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Abstract

Exploring why individuals vary in their willingness to exert effort in decision-making is fundamental
for understanding human behavior. Our study focuses on the dorsomedial prefrontal cortex/dorsal
anterior cingulate cortex (dmPFC/dACC), a crucial brain region in motivation and decision-making, to
uncover the neurobiological factors influencing these individual differences. We utilized 7T proton
magnetic resonance spectroscopy (*H-MRS) to analyze metabolite concentrations in the dmPFC/dACC
and anterior insula (Al) of 75 participants, aiming to predict individual variability in effort-based
decision-making. Employing computational modeling, we identified key motivational parameters and,
using machine learning models, pinpointed glutamate, aspartate, and lactate as crucial metabolites
predicting decision-making to exert high mental effort, signifying their role as potential biomarkers
for mental effort decision-making. Additionally, we examined the relationships between plasma and
brain metabolite concentrations. Our findings provide novel insights into the neurometabolic
underpinnings of motivated behavior, offering new perspectives in the field of cognitive neuroscience

and human behavior.
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Introduction

Motivation drives individuals to overcome the inherent costs of actions to achieve desired outcomes,
such as obtaining rewards or avoiding punishments (Chong et al., 2016; Pessiglione et al., 2018). This
process, fundamental to human behavior, involves making decisions based on cost-benefit trade-offs
between the rewards involved in an action and the effort required to reach them. However, there is
striking variability in how individuals approach effortful decisions. Some readily engage in physically
or mentally demanding tasks for potential gains or to avoid adverse outcomes, while others may show
reluctance or inability to engage similarly, which can significantly impact their well-being, longevity,
and success in life (Duckworth et al., 2015; Epstein & Silbersweig, 2015; Kanfer et al., 2017). Moreover,
a pronounced aversion to effort exertion is a key symptom in various brain pathologies (Le Heron et
al., 2018; Pessiglione et al., 2018). While such diversity in motivational drive reflects a significant
aspect of human cognition, our understanding of the neurobiological underpinnings of these inter-

individual differences remains limited.

Neurobiologically, motivation and effort-based decision-making are closely linked to the functioning
of specific brain regions, particularly the dorsomedial prefrontal cortex/dorsal anterior cingulate
cortex (dmPFC/dACC) (Bartra et al., 2013; Clairis & Lopez-Persem, 2023; Lopez-Gamundi et al., 2021;
Pessiglione et al., 2018; Soutschek et al., 2022). The dmPFC/dACC plays a pivotal role in regulating
motivated behavior and exerting mental and physical effort, with its activation being crucial in these
cognitive processes (Chong et al., 2017; Kurniawan et al., 2021). Lesions in this area can lead to
increased effort aversion (Le Bouc et al., 2023) and even akinetic mutism, a state characterized by a
lack of initiative to act (Darby et al., 2018), further underscoring its importance. However, our
understanding of the specific components (e.g., neural, metabolic, and others) within the
dmPFC/dACC that influence effort-based decision-making is still limited. Investigating these neural
factors is vital for developing strategies to enhance motivation, thereby empowering individuals to

achieve their goals and maximize their potential.

Recent advances emphasize the importance of brain bioenergetic and metabolic processes for brain
function, behavior, and cognition (Morella et al., 2022; Ulgen et al., 2023; Yellen, 2018). While initial
studies predominantly focused on glucose as the resource-limiting energy source for demanding
cognitive processes (Baumeister, 2003; Gailliot, 2008; Gailliot & Baumeister, 2007), such as decision-
making, recent research has revealed not only that brain glucose might not be as limited as was
originally proposed (Dang, 2016; Job et al., 2013; Lange & Eggert, 2014; Vadillo et al., 2016). Moreover,

neurons utilize various energy substrates, not just glucose, to support neural activity (Lutas & Yellen,
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2013) and, consequently, meeting cognitive demands (Yellen, 2018). These concepts collectively
reinforce the notion that cognitive processes, including motivation and decision-making, are closely
linked to the brain's metabolic state. Understanding this relationship is crucial for insights into the
mechanisms that regulate these cognitive functions. However, our understanding of how metabolism

influences motivational processes and decision-making is still in its early stages.

Proton magnetic resonance spectroscopy (*H-MRS) is emerging as a powerful non-invasive tool in this
context, enabling the quantification of brain metabolites and providing insights into the
neurochemical state of specific brain regions. Metabolites are measurable through *H-MRS, such as
glucose, glutamate, lactate, aspartate, N-acetylaspartate (NAA), creatine, and others. These
metabolites play crucial roles in neuronal health, energy metabolism, and cellular signaling, all key for
neural function and behavior production. Understanding how the concentrations of these metabolites
correlate with effort-based motivated behavior processes can offer valuable insights into the
neurometabolic underpinnings of these cognitive functions. Previous studies have offered initial
insights linking specific metabolites in specific brain regions to individuals’ performance in motivation
and decision-making tasks (Jocham et al., 2012; Strasser et al., 2020; Wiehler et al., 2022; Yoon et al.,
2016). However, virtually all the studies linking metabolite concentrations, acquired through *H-MRS,
to behavior or cognition have focused on individual metabolites using univariate analyses, whether in
patient or healthy populations. This approach has led to a fragmented understanding, potentially
overlooking how the combined influence of multiple metabolites contributes to motivated behavior.
Addressing this gap employing multivariate statistical methods can provide a more comprehensive
view of the neurochemical bases of motivated behavior, given the interconnected nature of metabolic

pathways.

In this study, we leveraged the critical role of the dmPFC/dACC in assessing cost-benefit trade-offs in
effortful tasks to predict individual differences in decision-making for effort-based motivated
behavior. We utilized ultra-high field 7 Tesla (7T) *H-MRS to measure metabolite concentrations in the
dmPFC/dACC, our target region, and in the anterior insula (Al) to assess the specificity of our findings.
The Al, a part of the salience network known for its response to aversive stimuli like punishment (Litt
et al.,, 2011; Seeley et al., 2007), served as a comparative region. Additionally, we conducted
metabolomic analyses of blood samples. To gauge participants' willingness to exert physical and
mental efforts, we created an effort-based decision-making task where subjects chose between low
and high-reward options, that required varying levels of effort. These tasks involved obtaining rewards
or avoiding punishment and alternating between mental and physical effort. We applied

computational modeling to extract key parameters influencing effortful decisions in our task (Bonnelle


https://doi.org/10.1101/2024.01.23.576854
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576854; this version posted January 24, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

et al., 2015; Pessiglione et al., 2018). We subsequently employed machine learning models to explore
whether specific dmPFC/dACC metabolite combinations could predict effortful choices and
parameters of motivated behavior. Our study offers new insights into how dmPFC/dACC metabolic
processes relate to motivated behavior components, potentially identifying novel biomarkers and
therapeutic targets for motivation-related cognitive functions, especially in the context of mental

effort and perception.

