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27 Abstract

28  Reductive dehalogenation is crucial for halogen cycling and environmental
29  remediation, yet its ecological role is incompletely understood, especially in deep-sea
30 environments. To address this gap, we investigated the diversity of reductive
31 dehalogenases (RDases) and ecophysiology of organohalide reducers in deep-sea cold
32 seeps, which are environments rich in halogenated compounds. Through genome-
33  resolved metagenomic analysis 165 global cold seep sediment samples, we identified
34  four types of RDases, namely prototypical respiratory, transmembrane respiratory, and
35 cytosolic RDases, and one novel clade. These RDases are encoded by physiologically
36  diverse microbes across four archaeal and 36 bacterial phyla, significantly broadening
37 the known diversity of organohalide reducers. Halogen geochemistry,
38  metatranscriptomic data, and metabolomic profiling confirm that organohalides occur
39 atas high as 18 mg/g in these sediments and are actively reduced by microorganisms.
40  This process is tightly linked to other biogeochemical cycles, including carbon,
41 hydrogen, nitrogen, sulfur, and trace elements. RDases from cold seeps have diverse
42 N-terminal structures across different gene groups, and rdhA genes in these
43 environments are mostly functionally constrained and conserved. Altogether, these
44  findings suggest that reductive dehalogenation is a central rather than supplemental
45  process in deep-sea environments, mediated by numerous diverse microbes and novel

46 enzymes.
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47 Introduction

48  Globally situated along continental margins, deep-sea cold seeps are regions where
49  fluids rich in methane and other hydrocarbons migrate from the deep subsurface to
50 sediment-seawater interface™ 2. These fluids support a diverse array of
51  microorganisms, including anaerobic methanotrophic archaea (ANME) and their
52 syntrophic sulfate-reducing bacterial partners® *. Beyond hydrocarbons, cold seeps are
53 also rich in various organic compounds like organohalides. Various organohalides,
54  such as dichloroacetaldehyde and tetrachlorobenzene, are abundant in cold seep
55  sediments in various locations, including the Eastern Gulf of Mexico and the Haima
56 cold seep in the South China Sea™*°. These organohalides, given their high standard
57 redox potential (E;, = +0.24 to +0.58 V), are desirable electron acceptors for

58  anaerobic respiration in these oxidant-limited environments™ ®*

. Organohalide-
59  respiring microorganisms harness energy for growth by reducing these organohalides®
60 > . Notably some microorganisms within the Chloroflexota phylum, inhabiting
61  deep-sea environments such as methane seeps, hydrothermal vents, and hadal trenches,

62 can grow either obligately or facultatively on organohalides'*’

. However, the
63  diversity and roles of organohalide-reducing microorganisms in deep-sea cold seeps

64  remain largely uncharted.

65 The process of reductive dehalogenation is mediated by reductive dehalogenases
66  (RDases, also termed as RdhA, encoded by rdhA), which catalyze the cleavage of
67 halides (like chloride or bromide) from the carbon backbone under anoxic
68  conditions'™ *°. For organohalide-respiring microorganisms, RDases are periplasmic
69  membrane-associated proteins exported by the twin-arginine translocation (TAT)
70  system. These enzymes are typically composed of two subunits: the periplasmic
71 catalytic subunit RdhA usually harbors a cobalt cofactor that mediates halogen
72 elimination and two tetranuclear [Fe-S] clusters for electron transfer, while the
73 membrane-anchoring subunit RdhB typically contains two or three transmembrane

74 helices (TMHSs)” * ?°. The quinone-dependent RDases use respiratory quinols (e.g.
3
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75  menaquinol), reduced by electron donors such as molecular hydrogen (H), whereas
76 other enzymes are quinone-independent and appear to form respiratory
77 supercomplexes with hydrogenases and potentially other primary dehydrogenases'® %"
78 %, In addition to these prototypical RDases, two other classes of RDases are known.
79  In the transmembrane respiratory RDases, the rdhB gene and TAT signal peptide are
80 absent and instead the rdhA gene is directly connected to the membrane with one to
81 three N-terminal TMHs®*?%. In contrast, the cytosolic RDases (also called the
82  catabolic RDases) are not connected to the respiratory chain and instead mediate the
83 initial reductive dehalogenation of compounds so that they can be used as carbon and
84  energy sources; these enzymes are typically NADPH-dependent and oxygen-tolerant,
85 in contrast to their counterparts in organorespirers'® ®. However, classifying RDases
86  remains challenging due to the limited number of well-characterized examples and

87  their low sequence identity® 2% 262,

88 In this study, we analyzed a comprehensive dataset consisting of 165 metagenomic,
89 33 metatranscriptomic, and 55 metabolomic samples collected from deep-sea cold
90  seeps globally. In addition to geochemical analyses, we focused on examining rdhA
91 genes and organohalide reducers in these environments. We systematically analysed
92 the phylogenetic diversity, ecological distribution, metabolic functions, genetic
93  microdiversity, and structural evolution of various rdhA subfamilies and organohalide
94  reducers. To do so, we relied on two major innovations. First, given the limited

95 number of experimentally solved RDase structures®®

, we employed Al-based
96  protein structure modelling to better understand the structural and functional diversity
97  within this superfamily. Second, we used state-of-the-art methods for quantifying
98 genetic variations in microbial populations, including single-nucleotide variants
99  (SNVs), to study the population dynamics of these enzymes across various
100  environments**®. Through developing a computational framework that integrates
101  protein structure analysis with genetic variation, we were able to gain a more detailed

102 understanding of the sequence-structure-function relationships of RDases, while

103 uncovering a central role for organohalide reducers in shaping the biogeochemistry
4
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104  and ecology of deep-sea sediments.

105 Resultsand Discussion

106  Geochemical evidencefor reductive dehalogenation at cold seeps

107  Reductive dehalogenation can cause an increase in halogen profiles in cold seep
108 sediments®. Our analysis of 1089 pore water samples revealed that (Fig. la and
109  Supplementary Fig. 1 and Supplementary Table 1), on average, concentrations of
110  dissolved chlorine (CI") and bromine (Br) and the Br/CI ratio in cold seep pore
111 waters are slightly higher than those in overlying water and typical seawater®”*. This
112 trend is also observed in pore water iodide (I") concentrations in cold seep sediments,
113 which are significantly higher compared to typical seawater®. Additionally, the solid-
114  phase chlorine and bromine concentrations in 68 freeze-dried sediment samples
115 showed a notable decrease with increasing sediment depth (Fig. la and
116  Supplementary Table 2), potentially suggesting reductive dehalogenation decreases
117 with sediment depth. However, other geological and biological processes may also
118  contribute to these differences, as indicated by the varied dissolved halogen profiles

119  found in 84 cold seep sediment cores (Supplementary Figs. 2-7).

