

1 Phylogenetically and structurally diverse reductive

2 dehalogenases link biogeochemical cycles in deep-sea cold seeps

3 Yingchun Han¹#, Yongyi Peng^{1, 2}#, Jiaxue Peng^{1, 3}, Lei Cao⁴,
4 Yangru Xu⁵, Yi Yang⁶, Minghuo Wu⁷, Hao Zhou⁷, Chen Zhang⁸,
5 Dongdong Zhang⁵, Minxiao Wang⁴, Chris Greening⁹, Xiyang Dong^{1, 10*}

¹ Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China

⁸ ² School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China

³ College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China

⁴ Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China

⁵ Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China

⁶ Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

¹⁷ ⁷ School of Ocean Science and Technology, Dalian University of Technology, Panjin

18 124221, China
19 ⁸ Department of Microbiology, Immunology and Molecular Genetics, University of

20 Texas Health Science Center, San Antonio 78229, USA
21 ⁹ Department of Microbiology, Biomedicine Discovery Institute, Monash University

22 Clayton, VIC 3800, Australia
23 ¹⁰Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai

24 519000, China

10. **What would you do if you were asked to do something that you knew was wrong?**

Correspondence can be addressed to Aiyang Dong (dongaiyang@163.org.cn).

27 **Abstract**

28 Reductive dehalogenation is crucial for halogen cycling and environmental
29 remediation, yet its ecological role is incompletely understood, especially in deep-sea
30 environments. To address this gap, we investigated the diversity of reductive
31 dehalogenases (RDases) and ecophysiology of organohalide reducers in deep-sea cold
32 seeps, which are environments rich in halogenated compounds. Through genome-
33 resolved metagenomic analysis 165 global cold seep sediment samples, we identified
34 four types of RDases, namely prototypical respiratory, transmembrane respiratory, and
35 cytosolic RDases, and one novel clade. These RDases are encoded by physiologically
36 diverse microbes across four archaeal and 36 bacterial phyla, significantly broadening
37 the known diversity of organohalide reducers. Halogen geochemistry,
38 metatranscriptomic data, and metabolomic profiling confirm that organohalides occur
39 at as high as 18 mg/g in these sediments and are actively reduced by microorganisms.
40 This process is tightly linked to other biogeochemical cycles, including carbon,
41 hydrogen, nitrogen, sulfur, and trace elements. RDases from cold seeps have diverse
42 N-terminal structures across different gene groups, and *rdhA* genes in these
43 environments are mostly functionally constrained and conserved. Altogether, these
44 findings suggest that reductive dehalogenation is a central rather than supplemental
45 process in deep-sea environments, mediated by numerous diverse microbes and novel
46 enzymes.

47 Introduction

48 Globally situated along continental margins, deep-sea cold seeps are regions where
49 fluids rich in methane and other hydrocarbons migrate from the deep subsurface to
50 sediment-seawater interface^{1, 2}. These fluids support a diverse array of
51 microorganisms, including anaerobic methanotrophic archaea (ANME) and their
52 syntrophic sulfate-reducing bacterial partners^{3, 4}. Beyond hydrocarbons, cold seeps are
53 also rich in various organic compounds like organohalides. Various organohalides,
54 such as dichloroacetaldehyde and tetrachlorobenzene, are abundant in cold seep
55 sediments in various locations, including the Eastern Gulf of Mexico and the Haima
56 cold seep in the South China Sea^{1, 3, 5}. These organohalides, given their high standard
57 redox potential ($E_o' = +0.24$ to $+0.58$ V), are desirable electron acceptors for
58 anaerobic respiration in these oxidant-limited environments^{1, 6-11}. Organohalide-
59 respiring microorganisms harness energy for growth by reducing these organohalides⁶
60 ^{12, 13}. Notably some microorganisms within the *Chloroflexota* phylum, inhabiting
61 deep-sea environments such as methane seeps, hydrothermal vents, and hadal trenches,
62 can grow either obligately or facultatively on organohalides¹⁴⁻¹⁷. However, the
63 diversity and roles of organohalide-reducing microorganisms in deep-sea cold seeps
64 remain largely uncharted.

65 The process of reductive dehalogenation is mediated by reductive dehalogenases
66 (RDases, also termed as RdhA, encoded by *rdhA*), which catalyze the cleavage of
67 halides (like chloride or bromide) from the carbon backbone under anoxic
68 conditions^{18, 19}. For organohalide-respiring microorganisms, RDases are periplasmic
69 membrane-associated proteins exported by the twin-arginine translocation (TAT)
70 system. These enzymes are typically composed of two subunits: the periplasmic
71 catalytic subunit RdhA usually harbors a cobalt cofactor that mediates halogen
72 elimination and two tetranuclear [Fe-S] clusters for electron transfer, while the
73 membrane-anchoring subunit RdhB typically contains two or three transmembrane
74 helices (TMHs)^{9, 19, 20}. The quinone-dependent RDases use respiratory quinols (e.g.

75 menaquinol), reduced by electron donors such as molecular hydrogen (H₂), whereas
76 other enzymes are quinone-independent and appear to form respiratory
77 supercomplexes with hydrogenases and potentially other primary dehydrogenases^{19, 21,}
78 ²². In addition to these prototypical RDases, two other classes of RDases are known.
79 In the transmembrane respiratory RDases, the *rdhB* gene and TAT signal peptide are
80 absent and instead the *rdhA* gene is directly connected to the membrane with one to
81 three N-terminal TMHs²³⁻²⁵. In contrast, the cytosolic RDases (also called the
82 catabolic RDases) are not connected to the respiratory chain and instead mediate the
83 initial reductive dehalogenation of compounds so that they can be used as carbon and
84 energy sources; these enzymes are typically NADPH-dependent and oxygen-tolerant,
85 in contrast to their counterparts in organorespirers^{19, 26}. However, classifying RDases
86 remains challenging due to the limited number of well-characterized examples and
87 their low sequence identity^{9, 23, 26-28}.

88 In this study, we analyzed a comprehensive dataset consisting of 165 metagenomic,
89 33 metatranscriptomic, and 55 metabolomic samples collected from deep-sea cold
90 seeps globally. In addition to geochemical analyses, we focused on examining *rdhA*
91 genes and organohalide reducers in these environments. We systematically analysed
92 the phylogenetic diversity, ecological distribution, metabolic functions, genetic
93 microdiversity, and structural evolution of various *rdhA* subfamilies and organohalide
94 reducers. To do so, we relied on two major innovations. First, given the limited
95 number of experimentally solved RDase structures²⁹⁻³¹, we employed AI-based
96 protein structure modelling to better understand the structural and functional diversity
97 within this superfamily. Second, we used state-of-the-art methods for quantifying
98 genetic variations in microbial populations, including single-nucleotide variants
99 (SNVs), to study the population dynamics of these enzymes across various
100 environments³²⁻³⁵. Through developing a computational framework that integrates
101 protein structure analysis with genetic variation, we were able to gain a more detailed
102 understanding of the sequence-structure-function relationships of RDases, while
103 uncovering a central role for organohalide reducers in shaping the biogeochemistry

104 and ecology of deep-sea sediments.

105 **Results and Discussion**

106 **Geochemical evidence for reductive dehalogenation at cold seeps**

107 Reductive dehalogenation can cause an increase in halogen profiles in cold seep
108 sediments³⁶. Our analysis of 1089 pore water samples revealed that (**Fig. 1a and**
109 **Supplementary Fig. 1 and Supplementary Table 1**), on average, concentrations of
110 dissolved chlorine (Cl⁻) and bromine (Br⁻) and the Br⁻/Cl⁻ ratio in cold seep pore
111 waters are slightly higher than those in overlying water and typical seawater^{37, 38}. This
112 trend is also observed in pore water iodide (I⁻) concentrations in cold seep sediments,
113 which are significantly higher compared to typical seawater³⁹. Additionally, the solid-
114 phase chlorine and bromine concentrations in 68 freeze-dried sediment samples
115 showed a notable decrease with increasing sediment depth (**Fig. 1a and**
116 **Supplementary Table 2**), potentially suggesting reductive dehalogenation decreases
117 with sediment depth. However, other geological and biological processes may also
118 contribute to these differences, as indicated by the varied dissolved halogen profiles
119 found in 84 cold seep sediment cores (**Supplementary Figs. 2-7**).

120 From 55 cold seep sediments, we found that the concentrations of total organic
121 halogens (TOX) ranged between 6.7 mg/g and 17.6 mg/g, showing no significant
122 variations across sediment depth but differed among the columns of cold seep
123 sediments (**Fig. 1b and Supplementary Table 2**). Additionally, untargeted
124 metabolomics analysis of these sediments identified 3,713 peaks, including 560
125 annotated metabolites. Among these metabolites (**Fig. 1c and Supplementary Table**
126 **3**), we found various halogenated compounds, some with a relative abundance
127 reaching up to 10³, such as chlorides (e.g., 2-chloro-L-phenylalanine, 2-chloro-5-
128 methyl-cis-dienelactone), bromides (e.g., bromobenzene-3,4-oxide), fluorides (e.g., 5-
129 fluorouridine triphosphate), and iodides (e.g., 5-iodo-2'-dUMP, 5-iodo-dCTP).

130 **Cold seeps harbor a vast repertoire of reductive dehalogenase genes**

131 Reductive dehalogenase (RdhA) sequences from cold seep metagenomes were
132 identified and validated by analysing a non-redundant gene catalog, comprising 147
133 million genes⁴⁰, using a comprehensive workflow (**Supplementary Fig. 8**). The
134 process yielded 3,993 validated RdhA sequences that fell into four phylogenetic
135 groups (**Fig. 2**): (i) prototypical respiratory RDases (n = 1,466) associated with
136 obligate and facultative organohalide-respiring microbes^{19, 41, 42}; (ii) cytosolic RDases
137 (n = 362) involved in liberating organohalides as energy and carbon sources^{19, 26, 27};
138 (iii) transmembrane respiratory RDases (n = 1,963) characterized by a fusion of the
139 *rdhA* gene with N-terminal TMHs^{23, 26}; and (iv) a novel clade of RDases (n = 202).
140 This clade, clustering between the cytosolic and prototypical clades, is characterized
141 by the presence of both N-terminal TMHs (like transmembrane respiratory RDases)
142 and a RdhB partner subunit (like prototypical respiratory RDases) (**Supplementary**
143 **Table 4**). These four groups could be further subclassified into six further subgroups,
144 for example quinone-independent and quinone-dependent prototypical respiratory
145 RDases, as depicted in **Fig. 2**.

146 Cold seep *rdhA* genes exhibited statistically significant differences across the four
147 groups and six subgroups ($P < 2.2\text{e-}16$; **Fig. 3a** and **Supplementary Table 5**).
148 Prototypical respiratory and transmembrane respiratory *rdhA* genes are more abundant
149 than the cytosolic and novel clade *rdhA* genes (**Fig. 3a, inset**), suggesting that
150 reductive dehalogenation in cold seeps is mostly associated with anaerobic respiration.
151 Despite no notable differences in transcript abundance across groups ($P > 0.05$; **Fig.**
152 **3a**), the expression of *rdhA* subgroups (averaging 2.11 TPM; reaching 19.13 TPM for
153 transmembrane respiratory *rdhA* genes) suggests microbial reductive dehalogenation
154 occurs *in situ*. The distribution of *rdhA* genes appears to be influenced by sediment
155 depth and cold seep types. A negative correlation between *rdhA* gene abundance and
156 sediment depth (**Fig. 3b**) implies reduced dehalogenation activity in deeper sediments,
157 potentially due to limited organohalides and nutrients, as observed in the Nankai

158 Trough subduction zone sediments⁴³. In contrast, some *rdhA* subgroups display site-
159 specific, depth-dependent trends indicative of niche specialization (**Supplementary**
160 **Fig. 9a and Supplementary Table 6**). Significant differences in *rdhA* gene
161 abundance were also observed among five cold seep types, especially in quinone-
162 independent prototypical and cytosolic *rdhA* genes ($P < 0.05$; **Supplementary Fig.**
163 **10**).

164 Sulfate reduction and anaerobic methane oxidation, associated with *dsrA* and *mcrA*
165 gene activities, respectively, are two important metabolic processes in cold seeps^{44,45}.
166 The observed positive correlation between the abundances of *rdhA* and *dsrA* genes
167 indicates that reductive dehalogenation and sulfate reduction processes likely occur
168 simultaneously in cold seeps (**Fig. 3c and Supplementary Table 7**). Moreover, the
169 fact these genes are present in similar abundances suggests reductive dehalogenation
170 is potentially as crucial as sulfate reduction in these environments, underscoring its
171 significance in the biogeochemical dynamics of cold seeps. Conversely, the negative
172 correlation with *mcrA* gene abundance ($P < 0.001$; **Fig. 3d and Supplementary Fig.**
173 **11**) implies that anaerobic methane-oxidizing archaea may not engage in reductive
174 dehalogenation^{46, 47}. Additionally, the positive association of genes involved in
175 osmotic stress protection and osmolyte transport with *rdhA* gene abundance
176 (**Supplementary Figs 12-13 and Supplementary Table 8**) suggests that
177 microorganisms deploy various salt tolerance mechanisms to maintain osmotic
178 balance during reductive dehalogenation⁴⁸.

179 **Organohalide reducers span across four archaeal and 36 bacterial phyla**

180 From the cold seep genome catalog with 3,164 MAGs, we identified 586 *rdhA* genes
181 that each fell into the four groups (**Supplementary Figs. 8 and 14**). These genes are
182 distributed across 47 archaeal and 400 bacterial MAGs, encompassing four archaeal
183 and 36 bacterial phyla, highlighting the wide distribution of organohalide reduction in
184 these environments (**Fig. 4a, Supplementary Fig. 15 and Supplementary Table 9**).
185 The most prevalent phyla harboring *rdhA* genes include *Chloroflexota* (n = 75),

186 *Acidobacteriota* (n = 56), *Bacteroidota* (n = 55), *Desulfobacterota* (n = 53),
187 *Krumholzibacteriota* (n = 28), and *Asgardarchaeota* (n = 27). Most MAGs (79%, n =
188 355) encoded a single *rdhA* gene, whereas 92 MAGs across 15 phyla contained
189 multiple *rdhA* genes (**Supplementary Fig. 15; Supplementary Table 9**), in line with
190 culture-based observations that highly versatile organohalide reducers produce
191 multiple RDases¹⁹ (**Supplementary Table 9**). Further examination revealed 36
192 mobile genetic elements (MGEs) associated with 22 *rdhA*-containing contigs
193 (**Supplementary Table 10**), suggesting a role for MGEs in the horizontal transfer of
194 *rdhA* genes and the resultant diversity of organohalide reducers. Additionally, the
195 abundance of these organisms negatively correlates with sediment depth, in line with
196 the decrease in *rdhA* gene abundance in deeper sediment layers (**Supplementary Fig.**
197 **16 and Fig. 3b**). To investigate potential substrates for organohalide reducers, we
198 conducted molecular docking for RdhAs against 191 varied naturally occurring
199 organohalides, including those commonly found in cold seeps (**Supplementary Table**
200 **11**)^{3, 5, 14}. In total, we found 13,561 possible interactions between RdhAs and
201 halohydrocarbons, with the binding energies ranged from -0.47 to -6.08 kcal/mol
202 (**Supplementary Table 12**).

