglutinating activities, although with no clear relationship between agglutination and
169 epitope specificity (i.e., bin 1 or bin 3) or agglutination and OspA binding affinity (K_D). For
170 example, L8D9 (bin 3) and L8G12 (bin 1) each have sub-nanomolar binding affinities for OspA,
171 but neither induced notable agglutination of *B. burgdorferi* (**Table 1**). L8D3 (bin 1) and L8C3
172 (bin 3) have comparable affinities for OspA (10.4 vs 8.82 nM), but L8D3 is a poor agglutinator
173 while L8C3 was a good agglutinator (0.28% vs 12.5%).

174 To investigate the impact of antibody avidity on spirochete agglutination, three V_HHs
175 each from bin 1 and bin 3 were grafted onto human IgG1 Fc elements and expressed as bivalent
176 molecules in Expi293 cells (49). The six V_HH-IgG fusion proteins recognized native OspA on
177 the surface of live *B. burgdorferi* B31 to levels similar to LA-2, as demonstrated by flow
178 cytometry (**Table 3**; **Figure 4**). The V_HH-IgGs also had *B. burgdorferi* agglutinating activities
179 that were significantly greater than their monovalent V_HH counterparts (**Table 4**). For example,
180 V_HH L8D3 (bin 1) had <1% agglutinating activity as a monomer but >17% activity as a V_HH-
181 IgG Fc fusion protein (**Table 3**; **Figure 4**). L8G12 (bin 1) and L8D9 (bin 3) also demonstrated
182 >10-fold increase in agglutinating activity when expressed as an IgG fusion protein. In all
183 instances, antibody-mediated spirochete agglutination correlated with a corresponding increase
184 in *B. burgdorferi* outer membrane permeability, as reflected by elevated levels of propidium
185 iodine (PI) uptake (**Table 3**; **Figure 4**).

186 The ability of OspA antibodies to elicit borreliacidal activity is considered a correlate of
187 protection in Lyme disease (50). Therefore, we next assessed the OspA-specific V_HHs and V_HH-
188 IgG Fc fusion proteins for the ability to promote complement-mediated killing of a fluorescent *B.*
189 *burgdorferi* B31 reporter strain (33). As expected, none of the monovalent V_HHs were
190 borreliacidal (**data not shown**). However, all six V_HH-IgG Fc fusion proteins were borreliacidal.
191 The three bin 1 V_HH-IgGs (L8D3, L8G12, L8H8) were tested side-by-side with 857-2, while the
192 three bin 3 V_HH-IgGs (L8A9, L8C3, L8D9) were compared to LA-2. The six V_HH-IgGs tested
193 had EC₅₀ values between 1.25 and 2.5 nM (**Table 3**; **Figure 5**). By comparison, 857-2 and LA-2
194 had EC₅₀ values of 1.25 and ~0.75 nM, respectively (**Figure 5**). Collectively, these results
195 demonstrate the ability of alpaca-derived V_HHs to recognize native OspA on the surface of live
196 *B. burgdorferi* and promote spirochete agglutination, outer membrane damage, and complement-
197 mediated borreliacidal activity.

198 **Cross-reactivity of V_HHs with OspA serotypes ST1-7 reveal additional levels of**
199 **epitope diversity.** There are seven OspA serotypes (ST1-7) within *B. burgdorferi sensu latu*
200 strains associated with disease (**Figure 6A**) (14, 29). The serotypes were originally defined
201 based on reactivity profiles with a panel of OspA MAbs. LA-2 (bin 3), for example, recognizes
202 OspA ST1 but not ST 2-7, while 857-2 (bin 1) is predicted to react with all 7 serotypes (32). To
203 assess the specificity of the alpaca-derived V_HHs, the three bin 1 V_HH-IgGs (L8D3, L8G12,
204 L8H8) and three bin 3 V_HH-IgGs (L8A9, L8C3, L8D9) were evaluated in an OspA ST 1-7

205 indirect ELISA (**Figure 6B**). As predicted, 857-2 reacted with all seven OspA serotypes, while
206 LA-2 reacted with only ST-1. The V_HHs displayed unique reactivity patterns relative to 857-2
207 and LA-2. Within bin 1, for example, L8D3 recognized ST1 exclusively, while L8G12 and L8H8
208 recognized ST 1, 2, 4 and 5. Within bin 3, L8D9 reacted exclusively with serotype 1 (like LA-2),
209 but L8A9 and L8C3 recognized ST1 plus serotype 6 (L8A9) or serotype 4 (L8C3). These results
210 reveal a greater degree of B cell epitope diversity on OspA than previously recognized and have
211 important implications for multivalent vaccine design.

212

213 **DISCUSSION**

214 Single-domain antibodies (V_HHs) have emerged as invaluable tools and reagents in the
215 development of next-generation diagnostics, therapeutics, and vaccines for a range of infectious
216 diseases (40). With this in mind, we sought to generate a diverse collection of V_HHs against the
217 Lyme disease vaccine antigen, OspA, as a means to better define the conserved and variable
218 epitopes on the different OspA serotypes associated with borreliacidal activity. We constructed
219 an immune V_HH-phage display library from two OspA immunized alpacas and subjected the
220 library to rounds of affinity enrichment on recombinant OspA serotype 1 (ST1). The screen
221 yielded 21 unique OspA-specific V_HHs with a range of binding affinities, epitope specificities,
222 serotype reactivities, and functional activities *in vitro*. A subset of V_HHs were expressed as
223 human IgG1-Fc fusion proteins and shown to promote complement-independent *B. burgdorferi*
224 agglutination, as well as complement-dependent borreliacidal activity. In addition to expanding
225 our understanding of functional B cell epitopes on OspA, we expect that this unique collection of
226 V_HHs will have applications for pre-clinical and clinical Lyme disease vaccine development.

227 The 21 V_HHs described in this study have epitope reactivity profiles that are both similar
228 and different from previously reported OspA-specific mouse and human MAbs (17, 19, 26-29,
229 33, 34, 43, 51). On the one hand, the V_HHs fell within two previously described epitope bins
230 based on competition with human MAb 857-2 (bin 1) and mouse MAb LA-2 (bin 3). On the
231 other hand, the V_HHs displayed unique reactivity profiles within those respective bins. For
232 example, within bin 1, 857-2 recognized all seven OspA serotypes, while L8G12 and L8H8 were
233 reactive with serotypes 1, 2, 4 and 5; L8D3 was only reactive with serotype 1. This result is
234 consistent with pioneering work by Wilske and colleagues demonstrating that there are

235 conserved, partially conserved, and serotype-specific epitopes within OspA's central β -sheet
236 (strand 8-14) (29).

237 Competition assays with three different bin 3 MAbs (LA-2, 319-44, 3-24) enabled us to
238 localize epitopes recognized by seven different $V_{H}H$ s to OspA β -strands 16-18 (residues 195-
239 227). However, even within this relatively restricted region of OspA, there was notable epitope
240 diversity, as exemplified by differential serotype reactivities of L8A9 and L8C3 as compared to
241 LA-2. Specifically, LA-2 recognized serotype 1 exclusively, while L8A9 and L8C3 were
242 reactive with serotypes 1, 4, and 6. This observation challenges the notion that the C-terminal
243 region of OspA elicits only serotype-specific antibody responses (28, 52).

244 From the standpoint of $V_{H}H$ clonal diversity, we identified five distinct antibody families
245 that collectively accounted for more than half the 21 $V_{H}H$ s. The L8H8 family is notable for
246 having the most members (four) recovered in our current screening protocol, as well as the $V_{H}H$
247 with the highest affinity for OspA (L8H8; 0.28 nM). As expected, the three L8H8 family
248 members we subjected to epitope mapping by HX-MS had virtually identical protection profiles.
249 However, within the family, the dissociation constants ranged by at least an order of magnitude
250 from 0.28 nM (L8H8) to >2 nM (L8E1), likely due to variations in CDR1 and CDR2 interactions
251 with OspA. This novel collection of antibodies with identical epitope specificities but varying
252 binding affinities can be used as a toolkit to investigate the open question of the relative
253 contribution of binding affinity in OspA antibody effector function. As a case in point, studies
254 are planned to evaluate the L8H8 family of $V_{H}H$ s as well as $V_{H}H$ -IgGs for the ability to block
255 transmission of *B. burgdorferi* in a mouse model of tick-mediated infection, with the expectation
256 that there will be a direct relationship between binding affinity and protection. Indeed, as shown
257 in Table 1, the contribution of binding affinity on the ability of the L8H8 family of $V_{H}H$ s to
258 promote spirochete agglutination is already somewhat evident.

259 While the $V_{H}H$ s and $V_{H}H$ -IgGs described in this study have yet to be tested for *B.*
260 *burgdorferi* transmission blocking activity in a mouse model, we would predict, based on *in vitro*
261 activities, that at least a subset will be effective *in vivo*. Most significant in our minds was the
262 observation that a subset of monovalent $V_{H}H$ s and all six bivalent $V_{H}H$ -IgGs could promote
263 spirochete agglutination and induce alterations in outer membrane permeability. We have argued
264 that such activities, should they occur in the context of the tick midgut, would impair the ability
265 of spirochetes to migrate across the midgut epithelium and onto the salivary glands (46). The

266 V_{H} -IgGs (but not the monovalent V_{H} s themselves) were also extremely effective at
267 promoting complement-mediated killing of *B. burgdorferi*. While the role of complement-
268 mediated killing in transmission inhibition within the tick remains an open question, OspA
269 antibody-mediated complement-dependent killing *in vitro* does correlate with protection *in vivo*
270 (50). Thus, we predict that the six V_{H} -IgGs described in Table 3 will likely prove effective *in*
271 *vivo*.