120  From 55 cold seep sediments, we found that the concentrations of total organic
121 halogens (TOX) ranged between 6.7 mg/g and 17.6 mg/g, showing no significant
122 variations across sediment depth but differed among the columns of cold seep
123 sediments (Fig. 1b and Supplementary Table 2). Additionally, untargeted
124  metabolomics analysis of these sediments identified 3,713 peaks, including 560
125  annotated metabolites. Among these metabolites (Fig. 1c and Supplementary Table
126  3), we found various halogenated compounds, some with a relative abundance
127 reaching up to 10° such as chlorides (e.g., 2-chloro-L-phenylalanine, 2-chloro-5-
128  methyl-cis-dienelactone), bromides (e.g., bromobenzene-3,4-oxide), fluorides (e.g., 5-

129  fluorouridine triphosphate), and iodides (e.g., 5-iodo-2’-dUMP, 5-iodo-dCTP).
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130  Cold seeps harbor a vast repertoir e of reductive dehalogenase genes

131 Reductive dehalogenase (RdhA) sequences from cold seep metagenomes were
132 identified and validated by analysing a non-redundant gene catalog, comprising 147
133 million genes®, using a comprehensive workflow (Supplementary Fig. 8). The
134  process yielded 3,993 validated RdhA sequences that fell into four phylogenetic
135  groups (Fig. 2): (i) prototypical respiratory RDases (n = 1,466) associated with

136 obligate and facultative organohalide-respiring microbes™ **; (ii) cytosolic RDases

137 (n = 362) involved in liberating organohalides as energy and carbon sources'® % 27;
138 (iii) transmembrane respiratory RDases (n = 1,963) characterized by a fusion of the
139 rdhA gene with N-terminal TMHs?* % and (iv) a novel clade of RDases (n = 202).
140  This clade, clustering between the cytosolic and prototypical clades, is characterized
141 by the presence of both N-terminal TMHSs (like transmembrane respiratory RDases)
142 and a RdhB partner subunit (like prototypical respiratory RDases) (Supplementary
143  Table 4). These four groups could be further subclassified into six further subgroups,

144  for example quinone-independent and quinone-dependent prototypical respiratory

145  RDases, as depicted in Fig. 2.

146  Cold seep rdhA genes exhibited statistically significant differences across the four
147  groups and six subgroups (P < 2.2e-16; Fig. 3a and Supplementary Table 5).
148  Prototypical respiratory and transmembrane respiratory rdhA genes are more abundant
149  than the cytosolic and novel clade rdhA genes (Fig. 3a, inset), suggesting that
150  reductive dehalogenation in cold seeps is mostly associated with anaerobic respiration.
151  Despite no notable differences in transcript abundance across groups (P > 0.05; Fig.
152 3a), the expression of rdhA subgroups (averaging 2.11 TPM; reaching 19.13 TPM for
153  transmembrane respiratory rdhA genes) suggests microbial reductive dehalogenation
154  occurs in situ. The distribution of rdhA genes appears to be influenced by sediment
155  depth and cold seep types. A negative correlation between rdhA gene abundance and
156  sediment depth (Fig. 3b) implies reduced dehalogenation activity in deeper sediments,
157  potentially due to limited organohalides and nutrients, as observed in the Nankai

6
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158  Trough subduction zone sediments®. In contrast, some rdhA subgroups display site-
159  specific, depth-dependent trends indicative of niche specialization (Supplementary
160 Fig. 9a and Supplementary Table 6). Significant differences in rdhA gene
161  abundance were also observed among five cold seep types, especially in quinone-
162  independent prototypical and cytosolic rdhA genes (P < 0.05; Supplementary Fig.
163 10).

164  Sulfate reduction and anaerobic methane oxidation, associated with dsrA and mcrA
165  gene activities, respectively, are two important metabolic processes in cold seeps** .
166 The observed positive correlation between the abundances of rdhA and dsrA genes
167  indicates that reductive dehalogenation and sulfate reduction processes likely occur
168  simultaneously in cold seeps (Fig. 3c and Supplementary Table 7). Moreover, the
169  fact these genes are present in similar abundances suggests reductive dehalogenation
170  is potentially as crucial as sulfate reduction in these environments, underscoring its
171 significance in the biogeochemical dynamics of cold seeps. Conversely, the negative
172 correlation with mecrA gene abundance (P < 0.001; Fig. 3d and Supplementary Fig.
173 11) implies that anaerobic methane-oxidizing archaea may not engage in reductive

174 dehalogenation®® %’

. Additionally, the positive association of genes involved in
175 osmotic stress protection and osmolyte transport with rdhA gene abundance
176  (Supplementary Figs 12-13 and Supplementary Table 8) suggests that
177 microorganisms deploy various salt tolerance mechanisms to maintain osmotic

178 balance during reductive dehalogenation®®,
179  Organohalidereducers span across four archaeal and 36 bacterial phyla

180  From the cold seep genome catalog with 3,164 MAGs, we identified 586 rdhA genes
181  that each fell into the four groups (Supplementary Figs. 8 and 14). These genes are
182  distributed across 47 archaeal and 400 bacterial MAGs, encompassing four archaeal
183  and 36 bacterial phyla, highlighting the wide distribution of organohalide reduction in
184  these environments (Fig. 4a, Supplementary Fig. 15 and Supplementary Table 9).

185  The most prevalent phyla harboring rdhA genes include Chloroflexota (n = 75),
7
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186  Acidobacteriota (n = 56), Bacteroidota (n = 55), Desulfobacterota (n = 53),
187  Krumholzbacteriota (n = 28), and Asgardarchaeota (n = 27). Most MAGs (79%, n =
188  355) encoded a single rdhA gene, whereas 92 MAGs across 15 phyla contained
189  multiple rdhA genes (Supplementary Fig. 15; Supplementary Table 9), in line with
190  culture-based observations that highly versatile organohalide reducers produce
191  multiple RDases'® (Supplementary Table 9). Further examination revealed 36
192  mobile genetic elements (MGEs) associated with 22 rdhA-containing contigs
193  (Supplementary Table 10), suggesting a role for MGEs in the horizontal transfer of
194  rdhA genes and the resultant diversity of organohalide reducers. Additionally, the
195  abundance of these organisms negatively correlates with sediment depth, in line with
196  the decrease in rdhA gene abundance in deeper sediment layers (Supplementary Fig.
197 16 and Fig. 3b). To investigate potential substrates for organohalide reducers, we
198  conducted molecular docking for RdhAs against 191 varied naturally occurring
199  organohalides, including those commonly found in cold seeps (Supplementary Table
200 11)*> > ™ In total, we found 13,561 possible interactions between RdhAs and
201  halohydrocarbons, with the binding energies ranged from -0.47 to -6.08 kcal/mol

202  (Supplementary Table 12).