Results

Our study was designed to explore how individual variation in 7T *H-MRS measured metabolites in the
dmPFC/dACC (see Fig. 1A,C) can predict differences in physical and mental motivated behavior (Fig.
1D-E) across individuals. Additionally, we performed *H-MRS scans in the Al to assess the specificity of

our predictive findings (Fig. 1B).
Behavioral Task

To assess motivated behavior, participants performed a behavioral task comprising 216 trials in 4
blocks. To ensure task feasibility and remove any risk assessment, we calibrated the task individually
before the start. Each trial required choosing between two options, differing in monetary incentives
and effort levels (Fig. 1D-E). After each decision, participants had to perform the task at the chosen
effort level. This step was critical to ensure that decisions genuinely reflect the effort levels offered,
rather than risk discounting. Indeed, participants completed the selected effort in 95 + 3.7% of mental
effort trials and 98 + 3.4% of physical effort trials. Increased task difficulty led to reduced high-
effort/high-reward choices in both physical and mental tasks (Fig. S1A,D), indicating effort aversion.
Higher difficulty led also to more effort, shown by greater and steeper handgrip force in the physical
task (Fig. S1B-C), and more errors and cognitive load in the mental task (Fig. S1E-F). These findings

validate the task's effectiveness in measuring motivation for both physical and mental efforts.
dmPFC/dACC Metabolites as Predictors of Motivated Behavior

To determine if dmPFC/dACC metabolite levels can predict the proportion of high mental effort (HME)
and high physical effort (HPE) effort choices made by participants, we employed a gradient tree
boosting regression model with metabolite concentrations as regressors. Our feature selection
process, applied to 18 features including metabolites and standard ratios (detailed in Supplementary
Materials), identified 9 features relevant for HME and 5 for HPE prediction (Fig. 2). To enhance data
robustness and minimize overfitting, we adopted a train/validation/test approach with cross-
validation leave-one-out (CVLOO) design, splitting data into training/validation and testing sets with

an 80% ratio, resulting in training/validation (N = 55) and testing (N = 14) datasets. We trained an
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extreme gradient boosting trees (XGBoost) to fit linear response functions to HME and PHE, utilizing
Bayesian optimization for hyperparameter tuning. The prediction error was quantified using the root

mean square error (RMSE).

For the PHE data, the model showed a medium fit in training and validation (train RMSE = 0.47%,
validation RMSE = 17.34%). However, the test set revealed a borderline result (test RMSE = 19.51%, r
= 0.5, p = 0.06), explaining only 25% of the variance (Fig. 2A). A permutation test with 5000
permutations indicated that these borderline significant results were not above chance level (95th
percentile = 13.72 > model RMSE = 12.37) (Fig. 2B), leading us to discard PHE prediction from further

analysis.

In contrast, for the MHE data, the model developed demonstrated a good fit (train RMSE = 0.05%,
validation RMSE = 13.06%) and a consistent result in the unbiased estimate that is the test set (test
RMSE = 12.37%, r = 0.56, p = 0.036), explaining 31% of the variance (Fig. 2C). The permutation test
with 5000 permutations confirmed that our model’s predictions significantly exceeded chance level
(95™ percentile = 13.72 > model RMSE = 12.37) (Fig. 2D). These results support our hypothesis that
dmPFC/dACC metabolite concentrations can predict inter-individual variation in motivated behavior,

specifically demonstrating their predictive power in the context of mental effort tasks.

To understand the impact of individual metabolites in the XGBoost model for predicting HME, we
analyzed the Shapley Additive exPlanations (SHAP) values. The identified features included in
descending order of their importance (determined by the magnitude of each feature's SHAP value)
are glutamate (Glu), lactate (Lac), glutamine (GIn), taurine (Tau), N-acetylaspartate (NAA), N-
acetylaspartylglutamate (NAAG), aspartate (Asp), glutathione (GSH) and creatine (Cr) (Fig. 2E). Thus,
glutamate and lactate emerged as the top discriminating features. However, our SHAP analysis of the
data distribution for each predictive feature/metabolite revealed that specific metabolite
concentrations do not always have a linear relationship with HME. Indeed, neither glutamate (r = -
0.19, p=0.12) nor lactate (r=-0.13, p = 0.27) demonstrated a linear relationship with HME. Particularly
for glutamate, extreme values — either low or high — were negatively associated with HME, indicating
a non-linear relationship. To further investigate this, we employed Bayesian model comparison to
determine the best formula linking glutamate with HME. The model that most accurately predicted
HME featured an inverted U-shape relation, based on the mean-centered squared score of glutamate
concentrations (r = 0.36, p = 0.0026), as supported by both the Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) (Fig. S3).

To determine if the metabolites relevant for HME are specific to the dmPFC/dACC region, we similarly

assessed the ability of Al metabolite concentrations to predict HME. We applied the same model
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training process used for the dmPFC/dACC to Al metabolite concentrations. However, this Al-based
model did not achieve statistical significance in predicting HME in our test set (r =-0.47, p = 0.11) (Fig.
2F), nor in the permutation test (95th percentile = 13.89% > model RMSE = 23.28%) (Fig. 2G). These
results underscore the specificity of the XGBoost model for the dmPFC/dACC in accurately predicting
HME, thereby emphasizing the distinct predictive value of the dmPFC/dACC metabolic landscape in

motivated behavior.

Dissecting Performance: Computational Modeling of Motivated Behavior

Thus far, our analysis has demonstrated the capability of dmPFC/dACC metabolites to predict HME
using XGBoost. However, since motivation, and by extension HME, is a complex construct composed
of multiple elements like reward sensitivity, effort aversion, etc. (Bonnelle et al., 2015; Chong et al.,
2016; Pessiglione et al., 2018), the specific behavioral components influenced by metabolism in this
brain region remain to be elucidated. To dissect HME into these distinct motivational components and
enhance our mechanistic understanding, we employed computational modeling in our task. This
approach aligns with previous studies that have shown the efficacy of computational methods in
deepening our understanding of behavioral mechanisms and uncovering neurobiological correlates
otherwise not observable (Corrado & Doya, 2007; Nassar & Frank, 2016; Pessiglione et al., 2018). This
approach helped us extract idiosyncratic participant parameters, including sensitivities to reward (kR)
and punishment (kP), to mental and physical effort (kEm/kEp), mental facilitation over time (kFm),
physical fatigue (kFp), and overall intrinsic motivation (bias). Adhering to established best practices in
modeling (Wilson and Collins 2019), our approach's validity and robustness are clearly demonstrated
in Figures 3A and 3B. Parameter recovery, assessed by comparing simulation parameters with those
optimized, was successful in 80% of simulations for all the parameters, except for kFm which was
recovered in 46% of simulations, a reasonable result (Fig. 3A). No spurious correlations (-0.5 < r < 0.5,
Palminteri et al., 2017) were detected between parameters (Fig. 3B), allowing for independent and
sensitive recovery of each of the seven parameters. This indicates that our model was capable of

independently and sensitively recovering each of the seven parameters.