272 We envision at least two potential applications of the V_{H} s to Lyme disease vaccine
273 development. First is their use in “equivalency” assays. For example, in the pivotal clinical trial
274 associated with the LYMErix vaccine, a competitive ELISA with LA-2 was used as a surrogate
275 measure of protective antibody titers limited to OspA serotype 1 (24). Similar, albeit more
276 sophisticated, competition assays using a panel of V_{H} s directed against known protective
277 epitopes on OspA serotypes 1-7 could be employed for the evaluation of future multivalent
278 Lyme disease vaccines. Second, the OspA V_{H} s could be employed in identity testing, epitope
279 integrity analysis, and release assays associated with vaccine manufacturing and mandated by
280 regulatory agencies. Identity testing will be especially relevant when evaluating recombinant or
281 nucleic acid-based hexavalent and even heptavalent Lyme disease vaccines (6). We have also
282 described other antibody-based applications for vaccine development that may be pertinent to
283 Lyme disease (53).

284

285 Materials and Methods

286 **Alpaca immunization and V_{H} phage display library preparation.** Two alpacas (*Vicugna*
287 *pacos*) were immunized four times, each about three weeks apart, with various combinations of
288 recombinant OspA serotype 1 from *B. burgdorferi* strain B31 [UniProt P0CL66] and the
289 veterinary vaccine RECOMBITEK® Lyme (Boehringer Ingelheim). The first immunization
290 consisted of a full dose of RECOMBITEK® only. The next vaccination the alpacas received a
291 half dose of RECOMBITEK® and 200 µg of rOspA. The final two vaccinations consisted of a
292 half dose of RECOMBITEK® and 100 µg of rOspA. Following the final immunization, both
293 animals had OspA antibody endpoint titers > 500,000. Five days following the final
294 immunization, lymphocytes were isolated from whole blood and used to generate a V_{H} M13
295 phage-display library, as described (54, 55). The library passed all QC testing and was estimated
296 to contain $\sim 1.3 \times 10^7$ independent clones.

297

298 **Recombinant OspA.** Recombinant OspA (non-lipidated) ST1 from B31 [NCBI reference
299 WP_010890378.1] was expressed in *E.coli* and purified as described (33, 34). Purified,
300 recombinant OspA serotypes 2-7 were kindly provided by Dr. Meredith Finn (Moderna, Inc).

301

302 **V_HH Identification and Expression.** The V_HH M13 phage-display library was subjected to two
303 rounds of affinity enrichment (panning) against immobilized recombinant OspA on Nunc-
304 ImmunotubesTM (Thermo Fisher Scientific, Waltham, MA) using protocols described elsewhere
305 (56). The first panning was low stringency (10 ug/mL coat), after which phages were eluted with
306 glycine HCl [pH 2.2] and then amplified in *E. coli*. The phages were then subjected to a second
307 round of screening at high stringency (1 ug/mL coat). After the second round of panning, 95
308 clones were chosen at random and grown overnight at 37° C in a 96 well plate. Replica cultures
309 in 96 well plates were grown to log phase, then induced overnight with IPTG (3 mM). Resulting
310 supernatants were assayed by ELISA for reactivity with rOspA. 74 clones were found to bind to
311 OspA, and all were then DNA sequenced. 21 V_HHs, belonging to 12 different sequence families,
312 were found to be sufficiently unique to characterize further. The DNA coding region for these
313 V_HHs was restriction digested out of the phagemid vector and inserted into a pET-32b vector for
314 expression as a recombinant thioredoxin fusion protein containing a His-Tag in the linker region,
315 and an E-tag for detection at the C-terminus. V_HHs were transformed into and expressed in
316 Rosetta Gami 2 (DE3) pLacI competent *E. coli* (Millipore Sigma), induced with IPTG (1 mM),
317 and purified in a nickel column. Concentration was determined by OD₂₈₀ and the recombinant
318 protein extinction coefficient.

319

320 **ELISA.** OspA was coated overnight in 96-well immunoplates at 1 ug/mL in 100 uL of PBS. The
321 following morning, the wells were blocked for 2 hours with 2% goat serum in PBS with 0.1%
322 Tween 20 (PBST). During blocking, V_HHs were 5-fold diluted in PBS in a separate 96-well non-
323 binding plate, starting at 10 uM. The V_HHs were then applied to the OspA coated plate for 1 hour
324 and allowed to bind. After washing the wells with PBST, HRP-conjugated anti-E-tag secondary
325 antibody (Bethyl Labs, Waltham MA) was added to the well for 1 hour to detect bound V_HHs.
326 After a final wash with PBST, 100 uL SureBlue TMB (SeraCare) was added to the wells for
327 about 10 minutes to visualize binding. The colorometric reaction was quenched with 1M

328 phosphoric acid, and absorbance at 450 nm was measured on a SpectraMax iD3 plate reader
329 (Molecular Biosystems) using SoftMax Pro version 7.1 software.

330

331 **Biolayer Interferometry (BLI).** BLI experiments were carried out using an Octet RED96e
332 Biolayer Interferometer (Sartorius AG, Gottingen, Germany) using the Data Acquisition 12.0
333 software. Raw sensor data was loaded into the Data Analysis HT 12.0 software for analysis.
334 Biotinylated OspA (5 μ g/mL) in PBS containing 2% w/v BSA was captured onto streptavidin
335 biosensors (#18-5019, Sartorius) for 5 min. After 5 minutes of baseline in buffer, sensors were
336 then exposed to a 2-fold dilution series of V_{HH} , ranging from 200 to 3.125 nM, for 5 minutes to
337 allow association. The sensors were then immediately dipped into wells containing buffer alone
338 for 30 minutes to allow dissociation of the V_{HH} . An eighth sensor was also loaded with
339 Biotinylated OspA, but was not exposed to V_{HH} s, and was thus used as a background drift
340 control, and subtracted from the other sensor data. After each V_{HH} , the OspA-coated sensors
341 were completely regenerated by a 30 second cycle consisting of three repeats of 5 sec in 0.2 M
342 glycine (pH 2.2) and 5 sec in buffer. Sensor data was fit to a 1:1 binding model.

343

344 For competition experiments biotinylated OspA (5 μ g/mL) in buffer was captured onto
345 streptavidin biosensors for 5 minutes. After 3 minutes of baseline in buffer, sensors were then
346 exposed to a primary mAb at a concentration of 15 μ g/mL in buffer for 10 minutes to permit the
347 association signal to saturate. The sensors were then immediately dipped into wells containing
348 competitor V_{HH} (1 μ M) for 10 min. After each primary-secondary pairing, the sensors were
349 regenerated by a 30 second cycle consisting of three repeats of 5 sec in 0.2 M glycine (pH 2.2)
350 and 5 sec in buffer. The total binding signal (in nm) obtained for the secondary V_{HH} , from the
351 end of the primary mAb, was then recorded for each specific primary-secondary pair. The data
352 for each V_{HH} was normalized to the binding signal for that V_{HH} vs mAb 212-55, which no V_{HH}
353 competed with, then plotted as a heat map using GraphPad Prism 9.

354

355 **HX-MS.** Differential hydrogen exchange-mass spectrometry (HX-MS) was used to identify
356 regions of OspA exhibiting altered amide hydrogen exchange kinetics in the presence of an
357 excess of each V_{HH} using methods fully described previously (33, 44). In brief, OspA alone or in
358 the presence of molar excess V_{HH} was diluted ten-fold with 20 mM phosphate, 100 mM NaCl,

359 pH 7.40 buffer containing deuterium oxide. After various intervals of exchange ranging between
360 20 s and 24 hr, the exchange reaction was rapidly quenched by acidification. HX-MS
361 measurements were completed either in triplicate at five exchange times (referred to as
362 “complete”) or single measurements at three exchange times (referred to as “screening”). The
363 quenched samples were rapidly digested with pepsin to yield deuterium-labeled OspA peptides.
364 The deuterium incorporation was measured by LC-MS. Differences in hydrogen exchange were
365 quantified as the mean exchange by bound OspA minus mean exchange by free OspA. Since
366 peptides of different lengths contain different numbers of amide hydrogens, the results were
367 normalized based on the amount of deuteration in maximally deuterated control samples. The
368 resulting quantity, $\Delta\overline{H\bar{X}}$, represents this mean fractional difference; negative values indicate
369 slower hydrogen exchange by bound OspA.

370

371 **Surface binding, membrane integrity, and agglutination analysis of *B. burgdorferi*.** *B.*
372 *burgdorferi* strain B31 (ATCC) was cultured in BSK-II media (minus gelatin) at 33°C with 2.5%
373 CO₂ (57). Cultures at mid-log phase were diluted 1/10 in medium and grown at 23°C to early-log
374 phase to induce high levels of OspA expression (46). Bacteria were collected by centrifugation
375 (3,300 x g), washed with PBS, resuspended in BSK II medium (minus phenol red), and allowed
376 to recover at room temperature for 30 min. A total of 5x10⁶ cells in 50 µl were incubated with an
377 OspA-specific VHH or VHH-IgG Fc at a final concentration of 10 µg/ml at 37 °C for 1 h.
378 Incubation with 10 µg/ml of an unrelated ricin-specific VHH (V8B3) or IgG (PB10) were
379 included as negative controls, while chimeric LA-2 IgG1 was run as a positive control (33).
380 Reaction volumes were increased with the addition of 450 µl of BSK II medium (minus phenol
381 red) and incubated at 37°C for 30 min with either a 1/500 dilution of PE-labeled anti-6xHis tag
382 mouse MAb (Biolegend, San Diego, CA) to detect VHHs or Alexa Fluor 647-labeled goat anti-
383 human IgG (H+L) (Invitrogen) to detect VHH-IgG Fcs. All mixtures were transferred into a 5
384 mL round bottom polystyrene test tube (Corning) with 250 µl of PBS. For VHH-IgG Fc
385 reactions, 0.75 µM propidium iodide (PI) (Sigma-Aldrich) was added immediately before
386 analysis to measure membrane integrity. All samples were analyzed on a BD FACSCalibur flow
387 cytometer (BD Biosciences). Bacteria were gated on forward scatter (FSC) and side scatter
388 (SSC) to assess aggregate size and granularity, and 20,000 events were counted. Alexa Fluor 647
389 labeling (FL4), PE labeling (FL3) or PI staining (FL3), and agglutination (FSC/SSC) were

390 measured using CellQuest Pro (BD Biosciences). Agglutination was calculated as the sum of
391 events in the upper-left, upper-right, and lower-right quadrants relative to total events (46).

