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Abstract 

Background: Adults born very preterm (i.e., at <33 weeks9 gestation) are more susceptible to 

long-lasting structural and functional brain alterations and cognitive and socio-emotional 

difficulties, compared to full-term controls. However, behavioural heterogeneity within very 

preterm and full-term individuals makes it challenging to find biomarkers of specific 

outcomes. To address these questions, we parsed brain-behaviour heterogeneity in 

participants subdivided according to their clinical birth status (very preterm vs full-term) 

and/or data-driven behavioural phenotype (regardless of birth status).  

Methods: The Network Based Statistic approach was used to identify topological 

components of resting state functional connectivity differentiating between i) 116 very 

preterm and 83 full-term adults (43% and 57% female, respectively), and ii) data-driven 

behavioural subgroups identified using consensus clustering (n= 156, 46% female). Age, sex, 

socio-economic status, and in-scanner head motion were used as confounders in all analyses. 

Post-hoc two-way group interactions between clinical birth status and behavioural data-

driven subgrouping classification labels explored whether functional connectivity differences 

between very preterm and full-term adults varied according to distinct behavioural outcomes. 

Results: Very preterm compared to full-term adults had poorer scores in selective measures 

of cognitive and socio-emotional processing and displayed complex patterns of hyper- and 

hypo-connectivity in subsections of the default mode, visual, and ventral attention networks. 

Stratifying the study participants in terms of their behavioural profiles (irrespective of birth 

status), identified two data-driven subgroups: An <At-risk= subgroup, characterised by 

increased cognitive, mental health, and socio-emotional difficulties, displaying hypo-

connectivity anchored in frontal opercular and insular regions, relative to a <Resilient= 

subgroup with more favourable outcomes. No significant interaction was noted between 

clinical birth status and behavioural data-driven subgrouping classification labels in terms of 

functional connectivity. 

Conclusions: Functional connectivity differentiating between very preterm and full-term 

adults was dissimilar to functional connectivity differentiating between the data-driven 

behavioural subgroups. We speculate that functional connectivity alterations observed in very 

preterm relative to full-term adults may confer both risk and resilience to developing 

behavioural sequelae associated with very preterm birth, while the localised functional 
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connectivity alterations seen in the <At-risk= subgroup relative to the <Resilient= subgroup 

may underlie less favourable behavioural outcomes in adulthood, irrespective of birth status.  

1.1 Introduction 

Very preterm birth (VPT; i.e., at <33 weeks9 gestation) occurs during a rapid stage of 

brain development, making those born VPT vulnerable to neurological insult (Volpe, 2009) 

and long-lasting difficulties in attention, executive function, and socio-emotional processing 

(Anderson et al., 2021; Johnson and Marlow, 2011; Kroll et al., 2017). Functional 

connectivity alterations in brain regions and networks important for cognitive and affective 

processing have also been reported in VPT samples across the lifespan, and have been 

studied amongst the possible biological mechanisms underlying the behavioural difficulties 

associated with VPT birth (Bäuml et al., 2015; Kanel et al., 2022; Mueller et al., 2022; Papini 

et al., 2016; Ramphal et al., 2020; Rogers et al., 2017; Siffredi et al., 2022; Sylvester et al., 

2018). It is important to highlight, however, that not only have previous studies identified 

brain changes associated with behavioural difficulties in those born VPT, but have also 

characterised neural adaptions which support domain-specific performance (Daamen et al., 

2014; Finke et al., 2015; Nosarti et al., 2006, 2009; Schafer et al., 2009). These findings, 

therefore, indicate that the functional reorganisation of the VPT brain has complex 

implications for outcomes, as it may probe both risk and resilience to behavioural difficulties.  

Further complicating the understanding of brain-behavioural relationships in VPT 

populations, is the fact that those born preterm tend to exhibit heterogenous behavioural 

outcomes. Previous studies aiming to stratify this heterogeneity implemented latent profile 

analyses using behavioural measures from both preterm and FT born children (Burnett et al., 

2019; Johnson et al., 2018; Lean et al., 2020). Their results indicated that while those born 

preterm were more likely to present with psychiatric, cognitive, or socio-emotional 

difficulties, some preterm children displayed distinct profiles characterised by fewer or no 

behavioural difficulties. Moreover, while FT children predominantly exhibited more normo-

typical behavioural profiles, some FT children displayed behavioural difficulties similar to 

those observed in preterm children (Burnett et al., 2019; Johnson et al., 2018; Lean et al., 

2020). Together, these findings indicate that VPT and FT groups exhibit both within- and 

between-group heterogeneity, which needs to be addressed in order to develop individually 

tailored and biologically specific interventions aimed at supporting healthy development 

(Cuthbert and Insel, 2013; Morris et al., 2022). This can be achieved by, firstly, 
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implementing data-driven stratification approaches to identify distinct subgroups of 

individuals exhibiting similar behavioural profiles, irrespective of their birth status, and 

secondly, by investigating brain correlates differentiating between the distinct data-driven 

behavioural subgroups.  

Similarly, individuals belonging to distinct diagnostic and non-diagnostic psychiatric 

groups also exhibit within- and between-group heterogeneity in terms of phenotypic profiles. 

Recent studies implementing such approaches in psychiatric populations have successfully 

identified patterns of structural and functional connectivity characterising distinct data-driven 

behavioural subgroups irrespective of diagnostic labels (Astle et al., 2019; Bathelt et al., 

2018; Jones et al., 2021; Mareva et al., 2023; Siugzdaite et al., 2020; Vandewouw et al., 

2023). A small number of studies in VPT children followed similar methodological 

approaches and investigated the underlying brain changes differentiating within-group 

behavioural heterogeneity. Results of these studies showed that early brain insult (Bogičević 

et al., 2021; Ross et al., 2016) and structural and functional brain alterations (Hadaya et al., 

2023; Lean et al., 2020) characterised the distinct subgroups. However, it remains to be 

explored whether the heterogeneity in behavioural outcomes seen within and between VPT 

and FT born individuals persists into adulthood, and if it does, whether resting state 

functional connectivity (rsFC) changes may be associated with distinct data-driven 

behavioural phenotypes, irrespective of gestational age at birth. 

