

1 Comparison of direct cDNA and PCR-cDNA Nanopore 2 sequencing of *Escherichia coli* isolates

4 1.1 Author names

5 Rodger G^{1,2}, * (ORCID 0000-0001-6051-8985), Lipworth S^{1,2, 3, *}, Barrett L³, Oakley S³, Crook
6 DW^{1,2, 3, 4} Eyre DW^{2, 3, 4, 5} Stoesser N^{1,2, 3, 4} (ORCID 0000-0002-4508-7969)

7 * contributed equally

10 1.2 Affiliation(s)

11 ¹Nuffield Department of Medicine, University of Oxford, Oxford, UK

12 ²NIHR Health Protection Unit in Antimicrobial Resistance and Healthcare-associated Infection,
13 University of Oxford, Oxford, UK

14 ³Oxford University Hospitals NHS Foundation Trust, Oxford, UK

15 ⁴NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK

16 ⁵Big Data Institute, Nuffield Department of Public Health, University of Oxford, Oxford, UK

18 1.3 Corresponding author and email address

19 Corresponding author e-mail: gillian.rodger@ndm.ox.ac.uk

20 Alternate corresponding author: samuel.lipworth@ndm.ox.ac.uk

22 1.4 Keywords

23 *Long-read RNA-Seq, bacterial transcriptomics, antimicrobial resistance gene expression*

25 1.5 Repositories:

26 The transcript reads of the four clinical strains of *Escherichia coli* have been deposited in
27 Figshare, DOI: 10.6084/m9.figshare.25044051. All code is available at
28 https://github.com/samlipworth/rna_methods where there is also a Binder that can be used
29 to reproduce all key results and figures in this manuscript.

31 2. Abstract

32 Whole-transcriptome (long-read) RNA sequencing (Oxford Nanopore Technologies, ONT)
33 holds promise for agnostic analysis of differential gene expression (DGE) in pathogenic
34 bacteria, including for antimicrobial resistance genes (ARGs). However, direct cDNA ONT
35 sequencing requires large concentrations of polyadenylated mRNA, and amplification
36 protocols may introduce technical bias. Here we evaluated the impact of direct cDNA and
37 cDNA PCR-based ONT sequencing on transcriptomic analysis of clinical *Escherichia coli*. Four
38 *E. coli* bloodstream infection-associated isolates (n=2 biological replicates/isolate) were
39 sequenced using the ONT Direct cDNA Sequencing SQK-DCS109 and PCR-cDNA Barcoding
40 SQK-PCB111.24 kits. Biological and technical replicates were distributed over 8 flow cells
41 using 16 barcodes to minimise batch/barcoding bias. Reads were mapped to a transcript

42 reference and transcript abundance quantified after *in silico* depletion of low abundance and
43 rRNA genes. We found there were strong correlations between read counts using both kits
44 and when restricting the analysis to include only ARGs. We highlighted correlations were
45 weaker for genes with a higher GC content. Read lengths were longer for the direct cDNA kit
46 compared to the PCR-cDNA kit whereas total yield was higher for the PCR-cDNA kit. In this
47 small but methodologically rigorous evaluation of biological and technical replicates of
48 isolates sequenced with the direct cDNA and PCR-cDNA ONT sequencing kits, we
49 demonstrated that PCR-based amplification substantially improves yield with largely
50 unbiased assessment of core gene and ARG expression. However, users of PCR-based kits
51 should be aware of a small risk of technical bias which appears greater for genes with an
52 unusually high (>52%)/low (<44%) GC-content.
53

54 **3. Impact statement**

55 RNA sequencing allows quantification of RNA within a biological sample providing information
56 on the expression of genes at a particular time. This helps understand the expression of
57 antimicrobial resistance genes (ARGs). In RNA-Seq experimental workflows extra steps of
58 reverse transcription may be needed to generate more stable cDNA to allow for amplification
59 by PCR if starting RNA input was low. Two current methods of long-read RNA sequencing
60 include direct cDNA and PCR-cDNA based sequencing (Oxford Nanopore Technologies, ONT).
61 However, few studies have compared these two methods of RNA-sequencing using clinical
62 bacterial isolates. We therefore undertook a study to compare both kits using a
63 methodological balanced design of biological and technical replicates of *E. coli*. Our study
64 showed that direct cDNA and PCR-cDNA sequencing is highly reproducible between biological
65 and technical *E. coli* replicates with very small differences in gene expression signatures
66 generated between kits. The PCR-cDNA kit generates increased sequencing yield but a smaller
67 proportion of mappable reads, the generation of shorter reads of lower quality and some
68 PCR-associated bias. PCR-based amplification greatly increased sequencing yield of core
69 genes and ARGs, however there may be a small risk of PCR-bias in genes that have a higher
70 GC content.
71

72 **4. Data summary**

73 The transcript reads of the four sequenced *Escherichia coli* strains have been deposited in the
74 Figshare, DOI: 10.6084/m9.figshare.25044051.
75

76 The authors confirm all supporting data (available in Figshare), code (available at:
77 https://github.com/samlipworth/rna_methods) and protocols have been provided within the
78 article or through supplementary data files.
79

80 **5. Introduction**

81 RNA sequencing (RNA-Seq) has become the leading method for transcriptome-wide analysis
82 of differential gene expression (DGE) [1-3]. RNA-Seq can characterize all transcripts over a
83 large dynamic range; quantify terminator efficiency and small RNAs; and measure

84 transcriptional abundance, including operons, whilst being cost-effective [4-6]. Having a
85 greater understanding of bacterial gene expression would provide valuable insight into the
86 relationship between genotype and phenotype for diverse microbial functions, including
87 antimicrobial resistance (AMR).

