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Abstract

edgeR is an R/Bioconductor software package for differential analyses of sequencing data in the

form of read counts for genes or genomic features. Over the past 15 years, edgeR has been

a popular choice for statistical analysis of data from sequencing technologies such as RNA-seq

or ChIP-seq. edgeR pioneered the use of the negative binomial distribution to model read count

data with replicates and the use of generalized linear models to analyse complex experimental de-

signs. edgeR implements empirical Bayes moderation methods to allow reliable inference when

the number of replicates is small. This article announces edgeR version 4, which includes new

developments across a range of application areas. Infrastructure improvements include support

for fractional counts, implementation of model fitting in C++, and a new statistical treatment of the

quasi-likelihood pipeline that improves accuracy for small counts. The revised package has new

functionality for differential methylation analysis, differential transcript expression, differential tran-

script and exon usage, testing relative to a fold-change threshold and pathway analysis. This article

reviews the statistical framework and computational implementation of edgeR, briefly summarizing

all the existing features and functionalities but with special attention to new features and those that

have not been described previously.

Introduction

Next Generation Sequencing (NGS) has revolutionized biomedical research over the past 15–20

years. RNA-seq has become the standard technology for profiling gene and transcript expression

[1, 2] while other technologies such as ChIP-seq, ATAC-seq, CUT&Tag, BS-seq and Hi-C allow

high-resolution exploration of the molecular mechanisms by which expression is regulated [3].

edgeR is an R software package for differential analyses of data arising from NGS or similar tech-

nologies in the form of sequence read counts for genes or genomic features [4, 5, 6]. It is particularly

designed to detect genes or features that have changed abundance levels between experimental

conditions or cell types. edgeR pioneered the use of negative binomial (NB) generalized linear mod-

els (GLMs) to model read counts in genomic research [7, 8]. edgeR implements a range of novel

statistical methods including methods for borrowing information between genes, a strategy that is

essential for genomic experiments with small sample sizes [4, 7, 9, 10]. It has become the underly-

ing analysis engine for a wide range of sequencing technologies including ChIP-seq [11], Hi-C [12],

bisulfite sequencing [13] and even proteomics [14, 15, 16]. The use of an explicit probabilistic count

distribution allows edgeR to make meaningful inferences even for very low counts and provides a
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distinction with normal-based methods such as limma [17].

The edgeR package has undergone a number of major revisions since it was first released as part

of the Bioconductor project in 2008 [18]. The original edgeR v1 pipeline (now called the “clas-

sic” pipeline) used exact conditional likelihood to achieve unbiased estimation of the NB-dispersion,

exact NB tests to make pairwise comparisons between groups, and weighted likelihood empirical

Bayes to borrow strength between genes [4, 5, 6]. These innovative statistical approaches allowed

edgeR to achieve stable and reliable results even for experiments with very small numbers of bio-

logical replicates.

Full GLM functionality was introduced to edgeR in September 2010, allowing edgeR to model ar-

bitrarily complex experiments including multiple treatment factors, batch effects and continuous co-

variates. All the original functionality was transferred to the GLM context, with Cox-Reid approximate

conditional inference replacing the exact conditional likelihoods and likelihood ratio tests replacing

the exact NB tests [7]. The edgeR GLM pipeline was released as edgeR v2 in 2011.

The second major revision was the introduction of quasi-likelihood (QL) methods in January 2012

[19, 20, 10, 21]. The QL model added a second dispersion parameter, the QL-dispersion, which

increased edgeR’s ability to model technical as well as biological sources of variability. Another key

advantage was that the QL-dispersions could be estimated by applying limma’s parametric empirical

Bayes (EB) procedures to the genewise GLM deviances, which in turn enabled edgeR to leverage

some of limma’s exact small-sample theory [22]. The amount of EB moderation applied to the

genewise dispersions could be optimized for the specific data at hand [9]. The GLM likelihood ratio

tests could be replaced by quasi-F-tests, which allow for the uncertainty with which the genewise

dispersions are estimated and thereby provide rigorous control of the false discovery rate (FDR)

even for small sample sizes [19]. The edgeR QL pipeline was released as part of edgeR v3 in 2012.

This article announces edgeR version 4, which was released in October 2023 and includes new

developments across a range of application areas. The revised package implements two funda-

mental changes that improve edgeR’s treatment of small counts and affect most analyses going

forward. The first is a continuous generalization of the NB distribution that allows edgeR to accept

fractional counts without rounding [23]. The second is a major revision of the QL pipeline based

on improvements to the classical statistical theory underlying GLMs. The revision ensures unbi-

ased QL-dispersion estimates even when the read counts are very small and dramatically reduces

computation time for large datasets with many samples. Meanwhile, substantial parts of the edgeR

package have been rewritten in C++ to increase speed and reduce memory usage.

The package also has new functionality for differential methylation analysis [13], differential transcript

expression [23], differential exon usage, differential transcript usage, testing relative to a fold-change

threshold and pathway analysis.

This article reviews the statistical framework and computational implementation of edgeR, briefly

summarizing all the existing features and functionalities but with special attention to the new features

and those that have not been described previously.

Materials and methods

Summary of the edgeR distributional model

Log-linear models.

The input to edgeR is a matrix of sequence read counts with rows corresponding to genomic features

and columns to biological samples. The rows often represent genes, but can correspond to almost
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any meaningful genomic feature including transcripts, exons, exon-exon junctions, genomic regions,

methylation sites or DNA-DNA interactions.

Write µgi for the expected number of reads assigned to feature g in sample i. edgeR assumes that

µgi can be modelled as a log-linear model

logµgi = xT
i βg + logLi

where xi is a covariate vector specifying the experimental conditions applied to sample i, βg is a

coefficient vector that captures the experimental effects and log-fold-changes, and Li is the effective

library size (sequencing depth) for sample i. From a mathematical point of view, the purpose of

edgeR is to test hypotheses about βg.

Technical and biological variation produce a quadratic mean-variance relationship.