Further validation was performed by challenging our model against variants with fewer parameters
through several model comparison techniques, including exceedance probability, estimated model
frequency, AIC and BIC (Fig. S4). These unanimously highlighted the importance of all the extracted
parameters (i.e., kR, kP, kEm, kEp, kFm, kFp, and bias) in describing participants' behavior, despite the
penalization of each additional parameter in the comparison process. Importantly, our model closely

mirrored participant choices (median absolute error of 17.8 + 6%, goodness of fit R? = 0.56) (Fig. 3C-
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D), effectively capturing the tendency of participants to choose more effortful options when monetary

incentives were higher or the associated effort was less demanding.

dmPFC/dACC Metabolites Specifically Predict Sensitivity to Mental Effort

Next, we sought to determine whether dmPFC/dACC metabolites could predict any of the five
idiosyncratic parameters characterizing HME modeling, derived from the computational modeling
above. Specifically, we applied a separate XGBoost regression model to each parameter to investigate
their predictability based on metabolite concentrations. Given that cognitive effort is often perceived
as aversive, which influences action avoidance (Vogel et al., 2020), we initially focused on predicting
sensitivity to mental effort (kEm) from metabolite concentrations. The dataset was split into 80% for
training/validation (N=53) and 20% for testing (N = 14), with hyperparameter tuning conducted using
hyperopt. The model showed a good level of accuracy in predicting kEm (range = 2.13, train RMSE =
0.16, validation RMSE = 0.42), and the test set yielded a modest prediction error (test RMSE=0.4, r =
0.56, p = 0.037) (Fig. 4A), accounting for 30% of kEm’s variance. This was confirmed by a permutation
test, which indicated predictions significantly above chance level (95th percentile = 0.45 > model RMSE
= 0.4) (Fig. 4B). Notably, other parameters involved in mental-effort decision making such as reward
sensitivity (kR), punishment sensitivity (kP), mental facilitation (kFm), and bias were not predictable
using this model (kR: r=-0.21, p =0.23; kP: r =-0.24, p = 0.21; kFm: r =-0.09, p = 0.53; bias: r = 0.07,
p =0.41).

To elucidate the impact of the five metabolites identified through our feature selection on kEm
prediction, we examined their SHAP values (Fig. 4C). This analysis highlighted aspartate and lactate as
the most discriminating features. Notably, aspartate exhibited a significant positive linear correlation
with kEm (r = 0.41, p = 0.0007) (Fig. S2A). Although lactate was the second most important feature, it

alone did not significantly correlate with kEm (r = 0.063, p = 0.62).
Refining the Predictive Model for Mental Effort Decision-Making with Essential Biomarkers

So far, our work has yielded two effective XGBoost models for predicting HME and kEm, utilizing 9 and
5 dmPFC/dACC metabolites, respectively. In our quest to unravel the neurometabolic foundations of
motivation for mental effort, we next focused on further embracing parsimony. Given that overly
complex models could hinder understanding and generalizability, our goal was to refine our models
to strike a balance between simplicity and explanatory (Vandekerckhove et al., 2015), and thus aimed
to develop a streamlined model with a minimal yet effective set of features. This strategy is consistent

with the established approaches in cognitive neuroscience and machine learning, where impactful
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models typically achieve high predictive accuracy with as few parameters as necessary (Takahashi et

al., 2020).

First, we explored whether a robust prediction of HME could be made based on a selected few key
metabolites. However, simply choosing the top two (i.e., glutamate and lactate; Fig. S5A-C) or top
three (i.e., glutamate, lactate, and glutamine; Fig. S5D-F) predictors from our SHAP analysis did not

yield a significant prediction.

Given that the simple selections of top metabolites (glutamate and lactate) in our initial trials did not
yield significant predictions, we pursued a novel approach, inspired by the movement in machine
learning toward integrating biological context to enhance model relevance and interpretability
(Zampieri et al., 2019). Taking into account that Asp ranked top in the kEm model but rather low in
the HME model, possibly due to its biosynthetic relationship with Glu and GIn (Holten & Gundersen,
2008) [note that these three metabolites are intertwined in the TCA cycle (Fig. 5)], we hypothesized
that machine learning's tendency to minimize correlated features might have undervalued Asp's
contribution in the HME model. Our data confirmed significant intercorrelations among these
metabolites (Fig. S4D), suggesting that Asp, despite its lower ranking, could still hold unique predictive
information. Notably, Lac, with no strong association with either Glu (r = 0.03, p = 0.77) or Asp (r =
0.19, p = 0.11), maintained its distinct variance. This led us to re-evaluate the potential of Glu, Asp,
and Lactate concentrations in the dmPFC/dACC for predicting HME and their role as biomarkers for

mental effort decision-making.

Thus, we trained again a XGBoost model and used again a train/validation/test analysis design with a
cross-validation leave-one-out (CVLOO) design. Data were split into training/validation into an 80%
ratio, creating training/validation (N =55) and testing (N = 14) data sets. To fit a linear response
function to HME, we used XGBoost and the RMSE as a metric of error percentage. The model resulted
in a good fit on the training (RMSE = 0.34%) and validation (RMSE = 15.94%) sets. (Fig. 6A,B) and a
consistent result in our unbiased model estimate, the test set (RMSE = 11.4%, r = 0.64, p = 0.014),
explaining up to 40% of the variance (Fig. 6C). The permutation test with 500 permutations confirmed
that our model’s predictions significantly exceeded chance levels (95" percentile = 13.46 > model
RMSE = 11.68). The results support the idea that a few dmPFC/dACC metabolite concentrations can

predict participants' willingness to perform mental effort.