392

393 **Borreliacidal assays.** V_HH-IgG Fcs were assessed for complement-dependent borreliacidal
394 activity via fluorescence-based serum bactericidal assay essentially as described (33). Slight
395 modifications to the previous assay include the mCherry open reading frame (ORF) within the
396 reporter plasmid (pGW163) was replaced with a codon-optimized variant of mScarlet-I
397 engineered for efficient expression in *Borrelia* species (G. Willsey, N. Mantis, *manuscript in*
398 *preparation*). The resulting plasmid, pGW189, was subsequently transformed into *B. burgdorferi*
399 B31-5A4 following established protocols (58). The resulting IPTG-inducible mScarlet-I viability
400 reporter strain was designated GGW979.

401 For each assay, glycerol stocks of GGW979 were thawed at RT and transferred to sterile 50 ml
402 centrifuge tubes containing 45 ml of BSK-II medium supplemented with 40 µg/ml of
403 gentamicin. The cultures were then incubated at 33°C without agitation for three days. On the
404 day of the assay, spirochetes were collected via centrifugation, the culture media was removed,
405 and the cells were then resuspended at 3 x10⁷ spirochetes per ml in phenol-free BSKII medium
406 supplemented with gentamicin (40 µg/mL) and 20 % human complement sera (SigmaAldrich).
407 The spirochetes were then mixed 1:1 v/v with serial dilutions of each V_HH-Fc IgG1 antibody that
408 had been prepared in phenol-free BSKII supplemented with gentamicin (40 µg/mL) and 20 %
409 human complement. Following sample addition, each reaction contained and 5x10⁶ spirochetes
410 per well and 40 nM and 0.325 nM of each antibody. 857-2 and LA-2 IgG1 MAbs were included
411 in each assay to serve as positive controls (33). Untreated/non-induced and untreated/IPTG-
412 induced controls were similarly included to determine baseline and peak fluorescence.

413

414 Following sample addition, assay plates were incubated overnight at 37 °C with 5 % CO₂. After
415 18-20 h, 1 mM IPTG was added to each well (minus the untreated control) to induce expression
416 of the fluorescent reporter in surviving spirochetes. Assay plates were then returned to the
417 incubator. Forty-eight hours later, Median Fluorescence Intensity (MFI) was recorded three
418 times per plate at 569 nm (Ex)/611 nm (Em) using a SpectraMax iD3 microplate reader
419 (Molecular Biosystems) and SoftMax Pro version 7.1 software. The resulting values were
420 averaged, and the data was then normalized using the untreated (-IPTG) and untreated (+IPTG)

421 controls to set baseline (0) and peak (100) MFI. Following normalization, the data was analyzed
422 using GraphPad Prism Version 9.0. Data reported encompasses three separate experiments, with
423 EC₅₀ values determined by the lowest dilution of antibody resulting in 50% reduction in MFI
424 relative to normalized controls.

425

426 **Author Contributions**

427 DJV screened the V_HH phage display library, sequenced the V_HHs, conducted Octet and ST1-7
428 ELISA experiments, and wrote and edited the manuscript; SB cloned and expressed VHHs in
429 *E.coli*, and performed OspA ELISA experiments; CLP conducted *B. burgdorferi* flow cytometry
430 experiments; GGW conducted *B. burgdorferi* borreliacidal assays; JMT and CBS constructed the
431 V_HH phage display library; HMEH and DDW conducted HX-MS and data analysis; MJR
432 expressed and purified all recombinant proteins; LC expressed and purified the VHH-Fc
433 antibodies; NJM was responsible for project leadership, funding acquisition, and writing the
434 manuscript.

435

436 **ACKNOWLEDGEMENTS**

437 The authors gratefully acknowledge Elizabeth Cavosie (Wadsworth Center) for administrative
438 assistance and grants management. We thank the Wadsworth Center's Immunology Core for
439 flow cytometry assistance and the Cell culture and media core for BSK II medium. We extend
440 our special thanks to Drs. Meredith Finn and Chris Dold (Moderna, Inc, Cambridge, MA) for
441 providing recombinant OspA serotypes 1-7. This work was supported by the National Institute of
442 Allergy and Infectious Disease (NIAID), National Institutes of Health, Department of Health and
443 Human Services, Contract No. 75N93019C00040 (PI/PD Mantis).

444

445 **REFERENCES**

446

- 447 1. Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF. 2021. Estimating the
448 Frequency of Lyme Disease Diagnoses, United States, 2010-2018. *Emerg Infect Dis*
449 27:616-619.
- 450 2. Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ,
451 Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C,
452 Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B,
453 Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR,

454 Baumgarth N, Fallon BA. 2021. Recent Progress in Lyme Disease and Remaining
455 Challenges. *Front Med (Lausanne)* 8:666554.

456 3. Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JW, Li X, Mead PS. 2016.
457 Lyme borreliosis. *Nat Rev Dis Primers* 2:16090.

458 4. Lochhead RB, Strle K, Arvikar SL, Weis JJ, Steere AC. 2021. Lyme arthritis: linking
459 infection, inflammation and autoimmunity. *Nat Rev Rheumatol* 17:449-461.

460 5. Pine M, Arora G, Hart TM, Bettini E, Gaudette BT, Muramatsu H, Tombacz I,
461 Kambayashi T, Tam YK, Brisson D, Allman D, Locci M, Weissman D, Fikrig E, Pardi
462 N. 2023. Development of an mRNA-lipid nanoparticle vaccine against Lyme disease.
463 *Mol Ther* 31:2702-2714.

464 6. Bezay N, Hochreiter R, Kadlecak V, Wressnigg N, Larcher-Senn J, Klingler A,
465 Dubischar K, Eder-Lingelbach S, Leroux-Roels I, Leroux-Roels G, Bender W. 2023.
466 Safety and immunogenicity of a novel multivalent OspA-based vaccine candidate against
467 Lyme borreliosis: a randomised, phase 1 study in healthy adults. *Lancet Infect Dis*
468 23:1186-1196.

469 7. Federizon J, Lin YP, Lovell JF. 2019. Antigen Engineering Approaches for Lyme
470 Disease Vaccines. *Bioconjug Chem* 30:1259-1272.

471 8. Federizon J, Frye A, Huang WC, Hart TM, He X, Beltran C, Marcinkiewicz AL,
472 Mainprize IL, Wills MKB, Lin YP, Lovell JF. 2020. Immunogenicity of the Lyme
473 disease antigen OspA, particleized by cobalt porphyrin-phospholipid liposomes. *Vaccine*
474 38:942-950.

475 9. Klouwens MJ, Salverda MLM, Trentelman JJ, Ersoz JI, Wagemakers A, Gerritzen MJH,
476 van der Ley PA, Hovius JW. 2021. Vaccination with meningococcal outer membrane
477 vesicles carrying *Borrelia* OspA protects against experimental Lyme borreliosis. *Vaccine*
478 39:2561-2567.

479 10. Kamp HD, Swanson KA, Wei RR, Dhal PK, Dharanipragada R, Kern A, Sharma B, Sima
480 R, Hajdusek O, Hu LT, Wei CJ, Nabel GJ. 2020. Design of a broadly reactive Lyme
481 disease vaccine. *NPJ Vaccines* 5:33.

482 11. Comstedt P, Schüller W, Meinke A, Lundberg U. 2017. The novel Lyme borreliosis
483 vaccine VLA15 shows broad protection against *Borrelia* species expressing six different
484 OspA serotypes. *PLoS One* 12:e0184357.

485 12. Dattwyler RJ, Gomes-Solecki M. 2022. The year that shaped the outcome of the OspA
486 vaccine for human Lyme disease. *NPJ Vaccines* 7:10.

487 13. O'Bier NS, Hatke AL, Camire AC, Marconi RT. 2021. Human and Veterinary Vaccines
488 for Lyme Disease. *Curr Issues Mol Biol* 42:191-222.

489 14. Wormser GP. 2022. A brief history of OspA vaccines including their impact on
490 diagnostic testing for Lyme disease. *Diagn Microbiol Infect Dis* 102:115572.

491 15. Srivastava SY, de Silva AM. 2008. Reciprocal expression of ospA and ospC in single
492 cells of *Borrelia burgdorferi*. *J Bacteriol* 190:3429-33.

493 16. Fikrig E, Barthold SW, Kantor FS, Flavell RA. 1990. Protection of mice against the
494 Lyme disease agent by immunizing with recombinant OspA. *Science* 250:553-6.