88

89 To date, most RNA-Seq has been based on short-read Illumina sequencing generating read
90 lengths up to 300bp, and short-read RNA-Seq workflows and computational tools have
91 evolved substantially [2, 5]. During library preparation for short-read sequencing however,
92 RNA is fragmented prior to reverse transcription (RT), potentially resulting in lost information
93 during read mapping and making distinguishing between overlapping transcripts and
94 therefore full-length transcript analysis challenging [7, 8]. Recent advances in long-read
95 sequencing, for example from Oxford Nanopore Technologies (ONT; hereafter referred to as
96 “nanopore”), have removed the need for RNA fragmentation thus permitting sequencing of
97 longer transcripts, and improved read-mapping strategies and transcript identification [7].

98

99 Nanopore RNA-Seq protocols reflect two main approaches: The first is direct sequencing of
100 RNA molecules using the RNA-Seq kit (SQK-RNA002, upgraded to SQK-RNA004 in early 2024
101 for compatibility with the latest Early Access program RNA (FLO-MIN004RA) flow cell) [7-9].
102 The second incorporates cDNA synthesis allowing enrichment of full-length sequenced
103 transcripts [7]. For cDNA sequencing, nanopore offer two kits – a direct cDNA sequencing kit
104 (SQK-DCS109, evaluated in this study and hereafter referred to as the “direct” kit; replaced
105 by SQK-LSK114 in mid-June 2023) and a kit which includes a cDNA PCR-based amplification
106 step (SQK-PCB111.24, evaluated in this study and hereafter referred to as the “PCR” kit;
107 pending replacement by SQK-PCB114.24 currently an early Access product, fully available in
108 March 2024). Although direct cDNA sequencing could avoid PCR amplification bias, it also
109 requires a high polyadenylated mRNA input (>100 ng) and the library preparation time is
110 longer (~5 hrs vs 1hr 45 minutes).

111

112 Bacterial RNA-Seq workflows can be challenging as messenger RNA (mRNA), typically
113 represents <5% of RNA isolated. Most RNA extracted is ribosomal RNA (rRNA; i.e. 5S, 16S,
114 23S) which requires depletion to allow for sufficient, cost-effective mRNA sequencing
115 coverage [10, 11], but poor sequence quality can result from RNA degradation during
116 depletion. Moreover, bacterial mRNA is not naturally polyadenylated at the 3' end, which is a
117 pre-requisite for nanopore protocols where polyadenylated mRNA is annealed to an oligo(dT)
118 primer for PCR-cDNA sequencing or ligated to a double-stranded oligo(dT) splint adapter in
119 direct RNA sequencing. Given large concentrations of polyadenylated mRNA are required for
120 nanopore sequencing, optimisation of extraction and template preparation workflows would
121 be ideal [7, 12]. Additionally, computational tools are generally designed for eukaryotic
122 transcriptomics or for short-read prokaryotic transcriptomics, and a bioinformatics pipeline
123 for analysing long-read bacterial transcriptome data would be beneficial [13, 14].
124 Furthermore, it is essential to capture the impact of biological and experimental variability on
125 nanopore RNA-Seq outputs, using both biological and technical replicates [15], as batch
126 effects could result in the misidentification of differentially expressed genes [3, 13, 14, 16].

127

128 Here we compared nanopore cDNA and PCR-cDNA sequencing with a focus on the impact of
129 AMR gene expression. We evaluated four clinical strains of *Escherichia coli*, assessing

130 biological and technical batch effects and evidence of PCR bias with PCR-amplified cDNA
131 libraries. Our work builds on previous experimentation on a single lab strain of *E. coli* [7].
132

133 6. Methods

134 *Isolates for testing and bacterial growth curves*

135 We investigated four *E. coli* bloodstream infection-associated strains stored as stocks at -80°C
136 in 10% glycerol nutrient broth; these strains had all demonstrated amoxicillin-clavulanate (co-
137 amoxiclav) and ceftriaxone resistance using the BD Phoenix and EUCAST clinical breakpoints
138 [17]. To evaluate bacterial growth dynamics in the absence and presence of antibiotic
139 pressure and identify the time to mid-log phase of growth, glycerol stocks were grown on
140 Columbia Blood Agar (CBA) overnight at 37°C. Single colonies were inoculated into 10mL of
141 Lysogeny Broth (LB), or LB containing the breakpoint concentrations of co-amoxiclav (8 mg/L)
142 or ceftriaxone (2 mg/L; Fig. S1), and grown at 37°C with shaking at 160rpm. The liquid
143 suspensions were diluted and normalised to 0.05 OD_{600nm} with a final volume of 200µL. The
144 growth parameters of each isolate were measured in triplicate over 24 h at 37°C using a Tecan
145 Spark microplate reader (Tecan Group Ltd, LifeSciences, Switzerland).

