bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576885; this version posted January 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RELAXED PURIFYING SELECTION IS ASSOCIATED WITH AN

ACCUMULATION OF TRANSPOSABLE ELEMENTS IN FLIES

Vincent Mérel'2, Théo Tricou!, Nelly Burlet! & Annabelle Haudry"*

I' 1 aboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université de Lyon, Villeurbanne, France
2 Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
* corresponding author: annabelle.haudry @univ-lyonl.fr

ABSTRACT

1 Although the mechanisms driving genome size evolution have not yet been fully deciphered, one

2 potentially important factor is the dynamic of accumulation in mobile selfish genetic elements named
3 transposable elements (TEs). Because the majority of these sequences are neutral or slightly delete-
4 rious, a negative correlation between genome size and selection efficacy is expected. Nevertheless,
5 previous studies relying on empirical data from closely related species have yielded inconsistent
6 conclusions, leaving this matter contentious. Here, we reconstructed a phylogeny based on whole
7 genome data (2,242 genes) for 82 lineages representing 77 Drosophilid species. We studied cor-
8 relations between genome size, TE content and measures of selection efficacy. We highlighted a
9 strong phylogenetic inertia on genome size, and confirmed that TEs are the major components of the
10 genome size. Using an integrative approach controlling for shared history, we found genome-wide

11 ratios of non-synonymous over synonymous divergence (dN/d\S) to be strongly positively correlated

12 to genome size and TE content, especially in GC poor genes. This work provides evidence for TE
13 proliferation in the genome of flies when purifying selection is reduced and the genetic drift is in-
14 creased. In the end, this study emphasizes the critical importance of controlling for GC heterogeneity
15 when testing for the controversial correlation between evolutionary rates and genome size.

16 Keywords Genome architecture - content in transposable elements - selection efficacy - genetic drift - Drosophila

17 1 Introduction

18 Eukaryotic species exhibit a surprisingly wide range in genome size: the genome of the parasitic nematode Pratylenchus
19 coffeae is approximately 0.019 Gbp (Gregory, 2005), whereas that of the plant Paris japonica is 149 Gbp (Pellicer
20 |and Leitch, |2020). The accumulation of repeated elements is thought to be the main driver of genome size evolution

21 in Eukaryotes. Especially, genome size has been found strongly positively correlated to the amount of Transposable
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22 Elements (TEs) in various taxa (Biémont and Vieira, 2006} Tenaillon et al.| 2010; [Elliott and Gregoryl, |2015). TEs
23 are selfish genetic elements (Orgel and Crick, |1980), mostly neutral or deleterious to their host, that persist and even
24 proliferate, by copying and pasting themselves to other genomic locations. Genome size therefore reflects the dynamics
25 of TE accumulation, depending on rate of TE insertion and deletion. As an example, the expansion identified in the

26 salamander genome results from an increased proliferation of LTR retrotransposons (Sun et al.| 2012).

27 Due to the deleterious effects of TEs, purifying selection is expected to prevent TE fixation and thus to maintain
28 small genomes. Effective population size (Ne) which affects selection efficacy (Nes, with s the selection coefficient),
29 has been proposed as a key parameter controlling TE accumulation (Lynch and Coneryl 2003)). As selection efficacy
30 is positively correlated to Ne, TEs are expected to accumulate in lineages where Ne is reduced. In line with the
31 Mutational Hazard (MH) hypothesis, Lynch and Conery|(2003)) found a negative correlation between synonymous
32 diversity (an estimate of 4N ey, p being the mutation rate) and genome size across species. However, Lynch and Conery
33 (2003) findings appear to be largely explained by shared common evolutionary history (Whitney et al.,2010), and rely
34+ on the comparison of very distant species with drastically different biology, which could act as a confounding factor
35 (Charlesworth and Barton, 2004)).

36 The distribution of quantitative traits among species is not independent of the length of the shared history between
37 the considered species: closely related species tend to resemble each other more than expected by chance, due to
38 phylogenetic inertia (Felsenstein, 1985). As aresult, it is necessary to account for the phylogenetic relatedness of species
39 and the resulting dependencies in comparative analyses. Approaches that explicitly account for the phylogenetic signal
40 to correct for correlations between traits rely on stochastic models of trait evolution — typically assuming that the traits
41 jointly evolve according to a multivariate Brownian process running along the lineages of the phylogeny. The covariance
42 matrix of this multivariate process is then estimated either by maximum likelihood (e.g. phylogenetic generalised
43 least squares PGLS, (Martins and Hansen, [1997)) or by Bayesian inference (Pagel and Harvey| |1988), accounting for
44 phylogenetic dependencies in the estimation of the correlations between traits. Methods at the intersection between the
45 classical comparative method and molecular phylogenetics (Lartillot and Poujol, 2011} [Lartillot, | 2014) have suggested
46 that a substantial amount of information about ancestral traits could be obtained from the evolution of genetic sequences.
47 The fundamental idea is as follows: (1) detailed patterns of genetic sequence evolution can be fairly accurately inferred
48 along a phylogeny; (2) the variation in evolutionary rate along the branches of the tree can be inferred; (3) more
49 fundamentally, these evolutionary rates and parameters can be seen as continuous traits and modelled as Brownian
s0 processes. All this can be achieved in a single Bayesian probabilistic model, combining the molecular phylogenetic tree

51 and the comparative method dimensions of the question.

52 Beyond the genetic diversity used in Lynch and Conery|(2003), a variety of traits are related to Ne. According to the
53 nearly neutral theory of evolution, smaller Ne should lead to an accumulation of slightly deleterious mutations, and thus
54 to a higher ratio of non-synonymous over synonymous divergence, or dN/dS, which is used as a measure of selection
55 efficacy on protein sequence (Castillo et al., 2011; |Bolivar et al., [2019). Several life history traits have previously
56 been reported to affect Ne (eg. maturity or longevity in mammals (Lartillot and Delsuc, 2012)) or mating system in
57 plants (Pollakl [1987)). It is therefore possible to test the effect of a reduction in Ne on the genome architecture using
58 comparisons among closely related species with contrasted life history traits. Besides, selection on codon usage has

59 been reported in fruit flies (Duret and Mouchiroud, [1999). Population genetic theory predicts that selection on codon
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60 usage is much weaker than selection acting on the protein sequence (typically on the order of 4 Nes = 1, s being the
61 selection coefficient in favour of optimal codons). Since weakly selected mutations are most susceptible to fixation
62 when Ne is reduced (McVean and Charlesworthl |1999)), codon usage bias metrics may provide alternative estimates
63 of selection efficiency. While some fruit flies with large Ne show higher codon usage than their relatives (Haddrill
64 |et al.,2010))/Kessler and Dean|(2014) found no direct relation between codon usage bias and Ne variation in mammals.
65 Indeed, codon usage bias results from a complex balance between mutation patterns, selection, recombination (via
66 GC-biased gene conversion) and genetic drift Parvathy et al.|(2022). It remains an open question whether codon usage

67 metrics can reflect Ve variation in large populations such as fruit flies.

