

# 1 Decoding *Klebsiella pneumoniae* in Poultry Chain: Unveiling Genetic 2 Landscape, Antibiotic Resistance, and Biocide Tolerance in Non- 3 Clinical Reservoirs

4  
5 **Joana Mourão<sup>1,2</sup>#, Mafalda Magalhães<sup>2,3,4</sup>, Marisa Ribeiro-Almeida<sup>2,3,5</sup>, Andreia Rebelo<sup>2,3,5,6</sup>,**  
6 **Carla Novais<sup>2,3,2</sup>#, Luísa Peixe<sup>2,3,2</sup>#, Ângela Novais<sup>2,3,2</sup>#, Patrícia Antunes<sup>2,3,4,2,2</sup>#,**

7 <sup>1</sup> Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra,  
8 Portugal

9 <sup>2</sup> UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of  
10 Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal

11 <sup>3</sup> Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University  
12 of Porto, Porto, Portugal

13 <sup>4</sup> Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal

14 <sup>5</sup> School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal

15 <sup>6</sup> ESS, Polytechnic Institute of Porto, Porto, Portugal

16

17 **\* Correspondence:**

18 Patrícia Antunes

19 [patriciaantunes@fcna.up.pt](mailto:patriciaantunes@fcna.up.pt)

20

21 <sup>#</sup>Joana Mourão, Andreia Rebelo, Carla Novais, Luísa Peixe, and Patrícia Antunes are active members  
22 of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Food and Water-  
23 borne Infection Study Group (EFWISG) and Ângela Novais of ESCMID Study Group for  
24 Epidemiological Markers (ESGEM)

25

26 **Keywords:** *Klebsiella pneumoniae*, antibiotic resistance, metals, chicken production, environment,  
27 meat, WGS, plasmids

28

29 **Running Title:** *K. pneumoniae* antibiotic-resistance and metal-tolerance interplay

30

31

## 32 Abstract

33 The rise of antibiotic resistance in the food chain is influenced by the use of antimicrobial agents, such  
34 as antibiotics, metals, and biocides, throughout the entire farm-to-fork continuum. Besides, non-  
35 clinical reservoirs potentially contribute to the transmission of critical pathogens such as multidrug-  
36 resistant (MDR) *Klebsiella pneumoniae*. However, limited knowledge exists about the population  
37 structure and genomic diversity of *K. pneumoniae* circulating in conventional poultry production. We  
38 conducted a comprehensive characterization of *K. pneumoniae* across the whole chicken production  
39 chain (flocks/environment/meat, 2019-2022), exploring factors beyond antibiotics, like copper and  
40 quaternary ammonium compounds (QACs). Clonal diversity and adaptive features of *K. pneumoniae*  
41 were characterized through cultural, molecular (FT-IR), and whole-genome-sequencing (WGS)  
42 approaches. All except one flock were positive for *K. pneumoniae* with a significant increase ( $p < 0.05$ )  
43 from early to pre-slaughter stages, most persisting in chicken meat batches. Colistin-resistant *K.*  
44 *pneumoniae* rates were low (4%), while most samples carried MDR strains (67%) and copper-tolerant  
45 isolates (63%; *sil*+*pco* clusters;  $\text{MIC}_{\text{CuSO}_4} \geq 16\text{mM}$ ), particularly at pre-slaughter. Benzalkonium  
46 chloride consistently exhibited activity in *K. pneumoniae* ( $\text{MIC/MBC}$  range=4-64mg/L) from diverse  
47 and representative strains independently of the presence/absence of genes linked to QACs tolerance.  
48 A polyclonal *K. pneumoniae* population, discriminated by FT-IR and WGS, included various lineages  
49 dispersed throughout the chicken's lifecycle at the farm (ST29-KL124, ST11-KL106, ST15-KL19,  
50 ST1228-KL38), until the meat (ST1-KL19, ST11-KL111, ST6405-KL109, and ST6406-CG147-  
51 KL111), or over years (ST631-49 KL109, ST6651-KL107, ST6406-CG147-KL111). Notably, some  
52 lineages were identical to those from human clinical isolates. WGS also revealed F-type multireplicon  
53 plasmids carrying *sil*+*pco* (copper) co-located with *qacEΔ1±qacF* (QACs) and antibiotic resistance  
54 genes like those disseminated in humans. In conclusion, chicken farms and their derived meat are  
55 significant reservoirs for diverse *K. pneumoniae* clones enriched in antibiotic resistance and metal  
56 tolerance genes, some exhibiting genetic similarities with human clinical strains. Further research is  
57 imperative to unravel the factors influencing *K. pneumoniae* persistence and dissemination within  
58 poultry production, contributing to improved food safety risk management. This study underscores the  
59 significance of understanding the interplay between antimicrobial control strategies and non-clinical  
60 sources to effectively address the spread of antimicrobial resistance.

## 61 1 Introduction

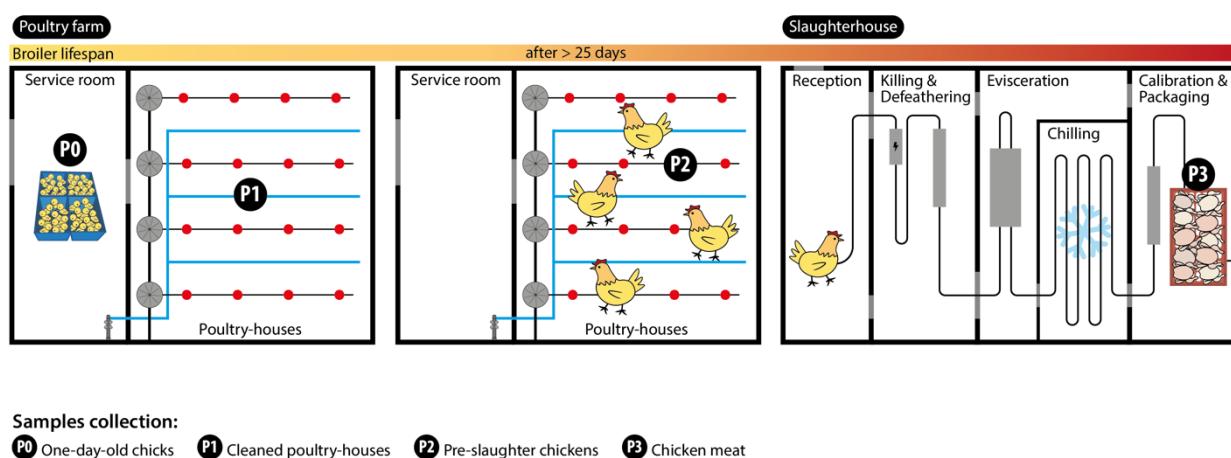
62 Intensive poultry production is a crucial sector of the global food industry. It faces significant  
63 challenges in addressing the growing demand for poultry products, especially antibiotic-free chicken  
64 (Mottet and Tempio, 2017; Karcher and Mench, 2018). Ensuring biosecurity, which includes proper  
65 hygiene practices, vaccination programs, regular monitoring of flock health and effective farm  
66 management strategies, is essential to prevent disease transmission between flocks and farms.  
67 However, despite these efforts, intensive chicken production relies heavily on antibiotics and  
68 coccidiostats (Karcher and Mench, 2018; Gržinić et al., 2023). This reliance becomes even more  
69 concerning when considering that poultry presents potential risks to human health as it can be a  
70 reservoir of zoonotic pathogens causing infectious diseases and can contribute to the spread of  
71 antimicrobial resistance (AMR) within the food chain (Golden et al., 2021; European Food Safety  
72 Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC), 2023). While  
73 antibiotics have traditionally been seen as the main drivers of AMR, recent restrictions on their use in  
74 food-producing animals, as well as alternative antimicrobial approaches, suggest the contribution of  
75 other compounds as selectors of antibiotic-resistant bacteria (Rebelo et al., 2023).

76 Metals and biocides are used in food-animal production for various purposes, including as feed  
77 additives, growth promoters, antiseptics, and disinfectants, to decrease the dependence on antibiotics  
78 [(EMA Committee for Medicinal Products for Veterinary Use (CVMP) and EFSA Panel on Biological  
79 Hazards (BIOHAZ) et al., 2017; Rebelo et al., 2023)]. Copper is one of the metals commonly added to  
80 chicken feed. Its antimicrobial properties not only improve animal nutrition and productivity (e.g., by  
81 modulating gut microbiota) but also reduce disease risks, thereby boosting the overall flock health  
82 (Broom et al., 2021; El Sabry et al., 2021). Furthermore, biocides formulated with quaternary  
83 ammonium compounds (QACs) are used to disinfect surfaces, equipment, feeding systems, and water  
84 sources. Their versatility and broad-spectrum antimicrobial activity assist in controlling and preventing  
85 pathogens dissemination between flocks within poultry facilities (Chen et al., 2023). Genes associated  
86 with tolerance to metals and QACs often share the same genetic contexts with antibiotic-resistance  
87 genes (Slifierz et al., 2015; Li et al., 2022; Pereira et al., 2023). Thus, the use of copper-supplemented  
88 feed and QAC-based biocides could contribute to co-selection effects (Webber et al., 2015; Kampf,  
89 2018; Rebelo et al., 2023).

90 Current intensive chicken production involves large-scale operations that span breeding and hatching  
91 to rearing, processing, and distribution. However, the impact of diverse antimicrobial strategies used  
92 throughout farm to fork on the spread of AMR remains underexplored [(EMA Committee for  
93 Medicinal Products for Veterinary Use (CVMP) and EFSA Panel on Biological Hazards (BIOHAZ) et  
94 al., 2017; Rebelo et al., 2023)]. To effectively address AMR, a One Health approach – which  
95 emphasizes coordinated efforts across the domains of animals, humans, and the environment – is  
96 essential. This approach is not only crucial for elucidating the origins of less common foodborne  
97 pathogens such as *K. pneumoniae* but also for understanding emergent reservoirs and vectors of AMR  
98 genes outside the clinical setting (Wyres and Holt, 2018). Our prior study unveiled a significant  
99 occurrence of copper tolerance and multidrug resistance among *K. pneumoniae* strains found in chicken  
100 flocks (Mourão et al., 2023). We also identified *K. pneumoniae* lineages and plasmids carrying *sil*+*pco*  
101 copper tolerance and variable antibiotic resistance genes, resembling those identified in human clinical  
102 isolates worldwide (Mourão et al., 2023). These findings highlight the urgent need to further investigate  
103 the factors, drivers, and sources that contribute to the selection and persistence of MDR *K. pneumoniae*  
104 within the poultry production chain. However, there has been limited research focusing on the early  
105 stages of chicken rearing (e.g., one-day-old chicks) and the in-house poultry environment, including  
106 cleaned poultry houses post-vacancy, where broilers are raised for 30-35 days before being sent to  
107 slaughter for meat production (Daehre et al., 2018; Zhai et al., 2020).

108 This study aims to provide a comprehensive analysis of the occurrence, diversity, and persistence of  
109 *K. pneumoniae* in the whole poultry production chain (from one-day-old chicks to chicken meat)  
110 between 2019 and 2022. Furthermore, we assessed the contribution of factors other than antibiotics  
111 (use of copper and quaternary compounds) as putative selective agents of AMR genes and bacteria that  
112 are clinically relevant. Identifying the transmission sources and pathways for MDR *K. pneumoniae*  
113 will pave the way for devising effective strategies to mitigate its dissemination, ensuring animal  
114 welfare, environmental sustainability, public health, and overall improved food safety.

## 115 2 Material and Methods


### 116 2.1 Sampling design at the chicken farm and slaughterhouse processing plant

117 Our sampling included seven Portuguese intensive-based chicken farms with conventional indoor and  
118 floor-raised production systems in compliance with EU legislation, as indicated by the operator  
119 (ADAS, 2016). Six similar farms (arbitrarily designated as A, B, C, E, G, and H) previously studied

120 (Mourão et al., 2023) and one (I) recently restructured with modern grow-out poultry house facilities  
121 were selected. In all farms, colistin was banned since January 2018, while copper was routinely used  
122 as an additive in inorganic formulation feed (far below the maximum dose of 25 mg/kg of Cu,  
123 according to EU Regulation 2018/1039). The vacancy period varied from 11 to >15 days, being each  
124 poultry house depopulated, cleaned, and disinfected using similar routine cleaning and disinfection  
125 procedures. The biocide active compounds used were benzalkonium chloride (BZC) or didecyl  
126 dimethyl ammonium chloride (DDAC) and hydrogen peroxide for water distribution systems.

127 In each of the seven farms, female, and male mixed one-day-old chicks (Ross 308 strain) were  
128 randomly distributed by two poultry houses at arrival (around 5000-60.000 chickens per flock/house).  
129 A total of 14 flocks were followed and sampling was carried out over three different periods during the  
130 production cycle (the length ranged from 26-43 days) between February and May 2022 (**Figure 1**).  
131 The initial sampling period included collecting samples from one-day-old chicken transport boxes (P0;  
132 n=14 samples; each sample comprising 12 boxes). These were obtained using stick swabs, with each  
133 swab tube containing 10 ml of Buffered Peptone Water-BPW and used in 4 chicken boxes (a total of  
134 three swabs per sample). Additionally, the inside of cleaned poultry houses (P1; n=14 samples) were  
135 sampled using the boot swab technique, which employs dry-foot swabs in a zigzag pattern, according  
136 to EU Regulation 200/2012. In the second period, the inside of grow-out houses containing the same  
137 flocks the day before slaughter (P2; n=14 samples; after >25 days) was collected using the boot swab  
138 technique. In the third period, raw chicken meat samples (P3; n=14 batches) from the same flocks were  
139 collected after slaughter and air chilling at the poultry production slaughterhouses, immediately before  
140 distribution for retail sale. Each sample (50 g) was processed as a pool of neck skin from 10-15  
141 carcasses of the same batch (each batch corresponded to one flock from the same farm and poultry  
142 house slaughtered at the same time) (according to EU Regulation 1086/2011).