146

147 *RNA extraction*

148 Prior to implementing the final optimised extraction and sequencing workflow described
149 below, we analysed the outputs of several RNA extraction kits, mRNA enrichment/rRNA
150 depletion kits, polyadenylation approaches and ONT sequencing kits, including: PureLink RNA
151 Mini kit (Thermo Fisher Scientific, UK), MICROBExpress™ Bacterial mRNA Enrichment Kit,
152 Poly(A) Polymerase Tailing Kit (Lucigen, UK), Direct RNA Sequencing Kit SQK-RNA002, Direct
153 cDNA Sequencing Kit SQK-DCS109 single-plex and multiplexed using EXP-NBD104. These
154 approaches were not used in the final workflow because of a combination of poor RNA yield
155 post extraction, lengthy incubation times during mRNA enrichment and polyadenylation,
156 inability to multiplex sequencing reactions (RNA002 kit), and poor overall sequencing outputs
157 with these combinations. Details of the methodology and sequencing outputs are included in
158 the Supplementary materials (Table S1); we have included this information so that other
159 research teams are aware of strategies we evaluated that worked less well.

160

161 Single colonies of each of the *E. coli* strains were inoculated into 10 ml of LB and grown
162 overnight at 37°C with shaking at 160 rpm. A 1:100 dilution of the overnight inoculum was
163 sub-cultured in 10mL LB and grown to mid-log phase (0.5 at OD_{600nm}) for RNA extraction.
164 RNA was extracted from biological replicates (n=2 for each *E. coli* strain) on the automated
165 KingFisher Flex platform using the MagMax™ Viral/Pathogen II Nucleic Acid Isolation Kit
166 (Thermo Fisher Scientific, UK). Post extraction DNase treatment was performed using the
167 TURBO DNA-free™ Kit (Invitrogen, UK) according to manufacturer's instructions. Total RNA
168 quality and integrity were assessed using the TapeStation 4200 (Agilent Technologies, USA)
169 (Table S2) and quantified using the Broad Range RNA Qubit kit (Thermo Fisher Scientific, UK).
170 rRNA depletion was performed using the QIAseq FastSelect 5S/16S/23S kit (Qiagen, UK) in
171 accordance with manufacturer's instructions with the addition of RNase inhibitor (New
172 England BioLabs, UK) incorporated into each reaction. The addition of poly(A) tails to mRNA
173 transcripts was performed using the Poly(A) Polymerase (New England BioLabs, UK) and
174 included the addition of RNase inhibitor (New England BioLabs, UK) in each reaction. A final

175 clean-up of mRNA using RNAClean XP beads (Beckman Coulter) was performed prior to library
176 preparation. mRNA was checked pre and post poly(A)tail addition using an Agilent RNA 6000
177 Nano kit run on a 2100 BioAnalyser (Agilent Technologies, USA) (Fig. S2). Quantifications were
178 performed using the High Sensitivity RNA Qubit kit (Thermo Fisher Scientific, UK). To alleviate
179 any possible degradation of RNA repeated freeze/thawing cycles were avoided by completing
180 the steps from extraction to cDNA synthesis in a single day.

181

182 *RNA Library preparation and sequencing*

183 Two sequencing kits were selected for comparison in the final workflow: Direct cDNA
184 Sequencing SQK-DCS109 and PCR-cDNA Barcoding SQK-PCB111.24 with libraries prepared in
185 accordance with manufacturer's instructions. Our experimental design tested differential
186 expression between *E. coli* (n=4 strains, n=2 biological replicates/strain) using a balanced
187 block design [15]. Technical replicates (n=2 per biological replicate) were multiplexed (n=16
188 replicates/flow cell in total) across 4 flow cells per sequencing kit (i.e. n=8 flow cells in total);
189 Fig.1). Nanopore libraries were sequenced using R9.4.1 (FLO-MIN106) flow cells on a GridION
190 with MinKNOW software version 21.11.7 and basecalled using Guppy (version 6.1.5) for the
191 maximum 72 hour run time.

192

193 *DNA extraction and sequencing*

194 Short-read sequencing data (Illumina HiSeq) was created as part of a previous project (NCBI
195 BioProject accession: PRJNA604975). DNA was extracted for nanopore sequencing using the
196 automated KingFisher Flex platform using the MagMax™ Viral/Pathogen II Nucleic Acid
197 Isolation Kit (Thermo Fisher Scientific, UK). DNA was sequenced on an ONT GridION using the
198 rapid barcoding kit (SQK-RBK004) R9.4.1 (FLO-MIN106) flow cells with MinKNOW software
199 version 21.11.7 for 48 hours run time and basecalled using Guppy (version 5.1.13).

200

201 *Sequence analysis*

202 Raw fast5 files were basecalled and demultiplexed using Guppy (version 6.1.5). Sequence
203 length and quality statistics were extracted using NanoStat (v1.4.0). Hybrid assemblies were
204 created using Unicycler (--mode bold) and subsequently annotated with Bakta (v1.6.1) to
205 create transcript references. Reads were then mapped to the transcript reference using
206 Minimap2 (-ax splice, version 2.17-r941) [18]. In addition to the efforts to deplete rRNA in the
207 laboratory workflow described above, reads mapping to rRNA coding sequences were
208 discarded from further analysis. Transcript abundance was quantified using Salmon (version
209 1.8.0) [19]. AMR genes were identified using AMRFinder (version 3.11.2) [20]. NanoPlot was
210 used to assess the relationship between read quality and length after randomly
211 downsampling sequenced data to ~250Mb using Rasusa for computational feasibility.