68 Appealing because it is based on universal principles of population genetics, the MH hypothesis fuelled the need for
69 empirical testing. To date, comparative studies of closely related taxa have reported conflicting results. Some have
70 shown an accumulation of TEs resulting from a reduction of Ne, as predicted by the MH theory: in ectomycorrhizal
71 fungi in symbiotic fungi (Hess et al., 2014)); in subterranean Aselloidea (Lefébure et al.,|2017); in polyploid plants
72 (Baduel et al.| 2019); in eusocial snapping shrimps and termites (Chak et al.l 2021} |Korb et al.,[2015); in invasive
73 populations of D. suzukii (Mérel et al.,|2021)—, others found no significant excess in TE abundance in species with
74 reduced Ne compared to their close relatives —in asexual daphnia (Schaack et al.|[2010; Jiang et al.,|2017)), primroses
75 (;\gren et al.,|2015), arthropods (Bast et al., 2016)) or yeast populations (Bast et al., 2019)); in selfing Caenorhabditis
76 nematodes (Fierst et al.,|2015)); in eusocial bees (Kapheim et al.,2015), or hymenoptera (Ardila-Garcia et al., 2010).

77 Drosophila flies show a three-fold variation in genome size, reflecting variation in TE content (Sessegolo et al.,
78 |2016)). Differences in life history traits and demography were reported (Markow and O’Gradyl, [2005), which could
79 potentially lead to Ne differences. Contrary to MH’s expectations, a study of 12 distant species showed that greater
8o levels of purifying selection were rather associated with greater euchromatic TE abundance, using dN/dS as a proxy of
st Ne (Castillo et al.,[2011)), letting the genome size variation puzzling. Analyses by |Sessegolo et al.|(2016)) revealed
g2 that strong phylogenetic inertia partially explains genome size differences, with a sampling bias towards small genome
83 species closely related to D. melanogaster, which could be easily corrected with a more balanced sample across the
s+ Drosophilid phylogeny. To date, the main drivers of repeatome expansion in fly genomes remain to be identified,

85 especially in regard to the respective roles of drift and selection.

86 Here, we investigated genome size, TE content and selection efficacy in 82 drosophila lineages from 77 species
87 to gain insight into genome size evolution. Our study includes historical dN/dS reconstruction along with ancestral
g8 genome size, TE content, codon usage bias measures and developmental time based on interspecific divergence and
8o evolutionary rate using a Bayesian method accounting for phylogenetic relationships, directly assessing intrinsic

90 correlations between those variables.

9t 2 Results

92 2.1 38 novel fly assemblies

93 To study the evolution of genome size, TE content and effective population size in flies we focused on Next Generation
94 Sequencing (NGS) data for 82 Drosophilid lineages. This dataset includes 77 species from Drosophila and Zaprionus

95 genus, with a particular focus on Drosophila and Sophophora subgenus. It spans 25—40 million years of divergence
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96 (Obbard et al., [2012) (supplementary table S1). Forty four already available and 40 new samples were selected in
97 order to obtain a large set of species representing the diversity of the clade (supplementary table S2,3), resulting
98 in a balanced sample of species along the phylogeny (at least three species were sampled per Drosophila group or
99 Sophophora subgroup based on taxonomy). For each of the 40 new samples we constructed genomic assemblies using
100 short-insert paired-end reads. Overall, the mean N50 of newly built assemblies is 20Kb, and range from 3 Kb to 92
101 Kb (supplementary table S2). We found a mean of 2,941 complete genes out of the 3,285 dipteran BUSCO genes, i.e.
102 89%(supplementary figure 1). Two assemblies with a high percentage of duplicated BUSCO genes (> 20) were not
103 further considered (D. algonquin and D. tristis). Homemade assemblies include ten species that, to our knowledge,
104 have not been sequenced so far D. lucipennis, D. lutescens, D. madeirensis, D. microlabis, D. mimetica, D. pallidosa, D.
105 paralutea, D. prostipennis, D. tsukubaensis, according to NCBI. And four species that have been sequenced but for

106 which no assembly was available (D. affinis, D. helvetica, D. imaii, D. mercatorum).

107 2.2 Drosophila phylogeny reconstruction

108 We used a de novo clustering approach in order to identify single-copy orthologous genes present in at least 50% of the
109 genomes (i.e. in at least 41 genomes). The resulting 2,242 nuclear orthologous genes were aligned, then concatenated
110 to reconstruct a phylogenetic tree, using Scaptodrosophila lebanonensis as an outgroup (figure 1). This Maximum
111 Likelihood (ML) phylogeny reports highly confident node bootstrap support (only four nodes with UFBoot <100) and

112 identifies nine main clades, consistent with taxonomic Drosophila and Sophophora groups.

113 This tree was compared to an ASTRAL supertree, i.e. an estimation of the true species tree from the 2,242 unrooted
114 gene trees. Our supertree ASTRAL topology is discordant with the ML topology in only four relationships, three of
115 them being associated with the least supported nodes in the ML tree. First, D. micromelanica is found at the root of the
116 melanica group in the ASTRAL tree, while it is D. melanica in the ML tree (UFBoot = 65, figure 1). Second, D. hydei
117 is sister to the species group of D. navojoa, D. arizonae, D. mojavensis in the ASTRAL tree, while it is also sister to D.
118 mercatorum lines in the ML tree (UFBoot = 100). Third, D. microlabis is sister to the obscura subgroup only in the
119 ASTRAL tree, but to both the obscura and the subobscura subgroups in the ML tree (UFBoot = 97). Last, D. takahashii
120 is at the root of the whole fakahashii subgroup in the ASTRAL tree , but sister to D. lutescens and D. paralutea in
121 the ML tree (UFBoot = 91). We compared the present topology with the Suvorov’ ML phylogenomic tree using a
122 subsample of the 55 species shared between the two datasets (supplementary figure 2). Only two incongruencies are
123 found, resulting in a Robinson Foulds distance metric of 8 between trees (Robinson and Foulds| [1981): (1) the sister
124 species of D. simulans is D. sechellia in our topology while D. simulans groups with D. mauritiana in the Suvorov tree.
125 (2) D. ercepeae groups in the montium subgroup (melanogaster group) while it branches at the basis of the ananassae

126 subgroup (melanogaster group) in the Suvorov tree, as well as in Van der Linde’s tree.