203  The quinone-dependent respiratory rdhA genes were encoded by 136 microorganisms
204  spanning 15 bacterial and four archaeal phyla, including most of the putative archaeal
205  organohalide reducers (Fig. 4a, Supplementary Fig. 15 and Supplementary Table
206 9). These RdhAs show strong structural homology to the PceA dehalogenase (PDB id:
207 4URB3) from Sulfurospirillum multivorans'®, with TM-scores between 0.63 and 0.90
208  (Supplementary Fig. 17). In addition to be co-encoded with the membrane anchor
209  subunit RdhB, this RDase is also frequently genomically associated with a partner
210 uptake hydrogenase (Hup), the ferredoxin:NAD" oxidoreductase (Fnr), and
211  transcriptional regulators (for example, GntR family, and NosR/Nirl family) (Fig. 4b
212  and Supplementary Table 13). Molecular docking analysis against 191
213  organohalides, including those abundant in cold seeps, demonstrated that

214  Thermoplasmata RDase has a binding affinity of -4.1 kcal/mol for 2'-chloro-biphenyl-
8
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215  2,3-diol and thus is a possible substrate (Fig. 4c and Supplementary Tables 12).
216  Quinone-independent respiratory rdhA genes, typically found in obligate organohalide

217  reducers Dehal ococcoides and Dehal ogenimonas within the phylum Chloroflexota® **

218 #

, were also detected in Acidobacteriota and Gemmatimonadota (Fig. 4a and
219  Supplementary Fig. 15), broadening the known diversity of microorganisms
220  harboring this gene type. Adjacent genes to rdhA, ferredoxin and NADH-coupled
221  oxidoreductase were identified (Supplementary Table 13), which are essential for the
222 electron transport chain in organohalide respiration®’. RDases in Aminicenantaceae
223  (Acidobacteriota) and GWA2-58-10 (Gemmati monadota) exhibit -4.0 to -4.8 kcal/mol
224 binding affinities for chlorinated benzene and chlorinated paraffins (Supplementary

225  Tables 12), suggesting their suitability as substrates.

226  The transmembrane respiratory RDases were by far the most widespread enzymes,
227  encoded by 287 microorganisms from 33 phyla, including multiple Bacteroidota,
228  Acidobacteriota, Desulfobacterota and Krumholzibacteriota MAGs. This observation
229  extends Atashgahi et al.'s findings that these enzymes are widespread despite being
230 understudied®®. Adjacent genes to rdhA, transcriptional regulators (e.g., GntR family),
231  genes involved in electron transport (e.g., FAD dependent oxidoreductase) and MGEs
232 (e.g., transposase) were identified (Fig. 4b and Supplementary Table 13). We also
233  observed transmembrane respiratory RDases form various phyla exhibit -3.2 to -6.0
234 kcal/mol binding affinities for chlorinated benzene and chlorinated alkane
235  (Supplementary Table 12), suggesting potential substrates. The novel clade was also
236  widespread, encoded by 49 MAGs spanning 11 phyla, including the four
237  abovementioned phyla and candidate phyla JAGLTZ01 and QNDGO01 (Fig. 4a,
238  Supplementary Fig. 15 and Supplementary Table 9). Despite being
239  phylogenetically distant from the transmembrane respiratory RDases, this novel clade
240  also likely has a respiratory function, given the rdhA gene is typically fused with
241  between one to three N-terminal TMHSs; however, a key difference is that 23 and 38 of
242 the 50 genes in the novel clade are sometimes found alongside TAT systems and rdhB

243 genes, respectively (Supplementary Table 9). Novel RDases demonstrate binding
9
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244 affinities ranging from -4.4 to -6.1 kcal/mol for chlorinated benzene (Supplementary

245  Table 12), indicating their suitability as substrates.

246  Cytosolic rdhA genes (n = 37) were mainly found in Chloroflexota, Desulfobacterota,
247  and Pseudomonadota, but were also detected in a Heimdallarchaeia MAG (Fig. 4a,
248  Supplementary Fig. 15 and Supplementary Table 9). Consistent with a role in
249  organic carbon degradation, these genes are often associated with bacterial
250 transcriptional regulators IcIR/MarR, beta oxidation genes, and galactose degradation
251  genes (Fig. 4b). In three MAGs, cytosolic rdhA genes were discovered on plasmids
252 (Supplementary Table 14); this is reminiscent of BhbA, the plasmid-encoded first
253  characterized enzyme from this family, which aerobically breaks down bromoxynil
254 into 4-carboxy-2-hydroxymuconate-6-semialdehyde in Comamonas sp. 7D-2, which
255 is then funneled into the tricarboxylic acid cycle'® *°. These cytosolic RdhAs have
256 high TM-scores (0.92 to 0.95) (Supplementary Fig. 18) to the X-ray crystal structure
257 of the 3-bromo-4-hydroxybenzoic acid reductase from Nitratireductor pacificus
258 (NpRdhA; PDB id: 62Y1)*. Two organohalide reducers from Gammaproteobacteria,
259  encoding catabolic RDases, showed potential in reducing 1,5-dibromopentane,
260  evidenced by binding energies of -2.44 and -3.11 kcal/mol (Supplementary Table
261  12). Further analysis revealed that these microorganisms contain genes responsible for
262  the aerobic degradation of medium-chain alkanes (C5-C13, e.g. pentane; alkB and
263 CYP153) (Fig. 5 hydrocarbon degradation and Supplementary Table 15),
264  suggesting a link between catabolic reductive dehalogenation and aerobic

265  hydrocarbon degradation®® 2" *°,

266  Cold seep halogen cycling is closely linked to central biogeochemical processes

267  We extensively annotated the metabolic capabilities of the RDase-encoding MAGs to
268 gain insights into their potential ecophysiology and biogeochemical roles.

269  Fermentation is the main process transforming organic carbon in cold seep

1,51

270  environments™ >, which produces significant amounts of hydrogen (H;) and various

271 organic acids, both of which are key electron donors for organohalide reducers*" *® °*

10
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272 *3 Consistently, 288 organohalide reducers were found to encode 495 hydrogenases.
273 Of these, 337 are involved in Hy oxidation®, including group 1a, 1b, 1c, 1d, 1e, and 1f
274  [NiFe]-hydrogenases that donate H,-derived electrons to anaerobic respiratory chains
275  (Supplementary Fig. 19 and Supplementary Table 16). Additionally, genes
276  responsible for formate (fdhAB, fdoG, fdwB and fdoH), acetate (acs, acdA, ack and
277  pta), and lactate (Idh) oxidation were present in 226, 363, and 18 organohalide
278  reducers, respectively (Fig. 5, Supplementary Fig. 19 and Supplementary Table
279  17). Most of these organohalide reducers involved in processing hydrogen and
280 organic acids possess RdhAs that belong to prototypical and transmembrane

281  respiratory RDases.