212

213 *Statistical analysis*

214 EdgeR (v3.42.2) was used to fit quasi-likelihood negative binomial generalised log-linear
215 models (glmQLFit) to this count data (after filtering using filterByExpr min.count=1) to
216 compare e.g. expression between direct and PCR kits. Distributions (of e.g. read quality
217 scores) between groups were compared using Kruskal-Wallis tests and correlations using
218 Spearman's coefficient. Proportions between groups in 2x2 tables were compared using
219 Fisher's exact tests. All statistical analysis was performed in R version 4.2.1 [21].

220 7. Results

221 **Description of isolates**

222 The four isolates used in this study were identified as belonging to STs 131 (A,C), 1193 (D) and
223 an unclassified ST (B). A total of 36 AMR genes (ARGs) in total were identified: 12 in isolate A,
224 7 in isolate B, 7 in isolate C and 10 in isolate D (Table 1). The reference transcript sizes for each
225 isolate were: Isolate A - 5,425 coding sequences (4,758,606bp), Isolate B - 5,570 coding
226 sequences (4,830,938bp), Isolate C - 5,523 coding sequences (4,809,970bp), and Isolate D -
227 5,191 coding sequences (4,564,879bp).

228

229 **The PCR kit produces a greater sequencing yield but with shorter read lengths and lower 230 quality scores**

231 The total data yield averaged across 4 flow cells after 72 hours and multiplexing 16 barcoded
232 samples was 1.8Gb and 11.0Gb for the direct and PCR kits, respectively. However, median
233 read lengths produced by the direct kit were longer than those produced by the PCR kit (501
234 bp [IQR: 390-603] versus 318 bp [IQR: 293-400]; p<0.001) (Fig. S3). Read quality (Fig. S4) was
235 broadly comparable between kits, though slightly higher Q-score values were obtained for
236 the direct versus PCR kit (median Q-score: 12.0 [IQR: 10.3-13.9] vs 11.2 [IQR: 10.4-12.1],
237 p<0.001).

238

239 **Mappable reads are longer and higher quality and represent a greater proportion of total 240 reads in the direct kit**

241 Overall, the percentage of reads that could be mapped to the respective reference transcript
242 was higher for the direct vs the PCR kit (median mapped percentage: 47% [IQR: 41-55%] vs
243 85% [IQR: 77-88%], p<0.001). Using the direct kit, there was no difference in the % of reads
244 that could be mapped between isolates (Isolate A median: 83% [IQR: 82-88] reads mapped,
245 Isolate B median: 86% [IQR: 80-87] reads mapped, Isolate C median: 83% [IQR 76-89] reads
246 mapped, Isolate D median: 85% [IQR: 82-88] reads mapped; p=1.00), however this was not
247 the case for the PCR kit (Isolate A median: 48% [IQR: 42-55] reads mapped, Isolate B median:
248 46% [IQR: 39-51] reads mapped, Isolate C median: 61 [IQR: 48-64] reads mapped, Isolate D
249 median: 41 [IQR 38-47] reads mapped; p=0.02, Fig. S5).

250

251 For both the direct and PCR kits, reads that could be mapped were longer (direct mapped
252 median read length: 510 bases [IQR: 388-608] versus direct unmapped median read length:
253 361 bases [IQR: 298-466], p<0.001 and PCR mapped median read length: 437 bases [IQR: 342-
254 569] versus unmapped median read length: 301 bases [IQR: 283-322], p<0.001). They were
255 also of higher quality (direct mapped median Q score: 12.4 [IQR: 10.4-14.3] versus direct
256 unmapped median Q score: 11.2 [IQR: 10.1-12.8], p<0.001 and PCR mapped median Q score:
257 11.8 [IQR 10.9-12.7] versus unmapped median Q score: 11.0 [IQR: 10.2-11.8], p<0.001) than
258 those that could not be mapped (Fig. S6).

259

260 **Read counts are strongly correlated for biological replicates and kits**

261 For n=3786/3213/3381/3998 (in Isolates A-D respectively) individual coding sequences
262 evaluated, read counts were highly correlated between biological replicates for all isolates for
263 both the direct and PCR kits (R^2 range: 0.90-0.98, p<0.001, Fig. 2). The correlations between
264 technologies were similarly strongly positive (R^2 range: 0.93-0.96, p<0.001) although we

265 observed that these correlations were weaker for coding sequences with a high GC content
266 (here defined as GC content >52%) or low GC content (defined as GC content <44%) (Fig. 3).
267 Strong correlations between read counts were also seen amongst flow cells for biological
268 replicates sequenced using the same kit (Fig. S7). Restricting only to ARGs also revealed very
269 strong correlations between read counts for biological replicates and between kits (R^2 range:
270 0.93-0.99, $p<0.001$).
271

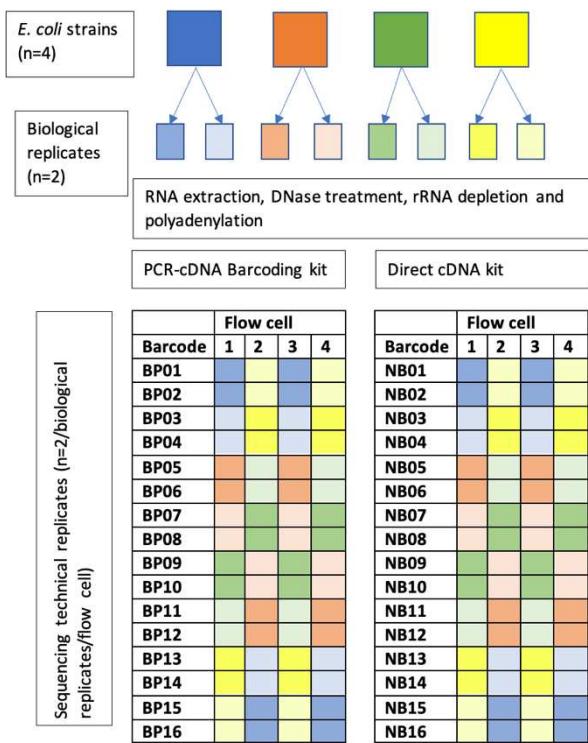
272 **Differences in gene “expression” by sequencing method**