495 17. Schaible UE, Kramer MD, Eichmann K, Modolell M, Museteanu C, Simon MM. 1990.
496 Monoclonal antibodies specific for the outer surface protein A (OspA) of *Borrelia*
497 *burgdorferi* prevent Lyme borreliosis in severe combined immunodeficiency (scid) mice.
498 *Proc Natl Acad Sci U S A* 87:3768-72.

499 18. Simon MM, Schaible UE, Kramer MD, Eckerskorn C, Museteau C, Müller-Hermelink
500 HK, Wallich R. 1991. Recombinant outer surface protein a from *Borrelia burgdorferi*
501 induces antibodies protective against spirochetal infection in mice. *J Infect Dis* 164:123-
502 32.

503 19. Bockenstedt LK, Fikrig E, Barthold SW, Kantor FS, Flavell RA. 1993. Inability of
504 truncated recombinant Osp A proteins to elicit protective immunity to *Borrelia*
505 *burgdorferi* in mice. *J Immunol* 151:900-6.

506 20. de Silva AM, Telford SR, 3rd, Brunet LR, Barthold SW, Fikrig E. 1996. *Borrelia*
507 *burgdorferi* OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. *J*
508 *Exp Med* 183:271-5.

509 21. Fikrig E, Telford SR, 3rd, Barthold SW, Kantor FS, Spielman A, Flavell RA. 1992.
510 Elimination of *Borrelia burgdorferi* from vector ticks feeding on OspA-immunized mice.
511 *Proc Natl Acad Sci U S A* 89:5418-21.

512 22. de Silva AM, Fish D, Burkot TR, Zhang Y, Fikrig E. 1997. OspA antibodies inhibit the
513 acquisition of *Borrelia burgdorferi* by *Ixodes* ticks. *Infect Immun* 65:3146-50.

514 23. Rathinavelu S, Broadwater A, de Silva AM. 2003. Does host complement kill *Borrelia*
515 *burgdorferi* within ticks? *Infect Immun* 71:822-9.

516 24. Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, Nowakowski J,
517 Schmid CH, Laukamp S, Buscarino C, Krause DS. 1998. Vaccination against Lyme
518 disease with recombinant *Borrelia burgdorferi* outer-surface lipoprotein A with adjuvant.
519 *Lyme Disease Vaccine Study Group. N Engl J Med* 339:209-15.

520 25. Sigal LH, Zahradnik JM, Lavin P, Patella SJ, Bryant G, Haselby R, Hilton E, Kunkel M,
521 Adler-Klein D, Doherty T, Evans J, Molloy PJ, Seidner AL, Sabetta JR, Simon HJ,
522 Klempner MS, Mays J, Marks D, Malawista SE. 1998. A vaccine consisting of
523 recombinant *Borrelia burgdorferi* outer-surface protein A to prevent Lyme disease.
524 *Recombinant Outer-Surface Protein A Lyme Disease Vaccine Study Consortium. N Engl*
525 *J Med* 339:216-22.

526 26. Li H, Dunn JJ, Luft BJ, Lawson CL. 1997. Crystal structure of Lyme disease antigen
527 outer surface protein A complexed with an Fab. *Proc Natl Acad Sci U S A* 94:3584-9.

528 27. Ding W, Huang X, Yang X, Dunn JJ, Luft BJ, Koide S, Lawson CL. 2000. Structural
529 identification of a key protective B-cell epitope in Lyme disease antigen OspA. *J Mol*
530 *Biol* 302:1153-64.

531 28. Wilske B, Luft B, Schubach WH, Zumstein G, Jauris S, Preac-Mursic V, Kramer MD.
532 1992. Molecular analysis of the outer surface protein A (OspA) of *Borrelia burgdorferi*
533 for conserved and variable antibody binding domains. *Med Microbiol Immunol* 181:191-
534 207.

535 29. Wilske B, Preac-Mursic V, Gobel UB, Graf B, Jauris S, Soutschek E, Schwab E,
536 Zumstein G. 1993. An OspA serotyping system for *Borrelia burgdorferi* based on
537 reactivity with monoclonal antibodies and OspA sequence analysis. *J Clin Microbiol*
538 31:340-50.

539 30. Comstedt P, Hanner M, Schuler W, Meinke A, Lundberg U. 2014. Design and
540 development of a novel vaccine for protection against Lyme borreliosis. *PLoS One*
541 9:e113294.

542 31. Comstedt P, Hanner M, Schuler W, Meinke A, Schlegl R, Lundberg U. 2015.
543 Characterization and optimization of a novel vaccine for protection against Lyme
544 borreliosis. *Vaccine* 33:5982-8.

545 32. Wang Y, Kern A, Boatright NK, Schiller ZA, Sadowski A, Ejemel M, Souders CA,
546 Reimann KA, Hu L, Thomas WD, Jr., Klempner MS. 2016. Pre-exposure Prophylaxis
547 With OspA-Specific Human Monoclonal Antibodies Protects Mice Against Tick
548 Transmission of Lyme Disease Spirochetes. *J Infect Dis* 214:205-11.

549 33. Haque HME, Ejemel M, Vance DJ, Willsey G, Rudolph MJ, Cavacini LA, Wang Y,
550 Mantis NJ, Weis DD. 2022. Human B Cell Epitope Map of the Lyme Disease Vaccine
551 Antigen, OspA. *ACS Infect Dis* doi:10.1021/acsinfecdis.2c00346.

552 34. Schiller ZA, Rudolph MJ, Toomey JR, Ejemel M, LaRochelle A, Davis SA, Lambert HS,
553 Kern A, Tardo AC, Souders CA, Peterson E, Cannon RD, Ganesa C, Fazio F, Mantis NJ,
554 Cavacini LA, Sullivan-Bolyai J, Hu LT, Embers ME, Klempner MS, Wang Y. 2021.
555 Blocking *Borrelia burgdorferi* transmission from infected ticks to nonhuman primates
556 with a human monoclonal antibody. *J Clin Invest* 131.

557 35. Rudolph MJ, Davis SA, Haque HME, Ejemel M, Cavacini LA, Vance DJ, Willsey GG,
558 Piazza CL, Weis DD, Wang Y, Mantis NJ. 2023. Structure of a transmission blocking
559 antibody in complex with Outer surface protein A from the Lyme disease spirochete,
560 *Borrelia burgdorferi*. *Proteins* doi:10.1002/prot.26549.

561 36. Laursen NS, Friesen RHE, Zhu X, Jongeneelen M, Blokland S, Vermond J, van Eijgen
562 A, Tang C, van Diepen H, Obmolova G, van der Neut Kolfschoten M, Zuidgeest D,
563 Straetemans R, Hoffman RMB, Nieusma T, Pallesen J, Turner HL, Bernard SM, Ward
564 AB, Luo J, Poon LLM, Tretiakova AP, Wilson JM, Limberis MP, Vogels R,
565 Brandenburg B, Kolkman JA, Wilson IA. 2018. Universal protection against influenza
566 infection by a multidomain antibody to influenza hemagglutinin. *Science* 362:598-602.

567 37. Czajka TF, Vance DJ, Mantis NJ. 2021. Slaying SARS-CoV-2 One (Single-domain)
568 Antibody at a Time. *Trends Microbiol* 29:195-203.

569 38. Jiang J, Boughter CT, Ahmad J, Natarajan K, Boyd LF, Meier-Schellersheim M,
570 Margulies DH. 2023. SARS-CoV-2 antibodies recognize 23 distinct epitopic sites on the
571 receptor binding domain. *Commun Biol* 6:953.

572 39. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB,
573 Bendahman N, Hamers R. 1993. Naturally occurring antibodies devoid of light chains.
574 *Nature* 363:446-8.

575 40. Muyldermans S. 2021. Applications of Nanobodies. *Annu Rev Anim Biosci* 9:401-421.

576 41. Achour I, Cavelier P, Tichit M, Bouchier C, Lafaye P, Rougeon F. 2008. Tetrameric and
577 homodimeric camelid IgGs originate from the same IgH locus. *J Immunol* 181:2001-9.

578 42. Rudolph MJ, Czajka TF, Davis SA, Thi Nguyen CM, Li XP, Turner NE, Vance DJ,
579 Mantis NJ. 2020. Intracellular Neutralization of Ricin Toxin by Single-domain
580 Antibodies Targeting the Active Site. *J Mol Biol* 432:1109-1125.

581 43. Schubach WH, Mudri S, Dattwyler RJ, Luft BJ. 1991. Mapping antibody-binding
582 domains of the major outer surface membrane protein (OspA) of *Borrelia burgdorferi*.
583 *Infect Immun* 59:1911-5.

584 44. Haque HME, Mantis NJ, Weis DD. 2023. High-Throughput Epitope Mapping by
585 Hydrogen Exchange-Mass Spectrometry. *J Am Soc Mass Spectrom* 34:123-127.

586 45. Jethva PN, Gross ML. 2023. Hydrogen Deuterium Exchange and other Mass
587 Spectrometry-based Approaches for Epitope Mapping. *Front Anal Sci* 3.

588 46. Frye AM, Ejemel M, Cavacini L, Wang Y, Rudolph MJ, Song R, Mantis NJ. 2022.
589 Agglutination of *Borrelia burgdorferi* by Transmission-Blocking OspA Monoclonal

590 Antibodies and Monovalent Fab Fragments. *Infect Immun* doi:10.1128/iai.00306-
591 22:e0030622.

592 47. Gipson CL, de Silva AM. 2005. Interactions of OspA monoclonal antibody C3.78 with
593 *Borrelia burgdorferi* within ticks. *Infect Immun* 73:1644-7.