127 2.3 Strong phylogenetic inertia on genome size and TE content

128 We retrieved flow cytometry estimates of genome size for 77 out of our 82 samples. 54 of these estimates come from
129 the literature (Gregoryl 2005} |[Hjelmen et al.,|2019), the remaining 23 estimations were performed for this study. The
130 genomic size ranges from 136.92 Mb for D. busckii to 332.52 Mb for D. virilis, with a mean of 208.7 Mb (supplementary
131 table S4, figure 1). We found a Pagel’s lambda very close to one for this trait, indicating a strong effect of shared

132 ancestry (Pagel’s A =0.92, p = 1.64.107°).
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Figure 1: Phylogenetic tree figuring genome size and TE abundances. The tree was reconstructed using 2,242
orthologous genes and a maximum likelihood approach. Bootstraps values are indicated at node when different from

100. Taxonomic groups according to[Schoch et al.| (2020) are indicated on the right. Genome size (Mb) was estimated

using flow cytometry, and genomic repeat content (Mb) was estimated from short reads using dnaPipeTE
2015).
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Table 1: Pairwise correlations between genome size and TE abundances. Correlation coefficients were estimated
using ancov. Cells in light gray correspond to significant correlations (posterior probability (pp) < 0.025 or pp > 0.975).
Significant PGLS are presented in bold (Benjamini-Hochberg p- adjusted < 0.05)

GS | DNA | Helitron | LINE | LTR SINE | TEs
GS 0.55 0.19 0.56 0.38 0.03 0.61
DNA - 0.21 0.45 0.31 0.28 0.58
Helitron | - - 0.31 -0.10 | -0.14 | 0.21
LINE - - - 0.22 0.10 0.61
LTR - - - - 0.14 0.83
SINE - - - - - 0.17

133 We then estimated repeat content in our 77 samples using dnaPipeTE (figure 1, supplementary table S5)(Goubert

134 |et al., 2015). Briefly, dnaPipeTE reconstructs TE sequences from the assembly of a subsample of reads (such as
135 coverage < 1X), annotate these sequences by homology to RepBase database (Kapitonov and Jurkal 2008)), and then
136 estimates the proportion of reads mapping on each category of repeat. This proportion can be converted into a number
137 of base pairs, based on the genome size estimate. We found the total amount of TE to range from 3.48 Mb for D. busckii
138 to 120.42 Mb for D. suzukii. The category with the highest average abundance is LTR elements (supplementary table
139 S6).

140 We compared our estimations of TE abundances with the ones obtained by |Kim et al.[|(2021)). In the mentioned study
141 the authors estimated repeat content in 101 Drosophilid species long read assemblies using homology to sequences in
142 online databases. Comparing abundance estimates for the 36 species common to the two studies, we found significant
143 correlations for all TE types (R? ranging from 0.40 to 0.46, Padj < 0.05, supplementary figure 3). Note that 1) we
144 considered retrotransposons to correspond to the sum of LINEs and LTR elements, 2) RC to correspond to Helitrons
145 (Kapitonov and Jurkal [2008)), 3) for SINE, we were not able to test any correlation as this category was not present in
146 |Kim et al.|(2021)). Our results suggest a very strong phylogenetic inertia on TE content. Pagel’s A indicate phylogenetic
147 signal for TEs as a whole (Pagel’s A = 0.99, pyq4; = 1.64.1075), but also for DNA, Helitron, LINEs and LTR elements

148 alone. Only for SINEs results were not significant.

149 2.4 Genome size correlates with abundances of various repeat types

150 We tested pairwise correlations between genome size and abundances of the different TEs using two differents methods
151 (table 1). Both methods control for phylogenetic inertia. The first one, implemented ancov (Lartillot, [2014), performs
152 Bayesian reconstruction of traits and estimation of correlations in one single step. The second method, corresponds to
153 the use of Phylogenetic Generalised Least Squares (PGLS). Out of of the 21 correlations, 11 were found significant with
154 both methods, three private to ancov, and two to PGLS. Overall, we found genome size to be positively correlated with
155 the total amount of TEs (ancov correlation coefficients of 0.62). However, the contribution to genome size variation was
156 different between TE categories, with LINE, DNA and LTR as main contributors. We also found significant correlation
157 between the abundances of various categories of transposable elements. The strongest, between DNA and LINEs, had a

158 correlation coefficient of 0.45.
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Table 2: Correlation coefficients between genome size, TE abundances and proxies of population effective size.
Correlation coefficients were estimated using coevol. Asterisks indicate strength of support of the posterior probability

to be different than 0 (** - pp>0.975 or pp<0.025 - very strong support, * - pp>0.95 or pp<0.05 - strong support).

GS DNA Helitron | LINE LTR SINE | TEs
Random genes 0.31* 0.04 0.29* 0.40%* | 0.34* -0.02 | 0.41%*
dN/dS | Low GC3 genes | 0.48%% | (.37%% | 0.37%* 0.41%*% | 0.40%* | -0.18 | 0.50%*
High GC3 genes | 0.25 0.20 0.25 0.18 0.35% 0.02 0.37%%*
Random genes -0.03 -0.05 -0.07 -0.01 -0.03 -0.03 | -0.02
ENC’ Low GC3 genes | 0.01 0.07 0.32%% 0.07 -0.06 -0.08 | 0.01
High GC3 genes | -0.09 -0.14 -0.07 -0.05 -0.13 -0.04 | -0.15
Random genes -0.06 -0.06 0.06 0.04 0.00 -0.07 | -0.01
SCUO Low GC3 genes | -0.11 0.01 -0.28** | -0.10 0.06 0.10 -0.06
High GC3 genes | -0.17 -0.13 0.07 -0.09 -0.09 -0.13 | -0.15
Developmental time 0.13 0.06 -0.03 0.06 0.05 -0.06 | 0.10