273 Across the four isolates, of those annotated coding sequences with reads mapping to them
274 which were not rRNA and after correction for multiple comparisons, 678/14,378 (4.7%)
275 coding sequences were observed to have significantly different “expression” between the
276 direct and PCR kits (Fig. 4). In comparison only 31/14,378 (0.2%) coding sequences were
277 significantly differentially expressed between biological replicates of the same isolate using
278 the same kit. In the PCR based kit, transcripts mapping to “over-expressed” coding sequences
279 were significantly shorter (359bp (IQR 320-576) vs non over-expressed 438bp (344-569),
280 $p<0.001$). There was no difference in the proportion of plasmid (13/317, 4.1%) and
281 chromosomal genes (539/14,122, 3.8%) that were significantly differentially expressed
282 between the direct and PCR kits ($p=0.91$). Similarly, none of the 36 ARGs in the analysis were
283 significantly differentially expressed between kits.
284

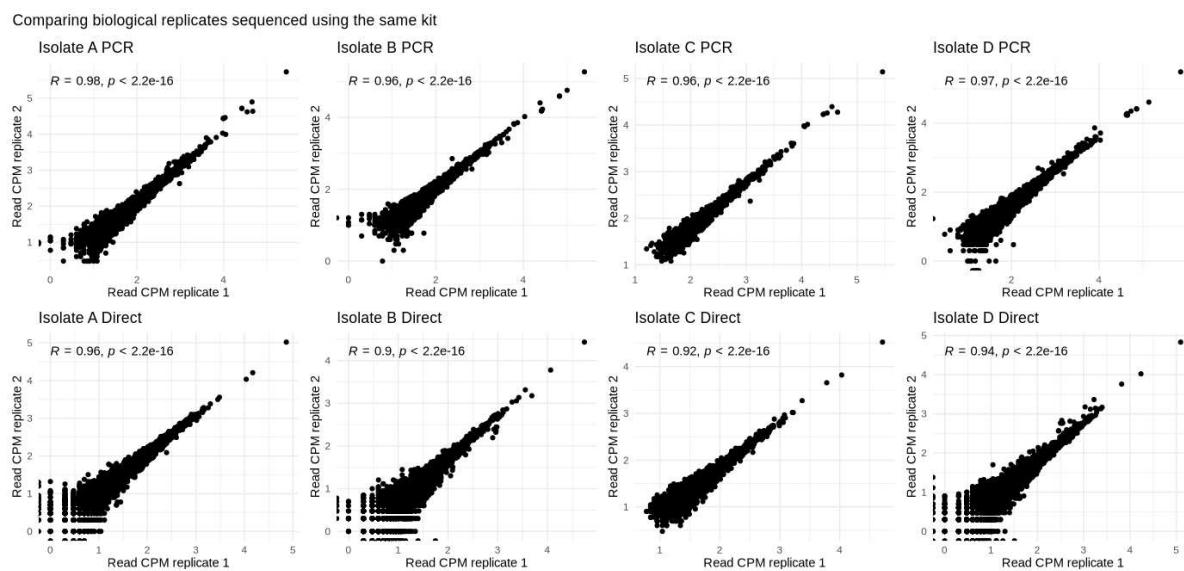
285 **8. Discussion**

286 The ability to sequence long mRNA transcripts using nanopore sequencing offers the potential
287 to identify and quantify transcripts in a single assay which could help to evaluate the
288 relationship between genotype and phenotype for key clinically relevant traits (e.g. AMR). In
289 this study, using clinical *E. coli* isolates carrying relevant AMR genes, we describe a laboratory
290 and bioinformatic workflow for nanopore RNA-seq and show that gene expression counts are
291 highly correlated between biological replicates and flow cells, although there is some
292 evidence of significant differences in expression signatures generated for ~5% of genes
293 depending on the kit. Notably many coding sequences that were differentially “expressed”
294 for experiments using the PCR vs direct kits were tRNAs (Fig.4), consistent with a known
295 preference for PCR to amplify shorter fragments in a cDNA library mix of variable fragment
296 lengths [1, 7]. However, expression signatures in our dataset were similar for both kits,
297 suggesting that PCR-based nanopore RNA-Seq would be a robust way of defining this for
298 specific research questions, bearing in mind this potential methodological bias.
299

300 Our findings are similar to a previous study evaluating direct and PCR-based nanopore RNA-
301 Seq that used a single relatively antibiotic susceptible reference isolate [7], and also
302 demonstrated highly concordant results between methods except for genes with unusually
303 high or low GC-content (i.e. <46/>54%). Here, we extend these findings and show that the
304 PCR kit remains suitable for use with multi-drug-resistant strains containing multiple plasmid-
305 based ARGs. To our knowledge this study provides the first such data supporting the idea that
306 this methodology is suitable for quantitative transcription analysis in these priority clinical
307 isolates.
308