Analyzing the impact of glutamate, aspartate, and lactate on the model's prediction of HME using
SHAP values revealed complex relationships, similar to our results from our initial model predicting
HME. Specifically, glutamate and lactate did not exhibit linear correlations with HME (glutamate: r = -

0.19, p = 0.12; lactate: r = -0.13, p = 0.27). Notably, extreme glutamate values were negatively
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associated with HME, still suggesting a quadratic relationship. In contrast, aspartate showed a strong

negative linear correlation with HME (r =-0.37, p = 0.0018) (Fig. S2A).
Plasma and brain concentrations

Next, in order to explore if there is a relationship between our top identified metabolites in
dmPFC/dACC predictive of HME with relevant plasma components, we examined if plasma
concentrations of glutamate, aspartate, and lactate correlate with their levels in the dmPFC/dACC (Fig.
$6). Furthermore, we also examined if plasma concentrations of glutamine correlated with its
dmPFC/dACC counterpart levels, as glutamate is present in much lower concentration than its
precursor in blood (Smith, 2000). We also performed the same analyses for the Al (our comparison
brain region). Our analyses revealed no significant correlation between the plasma and dmPFC/dACC
or Al concentrations of glutamate and aspartate. Interestingly, lactate displayed region-specific
correlations, being significant in the dmPFC/dACC (r = 0.27, p = 0.023) but not in the Al (r=0.14, p =
0.36). Conversely, glutamine showed a strong positive association in both brain regions (r = 0.54, p =

1.5-10”° in dmPFC/dACC; r = 0.34, p = 0.014 in Al), indicating a more global brain-plasma relationship.

Discussion

There are considerable individual differences in the propensity of individuals to opt for high-effort
choices in incentivized effortful tasks. Despite the significant role of motivation in numerous life
outcomes (Duckworth et al.,, 2015; Epstein & Silbersweig, 2015; Kanfer et al.,, 2017), the
neurobiological underpinnings behind these individual differences remain largely unexplored. Our
study bridges this gap by identifying specific neurometabolic factors in the dmPFC/dACC — a region
critical to effort-based decision-making (Chong et al., 2017; Clairis & Lopez-Persem, 2023; Kurniawan
et al., 2021; Le Bouc et al., 2023; Lopez-Gamundi et al., 2021b; Pessiglione et al., 2018; Soutschek et

al., 2022)— that underlie individual variations in the decision to exert mental effort.

Departing from previous research that focused on individual metabolites (Grachev et al., 2001; Jocham
et al.,, 2012; Strasser et al., 2020; Wiehler et al., 2022; Yoon et al., 2016; Yicel et al., 2007), our
multivariate approach yields a more comprehensive understanding of neurometabolic processes in
mental effort and decision-making. Our initial machine learning model successfully predicted human
high mental effort (HME) selection, identifying nine key metabolites as crucial discriminants from over
twenty analyzed using *H-MRS in the dmPFC/dACC. The high-field (7T) *H-MRS was pivotal in our
study, as it offers superior spectral resolution than lower magnetic field scanners, thus enabling the
differentiation of key metabolites, including glutamate and glutamine that, along with lactate,

emerged as top discriminants in our model. However, attempts to model high physical effort (HPE)
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and predict mental effort using anterior insula metabolites were inconclusive, emphasizing the unique
role of dmPFC/dACC metabolites in mental effort prediction. This specificity is remarkable, given the
functional correlation between the dmPFC/dACC and the anterior insula within the salience network
(Litt et al., 2011; Seeley et al., 2007; Uddin, 2015; Uddin et al., 2019). Subsequently, aspartate and
lactate were identified as key in predicting mental effort sensitivity (kEm), with their elevated levels
related to greater aversion to mental effort. Notably, this model highlights kEm as the only predictable
motivational component from our task, among the several components extracted via computational
modeling. This suggests that sensitivity to mental effort (and, consequently, aversion to effort) is a
central cognitive process through which dmPFC/dACC metabolism influences decisions involving high
mental effort, emphasizing the significance of these metabolites in the context of motivation and

cognitive effort.

Our final model, which aimed for both simplicity and explanatory power, incorporated biological
context to identify a combination of glutamate, aspartate, and lactate in the dmPFC/dACC as sufficient
discriminants for high mental effort propensity. This final model, explaining up to 40% of HME
variance, balances parsimony with predictive strength and reflects the individual and collective
significance of glutamate, aspartate, and lactate in mental effort decision-making. The prominent
roles of aspartate and lactate in both HME and kEm model predictions highlight their importance in
understanding the motivation for mental effort, likely through their relation to mental effort

sensitivity (kEm).

The intricate roles of these three dmPFC/dACC metabolites provide insights into their potential
contribution to high mental effort. They play essential metabolic roles in cellular processes, including
glycolysis (lactate) and the TCA cycle (glutamate, aspartate), contributing to neuronal energy and
synaptic signaling. Importantly, the three are interconnected (see Fig. 5), with lactate contributing to
glutamate and aspartate biosynthesis (Waagepetersen et al., 1998), while glutamate and aspartate
have a bidirectional relationship, supporting each other's production (McKenna et al., 1996;
Schousboe et al., 2014). Moreover, glutamate, released by neurons, can be taken up by astrocytes and
converted into lactate (Juaristi et al., 2019; Pellerin & Magistretti, 2012; Waagepetersen et al., 1998).
Thus, the combined role of these three metabolites in predicting HME suggests that their interplay
within a metabolic network fine-tunes dmPFC/dACC neural computations related to mental effort.
The brain may consider the region's metabolic state when determining mental effort feasibility and

desirability.
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However, understanding the contributions of the three predicting metabolites to HME is challenging.
Only aspartate showed a linear association with HME, with elevated levels linked to reduced mental
effort decisions (HME) and increased aversion to mental effort (kEm). This finding's robustness is
further supported by negative correlations between dmPFC/dACC aspartate levels and both kEm and
several performance measures indicating lower cognitive efficiency with higher aspartate levels (Fig.
S8). Aspartate, an amino acid, plays an integral role in brain metabolism and mitochondria (Schousboe
et al., 2014) and serves as a precursor to glutamate (see above). Its involvement in neuronal activity
has been further underscored in studies showing its transient decreases following neuronal
stimulation (Bednarik et al., 2015, 2018; Mangia et al., 2007). These multifaceted functions underscore
its vital significance in brain metabolism, neurotransmission and, consequently, its potential
implications for cognitive processes, particularly in situations demanding high mental effort.
Hypothetically, dysfunction at the TCA cycle level leads to the accumulation of aspartate in the

dmPFC/dACC, subsequently impacting motivated behavior.