282  Organohalide reducers also participate in nitrogen, sulfur, and hydrocarbon cycles
283  (Fig. 5 nitrogen and sulfur metabolism). We identified 55 and 57 organohalide
284  reducers with genes related to sulfate and thiosulfate reduction (reductive dsrA and
285  phsA), respectively (Supplementary Tables 17-18). Additionally, 185 organohalide
286  reducers harbor genes involved in the oxidation of sulfide, sulfur, and thiosulfate (sqr,
287 sdo and soxBYC; Supplementary Table 17). 189 organohalide reducers harbor
288  reductive genes associated with nitrogen metabolism (narGH, nrfHA, nirBDKS and
289  octR), with a small proportion also capable of nitrogen fixation (n = 6) and nitrite
290  oxidation (n = 5). Four organohalide reducers also encoded enzymes for the anaerobic
291  degradation of hydrocarbons (Fig. 5 hydrocarbon degradation, Supplementary Fig.
292 19 and Supplementary Table 15). Two of these, affiliated with Desulfobacterota
293  and encoding quinone-dependent respiratory RDases, encode genes for the anaerobic
294  degradation of n-alkanes (assA)* *> °° they potentially remove chlorine from
295  chlorinated paraffins, as suggested by their binding energy of -4.4 kcal/mol
296  (Supplementary Table 12). Altogether, the presence of these genes indicates that
297  organohalide reducers are not only versatile in their metabolic functions but also well-
298  equipped to adapt and thrive in various environmental conditions. Despite previous
299  findings suggesting the coupling of AOM with reductive dehalogenation’, rdhA genes

300 were not found in the ANME group of microorganisms (Supplementary Fig. 20 and
1
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301  Supplementary Table 9). Moreover, although 55 sulfate-reducing bacteria have the
302  capacity for reductive dehalogenation, none seem to partner with ANME in this
303  process (Supplementary Table 18). Considering the negative correlation between the
304  gene abundance of rdhA and oxidative mcrA (Fig. 3d), we hypothesize that these two

305  processes are likely not coupled within cold seeps.

306  Cobalamin (vitamin By,) acts as a cofactor for RDases, facilitating electron transfer?”

307 “*°. Only 19% (n = 87) of organohalide reducers are capable of Bi, biosynthesis
308  through various pathways*®, including the aerobic (n = 2), anaerobic (n = 5), salvage
309 remodeling (n = 12) and the Post-AdoCbhi-P (n = 78) pathways (Fig. 5,
310 Supplementary Fig. 19 and Supplementary Table 19). This finding is in line with
311  existing knowledge that only a limited number of microbial genera in the ocean can
312 synthesize Bi, de novo®™ ®°. Among two capable of aerobic B12 biosynthesis, they
313  encode cytosolic rdhA genes. The remaining 80% (n = 360) of organohalide reducers,
314  which lack B, biosynthesis genes, likely rely on Bj, synthesized by other
315 microorganisms or present in the environment for their reductive dehalogenation

316  activities®.

317 Cold seep RDases show diverse N-terminal structures across different gene

318  groups

319  Consistent with the phylogenetic tree based on protein sequences, the structure-based
320 phylogeny also supports the classification of cold seep RDases into four distinct
321 groups (Fig. 6 and Supplementary Table 20): prototypical respiratory RDases,
322  transmembrane respiratory RDases, cytosolic RDases, and the novel clade RDases.
323  Structurally, bacterial and archaeal RDases from all four groups each contain
324  corrinoid- and FeS-containing domains, each marked by a two-layered alpha-beta
325  structure®®*!; however, these enzymes greatly vary in their N-terminal structures in a
326  manner consistent with their physiological roles. Our structural phylogeny revealed

327  key aspects of RDase evolution that sequence analysis alone could not, suggesting at
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328 least five key evolutionary events (Fig. 6). For the novel clade, the emergence of a
329  single N-terminal a-helix separated this group from other RDases (Event 1 in Fig. 6).
330  Most novel clade RDases (36 of 50) contain a single N-terminal transmembrane o-
331  helix (Supplementary Fig. 21a), likely anchoring these enzymes for a respiratory
332 function®. Half of these novel clade RDases (18 of 36) with a single TMH also
333  possess RdhB subunit, and the combination of the two forms a multi-transmembrane
334  helix predicted by AlphaFold Multimer (Supplementary Fig. 22). Other RDases
335  within this novel clade anchor to the membrane through the RdhB subunit

336  (Supplementary Fig. 21b).

337  Of the prototypical respiratory RDases, both the quinone-dependent and quinone-
338 independent enzymes share structural similarities. They each contain a domain
339  analogous to the quinone-binding domain found in quinone-dependent enzymes (Fig.
340 6), such as the DhPceA;B, from the tetrachloroethene-dechlorinating strain
341  Desulfitobacterium hafniense TCE1%. However, this domain in quinone-independent
342 RDases does not exhibit quinone-binding affinity, in contrast to their quinone-
343  dependent counterparts which show a significant binding affinity (-6.39 kcal/mol) and
344  possess shorter substrate transport tunnels (Event 2 in Fig. 6 and Supplementary
345 Fig. 23). Additionally, among the eleven RDases from Heimdallarchaeia, five
346  quinone-dependent RDases have complete N-terminal 4Fe-4S ferredoxin domains,
347  with three others having incomplete ones (Event 3 in Fig. 6, Supplementary Fig. 24
348 and Supplementary Table 9). The presence of an additional 4Fe-4S domain in these
349 archaeal RDases could potentially enhance the efficiency of the dehalogenation
350  process by using multiple electron pathways from the quinone pool to the active sites®

351 %,

352  Cytosolic RDases are variable in length, ranging from 300 to 1000 amino acids, and
353 they cluster into three distinct groups correlated with their respective phyla (Event 4
354 in Fig. 6 and Supplementary Table 9). Eight cold seep cytosolic RDases,

355  predominantly found in the Pseudomonadota phylum (with more than 700 amino
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356 acids), function as monomers due to the presence of an additional vestigial cobalamin-
357  binding core domain®. Half of these cytosolic RDases are characterized by a unique
358  C-terminal NADP-linked ferredoxin reductase domain®®, with an alpha-beta three-
359 layered sandwich structure, allowing electrons derived from NAD(P)H to drive
360 reductive dehalogenation (Supplementary Table 20). According to the presence or
361 absence of C-terminal reductase domain, these cytosolic RDases are termed as self-
362  sufficient and truncated cytosolic RDases”®. Another clade of cytosolic RDases
363  (labelled as simplified cytosolic RDases) is typically present in Desulfobacterota and
364  Chloroflexota, with an average length of 395 amino acids (Supplementary Fig. 25).
365  Simplified cytosolic RDases possess a shortened N terminus compared to both self-
366  sufficient and truncated cytosolic RDases, as they lack the vestigial cobalamin-
367 binding domain, similar to prototypical respiratory RDases. The considerable
368  variation in the length of cytosolic RdhA proteins indicates significant genetic
369  diversity, which may be indicative of their functional adaptability among various

370  microbial taxa.