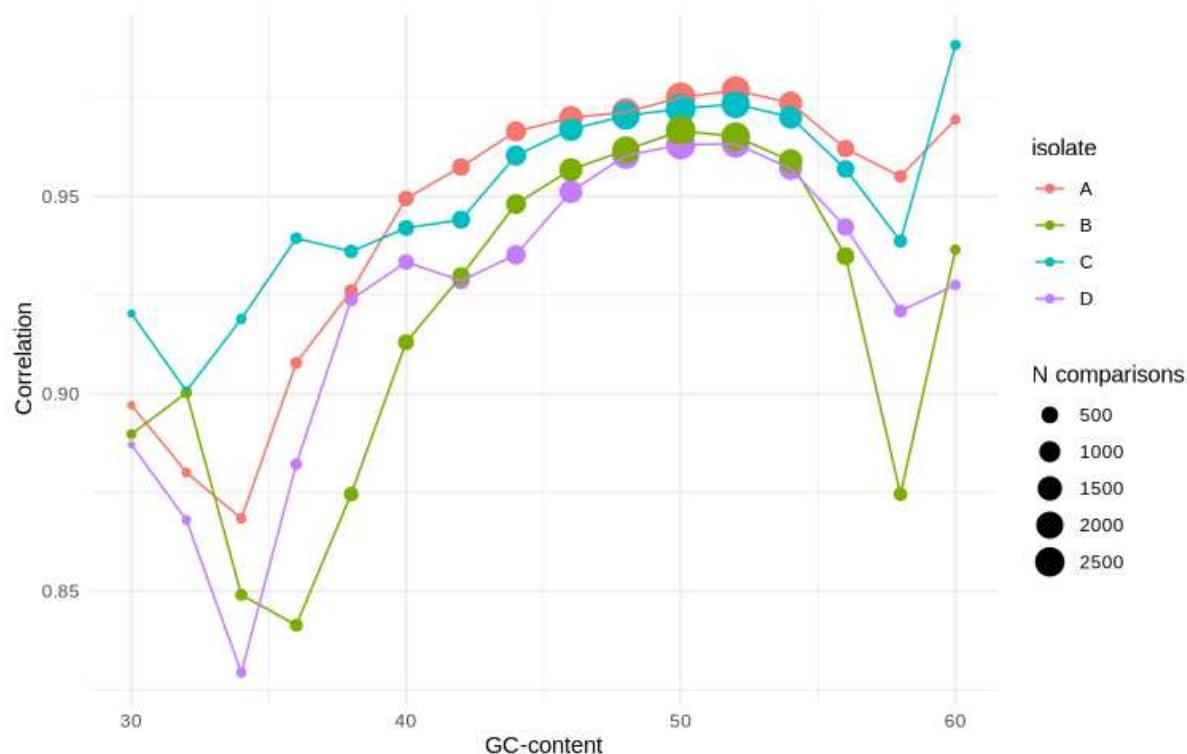

309 The inclusion of only four isolates, whilst to our knowledge representing the largest
310 evaluation of the use of nanopore RNA-seq for clinically relevant *E. coli* strains, is nevertheless
311 a significant limitation. In common with existing literature in this area and primarily due to
312 the very high costs associated with this technology, our study lacks negative controls and so
313 we cannot determine the degree to which the “kitome” may explain some of the variation
314 observed. Another limitation is that our analysis only captures RNA expression in a single
315 environmental state (growth in antibiotic-free culture medium) which likely does not
316 represent the eventual use case (quantification of gene expression in the presence of
317 antibiotics). The PCR step in the PCR-based kit, when following manufacturer’s instructions,
318 has a preference to overamplify short fragments, especially at a higher number of cycles [1,
319 7]. Therefore, optimisation of this reaction is warranted to try to reduce any biases. Finally,
320 the kits and flow cells used in this experiment have been recently superseded by newer flow
321 cells and sequencing chemistries (RNA flow cell, flow cell version R10.4.1 with v14 sequencing
322 chemistry) and direct RNA, direct cDNA and cDNA PCR-based amplification kits; although it
323 seems unlikely that this would affect the findings of this study, repeat characterisation using
324 our workflow as a framework would be warranted for these and future upgrades, which occur
325 frequently.

326


327 In summary, we demonstrate that nanopore RNA sequencing appears to be highly
328 reproducible between biological and technical replicates, with minimal difference in gene
329 expression signatures generated when using the PCR versus the direct kit. Potential users
330 need to weigh up the benefits associated with the PCR kit of greatly increased sequencing
331 yield and therefore analytical feasibility with the potential drawbacks, namely a smaller
332 proportion of mappable reads, the apparent generation of shorter reads of a lower quality,
333 and a small risk of PCR-associated bias.