159 2.5 Genome size and TE content correlate with dN/dS

160 We further assessed if variations of genome size and TE content could be explained by changes in population effective
161 size Ne. We used dN/dS as a proxy of Ne, but also codon usage bias metrics (SCUO and ENC”) and a life history
162 trait. Given that a larger population effective size should lead to the fixation of optimal codons, the SCUO is expected
163 to be positively correlated with population effective size (with a SCUO close to 0 for low codon bias and close to 1 for
164 strong bias). On the contrary, ENC’ should be negatively correlated with selection efficacy (with a ENC’ close to 20 for
165 high codon bias and close to 60 for no bias). If a weaker selection explain genome size and abundance of repeats one
166 may thus expect a negative correlation of these variables with SCUO, and a positive correlation with ENC’. We also
167 used the developmental time as a proxy of the level of genetic drift, as several life history traits have been shown to
168 affect Ve (Pollak, 1987} |Lefébure et al.,|2017). However, this trait was reported for 52 over the 82 lines and showed
169 only few level of inter-specific variation (variance=8.95), with none within taxonomic groups. To our knowledge no

170 correlation between developmental time and selection efficacy have been established in Drosophila so far.

171 We used coevol to jointly assess correlations between genome size, TE content and proxies of population effective
172 size (Lartillot and Poujol, |2011). Given a tree and an alignment, coevol models the evolution of mentioned variables
173 assuming brownian motion parametrized by a covariance matrix. All parameters are estimated in Bayesian framework
174 using Monte Carlo Markov Chains. The posterior probability associated to each correlation can be interpreted as a
175  statistical support. A posterior probability close to 1 corresponds to a strong statistical support for a positive correlation.
176 Conversely, a posterior probability close to O corresponds to as strong statistical support for a negative correlation. In
177 order to test for a different evolution for genes of contrasted GC3 (GC content at the third-codon position), proxies of
178 Ne were estimated on alignments of three concatenates of 50 genes each: one composed of randomly sampled genes,
179 one composed of genes with the lowest GC3, and one composed of genes with the highest GC3 (see supplementary

180 figure 4 for GC3 distribution).
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181 Our analysis reveals different results according to the proxy of population effective size used (table 2). No correlation
182 between developmental time and genome size/TE abundances was found. Two correlations were found using codon
183 usage bias metrics as a proxy, both for the concatenate of low GC3. For this concatenate the abundance of Helitron
184 was found to be positively correlated with ENC’ and negatively with SCUO, suggesting a negative impact of Ne on
185 Helitron proliferation. The use of dN/dS as a proxy suggests a more predominant role of population effective size,
186 with yet different results according to the GC3. For genes of high and random GC3, we found two and five significant
187 correlations respectively, while all except one correlation were highly significant for low GC3 genes. The abundance of
188 TEs as a whole was always found to be correlated with dN/dS with correlation coefficients ranging from 0.37 to 0.50.

189 Only the abundance of SINE was never found significantly correlated to dN/dS.

190 2.6 Effect of intragenomic variation in GC3

191 We further investigated how GC3 affected correlations between dN/dS, genome size, and repeat abundance. We
192 thus repeated the analysis with 16 independent concatenates of 50 genes with homogeneous GC3 (figure 2), and
193 ten concatenates of 50 genes with random GC3. A significant correlation between genome size and dN/dS was
194 found in five (over ten) GC3-random concatenates and in seven (over 16) GC3-homogeneous concatenates (figure 2).
195 The lowest GC3 concatenate showed a particularly elevated correlation coefficient (R=0.48), compared to the other
196 GC3-homogeneous concatenates (R=0.27 in average, with significant R ranging from 0.30 to 0.35). Nevertheless, we
197 did not found any negative correlation between the concatenate GC3 and the coefficient of correlation between genome
198 size - dN/dS (t = —1.40, paq; = 0.32).

199 Considering the abundance of TEs as a whole, we found more significant correlations with dN/dS than with
200 genome size: five for GC3-random concatenates (over ten) and eleven (over 16) for GC3-homogeneous ones (figure 2).
201 Once again, the lowest GC3-concatenate had a particularly elevated correlation coefficient (R=0.50) compared to the
202 other GC3-homogeneous (in average R=0.33), and the correlation between the concatenate GC3 and the coefficient
203 of correlation between TE content and dN/dS was not significant (¢ = —1.51, paq; = 0.32). Investigating TE
204 abundances per type, LINEs, LTR elements and Helitrons were found to give similar results to TEs and genome size
205 with at least eleven (out of 26) concatenates supporting a positive impact of relaxed purifying selection on abundances
206 (supplementary figure S5). However, no concatenate did support such an impact for SINEs, and only two for LINEs. In
207 any case, no correlation was found between correlation coefficients and the concatenate GC3 (pearson correlation test,

208 Pqgi > 0.05).

209 For each concatenate (GC3-homogeneous and random), we estimated dN/dS for each branch of our phylogeny
210 using MapNH, a mapping algorithm (Guéguen and Duret, 2018; Minin and Suchard, 2008}, |Dutheil et al.| [2012), in
211 complement of the coevol estimates previously used. We first verified consistency between dN/dS estimates from
212 the two methods (supplementary figure S5-6): they were positively and significantly correlated for each concatenate
213 (Peqj < 0.05), with R? ranging from 0.19 to 0.85 (mean=0.52). Then, we used PGLS to test a correlation between
214 genome size/TE abundance and the last branch MapNH dN/dS estimates. Over the 26 concatenates for which we
215 tested the correlation with dN/dS, none was significant with genome size using PGLS approach (versus 12 using
216 coevol). Among the 16 concatenates for which we detected a significant correlation between TE abundance and dN/dS,

217 four were also found significant using PGLS.
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Figure 2: Correlation coefficients between genome size (GS)/TE abundances and dN/dS as a function of GC3.
The dots/triangles indicate the median GC3 for each concatenate. Correlation coefficients were estimated using coevol.
Strongly and very strongly supported positive correlations are indicated in light and dark red respectively (pp>0.975
and pp>0.95). Triangles denote significant correlations found using PGLS (p. adj < 0.05).