143 All previous samples were collected in sterile plastic bags/containers, transported at 4°C to the  
144 laboratory, and processed on the same day. Subsequent sample processing was performed using  
145 cultural/molecular approaches as described in the following sections.



146

147 **Figure 1.** Sampling strategy at the chicken farm and slaughterhouse processing plant. Sample  
148 collection points are indicated by P0, P1, P2 and P3.

149 **2.2 Screening of *Klebsiella pneumoniae***

150 *K. pneumoniae* was recovered from Simmons citrate agar plates with 1% inositol (SCAi), the most  
151 suitable selective medium for *Klebsiella* recovery, directly from the suspended sample and after  
152 enrichment. A common initial step consisted of mixing swabs (three pooled swab tubes-P0 and two  
153 swab foot-P1 and P2) or weighing 25 g of pooled meat samples (P3) into 1/10 mL of BPW and BPW  
154 supplemented with 3.5 mg/L colistin. The direct culture method included spreading an aliquot of 100  
155  $\mu$ L of BPW and BPW+colistin after 1 h at room temperature (resuscitation step) on SCAi supplemented  
156 or not with colistin (3.5 mg/L). The enrichment approach involved the same procedure but after a  
157 previous incubation of BPW and BPW+colistin at 37°C for 16-18 h. All the SCAi plates were incubated  
158 at 37°C for 48h. One to five colonies of each presumptive morphotype were selected for identification.  
159 Isolates were identified presumptively by CHROMagar™ Orientation and then by PCR for *K.*  
160 *pneumoniae* (Bialek-Davenet et al., 2014).

### 161 2.3 *Klebsiella pneumoniae* diversity between samples

162 We used Fourier Transform Infrared (FT-IR) spectroscopy with attenuated total reflectance (ATR) to  
163 infer isolates' relatedness between isolates identified in the same or different samples. After growth  
164 under standardized culture conditions (Mueller-Hinton agar; 37°C/18h), a colony was directly  
165 deposited and air-dried on the ATR accessory of the FT-IR instrument. Spectra were acquired in a  
166 Spectrum Two instrument (Perkin-Elmer, USA) under standard conditions (4000-600  $\text{cm}^{-1}$ , 4  $\text{cm}^{-1}$   
167 resolution, and 16 scan co-additions). The region between 1200 $\text{cm}^{-1}$  and 900  $\text{cm}^{-1}$  was compared with  
168 each other, and with those from two different machine-learning classification models, used to predict  
169 *K. pneumoniae* capsular (KL) types: i) a Random Forest classification model that enables identification  
170 of up to 33 KL-types from well-characterized international *K. pneumoniae* clones from the clinical  
171 setting (Novais et al., 2023a); and ii) a Random Forest classification model to allow identification of  
172 up to 21 KL-types (eleven in common with the previous model) based on a spectral database of poultry  
173 isolates identified in previous studies (Mourão et al., 2023). Isolate relatedness and prediction of KL-  
174 types were inferred as described previously (Novais et al., 2023a). Isolates predicted to have the same  
175 KL-type were considered putatively related. FT-IR-based assignments were confirmed by PCR of the  
176 *wzi* gene and further sequencing at Eurofins Genomics (<https://www.eurofinsgenomics.eu/>) to infer K-  
177 type using BIGSdb (<http://bigsdb.pasteur.fr/klebsiella/klebsiella.html>) (Brisse et al., 2013).

### 178 2.4 Antimicrobial susceptibility to antibiotics

179 Susceptibility to 17 antibiotics (amoxicillin+clavulanic acid-30 $\mu$ g, amikacin-30 $\mu$ g, aztreonam-30 $\mu$ g,  
180 cefepime-30 $\mu$ g, cefotaxime-5 $\mu$ g, cefoxitin-30 $\mu$ g, ceftazidime-10 $\mu$ g, chloramphenicol-30 $\mu$ g,  
181 ciprofloxacin-5 $\mu$ g, gentamicin-10 $\mu$ g, kanamycin-30 $\mu$ g, meropenem-10 $\mu$ g, nalidixic acid-30 $\mu$ g,  
182 sulfamethoxazole-300 $\mu$ g, tetracycline-30 $\mu$ g, tobramycin-10 $\mu$ g, and trimethoprim-5 $\mu$ g) was  
183 determined using the disc diffusion method. The Minimum Inhibitory Concentration (MIC) of colistin  
184 was determined using the reference broth microdilution method (European Committee for  
185 Antimicrobial Susceptibility Testing, 2016). *Escherichia coli* ATCC 25922 was used as the control  
186 strain. The results of both assays were interpreted using the European Committee of Antimicrobial  
187 Susceptibility Testing (EUCAST) (European Committee on Antimicrobial Susceptibility Testing,  
188 2022) and, when this was not possible, the Clinical and Laboratory Standards Institute (CLSI)  
189 guidelines (Clinical and Laboratory Standards Institute, 2022). Isolates categorised as "susceptible,  
190 increased exposure" (EUCAST guidelines) or "intermediate resistant" (CLSI guidelines) were  
191 classified as susceptible. Multidrug resistance (MDR) was considered when the isolates were resistant  
192 to three or more antibiotics from different families (in addition to ampicillin, to which all *K.*  
193 *pneumoniae* are intrinsically resistant). Screening of colistin resistance genes (*mcr-1-5* and *mcr-6-9*)  
194 was performed for all isolates using two multiplex PCR (Rebelo et al., 2018; Borowiak et al., 2020).

195 **2.5 Antimicrobial susceptibility to copper**

196 Copper-Cu susceptibility in representative isolates (different farms, flocks, and genomic backgrounds)  
197 was evaluated using the agar dilution method under anaerobic conditions (Mourão et al., 2016). Briefly,  
198 the MIC was determined using Mueller-Hinton 2 agar freshly prepared and supplemented with  
199 different copper sulphate ( $\text{CuSO}_4$ ) concentrations (0.5 to 36 mM) and a final adjustment to pH = 7.2.  
200 The plates were then inoculated with 0.001 mL suspension ( $10^7 \text{ CFU/mL}$ ) of each isolate and incubated  
201 at 37°C under anaerobic conditions for 18h-20h. The MIC was identified as the lowest concentration  
202 where no visible growth was observed. Control strains included *Escherichia coli* ED8739 carrying the  
203 plasmid pRJ1004 with the *sil* and *pco* cluster ( $\text{MIC}_{\text{CuSO}_4}=16-20 \text{ mM}$ ) and *Enterococcus lactis*  
204 BM4105RF without acquired copper tolerance genes ( $\text{MIC}_{\text{CuSO}_4}=2-4 \text{ mM}$ ) (Novais et al., 2023b). All  
205 *K. pneumoniae* isolates were screened for the *silA* copper tolerance gene using a PCR, given its strong  
206 association with the presence of an intact *sil* operon and a Cu tolerance phenotype (Mourão et al., 2016,  
207 2023).

208 **2.6 Antimicrobial susceptibility to benzalkonium chloride**

209 The MIC and minimum bactericidal concentrations (MBC) of benzalkonium chloride (BZC) (CAS  
210 68391-01-5, VWR) were determined for representative sequenced isolates (n=45; different clones,  
211 sample types, farms, years and the presence or absence of QAC tolerance genes) using the Mueller-  
212 Hinton broth microdilution method (pH=7.2; 37°C/20h) (Clinical and Laboratory Standards Institute,  
213 2018). Briefly, a 96-well microtiter plate containing serial two-fold dilutions of BZC (concentration  
214 ranging from 0.125 to 128 mg/L) was used to assess the susceptibility of bacterial suspensions in log-  
215 phase growth (adjusted to reach a final inoculum of  $5 \times 10^5 \text{ CFU/mL}$  in each well) at 37°C for 20h.  
216 Microdilution panels were freshly prepared before each assay. The first concentration of BZC without  
217 visible growth was considered the MIC (Clinical and Laboratory Standards Institute, 2018).

218 To determine the  $\text{MBC}_{\text{BZC}}$ , 10 $\mu\text{l}$  of each well without visible growth from the 96-well MIC plate were  
219 incubated onto brain heart infusion agar plates at 37°C for 24h, as defined by the CLSI (Clinical and  
220 Laboratory Standards Institute, 1999). The MBC was defined as the lowest QAC concentration where  
221 the colony count was equal to or less than the CLSI-specified rejection value, based on the final  
222 inoculum count of each well (Clinical and Laboratory Standards Institute, 1999). Each experiment was  
223 repeated three times and the MIC/MBC values corresponded to the mean of these determinations. To  
224 ensure assay reproducibility, the *Enterococcus faecalis* ATCC 29212 (without any known QACs  
225 tolerance genes) was included as a control strain ( $\text{MIC}_{\text{BZC}}$  and  $\text{MBC}_{\text{BZC}}$  varied between 1-4 mg/L)  
226 (Pereira et al., 2023).

227 **2.7 Genomic analysis by whole-genome sequencing**

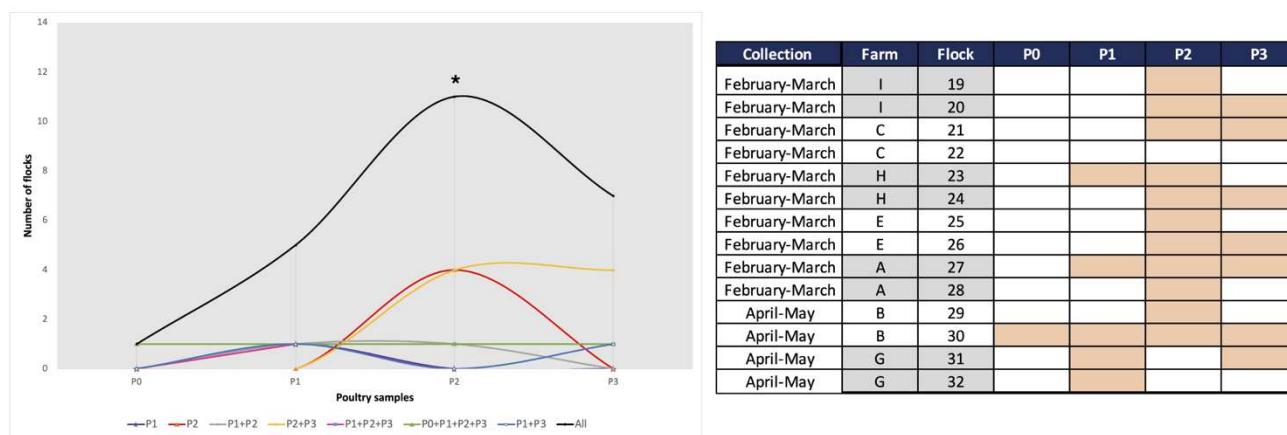
228 We then aimed to elucidate the sources and persistence of specific clonal lineages and/or MDR  
229 plasmids along the chicken production. For that, we compared 68 genomes, including 48 sequenced *de*  
230 *novo* in the present study (n=31 from 2022 farms and n=17 from 2019-2020 farms) and 20 obtained in  
231 the previous study (Mourão et al., 2023), representing different farms, stages, timespans, and KL-types.  
232 Genomic DNA was extracted from the isolates using the Wizard Genomic DNA purification kit  
233 (Promega Corporation, Madison, WI) and the final concentration was measured with a Qubit 3.0  
234 Fluorometer (Invitrogen, Thermo Fisher Scientific, USA). Subsequently, the isolates were sequenced  
235 using the Illumina NovaSeq 6000 S4 PE150 XP (Illumina, San Diego, CA, USA) at Eurofins Genomics  
236 (<https://eurofinsgenomics.eu/>). FastQC v0.11.9 (Andrews, 2010) and MultiQC v1.13.dev0 (Ewels et  
237 al., 2016) with default parameters were used for the quality control of the raw sequence data. If needed,  
238 the reads were filtered using BBduk v39.01 (<http://sourceforge.net/projects/bbmap/>), followed by *de*

239 *novo* assembly with SPAdes v3.15.5 (Bankevich et al., 2012) integrated within Unicycler v0.5.0 (Wick  
240 et al., 2017). QUAST v5.0.2 (Gurevich et al., 2013) was used for the quality evaluation of assemblies  
241 and CheckM v1.2.2 (Parks et al., 2015) and BUSCO v5.4.6 (Simão et al., 2015) for genome  
242 completeness assessment.

243 The assemblies were annotated using the RAST server (Aziz et al., 2008). Genomes' assemblies were  
244 then submitted to Pathogenwatch v2.3.3 (<https://pathogen.watch/>) which provided information on the  
245 capsular polysaccharide (K) and lipopolysaccharide (O) locus types and serotypes using Kaptive  
246 (Wyres and Holt, 2016), but also multi-locus sequence type (MLST) (Diancourt et al., 2005) and core  
247 genome MLST (cgMLST). To infer a neighbour-joining tree for phylogenetic analysis, Pathogenwatch  
248 calculates pairwise single nucleotide polymorphism (SNP) distances between genomes based on a  
249 concatenated alignment of 1972 core genes (Argimón et al., 2021). We then compared our genomes to  
250 those in Pathogenwatch, using cgMLST single linkage clustering, and selected those that had <10 allele  
251 differences (threshold=10) and <21 single-nucleotide polymorphisms (SNPs) (David et al., 2019) as  
252 the most closely related. All genome metadata in the neighbour-joining trees were added using iTOL  
253 (Letunic and Bork, 2021).