Our study firstly aimed to identify long-lasting neurodevelopmental alterations 

associated with VPT birth, by investigating differences in rsFC and behavioural outcomes 

between VPT and FT born adults. Secondly, our study aimed to delineate behavioural 

heterogeneity in VPT and FT born adults irrespective of gestational age at birth, by using a 

robust data-driven consensus clustering approach to stratify participants based on behavioural 

measures (executive function, attention, intelligence, socio-emotional processing, 

psychopathology, and autistic traits), and to explore whether resultant data-driven 

behavioural subgroups would exhibit differences in rsFC. Finally, post-hoc two-way group 

interactions between clinical (i.e., VPT vs FT birth) and behavioural (i.e., data-driven 

subgrouping) classification labels were used to explore whether rsFC pattern differences 

between VPT and FT adults, varied according to distinct behavioural outcomes. 
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1.2 Methods 

1.2.1 Study design  

Participants. VPT infants (i.e., born at <33 weeks of gestation) were recruited at birth 

from the Neonatal Unit at University College London Hospital (London, UK) between 1979 

and 1985. Enrolled participants received cranial ultrasonographic imaging several times 

during the first week of life and weekly until discharge from hospital (Stewart et al., 1983) 

and were subsequently followed up in childhood at 1, 4 and 8 years of age (Roth et al., 1994; 

Stewart et al., 1989), adolescence (15 years), early (20 years), and middle adulthood (30 

years) (Karolis et al., 2017). Age-matched controls, born at FT (37-42 weeks of gestation), 

were recruited from the community in middle adulthood. Exclusion criteria for the controls 

were any clinical complications at birth (i.e., prolonged gestation at >42 weeks, low birth 

weight <2500g, receiving endotracheal mechanical ventilation). Exclusion criteria for both 

VPT and FT participants included severe hearing and motor impairments, or history of 

neurological complications (i.e., meningitis, head injury, cerebral infections). For this study, 

we used neuroimaging and behavioural data from the middle adulthood follow-up. 

Research study practices were conducted in accordance with the Declaration of 

Helsinki. Ethical approval was granted by the South London and Maudsley Research and 

Ethics Committee and the Psychiatry, Nursing and Midwifery Research Ethics Subcommittee 

(PNM/12/13-10), King9s College London. All participants were native English speakers. 

Written informed consent was obtained from all study participants and participant privacy 

rights were observed. 

Clinical and socio-demographic details. Gestational age at birth and birth weight were 

collected from medical discharge notes for VPT participants. Participants born VPT were 

classified into three groups, according to cranial ultrasound diagnosis: no evidence of 

perinatal brain injury (no injury), grade I – II periventricular haemorrhage without ventricular 

dilation (minor injury) and grade III – IV periventricular haemorrhage with ventricular 

dilation (major injury) (Nosarti et al., 2002). 

For both VPT and FT groups, self-reported ethnicity was recorded according to the 

following groups: African, Afro-Caribbean, Caucasian/White, Indian Subcontinent, and 

Other. Socio-economic status was defined according to participants9 self-reported occupation 
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at the time of the study and parental occupation at birth. Occupations were categorised 

according to the Office of National Statistics, 1980 Standard Occupation Classification; I: 

Higher managerial, administrative, and professional occupations; II: Intermediate 

occupations, small employers, and own account workers; III: Routine and manual 

occupations – lower supervisory and technical and semi-routine and routine occupations.  

Cognitive assessments. The following cognitive assessments were administered to 

measure language, executive attention, and general intelligence: Hayling Sentence 

Completion Test (HSCT) (Burgess and Shallice, 1997); Controlled Oral Word Association 

Test (COWAT-FAS) (Benton et al., 1983); four subtests from the Cambridge 

Neurophysiological Test Automated Battery (CANTAB) 2003 eclipse version (Fray et al., 

1996): 1) Stockings of Cambridge (SOC), 2) Intra-Extra Dimensional Set Shift (IED), 3) 

Paired Associates Learning (PAL), and 4) Motor Screening Task (MOT); the Trail Making 

Task – B (TMT-B) (Tombaugh, 2004); Continuous Performance Test – 2nd edition (CPT) 

(Conners et al., 2003); and Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 

1999). Specific task descriptions are detailed in Table SM 1. 

Psychiatric and behavioural assessments. General psychopathology was measured 

using the Comprehensive Assessment of At-Risk Mental States (CAARMS) (Yung et al., 

2005), a semi-structured clinical interview which measures aspects of psychopathology 

relating to mania, depression, suicidality and self-harm, mood swings/lability, anxiety, 

obsessive compulsive disorder symptoms, dissociative symptoms, and impaired tolerance to 

normal stress; scores on the general psychopathology subscale were used in our analyses. The 

self-administered General Health Questionnaire (GHQ-12) (Goldberg and Williams, 1991) 

was used to measure general well-being, Peters Delusion Inventory (PDI) (Peters et al., 2004) 

to measure delusional ideation traits, Autism Quotient (AQ-10) (Allison et al., 2012; Booth et 

al., 2013) to measure autism traits (i.e., social interaction, communication, attention 

switching, attention to detail, and imagination), Social Adjustment Scale (SAS) (Weissman 

and Bothwell, 1976) to measure participants9 satisfaction with their social situation, and Role 

Functioning Scale (RFS) (Goodman et al., 1993) to measure individuals9 ability to function in 

their daily life. The Emotion recognition task (ERT) (Montagne et al., 2007) was 

administered to measure participants9 ability to recognise expressed emotions (happiness, 

sadness, surprise, anger, disgust and fear), as described in our previous work (Papini et al., 

2016).  
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Structural and functional magnetic resonance imaging (MRI) acquisition. MRI 

data were acquired at the Maudsley Hospital, London, using a 3 Tesla Signa MR scanner 

(General Electric Healthcare). Structural fast spoiled gradient-echo (FSPGR) pulse sequence 

T1-weighted images were collected using the following sequence parameters: TR=7.1 ms, 

TE=2.8 ms, matrix=256x256, voxel size=1.1 mm isotropic. Gradient echo EPI resting state 

functional MRI data were collected while participants stared at a central cross on a screen for 

8 minutes 32 s, using the following parameters 256 volumes, TR=2000 ms, TE=30 ms, flip 

angle=75 degrees, matrix=64x64, 37 non-contiguous slices of 2.4 mm thickness, 1.1 mm 

interslice gap, and 3.4 mm in-plane resolution. 

1.2.2 MRI data pre-processing 

Resting state functional MRI data pre-processing was performed using fMRIPrep 

20.1.1, RRID:SCR_016216 (Esteban et al., 2019), which is based on Nipype 1.5.0, 

RRID:SCR_002502 (Gorgolewski et al., 2011). In summary, steps included skull stripping, 

slice-time correction, co-registration to the T1w reference image using boundary-based 

registration (Greve and Fischl, 2009) and head motion estimation (i.e., global signal and six 

motion parameters: three translation and three rotation parameters). The complete pre-

processing protocol is detailed in the Supplementary Material. 

After pre-processing, data were de-noised by regressing out estimated motion 

confounders (i.e., global signal and six motion parameters: three translation and three rotation 

parameters) using the FMRIB Software Library (FSL) fsl_regfilt command (Jenkinson et al., 

2012). A band-pass filter (0.01 – 0.1 Hz) was applied to the data using the AFNI software 

3dBandpass command (Cox, 1996). Participants were excluded if they exhibited excessive 

in-scanner head motion (i.e., mean frame-wise displacement (FD) exceeding 0.4mm or a 

maximum FD exceeding 4mm) or had functional MRI scans showing poor alignment with 

anatomical data. Sample sizes and participant exclusions are summarised in a flowchart in 

Figure SM 1.  

1.2.3 Brain parcellation and rsFC estimation 

Resting state functional MRI data were parcellated into bilaterally symmetric cortical 

regions using the Human Connectome Project Multi-Modal Parcellation; HCP-MMP (v1) 

atlas (Glasser et al., 2016) and bilateral subcortical FreeSurfer regions (Fischl, 2012). The 

two bilateral hippocampal regions from the HCP-MMP atlas were excluded as these regions 
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were included as part of the FreeSurfer subcortical segmentation, resulting in a total of 374 

regions included in our analyses (i.e., 358 HCP-MMP atlas bilateral cortical regions and 16 

FreeSurfer bilateral subcortical regions).  