371 In the transmembrane respiratory RdhA proteins, the presence of an integral
372 membrane domain is a common feature (Event 5 in Fig. 6), yet not all members of
373  this group exhibit N-terminal TMHSs. Specifically, certain RdhAs in the two earliest
374  clades within this group lack transmembrane o-helices (Fig. 6). Nevertheless,
375 approximately half of these proteins compensate for this absence by utilizing
376  transmembrane domains located in adjacent genes for membrane anchoring
377  (Supplementary Table 9). The number of a-helices within these transmembrane
378 domains varies, with some having one to three a-helices (Supplementary Fig. 26),
379  which likely impacts how these proteins embed in the membrane and potentially in

380 turn their substrate specificity and catalytic efficiency.
381  Cold seep rdhA genes are mostly functionally constrained and conser ved

382  To investigate the evolutionary ecology of rdhA genes in cold seeps, we analyzed their

383  genetic diversity across various sediment sites. Nucleotide diversity across rdhA genes
14
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384  was consistently low, with an average of 0.013 (Fig. 7a and Supplementary Table
385 21). Most rdhA genes were under strong purifying selection, as evidenced by low
386  pN/pS values (average 0.21 with 91.4% of ratios less than 0.4), suggesting reductive
387  dehalogenation provides an adaptive advantage in Situ. However, some quinone-
388 dependent prototypical and cytosolic rdhA genes showed evidence of positive
389  selection (Supplementary Table 21), potentially due to genetic drift or beneficial
390  mutations®®. Further 3D structural predictions for rdhA genes with high pN/pS values
391  (>1.5)* demonstrated that amino acid changes related to non-synonymous mutations
392 did not significantly alter overall structure or catalytic domains of the proteins
393 (Supplementary Fig. 27). Additionally, the variation in nucleotide diversity and
394  pN/pS ratios was statistically significant across different rdhA types (P = 2.2e-13 and
395 P < 2.2e-16, respectively; Fig. 7a and Supplementary Table 21), indicating unique
396  evolutionary trajectories for each rdhA type. Nucleotide diversity also varied
397  significantly among different types of cold seeps (P = 0.0006), with gas hydrates, oil
398 and gas seeps, and methane seep samples exhibiting higher nucleotide diversity
399  (Supplementary Fig. 28a). Nevertheless, the pN/pS ratios were consistent across the
400  five cold seep types (P = 0.25; Supplementary Fig. 28b). Overall, these findings are
401 in line with previous observations of key functional genes in microbial populations
402 within cold seeps® ®, highlighting the strong functional constraints and conservation

403  of essential metabolic rdhA genes across various cold seep environments®.

404  To further elucidate the association of nucleotide polymorphisms and protein
405  structures of RDases in cold seeps, genetic variation and biophysical characteristics of
406  RDases were examined. This included single-codon variant (SCV), synonymous (s)
407 and nonsynonymous (ns) polymorphism rates of each codon (pS®™® and pN®™), as
408  well as evaluating relative solvent accessibility (RSA) to indicate the exposure or
409  burial of a site, and distance to ligand (DTL) to represent the proximity to the nearest
410  active site at each codon position. A total of 50,531 SCVs (1,684 per metagenome on
411  average) were found, and pS®™ exceeded pN®"™ by a ratio of 6:1 on average of all

412  SCVs, exhibiting particularly high enrichment of synonymous polymorphism within
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413 the rdhA genes. Additionally, pN©®"™ and pS©™ values varied significantly from site to
414 site (78.33% = 0.13% versus 79.75% + 0.11% of total variance, ANOVA), hinting
415  varying selective pressures at different loci. The patterns of nucleotide polymorphism
416  are largely determined by the structural and functional constraints of proteins®’. The
417 gene-wide distributions for pN©"® and pS®™ relative to RSA and DTL highlighted
418  that pN©®" exhibited a distinct inclination for sites with higher RSA and DTL
419 compared to pS®™ (Fig 7b). This result suggests that buried sites (with lower RSA)
420 and functional constraint sites (with lower DTL) are likely to purify nonsynonymous
421  mutation for preserving protein structural stability and function, while revealing
422  comparatively greater tolerance towards synonymous changes. This finding was also
423 supported by the Pearson correlations of log:o(pN®"®) and log:o(pS®™) to RSA and
424  DTL for each gene-sample pair (Fig. 7b), which showed consistently positive
425  correlations for ns-polymorphism sites with an average Pearson coefficient of rgsa =
426  0.22 and rpr. = 0.08, whereas the correlations for s-polymorphism sites tended to
427  cluster around O, averaging rrsa = 0.01 and rpr. = 0.02. Together, by integrating
428  genetic variants and structural features of RdhA proteins, we found that most
429  polymorphism of rdhA genes yielded a strong purifying selection in order to preserve

430  protein stability and metabolic activity of RDases.
431 Conclusions

432 In this study, we provide multiple levels of evidence that reductive dehalogenation is
433  a key process supporting the ecology and biogeochemistry of deep-sea cold seeps.
434  The concentrations of organohalide substrates reaching as high as 18 mg/g,
435  widespread distribution of both prototypical and transmembrane respiratory reductive
436  dehalogenases, and high abundance, expression, and conservation of RDase genes all
437  suggest organohalides are a central rather than supplementary electron acceptor in
438  these environments. Physiologically and phylogenetically diverse bacteria and archaea
439  from some 40 phyla encode RDases, including key players in hydrogen, sulfur, carbon,

440  and nitrogen cycling, with organohalide metabolism likely both directly and indirectly
16
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441 influencing these cycles. It is probable that cold seep microbes have different
442  organohalide substrate preferences, given the chemical diversity of the organohalides
443  available to them and the vast structural diversity of the RDases they encode, which
444  may contribute to metabolic niche partitioning in these competitive environments. In
445  this regard, our analysis also revealed new phylogenetic and structural diversity in the
446  RDases, as well as further insights into the complex evolutionary pathways of these
447  enzymes. Notably, we discovered a novel clade of RDases that contains TMHs, TAT
448  signal peptides, and rdhB genes, integrating features of both transmembrane and
449  prototypical respiratory features. Finally, our research affirms the deep-sea
450  environment as a repository of novel enzymes, which can be used both directly to
451  remediate organohalide pollutants but also more broadly to advance sequence-

452  structure-function relationships in this space.