3 Discussion

We performed comparative genomics on 82 Drosophilid lineages. To do so, we generated de novo assemblies for
38 Drosophila species, 14 of which did not have their genome assembled before. Based on a clustering approach of
predicted genes, we identified over 2,200 single copy orthologous genes. This allowed the reconstruction of a robust
phylogeny, highly congruent with previously established ones (Van Der Linde et al., 20105 Suvorov et al., 2020),
including ten supplementary species. We also estimated genome size using flow cytometry for 23 lineages. These new
genomes and genomic data provide to the community valuable resources in species closely related to the reference

species D. melanogaster, and open the possibility to further investigations.

3.1 Drosophila phylogeny

The ML topology we report here is highly congruent with previous Drosophila tree reconstructions of [Suvorov et al.
(2020) and [Van Der Linde et al.|(2010), with only two incongruencies. First, the sister species of D. simulans is D.
sechellia in our topology while D. simulans groups with D. mauritiana in the Suvorov tree. However, Suvorov and
co-authors also identified D. sechellia as sister species of D. simulans on their ASTRAL topology and suggested that
this is the most likely according to a focus on low-recombining regions, which are less prone to incomplete lineage

sorting. Second, D. ercepeae groups in the montium subgroup (melanogaster group) while it branches at the basis


https://doi.org/10.1101/2024.01.23.576885
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576885; this version posted January 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

EVOLUTIONARY RATES AND TE CONTENT IN FLIES

233 of the ananassae subgroup (melanogaster group) in the Suvorov tree, as well as in Van der Linde’s tree. Because
234 both Suvorov and the present trees are based on thousands genes (some most likely in common), it does not seem
235 reasonable to suggest horizontal transfer events to explain the discrepancy. There are several possible explanations for
236 this consequent change in the place of D. ercepeae. It could either be due to contamination (mislabelled fly species)
237 or a subsample effect. Indeed, our topology was compared to the one of [Suvorov et al.| (2020) on the basis of shared
238  species, representing subsamples of original datasets; however each alignment trimming parameters and model of
239 substitution are chosen for a whole dataset, a subsample tree depends to some extent of the original one. According
240  to this hyppothesis, the discrepency in the place of D. ercepeae would indicate that this species may have a complex

241 evolutionary history.

242 3.2 TE content evolution mostly explains genome size variation within flies

243 Overall, genome size and TE content are strongly positively correlated within flies, mostly due to LINEs, DNA and
244 LTR elements. As LINEs and DNA elements are generally shorter than LTR elements in Drosophila (see Mérel et al.
245 (2020) for a review), their predominant role in genome size evolution is likely to reflect a larger variation in copy
246 number. However, for LINEs and LTR elements, the correlations with genome size may also be blurred by a slight
247 underestimation of elevated content. For species where |[Kim et al.| (2021)) found retrotransposons to be particularly
248 abundant in long reads based assemblies, our estimates were lower (for example D. paulistorum with 71 Mb versus 36
249 Mb). This is likely to reflect the difficulty of correctly assembling repeats from a subsample of short reads when they
250 are too numerous and divergent. Importantly, it may also negatively affect the moderate relationship between genome
251 size and TE abundance (R ~ 0.6).

252 In any case, TE content appears to be the main driver of genome composition at a rather short evolutionary scale
253 (here ~ 60 My), as it was previously reported for Eukaryotes (Kidwell, 2002). TEs per se may play a fundamental role
254 in the differentiation among genomes, as they represent a "junk pool" of large standing mutations and might potentially
255 act on species divergence. However, we can note that we only detected an average (for a fly) TE content for D. virilis,
256 which has the largest genome reported so far in Drosophila species. As the genome of D. virilis consists of more
257 than 40% of a few related 7-bp satellites (Flynn et al., 2020), the additional DNA accumulated in its genome does not

258 correspond to TEs and is therefore not represented here (as we specifically chose to focus on TEs).

259 Our results show a strong effect of shared ancestry on both genome size and TE content indicating that closely
260 related species tend to bear more similar repeat content (and thus genome size) compared to distant species, in agreement
261 with results in 26 fly species reported by [Sessegolo et al.|(2016). In addition to strong phylogenetic inertia, we found
262 that both genome size and TE content vary within Sophophora (melanogaster, obscura, willistoni and saltans groups)
263 and Drosophila subgenus (including repleta, virilis, melanica, armatus and immigrans groups). Genome size and TE
264 content also vary within groups of Sophophora or Drosophila subgenus. In particular, D. suzukii experienced an increase
265 in genome size associated with an accumulation of diverse repeated elements especially since its divergence from D.
266 biarmipes, as it was previously reported by [Sessegolo et al.| (2016)). Furthermore, in the obscura group, D. guanche
267 (n=2) and D. subobscura (n=2) lineages exhibit less TEs than close relatives, such as D. obscura (n=2) or D. imaii

268 (n=1).
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269 The fact that TE content and genome size vary within groups of species suggests that independent changes in TEs
270 accumulation dynamics occurred throughout the evolutionary history of flies. Such interspecific variation in genomic
271 traits, associated with potential variation in Ne across the closely related species suggests that our dataset offers a great
272 opportunity to test whether such variation in TE content (hence in genome size) could be associated with variation in

273 selection efficacy.

274 3.3 Which Ne estimate to best reflects variation in genetic drift?

275 We used a phylogenetic approach integrating ancestral trait reconstruction to estimate the dynamic relationship between
276  estimates of Ne and genome size and TE content. Using randomly sampled genes, we found a significant positive
277 correlation between the TE content and the dN/dS ratio, whereas no significant association was detected between
278 genomic composition (TE content nor genome size) with the other traits related to Ne, namely codon usage bias
279 statistics (ENC’ or SCUO) or a life history trait (the developmental time). These results may raise the question of
280 which statistics are good proxies of Ne at the evolutionary scale we are looking at. While species life history traits
281  affect diversity levels and dN/dS within mammals (Lartillot and Delsuc, 2012) or Metazoa (Romiguier et al.| [2014),
282 no relationship was found between developmental time and dN/dS at the Drosophila scale. One pitfall of this result
283 relies on the absence of within group variation on this trait, making its potential effect corrected for jointly with the
284 phylogenetic relationship. However, contrary to findings in animals (Romiguier et al2014), genetic diversity across
285  butterflies could not be explained by longevity or propagule size (Mackintosh et al.,|2019). One may hypothesize that
286 life history indicators of the strength of genetic drift may vary depending on the taxon or the evolutionary scale of
287 interest. Within flies, developmental time is likely unable to capture variation in genetic drift intensity, it would be very
288 useful to collect other life history traits for those species, such as age and size at maturity, fecundity and fertility to test

289 whether any of them could to be a good indicator of genetic drift.