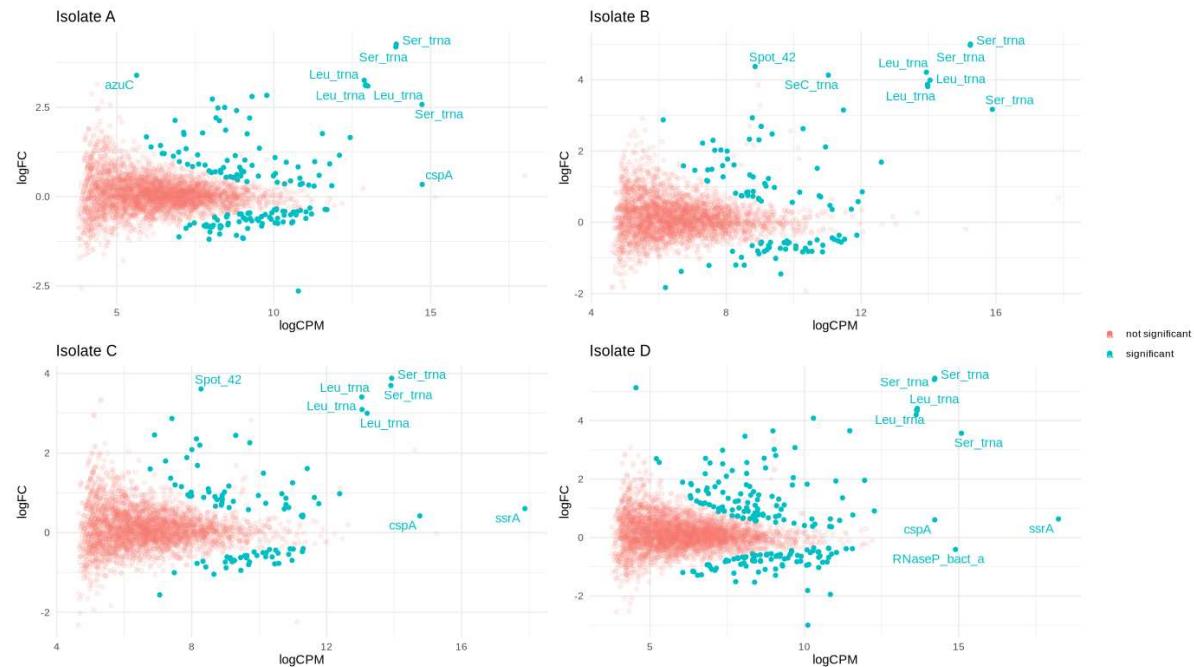
334 **9. Figures and tables**

335 **Figure 1.** experimental design illustrating number of biological and technical replicates
336 sequenced per flow cell and per kit.



338 **Figure 2** Read count correlations when comparing: (upper row) biological replicates
339 sequenced with the PCR kit; (lower row) biological replicates sequenced using the direct kit.
340 CPM - counts per million. Spearman correlation coefficients and p-values are shown within
341 each plot.
342

343
344
345
346
347
348
349
350
351
352
353
354


355 **Figure 3.** Read count correlation between the PCR and direct kits for genes with different
356 %GC-content.
357

358

359 **Figure 4. Gene “expression” differences observed between sequencing methods.** For each
360 isolate (A/B/C/D), the log count per million (logCPM) for each gene is plotted against the log-
361 fold change (logFC) between PCR and direct kits. Genes with significant differences between
362 kits after adjustment for multiple comparisons are shown in blue. Genes are annotated if they
363 are significantly differentially expressed between the kits and are in the top 5 ranked genes
364 for either logCPM or logFC.

365

366
367

368
369

Table 1. Summary of isolate assemblies and ARGs detected

Isolate	Contig	ARGs
A	Chromosome - 5,216,957bp	2 copies <i>bla</i> _{CTX-M-15} 1 copy <i>aac(3')-Ile</i> , <i>catB3</i> , <i>bla</i> _{OXA-1} , <i>aac(6')-Ib-cr5</i> , <i>tet(A)</i> , <i>bla</i> _{TEM-1} , <i>dfrA14</i> , <i>sul2</i> , <i>aph(3'')-Ib</i> , <i>aph(6)-Id</i>
	Plasmid 1 - 113,482bp	-
	Plasmid 2 - 4,236bp	-
B	Chromosome - 5,174,320bp	-
	Plasmid 1 - 138,864bp	<i>tet(B)</i> , <i>sul1</i> , <i>aadA5</i> , <i>dfrA17</i>
	Plasmid 2 - 97,597bp	<i>tet(B)</i> , <i>aph(3'')-Ib</i> , <i>aph(6)-Id</i>
	Plasmid 3 - 7940bp	-
	Plasmid 4 - 5,631bp	-
	Plasmid 5 - 4,237bp	-
	Plasmid 6 - 4,072bp	-
	Plasmid 7 - 2,101bp	-
C	Plasmid 8 - 1,552bp	-
	Chromosome - 5,113,180bp	-
	Plasmid 1 - 116,873bp	<i>dfrA17</i> , <i>tet(A)</i> , <i>aph(6)-Id</i> , <i>aph(3'')-Ib</i> , <i>sul2</i>
	Plasmid 2 - 87,246bp	-
	Plasmid 3 - 71,559bp	-
	Plasmid 4 - 8,957bp	<i>mph(A)</i> , <i>bla</i> _{CTX-M-27}
	Plasmid 5 - 5,631bp	-
	Plasmid 6 - 5,221bp	-
	Plasmid 7 - 5,166bp	-
	Plasmid 8 - 4,082bp	-
	Plasmid 9 - 1,718bp	-

D	Chromosome - 4,959,734bp	<i>bla</i> _{CTX-M-15} , <i>aac</i> (6')- <i>lb</i> - <i>cr5</i> , <i>bla</i> _{OXA-1} , <i>catB3</i> , <i>aac</i> (3)- <i>lle</i>
	Plasmid 1 - 92,583bp	<i>sul2</i> , <i>aph</i> (3'')- <i>lb</i> , <i>aph</i> (6)- <i>ld</i> , <i>sul1</i> , <i>dfrA5</i>
	Plasmid 2 - 79,495bp	-

371

372 **10. Author statements**

373 **10.1 Author contributions**

374 GR, SL and NS designed the study. GR performed all experiments. SL mapped, annotated and
375 analysed the transcriptome data and performed data upload. GR, SL and NS drafted the
376 manuscript. All authors contributed to the editing and a critical analysis of the manuscript.