203 The quinone-dependent respiratory *rdhA* genes were encoded by 136 microorganisms
204 spanning 15 bacterial and four archaeal phyla, including most of the putative archaeal
205 organohalide reducers (**Fig. 4a, Supplementary Fig. 15 and Supplementary Table**
206 **9**). These RdhAs show strong structural homology to the PceA dehalogenase (PDB id:
207 4UR3) from *Sulfurospirillum multivorans*¹⁸, with TM-scores between 0.63 and 0.90
208 (**Supplementary Fig. 17**). In addition to be co-encoded with the membrane anchor
209 subunit RdhB, this RDase is also frequently genomically associated with a partner
210 uptake hydrogenase (Hup), the ferredoxin:NAD⁺ oxidoreductase (Fnr), and
211 transcriptional regulators (for example, GntR family, and NosR/NirI family) (**Fig. 4b**
212 **and Supplementary Table 13**). Molecular docking analysis against 191
213 organohalides, including those abundant in cold seeps, demonstrated that
214 *Thermoplasmata* RDase has a binding affinity of -4.1 kcal/mol for 2'-chloro-biphenyl-

215 2,3-diol and thus is a possible substrate (**Fig. 4c and Supplementary Tables 12**).
216 Quinone-independent respiratory *rdhA* genes, typically found in obligate organohalide
217 reducers *Dehalococcoides* and *Dehalogenimonas* within the phylum *Chloroflexota*^{6, 19,}
218 ⁴², were also detected in *Acidobacteriota* and *Gemmatimonadota* (**Fig. 4a and**
219 **Supplementary Fig. 15**), broadening the known diversity of microorganisms
220 harboring this gene type. Adjacent genes to *rdhA*, ferredoxin and NADH-coupled
221 oxidoreductase were identified (**Supplementary Table 13**), which are essential for the
222 electron transport chain in organohalide respiration⁴⁹. RDases in *Aminicenaceae*
223 (*Acidobacteriota*) and GWA2-58-10 (*Gemmatimonadota*) exhibit -4.0 to -4.8 kcal/mol
224 binding affinities for chlorinated benzene and chlorinated paraffins (**Supplementary**
225 **Tables 12**), suggesting their suitability as substrates.

226 The transmembrane respiratory RDases were by far the most widespread enzymes,
227 encoded by 287 microorganisms from 33 phyla, including multiple *Bacteroidota*,
228 *Acidobacteriota*, *Desulfovacterota* and *Krumholzibacteriota* MAGs. This observation
229 extends Atashgahi et al.'s findings that these enzymes are widespread despite being
230 understudied²³. Adjacent genes to *rdhA*, transcriptional regulators (e.g., GntR family),
231 genes involved in electron transport (e.g., FAD dependent oxidoreductase) and MGEs
232 (e.g., transposase) were identified (**Fig. 4b and Supplementary Table 13**). We also
233 observed transmembrane respiratory RDases from various phyla exhibit -3.2 to -6.0
234 kcal/mol binding affinities for chlorinated benzene and chlorinated alkane
235 (**Supplementary Table 12**), suggesting potential substrates. The novel clade was also
236 widespread, encoded by 49 MAGs spanning 11 phyla, including the four
237 abovementioned phyla and candidate phyla JAGLTZ01 and QNDG01 (**Fig. 4a,**
238 **Supplementary Fig. 15 and Supplementary Table 9**). Despite being
239 phylogenetically distant from the transmembrane respiratory RDases, this novel clade
240 also likely has a respiratory function, given the *rdhA* gene is typically fused with
241 between one to three N-terminal TMHs; however, a key difference is that 23 and 38 of
242 the 50 genes in the novel clade are sometimes found alongside TAT systems and *rdhB*
243 genes, respectively (**Supplementary Table 9**). Novel RDases demonstrate binding

244 affinities ranging from -4.4 to -6.1 kcal/mol for chlorinated benzene (**Supplementary**
245 **Table 12**), indicating their suitability as substrates.

246 Cytosolic *rdhA* genes (n = 37) were mainly found in *Chloroflexota*, *Desulfobacterota*,
247 and *Pseudomonadota*, but were also detected in a *Heimdallarchaeia* MAG (**Fig. 4a**,
248 **Supplementary Fig. 15 and Supplementary Table 9**). Consistent with a role in
249 organic carbon degradation, these genes are often associated with bacterial
250 transcriptional regulators IclR/MarR, beta oxidation genes, and galactose degradation
251 genes (**Fig. 4b**). In three MAGs, cytosolic *rdhA* genes were discovered on plasmids
252 (**Supplementary Table 14**); this is reminiscent of BhbA, the plasmid-encoded first
253 characterized enzyme from this family, which aerobically breaks down bromoxynil
254 into 4-carboxy-2-hydroxymuconate-6-semialdehyde in *Comamonas* sp. 7D-2, which
255 is then funneled into the tricarboxylic acid cycle^{19, 50}. These cytosolic RdhAs have
256 high TM-scores (0.92 to 0.95) (**Supplementary Fig. 18**) to the X-ray crystal structure
257 of the 3-bromo-4-hydroxybenzoic acid reductase from *Nitratireductor pacificus*
258 (NpRdhA; PDB id: 6ZY1)²⁷. Two organohalide reducers from *Gammaproteobacteria*,
259 encoding catabolic RDases, showed potential in reducing 1,5-dibromopentane,
260 evidenced by binding energies of -2.44 and -3.11 kcal/mol (**Supplementary Table**
261 **12**). Further analysis revealed that these microorganisms contain genes responsible for
262 the aerobic degradation of medium-chain alkanes (C5-C13, e.g. pentane; *alkB* and
263 CYP153) (**Fig. 5 hydrocarbon degradation and Supplementary Table 15**),
264 suggesting a link between catabolic reductive dehalogenation and aerobic
265 hydrocarbon degradation^{19, 27, 50}.

266 **Cold seep halogen cycling is closely linked to central biogeochemical processes**

267 We extensively annotated the metabolic capabilities of the RDase-encoding MAGs to
268 gain insights into their potential ecophysiology and biogeochemical roles.
269 Fermentation is the main process transforming organic carbon in cold seep
270 environments^{1, 51}, which produces significant amounts of hydrogen (H₂) and various
271 organic acids, both of which are key electron donors for organohalide reducers^{41, 48, 52},

272 ⁵³. Consistently, 288 organohalide reducers were found to encode 495 hydrogenases.
273 Of these, 337 are involved in H₂ oxidation⁵⁴, including group 1a, 1b, 1c, 1d, 1e, and 1f
274 [NiFe]-hydrogenases that donate H₂-derived electrons to anaerobic respiratory chains
275 (**Supplementary Fig. 19 and Supplementary Table 16**). Additionally, genes
276 responsible for formate (*fdhAB*, *fdoG*, *fdwB* and *fdoH*), acetate (*acs*, *acdA*, *ack* and
277 *pta*), and lactate (*ldh*) oxidation were present in 226, 363, and 18 organohalide
278 reducers, respectively (**Fig. 5, Supplementary Fig. 19 and Supplementary Table**
279 **17**). Most of these organohalide reducers involved in processing hydrogen and
280 organic acids possess RdhAs that belong to prototypical and transmembrane
281 respiratory RDases.

282 Organohalide reducers also participate in nitrogen, sulfur, and hydrocarbon cycles
283 (**Fig. 5 nitrogen and sulfur metabolism**). We identified 55 and 57 organohalide
284 reducers with genes related to sulfate and thiosulfate reduction (reductive *dsrA* and
285 *phsA*), respectively (**Supplementary Tables 17-18**). Additionally, 185 organohalide
286 reducers harbor genes involved in the oxidation of sulfide, sulfur, and thiosulfate (*sqr*,
287 *sdo* and *soxBYC*; **Supplementary Table 17**). 189 organohalide reducers harbor
288 reductive genes associated with nitrogen metabolism (*narGH*, *nrfHA*, *nirBDKS* and
289 *octR*), with a small proportion also capable of nitrogen fixation (n = 6) and nitrite
290 oxidation (n = 5). Four organohalide reducers also encoded enzymes for the anaerobic
291 degradation of hydrocarbons (**Fig. 5 hydrocarbon degradation, Supplementary Fig.**
292 **19 and Supplementary Table 15**). Two of these, affiliated with *Desulfobacterota*
293 and encoding quinone-dependent respiratory RDases, encode genes for the anaerobic
294 degradation of n-alkanes (*assA*)^{3, 55, 56}; they potentially remove chlorine from
295 chlorinated paraffins, as suggested by their binding energy of -4.4 kcal/mol
296 (**Supplementary Table 12**). Altogether, the presence of these genes indicates that
297 organohalide reducers are not only versatile in their metabolic functions but also well-
298 equipped to adapt and thrive in various environmental conditions. Despite previous
299 findings suggesting the coupling of AOM with reductive dehalogenation⁷, *rdhA* genes
300 were not found in the ANME group of microorganisms (**Supplementary Fig. 20 and**

301 **Supplementary Table 9**). Moreover, although 55 sulfate-reducing bacteria have the
302 capacity for reductive dehalogenation, none seem to partner with ANME in this
303 process (**Supplementary Table 18**). Considering the negative correlation between the
304 gene abundance of *rdhA* and oxidative *mcrA* (**Fig. 3d**), we hypothesize that these two
305 processes are likely not coupled within cold seeps.

306 Cobalamin (vitamin B₁₂) acts as a cofactor for RDases, facilitating electron transfer²⁷,
307 ^{42, 57}. Only 19% (n = 87) of organohalide reducers are capable of B₁₂ biosynthesis
308 through various pathways⁵⁸, including the aerobic (n = 2), anaerobic (n = 5), salvage
309 remodeling (n = 12) and the Post-AdoCbi-P (n = 78) pathways (**Fig. 5**,
310 **Supplementary Fig. 19 and Supplementary Table 19**). This finding is in line with
311 existing knowledge that only a limited number of microbial genera in the ocean can
312 synthesize B₁₂ de novo^{59, 60}. Among two capable of aerobic B12 biosynthesis, they
313 encode cytosolic *rdhA* genes. The remaining 80% (n = 360) of organohalide reducers,
314 which lack B₁₂ biosynthesis genes, likely rely on B₁₂ synthesized by other
315 microorganisms or present in the environment for their reductive dehalogenation
316 activities⁶¹.

317 **Cold seep RDases show diverse N-terminal structures across different gene
318 groups**

319 Consistent with the phylogenetic tree based on protein sequences, the structure-based
320 phylogeny also supports the classification of cold seep RDases into four distinct
321 groups (**Fig. 6 and Supplementary Table 20**): prototypical respiratory RDases,
322 transmembrane respiratory RDases, cytosolic RDases, and the novel clade RDases.
323 Structurally, bacterial and archaeal RDases from all four groups each contain
324 corrinoid- and FeS-containing domains, each marked by a two-layered alpha-beta
325 structure²⁹⁻³¹; however, these enzymes greatly vary in their N-terminal structures in a
326 manner consistent with their physiological roles. Our structural phylogeny revealed
327 key aspects of RDase evolution that sequence analysis alone could not, suggesting at

328 least five key evolutionary events (**Fig. 6**). For the novel clade, the emergence of a
329 single N-terminal α -helix separated this group from other RDases (**Event 1 in Fig. 6**).
330 Most novel clade RDases (36 of 50) contain a single N-terminal transmembrane α -
331 helix (**Supplementary Fig. 21a**), likely anchoring these enzymes for a respiratory
332 function⁶². Half of these novel clade RDases (18 of 36) with a single TMH also
333 possess RdhB subunit, and the combination of the two forms a multi-transmembrane
334 helix predicted by AlphaFold Multimer (**Supplementary Fig. 22**). Other RDases
335 within this novel clade anchor to the membrane through the RdhB subunit
336 (**Supplementary Fig. 21b**).

337 Of the prototypical respiratory RDases, both the quinone-dependent and quinone-
338 independent enzymes share structural similarities. They each contain a domain
339 analogous to the quinone-binding domain found in quinone-dependent enzymes (**Fig.**
340 **6**), such as the DhPceA₂B₂ from the tetrachloroethene-dechlorinating strain
341 *Desulfitobacterium hafniense* TCE1²⁹. However, this domain in quinone-independent
342 RDases does not exhibit quinone-binding affinity, in contrast to their quinone-
343 dependent counterparts which show a significant binding affinity (-6.39 kcal/mol) and
344 possess shorter substrate transport tunnels (**Event 2 in Fig. 6 and Supplementary**
345 **Fig. 23**). Additionally, among the eleven RDases from *Heimdallarchaeia*, five
346 quinone-dependent RDases have complete N-terminal 4Fe-4S ferredoxin domains,
347 with three others having incomplete ones (**Event 3 in Fig. 6, Supplementary Fig. 24**
348 **and Supplementary Table 9**). The presence of an additional 4Fe-4S domain in these
349 archaeal RDases could potentially enhance the efficiency of the dehalogenation
350 process by using multiple electron pathways from the quinone pool to the active sites⁸,
351 ²⁹.