453 Materialsand Methods

454  Geochemical and metabolomics analyses

455  For the analysis of dissolved and solid-phase concentrations of CI" and Br’, samples
456  were measured using a Dionex lon Chromatograph (Thermo Fisher, USA). The set
457  included 1089 pore water samples and six overlying water samples from 63 sediment
458  cores with lengths of 28, 32, and 40 cm, and 21 longer cores (ranging from 0-320 cm
459  and 0-400 cmbsf) from the Qiongdongnan, Shenhu, Haima, and Site F cold seeps in
460  the South China Sea (Supplementary Fig. 1). Additionally, 68 freeze-dried sediment

461  samples were collected from the Qiongdongnan and Shenhu cold seeps.

462  For total organic halogens, 55 sediment samples from the Qiongdongnan and Shenhu
463  cold seeps were analyzed using a multi X® 2500 AOX/TOX analyzer (Analytik Jena,
464  Germany). The untargeted metabolomics analyses of these 55 sediment samples
465  involved processing each sample in a solution of methanol, acetonitrile, and water in a

466  2:2:1 ratio, with a 20 mg/L internal standard. The samples were vortexed for 30
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467  seconds, ground with steel beads for 10 minutes at 45 Hz, and ultrasonicated for 10
468  minutes in an ice bath. High-resolution LC-MS/MS analysis of all samples was
469  conducted using a Waters Acquity I-Class PLUS ultra-high performance liquid
470  tandem with a Waters Xevo G2-XS QTOF high-resolution mass spectrometer. Both
471 primary and secondary mass spectrometry data were collected in MSe mode,
472  controlled by the acquisition software (MassLynx V4.2, Waters). The raw data were
473  then processed using Progenesis QI software, based on the METLIN database and
474 Biomark’s self-built library for identification. The relative abundance of metabolites
475  was quantified based on their normalized peak areas, i.e. the percentage of peak area
476  for each metabolite in the total peak area. The chemical structures of halogenated

477 compounds were visualized using online platform MolView® (https://molview.org/).
478  Metagenomic and metatranscriptomic datasets from cold seep sediments

479  Metagenomes were compiled from 165 deep-sea sediment samples, with sediment
480  depths ranging from 0 to 68.55 mbsf and water depths varying from 860 to 3005
481  meters. These samples were collected from 16 geographically diverse cold seep sites

482 from around the world (Supplementary Fig. 1)% 3 405 6980

, encompassing various
483  types of cold seeps such as oil and gas seeps, methane seeps, gas hydrates, asphalt
484  volcanoes, and mud volcanoes. The sites include: Eastern North Pacific (ENP), Santa
485  Monica Mounds (SMM), Western Gulf of Mexico (WGM), Eastern Gulf of Mexico
486  (EGM), Northwestern Gulf of Mexico (NGM), Scotian Basin (SB), Haakon Moshy
487  mud volcano (HM), Mediterranean Sea (MS), Laptev Sea (LS), Jiaolong cold seep
488  (JL), Shenhu area (SH), Haiyang4 (HY4), Qiongdongnan Basin (QDN), Xisha Trough
489  (XST), Haima seep (HM1, HM3, HM5, HM_SQ, S11, SY5, and SY6) and site F cold
490 seep (RS, SF, FR, and SF_SQ). Additionally, 33 metatranscriptomic data were

491  obtained from our previous publications™ "7 &

, including those from South China
492  Sea cold seeps in Jiaolong, Haima, Qiongdongnan Basin, and the Shenhu area. The
493  detailed information of the metagenomic and metatranscriptomic datasets used in this
494 study were described in our previous cold seep gene catalog publication®.
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495  Metagenomic and metatr anscriptomic data processing

496  The workflow for metagenomic analyses is described in detail (e.g. software and
497  parameters) in Supplementary Table 22 *. Briefly, metagenomic reads were quality
498  controlled and assembled into contigs. The protein-coding sequences predicted from
499  contigs were clustered at 95% amino acid identity to generate a non-redundant gene
500 catalog (n = 147,289,169). MAGs were derived from assembled contigs of over 1,000
501 bp using various binning software tools, including MetaBAT2%, MaxBin2%,
502 CONCOCT®, SemiBin®, VAMB® and Rosella
503  (https://github.com/rhysnewell/rosella). Produced MAGs were refined, quality
504  controlled, and clustered at 95% average nucleotide identity, resulting in 3,114
505  species-level representative MAGs. The taxonomy of each MAG was initially
506  assigned using GTDB-TK v2.1.1 with reference to GTDB R207 % ® and then
507  validated using a maximum-likelihood phylogenomic tree. The phylogenomic tree for
508 MAGs was inferred based on concatenation of 43 conserved single-copy genes that
509  were used as phylogenetic markers in CheckM v1.2.1%, constructed using 1Q-TREE

510  v2.2.0.3%" with best-fit model and 1000 ultrafast bootstraps.

511  Gene abundances in the non-redundant gene catalog across 165 metagenomes were
512 quantified using Salmon (v.1.9.0)” in mapping-based mode (parameters: -
513  validateMappings -meta) and read counts were normalized to GPM (genes per
514  million). The relative abundance of each MAG was calculated using CoverM in
515 genome mode (v0.6.1; https://github.com/wwood/CoverM; parameters: -min-read-
516  percent-identity 0.95 -min-read-aligned-percent 0.75 -trim-min 0.10 -trim-max 0.90 -
517 m relative_abundance) by mapping quality-controlled reads from the 165

518 metagenomes to all MAGs.

519  Regarding metatranscriptomes, raw reads were quality filtered (--skip-bmtagger)
520 using Read_QC module within the metaWRAP (v1.3.2) pipeline®. To remove

521  ribosomal RNAs from quality-controlled reads, SortMeRNA (v2.1)** was used with
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522  default settings. Transcript abundances for rdhA genes were determined by mapping
523  clean reads from 33 metatranscriptomes to the non-redundant gene catalog using
524  Salmon (v.1.9.0; parameters: -validateMappings -meta)®. The transcript abundances

525  of rdhA gene were calculated as TPM (transcripts per million).
526  Functional annotations and phylogenetic analysis