An average of the functional MRI blood oxygen level-dependent (BOLD) signal time 

series across all voxels in each parcellation was used to estimate the regional time series for 

each of the 374 brain regions. For each participant, rsFC matrices were calculated using 

Pearson9s correlations between pairs of all 374 regional time series. A threshold of 0.2 was 

used to eliminate weak correlations (i.e., weights of edges with r2 0.2 were retained) and a 

Fisher Z-transformation was applied (Buckner et al., 2009; Fenn-Moltu et al., 2022; Zalesky 

et al., 2016).  

1.2.4 Consensus clustering  

To partition participants (both VPT and FT; n=156) into data-driven behavioural 

subgroups, a consensus clustering pipeline (Figure 1) was implemented using the following 

13 behavioural measures as input features: COWAT-FAS mean total words produced, SOC 

total number of problems solved, IED total errors adjusted, MOT mean reaction time, TMT-

B time elapsed, CPT total reaction time, full-scale IQ, total PDI score, total AQ10 score, 

CAARMS total general psychopathology score, total GHQ score, ERT total number of 

correct responses and total SAS score (see Supplementary Material for data pre-processing 

and feature selection procedures). 

Each variable was first standardised to have a mean = 0 and standard deviation = 1, 

and an Euclidean distance matrix of the input data was calculated. A similarity matrix 

(network) was then calculated from the distance matrix, using the affinityMatrix function 

(SNFtool R package) (Wang et al., 2018), which utilises two hyperparameters: 

neighbourhood size (K) and alpha (edge weighting parameter) that help increase the signal to 

noise ratio and in turn improve result validity and reliability. K corresponds to the number of 

surrounding nodes to consider for each node in the similarity network and alpha determines a 

threshold for the strength of the edges in the similarity network (i.e., pairwise similarity 

between nodes within the sample). Greater K values result in more dense similarity networks 

and smaller values result in more sparse similarity networks, while greater alpha values result 

in weaker edges being retained and smaller alpha values result in similarity networks which 

retain edges with higher similarity. Thirty different K-alpha combinations were used to 
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generate thirty similarity networks based on the following values: K = 10, 15, 20, 25, 30 and 

alpha = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. These values lie within the ranges recommended in the 

SNFtool package: 10–30 for K and 0.3–0.8 alpha (Wang et al., 2018). Each of the resultant 

thirty similarity networks was successively inputted into the consensus clustering algorithm 

(ConsensusClusterPlus function, ConsensusClusterPlus R package) (Wilkerson and Hayes, 

2010) which performs agglomerative hierarchical clustering following a nested bootstrapping 

(n=1000) spectral clustering for each of the thirty similarity networks. From the thirty 

resultant clustering outputs, the solution with the highest average silhouette width score was 

retained.  

In order to improve the generalisability of our solution and avoid overfitting of 

hyperparameter selection, the steps described in the above paragraph were repeated 1,000 

times where a randomised selection of 80% of the sample was used each time. The final 

resultant 1,000 clustering outputs were then fed into a hierarchical clustering function 

(consensus_combine, DiceR package) (Chiu and Talhouk, 2018), to output a final consensus 

clustering result based on the consensus matrix.  

To determine the optimal number of clusters (C), Eigengap and Rotation Cost metrics 

were firstly used to estimate the best and second-best number of clusters 

(estimateNumberOfClustersGivenGraph function SNFtool R package) (Wang et al., 2018) 

for each of the thirty K-alpha combinations, identifying C=2, C=3, and C=5 as the top three 

clustering solutions. We then ran the described consensus clustering pipeline three separate 

times, once for each of these solutions (C=2, C=3, and C=5), and subsequently calculated 

consensus matrices and silhouette scores for each cluster solution. Resultant consensus 

matrix and silhouette score outputs suggested an optimal number of clusters of C=2 (Figure 

SM 2); therefore, we evaluate subgroups obtained from the C=2 solution.  

The consensus clustering pipeline implemented here is adapted from the integrative 

clustering method used in our previous work (Hadaya et al., 2023), code: 

https://github.com/lailahadaya/preterm-ExecuteSNF.C), where we do not apply the data-

integration step in the current study.  
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Figure 1. Consensus clustering pipeline followed. 

1.2.5 Statistical analyses  

1.2.5.1 Evaluation of clinical, socio-demographic, and behavioural profiles  

The non-parametric Wilcox Rank Sum T-test was used for continuous variables and 

Chi-squared or Fischer9s Exact tests for categorical variables. Effect sizes were calculated 

using Wilcoxon Glass Rank Biserial Correlation for continuous variables and Cramer9s V (V) 

for categorical variables. False Discovery Rate (FDR) was used to account for multiple 

comparison testing (Benjamini and Hochberg, 1995). Sensitivity analyses using non-

parametric permutation testing (5000 permutations) adjusted for potential covariates (age, 

sex, and socio-economic status) (França et al., 2022). P-values<0.05 were considered to be 

statistically significant.  
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1.2.5.2 Between-group differences in rsFC at a topological network-level 

The Network Based Statistic (NBS), a cluster-based statistics approach, was applied 

(Zalesky et al., 2010). NBS implements the following steps: 1) mass-univariate testing with a 

suitable statistical test of interest on all possible connections (i.e., edges), 2) next, only edges 

with p-values below a pre-defined threshold (p-NBS-Threshold) are maintained, 3) retained 

suprathreshold edges are then used to identify topologically connected structures (referred to 

as NBS 8components9) present amongst the collection of suprathreshold edges using breadth-

first search (Ahuja et al., 1993), and finally, 4) permutation testing is used to assign a Family 

Wise Error Rate corrected p-value (p-FWER) for each identified component, based on the 

component9s strength. NBS testing is derived from traditional cluster-based thresholding of 

statistical maps; however, rather than generating clusters of voxels with spatial proximity in 

physical space, NBS can be applied to graph-like structures to generate clusters with 

interconnected edges in topological space (Nichols and Holmes, 2002; Zalesky et al., 2010). 

An advantage of using NBS, compared to an approach that controls for FWER at an 

edgewise basis (such as False-Discovery Rate), is that it can provide increased statistical 

power by detecting the effect of interest in a collection of connections which are collectively 

contributing to the effect of interest as opposed to uniquely contributing to the effect on an 

individual edgewise-level. 

Selecting a threshold in NBS (described in step 2 above) is a relatively arbitrary 

choice, which can be determined by experimenting with a selection of conservative and 

stringent thresholds (Zalesky et al., 2010). We ran NBS testing at three different p-value 

thresholds (i.e., p-NBS-Threshold = 0.05, 0.01, and 0.001) to identify relevant suprathreshold 

edges to be grouped into NBS components for further analysis. We implemented NBS testing 

with 1000 permutations using the NBR R package nbr_lm function (NBR) (Gracia-Tabuenca 

and Alcauter, 2020). Statistical models tested included the following covariates: mean FD (as 

a measure of in-scanner head motion), sex, age, and socio-economic status. The same sets of 

methods were implemented to identify differences in rsFC between 1) VPT and FT 

individuals and 2) data-driven behavioural subgroups.  