594 48. Sadziene A, Thompson PA, Barbour AG. 1993. In vitro inhibition of *Borrelia burgdorferi*
595 growth by antibodies. *J Infect Dis* 167:165-72.

596 49. Amcheslavsky A, Wallace AL, Ejemel M, Li Q, McMahon CT, Stoppato M, Giuntini S,
597 Schiller ZA, Pondish JR, Toomey JR, Schneider RM, Meisinger J, Heukers R, Kruse AC,
598 Barry EM, Pierce BG, Klempner MS, Cavacini LA, Wang Y. 2021. Anti-CfaE
599 nanobodies provide broad cross-protection against major pathogenic enterotoxigenic
600 *Escherichia coli* strains, with implications for vaccine design. *Sci Rep* 11:2751.

601 50. Lovrich SD, Callister SM, Schmitz JL, Alder JD, Schell RF. 1991. Borreliacidal activity
602 of sera from hamsters infected with the Lyme disease spirochete. *Infect Immun* 59:2522-
603 8.

604 51. Jiang W, Luft BJ, Munoz P, Dattwyler RJ, Gorevic PD. 1990. Cross-antigenicity between
605 the major surface proteins (ospA and ospB) and other proteins of *Borrelia burgdorferi*. *J*
606 *Immunol* 144:284-9.

607 52. Koide S, Yang X, Huang X, Dunn JJ, Luft BJ. 2005. Structure-based design of a second-
608 generation Lyme disease vaccine based on a C-terminal fragment of *Borrelia burgdorferi*
609 OspA. *J Mol Biol* 350:290-9.

610 53. Doering J, Van Slyke G, Donini O, Mantis NJ. 2022. Estimating Vaccine Potency Using
611 Antibody-Based Competition Assays. *Methods Mol Biol* 2410:693-705.

612 54. Mukherjee J, Tremblay JM, Leysath CE, Ofori K, Baldwin K, Feng X, Bedenice D,
613 Webb RP, Wright PM, Smith LA, Tzipori S, Shoemaker CB. 2012. A novel strategy for
614 development of recombinant antitoxin therapeutics tested in a mouse botulism model.
615 *PLoS One* 7:e29941.

616 55. Tremblay JM, Kuo CL, Abeijon C, Sepulveda J, Oyler G, Hu X, Jin MM, Shoemaker
617 CB. 2010. Camelid single domain antibodies (VHHs) as neuronal cell intrabody binding
618 agents and inhibitors of *Clostridium botulinum* neurotoxin (BoNT) proteases. *Toxicon*
619 56:990-8.

620 56. Vance DJ, Tremblay JM, Mantis NJ, Shoemaker CB. 2013. Stepwise engineering of
621 heterodimeric single domain camelid VHH antibodies that passively protect mice from
622 ricin toxin. *J Biol Chem* 288:36538-47.

623 57. Zuckert WR. 2007. Laboratory maintenance of *Borrelia burgdorferi*. *Curr Protoc*
624 *Microbiol* Chapter 12:Unit 12C 1.

625 58. Samuels DS, Drecktrah D, Hall LS. 2018. Genetic Transformation and Complementation.
626 *Methods Mol Biol* 1690:183-200.

627

628

629

630 Tables

631

Table 1. Anti-OspA V_HHs, families, epitope bins, binding affinities and agglutination activities

V _H H	Family	Bin	EC ₅₀ (nM)	K _D (nM)	k _{on} (M ⁻¹ s ⁻¹)	k _{off} (s ⁻¹)	% Aggl
L8A1		3	>1000	N/A			-0.03
L8A4	L8H8	1	5.5	1.09	3.71E+05	4.03E-04	7.43
L8A9	L8A9	3	65.2	54.6	6.28E+04	3.43E-03	7.74 +/- 0.93
L8A10	L8A10	1	>1000	137	4.78E+04	6.54E-03	0.04
L8A12		3	850	99.7	1.53E+05	1.52E-02	1.6
L8B3			>1000	N/A			0.06
L8C2	L8A10	1	>1000	N/A			0.01
L8C3		3	24.8	8.82	2.28E+05	2.01E-03	12.59 +/- 2.33
L8D3	L8A10	1	35.4	10.4	1.14E+05	1.18E-03	0.28 +/- 0.49
L8D9		3	7.1	0.73	2.42E+04	1.76E-05	0.65 +/- 0.50
L8D10	L8H8	1	5.8	2.07	1.84E+05	3.82E-04	7.55
L8E1	L8H8	1	979	N/A			0.47
L8E3	L8C3	3	918	457	9.34E+04	4.27E-02	6.75
L8E9	L8A1	3	237	153	3.01E+04	4.60E-03	3.80
L8F2		3	381	152	4.74E+04	7.19E-03	4.33
L8F11			15.5	N/A			3.50
L8G1		3	133	16.4	1.98E+05	3.25E-03	7.56
L8G3	L8A9	3	220	50	6.63E+04	3.32E-03	6.21
L8G12		1	855	0.94	1.32E+05	1.24E-04	-0.03 +/- 0.05
L8H7		1	820	82.2	4.02E+04	3.30E-03	-0.02
L8H8	L8H8	1	1.8	0.28	1.54E+05	4.29E-05	10.12

N/A, no binding to rOspA detected by BLI; **Bold** indicates V_HHs expressed as Fc IgG fusion proteins (**Table 3**).

632

633

634

635

Table 2. OspA V_HH epitope mapping by HX-MS

V _H H	peptides ^a	2 ^o struct.	Molar ratio ^b	HX time-course ^c
L8A4 ^d	129-145, 148-157, 159, 161-171, 174, 175, 177	β-strands 10-14	4:1	screening
L8D10 ^d	129-145, 148-157, 159, 161-171, 174, 175, 177	β-strands 10-14	4:1	screening
L8H8 ^d	129-145, 148-157, 159, 161-171, 174, 175, 177	β-strands 10-14	4:1	complete
L8D3	148-157, 159, 161-171	β-strands 11-13	8:1	screening
L8G12	148-157, 159, 161-171, 174, 175, 177	β-strands 11-14	4:1	screening

^a, strongly protected peptides listed as OspA residue numbers (see supplementary information); ^b, molar ratio V_HH:OspA; ^c, as described in (44); ^d, derive from the same clonal family.

636

637

638

Table 3. Functional activity associated with monovalent (V_HH) and bivalent (VHH-IgG1) OspA antibodies

V _H H	Bin	VHH-IgG1 Fc					
		% Agg ^a	% Agg ^a	% Binding ^b	MFI ^b	% PI ^c	CDK (nM) ^d
L8D3	1	0.28 +/- 0.49	17.33 +/- 6.11	98.51 +/- 0.76	6894.89 +/- 425.76	2.23 +/- 0.47	2.5
L8G12	1	-0.03 +/- 0.05	18.02 +/- 6.48	98.23 +/- 1.05	6168.56 +/- 664.89	3.27 +/- 0.44	1.25
L8H8	1	10.12	20.70 +/- 4.88	96.26 +/- 0.92	5338.44 +/- 745.55	4.53 +/- 0.16	2.5
L8A9	3	7.74 +/- 0.93	21.99 +/- 2.28	97.39 +/- 1.75	5374.96 +/- 85.12	4.18 +/- 0.38	1.25
L8C3	3	12.59 +/- 2.33	25.25 +/- 1.25	96.57 +/- 2.38	7141.05 +/- 78.21	5.52 +/- 0.98	1.25
L8D9	3	0.65 +/- 0.50	16.47 +/- 4.57	98.46 +/- 0.80	4802.12 +/- 359.14	2.37 +/- 0.19	1.25

^a, Agglutination (%) with background subtracted, n=3 (except L8H8, n=1); ^b, *B. burgdorferi* surface binding, n=2; ^c, Propidium iodide positive cells, n=2; ^d, Antibody-mediated, complement-dependent killing (CDK) assay are shown (EC₅₀) n=3. +/- values are standard deviations. By comparison, the EC₅₀ values of 857-2 and LA-2 were 1.25 and ~0.75 nM, respectively.

639

640

641

642

643

644

645

646

647

648 **Figure Legends**

649

650 **Figure 1. V_HH recognition of recombinant OspA.** Expressed and purified V_HHs were tested
651 for binding to immobilized recombinant OspA ST1 by ELISA. V_HHs were grouped by clonal
652 relationships. (A) L8A1 family; (B) L8H8 family; (C) L8A9 family; (D) L8C3 family; (E)
653 L8A10 family; (F) “orphan” V_HHs not part of a clonal family.