Write ygi for the actual number of reads assigned to feature g in sample i. edgeR assumes that

technical replicates produced from the same RNA or DNA sample (and with the same library size)

would result in quasi-Poisson repeatability with variance var(ygi) = σ2

gµgi. This represents the

measurement error associated with sequencing and read alignment of a single sample. In ideal

circumstances, the Poisson dispersion σ2

g is close to 1 [24], but can be much greater than 1 in the

presence of PCR duplication or if reads are probabilistically assigned to features [23]. Single-cell

data and transcript-level quantification are two application areas for which Poisson dispersions larger

than 1 are common.

edgeR also assumes that the true abundance of feature g varies between biological replicates ac-

cording to a gamma distribution with squared coefficient of variation equal to ψg. The read count

distribution therefore follows a mixture distribution across biological replicates with a quadratic mean-

variance relationship of the form

var(ygi) = σ2

gµgi + ψgµ
2

gi

where σ2

g and ψg represent technical and biological variation respectively[7, 23]. In edgeR terminol-

ogy, σ2

g is the quasi-likelihood dispersion (QL-dispersion) and ψg is the squared biological coefficient

of variation (SBCV).

The mean-variance relationship is usually rewritten as the variance function for a quasi-NB GLM,

var(ygi) = σ2

g

(

µgi + φgµ
2

gi

)

where φg = ψg/σ
2

g is the NB dispersion parameter. If σ2

g = 1, then the counts ygi can be considered

to follow a NB distribution. If σ2

g ̸= 1, then ygi is distributed as a gamma mixture of quasi-Poisson

distributions and quasi-NB methods are used.

Empirical Bayes.

edgeR implements two empirical Bayes estimation strategies, a weighted likelihood empirical Bayes

strategy for estimating the NB dispersions, and a limma-style parametric empirical Bayes strat-

egy for estimating the QL-dispersions. The edgeR’s classic and GLM pipelines assume the QL-

dispersions are equal to 1 and use weighted likelihood empirical Bayes to estimate feature-specific

NB-dispersions. The more recent QL edgeR pipelines set the NB-dispersions to global (trended

or constant) values and then apply limma-style empirical Bayes to estimate feature-specific QL-

dispersions.

Divided counts.

Baldoni et al. [23] introduced the new concept of divided counts. If a reliable estimate of σ2

g is

available, then one can form the divided counts zgi = ygi/σ
2

g . The divided counts have mean

E(zgi) = νgi = µgi/σ
2

g

and variance

var(zgi) = νgi + ψgν
2

gi,
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showing that the divided counts have the same variance function as a NB distribution with the same

SBCV as the original data but with the technical over-dispersion removed. The divided counts have

reduced library sizes compared to the original counts, showing that the QL-dispersions can be inter-

preted as reducing the effective information content of each count. In the presence of QL-dispersion,

the counts have the same information content as the divided counts without QL-dispersion.

Divided counts are currently used by edgeR only for transcript-level expression analyses, when

testing for differential transcript expression or differential transcript usage. The strategy is potentially

useful however whenever extra information is available about the QL-dispersions additional to the

read counts themselves.

Observation-level weights and library sizes.

edgeR allows users to specify library sizes for individual observations if desired, which generalizes

the log-linear model to

logµgi = xT
i βg + logLgi

where Lgi is the observation-specific effective library size. In edgeR terminology, the matrix of

logLgi values is the offset matrix. Observation-specific library sizes can be used to implement

non-linear normalization in edgeR [25, 26, 27, 12, 11] or to allow for transcript length effects [28].

edgeR v4 also allows observation-specific dispersions by

var(ygi) =
σ2

g

wgi

(

µgi + φgµ
2

gi

)

where the wgi are known GLM weights. The weights can be used to down-weight outlier samples or

observations [29].

Example datasets

Example edgeR diagnostic plots are shown in Figure 2. The MDS plot in panel (a) is generated

from the RNA-seq profiles of 882 human breast tumour samples from The Cancer Genome Atlas

(TCGA) [30]. Each sample is classified as one of the five breast cancer intrinsic subtypes based on

PAM50 gene signatures [31]. The data was downloaded from the TCGA Data Portal (https://tcga-

data.nci.nih.gov) in the form of genewise read counts and processed as previously described [32].

Panels (b), (c) and (d) display a BCV plot, a QL-dispersion plot, and a mean-difference (MD) plot

respectively from the RNA-seq differential expression analysis described by Chen et al. [10]. The

RNA-seq data for this analysis is from Fu et al. [33]. Panel (e) shows a differential splicing plot for

the Foxp1 gene. The Foxp1 exons that are differentially used under the comparison are highlighted

in the plot. The RNA-seq data for the differential exon usage analysis is from Fu et al. [34].

Results

Statistical principles

Differential analyses.

edgeR is designed to conduct differential analyses of sequence read counts obtained from next

generation sequencing (NGS) or similar technologies [6]. A dataset consists of a matrix of read

counts where rows represent genomic features such as genes, exons, transcripts, genomic inter-

vals, methylation sites or DNA-DNA interactions, and columns are samples associated with different

biological groups or treatment conditions. In the following, we will refer to the genomic features

as “genes”, with the understanding that the methodology is applicable to any genomic feature for

which read counts can be obtained. The fact that edgeR focuses on differential results rather than

on quantification of abundance means that edgeR can focus directly on statistical analysis of the

read counts. In most analyses there is no need to adjust the read counts for expression biases

such as gene length, GC content or mappability because, under the null hypothesis of no differential

expression, such biases affect all samples equally and therefore cancel out of differential analyses.
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The negative binomial distribution captures biological variations.

edgeR assumes that the read counts follow NB distributions, an assumption that can be justified by

a mixture model in which the true expression of each gene varies between biological replicates with

constant coefficient of variation and the measurement error for individual samples follows a Poisson

law [7, 23]. The use of an explicit count distribution allows meaningful probability calculations even

for very small counts. The NB distribution implies a quadratic mean-variance relationship in which

technical variation dominates for small counts and biological variation dominates for large counts.