352 Cytosolic RDases are variable in length, ranging from 300 to 1000 amino acids, and
353 they cluster into three distinct groups correlated with their respective phyla (**Event 4**
354 **in Fig. 6 and Supplementary Table 9**). Eight cold seep cytosolic RDases,
355 predominantly found in the *Pseudomonadota* phylum (with more than 700 amino

356 acids), function as monomers due to the presence of an additional vestigial cobalamin-
357 binding core domain²⁶. Half of these cytosolic RDases are characterized by a unique
358 C-terminal NADP-linked ferredoxin reductase domain²⁶, with an alpha-beta three-
359 layered sandwich structure, allowing electrons derived from NAD(P)H to drive
360 reductive dehalogenation (**Supplementary Table 20**). According to the presence or
361 absence of C-terminal reductase domain, these cytosolic RDases are termed as self-
362 sufficient and truncated cytosolic RDases²⁶. Another clade of cytosolic RDases
363 (labelled as simplified cytosolic RDases) is typically present in *Desulfobacterota* and
364 *Chloroflexota*, with an average length of 395 amino acids (**Supplementary Fig. 25**).
365 Simplified cytosolic RDases possess a shortened N terminus compared to both self-
366 sufficient and truncated cytosolic RDases, as they lack the vestigial cobalamin-
367 binding domain, similar to prototypical respiratory RDases. The considerable
368 variation in the length of cytosolic RdhA proteins indicates significant genetic
369 diversity, which may be indicative of their functional adaptability among various
370 microbial taxa.

371 In the transmembrane respiratory RdhA proteins, the presence of an integral
372 membrane domain is a common feature (**Event 5 in Fig. 6**), yet not all members of
373 this group exhibit N-terminal TMHs. Specifically, certain RdhAs in the two earliest
374 clades within this group lack transmembrane α -helices (**Fig. 6**). Nevertheless,
375 approximately half of these proteins compensate for this absence by utilizing
376 transmembrane domains located in adjacent genes for membrane anchoring
377 (**Supplementary Table 9**). The number of α -helices within these transmembrane
378 domains varies, with some having one to three α -helices (**Supplementary Fig. 26**),
379 which likely impacts how these proteins embed in the membrane and potentially in
380 turn their substrate specificity and catalytic efficiency.

381 **Cold seep *rdhA* genes are mostly functionally constrained and conserved**

382 To investigate the evolutionary ecology of *rdhA* genes in cold seeps, we analyzed their
383 genetic diversity across various sediment sites. Nucleotide diversity across *rdhA* genes

384 was consistently low, with an average of 0.013 (**Fig. 7a and Supplementary Table**
385 **21**). Most *rdhA* genes were under strong purifying selection, as evidenced by low
386 pN/pS values (average 0.21 with 91.4% of ratios less than 0.4), suggesting reductive
387 dehalogenation provides an adaptive advantage *in situ*. However, some quinone-
388 dependent prototypical and cytosolic *rdhA* genes showed evidence of positive
389 selection (**Supplementary Table 21**), potentially due to genetic drift or beneficial
390 mutations⁶³. Further 3D structural predictions for *rdhA* genes with high pN/pS values
391 (>1.5)⁶⁴ demonstrated that amino acid changes related to non-synonymous mutations
392 did not significantly alter overall structure or catalytic domains of the proteins
393 (**Supplementary Fig. 27**). Additionally, the variation in nucleotide diversity and
394 pN/pS ratios was statistically significant across different *rdhA* types ($P = 2.2\text{e-}13$ and
395 $P < 2.2\text{e-}16$, respectively; **Fig. 7a and Supplementary Table 21**), indicating unique
396 evolutionary trajectories for each *rdhA* type. Nucleotide diversity also varied
397 significantly among different types of cold seeps ($P = 0.0006$), with gas hydrates, oil
398 and gas seeps, and methane seep samples exhibiting higher nucleotide diversity
399 (**Supplementary Fig. 28a**). Nevertheless, the pN/pS ratios were consistent across the
400 five cold seep types ($P = 0.25$; **Supplementary Fig. 28b**). Overall, these findings are
401 in line with previous observations of key functional genes in microbial populations
402 within cold seeps^{32, 65}, highlighting the strong functional constraints and conservation
403 of essential metabolic *rdhA* genes across various cold seep environments⁶⁶.

404 To further elucidate the association of nucleotide polymorphisms and protein
405 structures of RDases in cold seeps, genetic variation and biophysical characteristics of
406 RDases were examined. This included single-codon variant (SCV), synonymous (s)
407 and nonsynonymous (ns) polymorphism rates of each codon ($pS^{(\text{site})}$ and $pN^{(\text{site})}$), as
408 well as evaluating relative solvent accessibility (RSA) to indicate the exposure or
409 burial of a site, and distance to ligand (DTL) to represent the proximity to the nearest
410 active site at each codon position. A total of 50,531 SCVs (1,684 per metagenome on
411 average) were found, and $pS^{(\text{site})}$ exceeded $pN^{(\text{site})}$ by a ratio of 6:1 on average of all
412 SCVs, exhibiting particularly high enrichment of synonymous polymorphism within

413 the *rdhA* genes. Additionally, pN^(site) and pS^(site) values varied significantly from site to
414 site ($78.33\% \pm 0.13\%$ versus $79.75\% \pm 0.11\%$ of total variance, ANOVA), hinting
415 varying selective pressures at different loci. The patterns of nucleotide polymorphism
416 are largely determined by the structural and functional constraints of proteins⁶⁷. The
417 gene-wide distributions for pN^(site) and pS^(site) relative to RSA and DTL highlighted
418 that pN^(site) exhibited a distinct inclination for sites with higher RSA and DTL
419 compared to pS^(site) (**Fig 7b**). This result suggests that buried sites (with lower RSA)
420 and functional constraint sites (with lower DTL) are likely to purify nonsynonymous
421 mutation for preserving protein structural stability and function, while revealing
422 comparatively greater tolerance towards synonymous changes. This finding was also
423 supported by the Pearson correlations of $\log_{10}(pN^{(site)})$ and $\log_{10}(pS^{(site)})$ to RSA and
424 DTL for each gene-sample pair (**Fig. 7b**), which showed consistently positive
425 correlations for ns-polymorphism sites with an average Pearson coefficient of $r_{RSA} =$
426 0.22 and $r_{DTL} = 0.08$, whereas the correlations for s-polymorphism sites tended to
427 cluster around 0, averaging $r_{RSA} = 0.01$ and $r_{DTL} = 0.02$. Together, by integrating
428 genetic variants and structural features of RdhA proteins, we found that most
429 polymorphism of *rdhA* genes yielded a strong purifying selection in order to preserve
430 protein stability and metabolic activity of RDases.

431 **Conclusions**

432 In this study, we provide multiple levels of evidence that reductive dehalogenation is
433 a key process supporting the ecology and biogeochemistry of deep-sea cold seeps.
434 The concentrations of organohalide substrates reaching as high as 18 mg/g,
435 widespread distribution of both prototypical and transmembrane respiratory reductive
436 dehalogenases, and high abundance, expression, and conservation of RDase genes all
437 suggest organohalides are a central rather than supplementary electron acceptor in
438 these environments. Physiologically and phylogenetically diverse bacteria and archaea
439 from some 40 phyla encode RDases, including key players in hydrogen, sulfur, carbon,
440 and nitrogen cycling, with organohalide metabolism likely both directly and indirectly

441 influencing these cycles. It is probable that cold seep microbes have different
442 organohalide substrate preferences, given the chemical diversity of the organohalides
443 available to them and the vast structural diversity of the RDases they encode, which
444 may contribute to metabolic niche partitioning in these competitive environments. In
445 this regard, our analysis also revealed new phylogenetic and structural diversity in the
446 RDases, as well as further insights into the complex evolutionary pathways of these
447 enzymes. Notably, we discovered a novel clade of RDases that contains TMHs, TAT
448 signal peptides, and *rdhB* genes, integrating features of both transmembrane and
449 prototypical respiratory features. Finally, our research affirms the deep-sea
450 environment as a repository of novel enzymes, which can be used both directly to
451 remediate organohalide pollutants but also more broadly to advance sequence-
452 structure-function relationships in this space.

453 **Materials and Methods**

454 **Geochemical and metabolomics analyses**

455 For the analysis of dissolved and solid-phase concentrations of Cl^- and Br^- , samples
456 were measured using a Dionex Ion Chromatograph (Thermo Fisher, USA). The set
457 included 1089 pore water samples and six overlying water samples from 63 sediment
458 cores with lengths of 28, 32, and 40 cm, and 21 longer cores (ranging from 0-320 cm
459 and 0-400 cmbsf) from the Qiongdongnan, Shenu, Haima, and Site F cold seeps in
460 the South China Sea (**Supplementary Fig. 1**). Additionally, 68 freeze-dried sediment
461 samples were collected from the Qiongdongnan and Shenu cold seeps.

462 For total organic halogens, 55 sediment samples from the Qiongdongnan and Shenu
463 cold seeps were analyzed using a multi X® 2500 AOX/TOX analyzer (Analytik Jena,
464 Germany). The untargeted metabolomics analyses of these 55 sediment samples
465 involved processing each sample in a solution of methanol, acetonitrile, and water in a
466 2:2:1 ratio, with a 20 mg/L internal standard. The samples were vortexed for 30

467 seconds, ground with steel beads for 10 minutes at 45 Hz, and ultrasonicated for 10
468 minutes in an ice bath. High-resolution LC-MS/MS analysis of all samples was
469 conducted using a Waters Acquity I-Class PLUS ultra-high performance liquid
470 tandem with a Waters Xevo G2-XS QTOF high-resolution mass spectrometer. Both
471 primary and secondary mass spectrometry data were collected in MSe mode,
472 controlled by the acquisition software (MassLynx V4.2, Waters). The raw data were
473 then processed using Progenesis QI software, based on the METLIN database and
474 Biomark's self-built library for identification. The relative abundance of metabolites
475 was quantified based on their normalized peak areas, i.e. the percentage of peak area
476 for each metabolite in the total peak area. The chemical structures of halogenated
477 compounds were visualized using online platform MolView⁶⁸ (<https://molview.org/>).

478 **Metagenomic and metatranscriptomic datasets from cold seep sediments**

479 Metagenomes were compiled from 165 deep-sea sediment samples, with sediment
480 depths ranging from 0 to 68.55 mbsf and water depths varying from 860 to 3005
481 meters. These samples were collected from 16 geographically diverse cold seep sites
482 from around the world (**Supplementary Fig. 1**)^{1, 3, 40, 51, 69-80}, encompassing various
483 types of cold seeps such as oil and gas seeps, methane seeps, gas hydrates, asphalt
484 volcanoes, and mud volcanoes. The sites include: Eastern North Pacific (ENP), Santa
485 Monica Mounds (SMM), Western Gulf of Mexico (WGM), Eastern Gulf of Mexico
486 (EGM), Northwestern Gulf of Mexico (NGM), Scotian Basin (SB), Haakon Mosby
487 mud volcano (HM), Mediterranean Sea (MS), Laptev Sea (LS), Jiaolong cold seep
488 (JL), Shenu area (SH), Haiyang4 (HY4), Qiongdongnan Basin (QDN), Xisha Trough
489 (XST), Haima seep (HM1, HM3, HM5, HM_SQ, S11, SY5, and SY6) and site F cold
490 seep (RS, SF, FR, and SF_SQ). Additionally, 33 metatranscriptomic data were
491 obtained from our previous publications^{51, 77, 79, 81}, including those from South China
492 Sea cold seeps in Jiaolong, Haima, Qiongdongnan Basin, and the Shenu area. The
493 detailed information of the metagenomic and metatranscriptomic datasets used in this
494 study were described in our previous cold seep gene catalog publication⁸².

495 **Metagenomic and metatranscriptomic data processing**

496 The workflow for metagenomic analyses is described in detail (e.g. software and
497 parameters) in **Supplementary Table 22**⁴⁰. Briefly, metagenomic reads were quality
498 controlled and assembled into contigs. The protein-coding sequences predicted from
499 contigs were clustered at 95% amino acid identity to generate a non-redundant gene
500 catalog (n = 147,289,169). MAGs were derived from assembled contigs of over 1,000
501 bp using various binning software tools, including MetaBAT2⁸³, MaxBin2⁸⁴,
502 CONCOCT⁸⁵, SemiBin⁸⁶, VAMB⁸⁷ and Rosella
503 (<https://github.com/rhysnewell/rosella>). Produced MAGs were refined, quality
504 controlled, and clustered at 95% average nucleotide identity, resulting in 3,114
505 species-level representative MAGs. The taxonomy of each MAG was initially
506 assigned using GTDB-TK v2.1.1 with reference to GTDB R207^{88, 89} and then
507 validated using a maximum-likelihood phylogenomic tree. The phylogenomic tree for
508 MAGs was inferred based on concatenation of 43 conserved single-copy genes that
509 were used as phylogenetic markers in CheckM v1.2.1⁹⁰, constructed using IQ-TREE
510 v2.2.0.3⁹¹ with best-fit model and 1000 ultrafast bootstraps.

511 Gene abundances in the non-redundant gene catalog across 165 metagenomes were
512 quantified using Salmon (v.1.9.0)⁹² in mapping-based mode (parameters: -
513 validateMappings -meta) and read counts were normalized to GPM (genes per
514 million). The relative abundance of each MAG was calculated using CoverM in
515 genome mode (v0.6.1; <https://github.com/wwood/CoverM>; parameters: -min-read-
516 percent-identity 0.95 -min-read-aligned-percent 0.75 -trim-min 0.10 -trim-max 0.90 -
517 m relative_abundance) by mapping quality-controlled reads from the 165
518 metagenomes to all MAGs.

519 Regarding metatranscriptomes, raw reads were quality filtered (--skip-bmtagger)
520 using Read_QC module within the metaWRAP (v1.3.2) pipeline⁹³. To remove
521 ribosomal RNAs from quality-controlled reads, SortMeRNA (v2.1)⁹⁴ was used with

522 default settings. Transcript abundances for *rdhA* genes were determined by mapping
523 clean reads from 33 metatranscriptomes to the non-redundant gene catalog using
524 Salmon (v.1.9.0; parameters: -validateMappings -meta)⁹². The transcript abundances
525 of *rdhA* gene were calculated as TPM (transcripts per million).