654

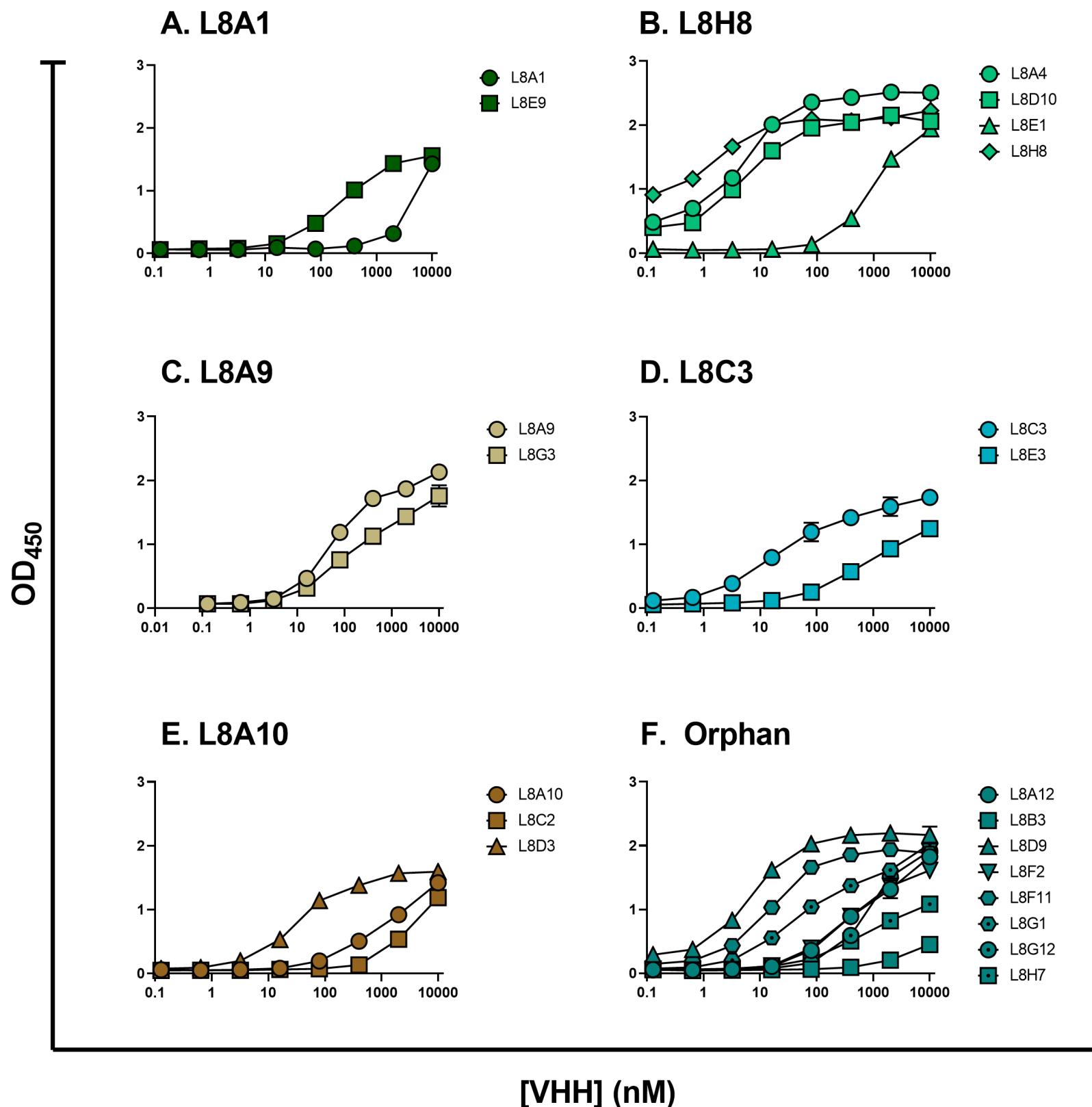
655 **Figure 2. Assignment of V_HHs to OspA epitope bins.** Representative V_HH family members
656 (and all orphans) were tested for their ability to bind to rOspA that had been previously coated
657 by Bin 1-3 mAbs using BLI. A) Biotinylated-OspA was immobilized on Streptavidin coated
658 biosensors and then coated with mAbs from Bins 1-3 (top). Individual V_HHs were then allowed
659 to bind, and the change in the signal induced by the V_HHs is reported in each box. The data is
660 normalized to each V_HHs binding in the presence of bin 2 mAb 212-55, which did not block any
661 of the V_HHs from binding, and colorized so that dark purple represents strong
662 competition/inhibition and light green represents no competition. B) Surface representation of
663 OspA (PDB ID: 1OSP) (gray) colored with the HX-MS determined epitopes of the mAbs used in
664 panel A) colored blue, green, and shades of red for bins 1, 2 and 3, respectively.