This assumption has been validated by extensive data analyses showing that NGS datasets do show

the sort of quadratic mean-variance relationship that the NB distribution implies. The NB dispersion

parameter estimates the coefficient of variation of the true expression levels. The square-root of the

NB dispersion is called the biological coefficient of variation (BCV) in edgeR [7].

Generalized linear models handle complex experiments.

Another advantage of the NB distribution is that it belongs to the family of distributions for which gen-

eralized linear modelling is possible [8]. The NB GLM framework adopted in edgeR provides great

flexibility for analysing complex multifactor experiments. Different experimental conditions and batch

effects can be easily handled by the design matrix. It enables time-course analyses by incorporating

a spline curve across different time points into the design [35]. Very general analyses are possible,

for example gene-gene correlations can be detected by adding log-expression values for a target

gene as a covariate column in the design matrix.

Unbiased estimation of the NB-dispersion.

Obtaining an unbiased estimator of the NB-dispersion is not straightforward because regular maxi-

mum likelihood estimation is biased leading to under-estimated dispersions [5]. Unbiased estimation

requires the likelihood be adjusted for estimation of the linear model parameters by conditioning on

the linear model estimators, a process analogous to REML for normal-based models [36]. edgeR

originally implemented an exact conditional likelihood approach, which was very effective but was

applicable only to relatively simple oneway experiments with multiple groups but no blocks or co-

variates [5]. In edgeR v2, Cox-Reid adjusted profile likelihood (APL) was adopted under the more

flexible GLM framework [37, 7]. This allows unbiased estimation of the NB-dispersions even for

analyses with complex experimental designs [7].

Borrowing information by weighted likelihood empirical Bayes.

Conditional likelihood can be used to obtain genewise dispersion estimates, but simple genewise es-

timation is not reliable for genomic datasets, which typically have many genes or genomic features

but relatively few biological replicates. Given the parallel nature of genomic data, whereby the same

log-linear model is fitted in parallel to a large number of genes, the accuracy of dispersion estimate

for each individual gene can be greatly improved by adopting an empirical Bayes strategy to borrow

strength between genes. Empirical Bayes variance estimation has proved extremely effective for

the limma package [38, 22], but a similar parametric empirical Bayes approach is not available for

the NB dispersion because there is no conjugate prior distribution for the NB dispersion parame-

ter. Instead, a weighted likelihood approach was implemented in edgeR to produce an approximate

empirical Bayes strategy [4, 7, 39, 9]. The weighted likelihood approach has the advantage that it

makes no assumptions about the shape of the prior distribution but instead adapts to the data at

hand. Under the NB GLM framework, a common NB-dispersion for all the genes can be estimated

by maximizing the total APLs of all the genes with equal weights. To account for the fact that genes

with lower expression level tend to have larger dispersions, trended NB dispersions are introduced

and estimated by maximizing the locally shared APL formed by genes with similar expression levels.

Finally, a gene-specific NB-dispersion can be obtained by maximizing the weighted APLs formed by

the individual APL of that gene and its locally shared APL with a proper weight. The weight repre-

sents the amount of prior information borrowed from the neighbouring genes. The final gene-specific

NB-dispersion estimate can be considered as a compromise between the estimates obtained from

the data for that gene alone and from the other neighbouring genes. This approach has proven to be
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highly effective for stabilizing dispersion estimates when the sample size is small. Initially, a preset

weighting was used for the prior distribution [7]. Later, a QL strategy using the deviances was used

to optimize the prior weight, leveraging limma’s hyperparameter estimation [9]. A variation of the

weighted likelihood empirical Bayes algorithm that is more robust to observational outliers was also

implemented [29].

Quasi-likelihood.

edgeR v3 introduced a QL generalization of the NB model [19, 10]. In edgeR’s QL pipeline, the NB-

dispersions are used to model the global trend in biological variation while the QL-dispersions are

used to accommodate gene-specific variability. The first step is to estimate the global NB-dispersion

trend, same as for the weighted likelihood approach described above. The QL-dispersions are

then estimated by the same empirical Bayes moderation strategy as in limma but with the GLM

residual deviances in place of the residual variances used by limma [22]. As in limma, the posterior

QL-dispersion estimates are moderated towards a trended prior with prior degrees of freedom (df)

estimated from the data as part of the empirical Bayes procedure.

The precision of the posterior QL-dispersion estimators is summarized by their posterior df, which is

made up of the prior df plus the residual df. Quasi-F-tests are then used to test hypotheses with the

posterior df entering as the residual df. The quasi-F-tests provide more rigorous error rate control

than other analysis methods that do not fully reflect the uncertainty with which the QL-dispersions

are estimated [19, 40]. QL has become the default recommended pipeline in edgeR because of its

robustness and very reliable FDR control.

Hypothesis testing for general contrasts.

edgeR v1 was only able to make pairwise comparisons between treatment groups, but later versions

of edgeR can test very general null hypotheses specified by any linear contrast of the linear model

coefficients. This provides enormous flexibility for users. For example, one might compare one

group to the average of other groups simply by specifying suitable contrast weights for the means

of the different groups. Tests can be conducted for a single contrast or for several contrasts at a

time, leading to an analysis of deviance test on several df [8, 10]. For example, one can conduct

an ANOVA-like test for differences between several groups by specifying any set of contrasts that

distinguish the groups. The edgeR GLM functions glmFit and glmLRT conduct likelihood ratio tests

[7]. The edgeR QL functions glmQLFit and glmQLFTest conduct quasi F-tests where the likelihood

ratio statistic is the numerator of the F-statistic and the QL-dispersion is the denominator [8, 10].

Supporting fractional counts.

edgeR was designed for analysing digital gene expression data, which usually comes in the format

of integer counts, and edgeR assumes that read counts follow NB distributions, which has a discrete

probability mass function defined on the non-negative integers. Tools that count reads overlapping

genomic features such as featureCounts [41] or HTSeq [42] do indeed produce integer counts.

However, the read counts can be fractional when the number of sequence reads originating from a

gene or transcript is estimated in a probabilistic manner. RSEM, kallisto and Salmon are examples

of software tools that output estimated gene and transcript counts that are not integers [43, 44, 45].