Instead, glutamate displayed an inverted U-shaped relationship with HME. Intermediate glutamate
levels were associated with increased mental effort, while both excessively low and excessively high
levels were linked with reduced mental effort choices. Glutamate, also an amino acid and key
neurotransmitter and metabolic component (Schousboe et al., 2014), plays a dual role in the brain.
Both low and high glutamate concentrations can impair cellular functions (Matute et al., 2007; Zhou
& Danbolt, 2014), emphasizing the importance of maintaining an optimal balance for proper cognitive
function. Notably, we also found that, in the dmPC/dACC, the Glu/Asp ratio, potentially reflecting the
TCA cycle and mitochondrial function, correlated positively with high mental effort and negatively
with sensitivity to mental effort, highlighting the importance of maintaining a proper balance between

glutamate and aspartate concentrations for mental effort regulation.

Regarding lactate, its concentration in the dmPFC/dACC was related to HME and kEm, only when
considered alongside other metabolites, as no mathematical function was found to describe this as a
univariate relationship. Interestingly, the SHAP analyses hinted that in the absence of a linear
association, there may be a certain threshold beyond which elevated lactate levels might
detrimentally influence mental effort decisions. Lactate has recently emerged from just being
considered as a waste product from stressed muscles and cells (Jorfeldt et al., 1978; Rabinowitz &
Enerbéack, 2020) to be regarded as a key player in brain energy metabolism and glutamate production
(Magistretti & Allaman, 2018; Rabinowitz & Enerback, 2020; Schurr, 2017). It acts as a crucial energy

source for neurons, particularly during periods of intense neuronal activity (Magistretti & Allaman,
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2018). Lactate's dynamic regulation is essential for supporting cognitive processes and maintaining

proper brain function (Dienel & Hertz, 2001; Shulman et al., 2001; Theriault et al., 2023).

Lactate is a recognized metabolic marker for mitochondrial dysfunction in the brain (Barker et al.,
2005; Bianchi et al., 2007; Schmiedel et al., 2003). Elevated lactate levels indicate impaired
mitochondrial function, characterized by a shift towards glycolytic metabolism and reduced oxidative
phosphorylation. This elevation serves as a biomarker for mitochondrial dysfunction and energy
metabolism disturbances in brain pathologies (Ernst et al., 2017; Li et al., 2022; Machado-Vieira et al.,
2017) as, under normal conditions with intact mitochondrial metabolism, lactate does not accumulate
in the brain (Bianchi et al., 2007; Schmiedel et al., 2003) but serves as an energy source for neurons
(Magistretti & Allaman, 2018; Pellerin et al.,, 1998). However, in the presence of mitochondrial
dysfunction, a shift to extramitochondrial glycolysis leads to lactate accumulation (Ernst et al., 2017).
As lactate is a tightly controlled molecule, whose fundamental role is to uncouple the glycolysis and
the TCA cycle, its influence may most likely be seen in other intricate metabolic pathways (Rabinowitz
& Enerback, 2020; Waagepetersen et al., 1998), including potential changes in glutamate and, thereby,
aspartate levels. Given our results suggest that higher baseline dmPFC/dACC lactate concentrations
tended to have a negative impact on mental effort, despite lactate’s energy-providing role, our
findings suggest that high lactate levels, possibly due to some mitochondrial dysfunction, could

adversely affect motivation.

Therefore, of the number of metabolites collected from each participant, the most discriminating
variables contributing to motivated behavior in our mental effort task include features that were
related to energetic pathways. Energy is of peculiar importance as, notably, the dmPFC/dACC selected
in our study, is one of the regions with the highest energy consumption of the brain (Castrillon et al.,
2023; Raichle & Mintun, 2006). At a regional level, regions like the dmPFC/dACC that expanded most
during human evolution show an excessive energy demand compared to the rest of the brain.
Furthermore, the dmPFC/dACC also shows higher aerobic glycolysis (Vaishnavi et al., 2010), suggesting
that this region is capable of intense and sudden energy expenditure. One could thus hypothesize that
a higher concentration of metabolites (glutamate, aspartate, and lactate) would mean more available
energy, and thus result in increased levels of motivation. However, aspartate and a combination of
lactate and glutamate concentration, influence negatively motivated behavior. Here, we hypothesize
that our measures of aspartate and lactate concentrations display an accumulation due to an
imbalance in mitochondria of the TCA function. This could be an explanation for the decreased

willingness to perform mental efforts in subjects with higher baseline levels of dmPFC/dACC aspartate,
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lactate, and glutamate. However, this is but one hypothesis that would remain to be tested in future

studies.

The multivariate approach in our study also identified the importance of other metabolites, such as
glutathione and taurine related to antioxidant pathways, and glutamine, although to a lesser extent.
Previous research has demonstrated that glutathione levels in the nucleus accumbens positively affect
physical endurance by protecting against oxidative stress (Zalachoras et al., 2022), while glutamine
levels were found to negatively correlate with physical effort perception in the nucleus accumbens
(Strasser et al., 2020). These findings suggest that metabolic pathways impacting motivated behavior
may vary across different brain areas, emphasizing the potential for targeted interventions to address

motivational deficits in various contexts.

Interestingly, metabolite concentrations are considered to remain constant across multiple days and
even across years for most metabolites, as shown by the intra-class correlation coefficient (Lally et al.,
2016; Ross et al., 2006), supporting the view that the inter-individual differences in metabolism and
motivated behavior measured in our study reflect general differences across individuals that could be
related to genetic or environmental (nutrition, climate, development, etc.) factors that are relatively
stable over time. To minimize any other influence on the metabolic state of our participants (age,
circadian rhythm, meal), we only included individuals between 25 and 40 years old (i.e., after the brain
development and before neurodegeneration) and always started the experiment at 2 pm to minimize
the potential effects of hunger/digestion and circadian rhythm on our metabolic measurements.
However, such concentrations are not immutable and can be altered in several manners, including
through nutritional supplementation and modifications to the microbiome. This opens the door to
potential interventions in diseases where motivation is affected (Kochalska et al., 2020; Lyoo et al.,

2003).

When exploring the relationship between brain and plasma concentrations, we found that the
concentrations of our biomarkers in the brain are generally independent of plasma concentrations,
except for lactate, which exhibited a positive correlation in the dmPFC/dACC. Validating findings in the
literature, the concentration of glutamate in the dmPFC/dACC and Al is observed to be largely
independent of plasma levels, with plasma representing only a fraction of the brain concentration
(Smith, 2000). To the best of our knowledge, the relationship between aspartate concentration in the
plasma and the brain has never been described. Similar to glutamate, aspartate levels in the
dmPFC/dACC and Al remain independent of plasma concentration, with concentration a hundred
times lower in plasma compared to the brain. In contrast, metabolites such as lactate and glutamine

demonstrate concentrations in the blood that closely mirror those in the brain, suggesting potentially
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distinct dynamics in the brain uptake of these metabolites (Cruzat et al., 2018). In our study, lactate
concentration in plasma displayed a significant correlation only with brain concentrations in the
dmPFC/dACC, an area known for higher energy consumption. In comparison, glutamine transport
appears to be global, as plasma concentrations showed a significant relationship with concentrations
in the dmPFC/dACC. Taken together, our targets of interest appear to be largely unaffected by plasma

concentrations.