NBS generates two resultant outputs: 1) component strength or intensity – i.e., the 

sum of test statistic (T-statistic) values from all edges within the significant component, and 

2) component size or extent – i.e., the number of connections comprising the significant 

component. We also calculated the number of connections belonging to each node within the 
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component as a proportion of the total number of possible edges within that component and 

presented results graphically using the ggseg3d R package (Mowinckel and Vidal-Piñeiro, 

2020). To measure within and between network connectivity, we labelled nodes according to 

seven previously defined intrinsic connectivity networks (i.e., visual, somatomotor, dorsal 

attention, ventral attention (VAN), limbic, frontoparietal, and default mode (DMN) networks) 

(Yeo et al., 2011) and an eighth network comprised of 16 subcortical regions (Váša et al., 

2020) and calculated connectivity proportion and strength; code accessible at: 

https://github.com/frantisekvasa/functional_network_development/blob/master/nspn.fmri.R.  

1.2.6 Post-hoc exploratory analyses  

We estimated the extent of nodal and edgewise overlap between the NBS components 

characterising clinical (i.e., VPT vs FT birth) and data-driven behavioural subgrouping 

classifications using the Sørensen-Dice similarity coefficient, which is calculated as the ratio 

of two times the number of overlapping features between two sets, over the total number of 

features present across both sets (Sørensen, 1948), with values ranging between 0 and 1. 

Post-hoc exploratory NBS analyses investigated whether differences in rsFC between 

VPT and FT clinical groups varied according to distinct behavioural outcomes, using two-

way group interactions between clinical and data-driven behavioural classification labels.   

We also investigated differences in early clinical risk (i.e., gestational age at birth, birth 

weight, and perinatal brain injury) and socio-demographic measures between VPT adults 

belonging to the distinct data-driven behavioural subgroups, and in socio-demographic 

measures between FT adults in the distinct data-driven subgroups.  

1.3 Results 

1.3.1 VPT and FT groups 

The socio-demographic and clinical profiles of VPT and FT adults are summarised in 

Table 1 and their behavioural outcomes in Table 2 and Figure 2A. In summary, adults born 

VPT had lower full-scale IQ (WASI), attention set shifting (CANTAB-IED), and emotion 

recognition (ERT) scores than adults born FT. Head motion during functional MRI 

acquisition was greater in the VPT (median FD = 0.15mm, range=0.07 – 0.40) than the FT 

group (median FD=0.12mm, range=0.05 – 0.35; p<0.001). Supplementary analyses show that 
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VPT adults excluded from analyses (n=37) for reasons described in Figure SM 1, had 

relatively poorer cognitive and socio-emotional scores relative to those VPT adults included 

in the analyses (n=116) (Table SM 2).  

Table 1. Clinical and socio-demographic characteristics of study participants. 

  VPT (n=116) FT (n=83) p-value 

Gestational age at birth, median (range) 

weeks 

30.00 (24.00 – 32.00) n/a n/a 

Birth weight, median (range) grams 
1345 (552 – 2390) 

3440 (2690 – 

4990) 
< 0.001 

Sex, n (%) 0.082 

 Male 66 (56.90%) 36 (43.37%)  

 Female 50 (43.10%) 47 (56.63%)  

a Ethnicity, n (%) 0.139 

 African 2 (1.72%) 5 (6.02%)  

 Afro-Caribbean 2 (1.72%) 4 (4.82%)  

 Caucasian/White 76 (65.52%) 55 (66.27%)  

 Indian Subcontinent 8 (6.90%) 2 (2.41%)  

 Other 4 (3.45%) 6 (7.23%)  

b Perinatal brain injury, n (%) n/a 

 No injury 62 (53.45%) n/a  

 Minor injury 27 (23.28%) n/a  

 Major injury 26 (22.41%) n/a  

c Parental socio-economic status at birth, 

n (%) 
  0.106 

 I – II 43 (51.81%) 38 (32.76%)  

 III  36 (43.37%) 15 (12.93%)  

 IV – V  8 (9.63%) 3 (2.59%)  
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c Participants’ current socio-economic 

status, n (%) 
  < 0.001 

 I – II 51 (43.97%) 36 (43.37%)  

 III  41 (35.35%) 26 (31.33%)  

 IV – V  6 (5.17%) 0 (0.00%)  

 Student 1 (0.86%) 16 (19.28%)  

 Unemployed 16 (13.8%) 4 (4.82%)  

Age at assessment, median (range) years 31.37 (23.346 – 

39.33) 

28.73 (26.26 – 

36.49) 
< 0.001 

Note. a Ethnicity was self-reported. b Ultrasound scans were used to classify perinatal brain injury 

into three categories: no haemorrhage (no injury), grade I – II periventricular haemorrhage without 

ventricular dilation (minor injury) and grade III – IV periventricular haemorrhage with ventricular 

dilation (major injury). c Socio-economic status was categorised according to the Office of National 

Statistics, 1980 occupation classifications. I: Higher managerial, administrative and professional 

occupations; II: Intermediate occupations, small employers and own account workers; III:  Routine 

and manual occupations – lower supervisory and technical and semi-routine and routine occupations. 

Missing data: 1 VPT and 1 FT had missing socio-economic status data; 24 VPT and 11 FT had 

missing ethnicity data; 1 VPT has missing perinatal brain injury classification.  
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Table 2. Behavioural outcomes in VPT and FT adults. 

 VPT (n=116) FT (n=83) p-

value 

FDR p-

value 

Adj. FDR 

p-value 

Effect size 

COWAT, total words 13.00 (5.75) 14.00 (5.25) 0.052 0.166 0.115 -0.042 

CANTAB – SOC, 

problems solved 9.00 (2.75) 10.00 (2.00) 0.063 0.166 0.106 -0.064 

CANTAB – IED, total 

errors adjusted 15.00 (25.50) 

10.50 

(14.65) 0.002 0.007 0.021 0.184 

TMT-B, time to finish 

task 73.50 (40.50) 

71.30 

(39.05) 0.081 0.175 0.068 -0.093 

CPT, total reaction 

time for correct 

responses 

417.50 

(59.15) 

414.00 

(54.40) 0.921 0.921 0.936 -0.009 

WASI – full scale IQ 106 

.00(13.75) 

113.50 

(12.25) 

<0.00

1 <0.001 <0.001 0.088 

CANTAB – MOT, 

reaction time 

691.00 

(200.80) 

734.00 

(196.90) 0.307 0.399 0.456 0.062 

PDI, total score 

21.50 (50.25) 

18.00 

(39.25) 0.406 0.480  0.530 0.002 

AQ10, total score 2.00 (2.44) 3.00 (2.32) 0.198 0.322  0.257 0.121 

CAARMS, general 

psychopathology score 2.00 (5.50) 2.00 (4.00) 0.232 0.335  0.220 -0.111 

GHQ, total score 10.00 (6.00) 10.00 (7.00) 0.891 0.921 0.943 0.070 

ERT, total correct 

56.60 (11.15) 62.00 (9.45) 