254 Prediction of antibiotic resistance determinants (acquired and chromosomal mutations), and virulence  
255 traits (yersiniabactin-YbST, colibactin-CbST, aerobactin-AbST, salmochelin-SmST, and regulators of  
256 mucoid phenotype-RmpA, and RmpA2) was performed with Kleborate v2.3.0 (Lam et al., 2021).  
257 ABRicate v1.0.1 (<https://github.com/tseemann/abricate>) with *in-house* databases was used to  
258 detect additional *K. pneumoniae* virulence genes from BIGSdb-Pasteur  
259 (<https://bigsdb.pasteur.fr/klebsiella/>), and the chaperone-usher pili system (*kpiABCDEFGHI*) (Gato et al.,  
260 2020). The BacMet2 database, which is experimentally confirmed and available from  
261 <http://bacmet.biomedicine.gu.se/>, was manually curated to exclusively include proteins found in  
262 *Klebsiella pneumoniae* (including AcrAB-TolC, CpxAR, EmmdR, EmrDE, KdeA, KexD, KmraA,  
263 KpnEFO, MdtKM, OqxAB, PhoPQ, QacEΔ1, QacF, SugE, and TehA). This database, along with an  
264 *in-house* database of acquired metal tolerance proteins (including ArsR1H-ArsD1A1A2-  
265 ArsCBA3D2R2, PcoGE1ABCDRSE2, SilESRCFBAGP, MerRTPCADE, and TerZABCDEF-  
266 TerWY1XY2Y3) were used as reference for identifying biocide (QACs) and metal tolerance,  
267 respectively. The BLASTX 2.14.0+ (Camacho et al., 2009), with additional parameters “-evalue 0.001  
268 -query\_gencode 11”, was employed to perform the sequence alignment of the bacterial genomes  
269 against both databases. Confirmation of antibiotic-resistant novel alleles was performed using  
270 AMRFinderPlus v3.11.4 (Feldgarden et al., 2021).

271 Plasmid replicon typing was performed on all WGS-selected isolates using ABRicate v1.0.1  
272 (<https://github.com/tseemann/abricate>) with PlasmidFinder database (from 2023-Jul-18) and pMLST  
273 v2.0 (Camacho et al., 2009; Carattoli et al., 2014) from the Centre for Genomic and Epidemiology  
274 (<http://www.genomicepidemiology.org>). IncFIIk plasmids were further characterized, as described by  
275 (Villa et al., 2010) (<https://pubmlst.org/organisms/plasmid-mlst>). We used the MOB-recon tool v3.1.0  
276 from the MOB-suite package to confirm the location of the metal tolerance genes and reconstruct  
277 putative plasmids based on draft assemblies (Robertson and Nash, 2018; Robertson et al., 2020). Metal  
278 tolerance genes were considered part of a specific plasmid when identified by MOB-recon or when  
279 located on the same contig as the replicon/incompatibility determinant.


280 **2.8 Statistical analysis**

281 Differences in occurrence, antimicrobial resistance, and copper tolerance among *K. pneumoniae* P0,  
282 P1, P2, and P3 samples as well as isolates were analysed by Fisher's exact test ( $\alpha=0.05$ ) using Prism  
283 software, version 8.1.1 (GraphPad).

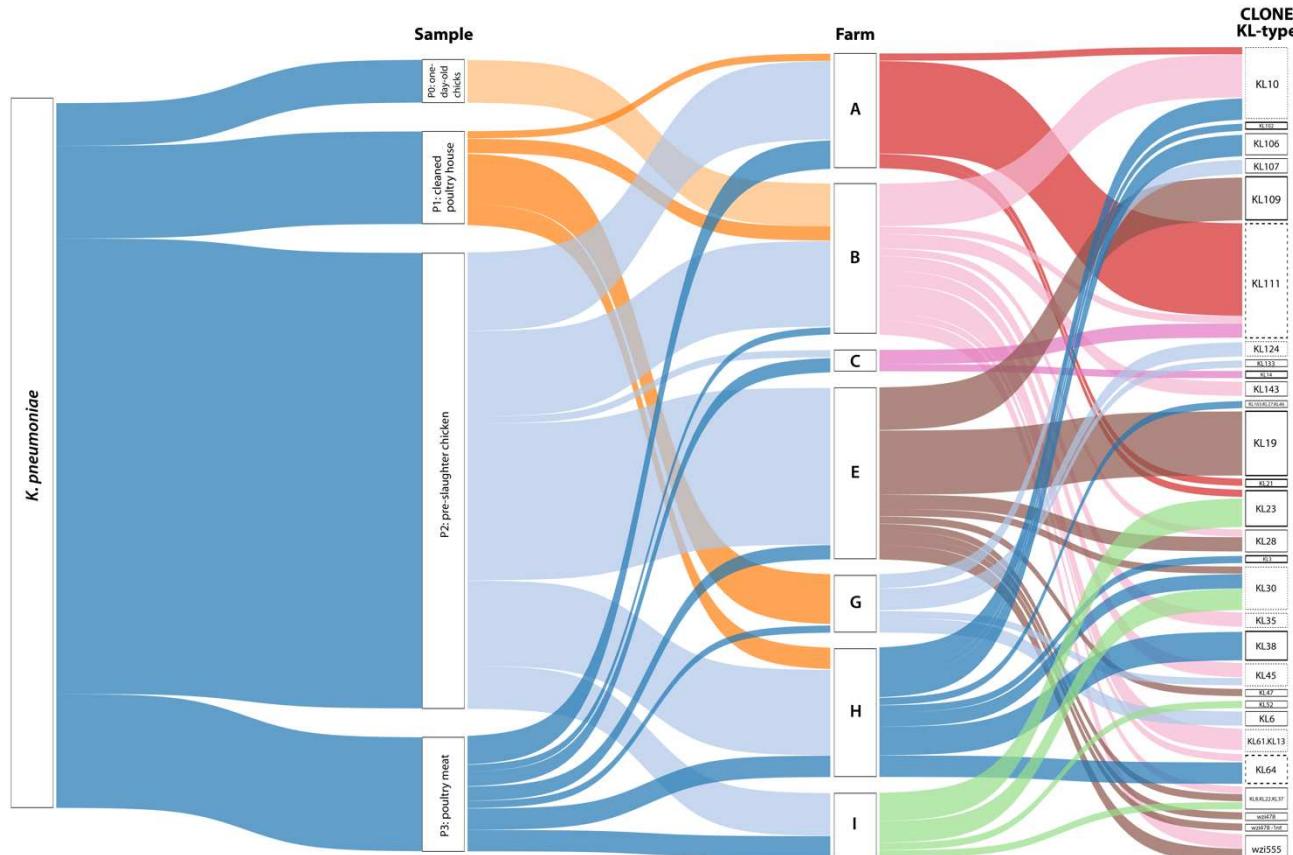
284 **3 Results**

285 **3.1 Occurrence of *K. pneumoniae* by poultry samples**

286 We detected *K. pneumoniae* in 43% (n=24/56) of the samples collected throughout all steps of the  
287 poultry production chain. The highest occurrence was found in pre-slaughter faecal chicken samples  
288 (79%-11/14 flocks; in all but one farm), followed by derived chicken meat (50%-7/14 batches; all  
289 farms), and less frequently in one-day-old chicks (7%-1/14 flocks; one farm). Notably, *K. pneumoniae*  
290 was also detected in cleaned poultry houses (36%-5/14 flocks; four farms) (Figure 2). Although  
291 differences were observed between farms, a significant increase in occurrence was found between one-  
292 day-old and pre-slaughter chickens ( $p<0.05$ ), and most (n=6/7) of these maintained *K. pneumoniae*  
293 carriage in chicken meat at the slaughter stage. Only three out of 11 pre-slaughter flocks carrying *K.*  
294 *pneumoniae* were raised in cleaned poultry houses that had previously tested positive for these bacteria  
295 (Figure 2).



296


297 **Figure 2.** Occurrence of *K. pneumoniae* in poultry samples from the farm (P0, P1, and P2) and chicken  
298 meat (P3). \*,  $P<0.05$  (Fisher's exact test) when comparing P0 with P2.

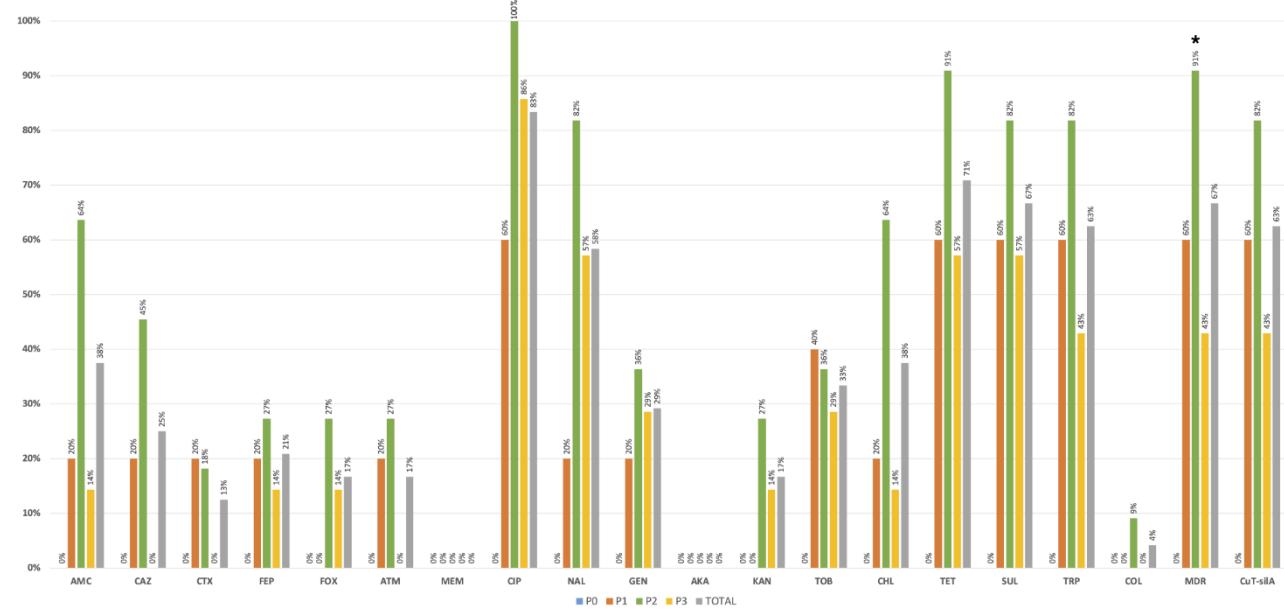
299 **3.2 Diversity of *K. pneumoniae* along the poultry chain**

300 We recovered 99 *K. pneumoniae* isolates from the 24 positive samples. Most isolates (>80%) were  
301 recovered from pre-slaughter chickens (65%-n=64/99, 11 flocks, all but one farm) and chicken meat  
302 (16%-n=16/99, 8 flocks, all farms) (Figure 3). With FT-IR, we were able to discriminate 24 putative  
303 KL-types, some of them identified in >4 isolates in the same (KL23, KL109) or in different samples  
304 (KL19, KL30, KL38, KL111). Furthermore, 54/99 (55%) isolates were correctly identified as carrying  
305 14 KL-types included in the classification models used (KL3, KL10, KL14, KL19, KL21, KL23,  
306 KL28, KL30, KL38, KL64, KL102, KL106, KL109, KL111). Additionally, 15/99 (15%) isolates were  
307 grouped in 6 (n=2-4 isolates each) highly related spectral profiles. We used this information to select  
308 representative isolates by sample, antibiotic susceptibility profile and CuT *silA* gene for further  
309 characterization by *wzi* sequencing and/or whole genome sequencing.

310 Considering FT-IR and sequencing data, a total of twenty-eight capsular locus (KL)-types were  
311 identified (13 detected in more than one sample), with the highest diversity observed in the pre-

312 slaughter samples (**Figure 3**). The most frequent KL-types included KL111 (16%; P2+P3; 3 farms/4  
313 flocks), KL10 (11%; P0+P2; 3 farms/3 flocks), KL19 (9%; P2; 1 farm/2 flocks), KL30 (6%; P2+P3; 3  
314 farms/3 flocks), KL109 (6%; P2; 1 farm/1 flock) and KL23 (5%; P1+P2; 2 farms/2 flocks). Although  
315 less frequent, other KL types were shared by different farms, flocks, or stages (**Figure 3** and  
316 **Supplementary Table S1**).