To handle fractional data without the need for rounding, a continuous generalization of the NB dis-

tribution has been implemented in edgeR. All the binomial coefficients of the NB probability mass

function were replaced with gamma functions resulting in a continuous probability density function

(PDF). A normalizing constant is required to ensure the density integrates to 1. There is no closed-

form for the normalizing constant in the PDF, but it can be shown numerically that the normalizing

constant is very close to 1 and is nearly constant with respect to the mean and dispersion param-

eters. The mean and variance of the continuous NB are also well approximated by the traditional

mean and variance formulas for the NB. The continuous version of NB distribution allows for frac-

tional counts while matching exactly with the discrete NB distribution when the counts are integers.
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Correcting quasi-likelihood for bias.

Traditional quasi-likelihood statistical theory relies an a chisquare approximation to the GLM de-

viances, which can be justified by a saddlepoint approximation [39, 8]. The chisquare approximation

to NB deviances is excellent when the NB-dispersion is relatively small and the counts are relatively

large. Unfortunately, for single-cell data, the NB-dispersions are often large and the counts are small.

For genes with very low counts, average count below 1 for example, the chisquare approximation

underestimates the QL-dispersions.

In edgeR v3 we already implemented an adjustment for the residual df when some of the fitted values

were exactly zero [21]. In edgeR v4, we have implemented a more comprehensive approach. We

drop the use of the saddlepoint approximation and instead approximate the unit deviances by scaled

chisquare random variables on fractional df. The df and the scaling factor are chosen to match the

first two moments (the mean and variance) of the unit deviances exactly, given the fitted mean and

the NB-dispersion for each observation. This approach yields very nearly unbiased QL-dispersion

estimators even for fitted values close to zero and for quite large NB-dispersions. The new approach

makes wide-reaching changes to the package because it produces different residual deviances and

fractional residual df.

Larger datasets.

The edgeR v4 QL pipeline also allows edgeR to analyse larger datasets than previously. The new

QL pipeline allows the estimateDisp function to be bypassed resulting in substantially reduced com-

putation time for large datasets. A oneway multi-group analysis with 1000 samples and 10000 genes

takes about 30 seconds on a laptop computer including dispersion estimation, GLM fitting and test-

ing for differential expression. The same data with a more complex design matrix takes less than

two minutes, depending on the number of predictors.

Analysing next generation sequencing data

Standard analysis steps.

edgeR offers a complete differential analysis pipeline from read counts to lists of differential genes

and pathways. The standard steps in most analyses include data import, filtering out lowly expressed

genes, normalization, data exploration, dispersion estimation, fitting GLMs and hypothesis testing.

edgeR implements one or more functions for each of these steps (Figure 1).

Data import.

The minimum data that edgeR needs to conduct an analysis is a numeric matrix of counts and a

factor or covariate distinguishing the samples. For most users, the first step is to assemble the read

counts and annotation into a DGEList object, which is edgeR’s data container. If users already have

a numeric matrix in R. then the DGEList function converts it to a DGEList. If users have imported

the counts and gene annotation from a text file into an data-frame using base R, then DGEList

will process the data-frame and attempt to distinguish the counts from the annotation columns.

edgeR’s readDGE function will collate read count files written by Subread-featureCounts [41] or by

HTSeq-count [42], both of which write one file per sample. Alternatively, the featureCounts2DGEList

function imports output from Rsubread’s featureCounts function [46] directly without the need to

write intermediate files to disk.

10X Genomics Chromium is the most popular platform for single-cell RNA-seq. edgeR’s read10X

function reads output from the 10X Genomics Cellranger pipeline [47] and assembles the UMI counts

into an integer matrix in R with accompanying cellular barcodes and gene symbols. Seurat is an

extremely popular R package for statistical analysis of scRNA-seq [48]. edgeR’s Seurat2PB function

imports data from Seurat and aggregates it to pseudo-bulk form suitable for an edgeR analysis [49].

Salmon [45] and kallisto [44] have become very popular for quantifying RNA-seq data because of

their speed and ability to estimate transcript-level expression. edgeR’s catchSalmon and catchKallisto

functions import output from Salmon or kallisto, read in transcript counts and estimate the assign-
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ment uncertainty for each transcript.

Bismark is a popular software tool for read mapping and methylation calling of bisulfite sequencing

(BS-seq) data [50]. edgeR’s readBismark2DGE function reads Bismark coverage files and collates

the methylated and unmethylated read counts from multiple files into a DGEList object [13].

Filtering low count features.

Genes with very low read counts are filtered before downstream analysis. Filtering is done partly

because very low expressed genes are of little biological interest and because NB-dispersion es-

timation is unreliable for such genes. The main reason however is that genes with too few reads

cannot achieve statistical significance even if they truly are differentially abundant. Keeping such

genes in the downstream analysis increases the amount of multiple testing and decreases statisti-

cal power without any compensating advantage. edgeR’s filterByExpr function is used to keep only

those genes or features that have sufficient counts to achieve statistical significance when meaning-

ful differential abundance is present.

Effective library sizes and the offset matrix.

edgeR’s normLibSizes function estimates an effective library size (ELS) for each sample. It esti-

mates a normalization factor for each sample, which multiplies the raw library size to become the

ELS. TMM (trimmed mean of M-values) [51] is the default normalization method but a new TMMwsp

method (TMM with singleton pairing) has been added to provide more robust behaviour for sparse

data with many zeros.

The log-ELSs become GLM offsets in downstream edgeR analyses. The offset matrix can also be

set directly, which provides a way to reflect biases at the observation level that arise from factors such

as GC content or gene length. edgeR supports custom normalization procedures implemented by

external packages such as cqn [26], EDAseq [25] or tximport [28], by importing the appropriate offset

matrix. edgeR’s scaleOffset function ensures that the scale of externally defined offset matrices are

consistent with library sizes while preserving the normalization results from those external methods.

Model fitting and differential analysis.

edgeR defines linear models in the same way as limma [52]. Users create a design matrix appropri-

ate for their experimental design using standard base R functions. edgeR has the flexibility to work

with any full-rank design matrix with any number of covariates or factor effects.