526 **Functional annotations and phylogenetic analysis**

527 To identify *rdhA* genes, we used reference *rdhA* sequences (n = 1,040) from the
528 Reductive Dehalogenase Database (<https://rdasedb.biozone.utoronto.ca/>)²⁸. We
529 searched for potential *rdhA* sequences in the non-redundant gene catalog against
530 reference *rdhA* genes in RDaseDB using DIAMOND blastp (v2.0.8)⁹⁵, with >30%
531 percentage identity and >50% query coverage as the cut off^{41, 52}. Furthermore, we
532 extracted a gene catalog encoding *rdhA* genes from the InterPro database using Pfam
533 id ‘PF13486’ (n = 4,163) and NCBI’s Protein Family Models using NCBI HMM
534 accession “TIGR02486” (n = 1,235). The hmmsearch tool in HMMER v3.3.2 was
535 applied (E-value < 1E-10) using the amino acid sequences of non-redundant gene
536 catalog to the reference gene catalog. To identify potential *rdhA* sequences in MAGs,
537 Prodigal (v2.6.3; parameter: -meta)⁹⁶ was utilized to predict protein-coding sequences
538 of all MAGs. These predicted sequences were also searched against the *rdhA*
539 reference sequences using DIAMOND blastp (v2.0.15.153)⁹⁵ and HMMER v3.2.1,
540 with the same parameters as mentioned above (**Supplementary Fig. 8**). For each gene
541 which passed the required criteria for *rdhA* gene identification by blastp or
542 hmmsearch were merged and then the retrieved results were manually checked
543 according to gene length (> 300 aa) and two Fe-S conserved motifs
544 (CXXCXXCXXXCP, CXXCXXXCP). In brief, pairwise alignment of identified *rdhA*
545 amino acid sequences for conserved active site analysis was performed and visualized
546 using MAFFT v7.471 (-auto option)⁹⁷ and Jalview⁹⁸. Phylogenetic trees were further
547 constructed to validate the phylogenetic clades of RdhA, *rdhA* amino acid sequences
548 and reference sequences were aligned using MUSCLE (v3.8.1551, default settings)⁹⁹
549 and trimmed using TrimAL (v1.4.1)¹⁰⁰ with default options. Maximum-likelihood

550 trees were constructed using IQ-TREE (v2.2.0.3)⁹¹ with the “-m MFP -B 1000”
551 options. All trees were visualized by using iTOL (v6)¹⁰¹.

552 The MAGs were also annotated using DRAM (v1.3.5; parameter: --min_contig_size
553 1000)¹⁰² against KEGG, Pfam, MEROPS and dbCAN databases. To annotate genes
554 involved in hydrocarbon degradation, CANT-HYD database¹⁰³ with the HMMs of 16
555 hydrocarbon-degrading genes was searched against with parameters “-cut_nc” using
556 HMMER v3.2.1. The hydrogenases were annotated using DIAMOND blastp
557 (v2.0.15.153; options: --id 50 --query-cover 80 --eval 1E-20) against local protein
558 databases (<https://doi.org/10.26180/c.5230745>)¹⁰⁴, further confirmed and classified
559 using the HydDB tool⁵⁴. The VB₁₂Path was employed to annotate genes involved the
560 VB₁₂ synthesis pathway⁵⁸.

561 **Identification of mobile genetic elements**

562 Classification of *rdhA*-containing contigs as belonging to chromosomes, plasmids or
563 viruses was performed using Genomad v.1.5.0 with default parameters¹⁰⁵. Integrons,
564 integrative conjugative element (ICEs), IS elements and transposons were identified
565 using HMM searches of the proteins against the 68 marker HMM profiles by default,
566 which are available on proMGE (<http://promge.embl.de/>)¹⁰⁶.

567 **Protein modeling and molecular docking**

568 Deep learning approach AlphaFold2 has yielded remarkable progress in predicting
569 protein structures. The three-dimensional structures of 586 *rdhA* sequences were
570 generated with AlphaFold (v2.0; full_dbs)¹⁰⁷. The pLDDT values, a measure for
571 confidence of the AlphaFold structure prediction, range from 65 to 97, 91 on average.
572 The protein complexes of novel clade RDases were predicted using AlphaFold (v2.0;
573 model_preset = multimer)¹⁰⁷. The paired alignment of structures relied on 3Di and
574 amino acid based alignment via Foldseek v8.ef4e960¹⁰⁸. Structure-based RdhA tree
575 was further built using Foldtree (https://github.com/DessimozLab/fold_tree) based on

576 a local structural alphabet¹⁰⁹ and visualized using iTOL (v6)¹⁰¹. Structural similarity
577 and homology relationships of RdhAs with 1,007,623 protein domains in the ECOD
578 database¹¹⁰ were investigated using Foldseek easy-search module¹⁰⁸ (--tmscore-
579 threshold 0.3 -e 0.001). TMHMM v2.0 was employed to predict transmembrane
580 topology of RdhA proteins (<https://services.healthtech.dtu.dk/services/TMHMM-2.0/>).

581 Ledock (<https://www.lephar.com/>) was used to predict the binding poses of 191
582 halohydrocarbons on different RDases (RMSD: 1.0, Number of binding poses: 20,
583 size: 10). Prediction of ligand channels was performed on the Caver v3.0
584 (probe_radius 0.9, shell_radius 3, shell_depth 4)¹¹¹. All of the structures were
585 visualized and exported as images using PyMOL (<http://www.pymol.org>).

586 **Nucleotide diversity and pN/pS ratio analyses**

587 All metagenomic filtered reads from each sample were mapped to an indexed
588 database of the *rdhA*-containing genomes using Bowtie2 (v2.3.5.1; default
589 parameters)¹¹². The nucleotide diversity and pN/pS ratio of *rdhA* genes were
590 calculated from these mappings using the profile module of the inStrain program
591 (v1.6.2; default parameters)³⁵ at the gene level. To perform gene level profiling, genes
592 were predicted by the software Prodigal (v2.6.3; settings: -p meta)⁹⁶ for each MAG
593 carrying *rdhA* genes. A total of 475 *rdhA* genes were retained for microdiversity
594 analyses, which satisfied threshold criteria of having a breadth of 50% and 5×
595 coverage.

596 **Structure-based polymorphism analyses**

597 The variants across the RdhA protein structures were explored using the microbial
598 population genetics framework implemented in anvi'o (v7.1)¹¹³. First, population
599 statistics of *rdhA* genes, including coverage, single nucleotide variants (SNVs) and
600 single codon variants (SCVs), were calculated from the mappings using the profile
601 module of the anvi'o program (v7.1; default parameters). Only SNV positions

602 mapping with greater than 10 \times coverage and the average coverage of *rdhA* genes
603 exceeded 2 \times in each metagenome were retained (reducing our metagenomic samples
604 size from 165 to 30). Additionally, *rdhA* genes that are present in a minimum of 20 out
605 of 30 metagenomes were included for further analysis. The remaining 200 *rdhA* genes
606 with high-quality structure (pLDDT > 80) were imported for structure-based
607 polymorphism analyses. The SCV data of each site on the high-quality structure
608 (pLDDT > 80) was integrated with ‘anvi-display-structure’, which filtered for variants
609 that had at least 0.05 departure from consensus. The producing results including
610 synonymous (s) and nonsynonymous (ns) polymorphism rates of each codon (pS^(site)
611 and pN^(site)) and relative solvent accessibility (RSA). Ligand-binding residues of each
612 gene were predicted with per-residue binding frequencies greater than 0.5 using
613 InteracDome. Distance-to-ligand (DTL) was calculated using append_dist_to_lig.py
614 (<https://merenlab.org/data/anvio-structure/chapter-III/>). The relationship between
615 SCVs, relative solvent accessibility (RSA), and distance to ligand (DTL) in reductive
616 dehalogenases were explored.

617 **Statistical analyses**

618 Statistical analyses were carried out in R v4.2.3. The normality and variance
619 homogeneity of the data were evaluated using Shapiro-Wilk Test and Levene’s test,
620 respectively. To compare gene abundance and evolutionary metrics among different
621 *rdhA* groups, the Kruskal-Wallis rank-sum test was employed. For paired comparisons
622 within *rdhA* groups, the Wilcoxon test was utilized. Pearson’s product-moment
623 correlation and linear regression were performed to assess the relationship between
624 gene abundance, evolutionary metrics and their relationships with sediment depth.
625 ANOVA analysis was performed to determine the portion of variability in the
626 polymorphism data and the Pearson coefficients for each gene-sample pair were
627 calculated using the R script available at <https://merenlab.org/data/anvio-structure/chapter-IV/>.

629 **Data availability**

630 The non-redundant gene and MAGs catalogs derived from 165 cold seep
631 metagenomes can be found in figshare
632 (<https://doi.org/10.6084/m9.figshare.22568107>). The *rdhA*-carrying MAGs and
633 phylogenetic trees of RdhA based on amino acid sequences and protein structures are
634 available at figshare (<https://doi.org/10.6084/m9.figshare.23499363>).

635 **Code Availability**

636 The present study did not generate codes, and mentioned tools used for the data
637 analysis were applied with default parameters unless specified otherwise.

638 **Reference**

- 639 1. Dong, X. et al. Metabolic potential of uncultured bacteria and archaea associated with
640 petroleum seepage in deep-sea sediments. *Nat. Commun.* **10**, 1816 (2019).
- 641 2. Joye, S.B. The geology and biogeochemistry of hydrocarbon seeps. *Annu. Rev. Earth Pl. Sci.*
642 **48**, 205-231 (2020).
- 643 3. Dong, X. et al. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial
644 populations at a Scotian Basin cold seep. *Nat. Commun.* **11**, 5825 (2020).
- 645 4. Kleindienst, S. et al. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus
646 clade are the key alkane degraders at marine seeps. *ISME J* **8**, 2029-2044 (2014).
- 647 5. Lyu, L. et al. Bioaccumulation of emerging persistent organic pollutants in the deep-sea cold
648 seep ecosystems: Evidence from chlorinated paraffin. *J Hazard Mater* **445**, 130472 (2022).
- 649 6. Zhang, C., Atashgahi, S., Bosma, T.N.P., Peng, P. & Smidt, H. Organohalide respiration
650 potential in marine sediments from Aarhus Bay. *FEMS Microbiol Ecol* **98** (2022).
- 651 7. Yang, Y. et al. Roles of Organohalide-Respiring Dehalococcoidia in Carbon Cycling.
652 *mSystems* **5** (2020).
- 653 8. Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based
654 on comparative analyses of Asgard archaeal metabolism. *Nat Microbiol* **4**, 1138-1148 (2019).
- 655 9. Schubert, T., Adrian, L., Sawers, R.G. & Diekert, G. Organohalide respiratory chains:
656 composition, topology and key enzymes. *FEMS Microbiol Ecol* **94** (2018).
- 657 10. Leri, A.C. et al. A marine sink for chlorine in natural organic matter. *Nat Geosci* **8**, 620-624
658 (2015).
- 659 11. Futagami, T., Morono, Y., Terada, T., Kaksonen, A.H. & Inagaki, F. Distribution of
660 dehalogenation activity in subseafloor sediments of the Nankai Trough subduction zone.
661 *Philos T R Soc B* **368** (2013).
- 662 12. Dolfing, J. in *Organohalide-Respiring Bacteria*. (eds. L. Adrian & F.E. Löffler) 31-48

663 13. (Springer Berlin Heidelberg, Berlin, Heidelberg; 2016).

664 13. Wang, S. et al. Electron transport chains in organohalide-respiring bacteria and bioremediation
665 implications. *Biotechnol Adv* **36**, 1194-1206 (2018).

666 14. Liu, R. et al. Novel Chloroflexi genomes from the deepest ocean reveal metabolic strategies
667 for the adaptation to deep-sea habitats. *Microbiome* **10** (2022).

668 15. Fincker, M. et al. Metabolic strategies of marine subseafloor Chloroflexi inferred from
669 genome reconstructions. *Environmental Microbiology* **22**, 3188-3204 (2020).

670 16. Vuillemin, A., Kerrigan, Z., D'Hondt, S. & Orsi, W.D. Exploring the abundance, metabolic
671 potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic
672 abyssal clay. *FEMS Microbiology Ecology* **96** (2020).

673 17. Liu, Y., Wang, L., Liu, R. & Fang, J. Biogeochemical cycling of halogenated organic
674 compounds in the ocean: Current progress and future directions. *Deep Sea Research Part I: Oceanographic Research Papers*, 104237 (2024).

675 18. Bommer, M. et al. Structural basis for organohalide respiration. *Science* **346**, 455-458 (2014).

676 19. Fincker, M. & Spormann, A.M. Biochemistry of Catabolic Reductive Dehalogenation. *Annu Rev Biochem* **86**, 357-386 (2017).

677 20. Turkowsky, D. et al. An integrative overview of genomic, transcriptomic and proteomic
678 analyses in organohalide respiration research. *FEMS Microbiol Ecol* **94**, fiy013 (2018).

679 21. Kublik, A. et al. Identification of a multi-protein reductive dehalogenase complex in
680 *Dehalococcoides mccartyi* strain CBDB1 suggests a protein-dependent respiratory electron
681 transport chain obviating quinone involvement. *Environmental Microbiology* **18**, 3044-3056
682 (2016).

683 22. Hartwig, S. et al. A H₂-oxidizing, 1,2,3-trichlorobenzene-reducing multienzyme complex
684 isolated from the obligately organohalide-respiring bacterium *Dehalococcoides mccartyi*
685 strain CBDB1. *Environmental Microbiology Reports* **9**, 618-625 (2017).

686 23. Atashgahi, S. Discovered by genomics: putative reductive dehalogenases with N-terminus
687 transmembrane helices. *FEMS Microbiol Ecol* **95** (2019).

688 24. Liu, J. & Haggblom, M.M. Genome-Guided Identification of Organohalide-Respiring
689 Deltaproteobacteria from the Marine Environment. *Mbio* **9** (2018).

690 25. Jochum, L.M. et al. Single-Cell Genomics Reveals a Diverse Metabolic Potential of
691 Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine
692 Sediment. *Front Microbiol* **9**, 2038 (2018).

693 26. Fisher, K. et al. Efficient NADPH-dependent dehalogenation afforded by a self-sufficient
694 reductive dehalogenase. *J Biol Chem* **299**, 105086 (2023).

695 27. Payne, K.A. et al. Reductive dehalogenase structure suggests a mechanism for B12-dependent
696 dehalogenation. *Nature* **517**, 513-516 (2015).

697 28. Molenda, O. et al. Insights into origins and function of the unexplored majority of the
698 reductive dehalogenase gene family as a result of genome assembly and ortholog group
699 classification. *Environ Sci Proc Imp* **22**, 663-678 (2020).

700 29. Cimmino, L. et al. Structure of a membrane-bound menaquinol:organohalide oxidoreductase.
701 *Nat Commun* **14**, 7038 (2023).