290 The nearly neutral theory of molecular evolution predicts that selection efficacy on codon usage bias depends on a
291 species’ effective population size (Kimura, 1983 |Charlesworth,2009), suggesting that the variation of this selection
292 strength among close relatives may result from variation in Ne since their divergence. |Galtier et al.| (2018) found
293 evidence for selection on codon usage only in large-/V e species of animals, but not in small-/Ne ones. Evidence for
294 selection on codon usage has previously been reported in D. melanogaster (Shields et al.,|1988)), but it remains unclear
295 whether effective selection on codon usage is acting in other fly species. Finally, interspecific differences in Ne and
296 selection on codon usage may be weakly and inconsistently correlated in flies, as it was found in mammals (Kessler and

297 [Dean, 2014).

208 3.4 About the correlation between dN/dS and TE content

200 While we found substantial evidence for a positive correlation between the dN/dS ratio and the TE content, the
300 signal was dependent on the method used. Using PGLS and last branch dN/dS to test this correlation led to a weaker
so1  signal than an approach also considering the dN/dS of internal branches (using coevol), showing the importance of
302 more integrative methods. Moreover, the signal for a positive correlation between dN/d.S and TE content also varied
303 according to the gene set used. In particular, the strength of this correlation was stronger for GC3-poor genes and
304 lower for GC3-high genes. This suggests that the variation in evolutionary rates among genes is not independent from

305 their GC3. However, we did not detect a direct relationship between the concatenate GC3 and the coefficient of the
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06 correlation between dN/dS and TE content. The correlation between dN/dS and TE content tends to be more often

307  significant using concatenates of genes homogeneous for their GC3 compared to random set of genes.

12
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Table 3: Literature review of genome size and TE content changes resulting from transitions in life history traits
associated with a reduction in Ne. Studies presented in the lightgray lines did not provide support to the Mutational
Hazard theory, as they did not find any evidence for accumulation of TEs or increase in genome size in lineages with
reduced Ne. On the contrary, darker gray lines report studies where accumulation of TEs or increase in genome size

has been identified in lineages with reduced Ne.

trait ! organism (sample size) references divergence time

asexuality Daphnia (n=40) a few thousand years

No evidence for increased TE load in genomes of asexual as compared to sexual lineages.

asexuality J yeast 2 (n=12) L |East et al.| 43019|? l 990 generations

TE loads decrease rapidly under asexual reproduction.

asexuality J stick insects (n=10) I_ ll aron et al.I SEOZEI) J_ less than 5 My

Asexual species did not show increased TE accumulation, but very low TE activity detected.

eusociality & parasitism Hymenoptera (n=131) I_lAIdila-Garcia et al.l 42014) J_ more than 100 My 3

Eusocial and parasitoid species have smaller genomes than solitary and non parasitoid species.

eusociality J bees (n=10) I_ |§apheim et al.I li J_ 20-80 My

Reduced diversity and abundance of TEs with increasing social complexity

eusociality J termites (n=22) L JKoshikawa et al.l !|2008|D l ~200 My *

TE over-accumulation after whole genome duplication as a consequence of relaxed purifying selection

TE accumulation associated with increase in dN/dS

! Trait associated with a reduction in Ne.

2 Populations of one species analyzed, results rely on polymorphism data.

3 Divergence time based on[Johnson et al.] (2013) ;[Elsik et al.] 2016;[Danforth et al.] (2013).
* Divergence time based on|Danforth et al.{(2013).
3 Divergence time based on (2014).

* Studies which tested correlation between genome size variation and TE content with dN/dS as estimate of Ne.

™ Studies which tested correlation between genome size variation and TE content with genetic diversity theta as estimate of Ne.
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308 This can be related to the fact that an heterogeneity in base composition among genes within a concatenate is
309 expected to alter the codon frequency estimate (which won’t be correct at the gene scale), and lessen the accuracy of
310 the estimation of the global dN/dS based on phylogenetic models. Moreover, the GC3 of genes is not completely
311 independent of the coefficient of purifying selection. In particular, highly expressed genes are expected to be enriched in
312 optimal codons due to selection on codon usage, and optimal codons are mainly G- or C-ending in drosophila (Duret and
313 Mouchiroud,|1999). Therefore, high-GC3 genes are expected to evolve under stronger selection than poor-GC3 genes.
314 While Ne-reduced species may prevent the fixation of non synonymous deleterious mutations in highly expressed
315 genes (enriched in high-GC3 genes), they may show an accumulation of slightly deleterious mutations in less expressed
ste  genes (enriched in poor-GC3 genes). Furthermore, highly expressed genes evolve under selection for codon usage bias,
317  at least in D. melanogaster (Duret and Mouchiroud, [1999), meaning that d.S is not neutral in those genes, and therefore

s1s we may question the use of their dN/dS to provide an accurate estimate of the effective population size.

319 Comparative studies were previously conducted among closely related species with different Ne associated with
320 changes in various life history traits, and they provide contrasting results (reported on table 3). Most studies that did
321 not find any evidence of TE accumulation associated with a reduction in Ne did compare asexual lines or species
s22  with sexual ones. However, if a transition to asexuality is expected to induce a drastic reduction in Ne, it has other
323 evolutionary implications. In particular, Charlesworth and Langley| (1986) proposed that TE transposition rates should
324 reduce due to within lineage transmission in non recombining genomes. In a nutshell, the reduction in transposition in
325 asexuals would override the trend for TE accumulation due to increased genetic drift. The contrasting results among
326 studies comparing eusocial species with noneusocial relatives are more complex to interpret. Eusocial species are
327 expected to harbour reduced Ne, and very high levels of recombination were found in social insects (Wilfert et al.,
a2 [2007)). Therefore, TE accumulation is expected in eusocial species, as found in|Korb et al.[(2015);|Chak et al.[(2021)),
329 but not in|Ardila-Garcia et al.| (2010); Kapheim et al.|(2015); Koshikawa et al.|(2008). One possible explanation might
330 lie in the differences in the evolutionary scale. Indeed, compared to bees, snapping shrimps have diverged much more
331 recently, which might have blurred the signal due to confounding factors. An example of a possible factor that prevented
332 the observation of TE accumulation in the reduced- N e-species is a change in the epigenetic TE-silencing mecanisms .
sss  If the synonymous divergence is too large, saturation could occur, leading to an underestimation of the dN/d\S ratio

334 and a least accurate proxy of Ne.