In edgeR v4, one can proceed directly from normalization to glmQLFit to fit GLMs and glmQLFTest

to test hypotheses. In edgeR v4, the glmQLFit function estimates both NB and QL dispersions

automatically.

In earlier edgeR versions, the NB-dispersions are first estimated by estimateDisp [9]. Then one

proceeds to exactTest in the classic pipeline, to glmFit followed by glmLRT in the GLM pipeline, or

to glmQLFit followed by glmQLFTest in the QL pipeline.

The functions glmFit and glmQLFit shrink the estimated log-fold-changes slightly towards zero to

avoid infinite values and to improve prediction accuracy. edgeR implements the concept of a “prior

count” to quantify the prior information determining the amount of shrinkage [53].

For all pipelines, the number of differential genes at any given FDR threshold can be shown by the

decideTests function and the top differential genes can be displayed by the topTags function.

Testing differences relative to a fold-change threshold.

The glmLRT or glmQLFTest functions can be replaced by glmTreat if one wants to test differential

abundance relative to a higher fold-change threshold.

The standard edgeR analysis identifies differential expression based on statistical significance re-

gardless of how small the difference might be. There are circumstances where researchers are

interested in studying genomic features of which the expression levels change by a certain amount.

A few ad hoc approaches have been used to select features with large fold-changes. For example,

some studies applied a fold-change cut-off and then ranked all the genes above that fold-change
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Gene set tests: 
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Figure 1: The edgeR workflow. The diagram shows the main steps in an edgeR analysis. Individual

functions involved in each step are shown on the right.

threshold by p-value. There were also some cases where genes were first chosen according to a

p-value cut-off and then sorted by their fold-changes. However, these ad hoc approaches tend to

prioritise low expression genes and can lead to loss of FDR control.

To assess differential expression relative to a threshold in a statistically rigorous way, the TREAT

method was developed under the limma empirical Bayes framework [54, 22]. It adopts a re-centred

moderated t-statistic to provide an upper bound of the type I error rate. This approach yields an

easily computable conservative p-value for testing against a fold-change threshold. We adopted

the idea of TREAT and extended it to the edgeR NB GLM framework. Unlike TREAT, the edgeR

approach computes the expectation rather than the maximum value of the type I error rate as the

p-value of the test, a refinement that increases the statistical power of the test while still controlling

the FDR. This method is implemented in the glmTreat function in edgeR, and it can be used under

both the likelihood ratio test (LRT) and the QL F-test pipelines.
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Gene set enrichment analysis.

It is often helpful to interpret differential results in terms of higher-order biological processes. The

limma package [17] provides a number of functions to facilitate this interpretation in terms of stan-

dardized gene annotation or gene sets. The goana and kegga functions determine the overlap of a

list of differential genes with categories in the Gene Ontology (GO) database [55] or with pathways

in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [56] database. The goana and kegga

functions evaluate the significance of the overlaps with hypergeometric tests, optionally adjusting

for any power trend bias associated with average expression or with gene length [57]. Alternatively,

differential analyses can be conducted directly for pre-defined gene sets such as the Molecular

Signatures Database collections [58] or gene sets from previous independent studies. The roast,

mroast and fry functions perform self-contained tests to assess whether the majority of the genes

in a set are differentially expressed across the comparison of interest [59]. The camera function

performs a competitive gene set test to find gene sets that are highly ranked relative to other genes

in terms of differential expression [60]. The romer function conducts a gene set enrichment analysis

analogous to the GSEA approach [61]. The functions all achieve rigorous FDR control even in the

presence of inter-gene correlations [59, 60].

edgeR v4 includes S3 methods for all the above gene set functions. The goana and kegga meth-

ods operate on an DGEExact or DGELRT object produced by exactTest, glmLRT or glmQLFTest.

They automatically extract differentially expressed genes under a given significance threshold and

perform generalized hypergeometric tests for enrichment of GO terms or KEGG pathways in the list

of differentially expressed genes.

edgeR’s roast, mroast, fry, camera and romer methods operate on DGEList data objects and use

a z-score strategy to translate negative binomial counts into normal deviates suitable for limma

analyses. The functions fit NB GLMs using the null hypothesis design matrix to the count data

and convert the counts to their z-score equivalents using a quantile-quantile transformation with the

estimated means and dispersions. edgeR supports integer or non-integer data in computing the

z-score equivalents. For integer values, a continuity correction is applied by splitting the probability

mass of each integer in two. It computes the mid-p tail probability of the given quantile and then

converts it to the standard normal deviate with the same cumulative probability distribution value

[62]. Non-integer values are handled by interpolation. In the edgeR context, the fry function is

always preferred over roast or mroast. In the limma context, fry is an analytic approximation to

mroast that is faster and yields higher resolution p-values. In edgeR, the z-score transformation

ensures that the distributional assumptions of fry are satisfied exactly.

Transcript-level differential expression.

edgeR versions v1-v3 were designed for gene-level analyses of RNA-seq, but edgeR v4 adds the

ability to conduct differential expression analyses for individual transcripts (isoforms) of each gene

using output from either Salmon [45] or kallisto [44]. Transcript quantifications are inherently more

uncertain than gene-level read counts because of ambiguous assignment of RNA fragments to

isoforms [28]. Whereas sequence reads can usually be assigned unambiguously to a gene, reads

are very often compatible with multiple transcripts for that gene, particularly for genes with many

isoforms. This read to transcript ambiguity (RTA) causes technical overdispersion in the read counts

and the amount of overdispersion depends on the degree of overlap of each transcript with other

transcripts rather than on its expression. The edgeR gene-level differential expression pipeline does

not perform optimally on transcript counts because the RTA disrupts the mean-variance relationship

normally observed for gene level RNA-seq data and therefore interferes with the efficiency of the

empirical Bayes dispersion estimation procedures. However, the RTA dispersion can be modelled

elegantly using overdispersed Poisson distributions in accordance with edgeR’s QL model.