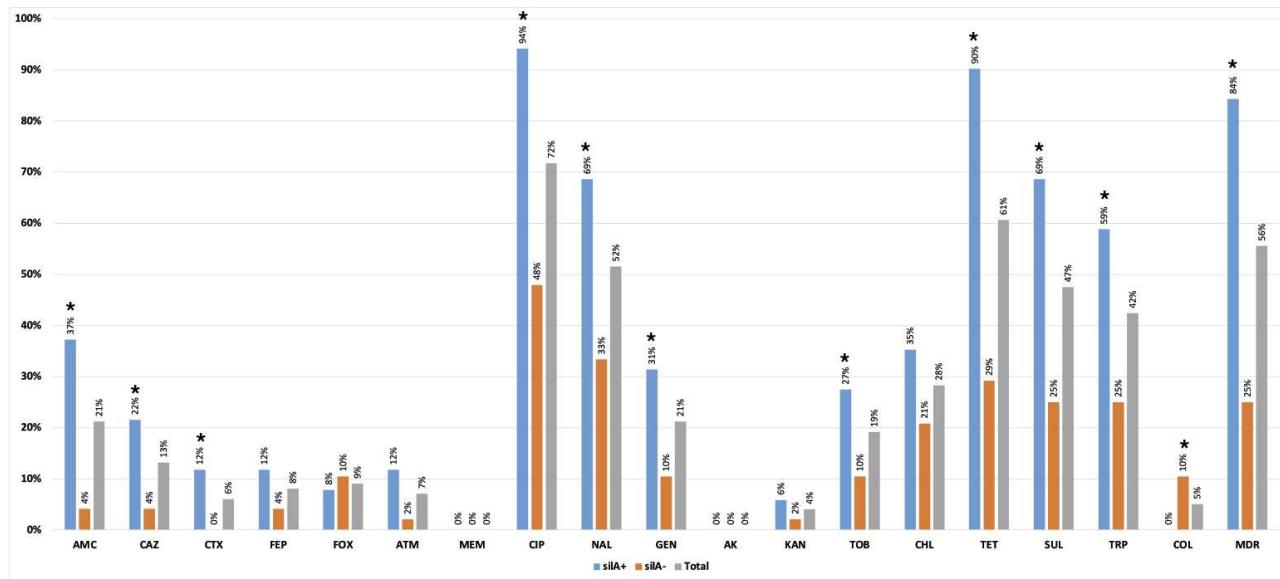

317

318 **Figure 3.** Sankey diagram representing, from left to right, the occurrence and diversity of *K.*  
319 *pneumoniae* by sample, farm, and KL-type. The width of each connection is proportional to the number  
320 of positive hits. The bold black line represents KL-types where 100% of the isolates were correctly  
321 identified by FTIR (KL3, KL14, KL19, KL21, KL23, KL38, KL102, KL109). The bold and dashed  
322 black line represents KL-types where at least 75% of the isolates were correctly identified by FTIR  
323 (KL64, KL111). The black dashed line represents KL-types where all the isolates exhibit highly related  
324 profiles recognized by FT-IR (KL10, KL30, KL35, KL45, KL124, KL61.KL13). The sensitivity and  
325 specificity of FTIR for KL-typing were 78% and 80%, respectively. The Sankey diagram was  
326 generated using Tableau Desktop 2023.3 (<https://www.tableau.com/>).

### 327 3.3 Antibiotic susceptibility of *K. pneumoniae* recovered from poultry chain

328 More than 50% of the positive samples showed at least one *K. pneumoniae* isolate with decreased  
329 susceptibility to ciprofloxacin (83%-n=20/24) or resistance to nalidixic acid (58%-n=14/24),  
330 tetracycline (71%-n=17/24), sulphonamides (67%-n=16/24) or trimethoprim (63%-n=15/24) (**Figure**  
331 **4**). Overall, 56% (n=55/99) of the isolates were MDR (**Supplementary Table S1**) identified in most  
332 samples (67%-n=16/24) from all farms. These were significantly more frequent in pre-slaughter (P2)  
333 than in chicken meat (P3) samples ( $p<0.05$ ) (**Figure 4**). Approximately 20% of samples (including  
334 those from cleaned poultry houses, pre-slaughter chickens, and chicken meat), from diverse

335 farms/flocks had at least one isolate resistant to extended-spectrum-cephalosporins (n=6 isolates/3  
336 samples with an ESBL phenotype). Colistin-resistant isolates were identified only in one pre-slaughter  
337 flock sample (MIC>16 mg/L; *mcr* negative), all from the same clone KL109 recovered from  
338 SCAi+colistin plates. Most of the other isolates (n=91) were recovered using SCAi plate with (n=56)  
339 or without (n=35) an enrichment step.




340

341 **Figure 4.** Occurrence of antibiotic-resistant *K. pneumoniae* in positive poultry samples at farm stages  
342 (P0, P1, and P2) and chicken meat (P3). \*p<0,05 (Fisher exact test). Abbreviations: AMC,  
343 amoxicillin+clavulanic acid; CAZ, ceftazidime; CTX, cefotaxime; FEP, ceftazidime; FOX, cefoxitin;  
344 ATM, aztreonam; MEM, meropenem; CIP, ciprofloxacin; NAL, nalidixic acid; GEN, gentamicin;  
345 AKA, amikacin; KAN, kanamycin; TOB, tobramycin; CHL, chloramphenicol; TET, tetracycline;  
346 SUL, sulphonamides; TRP trimethoprim; COL, colistin; MDR, multidrug resistance; CuT-silA+,  
347 copper-tolerance *silA* gene.

### 348 3.4 Copper tolerance of *K. pneumoniae* recovered from poultry chain

349 The *silA* gene was observed in 52% (n=51/99) of *K. pneumoniae* isolates from all farms and most  
350 samples (63%, n=15/24), with similar rates between them (p>0,05) (Figure 4). More than 80% of *silA*-  
351 positive isolates were MDR (p<0,05) and were also found to be more resistant to  
352 amoxicillin+clavulanic acid, ciprofloxacin, nalidixic acid, tetracycline, sulphonamides, gentamicin,  
353 and trimethoprim than the *silA* negative ones (p<0,05) (Figure 5). Copper susceptibility assays were  
354 performed in 53% (n=52/99) of *K. pneumoniae* carrying or not copper tolerance genes representative  
355 of different farms, flocks, KL-types, and antibiotic resistance profiles (Supplementary Table S1).  
356 Phenotypic results were congruent with the genotype since all isolates with  $\text{MIC}_{\text{CuSO}_4} \geq 16\text{mM}$  carried  
357 the *silA* gene whereas those with  $\text{MIC}_{\text{CuSO}_4} < 16\text{mM}$  did not (Supplementary Table S1).



358

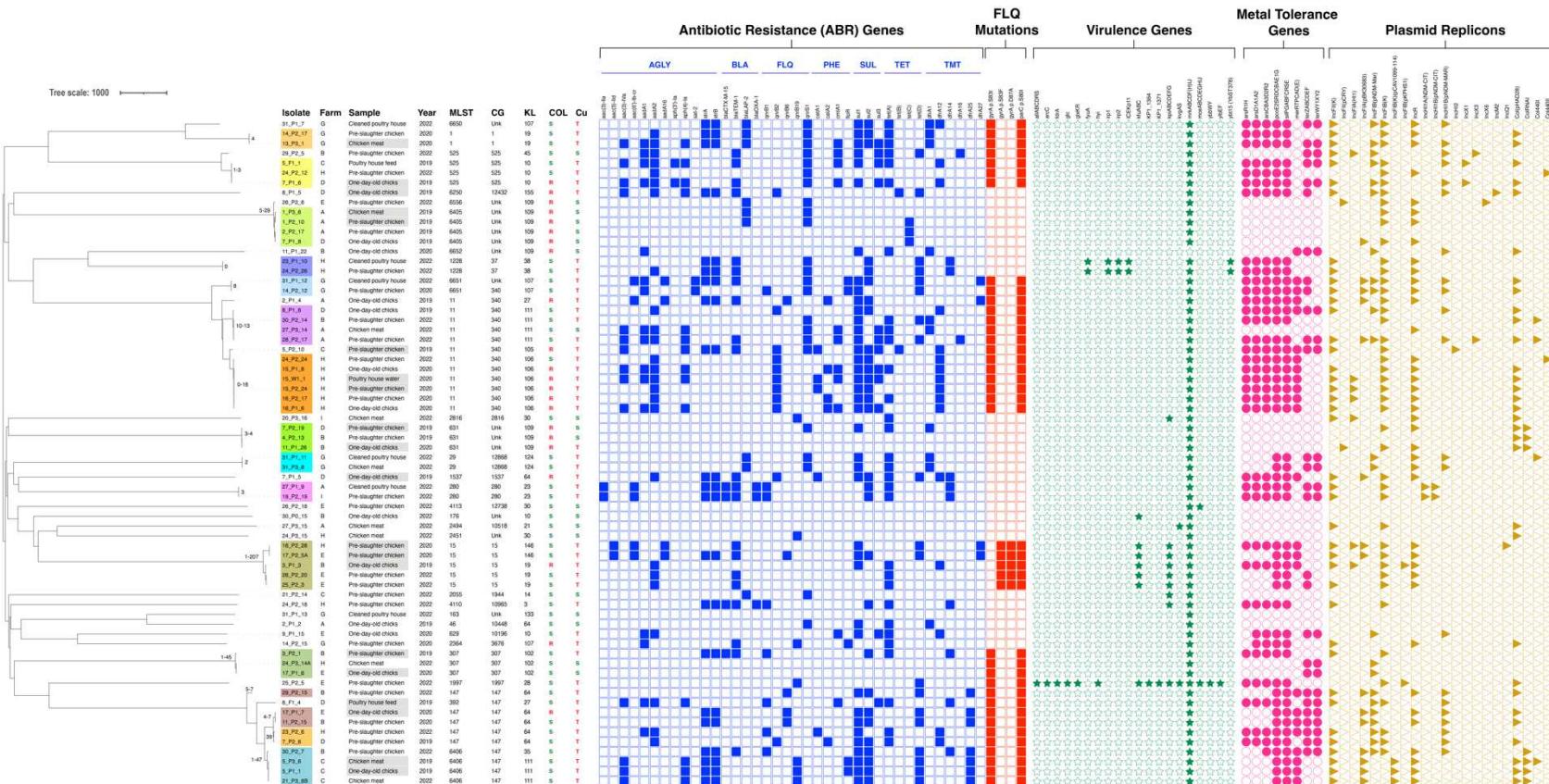
359 **Figure 5.** Percentage of antibiotic resistance detected among *silA*+ (n=51) and *silA*- (n=48) *K.*  
360 *pneumoniae* isolates. \*p<0,05 (Fisher exact test). Abbreviations: AMC, amoxicillin+clavulanic acid;  
361 CAZ, ceftazidime; CTX, cefotaxime; FEP, cefepime; FOX, cefoxitin; ATM, aztreonam; MEM,  
362 meropenem; CIP, ciprofloxacin; NAL, nalidixic acid; GEN, gentamicin; AKA, amikacin; KAN,  
363 kanamycin; TOB, tobramycin; CHL, chloramphenicol; TET, tetracycline; SUL, sulphonamides; TRP  
364 trimethoprim; COL, colistin; MDR, multidrug resistance.

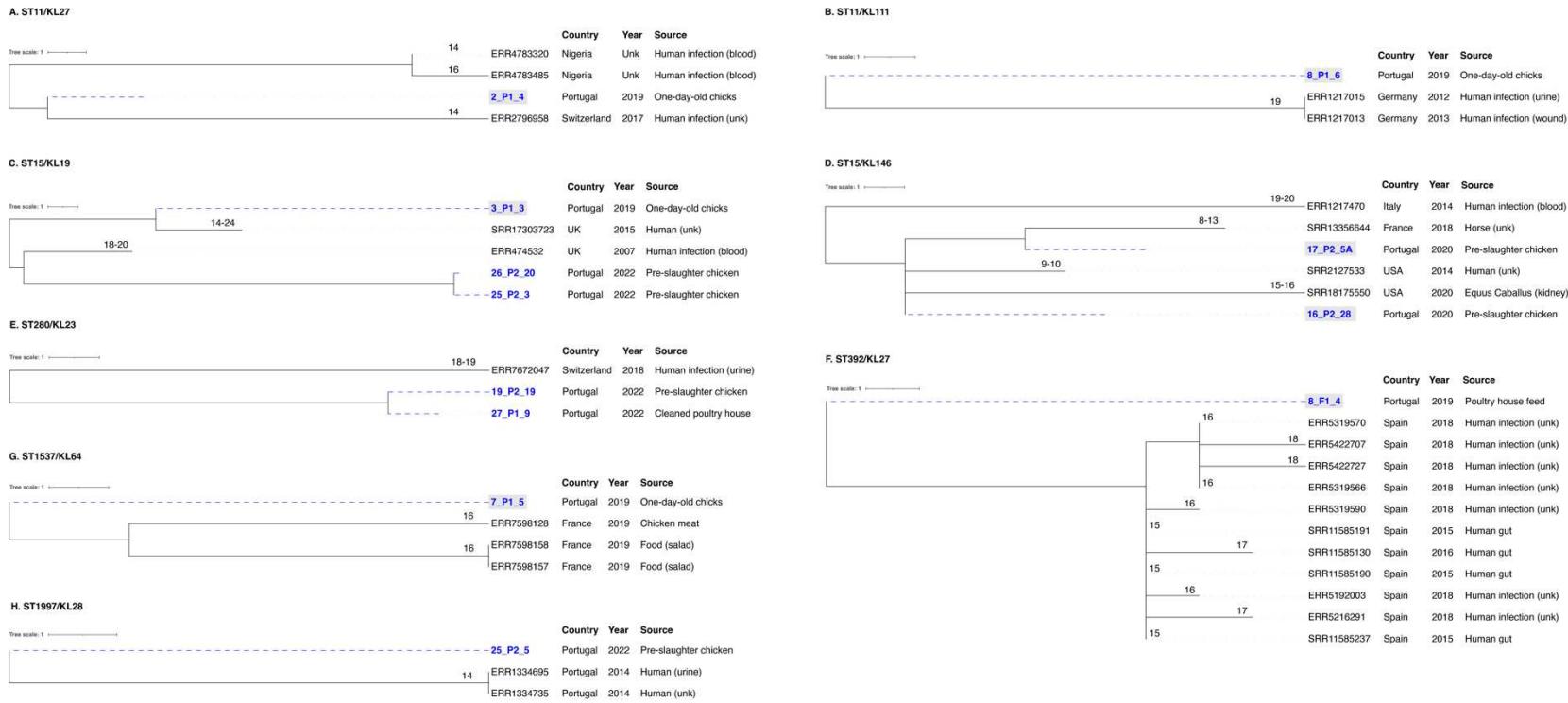
365 **3.5 Benzalkonium chloride tolerance of *K. pneumoniae* recovered from poultry chain**