335 In flies, we found a significant positive correlation between the TE content and the dN/dS ratio, that is to say an
sss accumulation of TEs in species with lower Ne estimated through their selection efficiency. A similar relationship
337 between TE load and genomic estimates of Ne was found in subterranean Asellidae (Lefébure et al.,|2017)), or at an
sss intraspecific level within D. suzukii, where invasive populations showed reduced genetic diversity and increased TE

339 content (Mérel et al., [2021).

340 3.5 Conclusion

341 Genome size and TE abundance are positively correlated within flies. We found a strong support for a relationship
342 between these two variables and a long term estimate of Ne (dN/dS), suggesting a substantial effect of relaxed
s43  purifying selection on TE proliferation. Support for this correlation was dependant on the gene set used, which is

344 likely to reflect different evolutionary rates between genes. In particular, our results suggest that GC heterogeneity
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345 should be controlled for to improve estimates of dN/dS. As our knowledge of flies progressively extends beyond D.
a6 melanogaster, we should soon be able to integrate new variables, such as local recombination rate or gene expression
347 level, in interspecific comparative studies, allowing a better understanding of the complex relationship between relaxed

a4s purifying selection and molecular traits.

s 4 Materials and Methods

ss0 4.1 Fly sampling

351 Genome size, TE content and selection efficacy were studied for 77 drosophilid species (73 Drosophila, three Zaprionus,
352 and one Scaptodrosophila - supplementary table S1). DNA sequencing data used to infer TE content and selection
353 efficacy were retrieved from public databases for 43 species (supplementary table S2,3,5). Flow cytometry estimates
354 were retrieved from public databases for 59 species (supplementary table S4). For cases where sequencing data and/or
355 flow cytometry estimates were not available, flies were collected from stock centers and research labs (supplementary
356 table S7).

357 The strains were ordered to obtain lines from a single female that was sampled in the wild as recently as possible.
ss¢8  Since the study lines were derived from relatively recently sampled females, the genome fixed in these lines should
359 be representative of a genome from a natural population. Moreover isofemale lines, maintained in the lab with small

sso population sizes, should be mostly homozygous, facilitating assembly.

361 Flies were bred in the laboratory under their optimal living conditions in order to amplify them. As the amplification
362 generations progressed, the adults were frozen after sex determination. In order to sequence only homologous
363 chromosomes, we chose to sequence female individuals (males are heterogametic). For each species, 60 females were
se4 frozen to constitute a sufficient stock of biological material. In parallel, for the estimation of genome size by flow

365 cytometry, the heads of 50 females per species were frozen.

66 4.2 Genome size estimations

367 (Genome size estimates were collected from the Animal Genome Size database (Gregory, 2003), retrieved from Hjelmen
ses et al.|(2019), or evaluated using flow cytometry (supplementary table S4). One to sixteen heads were crushed in buffer
ss9  with heads from a control (either D. melanogaster, D. simulans, or D. virilis). After addition of propidiumiodid results
a70  were analyzed using the BD Accuri 7™ C6 Plus Flow Cytometer. Replicates were performed per fly line, unless
371 biological material was lacking (only one estimate was possible for D. tristis, two for D. algonquin; otherwise five to

372 ten replicates were done).

373 4.3 DNA extraction and sequencing

374 The genome of 38 lines was sequenced for assembly (referred as "homemade assemblies”, supplementary table S6). To
375 obtain sufficient quantity of genetic material for sequencing, DNA was extracted from 20 frozen females per species
s76  using a Phenol-Chloroform protocol. The DNA treated with RNAse, was checked on gel and then assayed. Sequencing
377 was performed with TruSeq gDNA libraries (inserts of approximately 500 bp) and HiSeq Illumina paired-ends (2x125
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s7e  pb) (supplementary table S2). Data were deposited in the Sequence Read Archive repository under the BioProject
379 accession number XXXXXX.

ss0 4.4 Genome assemblies

381 For de novo genomes, raw reads were filtered and trimmed for quality using UrQt (Modolo and Lerat, 2015). Two
ss2  alternative strategies of assemblies were tested. The first consists in progressive depth assemblies using IDBA-UD (Peng
383 et al.}|2012)), to reduce errors in high-depth regions. The second strategy consists in several steps: i) contig assembly
ss4 using Ray-2.3.1 (Boisvert et al.l 2010), with k-mer size varying from 25 to 45, ii) quality estimation using N50, longest
385 contig size, number of contigs >100kb of the 21 obtained contig assemblies, iii) scaffolding of the three best contig
sss assemblies using SOAP de novo (Li et al.,|2010), with k-mer size ranging from 59 to 73 (with an increment of 2), iv)
387 selection of the best assembly based on quality estimation using N50, longest scaffold size, number of scaffolds >100kb
sse and coverage portion of the genome size. For each of the 38 "homemade" genomes, we therefore obtained two different
389 assemblies (one with the first strategy, one with the second one). Genomes’ completeness was estimated using Diptera
390 single-copy orthologous gene sets from BUSCO v4 (Seppey et al.,|2019): we kept the genome assembly maximizing
391 the number of single-copy core genes found (30 were IDBA-UD and eight RAY+SOAP strategy - supplementary table
392 S2). Publicly available genome assemblies analyzed are listed in the supplementary table S3, along with the source,

393 taxon and assembly ID.

394 4.5 Coding sequences identification & Phylogeny

395 On both "homemade" and public genome assemblies, repeat sequences were identified and masked from the assemblies
396 using RepeatMasker (RepBase database) (Smit et al., 2013). Genes were predicted using AUGUSTUS v3.1, pre-trained
397 on the D. melanogaster genome (Stanke and Waack| |2003)). The number of protein-coding genes predicted on each

39 assembly (both "homemade" and public) is provided in supplementary tables S2-3).

399 Prior to gene clustering, we removed isoform variants from the D. melanogaster annotation by conserving only
400 the longest one. We clustered amino acid sequences using MMseqs?2 (Steinegger and Soding, |2017), with default
401 parameters. For each cluster, we built a profile HMM using the program hmmbuild from the HMMER package (Eddy,
402 [2011). Then, we compared all HMM profiles for homology using the program hmmsearch from the HMMER package.
403 We merged homologous families with a minimum of 30% overlap using SiliX (Miele et al., 2011). We removed from

404 each family sequences that were smaller than 50% of the median length of the families.