Salmon and kallisto have the ability to repeatedly resample each RNA-seq library to generate boot-

strap samples, and this resampling provides a means to estimate technical variability. Alternatively,

Salmon can generate Gibbs samples from the posterior distribution, which can be used in the same
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way as bootstrap samples. The edgeR functions catchSalmon or catchKallisto read the Salmon or

kallisto outputs and use the bootstrap or Gibbs samples to estimate a QL-dispersion arising from

RTA for each transcript. The QL-dispersions can then be divided out of the transcript counts, as de-

scribed in Methods, leading to divided counts that can be analysed by edgeR’s gene-level software

tools with full statistical efficiency [23]. The QL-dispersions estimate the variance-inflation induced by

RTA and scale down the transcript counts so that the resulting library sizes reflect their true precision.

The divided counts follow the traditional NB mean-variance relationship so that standard methods

designed for gene-level differential expression analyses can be applied without further modification.

The divided counts are not integers but are handled by edgeR’s continuous generalization of the NB

distribution.

The divided transcript counts can also be input to edgeR’s diffSpliceDGE function for a differential

transcript usage analysis, as described in the next section.

Differential exon usage.

RNA-Seq has been proven to be a very powerful tool in studying alternative splicing where exons

are differentially combined or skipped, resulting in multiple protein isoforms encoded by a single

gene. One way to detect alternative splicing events is to test for differential exon usage (DEU),

which allows fast detection of potentially differentially spliced genes without identifying the actual

isoforms present in different groups.

In edgeR, DEU analysis can be performed using the diffSpliceDGE function. It takes an input of

read counts at the exon level and compares the change of the expression level of each exon to the

change of the expression level of the gene containing that exon under a certain comparison. NB

GLMs are fitted to exon counts and exon-level NB-dispersions are estimated, as would be done for

a gene-level analysis but at the exon level.

Depending on the pipeline of choice, statistical tests can be performed using either likelihood ra-

tio tests or quasi-likelihood F-tests to obtain a test statistics and a p-value for each exon. The

diffSpliceDGE function offers two different ways to provide inferences at the gene level. The first ap-

proach is to combine the exon level test statistics for all the exons within a gene and then to conduct

a gene level test. The second approach is to combine the exon level p-values using Simes’ method

for all the exons within a gene to get a p-value for that gene [63]. The first method favours genes in

which a number of exons are differentially spliced. The Simes’ method, on the other hand, is likely to

be more powerful for picking up genes of which only a minority of the exons are differentially spliced.

shRNA-seq screens.

edgeR can be used to analyse data from CRISPR-Cas9 and shRNA-seq genetic screens to identify

the change of single guide RNA (sgRNA) or short hairpin RNA (shRNA) in the selected cell pop-

ulation relative to a control population [64]. Given a list of sample index sequences and sgRNA-

or shRNA-specific sequences from an amplicon sequencing screen, the edgeR processAmplicons

function obtains read counts for each sgRNA/shRNA in the screen across all samples. This is

done by counting the number of times each sample index and sgRNA/shRNA combination could

be matched in reads from the input fastq files. These read counts are then organized and stored

in a DGEList object for a standard edgeR down-stream DE analysis, which identifies a list of sgR-

NAs/shRNAs that are differentially expressed between the groups. To interpret the results at gene

level, multiple sgRNAs/shRNAs that target the same gene are grouped together and treated as a

‘set’. Gene set testing methods such as camera and fry can then be applied to summarize the

results at gene level [59, 60].

Differential methylation analysis.

Bisulfite sequencing (BS-seq) has become the gold-standard technology for studying DNA methyla-

tion [65]. A number of software tools, such as Bismark, have been developed to align BS-seq reads

to a reference genome and count the number of C-to-T conversions at each CpG locus in each sam-

ple [50]. Typical downstream analyses often involve identifying differentially methylated CpG loci or
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regions between different experimental conditions.

Since the output count matrix from methylation calling software contains both methylated and un-

methylated Cytosines at each CpG locus, the structure of BS-seq data is analogous to paired-

samples RNA-seq data. This allows the differential methylation analysis to be conducted using

existing edgeR pipelines developed for RNA-seq differential expression analyses [13]. In particular,

edgeR models both methylated and unmethylated counts as NB distributed, and the variation be-

tween replicate samples is captured by the NB dispersion parameter. One key difference between

BS-seq and paired-samples RNA-seq analysis is that the pair of libraries that hold the methylated

and unmethylated read counts from each sample are treated as a unit, and hence share the same

library size. A special design matrix constructed by the modelMatrixMeth function in edgeR includes

individual sample effects accounting for read coverage plus group-specific coefficients represent-

ing the log-ratio of methylated to unmethylated reads for each group. The subsequent analysis is

identical to any other edgeR analysis giving methylation analysts access to the full downstream

capabilities of the edgeR package.

Likelihood ratio or quasi-F tests can then be performed to identify CpG loci at which the proportion

of methylated reads are significantly different between the groups [13]. Given the fact that unmethy-

lated CpGs are often enriched in gene promoters, a gene oriented differential methylation analysis

can be conducted by aggregating the methylated and unmethylated CpG counts in gene promoter

regions. This improves the statistical power of differential methylation analysis and provides an

interpretation at gene level.

The edgeR methylation approach was originally developed for reduced representation BS-seq but

has been extended to whole-genome BS-seq and shown to outperform competing methods [66].

The same edgeR analysis strategy as for BS-seq can be applied to any type of sequencing applica-

tion where the sequence reads are classified into two classes at each genomic loci and the aim is to

test for changes in the relative proportions of the two classes. In unpublished work by the authors,

for example, this approach has been used to test for changes in haplotype-specific expression.

Single-cell pseudo-bulk analysis.

Single-cell technology is revolutionizing the field of biomedical research. A number of R packages

and software tools have been developed for analysing scRNA-seq data in the past few years [67,

68, 48]. Now as the technology evolves and the cost reduces, people are able to perform single

cell experiments with biological replicates. Accounting for biological variation between replicates is

crucial for single-cell differential expression analyses so that the results are not driven by particular

samples.