366 The susceptibility to BZC was determined for 45 *K. pneumoniae* (all carrying genes previously  
367 associated with QAC tolerance), with diverse epidemiological and clonal backgrounds  
368 (**Supplementary Table S2**). The MIC<sub>BZC</sub> ranged between 4-64 mg/L, with MIC<sub>50</sub>=16 mg/L and  
369 MIC<sub>90</sub>=32 mg/L. The highest MIC<sub>BZC</sub> of 64 mg/L [non-wild-type using ECOFF of 32 mg/L proposed  
370 by (Morrissey et al., 2014)] was observed in the ST280-KL23 lineage from a pre-slaughter chicken  
371 sample. Ten QACs' genotypes (19 to 24 genes each) were identified. A variable occurrence of *emrE*  
372 (n=1, 1 ST), *qacF* (n=7, 5 STs), *qacE1* (n=22, 14 STs); *kexD* (n=37, 25 STs); *oqxAB* (n=43, 30 STs)  
373 and *kmrA* (n=44, 30 STs) was found, with the remaining genes detected in 100% of the genomes  
374 (**Figure 6**). However, no differences were observed between MIC distribution and clones, sources,  
375 MDR phenotype or the presence or absence of genes previously associated with QAC tolerance,  
376 including *qac* genes (**Figure 6 and Supplementary Table S2**). The only exception was the ST6552-  
377 KL109 isolate lacking *kmrA*, coding for an efflux pump of the Major Facilitator Superfamily, and  
378 presenting MIC<sub>BZC</sub> of 4 mg/L. The MBC<sub>BZC</sub> for all tested isolates was the same as the MIC<sub>BZC</sub>. *K.*  
379 *pneumoniae* showing the highest MBC<sub>BZC</sub> of 32-64 mg/L comprised isolates from diverse farms,  
380 sources, and clones, including one of the most prevalent in the present study (ST11-KL106, farm H).

| No. isolates (tested) | Farm                   | Source                                                                         | Year           | Clones (ST-KL-type)                                                                                                                                             | MIC range (mg/L) | MBC range (mg/L) | acrA | acrB | cpxA | cpxR | emm3dR | emm3D | emrE | kdeA | kesD | kmrE | kpnF | kpnO | mdtK | mdtM | ocpA | ocpB | phoP | rhoQ | qacE1 | qacF | slgE | tebA | tolC |
|-----------------------|------------------------|--------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------|------|------|------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|
| 8 (5)                 | A, B, C, D, E, G, H    | One-day-old chicks, Feed, Water, Pre-slaughter chicken, Chicken meat           | 2019 2020 2022 | ST1-KL19, ST11-KL106, ST11-KL111, ST525-KL45, ST525-KL10, ST629-KL10                                                                                            | 16-32            | 16-32            |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| 21 (13)               | A, B, C, D, E, G, H    | Cleaned poultry house, Pre-slaughter chicken, One-day-old chicks, Chicken meat | 2019 2020 2022 | ST1-KL19, ST11-KL106, ST11-KL27, ST11-KL111, ST11-KL105, ST29-KL124, ST46-KL64, ST147-KL64, ST6250-KL155, ST6406-KL111, ST6406-KL35, ST6650-KL107, ST6651-KL107 | 16-32            | 16-32            |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| 3 (2)                 | D, H                   | One-day-old chicks, Feed                                                       | 2019 2020      | ST11-KL106, ST392-KL27                                                                                                                                          | 16-32            | 16-32            |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| 21 (13)               | A, B, C, D, E, G, H, I | Cleaned poultry house, One-day-old chicks, Pre-slaughter chicken, Chicken meat | 2019 2020 2022 | ST11-KL106, ST163-KL133, ST280-KL23, ST11-KL102, ST525-KL10, ST1228-KL38, ST1997-KL28, ST2055-KL14, ST2364-KL107, ST2816-KL30, ST4110-KL3, ST6405-KL109         | 8-64             | 8-64             |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| 1 (1)                 | D                      | Pre-slaughter chicken                                                          | 2019           | ST147-KL64                                                                                                                                                      | 32               | 32               |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| 3 (2)                 | B, E, H                | One-day-old chicks, Pre-slaughter chicken                                      | 2019 2020      | ST15-KL146, ST15-KL19                                                                                                                                           | 16-32            | 16-32            |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| 7 (6)                 | A, B, E, H             | One-day-old chicks, Pre-slaughter chicken, Chicken meat                        | 2022           | ST15-KL19, ST176-KL10, ST2451-KL30, ST2494-KL21, ST4113-KL30, ST6556-KL109                                                                                      | 8-32             | 8-32             |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| 2 (1)                 | B                      | One-day-old chicks, Pre-slaughter chicken                                      | 2019 2020      | ST631-KL109                                                                                                                                                     | 16               | 16               |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| 1 (1)                 | D                      | Pre-slaughter chicken                                                          | 2019           | ST631-KL109                                                                                                                                                     | 16               | 16               |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| 1 (1)                 | B                      | One-day-old chicks                                                             | 2020           | ST6652-KL109                                                                                                                                                    | 4                | 4                |      |      |      |      |        |       |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |

381


382 **Figure 6.** Heatmap representing the distribution of QAC tolerance genes across representative  
383 *Klebsiella pneumoniae* isolates (n=45). The presence of a specific QAC tolerance gene is indicated by  
384 a filled blue square.


385 **3.6 Whole-genome analysis of *K. pneumoniae* poultry-associated isolates**

386 The genetic relatedness of *K. pneumoniae* isolates revealed a clonal diverse population from 2019 to  
387 2022 [this collection and (Mourão et al., 2023)]. Overall, the isolates were assigned to 31 STs (7 new  
388 STs) and 37 lineages, including the globally successful ST11-KL106, ST11-KL111, ST15-KL19,  
389 ST147-KL64, ST280-KL23, and ST307-KL102 (**Figure 7** and **Supplementary Table S2**). Based on  
390 the cgMLST analysis and the proposed thresholds (<10 allele differences), 15 clusters (differing by 0-  
391 207 SNPs) were identified among poultry *K. pneumoniae* (**Figure 7** and **Supplementary Table S3**).  
392 Those clusters included isolates from different sample types from the same farm: pre-slaughter chicken  
393 faeces (ST15-KL19), water and chicken (ST11-KL106) pre-slaughter chicken faeces and cleaned  
394 poultry houses (ST1228-KL38; ST6651-KL107), pre-slaughter chicken faeces and derived meat (ST1-  
395 KL19; ST11-KL111; ST6405-KL109), or cleaned poultry-house and chicken meat (ST29-KL124).  
396 Furthermore, some lineages (e.g., ST631-KL109, ST6651-KL107, ST6406-CG147-KL111) were  
397 detected over time (**Figure 7**).

398 To investigate the phylogenetic relationship of our genomes with others, we conducted a thorough  
399 analysis using Pathogenwatch, incorporating diverse sources, regions, and timeframes (**Figure 8**;  
400 **Supplementary Figure S1**). The analysis revealed less than 10 alleles differences in 18 lineages, with  
401 ST11-KL27, ST11-KL111, ST15-KL19, ST15-KL146, ST280-KL23, ST392-KL27, ST1537-KL64  
402 and ST1997-KL28 with fewer than 21 single nucleotide polymorphisms (SNPs) (a threshold recently  
403 proposed for *K. pneumoniae* transmission in healthcare settings) (David et al., 2019) when compared  
404 to genomes from various sources (**Figure 8**). Most were linked to genomes from human infections in  
405 diverse EU countries, including Portugal (ST1997-KL28) (**Figure 8**).

407 **Figure 7.** A neighbour-joining tree representing the phylogenetic relationships among the 68 *K. pneumoniae* genomes recovered between  
 408 2019-2022 was constructed from the Pathogenwatch pairwise-distance matrix [i.e., based on single nucleotide polymorphisms (SNPs) called  
 409 in 1972 core genes]. Scale bar units represent substitutions per variant site. The SNPs among our isolates from the 15 main clusters (< 10  
 410 alleles difference) are represented in each branch. The isolates exhibiting grey shading correspond to the ones already published by (Mourão  
 411 et al., 2023). The associated metadata for all isolates was added using iTOL (<https://itol.embl.de/>). Each coloured-filled shape represents the  
 412 presence of relevant antibiotic resistance, virulence-associated, metal-tolerance genes, and plasmid replicons associated with well-defined  
 413 incompatibility groups. Only known mutations conferring fluoroquinolone resistance are presented. *Klebsiella* intrinsic antibiotic resistance  
 414 (*bla*<sub>SHV-1</sub>, *bla*<sub>SHV-11</sub>, *bla*<sub>SHV-26</sub>, *bla*<sub>SHV-27</sub>, *bla*<sub>SHV-28</sub>, *bla*<sub>SHV-38</sub>, *bla*<sub>SHV-142</sub>, *bla*<sub>SHV-187</sub>, *fosA*, *oxqAB*) and metal tolerance (*arsBCR*, *cusABFCRS*)  
 415 genes were not represented. Abbreviations: AGLY, aminoglycosides; BLA,  $\beta$ -lactams; CG, Clonal Group; FLQ, fluoroquinolones; KL, K-  
 416 Locus; MLST, Multilocus Sequence Typing; PHE, phenicols; SUL, sulphonamides; TET, tetracycline; TMT, trimethoprim; Unk, unknown.





417

418 **Figure 8.** Neighbour-joining trees representing the phylogenetic relationships among the 68 *K. pneumoniae* genomes recovered between 2019-  
419 2022 and those available in Pathogenwatch with less than 21 SNPs. **(A)** ST11-KL27, **(B)** ST11-KL111, **(C)** ST15-KL19, **(D)** ST15-KL146,  
420 **(E)** ST392-KL27, **(F)** ST1537-KL64, **(G)** ST280-KL23, and **(H)** ST1997-KL28. The genome selection was performed using the cgMLST  
421 single linkage clustering to include the ones with less than 10 allele differences (threshold=10)\*. Then these genomes were used to infer a  
422 neighbour-joining tree from the Pathogenwatch pairwise-distance matrix (i.e., based on single nucleotide polymorphisms-SNPs called in 1972  
423 core genes). Scale bar units represent substitutions per variant site. The number of substitutions between our isolates and the ones available in  
424 Pathogenwatch are represented in each branch. All isolates' associated metadata (country, collection date, and source of isolation) was added  
425 using iTOL (<https://itol.embl.de/>). \**K. pneumoniae* isolates from clonal lineages with <10 allele differences include: 2019-2020 collection -  
426 ST1-KL19, ST11-KL105, ST11-KL106, ST11-KL27, ST11-KL111, ST15-KL19, ST15-KL146, ST147-KL64, ST307-KL102, ST392-KL27,  
427 ST1537-KL64, and ST6250-KL155 (1); 2022 collection - ST11-KL106, ST11-KL111, ST15-KL19, ST147-KL64, ST280-KL23, ST307-  
428 KL102, ST525-KL45, ST1228-KL38, ST2055-KL14, ST1997-KL28, ST4110-KL3. The isolates exhibiting grey shading correspond to the  
429 ones already published by (Mourão et al., 2023).

430 The WGS revealed a high load and diversity in antibiotic resistance genes between 2019-2022 (**Figure**  
431 **7** and **Supplementary Table S2**). Thirty-eight acquired genes (7 classes) were detected, including  
432 clinically-relevant ones (*bla*<sub>CTX-M-15</sub>, *qnrB* and *qnrS*). More than 75% (n=51/68) of the genomes carried  
433 genes coding for  $\geq 3$  classes of antibiotics, with the most frequent including aminoglycosides  
434 (*strA*/*strB*/*aadA*), sulphonamides (*sul1*/*sul2*), tetracyclines (*tet(A)*/*tet(D)*), trimethoprim (*dfrA*) and  
435 phenicols (*catA*, *cmlA*) (**Figure 7** and **Supplementary Table S2**). The most frequent determinant of  
436 resistance to ciprofloxacin was the presence of chromosomal mutations in the topoisomerase genes  
437 *gyrA* and *parC* (59%-n=40/68) over 2019-2022. The *ParC* S80I mutation was present in all genomes,  
438 independently of the clonal lineage. The single *GyrA* S83I mutation was observed in all genomes  
439 except for ST15, which had two others simultaneous *gyrA* mutations (S83F and D87A). Furthermore,  
440 we noticed a decrease in isolates carrying chromosomal mutations implicated in colistin resistance  
441 between 2019-2020 (12 lineages) and 2022 (1 lineage ST6556/KL109) (**Figure 7** and **Supplementary**  
442 **Table S1**). Concerning the virulence genes, all but one isolate carried the chromosomally encoded  
443 fimbriae cluster (*mrkABCDFHIJ*). The worldwide-disseminated high-risk clone ST15 isolates carried  
444 the ferric uptake (*kfuABC*) and the chaperone-usher pili systems (*kpiABCDEFG*) whereas ST1228  
445 isolates the yersiniabactin siderophore (*ybt15-YbST378/ICEKp11*) in addition to the genes encoding  
446 for proteins required for yersiniabactin (*irp1*, *irp2*) and siderophores (*fyuA* gene) (**Figure 7**).