While effort is typically viewed as something to be minimized, it can also enhance the value of
outcomes and even drive our choices (Gheza et al., 2023; Inzlicht et al., 2018; Zerna et al., 2023). Stable
individual differences in cognitive motivation — the tendency to engage in and enjoy effortful
cognitive activities — have been documented with self-report measures and recently reinforced by
empirical evidence (Crawford et al.,, 2022). This research indicates the presence of a trait-level
cognitive motivation in the population, characterized by a consistent propensity to undertake and
derive pleasure from cognitively demanding tasks. Cognitive effort, typically avoided as aversive, can
be intrinsically valued, particularly when linked to rewards (Clay et al., 2022). This is in contrast to
individuals with certain psychological or neurological conditions, who demonstrate a diminished
willingness to exert cognitive and physical effort (Ang et al., 2023; Horne et al., 2021; Le Bouc et al.,
2023; Vinckier et al., 2022; Westbrook et al., 2023). The reluctance in these cases is often linked to
altered reward sensitivity rather than an increased perception of effort (Le Heron et al., 2018).
Importantly, in our study, we implemented a process of standardizing tasks’ effort demands across
participants, drawing inspiration from a critical methodological advancement highlighted in recent

cognitive effort research (Fleming et al., 2023).

In conclusion, the present study emphasizes the major role of metabolites in dmPFC/dACC of healthy
participants, namely glutamate, aspartate, and lactate, to predict the amount of effort participants
are willing to produce and their perception of it. Thus, in addition to highlighting the importance of
these metabolic pathways, our study contributes to bridging the gap between motivated behavior and
neurometabolism in healthy adults. Future studies will help to understand the precise role and
interactions at the molecular level of the metabolites identified here. For instance, one could causally
manipulate the levels of these metabolites in the dmPFC/dACC equivalent of animal models, to better
disentangle the impact of each metabolite. Moreover, nutritional interventions aiming at modifying
the dmPFC/dACC levels of glutamate, aspartate, and lactate in humans could prevent and help treat
pathologies related to motivational alterations but further studies are first needed to verify whether
nutritional intake of glutamate, aspartate, and/or lactate precursors can causally influence

dmPFC/dACC levels of these metabolites, and have a positive impact.
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Limitations of the study

The borderline nature of the results of our model to predict HPE underscores the necessity for further
investigation into the involvement of dmPFC/dACC metabolites in the computation of physical effort
decisions. Furthermore, the model was able to result in significant predictions but it was trained on a
limited sample size. In the future, it will be important to benchmark the prediction capacity of our

model and show its generalization capacity to both new datasets and other mental effort paradigms.
Conclusions

Our study breaks new ground within the emerging field that underscores the crucial role of
bioenergetic and metabolic processes in influencing brain function and cognitive behaviors. Our
holistic approach represents a significant advancement in understanding the intricate metabolic
interplay in cognitive neuroscience. Unlike traditional univariate analyses, our machine learning
approach considers the collective impact of these metabolites, highlighting the complex relationship
between metabolic processes and cognitive functions. By integrating multiple metabolites, our model
provides a more comprehensive view of how brain bioenergetics and metabolism influence cognitive
functions and motivation. The identified dmPFC/dACC metabolites have the potential to serve as
biomarkers for mental effort. This study contributes to the emerging field emphasizing the role of
bioenergetics and metabolism in brain function and cognitive behavior, opening new avenues for

exploring their impact on mental health.
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Methods

Participants

The results presented in this section are part of a larger study that aims at investigating inter-individual
differences in motivated behavior. Here, we specifically analyzed a subset of the collected data that

pertains to metabolite concentrations and behavioral measures.

A total of 75 healthy (N = 40 females) right-handed volunteers participated in this study, approved by
the Cantonal Ethics Committee of Vaud (CER-VD), Switzerland. Participants were recruited through
the Université de Lausanne (UNIL) LABEX platform, as well as through online and printed
announcements in the city of Lausanne. Participants were required to speak French fluently (B2
minimum). Furthermore, they underwent a screening process to identify any exclusion criteria,
including being between 25 and 40 years old, not regularly using drugs or medications, having no
history of neurological disorders, and not having any contraindications to MRI scanning, such as
pregnancy, claustrophobia, a tattoo near the neck, or metallic implants. All participants provided
signed informed consent before taking part in the study. Prior to their lab visit, participants completed
inclusion/exclusion criteria and several online questionnaires via an online platform using Qualtrics
(Qualtrics, Provo, UT, USA). Using the MADRS-S, a depression questionnaire, and to ensure we
acquired a wide range of behavior and sufficient inter-individual variability, we collected as many
participants with a MADRS-S score lower than 4 and higher than or equal to 4 (Ntini et al., 2020; Yee
et al., 2015). Two participants did not finish the behavioral experiment due to technical issues.
Furthermore, four participants always selected the effortful option in at least one of the two tasks,
which made it impossible to fit our model on their behavior, leaving us with a final sample size of 69
subjects for our first and third machine learning model (34 females; age = 30.5 + 3.9 years; weight =
67.9 + 12.6 kg; BMI = 22.8 + 3.1). For our second machine learning model, 2 more participants were
filtered due to aberrant values (higher than mean+3SD) for the behavioral parameter kEm. After
removing these participants, the final sample for the second model contained 67 subjects (34 females;
age =29.9 + 3.9 years; weight =67.7 £ 12.5 kg; BMI =22.8 £ 3).

Participants received a payment of 70 CHF for completing the task, an additional 10 CHF per hour
spent in the experiment, and a fixed amount of 4 CHF for each time they performed a physical or
mental maximal performance, performed 10 times. Finally, participants also received payment based
on their choices and performance during the indifference point measurement and in the main task.

On average, participants earned 204 + 17.4 CHF for their participation in the study.