<0.00

1 <0.001 <0.001 0.358 

SAS, total score 1.58 (0.45) 1.69 (0.53) 0.127 0.236 0.4021 0.136 

Note. Median (interquartile range) reported. <Adj. FDR p-value= corresponds to the p-value after 

adjusting for covariates (sex, age, socio-economic status) and correcting for multiple comparisons 

with FDR. Effect sizes are calculated using Wilcoxon Glass Rank Biserial Correlation. Missing data: 
a FT n=7, VPT n=22; b FT n=21, VPT n=22; c FT n=21, VPT n=19; d FT n=12, VPT n=17; e FT n=5, 

VPT n=9. Abbreviations. AQ10 = Autism Quotient; CANTAB = Cambridge Neurophysiological Test 

Automated Battery; CAARMS = Comprehensive Assessment of At-Risk Mental States; COWAT = 

Controlled Oral Word Association Test; CPT = Continuous Performance Test; ERT = Emotion 

Recognition Task; FT= full-term; GHQ = General Health Questionnaire; IED = Intra-Extra 

Dimensional Set Shift; MOT = Motor Screening Task; PDI = Peters Delusion Inventory; SAS = 
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Social Adjustment Scale; SOC = Stockings of Cambridge; TMT-B = Trail Making Task B; VPT = 

very preterm; WASI = Wechsler Abbreviated Scale of Intelligence.  

 

 

Figure 2. Radar plots showing differences in behavioural profiles between A) VPT and 

FT adults and B) At-risk and Resilient data-driven behavioural subgroups. Z-scores 

were computed for each group and plotted accordingly. For visual illustrative purposes, 

values for scales indicating poorer outcomes were reversed, so that larger Z-scores here 

indicate generally more optimal outcomes. *=p<0.05; **=p<0.01; ***p<0.001. Refer to 

Table 2 legend for behavioural measure abbreviations and Table SM 1 for descriptions. 

1.3.2 Data-driven behavioural subgroups 

Two data-driven behavioural subgroups were identified and labelled as 8At-risk9 and 

8Resilient9, based on their observed phenotypic profiles (Table 3; Figure 2B).  

Table 3. At-risk and Resilient behavioural subgroup profiles. 

 

Subgroup 1 – 

Resilient 

(n=71) 

Subgroup 2 

– At-risk 

(n=85) 

p-value FDR p-

value 

Adj. FDR 

p-value 

Effect size 

Age at assessment, 

years 
29.83 (4.16) 30.22 (4.47) 0.972 0.972 n/a -0.004 

Framewise 

Displacement, mm 
0.13 (0.07) 0.13 (0.06) 0.654 0.690 0.575 -0.042 

COWAT, total words 14.00 (5.50) 13.00 (4.00) 0.071 0.097 0.117 0.168 

A) VPT vs FT groups Groups

FT

VPT

COWAT

CANTAB - SOC

CANTAB - IED *

TMT-B

CPT

WASI –IQ ***

CANTAB - MOTPDI

AQ10

CAARMS

GHQ

ERT ***

SAS

B) At-risk vs Resilient behavioural subgroups Subgroups

Resilient

At-risk

COWAT

CANTAB - SOC ***

CANTAB - IED  **

TMT-B ***

CPT **

WASI - IQ

CANTAB - MOT  **PDI ***

AQ10 ***

GHQ ***

ERT 

SAS ***

CAARMS ***
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CANTAB – SOC, 

problems solved 
10.00 (2.00) 9.00 (2.00) < 0.001 < 0.001 < 0.001 0.371 

CANTAB – IED, total 

errors adjusted 
10.00 (11.00) 18.00 (26.60) 0.002 0.004 0.002 -0.289 

TMT-B, time to finish 

task 
61.00 (25.20) 78.00 (39.00) < 0.001 < 0.001 < 0.001 -0.428 

CPT, total reaction 

time for correct 

responses 

406.00 (51.30) 
421.00 

(61.40) 
0.005 0.009 0.008 -0.260 

WASI – full scale IQ 
112.00 (15.50) 

108.00 

(14.00) 
0.038 0.059 0.008 0.194 

CANTAB – MOT, 

reaction time 

675.00 

(171.50) 

741.00 

(255.00) 
< 0.001 < 0.001 < 0.001 -0.341 

PDI, total score 13.00 (16.50) 41.80 (45.00) < 0.001 < 0.001 < 0.001 -0.596 

AQ10, total score 2.00 (1.92) 3.00 (2.71) < 0.001 < 0.001 < 0.001 -0.385 

CAARMS, general 

psychopathology score 
0.00 (2.00) 4.60 (4.20) < 0.001 < 0.001 < 0.001 -0.654 

GHQ, total score 8.00 (2.00) 13.00 (6.00) < 0.001 < 0.001 < 0.001 -0.663 

ERT, total correct 58.40 (12.60) 60.00 (9.00) 0.112 0.142 0.132 -0.148 

SAS, total score 1.44 (0.26) 1.81 (0.50) < 0.001 < 0.001 < 0.001 -0.691 

Birth status, n (%)   0.558 0.623 n/a V = 0.060 

VPT 41 (57.75%) 44 (51.767%)     

FT 30 (42.25%) 41 (48.24%)     

Sex, n (%)   0.169 0.200 n/a V = 0.123 

Male 43 (60.56%) 41 (48.24%)     

Female 28 (39.44%) 44 (51.77%)     

a Participants’ current 
socio-economic status, 

n (%) 

  < 0.001 0.001 n/a V = 0.365 

I – II 46 (64.79%) 30 (35.29%)     

III 21 (29.58%) 31 (36.47%)     
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IV – V 0 (0.00%) 2 (2.35%)     

Student 1 (1.41%) 11 (12.94%)     

Unemployed 2 (2.82%) 11 (12.94%)     

a Parental socio-economic status at birth, n (%) 0.055 0.080 n/a V = 0.208 

I – II 44 (61.97%) 33 (38.82%)     

III  16 (22.53%) 30 (35.29%)     

IV – V  5 (7.04%) 6 (7.06%)     

Note. Median (interquartile range) reported unless stated otherwise where number of participants (n) is 

reported alongside percentage (%). <Adj. FDR p-value= corresponds to the p-value after adjusting for 

covariates (sex, age, socio-economic status) and correcting for multiple comparisons with FDR. Effect 

sizes are calculated using Wilcoxon Glass Rank Biserial Correlation, unless otherwise stated. Cramer’s 
V (V) effect size was used for categorical variables. a defined in Table 1. Abbreviations: as defined in 

Table 2.  