702 30. Bommer, M. et al. Structural basis for organohalide respiration. *Science* **346**, 455-458 (2014).

703 31. Halliwell, T., Fisher, K., Payne, K.A.P., Rigby, S.E.J. & Leys, D. Catabolic Reductive
704 Dehalogenase Substrate Complex Structures Underpin Rational Repurposing of Substrate

707 32. Scope. *Microorganisms* **8** (2020).

708 32. Dong, X. et al. Evolutionary ecology of microbial populations inhabiting deep sea sediments
709 associated with cold seeps. *Nat Commun* **14**, 1127 (2023).

710 33. Anderson, R.E. et al. Genomic variation in microbial populations inhabiting the marine
711 subseafloor at deep-sea hydrothermal vents. *Nat Commun* **8**, 1114 (2017).

712 34. Sjoqvist, C., Delgado, L.F., Alneberg, J. & Andersson, A.F. Ecologically coherent population
713 structure of uncultivated bacterioplankton. *ISME J* **15**, 3034-3049 (2021).

714 35. Olm, M.R. et al. inStrain profiles population microdiversity from metagenomic data and
715 sensitively detects shared microbial strains. *Nat Biotechnol* **39**, 727-736 (2021).

716 36. Berg, R.D. & Solomon, E.A. Geochemical constraints on the distribution and rates of
717 debromination in the deep subseafloor biosphere. *Geochimica et Cosmochimica Acta* **174**, 30-
718 41 (2016).

719 37. Ji, F. et al. Geochemistry of hydrothermal vent fluids and its implications for subsurface
720 processes at the active Longqi hydrothermal field, Southwest Indian Ridge. *Deep Sea
721 Research Part I: Oceanographic Research Papers* **122**, 41-47 (2017).

722 38. Millero, F.J., Feistel, R., Wright, D.G. & McDougall, T.J. The composition of Standard
723 Seawater and the definition of the Reference-Composition Salinity Scale. *Deep Sea Research
724 Part I: Oceanographic Research Papers* **55**, 50-72 (2008).

725 39. Hu, C.-Y. et al. Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and
726 geochemical characteristics of the pore fluids offshore southwestern Taiwan. *Journal of Asian
727 Earth Sciences* **149**, 172-183 (2017).

728 40. Han, Y. et al. A comprehensive genomic catalog from global cold seeps. *Scientific Data* **10**
729 (2023).

730 41. Peng, P. et al. Organohalide-respiring Desulfoluna species isolated from marine environments.
731 *ISME J* **14**, 815-827 (2020).

732 42. Cimmino, L. et al. Structure of a membrane-bound menaquinol:organohalide oxidoreductase.
733 *Nature Communications* **14**, 7038 (2023).

734 43. Atashgahi, S. et al. Geochemical and microbial community determinants of reductive
735 dechlorination at a site biostimulated with glycerol. *Environ Microbiol* **19**, 968-981 (2017).

736 44. Müller, A.L., Kjeldsen, K.U., Rattei, T., Pester, M. & Loy, A. Phylogenetic and environmental
737 diversity of DsrAB-type dissimilatory (bi)sulfite reductases. *The ISME Journal* **9**, 1152-1165
738 (2015).

739 45. Zhang, C. et al. Unexpected genetic and microbial diversity for arsenic cycling in deep sea
740 cold seep sediments. *NPJ Biofilms Microbi* **9**, 13 (2023).

741 46. Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Expanding anaerobic alkane metabolism
742 in the domain of Archaea. *Nature Microbiology* **4**, 595-602 (2019).

743 47. Wang, Y., Wegener, G., Ruff, S.E. & Wang, F. Methyl/alkyl-coenzyme M reductase-based
744 anaerobic alkane oxidation in archaea. *Environ Microbiol* **23**, 530-541 (2021).

745 48. Xu, G., Zhao, X., Zhao, S., Rogers, M.J. & He, J. Salinity determines performance, functional
746 populations, and microbial ecology in consortia attenuating organohalide pollutants. *The ISME
747 Journal* **17**, 660-670 (2023).

748 49. Chen, Z., Tom, N.P.B., Siavash, A. & Hauke, S. Genome-resolved transcriptomics reveals
749 novel organohalide-respiring bacteria from Aarhus Bay sediments. *bioRxiv*,
750 2023.2004.2017.537210 (2023).

751 50. Chen, K. et al. Molecular characterization of the enzymes involved in the degradation of a
752 brominated aromatic herbicide. *Molecular Microbiology* **89**, 1121-1139 (2013).

753 51. Zhang, C. et al. The majority of microorganisms in gas hydrate-bearing subseafloor sediments
754 ferment macromolecules. *Microbiome* **11**, 37-37 (2023).

755 52. Deng, Z. et al. Marine Dehalogenator and Its Chaperones: Microbial Duties and Responses in
756 2,4,6-Trichlorophenol Dechlorination. *Environ Sci Technol* **57**, 11300-11312 (2023).

757 53. Lipson David, A., Raab Theodore, K., Pérez Castro, S. & Powell, A. Organohalide-Respiring
758 Bacteria at the Heart of Anaerobic Metabolism in Arctic Wet Tundra Soils. *Applied and*
759 *Environmental Microbiology* **87**, e01643-01620 (2021).

760 54. Sondergaard, D., Pedersen, C.N.S. & Greening, C. HydDB: A web tool for hydrogenase
761 classification and analysis. *Sci Rep* **6** (2016).

762 55. Khot, V. et al. CANT-HYD: A Curated Database of Phylogeny-Derived Hidden Markov
763 Models for Annotation of Marker Genes Involved in Hydrocarbon Degradation. *Frontiers in*
764 *Microbiology* **12** (2022).

765 56. Zhang, C. et al. Marine sediments harbor diverse archaea and bacteria with the potential for
766 anaerobic hydrocarbon degradation via fumarate addition. *FEMS Microbiol Ecol* **97**, fiab045
767 (2021).

768 57. Kunze, C. et al. Cobamide-mediated enzymatic reductive dehalogenation via long-range
769 electron transfer. *Nat Commun* **8**, 15858 (2017).

770 58. Zhou, J. et al. VB₁₂Path for Accurate Metagenomic Profiling of Microbially Driven
771 Cobalamin Synthesis Pathways. *mSystems* **6**, 10.1128/msystems.00497-00421 (2021).

772 59. Zhou, J. et al. The diversity and ecological significance of microbial traits potentially involved
773 in B12 biosynthesis in the global ocean. *mLife* **2**, 416-427 (2023).

774 60. Wang, J., Zhu, Y.-G., Tiedje, J.M. & Ge, Y. Global biogeography and ecological implications
775 of cobamide-producing prokaryotes. *The ISME Journal*, wrae009 (2024).

776 61. Liu, J., Adrian, L. & Häggblom Max, M. Transcriptomic and Proteomic Responses of the
777 Organohalide-Respiring Bacterium Desulfoluna spongiiphila to Growth with 2,6-
778 Dibromophenol as the Electron Acceptor. *Applied and Environmental Microbiology* **86**,
779 e02146-02119 (2020).

780 62. Gnidehou, S. et al. Iodotyrosine dehalogenase 1 (DEHAL1) is a transmembrane protein
781 involved in the recycling of iodide close to the thyroglobulin iodination site. *The FASEB*
782 *Journal* **18**, 1574-1576 (2004).

783 63. Rocha, E.P.C. Neutral Theory, Microbial Practice: Challenges in Bacterial Population Genetics.
784 *Mol Biol Evol* **35**, 1338-1347 (2018).

785 64. McBride, J.M. et al. AlphaFold2 Can Predict Single-Mutation Effects. *Physical Review Letters*
786 **131**, 218401 (2023).

787 65. Dong, X. et al. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold
788 deep sediments. *Nat Commun* **13**, 4885 (2022).

789 66. Starnawski, P. et al. Microbial community assembly and evolution in subseafloor sediment.
790 *PNAS* **114**, 2940-2945 (2017).

791 67. Kiefl, E. et al. Structure-informed microbial population genetics elucidate selective pressures
792 that shape protein evolution. *Science Advances* **9**, eabq4632 (2023).

793 68. Smith, T.J. MOLView: A program for analyzing and displaying atomic structures on the
794 Macintosh personal computer. *Journal of Molecular Graphics* **13**, 122-125 (1995).

795 69. Glass, J.B. et al. Microbial metabolism and adaptations in Atribacteria-dominated methane
796 hydrate sediments. *Environ. Microbiol.* **23**, 4646-4660 (2021).

797 70. Yu, H. et al. Sulfate differentially stimulates but is not resired by diverse anaerobic
798 methanotrophic archaea. *ISME J.* **16**, 168-177 (2022).

799 71. Laso-Perez, R. et al. Anaerobic degradation of non-methane alkanes by "Candidatus
800 Methanoliparia" in hydrocarbon seeps of the Gulf of Mexico. *mBio* **10**, e01814-01819 (2019).

801 72. Zhao, R., Summers, Z.M., Christman, G.D., Yoshimura, K.M. & Biddle, J.F. Metagenomic
802 views of microbial dynamics influenced by hydrocarbon seepage in sediments of the Gulf of
803 Mexico. *Sci. Rep* **10**, 5772 (2020).

804 73. Ruff, S.E. et al. In situ development of a methanotrophic microbiome in deep-sea sediments.
805 *ISME J.* **13**, 197-213 (2019).

806 74. Li, L. et al. Bacteria and archaea synergistically convert glycine betaine to biogenic methane
807 in the Formosa cold seep of the South China Sea. *mSystems* **6**, e0070321 (2021).

808 75. Zhang, H. et al. Metagenome sequencing and 768 microbial genomes from cold seep in South
809 China Sea. *Sci. Data* **9**, 480 (2022).

810 76. Lu, R. et al. Asgard archaea in the haima cold seep: Spatial distribution and genomic insights.
811 *Deep-Sea Res. Pt. I* **170**, 103489 (2021).

812 77. Xiao, X. et al. Metal-driven anaerobic oxidation of methane as an important methane sink in
813 methanic cold seep sediments. *Microbiol. Spectr.* **11**, e05337-05322 (2023).

814 78. Li, J. et al. Deep sea cold seep is an atmospheric Hg sink and MeHg source. *Research Square*
815 <https://doi.org/10.21203/rs.3.rs-2323106/v1>. (2022).

816 79. Dong, X. et al. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold
817 seep sediments. *Nat. Commun.* **13**, 4885 (2022).

818 80. Li, W.-L., Wu, Y.-Z., Zhou, G.-w., Huang, H. & Wang, Y. Metabolic diversification of
819 anaerobic methanotrophic archaea in a deep-sea cold seep. *Mar. Life Sci. Tech.* **2**, 431-441
820 (2020).

821 81. Li, W.L. et al. Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-
822 sea cold seep sediments. *Environ. Microbiol.* **23**, 6844-6858 (2021).

823 82. Han, Y. et al. A comprehensive genomic catalog from global cold seeps. *Sci Data* **10**, 596
824 (2023).

825 83. Kang, D.D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome
826 reconstruction from metagenome assemblies. *PeerJ* **7** (2019).

827 84. Wu, Y.W., Simmons, B.A. & Singer, S.W. MaxBin 2.0: an automated binning algorithm to
828 recover genomes from multiple metagenomic datasets. *Bioinformatics* **32**, 605-607 (2016).

829 85. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. *Nat Methods*
830 **11**, 1144-1146 (2014).

831 86. Pan, S., Zhu, C., Zhao, X.-M. & Coelho, L.P. A deep siamese neural network improves
832 metagenome-assembled genomes in microbiome datasets across different environments. *Nat.*
833 *Commun.* **13**, 2326 (2022).

834 87. Nissen, J.N. et al. Improved metagenome binning and assembly using deep variational
835 autoencoders. *Nat. Biotechnol.* **39**, 555-560 (2021).

836 88. Chaumeil, P.A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk: a toolkit to classify
837 genomes with the Genome Taxonomy Database. *Bioinformatics* **36**, 1925-1927 (2019).

838 89. Parks, D.H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. *Nat.*

839 90. *Biotechnol.* **38**, 1079–1086 (2020).

840 90. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P. & Tyson, G.W. CheckM: assessing
841 the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
842 *Genome Res.* **25**, 1043-1055 (2015).

843 91. Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. IQ-TREE: A Fast and effective
844 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* **32**,
845 268-274 (2015).

846 92. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. Salmon provides fast and
847 bias-aware quantification of transcript expression. *Nat. Methods* **14**, 417-419 (2017).

848 93. Uritskiy, G.V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-
849 resolved metagenomic data analysis. *Microbiome* **6**, 158 (2018).

850 94. Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal
851 RNAs in metatranscriptomic data. *Bioinformatics* **28**, 3211-3217 (2012).

852 95. Buchfink, B., Xie, C. & Huson, D.H. Fast and sensitive protein alignment using DIAMOND.
853 *Nat Methods* **12**, 59-60 (2015).

854 96. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site
855 identification. *BMC Bioinformatics* **11**, 119 (2010).

856 97. Katoh, K. & Standley, D.M. A simple method to control over-alignment in the MAFFT
857 multiple sequence alignment program. *Bioinformatics* **32**, 1933-1942 (2016).

858 98. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2--a
859 multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**, 1189-1191
860 (2009).

861 99. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
862 *Nucleic Acids Research* **32**, 1792-1797 (2004).

863 100. Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. trimAl: a tool for automated
864 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973
865 (2009).

866 101. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
867 display and annotation. *Nucleic Acids Res.* **49**, W293-W296 (2021).

868 102. Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of
869 microbiome function. *Nucleic Acids Res* **48**, 8883-8900 (2020).

870 103. Khot, V. et al. CANT-HYD: A Curated Database of Phylogeny-Derived Hidden Markov
871 Models for Annotation of Marker Genes Involved in Hydrocarbon Degradation. *Frontiers in*
872 *microbiology* **12**, 764058 (2021).

873 104. Bay, S.K. et al. Trace gas oxidizers are widespread and active members of soil microbial
874 communities. *Nat Microbiol* **6**, 246-256 (2021).

875 105. Camargo, A.P. et al. Identification of mobile genetic elements with geNomad. *Nat Biotechnol*
876 (2023).

877 106. Khedkar, S. et al. Landscape of mobile genetic elements and their antibiotic resistance cargo in
878 prokaryotic genomes. *Nucleic Acids Research* **50**, 3155-3168 (2022).

879 107. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-
880 589 (2021).