527  To identify rdhA genes, we used reference rdhA sequences (n = 1,040) from the
528 Reductive Dehalogenase Database (https://rdasedb.biozone.utoronto.ca/)®®. We
529  searched for potential rdhA sequences in the non-redundant gene catalog against
530 reference rdhA genes in RDaseDB using DIAMOND blastp (v2.0.8)°, with >30%
531  percentage identity and >50% query coverage as the cut off* °2. Furthermore, we
532  extracted a gene catalog encoding rdhA genes from the InterPro database using Pfam
533 id “PF13486” (n = 4,163) and NCBI’s Protein Family Models using NCBI HMM
534  accession “TIGR02486” (n = 1,235). The hmmsearch tool in HMMER v3.3.2 was
535 applied (E-value < 1E-10) using the amino acid sequences of non-redundant gene
536  catalog to the reference gene catalog. To identify potential rdhA sequences in MAGS,
537  Prodigal (v2.6.3; parameter: -meta)® was utilized to predict protein-coding sequences
538 of all MAGs. These predicted sequences were also searched against the rdhA
539  reference sequences using DIAMOND blastp (v2.0.15.153)* and HMMER v3.2.1,
540  with the same parameters as mentioned above (Supplementary Fig. 8). For each gene
541  which passed the required criteria for rdhA gene identification by blastp or
542  hmmsearch were merged and then the retrieved results were manually checked
543 according to gene length (> 300 aa) and two Fe-S conserved motifs
544  (CXXCXXCXXXCP, CXXCXXXCP). In brief, pairwise alignment of identified rdhA
545  amino acid sequences for conserved active site analysis was performed and visualized
546  using MAFFT v7.471 (-auto option)®” and Jalview®®. Phylogenetic trees were further
547  constructed to validate the phylogenetic clades of RdhA, rdhA amino acid sequences
548  and reference sequences were aligned using MUSCLE (v3.8.1551, default settings)®

100

549  and trimmed using TrimAL (v1.4.1)™" with default options. Maximum-likelihood
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550  trees were constructed using IQ-TREE (v2.2.0.3)** with the “-m MFP -B 1000”

551 options. All trees were visualized by using iTOL (v6)'".

552  The MAGs were also annotated using DRAM (v1.3.5; parameter: --min_contig_size
553 1000)'%? against KEGG, Pfam, MEROPS and dbCAN databases. To annotate genes
554 involved in hydrocarbon degradation, CANT-HYD database'® with the HMMs of 16
555  hydrocarbon-degrading genes was searched against with parameters “-cut_nc” using
556 HMMER v3.2.1. The hydrogenases were annotated using DIAMOND blastp
557  (v2.0.15.153; options: --id 50 --query-cover 80 --evalue 1E-20) against local protein
558  databases (https://doi.org/10.26180/c.5230745)'* further confirmed and classified
559  using the HydDB tool®. The VBy,Path was employed to annotate genes involved the

560  VBi synthesis pathway™®.
561 Identification of mobile genetic elements

562  Classification of rdhA-containing contigs as belonging to chromosomes, plasmids or
563  viruses was performed using Genomad v.1.5.0 with default parameters'®. Integrons,
564 integrative conjugative element (ICEs), IS elements and transposons were identified
565 using HMM searches of the proteins against the 68 marker HMM profiles by default,

566  which are available on proMGE (http://promge.embl.de/)*®.

567 Protein modeling and molecular docking

568 Deep learning approach AlphaFold2 has yielded remarkable progress in predicting
569  protein structures. The three-dimensional structures of 586 rdhA sequences were
570 generated with AlphaFold (v2.0; full_dbs)®’. The pLDDT values, a measure for
571  confidence of the AlphaFold structure prediction, range from 65 to 97, 91 on average.
572  The protein complexes of novel clade RDases were predicted using AlphaFold (v2.0;
573  model_preset = multimer)'”’. The paired alignment of structures relied on 3Di and
574  amino acid based alignment via Foldseek v8.ef4e960'%. Structure-based RdhA tree

575  was further built using Foldtree (https://github.com/DessimozLab/fold_tree) based on
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576  a local structural alphabet'® and visualized using iTOL (v6)'®. Structural similarity

577  and homology relationships of RdhAs with 1,007,623 protein domains in the ECOD

578  database™® were investigated using Foldseek easy-search module'®

(--tmscore-
579  threshold 0.3 -e 0.001). TMHMM v2.0 was employed to predict transmembrane

580 topology of RdhA proteins (https://services.healthtech.dtu.dk/servicess TMHMM-2.0/).

581  Ledock (https://www.lephar.com/) was used to predict the binding poses of 191
582  halohydrocarbons on different RDases (RMSD: 1.0, Number of binding poses: 20,
583  size: 10). Prediction of ligand channels was performed on the Caver v3.0
584  (probe_radius 0.9, shell radius 3, shell _depth 4)"'. All of the structures were

585  visualized and exported as images using PyMOL (http://www.pymol.org).
586  Nucleotide diversity and pN/pSratio analyses

587  All metagenomic filtered reads from each sample were mapped to an indexed
588 database of the rdhA-containing genomes using Bowtie2 (v2.3.5.1; default

589  parameters)'?

. The nucleotide diversity and pN/pS ratio of rdhA genes were
590 calculated from these mappings using the profile module of the inStrain program
501  (v1.6.2; default parameters)® at the gene level. To perform gene level profiling, genes
592  were predicted by the software Prodigal (v2.6.3; settings: -p meta)® for each MAG
593  carrying rdhA genes. A total of 475 rdhA genes were retained for microdiversity
594  analyses, which satisfied threshold criteria of having a breadth of 50% and 5x

595  coverage.
596  Structure-based polymorphism analyses

597  The variants across the RdhA protein structures were explored using the microbial
598  population genetics framework implemented in anvi’o (v7.1)"3. First, population
599  statistics of rdhA genes, including coverage, single nucleotide variants (SNVs) and
600  single codon variants (SCVs), were calculated from the mappings using the profile
601 module of the anvi’o program (v7.1; default parameters). Only SNV positions
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602  mapping with greater than 10x coverage and the average coverage of rdhA genes
603  exceeded 2x in each metagenome were retained (reducing our metagenomic samples
604  size from 165 to 30). Additionally, rdhA genes that are present in a minimum of 20 out
605  of 30 metagenomes were included for further analysis. The remaining 200 rdhA genes
606  with high-quality structure (pLDDT > 80) were imported for structure-based
607  polymorphism analyses. The SCV data of each site on the high-quality structure
608 (pLDDT > 80) was integrated with *anvi-display-structure’, which filtered for variants
609 that had at least 0.05 departure from consensus. The producing results including
610  synonymous (s) and nonsynonymous (ns) polymorphism rates of each codon (pS©™

)y and relative solvent accessibility (RSA). Ligand-binding residues of each

611 and pN
612 gene were predicted with per-residue binding frequencies greater than 0.5 using
613  InteracDome. Distance-to-ligand (DTL) was calculated using append_dist to_lig.py
614  (https://merenlab.org/data/anvio-structure/chapter-111/). The relationship between
615  SCVs, relative solvent accessibility (RSA), and distance to ligand (DTL) in reductive

616  dehalogenases were explored.
617  Statistical analyses

618  Statistical analyses were carried out in R v4.2.3. The normality and variance
619  homogeneity of the data were evaluated using Shapiro-Wilk Test and Levene’s test,
620  respectively. To compare gene abundance and evolutionary metrics among different
621  rdhA groups, the Kruskal-Wallis rank-sum test was employed. For paired comparisons
622  within rdhA groups, the Wilcoxon test was utilized. Pearson’s product-moment
623  correlation and linear regression were performed to assess the relationship between
624  gene abundance, evolutionary metrics and their relationships with sediment depth.
625 ANOVA analysis was performed to determine the portion of variability in the
626  polymorphism data and the Pearson coefficients for each gene-sample pair were
627 calculated wusing the R script available at https://merenlab.org/data/anvio-

628  structure/chapter-1V/.
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629  Data availability

630 The non-redundant gene and MAGs catalogs derived form 165 cold seep
631  metagenomes can be found in figshare
632  (https://doi.org/10.6084/m9.figshare.22568107). The rdhA-carrying MAGs and
633  phylogenetic trees of RdhA based on amino acid sequences and protein structures are

634  available at figshare (https://doi.org/10.6084/m9.figshare.23499363).