In summary, the At-risk subgroup had less optimal executive function and attention 

scores probing spatial planning, attentional set-shifting, visuo-motor coordination, 

comprehension abilities, sustained attention and response inhibition (CANTAB – SOC, MOT 

and IED, the TMT-B, and CPT), compared to the Resilient subgroup. The At-risk subgroup 

also had less optimal social adjustment, mental wellbeing, and psychiatric scores (PDI, 

CAARMS, GHQ, and SAS), and increased autistic traits (AQ-10 scores), compared to the 

Resilient subgroup. The two subgroups showed no differences in full-scale IQ (WASI), 

emotion recognition (ERT), or phonemic verbal fluency (COWAT). However, the At-risk 

subgroup had a higher proportion of individuals with lower own socio-economic status 

compared to the Resilient subgroup. Parental socio-economic status did not differ between 

the subgroups.  

52% of the VPT adults in our sample clustered into the At-risk subgroup, and the 

remaining 48% into the Resilient subgroup (Figure 3). Upon examining VPT adults only, 

there were no significant differences between the At-risk and Resilient subgroups in terms of 

perinatal clinical measures (i.e., gestational age, birth weight, or perinatal brain injury) (Table 

SM 3; Figure SM 3). In terms of parental socio-economic status, there were no differences 

between At-risk and Resilient subgroups within VPT or FT adults (Table SM 3 and Table SM 

4, respectively). As for participants9 own socio-economic status, only those born VPT 

displayed differences between the data-driven behavioural subgroups, where more VPT 
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individuals with higher managerial, administrative, and professional occupations belonged 

the Resilient subgroup compared to the At-Risk subgroup (Table SM 3). However, socio-

economic status for those born FT did not differ significantly between the two data-driven 

subgroups (Table SM 4). 

 

Figure 3. Alluvial plot showing VPT (in blue) and FT (in grey) adults clustering into the 

At-risk and Resilient data-driven behavioural subgroups. 

1.3.3 Between-group differences in rsFC  

We report NBS analyses using p-NBS-Threshold values powered to detect a 

significant effect, whilst also reducing component size (i.e., not p = 0.05) (Table SM 5). Main 

results reported here are from one-tailed NBS analyses using p-NBS-Threshold = 0.01, and 

additional sensitivity analyses investigating rsFC using a more stringent threshold (p-NBS-

Threshold = 0.001) are reported in Supplementary Material. 

VPT < FT. NBS results showed weaker rsFC in the VPT group compared to the FT 

group (i.e., VPT < FT) in one component comprising 360 nodes (i.e., 96.25% of all regions) 

and 1467 edges (i.e., 2.10% of the 69,751 possible connections), with a component strength 

of 616.04 (p-FWER value = 0.007). Regions included in this component were widespread 

across the brain (Figure 4A; Table SM 6). Nodes with the highest number of connections 

within the component (i.e., component 8hub9 regions) were predominantly localised to 

superior temporal gyrus, inferior and superior parietal cortex, inferior frontal, orbitofrontal, 

anterior cingulate and medial prefrontal cortex, inferior premotor, a lateral occipital/posterior 
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temporal visual area, dorsolateral prefrontal cortex, medial and lateral temporal, and posterior 

cingulate cortex. Component within- and between-network connectivity was highest in the 

DMN (Figure 5A). 

 

Figure 4. Percentage of edges connected to each region (i.e., node) within the significant 

NBS components for A) VPT vs FT groups and B) At-risk vs Resilient behavioural 

subgroups. Main analysis results from NBS modelling using a p-NBS-Threshold of 0.01, 

1000 permutations, and linear models correcting for covariates (age, sex, in-scanner head 

motion, and socio-economic status). Darker colours (blue) denote higher percentages of 

edges and lighter colours (light blue and white) denote lower percentages, with areas marked 

in grey indicating regions that are not forming part of the NBS component. 

VPT > FT. NBS results also showed greater rsFC in the VPT group compared to the 

FT group (i.e., VPT > FT) in one component comprising 340 nodes (i.e., 90.91% of regions), 

962 edges (i.e., 1.37% of possible connections) and component strength of 358.03 (p-FWER 

value < 0.001). 8Hub9 regions within this component were less widespread across the brain 

and localised within posterior opercular cortex, posterior cingulate cortex, inferior parietal 

cortex, right orbitofrontal cortex, bilateral anterior cingulate and medial prefrontal cortex, 

superior temporal gyrus (auditory association cortex), dorsolateral prefrontal cortex, right 

lateral temporal cortex, right temporo-parietal-occipital junction, and medial superior parietal 

cortex (Figure 4A; Table SM 7). The highest number of connections found in the component 

were within the DMN itself, followed by a moderate number of widespread connections in 

the VAN, and especially between the VAN and the visual network. 
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A total of 326 nodes (i.e., 87.17% of regions) were present in both VPT < FT and 

VPT > FT components; however, the sets of edges connecting nodes within each component 

were mutually exclusive with no overlapping edges.  

 

Figure 5. Within- and between-network connectivity of the significant NBS components 

in A) VPT vs FT groups and B) At-risk vs Resilient behavioural subgroups. Results from 

main NBS analyses using a p-NBS-threshold of 0.01: i) circle plots illustrating within- and 

between-network connections within the significant component only; ii) bar plots showing 

the sum of T-statistic strength values within the significant NBS component belonging to the 

different intrinsic connectivity networks (i.e., seven Yeo networks and an eighth network of 

subcortical regions), and iii) within- and between-network connectivity strength (T-statistic 

sum). Heatmaps showing total number of within- and between-network connections as a 

percentage of the total number of connections forming the significant component: iv) at p-

NBS-threshold = 0.01, and v) p-NBS-threshold = 0.001. 
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At-Risk < Resilient. Contrasts testing for lower rsFC in the At-risk compared to the 

Resilient subgroup identified one significant NBS component with 337 nodes (i.e., 90.11% of 

regions), 832 edges (i.e., 1.19% of possible connections) and a strength sum of 309.04 (p-

FWER = 0.019). Hub regions with the highest number of connections within the component 

were predominantly located in insular, frontal opercular, and posterior opercular cortex 

(Figure 4B; Table SM 8). Other hub regions were found in the left inferior frontal cortex, 

lateral temporal cortex, right temporo-occipital visual area, left temporo-parieto-occipital 

junction, anterior cingulate, medial prefrontal cortex, left supplementary motor area, primary 

somatosensory cortex, and the superior temporal sulcus (auditory association cortex) (Figure 

4B; Table SM 8). Component within- and between-network connectivity were most 

pronounced between the VAN and somatomotor networks, and within the VAN (Figure 5B).  

At-Risk > Resilient. No significant NBS components were detected when testing for 

higher rsFC in the At-risk compared to the Resilient subgroup.  

Confirming the robustness of the observed effects from analyses using a p-NBS-

threshold of 0.01, sensitivity NBS analyses using a more stringent p-NBS-threshold of 0.001 

reported significant components with greater sparsity (Table SM 9), but largely similar rsFC 

patterns (Figure 4; Figure 5Av; Figure 5Bv). 

Post-hoc exploratory analyses investigating the interaction between clinical (VPT vs 

FT) groups and data-driven behavioural subgroups (At-risk vs Resilient) on rsFC did not 

identify significant components (p-FWER > 0.05) at any p-NBS-Threshold examined (0.05, 

0.01, and 0.001). Similarity index calculations indicated that the At-risk < Resilient 

component had a high number of nodes, which were also part of the VPT < FT component 

(n=325; Sørensen-Dice = 0.93) and the VPT > FT component (n=304; Sørensen-Dice = 

0.90), but very few edges overlapped with either clinical component; n=9 edges (Sørensen-

Dice = 0.01) and n=22 edges (Sørensen-Dice = 0.03), respectively. 