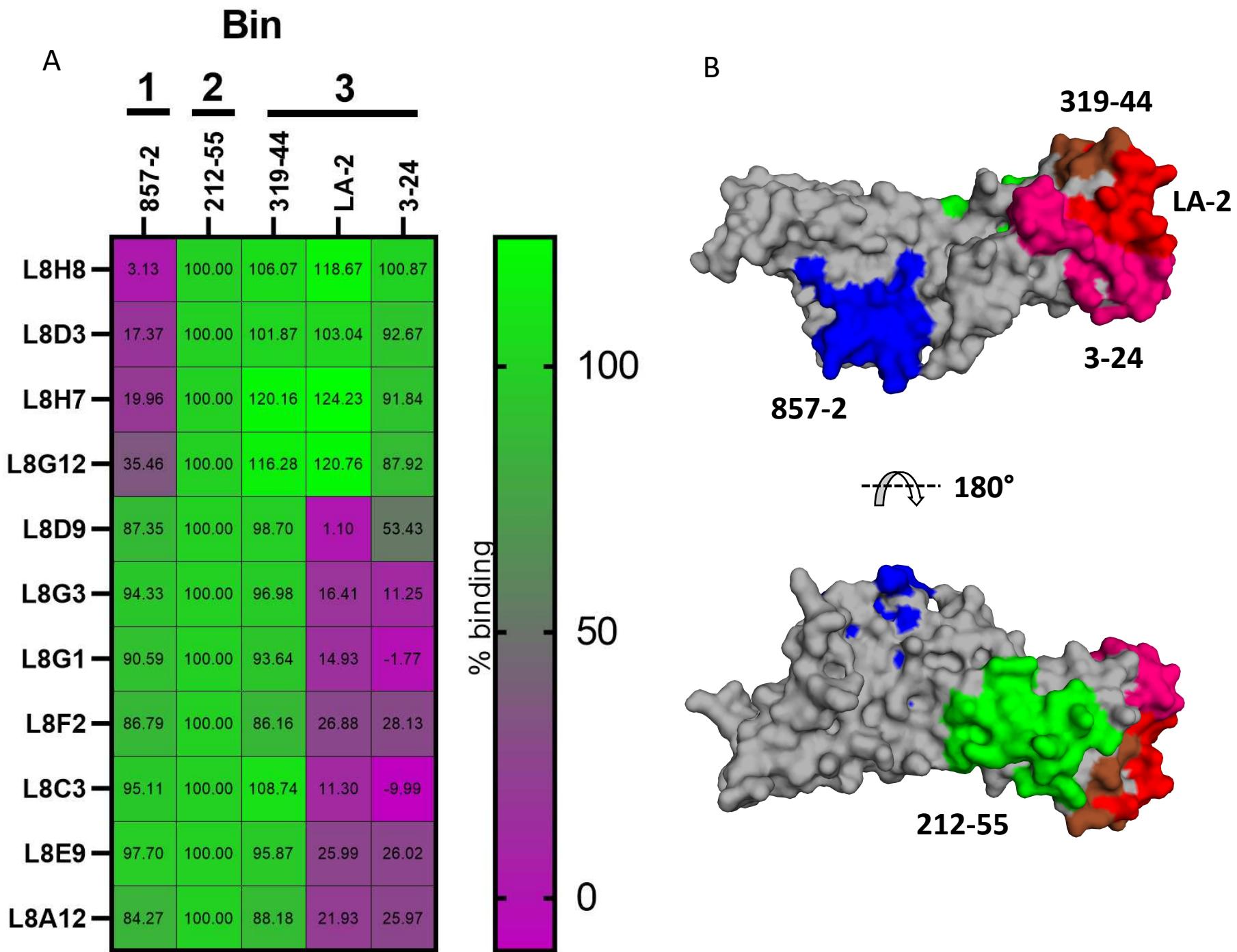
665

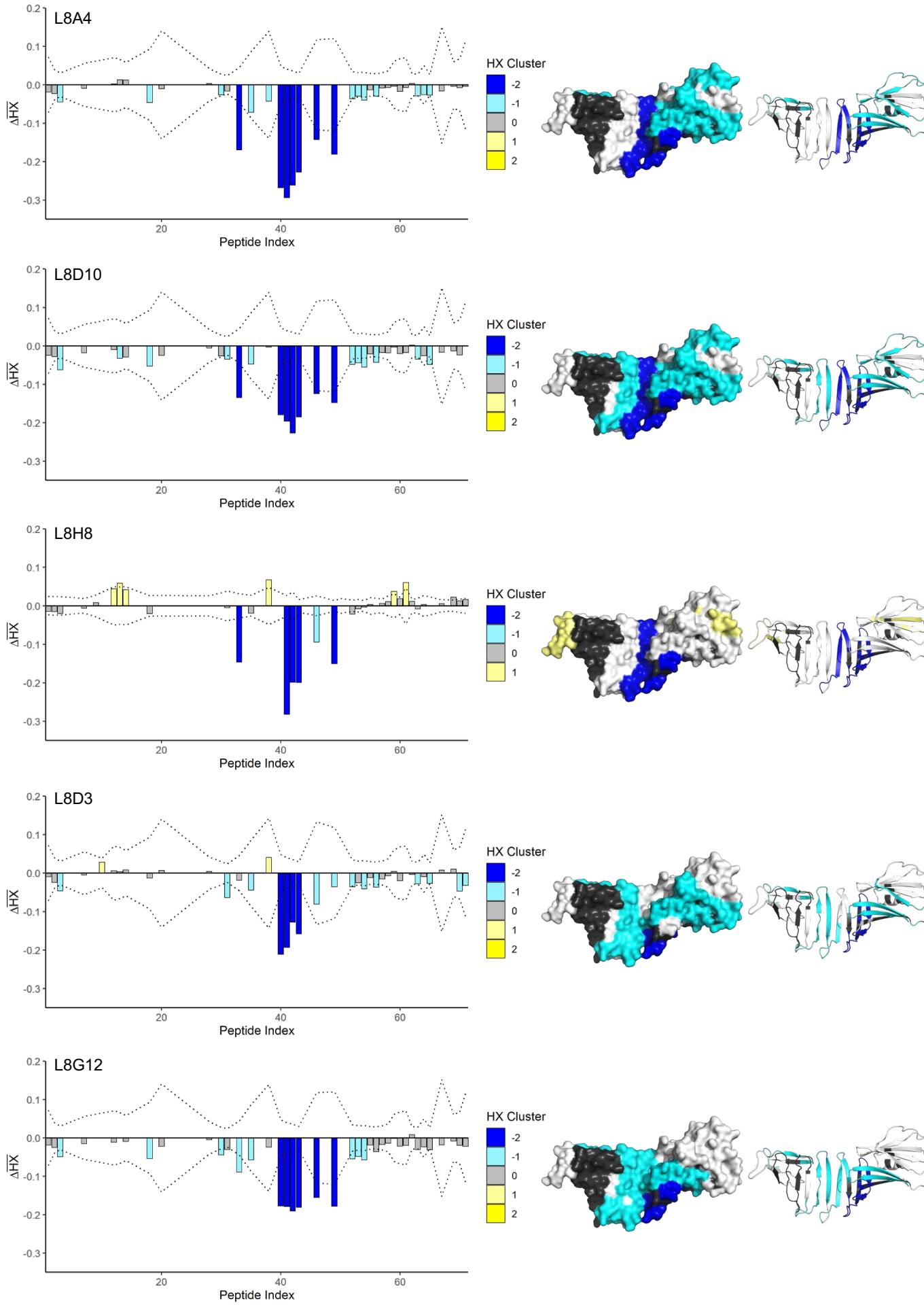
666 **Figure 3. Mapping of V_HH epitopes of OspA by HX-MS.** The left hand column shows $\Delta\bar{H}\bar{X}$
667 for each individual OspA peptide, arranged from N- to C-terminals of OspA. The dotted line
668 denotes the limit for statistically significant differences. The results were classified into
669 categories of protection, denoted by blue and cyan for protection (slower hydrogen exchange)
670 and yellow (faster hydrogen exchange) for the bound form of OspA relative to the free form. The
671 center and right-hand panels show the results mapped onto the surface and ribbon representations
672 of OspA (PDB ID: 1OSP).

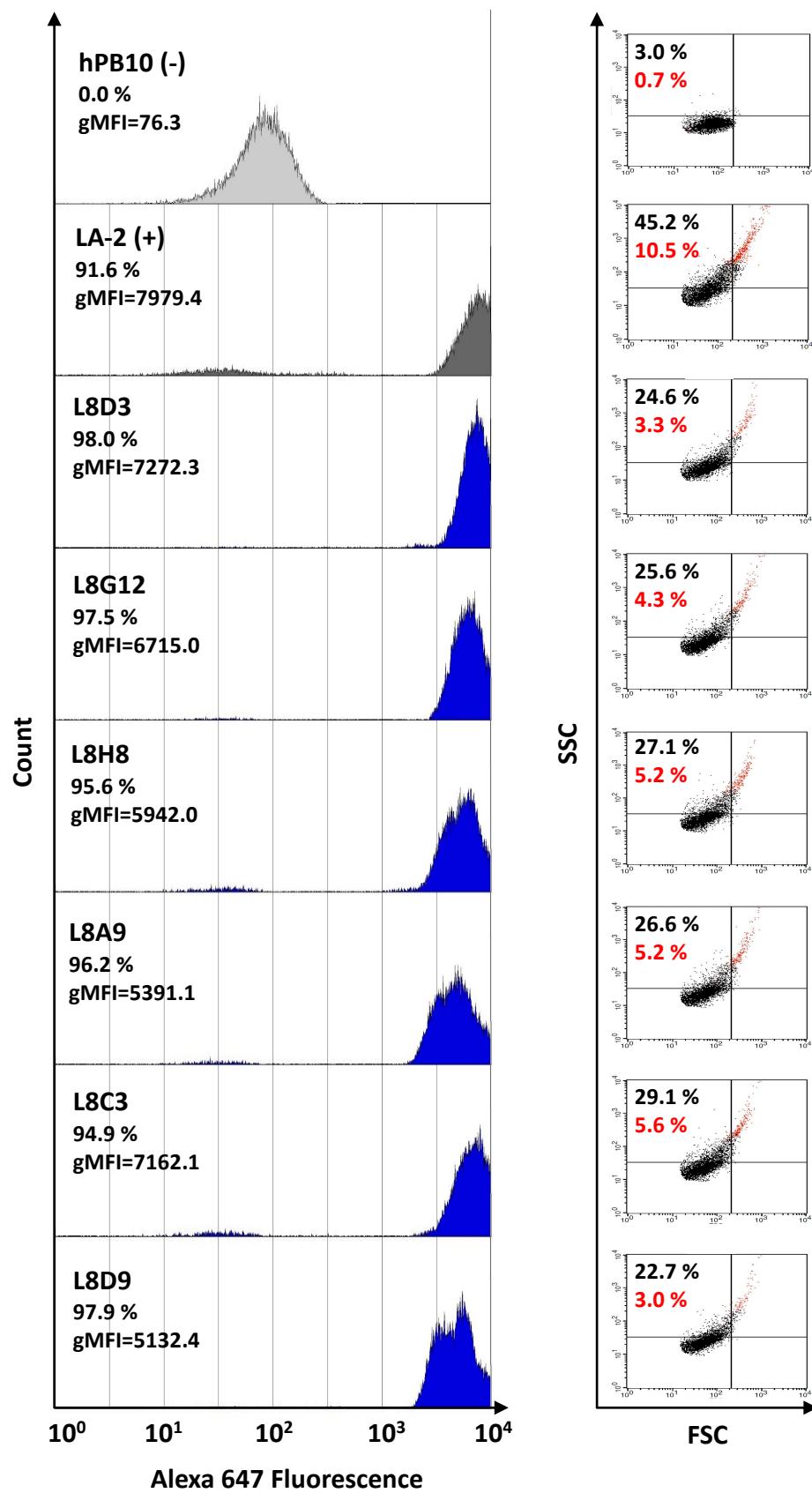
673

674 **Figure 4. Surface labeling, agglutination and membrane permeability associated with OspA**
675 **V_HH-IgG.** Flow cytometry analysis of live *B. burgdorferi* strain B31 incubated with OspA V_HH-
676 IgG Fcs, where an Alexa 647 fluorescent-labeled anti-human IgG secondary antibody was used


677 to detect bound V_HH-IgG Fcs. **(Left panel)** Representative histogram analysis of *B. burgdorferi*
678 surface labeling by control and experimental MAbs. PB10 IgG and LA-2 IgG were used as
679 negative and positive controls, respectively. The geometric mean fluorescence intensity (gMFI),
680 and percent of positive events for Alexa 647 fluorescence are indicated. **(Right panel)**
681 Corresponding forward-scatter (FSC)/side-scatter (SSC) dot plots. The percent of events that are
682 agglutinated is indicated (black) and was calculated from the sum of events with increased FSC
683 and SSC, in the upper-left, upper-right, and lower-right quadrants, relative to total events
684 counted (20,000). The percent of events positive for PI staining, indicating membrane damage, is
685 shown in red.


686


687 **Figure 5. Complement-dependent borreliacidal activity imparted by V_HH-IgG Fc.** Reporter
688 strain GGW979 was mixed with serial dilutions of each V_HH-Fc IgG1 (A) Bin 1 and (B) Bin 2
689 diluted in phenol-free BSKII supplemented with gentamicin (40 µg/mL) and 20% human
690 complement. 857-2 and LA-2 IgG1 MAbs were included in each assay to serve as positive
691 controls for Bin 1 and Bin 3, respectively. Spirochete viability was measured 3 days later as
692 detailed in the Materials and Methods. Data are the results of three biological replicates with SD.
693 EC₅₀ values were determined by the lowest dilution of antibody resulting in 50% reduction in
694 MFI relative to normalized controls.


695

696 **Figure 6. V_HH-IgG Fc recognition of OspA serotypes by ELISA.** (A) Amino acid alignment
697 of the seven OspA serotypes (ST1-7). Dots denote amino acid identity with ST1; one letter
698 amino acid codes shown in locations that differ from ST1. **(B)** Microtiter plates were coated with
699 indicated OspA serotypes (horizontal labels) or block solution only (control), then probed with
700 indicated Bin 1 (857-2, L8D3, L8G12, L8H8) or Bin 3 (LA-2, L8A9, L8C3, L8D9) antibodies
701 (vertical labels) and developed as described in the Materials and Methods. The heat map scale
702 (purple to green) is shown on the right and the numbers refer to absorbance values upon addition
703 of stop solution. Deep purple (0) represents no binding, while lighter green (4) represents strong
704 binding.