#### 447 3.7 Whole-genome analysis of metal tolerance gene's occurrence and location

448 Metal tolerance genes were observed in most (75%, n=51/68) isolates, specifically copper/silver  
449 (*sil*/*pco*), arsenic (*ars*), mercury (*mer*), and/or tellurite (*ter*) (**Figure 7**). Notably, the most frequent *sil*  
450 and *pco* cluster (69%, n=47/68) was frequently found alongside the *ars* (77%, n=36/47), *ter* (51%,  
451 n=24/47) and/or *mer* (49%, n=23/47) operons. We detected, on average, four plasmids per genome  
452 (ranging from 1 to 10) and 25 distinct plasmid incompatibility groups (with 1-8 replicon types per  
453 genome) (**Supplementary Table S2**). The most prevalent groups were *IncFIB<sub>K</sub>* (65%, n=44/68),  
454 followed by *IncFII<sub>K</sub>* (59%, n=40/68), and *IncR* (56%, n=38/68), often in different combinations with  
455 *FIA*, other *FIB* types (such as *FIB<sub>pNDM-MAR</sub>*, *FIB<sub>pCAV1099</sub>*, *FIB<sub>pKPHS1</sub>*), and/or *HI1B* (**Figure 7** and  
456 **Supplementary Table S2**). Col plasmids were also frequently observed (54%, n=37/68 genomes),  
457 whereas other classical incompatibility groups (*IncHI2*, *IncX*, *IncQ*, *IncM*) were infrequent.

458 Copper tolerance genes *sil* and *pco* were plasmid located in all but one isolate (98%-n=46/47) primarily  
459 within *IncFIB<sub>K</sub>*+*IncFII<sub>K</sub>* plasmids (51%, n=24/47, approximately 80-350 Kb) of different *IncFII<sub>K</sub>*  
460 groups based on pMLST (2, 4, 5, 7, 8, 21-like). Additionally, copper tolerance genes were co-localized  
461 with variable genes coding for resistance to aminoglycosides (*aac(3)-IIa*, *aac(3)-Iva*, *aac(6')-Ib-cr*,  
462 *aph(4)-Ia*, *aadA1*, *aadA2*, *aadA16*, *strA*-*strB*), fluoroquinolones (*qnrB1*, *qnrB2*, *qnrB6*, *qnrS1*),  
463 chloramphenicol (*catA1*, *catA2*, *cmlA1*), sulphonamides (*sul1*, *sul2*, *sul3*), tetracycline (*tetA*, *tetD*),  
464 trimethoprim (*dfrA12*, *dfrA14*, *dfrA25*, *dfrA27*) and  $\beta$ -lactams (*bla*<sub>TEM</sub>, *bla*<sub>CTX-M-15</sub>, *bla*<sub>OXA-1</sub>) (**Figure**  
465 **7** and **Supplementary Table S4**). Co-location with *qac* tolerance genes (*qacEΔ1* and/or *qacE*, *qacF*)  
466 was also observed in six isolates. These plasmids carrying *sil* and *pco* were like others described in  
467 humans across multiple countries (**Supplementary Table S4**), occasionally harbouring *bla*<sub>CTX-M-15</sub>,  
468 *bla*<sub>DHA-1</sub>, *bla*<sub>NDM-1</sub>, *bla*<sub>OXA-1</sub>, *bla*<sub>SHV-30</sub>, and/or *qnr* genes.

#### 469 4 Discussion

470 This is a distinctive study that explores *K. pneumoniae* occurrence and diversity throughout the entire  
471 chicken farm-to-fork chain from a long-term perspective. It is also one of the few studies that offer  
472 evidence that poultry serves as a reservoir and source of *K. pneumoniae* strains with clinically relevant  
473 features, including genes coding for antibiotic resistance, metals, and/or biocide tolerance, while the

474 identification of clones identical to those in clinical settings further supports *K. pneumoniae* as a  
475 foodborne pathogen.

476 Our data strongly emphasize that intensively farmed chicken production and their meat are relevant  
477 sources of *K. pneumoniae* and antibiotic-resistant isolates. This remains true even after EU veterinary  
478 antimicrobial sales decreased by 46.5% between 2011 and 2021 (European Medicines Agency, 2022).  
479 During the studied period [this study and (Mourão et al., 2023)], resistance remained high to antibiotics  
480 commonly used in poultry, such as tetracycline, sulphonamides, and/or quinolones (Alliance to Save  
481 our Antibiotics, 2016; Gržinić et al., 2023). However, resistance to colistin, a critically important  
482 antibiotic for treating human infections caused by Gram-negative MDR strains, has significantly  
483 decreased from 61% in 2019-2020 samples to 4% in 2022. This reduction suggests that the efforts of  
484 the long-term ban on colistin use in food-animal production (>4 years) have yielded promising results  
485 not only by limiting *mcr* (Ribeiro et al., 2021) but also other colistin-resistance genotypes (Mourão et  
486 al., 2023).

487 In conventional chicken production farms, diverse antimicrobial treatments are commonly  
488 administered throughout the fattening period, with differences by country and region (Joosten et al.,  
489 2019; Kasabova et al., 2021). In this study, all but one flock received antibiotics during the 26-43 days  
490 production cycle, which may explain the higher occurrence of MDR *K. pneumoniae* in pre-slaughter  
491 chickens compared to samples from previous stages. Furthermore, the contribution of poultry house  
492 management practices like inadequate disinfection or short vacancy periods between flocks, cannot be  
493 excluded (Daehre et al., 2018; Zhai et al., 2020; Franklin-Alming et al., 2021; Kaspersen et al., 2023).  
494 Even with standard cleaning and disinfection protocols across all the studied farms, a wide variety of  
495 *K. pneumoniae* strains, including MDR and clinically relevant lineages, can persist within the farm  
496 environment and/or until the meat becomes available to consumers. We found closely related MDR *K.*  
497 *pneumoniae* isolates in both cleaned poultry houses and pre-slaughter chickens (ST1228-KL38, ST29-  
498 KL24, ST280-KL23) from the same or different flocks or farms. The idea that strains re-introduction  
499 might come from parent flocks seems less likely since we observed minimal contamination (1 flock)  
500 during the reception of one-day-old chickens. This study also highlights water and feed as sources of  
501 MDR *K. pneumoniae* lineages (ST525-KL10, ST11-KL106), but at lower rates than chicken faeces, as  
502 observed in (Mourão et al., 2023). Noteworthy, some *K. pneumoniae* lineages (such as ST1-KL19,  
503 ST11-KL111, ST6405-KL109, and ST6406-CG147-KL111) persist throughout the chickens' lifecycle  
504 until their meat becomes available to consumers. Additionally, cross-contamination at slaughterhouses  
505 is also plausible given the identification of *K. pneumoniae* lineages in chicken meat samples that were  
506 not traced back to their originating farm. The higher contamination compared with the previous study  
507 (43-50% vs 17%) and the diversity of *K. pneumoniae* strains (Mourão et al., 2023), might be attributed  
508 to the cultural methodology employed (antibiotic-free selection using SCAi medium with and without  
509 BPW enrichment). This approach was specifically designed to enhance the investigation of the inherent  
510 *K. pneumoniae* populations, as previously reported (Rodrigues et al., 2022). FT-IR proved to be a  
511 reliable approach to assessing the clonal relationship between *K. pneumoniae* isolates from poultry  
512 origin, being able to correctly identify closely related isolates (representing 70% of the sample) and  
513 KL-types (78% predicted by the machine-learning models) and discard unrelated isolates or KL-types  
514 not represented by the models used, as happened for isolates from human origin (Novais et al., 2023a).  
515 The use of this technique represented a useful tool to quickly identify common isolates from the same  
516 or different samples and choose representative isolates to sequence by WGS, reducing the cost and  
517 time associated with typing.

518 In our comparative genomic analysis using WGS, we identified closely related MDR *K. pneumoniae*  
519 lineages such as ST15-KL19, ST11-KL111, ST280-KL23, and ST1997-KL28 shared between poultry

520 and human clinical isolates, even when applying strict criteria of less than 21 SNPs (David et al., 2019).  
521 Additionally, certain poultry strains shared a substantial repertoire of accessory genes, including  
522 fluoroquinolone resistance mutations and/or virulence genes with clinically relevant human clones  
523 (e.g., ST15, ST147, ST307) identified in previous studies (Peirano et al., 2020; Rodrigues et al., 2022,  
524 2023). This data strengthens the argument for the possible transmission of these strains from food  
525 animals to humans (Büdel et al., 2020; Rodrigues et al., 2022; Thorpe et al., 2022; Crippa et al., 2023;  
526 Kaspersen et al., 2023; Zou et al., 2023), solidifying poultry's position as both a reservoir and source  
527 of globally dispersed, clinically relevant *K. pneumoniae* lineages (Mourão et al., 2023).

528 The persistence of MDR *K. pneumoniae* lineages within the poultry chain [this study, (Kaspersen et  
529 al., 2023; Mourão et al., 2023)], suggests the presence of adaptive environmental factors beyond  
530 antibiotic resistance. We observed elevated rates of *K. pneumoniae* carrying *sil* and *pco* operons, along  
531 with a copper tolerance phenotype ( $>16$  mM) in poultry samples. This suggests that the incorporation  
532 of copper-supplemented chicken feed might contribute to the selection of copper-tolerant and MDR  
533 strains within such production environments. However, earlier research, whether grounded in wet lab  
534 experiments or mathematical models, has indicated that the concentrations of copper necessary to foster  
535 the emergence of copper-tolerant bacteria might be significantly below their corresponding MIC values  
536 (Gullberg et al., 2014; Arya et al., 2021). Furthermore, the coexistence of various pollutants appears to  
537 further lower the minimum selective concentration estimates for individual antimicrobials (Gullberg et  
538 al., 2014; Arya et al., 2021). The *sil* and *pco* operons are often located on plasmids that carry an array  
539 of other metal, *qac*, metabolic, and/or specific antibiotic resistance genes, fostering their persistence  
540 within the environment through co-selection events driven by antimicrobial usage, coupled with the  
541 frequent presence of mechanisms that prevent plasmid loss.

542 This study also reveals a high abundance of QACs tolerance genes in *K. pneumoniae* lineages, although  
543 they do not appear to correlate with phenotype, as observed in other studies regardless of testing  
544 methods (Abuzaid et al., 2012; Morrissey et al., 2014; Wu et al., 2015; Vijayakumar et al., 2018; Gual-  
545 de-Torrella et al., 2022). Nevertheless, our WGS approach identified a wide range of QAC tolerance  
546 genes, underscoring the pressing need for establishing reliable genotypic-phenotypic correlations to  
547 elucidate QAC tolerance mechanisms (Hipólito et al., 2023). While several studies have reported that  
548 bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BZC concentration  
549 (Vijayakumar et al., 2018; Maillard, 2022), it is essential to comprehend the environmental factors  
550 (e.g., temperature, pH) associated with the expression of these genes (Gual-de-Torrella et al., 2022;  
551 Pereira et al., 2023) to clarify the environmental, clinical, or veterinary/industrial implications of  
552 bacteria with a reduced biocide susceptibility. Further studies are needed to investigate the impact of  
553 inappropriate biocide usage or low concentrations, which can act as stressors without killing bacterial  
554 pathogens, potentially promoting antimicrobial resistance, and facilitating the transfer of antimicrobial  
555 resistance genes (Maillard, 2022; Maillard and Pascoe, 2023).

## 556 5 Conclusions

557 Our study reveals chicken production as a significant reservoir hosting a diverse range of clinically  
558 relevant *K. pneumoniae* clones, including MDR, copper-tolerant and enriched in QAC tolerance genes.  
559 The identification of clones identical to those in clinical settings supports *K. pneumoniae* as a  
560 foodborne pathogen. Various sources of contamination (such as feed, water, poultry houses, and cross-  
561 contamination) contribute to the persistence of *K. pneumoniae* throughout the production chain,  
562 emphasizing that, despite a decrease in its occurrence, certain clones still reach chicken meat even with  
563 implemented safety measures in place.

564 The co-occurrence of copper and/or QAC tolerance genes on highly prevalent MDR plasmids suggests  
565 that these have been circulating in various *K. pneumoniae* populations and phenotypic validation (at  
566 least in the case of copper) supports the possibility that these genes may play a role in the co-selection  
567 of these plasmids or strains under certain conditions within the food production chain or other  
568 environmental settings.

569 Further studies are needed to assess the implications of these *K. pneumoniae* lineages on food safety  
570 and the risk of transmitting antibiotic resistance to humans. Additional studies are imperative to  
571 elucidate the external factors (such as environmental conditions) that drive *K. pneumoniae*'s adaptation  
572 towards antimicrobial resistance. Addressing these complexities can contribute to the development of  
573 effective strategies to safeguard animal welfare, enhance food safety, and mitigate public health risks  
574 associated with clinically-relevant *K. pneumoniae* lineages and antibiotic resistance.

## 575 6 Conflict of Interest

576 *The authors declare that the research was conducted in the absence of any commercial or financial  
577 relationships that could be construed as a potential conflict of interest.*

## 578 7 Ethics statement

579 Ethical review and approval were not required because the samples were taken from farm  
580 environmental points (e.g., boxes, floor) as well as after routine slaughter, under the auspices of the  
581 poultry farm company, which includes oversight by the veterinary team.

## 582 8 Author Contributions

583 **Joana Mourão:** Writing – original draft, Writing – review & editing, Data Curation, Formal Analysis,  
584 Investigation, Methodology, Software, Visualization; **Mafalda Magalhães:** Writing – review &  
585 editing, Investigation, Methodology; **Marisa Ribeiro-Almeida:** Writing – review & editing, Formal  
586 Analysis, Investigation, Methodology; **Andreia Rebelo:** Writing – review & editing, Investigation,  
587 Visualization; **Carla Novais:** Writing – review & editing, Conceptualization, Formal Analysis,  
588 Funding acquisition, Investigation; **Luisa Peixe:** Writing – review & editing, Funding acquisition;  
589 **Ângela Novais:** Writing – review & editing, Conceptualization, Formal Analysis, Methodology;  
590 **Patrícia Antunes:** Writing – original draft, Writing – review & editing, Conceptualization, Formal  
591 Analysis, Funding acquisition, Investigation, Methodology, Project administration, Software,  
592 Supervision.