Experimental procedure
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Participants were invited to participate in our study, which always started at 2 pm to control for any
metabolic difference that could be driven by the circadian rhythm. Participants were also required to
eat at least 1h before coming to avoid any metabolic fluctuation that could be related to food
digestion. First, blood samples were collected at the “Point Santé” in EPFL and the “centre médical
des arcades” by healthcare professionals. Next, baseline metabolite concentrations were acquired by
proton magnetic resonance spectroscopy (*H-MRS), both in the dmPFC/dACC and the Al (Fig. 1A-C).
Then, participants were trained out of the scanner to perform the behavioral task. During training,
participants performed their maximum voluntary contraction (MVC) and maximum number of correct
responses (MNCR), used to account for interindividual differences, by calibrating task difficulty both
in physical and mental tasks. In addition, the perceived value of the incentive was assessed by
identifying the indifference points, corresponding to a 50% chance of accepting a certain level of effort
for a given monetary incentive. The behavioral task explores different aspects of motivated behavior
while capturing a wide range of interindividual differences (Fig. 1D). On every trial, participants were
asked to choose between a fixed low incentive/low effort option and a high incentive/high effort
option, varying in both effort and incentive levels. After their choice selection, the selected option was
displayed and continuous (for high confidence) or dotted (for low confidence) lines reflected the level
of confidence. Then after their selection, participants always had to perform the selected effort.
Incentives were either monetary loss or gain. Effort was either physical, implying to exert a force equal
or superior to 55 % of the participant’s MVC during a varying amount of time depending on the level
of effort selected, or mental, implying to perform different numbers of correct responses in a 2-back
task, depending on their MNCR. The complete set of explanations is reported in the Supplementary

Materials.

MRS acquisition and preprocessing

Proton magnetic resonance (*H-MR) spectra were collected using a 7 Tesla/68 cm MR scanner
(Magnetom, Siemens Medical Solutions, Erlangen, Germany) with a single-channel quadrature
transmitter and a 32-channel receive coil (Nova Medical Inc., MA, USA). To optimize the magnetic field
homogeneity, shim components were adjusted using FASTMAP (Gruetter, 1993) for both first and
second-order. LCModel was used for analysis (Provencher, 1993), and all spectra were corrected for
phase shifts and averaged, with a basis set that included simulated metabolite spectra and an
experimentally measured macromolecule baseline (Schaller et al., 2014) in the chemical shift range of
0.2 to 4.2 ppm. An unsuppressed water spectrum was acquired and used as an internal reference for

absolute metabolite quantification in LCModel.
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An MP2RAGE image was acquired and used to calculate the tissue composition within the MRS voxel.
Furthermore, the MP2RAGE image was then segmented into grey matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) in SPM12 toolbox (Wellcome Trust Center for Neurolmaging, London,

UK) with the MarsBaR package (https://marsbar-toolbox.github.io/) (Brett et al., 2002), creating the

VOI mask. Metabolite concentrations were adjusted for the CSF fraction, assuming water
concentrations of 43,300 mM in GM, 35,880 mM in the WM, and 55,556 mM in the CSF. In addition,
to ensure all voxels were positioned correctly, we computed a density map of metabolites
measurement, highlighting the precision of our voxel positioning, based on our MP2RAGE image and

VOI mask (Fig. $7).

Following metabolite quantification in LCModel and correction, any computed metabolite
concentrations with a Cramér-Rao lower bounds (CRLB) higher than 30 % were rejected. In addition,
any participants with metabolite concentrations higher than the mean + 3SD were removed as
outliers. Then, the metabolites ratios were computed, namely glutamine to glutamate (GIn/Glu),
glutamate to y-aminobutyric acid (Glu/GABA), and creatine to phosphocreatine + creatine
(Cr/(PCr+Cr)). Finally, using the Python package sklearn.lterativelmputer, the missing dataset values

were filled by multivariate imputation.
Motivated behavior modeling

Participants’ choices were fitted with a softmax model using Matlab’s VBA toolbox (https://mbb-

team.github.io/VBA-toolbox/) which implements Variational Bayesian analysis under the Laplace

approximation (Daunizeau et al., 2014). The algorithm provides an estimate of the posterior density

over the model parameters, starting from Gaussian priors.

We compared five models, each increasing in complexity (Fig. 2S). In our models, we modeled the
complete behavior of participants in order to compare physical and mental effort types. To reduce the
risk of overfitting, and improve robustness, all models’ components were kept linear. By assessing
how each model accounted for each participant’s choice we captured seven different components of
motivated behavior, namely sensitivity to reward (kR), punishment (kP), physical (kEp) and mental
effort (kEm), physical fatigue (kFp) and mental facilitation (kFm), and a bias term (bias). These
sensitivities were used to compare subjective values across options. We found that participants'

choices were best predicted by our fifth model (Fig. 2S), composed as follows:

ASV(t) = kR +AR(t) + kP + AP(t) — AEp(t) * (kEp + kFp + £y AUC()) — AEm(t) + (KEm + ki » “eozrestanswersC1))

effort time(t—1)

Where ASV is the subjective value of the varying option discounted by the subjective value of the fixed

option. AR and AP represent the difference in the monetary incentives (reward or punishment)
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between the varying option and the fixed option, AE represents the difference in effort level between
the varying option and the fixed option, the area under the curve (AUC) represents the total force
exerted in a given trial during a physical block, Ncorrect answers(t-1) represents the number of correct
answers provided in the previous trial and effort time(t-1) represents the time it took to complete the
effort in the previous trial, during a mental block. When a block was specific to an effort, or a trial
specific to an incentive type, its counterpart was set to 0. Finally, ASV is then taken as input in a

softmax function:

1
Puign erore(t) = T asvinybias

Where Pyigh ¢ frort (t) represents the probability of choosing the high effort/high incentive option for
a given ASV at trial t. Apart from the bias parameter (bias), all parameters were positively constrained
through a log(1+exp(x)) transformation. Priors were uninformative and practically flat with a null
mean, and a sigma set to 100, accounting for high fluctuations in Al between participants, due to IP
calibration and forced positivity. Finally, apart from the bias, parameters were boxcox transformed to

reduce skewness and increase normality (Bicego & Baldo, 2016).

Feature selection and extreme gradient boosting trees (XGBoost).

Feature selection plays a crucial role in developing predictive models, as it simplifies the model by
removing redundant features and mitigates overfitting, particularly for small sample sizes with limited
generalization ability. To avoid bias in test predictions, feature selection was conducted on the training
dataset for both models. Features with a Pearson correlation coefficient smaller than 0.1 with the
target variable were removed. As a second round of feature selection, the training set was further
divided into train and validation sets. Sklearn AdaBoostRegressor package was used to train models
using cross-validation leave-one-out (CVLOO) and predicted target variables. The selected features
were those that yielded the smallest validation error. The resulting metabolites were given to train

both machine learning algorithms.