635 Code Availability

636  The present study did not generate codes, and mentioned tools used for the data

637  analysis were applied with default parameters unless specified otherwise.
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912 Figurelegends

913 Figure 1. Halogen profiles of cold seep porewater and sediments. (a)
914  Concentration profiles of dissolved and solid chlorine (CI) and bromine (Br’) in 1086
915  porewater samples and 68 sediment samples collected from Qiongdongnan, Shenhu,
916 Haima, and Site F cold seeps. Blue lines and red lines represent the average
917  concentration of ClI"and Br in the typical seawater and overlying water of cold seeps,
918  respectively. (b) Concentration profiles of total organic halogen in sediments collected
919  from Qiongdongnan and Shenhu cold seeps. (c) The chemical structures of
920  halogenated compounds identified in sediments from Qiongdongnan and Shenhu cold
921  seeps. Detailed data on halogen profiles of cold seep porewater and sediments can be

922  found in Supplementary Table 1-3.

923  Figure 2. Maximum-likelihood phylogenetic tree of reductive dehalogenase
924  (RdhA) identified from the cold seep non-redundant gene catalog. Branches are
925  color-coded to represent different RdhA subgroups. Epoxyqueuosine reductase (QueG)
926  was used as the outgroup. Scale bar indicates the mean number of substitutions per
927  site. Bootstrap values over 50% were shown next to the nodes. The n values denote

928  the count of RdhA sequences within each subgroup.

929  Figure 3. Relative abundance patterns of rdhA genes in cold seep sediments. (a)
930 Relative abundance and expression levels of 3,993 rdhA genes across different
931  sediment samples, measured as GPM for metagenomes and TPM for transcripts.
932  Insert plots show the rdhA gene abundance and expression levels of the four groups.
933  Gene groups and subgroups are in different colors. P values of differences across
934  different types of rdhA genes were computed through Kruskal-Wallis rank-sum tests.
935  Relationships between rdhA abundance and (b) sediment depths (mbsf), (c) reductive
936  dsrAabundance, and (d) oxidative mcr A abundance. Each point represents the average
937  gene abundance for a sample, accompanied by linear regression lines and R values

938  specific to each gene type in corresponding colors. Detailed statistics for significance
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939  tests and linear regressions are provided in Supplementary Tables 5-7.

940 Figure 4. Taxonomic classification, genomic context and potential substrate
941 docking of cold seep organohalide-reducing microorganisms. (a) A Sankey
942  diagram showing the taxonomy of archaeal and bacterial MAGs according to GTDB,
943  categorizing organohalide-reducers across taxonomic levels. (b) Genome synteny of
944 14 contigs showcasing five types of RDases (highlighted in red) and accompanying
945  genes: regulatory (green), transport-related (orange), functional (blue), mobile genetic
946  elements (MGEs, yellow), other annotated genes (purple), and unknown (grey). (c)
947  Overlay of the active sites of cold seep quinone-dependent respiratory and cytosolic
948  RdhA (lightpink) against known RdhA crystal structures (PDB id: 8Q4H and PDB id:
949  6ZY1, in green). Substrates 2'-Chloro-biphenyl-2,3-diol and 1,5-dibromopentane,
950 predicted through molecular docking with binding affinities of -4.12 and -3.11
951  kcal/mol respectively, are shown in magenta. Details for taxonomic classification,
952  molecular docking, and rdhA-containing contig annotations are provided in

953  Supplementary Tables9 and 11-13.

954  Figure 5. Reductive dehalogenation is closdly linked to carbon, nitrogen, sulfur,
955 and trace element metabolic processes. RDases of different colors represent
956  different types, with orange indicating prototypical respiratory RDases, purple
957  representing transmembrane respiratory RDases, green indicating cytosolic RDases,
958  and cyan signifying the novel clade of RDases. Dark orange denotes potential electron
959 transfer units, while orange-yellow represents potential electron donors and electron
960 transfer pathways. Different background colors signify distinct metabolic pathways:
961 light blue indicates hydrocarbon degradation, dark blue represents sulfur metabolism,
962  light red represents nitrogen metabolism and olive green denotes Bi, biosynthesis.

963  Detailed annotations for different genes are provided in Supplementary Tables 14-19.

964 Figure 6. Structure-based phylogeny of cold seep reductive dehalogenases and
965 reference proteins. Each group of reductive dehalogenases (RDases) is labeled by a

966  unique color: Novel clade RDases, turquoise; Quinone-independent respiratory
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967 RDases, gold; Quinone-dependent respiratory RDases, orange; Cytosolic RDases,
968  green; Transmembrane respiratory RdhAs, purple. The three RDases that have been
969 validated experimentally are highlighted with stars. Surrounding the tree, the
970  AlphaFold-predicted 3D structures of representative RDases are displayed, each
971  labeled with their taxonomic phylum and corresponding pLDDT scores. The
972 indication of the five main inferred evolutionary events of the tree marked at the

973  origin of each fold/architecture, numbered 1 through 5.

974  Figure7. Microdiversity of cold seep rdhA genes and their corresponding protein
975  structural features. (a) Comparison of nucleotide diversity and pN/pS for rdhA genes
976  across gene groups. (b) Gene-wide distributions and Pearson correlations for pN©"®
977  (red) and pS®™ (blue) relative to relative solvent accessibility (RSA) and distance to
978 ligand (DTL). The pN(site) and pS(site) distribution were generated based on RSA

979 and DTL values of each site from 200 predicted RdhA structures. The Pearson

site site

980  correlations of logy(pN®") and logye(pS©"™®) to RSA and DTL for each gene-sample
981  pair were calculated using linear models, and the mean values were represented as
982 dashed lines. P values of differences across different types of rdhA genes were
983  computed through Kruskal-Wallis rank-sum tests. The boxplot features include: center
984  lines, medians; box limits, 25th and 75th percentiles; whiskers, 1.5% interquartile
985 range from the 25th and 75th percentiles; points, outliers. The n values denote the
986  number of independent results utilized for statistical derivation. Detailed data on the

987  microdiversity of rdhA genes can be found in Sour ce data 1-2.
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