One popular approach to solve this problem is the pseudo-bulk method, where read counts of the

cells within the same cluster and from the same sample are aggregated together to form pseudo-

bulk samples [49]. The edgeR differential expression analysis pipeline can be applied to pseudo-bulk

samples for identifying marker genes of each cell cluster.

The combination of pseudo-bulk and edgeR pipeline has been examined in a simulation study, and

it gives the best performance compared with other existing methods for single-cell differential ex-

pression analysis in the presence of replicate samples [49]. This combination was also applied to

a recent large cohort single cell study, and it successfully identified marker genes of different cell

populations while accounting for the biological variation between tissue specimens [69].

Graphic exploration

MDS plot.

edgeR offers diagnostic plots for data exploration (Figure 2). One of the most commonly used plots

is the multi-dimensional scaling (MDS) plot, which visualizes the similarity between all the samples

on a two-dimensional scatter plot (Figure 2a). The top (500 by default) genes with largest standard

deviations across the samples are used for computing the principal coordinates. The distances

on the MDS plot represent the leading log2-fold-changes, which are defined as the root-mean-
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square average of the top largest log2-fold-changes between each pair of samples. The percentage

variation explained is also calculated and returned for the selected dimensions. MDS plot is an

unsupervised visualization method that provides a easy and fast way to check the relationship of all

the samples in a data set.

limma’s removeBatchEffect can be used in conjunction with an MDS plot to display treatment or

group effects after adjusting for batch effects or covariates.

Dispersion plots.

edgeR models the read counts using NB distribution for each gene across all the samples. Dis-

persion parameter of the NB distribution can be interpreted as the variability between biological

replicates [7]. In a standard analysis pipeline, edgeR provides three different types of NB dispersion

estimates for each gene. The first one is a common dispersion, which is a global dispersion estimate

for all genes. The second one is a trended dispersion where the dispersion is predicted from the

abundance of a gene. The last one is a gene-specific dispersion for each individual gene estimated

by the empirical Bayes information sharing strategy. These dispersion estimates can be visualized

in a BCV plot generated by the plotBCV function in edgeR (Figure 2b). The y-axis of the BCV plot

displays square-root NB dispersion, which can be interpreted as biological coefficient of variation

(BCV).

Under the QL framework, the gene-specific variability in addition to the overall biological variability

is measured by the QL dispersion. The estimates of QL dispersion can be visualized in a QL-

dispersion plot generated by the plotQLDisp function in edgeR (Figure 2c). It displays a global QL

mean-dispersion trend, the raw QL dispersion estimates, as well as the squeezed estimates after

the empirical Bayes moderation.

MD plot.

A mean-difference plot (MD plot) is a very useful tool for assessing the differences between samples

or groups. To examine each individual sample in a data set, an MD plot can be constructed by

comparing the log-expression values of all the genes in that sample with the mean of those in all

other samples. The skewness of the log-ratios on an MD plot would suggest that a normalization

is required to correct for the compositional biases. MD plots can also be useful tools to spot biases

that are typically observed in DNA-based sequencing experiments, such as immunoprecipitation

efficiency biases and also more complex trended biases for which the magnitude of the systematic

differences between samples will change with the average abundance [11]. When a differential

expression analysis is performed, an MD plot can be generated to show the relationship between

the log fold changes and the average log-CPM values for all the genes under that comparison

(Figure 2d). This allows a quick identification of outlier genes that change substantially under the

comparison.

Splicing plot.

edgeR detects alternative splicing events by testing for differential exon usage (DEU) using the

diffSpliceDGE function. The results from diffSpliceDGE can be visualized in a differential splicing

plot generated by the plotSpliceDGE function in edgeR (Figure 2e). In a splicing plot, relative log-fold

changes by exons for the specified gene are plotted for all the exons within the gene from left to right

in the order of their genomic locations. Exons that are significantly differentially used are highlighted

in red. This easy and simple visualization approach provides a quick way to examine the differences

of gene structure between the groups.

Computational efficiency

C++ implementation.

edgeR typically fits NB GLMs to tens of thousands of genes in a given dataset. For some applica-

tions, the number of genomic features may in the hundreds of thousands, even millions are possible.

The vector of GLM parameters needs to be estimated for each individual gene using an iterative
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computational algorithm. The iteration must reliably converge and provide accurate estimates for

every gene. When the NB-dispersions are estimated, the genewise GLMs need to be refitted re-

peatedly with different candidate values for the dispersions. The efficiency and reliability of the

iterative GLM fitting is therefore a core factor in determining the overall computational load of the

package.

The classical algorithm used for GLM fitting is an iteratively reweighted least squares iteration that is

equivalent to Fisher-scoring [8]. The basic algorithm is adequate for classical univariate applications

but is not sufficiently reliable in the edgeR context where even a small percentage of convergence

failures would be problematic.

The original GLM version of edgeR was written purely in R. A novel GLM algorithm was implemented

using a simplified approximation to the Fisher information matrix and a line search strategy to ensure

convergence [7]. To achieve acceptable computational speed, the R implementation was vectorized

so that the NB GLMs were fitted for all the genes simultaneously. In edgeR v4, the GLM fitting

is implemented in C++. If the experiment design can be transformed to a oneway layout, then

unmodified Fisher scoring is used which, in this scenario, is fast and reliable. For other designs,

Fisher-scoring is implemented with a Levenberg-Marquardt modification to ensure convergence [70,

71]. The direct C++ implementation increases speed, improves the accuracy of the final estimates,

and allows observational weights to be supported.

Other edgeR components rewritten in C++ include the Cox-Reid APL, the GLM deviances, loess

curves and maximizing the interpolant as part of the weighted likelihood empirical Bayes.

CompressedMatrix class saves memory.

When fitting the genewise GLMs, the offsets log Lgi, weights wgi and NB dispersions φg all enter

into the calculations and are treated as known values. The offsets are often the same for every

gene but can be observation-specific. The weights are usually constant (wgi = 1) but could be

sample-specific or observation-specific. The NB-dispersions are typically gene-specific but might

be constant and could in principle be observation-specific. In other words, each of these quantities

could be a constant, a row vector, a column vector, or a matrix. It is convenient to represent each

of these quantities as a gene×sample matrix in R, but doing so is memory inefficient if the same

numerical values are repeated over genes or samples or both.