We employed XGBoost to predict the number of high-effort options performed by participants
(models 1 and 3) and the mental effort perception, extracted with the behavioral model (model 2)
using a selected set of metabolite concentrations. We used the XGBRegressor function from the
Python XGBoost package to fit both models. XGBoost includes several adjustable hyperparameters.
We optimized the step size shrinkage (eta), maximum depth of the tree (max_depth), minimum sum

of instance weight (min_child_weight), and regularization parameters (gamma, lambda, alpha)
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through Bayesian optimization with the hyperopt Python package (Bergstra et al., 2013). We assessed
our model's prediction performance by correlating the predicted and true values of the target
variables in a holdout sample that was not utilized in the model learning process. The train and test
datasets were loaded into data frames using the pandas Python package and evaluated using model
assessment metrics computed with the numpy Python package. Additionally, we computed the SHAP

values using the shap Python package (Lundberg et al., 2019).
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Fig. 1 Experimental design. A-B dmPFC/dACC and Al voxel positioning (20x20x20mm3) in the coronal and sagittal cut. The
voxel in this image is positioned on the average anatomical scan of the participants included in the study (N=69). C
Representative 'H MR spectrum acquired with the semi-adiabatic SPECIAL sequence at 7 Tesla, as well as the corresponding
LGCModel spectral fit, macromolecules, baseline, residual fit, and individual fit for glutamate (Glu), aspartate (Asp) and
lactate (Lac). D-E behavioral task design. After a fixation cross with a jitter, participants had up to 5 seconds to choose which
option they wanted to select. One option was fixed and the other varied the incentive and the effort level. Incentives were
either expressed as rewards, or as punishments. Reward and punishment trials were intermixed, while physical and mental
effort trials were performed in separate blocks. During the choice period, each option was associated with a reward or a
punishment and a different level of effort. The selected option was displayed through short feedback (2s). Then a fixation
cross with a jitter allowed to disentangle the decision-making process from the effort period, while allowing the participant
to prepare for the effort to perform. During the mental effort period (D), participants had to perform a certain number of
correct answers depending on their calibration and on the selected effort option, within 10s. At the end of each trial,
feedback on the performance was displayed. During the physical effort period (E), participants needed to maintain their

force higher than the threshold, based on their calibration and the selected effort option, within 5s.
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Fig. 2 Model prediction of the percentage of high-effort choices, based on metabolites concentration in the dmPFC/dACC

and Al. A Trained on dmPFC/dACC metabolites, correlation between the XGBoost model’s prediction of HPE and the true


https://doi.org/10.1101/2024.01.23.576854
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576854; this version posted January 24, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

percentage of HPE for the test set (r = 0.5, p = 0.06), using the following features: lactate (Lac), Glycine (Gly),
Phosphocreatine/total creatine (PCr/(Pcr+Cr)), y-aminobutyric acid (GABA), Glutamate/GABA. B Permutation test by
permuting labels randomly and repeating the procedure, using the 95t percentile as a (threshold 95th percentile = 17.34%
< model RMSE = 19.51%). C Trained on dmPFC/dACC metabolites, correlation between the XGBoost model’s prediction of
HME and the true percentage of HME for the test set (r = 0.56, p = 0.02). D Permutation test by permuting labels randomly
and repeating the procedure, using the 95t percentile as a threshold (threshold 95th percentile = 13.72% > model RMSE =
12.37%). E SHAP values and importance for the trained model were calculated for each subject. After feature automatized
feature selection, nine features remained: glutamate (Glu), lactate (Lac), glutamine (GIn), taurine (Tau), N-acetylaspartate
(NAA), N-acetylaspartylglutamate (NAAG), aspartate (Asp), glutathione (GSH), creatine (Cr). F Trained on Al metabolites,
correlation between the XGBoost model’s prediction of HME and the true percentage of HME for the test set (r=-0.47, p =
0.06). G Permutation test by permuting labels randomly and repeating the procedure, using the 95t percentile as a threshold
(threshold 95th percentile = 13.89% < model RMSE = 23.28%). The model resulted in critical failure in prediction, due to its

inverse prediction in the test set.
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Fig. 3 Characterizing model recovery, parameters independence, as well as motivated behavior across mental effort. A
Confusion matrix to test model recovery. We get our parameters recovery by choosing random parameters, using them to
simulate data, and then fitting the model on the simulated data, which are then compared to the original parameters used.
Our model shows high recovery in all parameters and moderate recoverability for kFm. B Autocorrelation matrix to

investigate parameters’ identifiability based on 30’000 simulations. The highest correlation can be found between kEm and
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kFm (r =-0.21). C Percentage of high effort taken per participant in function of the amount of mental effort and incentive

presented. D Model’s predictions on the amount of HME in function of the amount of incentive and effort involved.
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Fig. 2 Model prediction of sensitivity to mental effort from metabolites concentration in the dmPFC/dACC. A Correlation
between the XGBoost model’s prediction and sensitivity to mental effort for the test set (r = 0.56, p = 0.018). B Permutation
test by permuting labels randomly and repeating the procedure, using the 95t percentile as a threshold (threshold 95th
percentile = 0.45 > model RMSE = 0.4). C SHAP values for the trained model were calculated for each subject. After
automatized feature selection, five remained: aspartate (Asp), lactate (Lac), glutathione (GSH), glutamine (Gln), and GIn/Glu

ratio.
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OAA L

Fig. 5 Simplified schematic of the tricarboxylic acid (TCA) cycle and malatate-aspartate shuttle (MAS) in mitochondria and its
relationship of aspartate, glutamate and lactate. Alpha-ketoglutarate (a-KG), malate (Mal), aspartate (Asp), pyruvate (Pyr)
lactate (Lac), oxaloacetate (OAA), glutamate (Glu), acetyl-coenzyme A (acetyl-CoA), nicotinamide adenine dinucleotide
(NAD*/NADH). In bold and purple are highlighted our metabolites of interest.
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Fig. 6 Model prediction of the percentage of high-effort choices during the mental task, based on metabolites
concentration in the dmPFC/dACC, using only glutamate, aspartate, and lactate metabolites. A Correlation between the
XGBoost model’s prediction and the percentage of times high mental effort (HME) was chosen) for the test set (r=0.64, p =
0.007). B Permutation test by permuting labels randomly and repeating the procedure, using the 95t percentile as a
threshold (threshold 95th percentile = 13.46% > model RMSE = 11.68%). C SHAP values for the trained model were calculated

for each subject.
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