881 108. van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. *Nat*
882 *Biotechnol* (2023).

883 109. Moi, D. et al. Structural phylogenetics unravels the evolutionary diversification of
884 communication systems in gram-positive bacteria and their viruses. *bioRxiv*,
885 2023.2009.2019.558401 (2023).

886 110. Cheng, H. et al. ECOD: an evolutionary classification of protein domains. *PLoS Comput Biol*
887 **10**, e1003926 (2014).

888 111. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic
889 protein structures. *PLoS Comput Biol* **8**, e1002708 (2012).

890 112. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**,
891 357-359 (2012).

892 113. Kiefl, E. et al. Structure-informed microbial population genetics elucidate selective pressures
893 that shape protein evolution. *Sci Adv* **9**, eabq4632 (2023).

894

895 **Acknowledgements**

896 The work was supported by the National Science Foundation of China (No. 92351304
897 and No. 32300100), the Natural Science Foundation of Fujian Province (No.
898 2023J06042), Scientific Research Foundation of Third Institute of Oceanography,
899 MNR (No. 2022025 and No. 2023022), State Key Laboratory of Marine Geology,
900 Tongji University (No. MGK202303), and China Postdoctoral Science Foundation
901 (2023M734096). We thank Qiuyun Jiang, Jing Liao, Chengpeng Li, Zhaochao Deng,
902 Fabai Wu and Xinyue Liu for geochemical analyses and helpful discussions.

903 **Author contributions**

904 X.D. and Y.H. designed this study. Y.H. and Y.P. performed the omics analysis. M.W.
905 and J.P. contributed to metabolomic data. L.C. and M.W. provided extensive
906 geochemical data for both pore and overlying waters. D.Z. and Y.X. measured total
907 organic halogen of cold seep sediments. Y.Y., H.Z., C.Z., and C.G. are actively
908 engaged in discussions and data interpretations. Y.H., Y.P., C.G., and X.D. wrote the
909 paper, with input from other authors.

910 **Competing interests**

911 The authors declare no competing interests.

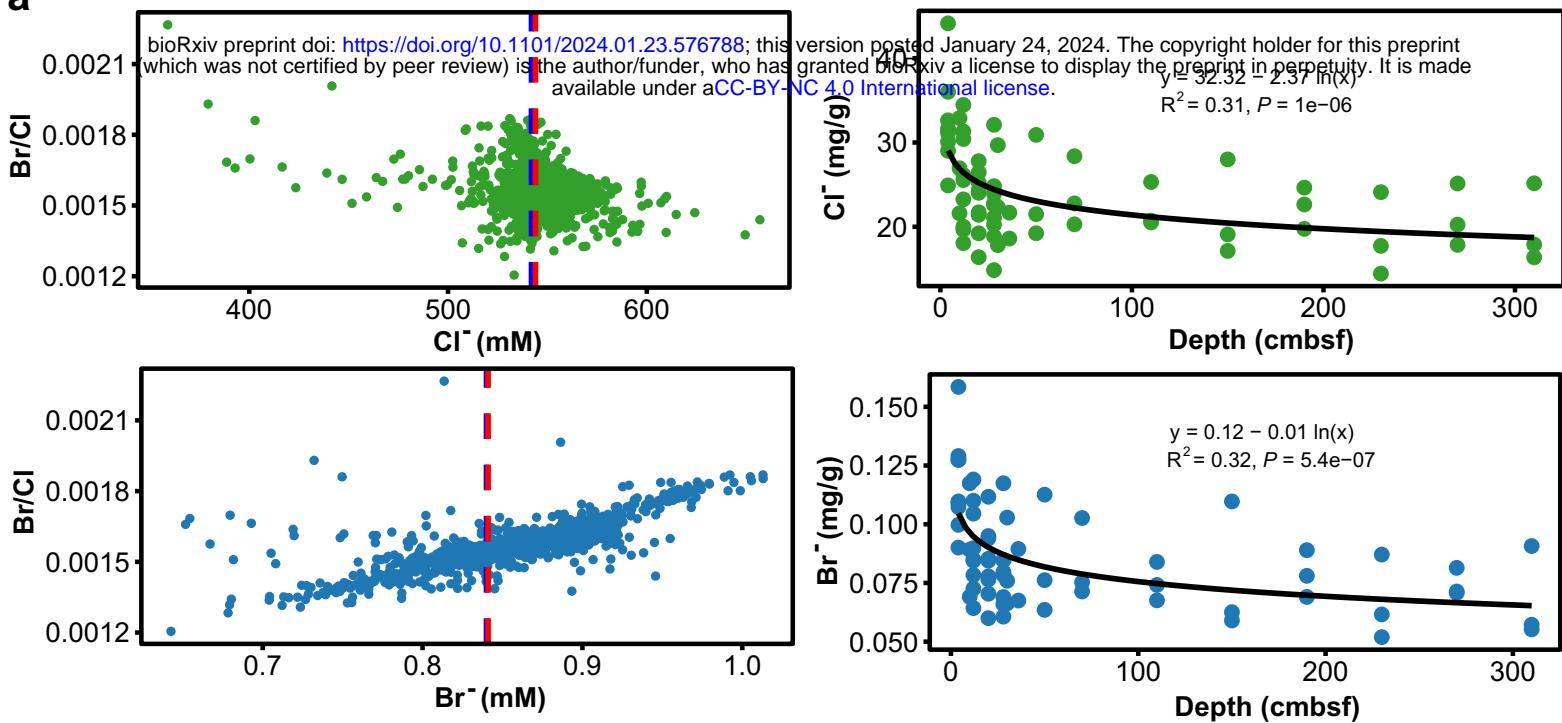
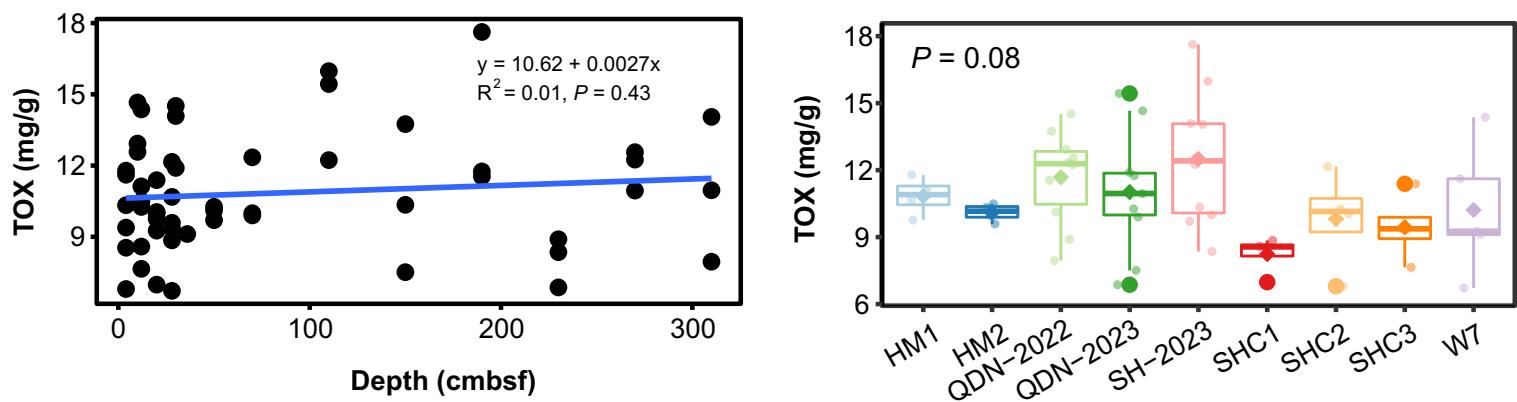
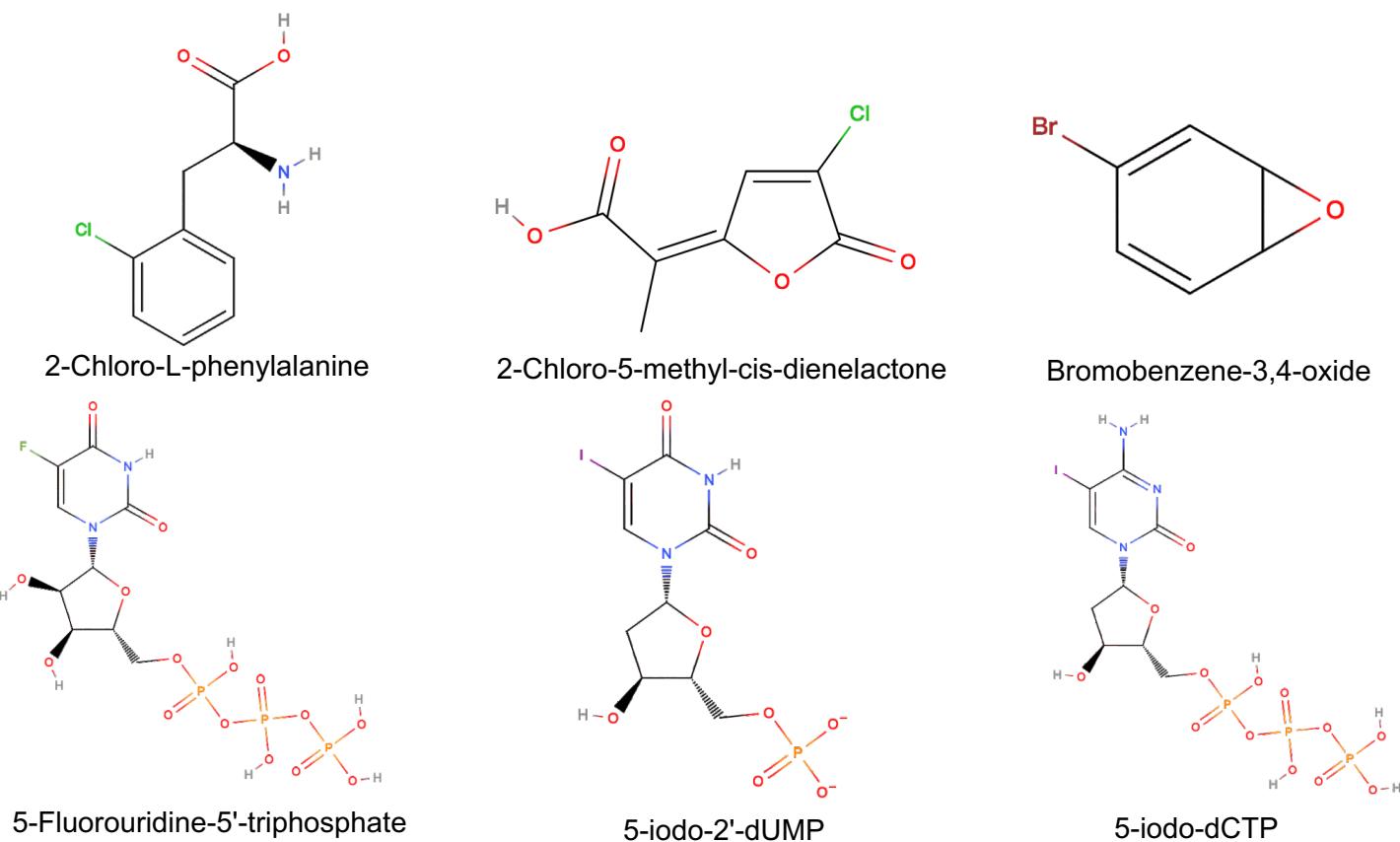
912 **Figure legends**

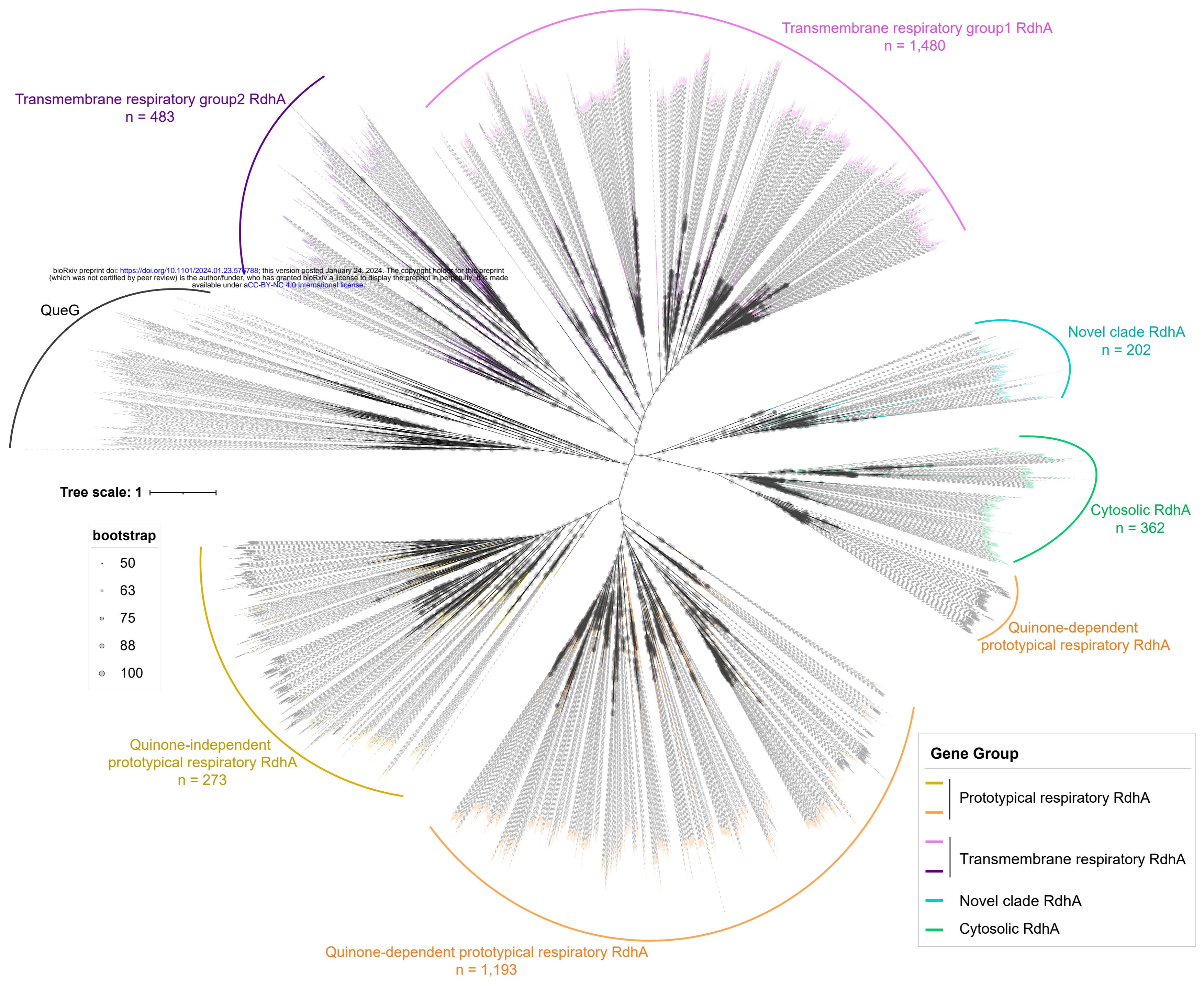
913 **Figure 1. Halogen profiles of cold seep porewater and sediments.** (a)
914 Concentration profiles of dissolved and solid chlorine (Cl⁻) and bromine (Br⁻) in 1086
915 porewater samples and 68 sediment samples collected from Qiongdongnan, Shenu,
916 Haima, and Site F cold seeps. Blue lines and red lines represent the average
917 concentration of Cl⁻ and Br⁻ in the typical seawater and overlying water of cold seeps,
918 respectively. (b) Concentration profiles of total organic halogen in sediments collected
919 from Qiongdongnan and Shenu cold seeps. (c) The chemical structures of
920 halogenated compounds identified in sediments from Qiongdongnan and Shenu cold
921 seeps. Detailed data on halogen profiles of cold seep porewater and sediments can be
922 found in **Supplementary Table 1-3**.