1.4 Discussion 

In this study, we compared rsFC between groups of adults stratified in terms of (i) 

their clinical characteristics (i.e., VPT and FT birth) as well as (ii) their behavioural profiles 

identified using data-driven consensus clustering, regardless of their gestational age at birth. 

In VPT compared to FT adults, we identified complex preterm-specific patterns of both 

increased and decreased intrinsic rsFC predominately characterised by hypo-connectivity 
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between the DMN and other networks examined and hyper-connectivity within the DMN and 

between the VAN and the visual network. When VPT and FT born adults were stratified in 

terms of their data-driven behavioural profiles, irrespective of gestational age at birth, we 

identified an 8At-risk9 subgroup with more behavioural difficulties and reduced rsFC 

anchored in frontal opercular and insular areas of the VAN, relative to a 8Resilient9 subgroup 

with more favourable behavioural outcomes.  

In summary, our results indicate that there are complex and widespread long-lasting 

preterm-specific rsFC alterations, which we speculate may confer both risk and resilience to 

the behavioural sequelae associated with VPT birth. That is, while these rsFC alterations may 

partly explain the behavioural difficulties specific to those born VPT in cognitive and socio-

emotional processing observed here, they may also aid the preservation of optimal outcomes 

in other behavioural domains where no between-group differences were noted (e.g., 

psychiatric difficulties, sustained attention, planning or phonemic verbal fluency). On the 

other hand, localised functional hypo-connectivity anchored in insular and frontal opercular 

regions observed in our study may characterise participants with unfavourable compared to 

favourable cognitive and behavioural outcomes, irrespective of birth status. 

1.4.1 Differences in rsFC and behavioural outcomes between VPT and FT born adults  

We identified complex patterns of both hypo- and hyper-connectivity predominantly 

located in the DMN, VAN, and visual networks in VPT compared to FT participants. Such 

rsFC alterations are evident in adulthood and may represent the neurobiological architecture 

underlying the attentional, cognitive, and socio-emotional processing difficulties associated 

with VPT birth, commonly referred to as the <preterm behavioural phenotype= (Johnson and 

Marlow, 2011). However, in our cohort, VPT relative to FT born adults only differed in 

selected dimensions that have been studied as part of the <preterm behavioural phenotype=; 

they had lower full-scale IQ, difficulties in rule learning, attentional set shifting abilities 

(measured by the CANTAB IED), and emotion recognition.  

VPT adults, compared to controls, displayed functional hypo-connectivity between 

the DMN and the visual, somatomotor, dorsal attention, limbic and frontoparietal networks, 

as well as hyper-connectivity within the DMN itself. In line with our findings, patterns of 

both hyper- and hypo-connectivity in the DMN have been previously reported in VPT born 

children and adults (Bäuml et al., 2015; Degnan et al., 2015; Mossad et al., 2022; Wheelock 
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et al., 2021), suggesting that functional DMN connectivity alterations may be characteristic 

of VPT samples. Functional DMN connectivity emerges during the third trimester of 

gestation, a critical period of brain development during which VPT infants are born, and 

previous studies have reported structural and functional brain alterations at term-equivalent 

age in regions belonging to the DMN (Doria et al., 2010; Sa de Almeida et al., 2021; 

Scheinost et al., 2022; Smyser et al., 2016, 2010). Extending beyond preterm populations, 

functional alterations in the DMN have been described in several psychiatric conditions, 

including schizophrenia, anxiety, and mood disorders (Buckner, 2013; Doucet et al., 2020), 

suggesting that the DMN rsFC alterations observed in VPT individuals may represent 

neurobiological changes which could contribute to the behavioural difficulties associated 

with VPT birth.  

On the other hand, alterations in DMN rsFC have also been studied as adaptive neural 

mechanisms; for instance, maintaining attentional capture (i.e., less distractibility) in male 

veterans (Poole et al., 2016). Such findings suggest that functional reorganisation of the 

DMN may also reflect compensatory biological alterations supporting selective cognitive and 

behavioural processing in VPT individuals; in this context referring to the behavioural 

outcomes where no between-group differences were noted in our study sample, including 

spatial planning (CANTAB – SOC), coordination (MOT), cognitive flexibility (TMT-B), 

phonemic verbal fluency (COWAT), sustained attention (CPT), social adaptation (SAS), 

prodromal symptoms (PDI), autism traits (AQ10) and general psychopathology (CAARMS 

and GHQ). This finding emphasises the notion that complex neurobiological alterations 

following VPT birth may confer both risk and resilience to the long-term consequences of 

VPT birth. Further supporting this point, we also identified patterns of hyper-connectivity in 

the VPT relative to the FT group in the VAN, a <circuit-breaker= network which disengages 

during tasks requiring focused attention and activates to redirect attention towards external 

task-irrelevant stimuli (Corbetta and Shulman, 2002; Vossel et al., 2014). Notably, the 

highest proportion of connections were between the VAN and the visual network, which may 

reflect adaptive functional reorganisation in the VPT group. In a previous study, stronger 

rsFC changes in visual and attention networks were associated with fewer attention deficits in 

visual short-term memory storage in VPT relative to FT adults (Finke et al., 2015). Another 

study found that attention processing was selectively supported by VAN and visual network 

connectivity in VPT born children, and by dorsal attention, frontoparietal, and cingulo-

opercular network connectivity in FT controls (Wheelock et al., 2021). The authors argued 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2024. ; https://doi.org/10.1101/2024.01.22.576651doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.22.576651
http://creativecommons.org/licenses/by/4.0/


that VPT children may have a greater reliance on visually stimulated <bottom-up= neural 

processes to maintain attention mechanisms, which is in line with their previous findings 

showing poorer attention abilities in VPT children with reduced volumes in regions of the 

visual network (Lean et al., 2017).  

We also identified that component 8hub9 regions (i.e., those with a high percentage of 

connections within the component) with higher rsFC in the VPT group relative to the FT 

group, were localised to brain regions previously identified as nodes of a 8rich-club9 network 

(i.e., the sub-network of highly connected brain regions which are also highly connected to 

one another), important for efficient integration and transfer of information between systems 

(Grayson et al., 2014; van den Heuvel and Sporns, 2013). We previously reported stronger 

rich-club network structural connectivity and weaker peripheral connectivity in an 

overlapping sample of VPT adults compared to FT controls, and argued that increased 

resources in the VPT brain may be preferentially allocated to the rich-club network in order 

to maintain efficient information exchange across the brain (Karolis et al., 2016). 