377

378 **10.2 Conflicts of interest**

379 The authors declare that there are no conflicts of interest.

380

381 **10.3 Funding information**

382 This research was funded by a John Fell Fund award to NS and DWE (grant number: 0008776).
383 This study was also supported by the National Institute for Health Research (NIHR) Health
384 Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance
385 (NIHR200915), a partnership between the UK Health Security Agency (UKHSA) and the
386 University of Oxford. Additionally, the study was supported by the National Institute for
387 Health Research (NIHR) Oxford Biomedical Research Centre (BRC). The views expressed are
388 those of the author(s) and not necessarily those of the NIHR, UKHSA, the Department of
389 Health and Social Care or the NHS.

390

391 NS is an Oxford Martin Fellow.

392

393 **10.4 Ethical approval**

394 No ethical approval was required for this study.

395

396 **10.5 Consent for publication**

397 Not applicable.

398

399 **10.6 Acknowledgements**

400 We are grateful to the John Radcliffe Microbiology laboratory and team who facilitate routine
401 collection of clinical bacterial isolates.

402 **11. References**

- 403 1. Bayega A, Oikonomopoulos S, Wang YC, Ragoussis J. Improved Nanopore full-length
404 cDNA sequencing by PCR-suppression. *Front Genet*. 2022;13:1031355.
- 405 2. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. *Nature Reviews
406 Genetics*. 2019;20(11):631-56.
- 407 3. Koch CM, Chiu SF, Akbarpour M, Bharat A, Ridge KM, Bartom ET, et al. A Beginner's
408 Guide to Analysis of RNA Sequencing Data. *Am J Respir Cell Mol Biol*. 2018;59(2):145-57.
- 409 4. Hör J, Gorski SA, Vogel J. Bacterial RNA Biology on a Genome Scale. *Mol Cell*.
410 2018;70(5):785-99.

411 5. Colgan AM, Cameron ADS, Kröger C. If it transcribes, we can sequence it: mining the
412 complexities of host–pathogen–environment interactions using RNA-seq. *Current Opinion in*
413 *Microbiology*. 2017;36:37-46.

414 6. Creecy JP, Conway T. Quantitative bacterial transcriptomics with RNA-seq. *Current*
415 *Opinion in Microbiology*. 2015;23:133-40.

416 7. Grünberger F, Ferreira-Cerca S, Grohmann D. Nanopore sequencing of RNA and cDNA
417 molecules in *Escherichia coli*. *RNA*. 2022;28(3):400-17.

418 8. Al Kadi M, Ishii E, Truong DT, Motooka D, Matsuda S, Iida T, et al. Direct RNA
419 Sequencing Unfolds the Complex Transcriptome of *Vibrio parahaemolyticus*. *mSystems*.
420 2021;6(6):e0099621.

421 9. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology,
422 bioinformatics and applications. *Nat Biotechnol*. 2021;39(11):1348-65.

423 10. Wangsanuwat C, Heom KA, Liu E, O’Malley MA, Dey SS. Efficient and cost-effective
424 bacterial mRNA sequencing from low input samples through ribosomal RNA depletion. *BMC*
425 *Genomics*. 2020;21(1):717.

426 11. Wahl A, Huptas C, Neuhaus K. Comparison of rRNA depletion methods for efficient
427 bacterial mRNA sequencing. *Sci Rep*. 2022;12(1):5765.

428 12. Pitt ME, Nguyen SH, Duarte TPS, Teng H, Blaskovich MAT, Cooper MA, et al. Evaluating
429 the genome and resistome of extensively drug-resistant *Klebsiella pneumoniae* using native
430 DNA and RNA Nanopore sequencing. *Gigascience*. 2020;9(2).

431 13. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrer D, Cervera A, McPherson A, et al. A
432 survey of best practices for RNA-seq data analysis. *Genome Biol*. 2016;17:13.

433 14. Scholes AN, Lewis JA. Comparison of RNA isolation methods on RNA-Seq: implications
434 for differential expression and meta-analyses. *BMC Genomics*. 2020;21(1):249.

435 15. Auer PL, Doerge RW. Statistical Design and Analysis of RNA Sequencing Data. *Genetics*.
436 2010;185(2):405-16.

437 16. Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, et al. How many
438 biological replicates are needed in an RNA-seq experiment and which differential expression
439 tool should you use? *RNA*. 2016;22(6):839-51.

440 17. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables
441 for interpretation of MICs and zone diameters. 2023 [Version 13.1:[Available from:
442 <http://www.eucast.org>.

443 18. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*.
444 2018;34(18):3094-100.

445 19. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-
446 aware quantification of transcript expression. *Nature Methods*. 2017;14(4):417-9.

447 20. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. Validating the
448 AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-
449 Phenotype Correlations in a Collection of Isolates. *Antimicrob Agents Chemother*.
450 2019;63(11).

451 21. Team RC. R: A language and environment for statistical computing.: R Foundation for
452 Statistical Computing, Vienna, Austria. ; 2022 [Available from: URL <https://www.R-project.org/>.

453

454