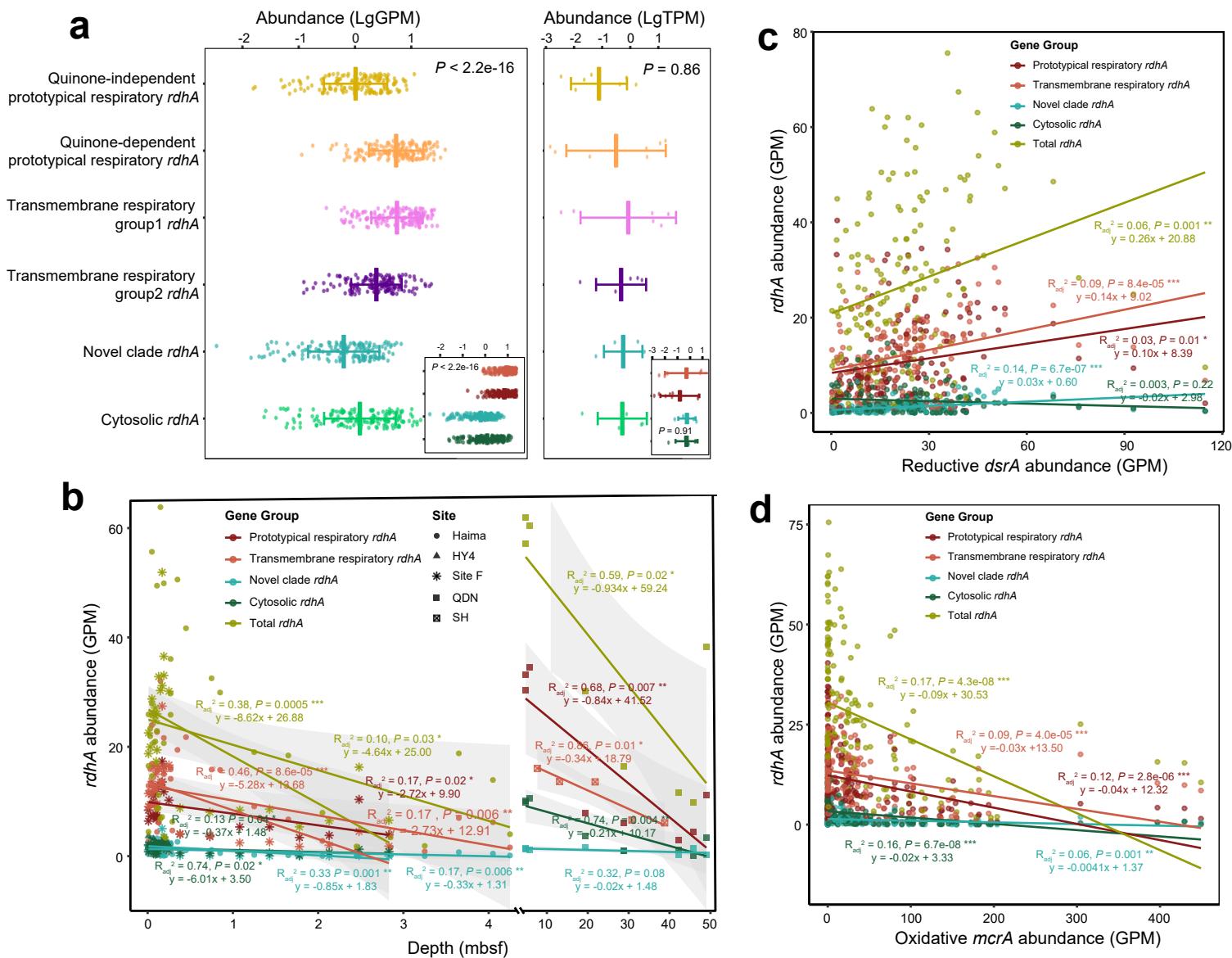
923 **Figure 2. Maximum-likelihood phylogenetic tree of reductive dehalogenase**
924 **(RdhA) identified from the cold seep non-redundant gene catalog.** Branches are
925 color-coded to represent different RdhA subgroups. Epoxyqueuosine reductase (QueG)
926 was used as the outgroup. Scale bar indicates the mean number of substitutions per
927 site. Bootstrap values over 50% were shown next to the nodes. The n values denote
928 the count of RdhA sequences within each subgroup.

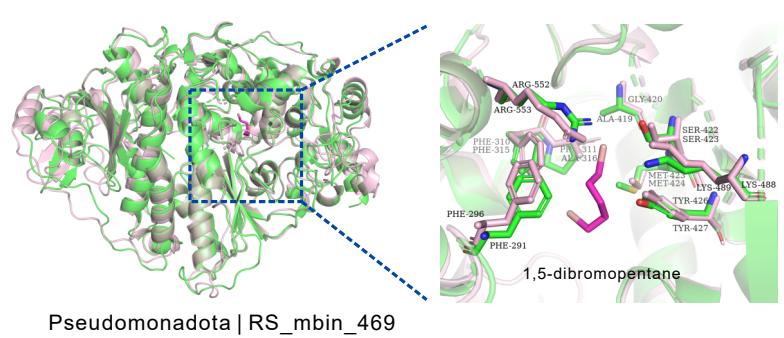
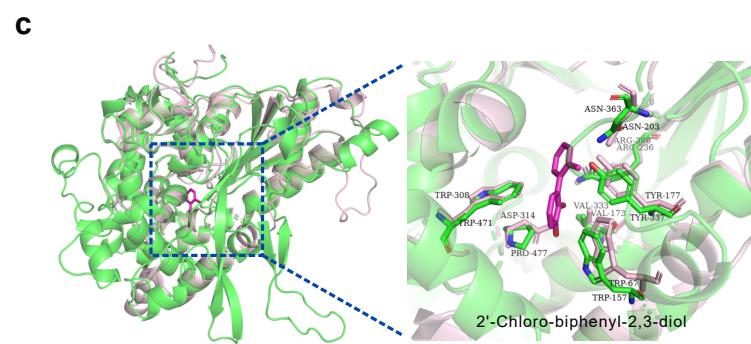
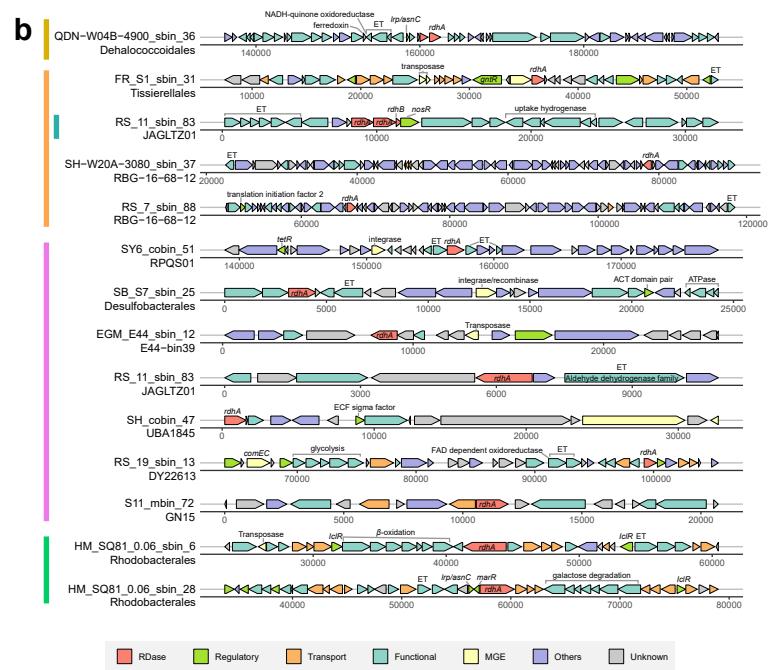
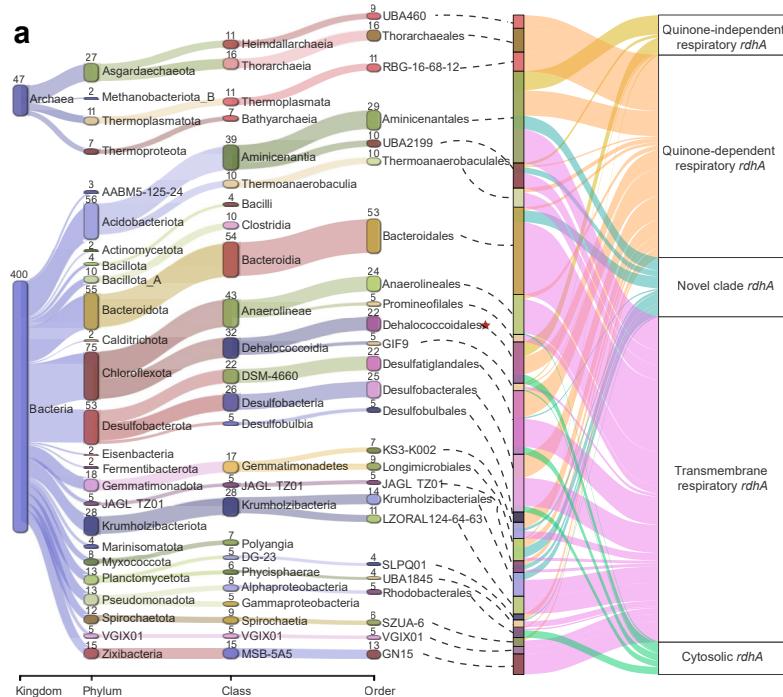
929 **Figure 3. Relative abundance patterns of *rdhA* genes in cold seep sediments.** (a)
930 Relative abundance and expression levels of 3,993 *rdhA* genes across different
931 sediment samples, measured as GPM for metagenomes and TPM for transcripts.
932 Insert plots show the *rdhA* gene abundance and expression levels of the four groups.
933 Gene groups and subgroups are in different colors. P values of differences across
934 different types of *rdhA* genes were computed through Kruskal-Wallis rank-sum tests.
935 Relationships between *rdhA* abundance and (b) sediment depths (mbsf), (c) reductive
936 *dsrA* abundance, and (d) oxidative *mcrA* abundance. Each point represents the average
937 gene abundance for a sample, accompanied by linear regression lines and R² values
938 specific to each gene type in corresponding colors. Detailed statistics for significance

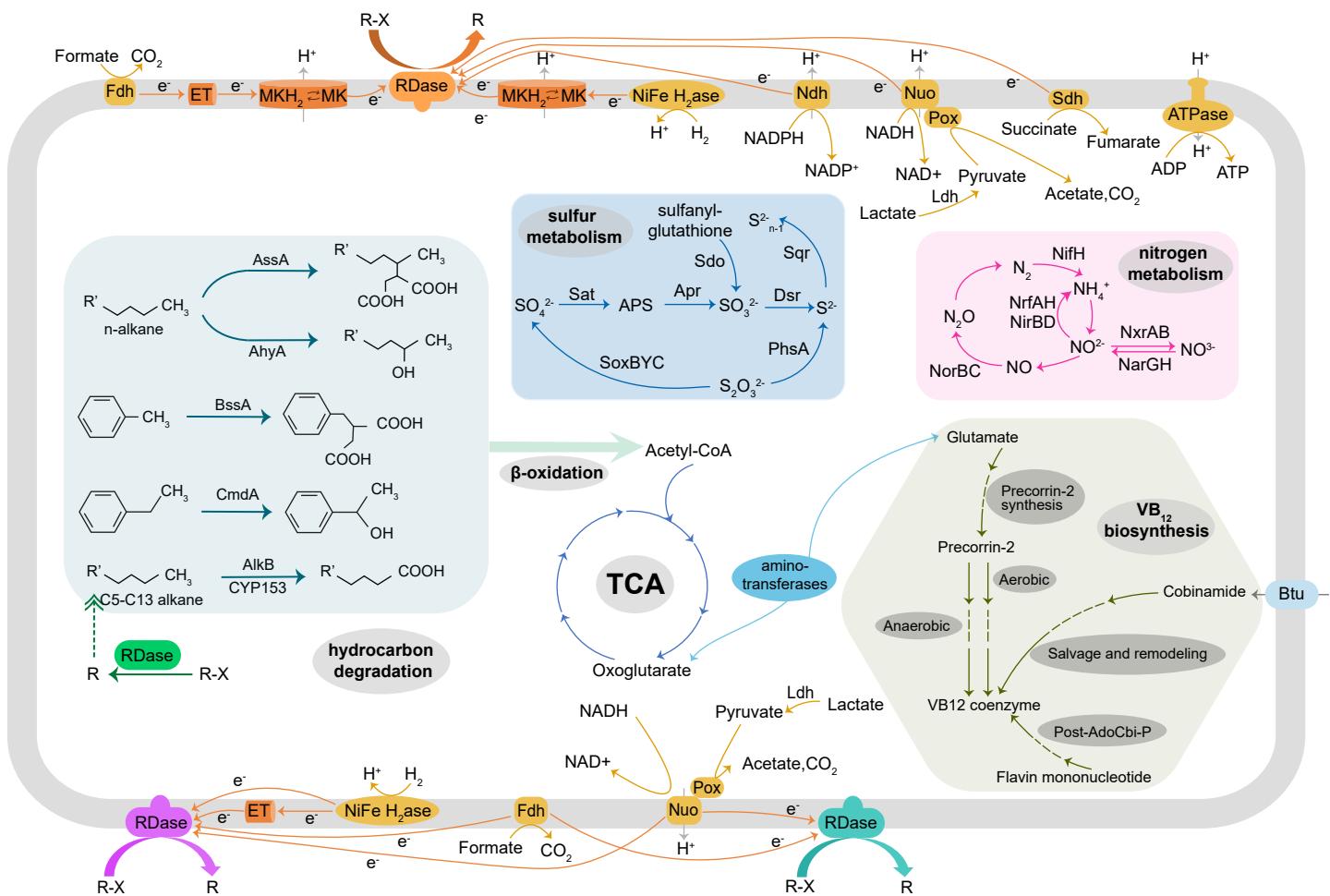
939 tests and linear regressions are provided in **Supplementary Tables 5-7**.