## 593 9 Funding

594 This work was supported by the Applied Molecular Biosciences Unit - UCIBIO which is financed by  
595 national funds from FCT - Fundação para a Ciência e a Tecnologia [UIDP/04378/2020 and  
596 UIDB/04378/2020], by the Associate Laboratory Institute for Health and Bioeconomy-i4HB  
597 [LA/P/0140/2020], by the AgriFood XXI I&D&I project [NORTE-01-0145-FEDER-000041] co-  
598 financed by the European Regional Development Fund (ERDF) through NORTE 2020 (Programa  
599 Operacional Regional do Norte 2014/2020) and by the University of Porto and Soja de Portugal [Grant  
600 N° IJUP-Empresas-2021-14]. Joana Mourão and Ângela Novais were supported by national funds  
601 through FCT/MCTES in the context of the Scientific Employment Stimulus (2021.03416.CECIND  
602 and 2021.02252.CECIND, respectively). Marisa Ribeiro-Almeida and Andreia Rebelo were

603 supported by PhD fellowships from FCT (SFRH/BD/146405/2019 and SFRH/BD/137100/2018,  
604 respectively). The authors are greatly indebted to all the financing sources.

605 **10 Acknowledgements**

606 We thank the Institut Pasteur teams for the curation and maintenance of BIGSdb-Pasteur databases at  
607 <http://bigsdb.pasteur.fr/>. We also thank MSc Sofia Ribeiro for the Figure 1 design, the students António  
608 Magalhães (FCNAUP), Francisca Pereira (FCNAUP), and Cátia Matos (FFUP) for technical support,  
609 and the staff of the participating farms and slaughterhouses for their kind cooperation.

610 **11 References**

- 611 Abuzaid, A., Hamouda, A., and Amyes, S. G. B. (2012). *Klebsiella pneumoniae* susceptibility to  
612 biocides and its association with *cepA*, *qacA**E* and *qacE* efflux pump genes and antibiotic  
613 resistance. *J. Hosp. Infect.* 81, 87–91. doi: 10.1016/j.jhin.2012.03.003.
- 614 ADAS (2016). Comparison of the Regulatory Framework and Key Practices in the Poultry Meat  
615 Supply Chain in the EU and USA. Association of Poultry Processors and Poultry Trade in the  
616 EU Countries Available at: [https://britishpoultry.org.uk/identity-cms/wp-  
617 content/uploads/2018/05/2016-ADAS-EU-US-comparison.pdf](https://britishpoultry.org.uk/identity-cms/wp-content/uploads/2018/05/2016-ADAS-EU-US-comparison.pdf).
- 618 Alliance to Save our Antibiotics (2016). Antibiotic use in the UK poultry sector. Available at:  
619 <https://www.saveourantibiotics.org/media/1763/antibiotic-use-in-the-uk-poultry-sector.pdf>.
- 620 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.
- 621 Argimón, S., David, S., Underwood, A., Abrudan, M., Wheeler, N. E., Kekre, M., et al. (2021). Rapid  
622 Genomic Characterization and Global Surveillance of *Klebsiella* Using Pathogenwatch. *Clin.  
623 Infect. Dis.* 73, S325–S335. doi: 10.1093/cid/ciab784.
- 624 Arya, S., Williams, A., Reina, S. V., Knapp, C. W., Kreft, J.-U., Hobman, J. L., et al. (2021). Towards  
625 a general model for predicting minimal metal concentrations co-selecting for antibiotic  
626 resistance plasmids. *Environ. Pollut.* 275, 116602. doi: 10.1016/j.envpol.2021.116602.
- 627 Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., et al. (2008). The RAST  
628 Server: Rapid Annotations using Subsystems Technology. *BMC Genomics* 9, 75. doi:  
629 10.1186/1471-2164-9-75.
- 630 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012).  
631 SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing.  
632 *J. Comput. Biol.* 19, 455–477. doi: 10.1089/cmb.2012.0021.
- 633 Bialek-Davenet, S., Criscuolo, A., Ailloud, F., Passet, V., Nicolas-Chanoine, M.-H., Decré, D., et al.  
634 (2014). Development of a multiplex PCR assay for identification of *Klebsiella pneumoniae*  
635 hypervirulent clones of capsular serotype K2. *J. Med. Microbiol.* 63, 1608–1614. doi:  
636 10.1099/jmm.0.081448-0.
- 637 Borowiak, M., Baumann, B., Fischer, J., Thomas, K., Deneke, C., Hammerl, J. A., et al. (2020).  
638 Development of a Novel *mcr-6* to *mcr-9* Multiplex PCR and Assessment of *mcr-1* to *mcr-9*  
639 Occurrence in Colistin-Resistant *Salmonella enterica* Isolates From Environment, Feed,

- 640 Animals and Food (2011–2018) in Germany. *Front. Microbiol.* 11, 80. doi:  
641 10.3389/fmicb.2020.00080.

642 Brisse, S., Passet, V., Haugaard, A. B., Babosan, A., Kassis-Chikhani, N., Struve, C., et al. (2013). *wzi*  
643 Gene Sequencing, a Rapid Method for Determination of Capsular Type for *Klebsiella* Strains.  
644 *J. Clin. Microbiol.* 51, 4073–4078. doi: 10.1128/JCM.01924-13.

645 Broom, L. J., Monteiro, A., and Piñon, A. (2021). Recent Advances in Understanding the Influence of  
646 Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry.  
647 *Animals* 11, 1276. doi: 10.3390/ani11051276.

648 Büdel, T., Kuenzli, E., Campos-Madueno, E. I., Mohammed, A. H., Hassan, N. K., Zinsstag, J., et al.  
649 (2020). On the island of Zanzibar people in the community are frequently colonized with the  
650 same MDR Enterobacterales found in poultry and retailed chicken meat. *J. Antimicrob.*  
651 *Chemother.* 75, 2432–2441. doi: 10.1093/jac/dkaa198.

652 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009).  
653 BLAST+: architecture and applications. *BMC Bioinformatics* 10, 421. doi: 10.1186/1471-  
654 2105-10-421.

655 Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa, L., et al. (2014).  
656 *In Silico* Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus  
657 Sequence Typing. *Antimicrob. Agents Chemother.* 58, 3895–3903. doi: 10.1128/AAC.02412-  
658 14.

659 Chen, S., Fu, J., Zhao, K., Yang, S., Li, C., Penttinen, P., et al. (2023). Class 1 integron carrying *qacEΔ1*  
660 gene confers resistance to disinfectant and antibiotics in *Salmonella*. *Int. J. Food Microbiol.*  
661 404, 110319. doi: 10.1016/j.ijfoodmicro.2023.110319.

662 Clinical and Laboratory Standards Institute (1999). Methods for Determining Bactericidal Activity of  
663 Antimicrobial Agents, CLSI Document M26-A. Wayne, PA: CLSI.

664 Clinical and Laboratory Standards Institute (2018). Methods for Dilution Antimicrobial Susceptibility  
665 Tests for Bacteria That Grow Aerobically, 11th ed. CLSI Document M07. Wayne, PA: CLSI.

666 Clinical and Laboratory Standards Institute (2022). Performance standards for antimicrobial  
667 susceptibility testing, 32nd ed. CLSI Document M100. Wayne, PA: CLSI.

668 Crippa, C., Pasquali, F., Rodrigues, C., De Cesare, A., Lucchi, A., Gambi, L., et al. (2023). Genomic  
669 features of *Klebsiella* isolates from artisanal ready-to-eat food production facilities. *Sci. Rep.*  
670 13, 10957. doi: 10.1038/s41598-023-37821-7.

671 Daehre, K., Projahn, M., Friese, A., Semmler, T., Guenther, S., and Roesler, U. H. (2018). ESBL-  
672 Producing *Klebsiella pneumoniae* in the Broiler Production Chain and the First Description of  
673 ST3128. *Front. Microbiol.* 9, 2302. doi: 10.3389/fmicb.2018.02302.

674 David, S., Reuter, S., Harris, S. R., Glasner, C., Feltwell, T., Argimon, S., et al. (2019). Epidemic of  
675 carbapenem-resistant *Klebsiella pneumoniae* in Europe is driven by nosocomial spread. *Nat.*  
676 *Microbiol.* 4, 1919–1929. doi: 10.1038/s41564-019-0492-8.

- 677 Diancourt, L., Passet, V., Verhoef, J., Grimont, P. A. D., and Brisson, S. (2005). Multilocus Sequence  
678 Typing of *Klebsiella pneumoniae* Nosocomial Isolates. *J. Clin. Microbiol.* 43, 4178–4182. doi:  
679 10.1128/JCM.43.8.4178-4182.2005.
- 680 El Sabry, M. I., Stino, F. K. R., and El-Ghany, W. A. A. (2021). Copper: benefits and risks for poultry,  
681 livestock, and fish production. *Trop. Anim. Health Prod.* 53, 487. doi: 10.1007/s11250-021-  
682 02915-9.
- 683 EMA Committee for Medicinal Products for Veterinary Use (CVMP) and EFSA Panel on Biological  
684 Hazards (BIOHAZ), Murphy, D., Ricci, A., Auce, Z., Beechinor, J. G., Bergendahl, H., et al.  
685 (2017). EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use  
686 antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on  
687 food safety (RONAFA). *EFSA J.* 15. doi: 10.2903/j.efsa.2017.4666.
- 688 European Committee for Antimicrobial Susceptibility Testing (2016). Recommendations for MIC  
689 determination of colistin (polymyxin E)—as recommended by the joint CLSI-EUCAST  
690 Polymyxin Breakpoints Working Group. Available at:  
691 [https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST\\_files/General\\_documents/Recommendations\\_for\\_MIC\\_determination\\_of\\_colistin\\_March\\_2016.pdf](https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf).
- 693 European Committee on Antimicrobial Susceptibility Testing (2022). Breakpoint tables for  
694 interpretation of MICs and zone diameters, version 12.0. Available at:  
695 [https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST\\_files/Breakpoint\\_tables/v\\_12.0\\_Breakpoint\\_Tables.pdf](https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf).
- 697 European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control  
698 (ECDC) (2023). The European Union Summary Report on Antimicrobial Resistance in  
699 zoonotic and indicator bacteria from humans, animals and food in 2020/2021. *EFSA J.* 21. doi:  
700 10.2903/j.efsa.2023.7867.
- 701 European Medicines Agency (2022). Sales of veterinary antimicrobial agents in 31 European countries  
702 in 2021: trends from 2010 to 2021: twelfth ESVAC report. LU: Publications Office Available  
703 at: <https://data.europa.eu/doi/10.2809/39517> [Accessed October 11, 2023].
- 704 Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize analysis results for  
705 multiple tools and samples in a single report. *Bioinformatics* 32, 3047–3048. doi:  
706 10.1093/bioinformatics/btw354.
- 707 Feldgarden, M., Brover, V., Gonzalez-Escalona, N., Frye, J. G., Haendiges, J., Haft, D. H., et al. (2021).  
708 AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links  
709 among antimicrobial resistance, stress response, and virulence. *Sci. Rep.* 11, 12728. doi:  
710 10.1038/s41598-021-91456-0.
- 711 Franklin-Alming, F. V., Kaspersen, H., Hetland, M. A. K., Bakksjø, R.-J., Nesse, L. L., Leangapichart,  
712 T., et al. (2021). Exploring *Klebsiella pneumoniae* in Healthy Poultry Reveals High Genetic  
713 Diversity, Good Biofilm-Forming Abilities and Higher Prevalence in Turkeys Than Broilers.  
714 *Front. Microbiol.* 12, 725414. doi: 10.3389/fmicb.2021.725414.
- 715 Gato, E., Vázquez-Ucha, J. C., Rumbo-Feal, S., Álvarez-Fraga, L., Vallejo, J. A., Martínez-Gutián,  
716 M., et al. (2020). Kpi, a chaperone-usher pilus system associated with the worldwide-