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

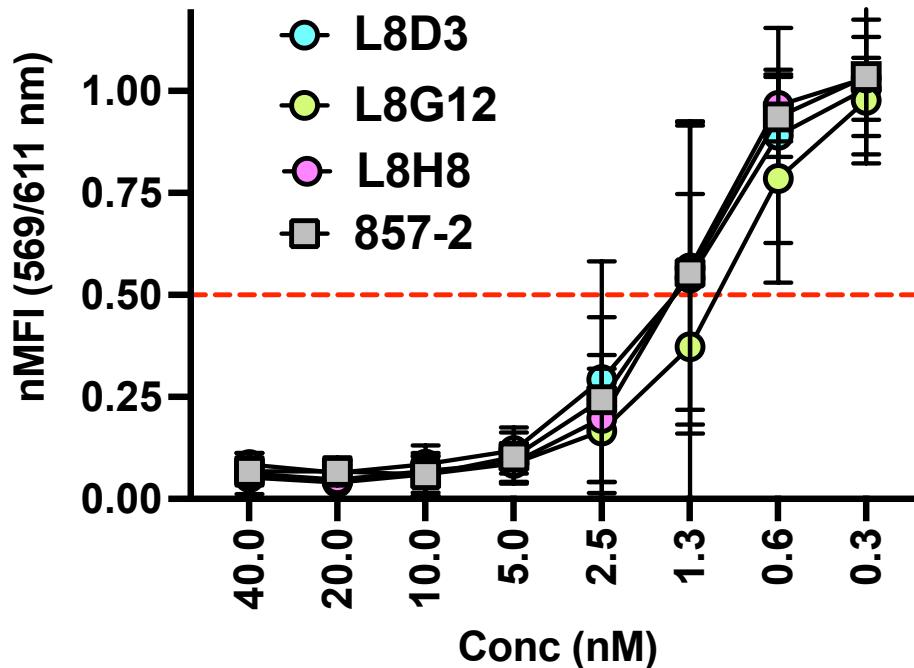
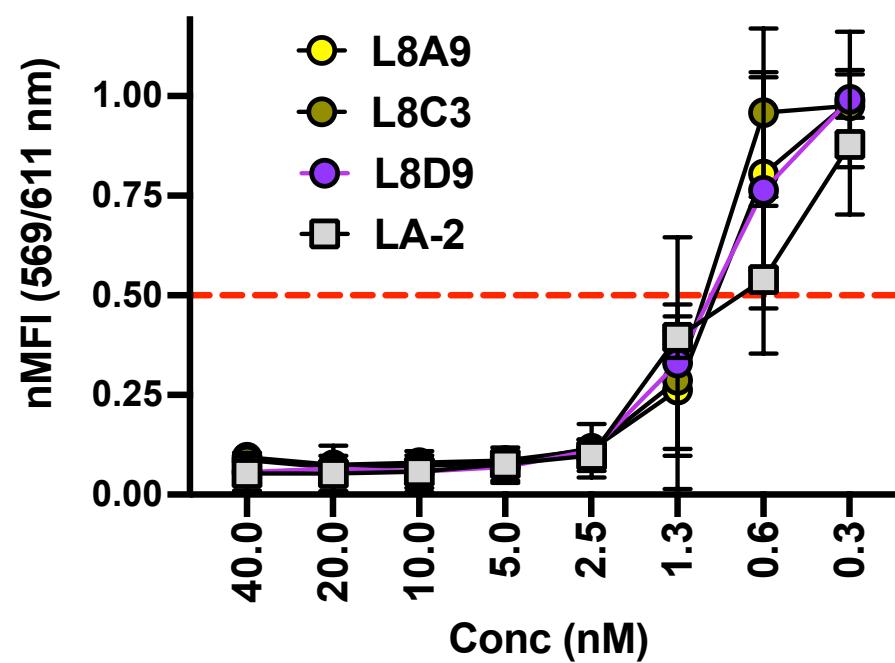
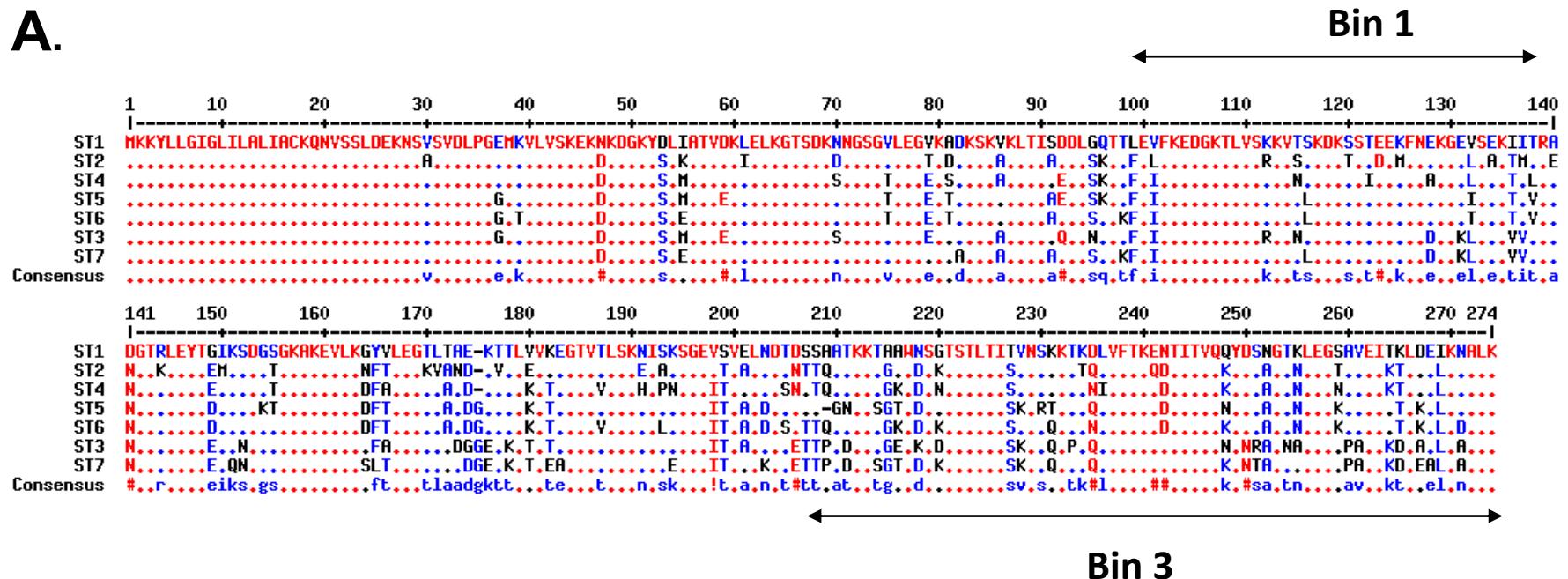
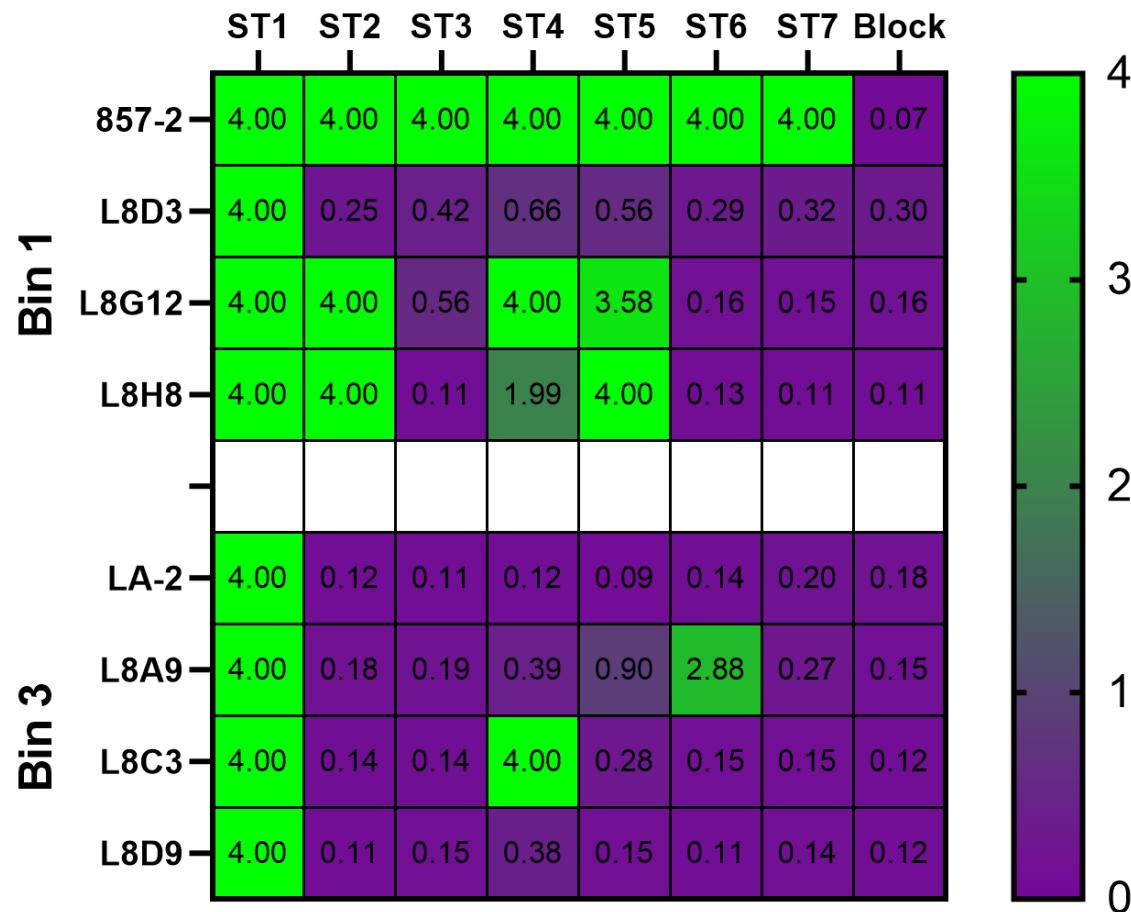




FIGURE 5**A. Bin 1****B. Bin 3**

FIGURE 6

A.

B