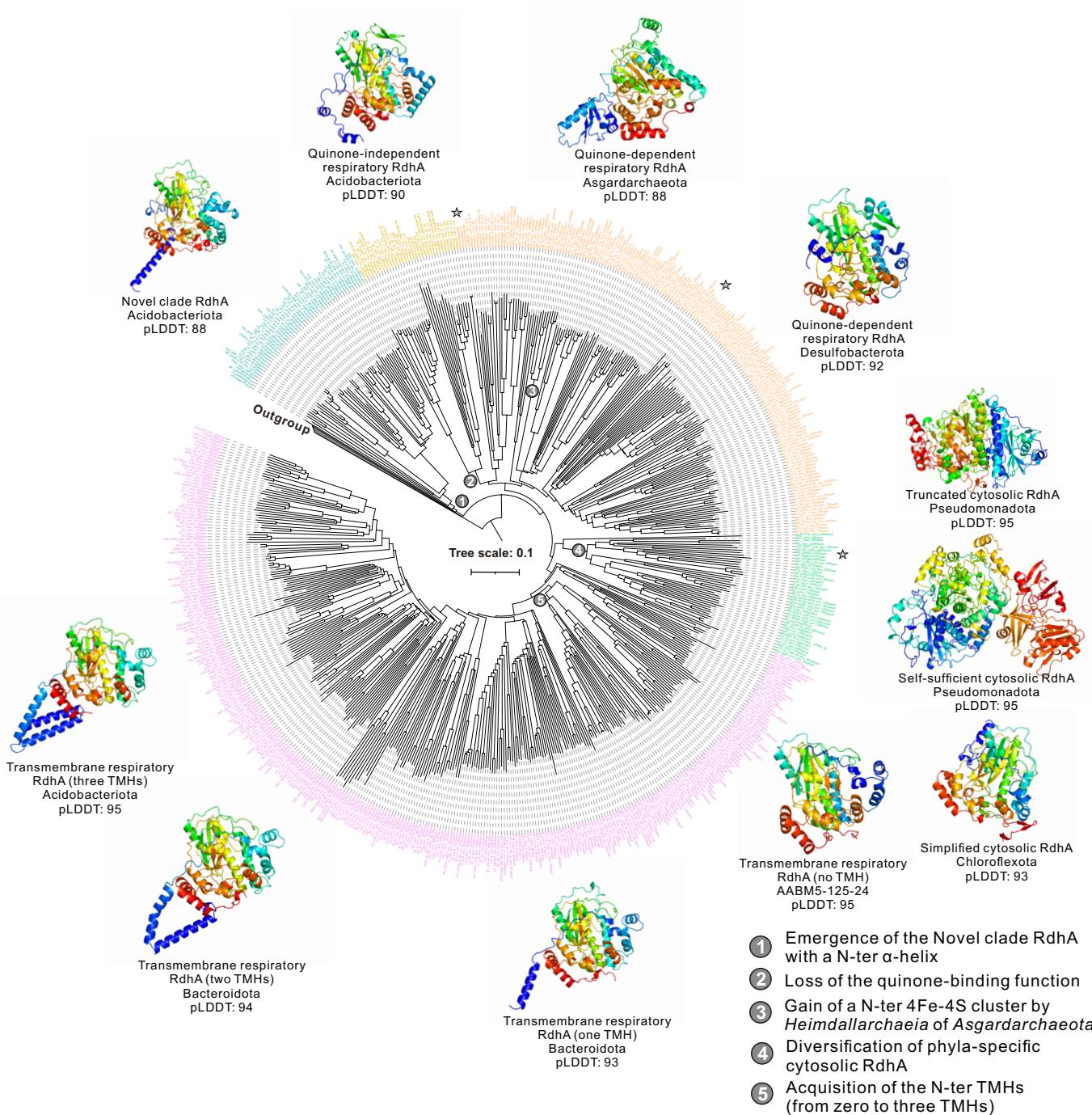



940 **Figure 4. Taxonomic classification, genomic context and potential substrate**
941 **docking of cold seep organohalide-reducing microorganisms.** (a) A Sankey
942 diagram showing the taxonomy of archaeal and bacterial MAGs according to GTDB,
943 categorizing organohalide-reducers across taxonomic levels. (b) Genome synteny of
944 14 contigs showcasing five types of RDases (highlighted in red) and accompanying
945 genes: regulatory (green), transport-related (orange), functional (blue), mobile genetic
946 elements (MGEs, yellow), other annotated genes (purple), and unknown (grey). (c)
947 Overlay of the active sites of cold seep quinone-dependent respiratory and cytosolic
948 RdhA (lightpink) against known RdhA crystal structures (PDB id: 8Q4H and PDB id:
949 6ZY1, in green). Substrates 2'-Chloro-biphenyl-2,3-diol and 1,5-dibromopentane,
950 predicted through molecular docking with binding affinities of -4.12 and -3.11
951 kcal/mol respectively, are shown in magenta. Details for taxonomic classification,
952 molecular docking, and *rdhA*-containing contig annotations are provided in
953 **Supplementary Tables 9 and 11-13.**

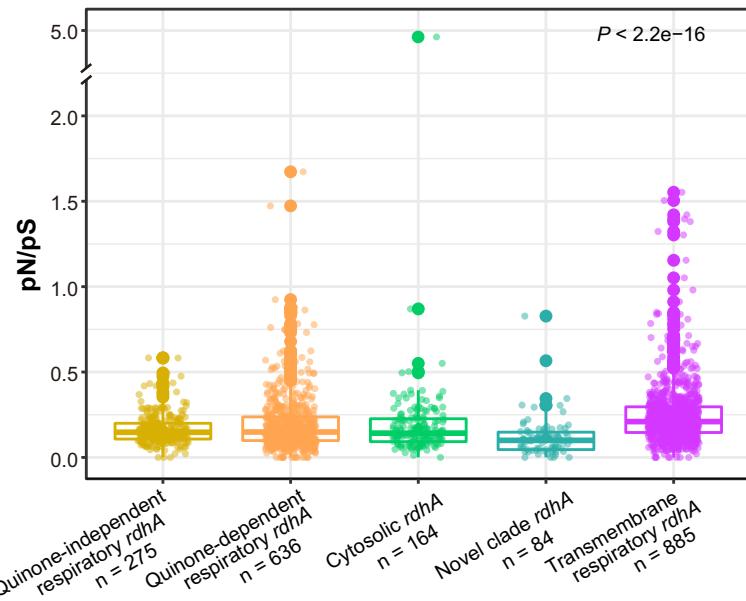
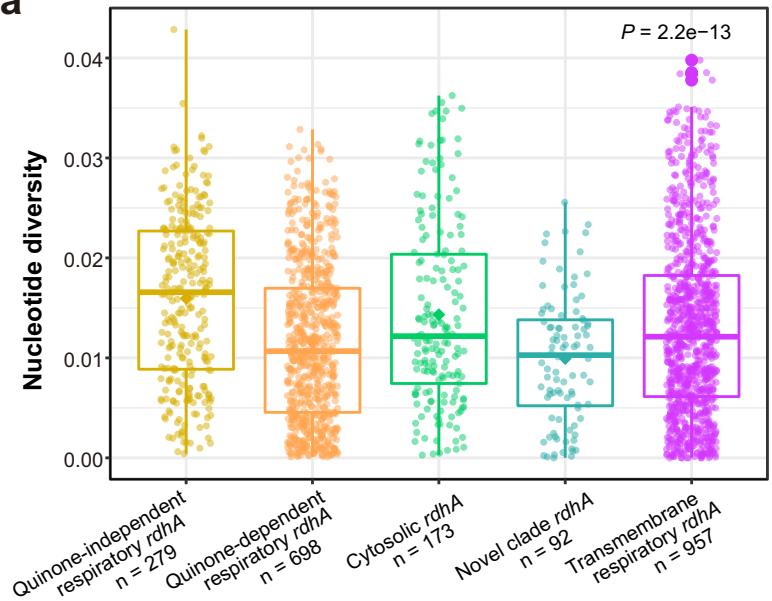
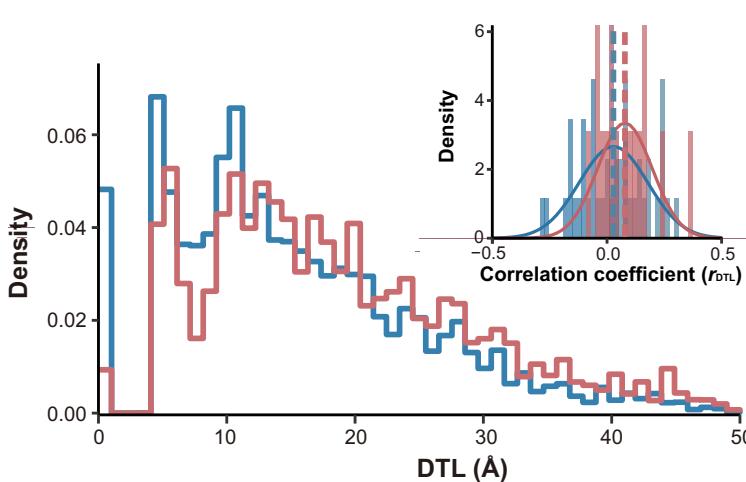
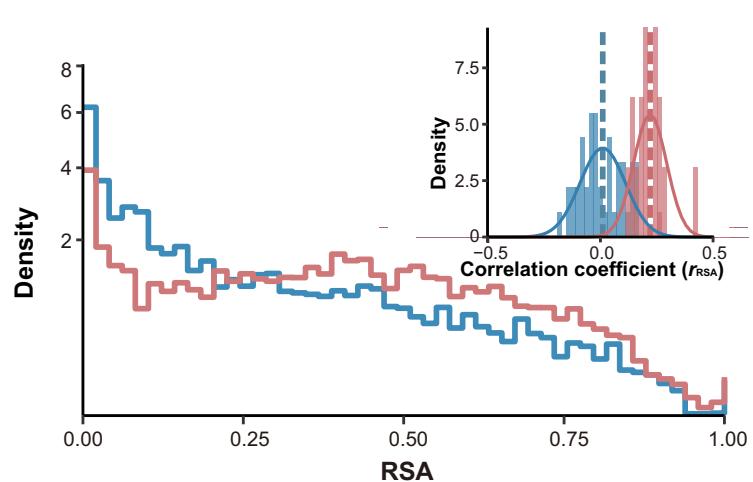

954 **Figure 5. Reductive dehalogenation is closely linked to carbon, nitrogen, sulfur,**
955 **and trace element metabolic processes.** RDases of different colors represent
956 different types, with orange indicating prototypical respiratory RDases, purple
957 representing transmembrane respiratory RDases, green indicating cytosolic RDases,
958 and cyan signifying the novel clade of RDases. Dark orange denotes potential electron
959 transfer units, while orange-yellow represents potential electron donors and electron
960 transfer pathways. Different background colors signify distinct metabolic pathways:
961 light blue indicates hydrocarbon degradation, dark blue represents sulfur metabolism,
962 light red represents nitrogen metabolism and olive green denotes B₁₂ biosynthesis.
963 Detailed annotations for different genes are provided in **Supplementary Tables 14-19.**


964 **Figure 6. Structure-based phylogeny of cold seep reductive dehalogenases and**
965 **reference proteins.** Each group of reductive dehalogenases (RDases) is labeled by a
966 unique color: Novel clade RDases, turquoise; Quinone-independent respiratory





967 RDases, gold; Quinone-dependent respiratory RDases, orange; Cytosolic RDases,
968 green; Transmembrane respiratory RdhAs, purple. The three RDases that have been
969 validated experimentally are highlighted with stars. Surrounding the tree, the
970 AlphaFold-predicted 3D structures of representative RDases are displayed, each
971 labeled with their taxonomic phylum and corresponding pLDDT scores. The
972 indication of the five main inferred evolutionary events of the tree marked at the
973 origin of each fold/architecture, numbered 1 through 5.


974 **Figure 7. Microdiversity of cold seep *rdhA* genes and their corresponding protein**
975 **structural features.** (a) Comparison of nucleotide diversity and pN/pS for *rdhA* genes
976 across gene groups. (b) Gene-wide distributions and Pearson correlations for pN^(site)
977 (red) and pS^(site) (blue) relative to relative solvent accessibility (RSA) and distance to
978 ligand (DTL). The pN(site) and pS(site) distribution were generated based on RSA
979 and DTL values of each site from 200 predicted RdhA structures. The Pearson
980 correlations of $\log_{10}(pN^{(site)})$ and $\log_{10}(pS^{(site)})$ to RSA and DTL for each gene-sample
981 pair were calculated using linear models, and the mean values were represented as
982 dashed lines. P values of differences across different types of *rdhA* genes were
983 computed through Kruskal-Wallis rank-sum tests. The boxplot features include: center
984 lines, medians; box limits, 25th and 75th percentiles; whiskers, 1.5× interquartile
985 range from the 25th and 75th percentiles; points, outliers. The n values denote the
986 number of independent results utilized for statistical derivation. Detailed data on the
987 microdiversity of *rdhA* genes can be found in **Source data 1-2**.


a**b****c**

a**b**