- 717 disseminated high-risk clone *Klebsiella pneumoniae* ST-15. *Proc. Natl. Acad. Sci.* 117, 17249–  
718 17259. doi: 10.1073/pnas.1921393117.
- 719 Golden, C. E., Rothrock, M. J., and Mishra, A. (2021). Mapping foodborne pathogen contamination  
720 throughout the conventional and alternative poultry supply chains. *Poult. Sci.* 100, 101157. doi:  
721 10.1016/j.psj.2021.101157.
- 722 Gržinić, G., Piotrowicz-Cieślak, A., Klimkowicz-Pawlas, A., Górný, R. L., Ławniczek-Wałczyk, A.,  
723 Piechowicz, L., et al. (2023). Intensive poultry farming: A review of the impact on the  
724 environment and human health. *Sci. Total Environ.* 858, 160014. doi:  
725 10.1016/j.scitotenv.2022.160014.
- 726 Gual-de-Torrella, A., Delgado-Valverde, M., Pérez-Palacios, P., Oteo-Iglesias, J., Pascual, Á., and  
727 Fernández-Cuenca, F. (2022). In vitro activity of six biocides against carbapenemase-producing  
728 *Klebsiella pneumoniae* and presence of genes encoding efflux pumps. *Enfermedades Infect.*  
729 *Microbiol. Clínica* 40, 371–376. doi: 10.1016/j.eimc.2021.05.004.
- 730 Gullberg, E., Albrecht, L. M., Karlsson, C., Sandegren, L., and Andersson, D. I. (2014). Selection of a  
731 Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals. *mBio* 5,  
732 e01918-14. doi: 10.1128/mBio.01918-14.
- 733 Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality assessment tool for  
734 genome assemblies. *Bioinformatics* 29, 1072–1075. doi: 10.1093/bioinformatics/btt086.
- 735 Hipólito, A., García-Pastor, L., Vergara, E., Jové, T., and Escudero, J. A. (2023). Profile and resistance  
736 levels of 136 integron resistance genes. *Npj Antimicrob. Resist.* 1, 13. doi: 10.1038/s44259-  
737 023-00014-3.
- 738 Joosten, P., Sarrazin, S., Van Gompel, L., Luiken, R. E. C., Mevius, D. J., Wagenaar, J. A., et al.  
739 (2019). Quantitative and qualitative analysis of antimicrobial usage at farm and flock level on  
740 181 broiler farms in nine European countries. *J. Antimicrob. Chemother.* 74, 798–806. doi:  
741 10.1093/jac/dky498.
- 742 Kampf, G. (2018). Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-  
743 Negative Species. *Antibiotics* 7, 110. doi: 10.3390/antibiotics7040110.
- 744 Karcher, D. M., and Mench, J. A. (2018). “Overview of commercial poultry production systems and  
745 their main welfare challenges,” in *Advances in Poultry Welfare* (Elsevier), 3–25. doi:  
746 10.1016/B978-0-08-100915-4.00001-4.
- 747 Kasabova, S., Hartmann, M., Freise, F., Hommerich, K., Fischer, S., Wilms-Schulze-Kump, A., et al.  
748 (2021). Antibiotic Usage Pattern in Broiler Chicken Flocks in Germany. *Front. Vet. Sci.* 8,  
749 673809. doi: 10.3389/fvets.2021.673809.
- 750 Kaspersen, H., Urdahl, A. M., Franklin-Alming, F. V., Ilag, H. K., Hetland, M. A. K., Bernhoff, E., et  
751 al. (2023). Population dynamics and characteristics of *Klebsiella pneumoniae* from healthy  
752 poultry in Norway. *Front. Microbiol.* 14, 1193274. doi: 10.3389/fmicb.2023.1193274.

- 753 Lam, M. M. C., Wick, R. R., Watts, S. C., Cerdeira, L. T., Wyres, K. L., and Holt, K. E. (2021). A  
754 genomic surveillance framework and genotyping tool for *Klebsiella pneumoniae* and its related  
755 species complex. *Nat. Commun.* 12, 4188. doi: 10.1038/s41467-021-24448-3.
- 756 Letunic, I., and Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic  
757 tree display and annotation. *Nucleic Acids Res.* 49, W293–W296. doi: 10.1093/nar/gkab301.
- 758 Li, X., Rensing, C., Vestergaard, G., Arumugam, M., Nesme, J., Gupta, S., et al. (2022). Metagenomic  
759 evidence for co-occurrence of antibiotic, biocide and metal resistance genes in pigs. *Environ.*  
760 *Int.* 158, 106899. doi: 10.1016/j.envint.2021.106899.
- 761 Maillard, J.-Y. (2022). Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on  
762 bacterial antimicrobial resistance. *J. Appl. Microbiol.* 133, 3322–3346. doi:  
763 10.1111/jam.15739.
- 764 Maillard, J.-Y., and Pascoe, M. (2023). Disinfectants and antiseptics: mechanisms of action and  
765 resistance. *Nat. Rev. Microbiol.* doi: 10.1038/s41579-023-00958-3.
- 766 Morrissey, I., Oggioni, M. R., Knight, D., Curiao, T., Coque, T., Kalkanci, A., et al. (2014). Evaluation  
767 of Epidemiological Cut-Off Values Indicates that Biocide Resistant Subpopulations Are  
768 Uncommon in Natural Isolates of Clinically-Relevant Microorganisms. *PLoS ONE* 9, e86669.  
769 doi: 10.1371/journal.pone.0086669.
- 770 Mottet, A., and Tempio, G. (2017). Global poultry production: current state and future outlook and  
771 challenges. *Worlds Poult. Sci. J.* 73, 245–256. doi: 10.1017/S0043933917000071.
- 772 Mourão, J., Marçal, S., Ramos, P., Campos, J., Machado, J., Peixe, L., et al. (2016). Tolerance to  
773 multiple metal stressors in emerging non-typhoidal MDR *Salmonella* serotypes: a relevant role  
774 for copper in anaerobic conditions. *J. Antimicrob. Chemother.* 71, 2147–2157. doi:  
775 10.1093/jac/dkw120.
- 776 Mourão, J., Ribeiro-Almeida, M., Novais, C., Magalhães, M., Rebelo, A., Ribeiro, S., et al. (2023).  
777 From Farm to Fork: Persistence of Clinically Relevant Multidrug-Resistant and Copper-  
778 Tolerant *Klebsiella pneumoniae* Long after Colistin Withdrawal in Poultry Production.  
779 *Microbiol. Spectr.* 11, e01386-23. doi: 10.1128/spectrum.01386-23.
- 780 Novais, Â., Gonçalves, A. B., Ribeiro, T. G., Freitas, A. R., Méndez, G., Mancera, L., et al. (2023a).  
781 Development and validation of a quick, automated and reproducible ATR FT-IR spectroscopy  
782 machine-learning model for *Klebsiella pneumoniae* typing. *J. Clin. Microbiol.* In press.
- 783 Novais, C., Almeida-Santos, A. C., Paula Pereira, A., Rebelo, A., Freitas, A. R., and Peixe, L. (2023b).  
784 Alert for molecular data interpretation when using *Enterococcus faecium* reference strains  
785 reclassified as *Enterococcus lactis*. *Gene* 851, 146951. doi: 10.1016/j.gene.2022.146951.
- 786 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015). CheckM:  
787 assessing the quality of microbial genomes recovered from isolates, single cells, and  
788 metagenomes. *Genome Res.* 25, 1043–1055. doi: 10.1101/gr.186072.114.

- 789 Peirano, G., Chen, L., Kreiswirth, B. N., and Pitout, J. D. D. (2020). Emerging Antimicrobial-Resistant  
790 High-Risk *Klebsiella pneumoniae* Clones ST307 and ST147. *Antimicrob. Agents Chemother.*  
791 64, e01148-20. doi: 10.1128/AAC.01148-20.
- 792 Pereira, A. P., Antunes, P., Bierge, P., Willems, R. J. L., Corander, J., Coque, T. M., et al. (2023).  
793 Unraveling *Enterococcus* susceptibility to quaternary ammonium compounds: genes,  
794 phenotypes, and the impact of environmental conditions. *Microbiol. Spectr.*, e02324-23. doi:  
795 10.1128/spectrum.02324-23.
- 796 Rebelo, A., Almeida, A., Peixe, L., Antunes, P., and Novais, C. (2023). Unraveling the Role of Metals  
797 and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. *Antibiotics* 12,  
798 1474. doi: 10.3390/antibiotics12091474.
- 799 Rebelo, A. R., Bortolaia, V., Kjeldgaard, J. S., Pedersen, S. K., Leekitcharoenphon, P., Hansen, I. M.,  
800 et al. (2018). Multiplex PCR for detection of plasmid-mediated colistin resistance determinants,  
801 *mcr-1*, *mcr-2*, *mcr-3*, *mcr-4* and *mcr-5* for surveillance purposes. *Eurosurveillance* 23. doi:  
802 10.2807/1560-7917.ES.2018.23.6.17-00672.
- 803 Ribeiro, S., Mourão, J., Novais, Â., Campos, J., Peixe, L., and Antunes, P. (2021). From farm to fork:  
804 Colistin voluntary withdrawal in Portuguese farms reflected in decreasing occurrence of *mcr-*  
805 *1*- carrying *Enterobacteriaceae* from chicken meat. *Environ. Microbiol.* 23, 7563–7577. doi:  
806 10.1111/1462-2920.15689.
- 807 Robertson, J., Bessonov, K., Schonfeld, J., and Nash, J. H. E. (2020). Universal whole-sequence-based  
808 plasmid typing and its utility to prediction of host range and epidemiological surveillance.  
809 *Microb. Genomics* 6. doi: 10.1099/mgen.0.000435.
- 810 Robertson, J., and Nash, J. H. E. (2018). MOB-suite: software tools for clustering, reconstruction and  
811 typing of plasmids from draft assemblies. *Microb. Genomics* 4. doi: 10.1099/mgen.0.000206.
- 812 Rodrigues, C., Hauser, K., Cahill, N., Ligowska-Marzeta, M., Centorotola, G., Cornacchia, A., et al.  
813 (2022). High Prevalence of *Klebsiella pneumoniae* in European Food Products: a Multicentric  
814 Study Comparing Culture and Molecular Detection Methods. *Microbiol. Spectr.* 10, e02376-  
815 21. doi: 10.1128/spectrum.02376-21.
- 816 Rodrigues, C., Lanza, V. F., Peixe, L., Coque, T. M., and Novais, Â. (2023). Phylogenomics of  
817 Globally Spread Clonal Groups 14 and 15 of *Klebsiella pneumoniae*. *Microbiol. Spectr.* 11,  
818 e03395-22. doi: 10.1128/spectrum.03395-22.
- 819 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. (2015).  
820 BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.  
821 *Bioinformatics* 31, 3210–3212. doi: 10.1093/bioinformatics/btv351.
- 822 Slifierz, M. J., Friendship, R. M., and Weese, J. S. (2015). Methicillin-Resistant *Staphylococcus aureus*  
823 in Commercial Swine Herds Is Associated with Disinfectant and Zinc Usage. *Appl. Environ.  
824 Microbiol.* 81, 2690–2695. doi: 10.1128/AEM.00036-15.
- 825 Thorpe, H. A., Booton, R., Kallonen, T., Gibbon, M. J., Couto, N., Passet, V., et al. (2022). A large-  
826 scale genomic snapshot of *Klebsiella* spp. isolates in Northern Italy reveals limited transmission

- 827        between clinical and non-clinical settings. *Nat. Microbiol.* 7, 2054–2067. doi: 10.1038/s41564-  
828        022-01263-0.
- 829        Vijayakumar, R., Sandle, T., Al-Aboody, M. S., AlFonaisan, M. K., Alturaiki, W., Mickymaray, S., et  
830        al. (2018). Distribution of biocide resistant genes and biocides susceptibility in multidrug-  
831        resistant *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and *Acinetobacter baumannii* — A  
832        first report from the Kingdom of Saudi Arabia. *J. Infect. Public Health* 11, 812–816. doi:  
833        10.1016/j.jiph.2018.05.011.
- 834        Villa, L., García-Fernández, A., Fortini, D., and Carattoli, A. (2010). Replicon sequence typing of IncF  
835        plasmids carrying virulence and resistance determinants. *J. Antimicrob. Chemother.* 65, 2518–  
836        2529. doi: 10.1093/jac/dkq347.
- 837        Webber, M. A., Whitehead, R. N., Mount, M., Loman, N. J., Pallen, M. J., and Piddock, L. J. V. (2015).  
838        Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. *J.*  
839        *Antimicrob. Chemother.* 70, 2241–2248. doi: 10.1093/jac/dkv109.
- 840        Wick, R. R., Judd, L. M., Gorrie, C. L., and Holt, K. E. (2017). Unicycler: Resolving bacterial genome  
841        assemblies from short and long sequencing reads. *PLOS Comput. Biol.* 13, e1005595. doi:  
842        10.1371/journal.pcbi.1005595.
- 843        Wu, G., Yang, Q., Long, M., Guo, L., Li, B., Meng, Y., et al. (2015). Evaluation of agar dilution and  
844        broth microdilution methods to determine the disinfectant susceptibility. *J. Antibiot. (Tokyo)*  
845        68, 661–665. doi: 10.1038/ja.2015.51.
- 846        Wyres, K. L., and Holt, K. E. (2016). *Klebsiella pneumoniae* Population Genomics and Antimicrobial-  
847        Resistant Clones. *Trends Microbiol.* 24, 944–956. doi: 10.1016/j.tim.2016.09.007.
- 848        Wyres, K. L., and Holt, K. E. (2018). *Klebsiella pneumoniae* as a key trafficker of drug resistance  
849        genes from environmental to clinically important bacteria. *Curr. Opin. Microbiol.* 45, 131–139.  
850        doi: 10.1016/j.mib.2018.04.004.
- 851        Zhai, R., Fu, B., Shi, X., Sun, C., Liu, Z., Wang, S., et al. (2020). Contaminated in-house environment  
852        contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry  
853        farm. *Environ. Int.* 139, 105715. doi: 10.1016/j.envint.2020.105715.
- 854        Zou, H., Zhou, Z., Berglund, B., Zheng, B., Meng, M., Zhao, L., et al. (2023). Persistent transmission  
855        of carbapenem-resistant, hypervirulent *Klebsiella pneumoniae* between a hospital and urban  
856        aquatic environments. *Water Res.* 242, 120263. doi: 10.1016/j.watres.2023.120263.
- 857        **12 Supplementary Material**
- 858        The Supplementary Material for this article can be found online.
- 859        **12 Data Availability Statement**
- 860        The sequencing data of the 48 isolates produced during this study are accessible in the European  
861        Nucleotide Archive (ENA) (<https://www.ebi.ac.uk/ena>). These data are stored under the Bioproject  
862        accession number PRJEB62836, with the specific accession numbers for each isolate detailed in  
863        **Supplementary Table 2**.