1.4.2 Differences in rsFC and behavioural outcomes between data-driven behavioural 

subgroups  

Considering the neurodevelopmental heterogeneity exhibited within and between those 

born VPT and FT, it remains to be established whether we can use rsFC to characterise the 

behavioural difficulties observed in VPT individuals (Anderson et al., 2021; Nosarti et al., 

2012). Aiming to address this question, we stratified VPT and FT adults into data-driven 

behavioural subgroups and investigated specific rsFC alterations which may differentiate 

between them. We identified two data-driven behavioural subgroups, irrespective of birth 

status (VPT and FT): an 8At-risk9 subgroup with more executive function, attention, socio-

emotional, and psychiatric difficulties, compared to a 8Resilient9 subgroup, with more 

favourable behavioural outcomes. Notably, the behavioural differences observed between 

data-driven subgroups were more pronounced than those observed between VPT and FT 

adults. 

We also identified underlying rsFC differences characterising the distinct data-driven 

behavioural subgroups, where the At-risk, compared to the Resilient subgroup, displayed 

hypo-connectivity within the VAN and between the VAN and the somatomotor network. 

Specifically, the predominant connectivity patterns forming this component were anchored in 
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frontal opercular and insular regions of the brain, which play an integral role in detecting 

bottom-up salient information from the environment and switching between networks to 

produce appropriate cognitive control, socio-emotional, and interoceptive somatomotor 

responses (Deen et al., 2011; Higo et al., 2011; Loitfelder et al., 2015; Menon and Uddin, 

2010; Quirmbach and Limanowski, 2022; Uddin et al., 2017). Our findings here are in line 

with previous studies showing structural and functional alterations in insular and opercular 

regions in adults experiencing mental health difficulties (Horn et al., 2010; Yin et al., 2018) 

and executive dysfunction (Hausman et al., 2022). Furthermore, studies investigating rsFC 

across multiple psychiatric groups identified transdiagnostic patterns of hypo-connectivity in 

lower-order networks, such as the somatomotor network, as well as higher order networks, 

such as the VAN (Baker et al., 2019; Li et al., 2021). The rsFC patterns identified here 

characterised data-driven behavioural subgroups irrespective of gestational age at birth (VPT 

and FT), indicating that these specific neural mechanisms may represent biomarkers of 

behavioural outcomes in the general population which are not unique to VPT individuals. We 

also found no significant interaction effects between birth group (VPT vs FT) and data-driven 

behavioural subgroups (At-risk vs Resilient) on rsFC and very little overlap in rsFC between 

the clinical and behavioural components identified by NBS, which may further support our 

speculation that the differences in rsFC between the data-driven subgroups may be 

characterising behavioural outcomes independently of gestational age at birth. However, 

future studies with larger samples, and hence greater statistical power, may further 

investigate the possible influence of VPT (vs FT) birth on the relationship between rsFC 

alterations and behavioural outcomes.  

Our post-hoc analyses aimed to explore whether specific enriching factors, or lack of 

certain social or clinical risk factors, protected the VPT adults belonging to the Resilient 

subgroup from developing an At-risk behavioural profile. In contrast to previous studies in 

VPT children, we found that perinatal clinical risk was not higher in VPT adults who 

belonged to an At-risk (vs Resilient) subgroup (Hadaya et al., 2023; Poehlmann et al., 2015). 

Social risk, on the other hand, may be specifically related to the difficulties observed in the 

VPT At-risk subgroup, which contained more VPT adults from more socially disadvantaged 

backgrounds compared to the Resilient subgroup, while this relationship was not observed in 

FT adults. These findings as well as previous studies in children (Hadaya et al., 2023; Lean et 

al., 2020; Ross et al., 2016; Vanes et al., 2021) could be interpreted within a <differential 

susceptibility= framework, which posits that vulnerable individuals (e.g., those born VPT) are 
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particularly sensitive to environmental influences, where negative or positive factors (such as 

social (dis)advantage) can promote either worse or more optimal outcomes, respectively 

(Belsky et al., 2007). Therefore, VPT adults in the At-risk subgroup may have experienced a 

<double-hit= of being born VPT as well as being socio-economically disadvantaged. 

Nonetheless, it is worth noting, that socio-economic status in our sample only partially 

explained behavioural outcomes, as our main behavioural and rsFC results remained 

significant after adjusting for this covariate. It is therefore plausible that additional 

unmeasured environmental or hereditary factors (e.g., parental mental health or cognitively 

stimulating home environment) (Hadaya et al., 2023; Lean et al., 2020; Vanes et al., 2021) 

may have contributed to the behavioural outcomes observed in the distinct subgroups.  

This study has several strengths, which include the use of a large sample of both VPT 

and FT born controls, the implementation of rigorous consensus clustering methods to obtain 

data-driven behavioural subgroups, as well as the use of fMRIPrep, a robust automated 

resting state functional MRI pre-processing pipeline which promotes pre-processing 

transparency and aims to alleviate hurdles related to reproducibility in functional MRI 

analyses (Esteban et al., 2019; Pernet and Poline, 2015). We also acknowledge several 

limitations to our study. After excluding participants with excessive head motion, behavioural 

outliers, missing data, or poor alignment of functional MRI data, supplementary analyses 

showed that the subsample of VPT adults used in our analyses had relatively better cognitive 

and socio-emotional processing outcomes in comparison to VPT adults excluded from the 

analyses. This may limit the generalisability of our results to cohorts of low-risk VPT adults 

with relatively favourable behavioural outcomes. It may also explain why our two data-

driven behavioural subgroups have similar proportions of VPT and FT born individuals, 

which is not in line with previous studies in children that have reported higher ratios of VPT 

to FT individuals belonging to At-risk subgroups and lower ratios to Resilient subgroups 

(Burnett et al., 2019; Lean et al., 2020). On the other hand, our results may be reflective of 

the increased rates of mental health difficulties with increasing age, which may not yet be 

apparent in childhood (Otto et al., 2021; Solmi et al., 2022). Future studies with more 

representative samples of VPT adults could help elucidate these potentially inconsistent 

findings. Another possible limitation is that we did not include known risk factors (such as 

socio-economic status, parenting or clinical measures) in the clustering model, which may 

have increased the difficulty in identifying nuanced subgroups exhibiting 8equifinal9 

trajectories (i.e., those with similar behavioural outcomes but distinct underlying risk factors) 
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(Cicchetti and Rogosch, 1996; Hadaya et al., 2023). However, to our knowledge, this is the 

first study to parse behavioural heterogeneity in VPT adults; therefore, we decided to follow 

an approach similar to those implemented in the vast majority of studies in VPT children, 

where individual-level behavioural variables were included as inputs to the clustering model 

and risk factors were explored post-hoc (Bogičević et al., 2021; Burnett et al., 2019; Johnson 

et al., 2018; Lean et al., 2020; Poehlmann et al., 2015; Ross et al., 2016; van Houdt et al., 

2020).  

In summary, this study shows that there are complex patterns of rsFC alterations which 

are specifically associated with VPT birth in adult life. We speculate that these alterations 

may reflect neural adaptations conferring both risk and resilience to the long-term sequelae of 

VPT birth. We also identify distinct rsFC alterations in insular and frontal opercular regions 

in a data-driven At-risk relative to a Resilient behavioural subgroup, irrespective of birth 

status (VPT vs FT), indicating that these neurobiological changes may reflect biomarkers of 

behavioural outcomes in the general population that are not unique to those born VPT. 
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