405 For the phylogenetic reconstruction, we conserved only single-copy orthologs families composed of at least 50% of
406 the 82 lineages, resulting in a dataset of 2,242 gene families. Every nucleotide gene family was aligned with MACSE
407 v2.03 (Ranwez et al., 201 1)(options -local_realign_init 1 -local_realign_dec 1 -max_refine_iter 25), then sites that were
408 shared by less than 50% of the sequences were removed with Gblocks 0.91b (Castresanal |2000) (options -b1=[Number
409 of sequences] -b2=[Number of sequences] -b3=10 -b4=2 -b5=h). We inferred a maximum likelihood phylogenetic
410 tree from the concatenation of all amino-acids alignments using IQ-Tree version 1.6.9 (Nguyen et al.| 2015)), for each
411 partition the most likely model was estimated. We computed 1,000 ultrafast bootstraps (UFBoot) and 1,000 SH-like
412 approximate likelihood ratio test (options -bb 1000 -alrt 1000 -bnni). We also reconstructed the species tree using a

413 supertree approach. For this, all the 2,242 gene trees were individually reconstructed using IQ-Tree, the most likely
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414 model being estimated for each gene. We then used ASTRAL-III (Zhang et al., |2018)) to infer the species supertree

415 from the individual gene trees, while accounting for gene tree discordance.

416 4.6 Estimations of TE content

417 TE content was evaluated from private and public paired-end reads dataset using dnaPipeTE (Goubert et al.| 2015).
418 dnaPipeTE reconstructs consensus of repeated sequences by assembling a subsample of reads of coverage inferior to
419 1X. A read processing was performed prior to this analysis. Low quality positions were removed and size was unified
420 across samples to 100bp using fastx-toolkit (fastq_quality_filter -q 20 -p 80; fastx_trimmer -1 99; v0.0.13). Note that
421 for Drosophila mauritiana reads size was only 75bp. Putative bacterial reads were filtered using kraken2 with NCBI
422 bacterial genomes (v2.1.2: [Wood et al.|(2019)). dnaPipeTE was used on processed reads, as follow: -genome_coverage
423 0.15, -sample_number 2 (v1.3.1, (Goubert et al.| 2015)).

424 4.7 Phylogenetic inertia, correlations between genome size and TE abundances

425 Phylogenetic inertia was evaluated using Pagel’s A (phytools v1.5, (Revell, 2012)). Prior to calculations the tree
426  was converted to ultrametric using ete3 (Huerta-Cepas et al., |6 06), species replicates removed, and values were
427 log-transformed except for developmental time. To evaluate correlations between log transformed genome size and TE
428 abundances while controlling for phylogenetic signal we used the software ancov (Lartillot, 2014). ancov, based on
429 a Kalman filtering algorithm, estimates correlation between quantitative traits using a combination of Markov chain
430  Monte Carlo and Bayesian methods. Additionally, we performed Phylogenetic Generalised Least Squares (PGLS)
431 analysis using the caper package (comparative.data(vcev=TRUE), pgls(lambda = 1.0, kappa = 1.0, delta = 1.0), (Orme
432 let al., 2013)).

433 4.8 Estimations of Effective Population Size and Strength of Selection

43¢ We used both life history and molecular traits in order to estimate Ne. Developmental time from egg to adult at 18°C
435 were retrieved from (Markow and O’Gradyl 2005) for 50 species (supplementary table S8). Molecular traits were
436 estimated from concatenates of 50 genes built from the 2,242 single copy orthologs. Prior to concatenation, nucleotide
437 alignments were filtered using HMMCleaner (D1 Franco et al.l 2019) and Gblocks, using the same parameters as
438 previously but keeping only sites shared by 90% of the sequences. In order to account for intragenomic differences, we
439 first used three concatenates: one including random genes, one including the 50 genes of lowest GC3, and one with the
440 50 genes of highest GC3. The analysis was then repeated using ten concatenates of random genes, and 16 concatenates
441 of similar GC3. The latters were built to span the overall GC3 distribution without overlap between concatenates (i.e. a

442 gene can not be within two concatenates).

443 Codon Usage Bias (CUB) metrics were calculated with a R script using the coRdon package (BioinfoHR||2022).
444 Metrics were first calculated per sequence, and then the median was computed for each concatenate. We chose as
445 CUB metrics the Effective Number of Codons that explicitly accounts for GC bias (ENC’) (Novembre} 2002) and the
446 Synonymous Codon Usage Score (SCUO), an index of deviation from a uniform distribution based on the Shannon

447 entropy (Wan et al.,[2004)). Both metrics are not strongly correlated with each other (Liu et al., 2018).
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448 For each concatenate, two different estimations of dN/dS were performed using coding sequence alignments. First,
a49  coevol was used to reconstruct dN/dS evolution across the tree (Lartillot and Poujol, [2011) (see also Correlations
450 with Ne proxies subsection). Second bio++ libraries were used to estimate a per branch d/N/dS (Dutheil and Boussau,
451 [2008; |Guéguen et al., |2013). Using previously inferred tree topology, the YN98 (F3X4) was used to retrieved the most
452 likely branch lengths, codon frequencies at the root, and substitution model parameters. Then, MapNH was used to
453 estimate d/V and d.S (Guéguen and Duret, 2018; Minin and Suchard, [2008; Dutheil et al.,[2012).

454 4.9 Correlations with Ne proxies

455  Two different methods were used to assess potential correlations between genome size/TE abundances and N e proxies.
456 The first one is implemented in coevol. coevol does not only model dN/dS evolution given a tree and alignments, but
457 also the evolution of other user defined traits while assessing correlations between traits (Lartillot and Poujol, 2011).
458 We thus used coevol to evaluate correlation between genome size, TE content and our proxies of Ne. Variables are
459 assuming brownian motion parametrized by a covariance matrix. All parameters are estimated in Bayesian framework

460 using Monte Carlo Markov Chains.

461 We also used PGLS to test correlations between genome size/repeat content and selection efficacy, using bio++
462 last-branch dN/dS.

463 4.10 Statistical analysis

464  All descriptive and inferential statistics were performed using R (R Core Team, |2021)). P-values were corrected for

465 multiple testing using Benjamini-Hochberg procedure.

w6 5 Data availability

467 All scripts are available at https://github.com/vpymerel/GND.
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