In edgeR v4, a simple but elegant object class called CompressedMatrix has been introduced to

make these matrices more efficient. A CompressMatrix object is subsettable in R as a matrix but,

internally, stores only the minimum information required to construct the matrix from the repeat

structure. The minimum information can be a constant, a row vector, a column vector, or a complete

matrix. This simple but efficient representation saves considerable memory for most analyses when

the offsets, weights and NB-dispersion are passed to C++ or stored in the fitted model DGEGLM

object.

User interface

Object-oriented programming.

An edgeR analysis consists of a number of distinct steps (Figure 1). Each of the major steps in the

pipeline — (1) data import, (2) model fitting, (3) statistical testing and (4) gene ranking — produces

a classed R object that can be input to functions downstream in the pipeline.

Data import produces an object of class ‘DGEList’, which stores the read counts and associated

information (Figure 3a). The essential components of a ‘DGEList’ object are the matrix of raw

counts and a data-frame containing the sample information. Other optional components include

gene annotation and a design matrix.

Normalization adds library-size normalization factors or offsets to the DGEList object and dispersion

estimation adds NB dispersion estimates.

Model fitting by glmFit or glmQLFit produces an object of class ‘DGEGLM’, which stores the gen-

eralized linear model fits and dispersion estimates (Figure 3b). The DGEGLM object includes GLM
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deviances, coefficient estimates, and fitted values, plus all the parameters used in the fitting pro-

cess. The object produced by glmQLFit contains all the same information as glmFit plus addition

components storing the QL-dispersion estimation.

Testing for differential abundance produces either a ‘DGEExact’ object if exact NB tests were used or

a ‘DGELRT’ object if GLMs were used (Figure 3b). The object includes a data-frame table containing

the genewise log-fold changes, average log-CPMs, test statistics and p-values for the comparison

specified. The ‘DGELRT’ output object preserves most of the components of the input ‘DGEGLM’

object but drops the read counts if they were present.

Finally, a ‘TopTags’ object containing a ranked gene list is created by the topTags function. The

‘TopTags’ object contains a sorted data-frame of genewise tests results including adjusted p-values

that adjust for multiple testing. The default adjustment method controls the FDRs for a ranked list

using the Benjamini and Hochberg method [72].

All of these data classes obey many analogies with matrices. For ‘DGEList’, rows correspond to

genes/features and columns to different samples. For ‘DGEGLM’, rows correspond to genes/features

and columns correspond to linear model coefficients. For ‘DGEExact’, ‘DGELRT’ and ‘TopTags’, the

columns correspond to the differential results table. The standard R functions summary, dim, length,

ncol, nrow, dimnames, rownames, colnames have methods for each of these classes. DGEList

objects can be subsetted by rows and columns as for a matrix. Multiple DGEList objects can be

row-binded or column-binded together, again as for matrices. The other edgeR classes can be sub-

setted by rows, but column subsetting is disallowed because it would not produce a valid object of

that class.

All edgeR objects can be coerced to a data-frame using as.data.frame in R. All edgeR classes

except TopTags belong to the virtual class ‘LargeDataObject’ for which a show method is defined to

display the leading rows of each component vector, matrix or data.frame.

A design aim of edgeR is that users should be able to easily explore and manipulate all objects pro-

duced by edgeR functions and that doing so should require a knowledge of base R only. While all the

edgeR objects are formally registered using R’s S4 system, the objects are also fully manipulatable

as ordinary R lists and the list components are standard base R objects: data-frames, vectors and

matrices. This is analogous to the behaviour of core R modelling functions such as lm or glm. At

each stage of the edgeR pipeline, functions have S3 object-orientated methods that accept objects

from upstream in the pipeline, but also have default methods that accept input in the form of atomic

R objects. This allows direct programming access to any stage of the edgeR pipeline from external

software tools.

In edgeR v4, support has been added for the SummarizedExperiment object class developed by the

Bioconductor core team (https://bioconductor.org/packages/SummarizedExperiment) [18].

All relevant edgeR functions now accept raw data in a SummarizedExperiment container that in-

cludes a ‘counts’ assay, making it simpler to access edgeR’s functionality in the context of other

Bioconductor pipelines using SummarizedExperiment.

Documentation.

The edgeR package is supported by extensive documentation, examples and online help. The

package documents 248 exported functions or methods, each of which has a detailed documen-

tation help page including the information of distinct methods for generic functions and various

examples. Every help page formally documents the class of each input argument and the class

and structure of the output object. edgeR 4.0.0 includes a 139-page User’s Guide. It covers a

wide range of topics such as the underlying statistical framework of edgeR, normalization, different

analysis pipelines, setting up appropriate design matrices and downstream analysis. The edgeR

User’s Guide also provides 10 individual case studies with complete data source and analysis R

code. These fully worked case studies cover different types of analyses that edgeR is capable of,

including differential gene expression, differential exon usage and time course analysis of RNA-seq

data, as well as differential analysis of data from BS-seq, CRISPR-Cas9 and shRNA-seq genetic
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screens. Any further questions related to edgeR analysis can be posted to the Bioconductor sup-

port site (https://support.bioconductor.org) and will be answered either by the authors or by other

Bioconductor community members.

Discussion

The edgeR package has been one of most widely used software tools for the statistical analysis of

sequencing read counts over the past 15 years. The package develops and implements advanced

statistical methods associated with generalized linear models, conditional likelihood and empirical

Bayes for the analysis of count data. edgeR is used as an integrated analysis environment in its own

right and is also used as an underlying engine by other packages that analyse specific technologies.

At the time of writing (January 2024), 186 downstream Bioconductor packages depend on or suggest

edgeR.

This article has summarized the design and capabilities of the edgeR package and has also de-

scribed the history of the edgeR package over time. edgeR 4.0 introduces further new statistical

ideas, improves computational efficiency and extends the range of applications of the package.

Statistical innovations include modelling of fractional counts, a more refined modelling of the GLM

deviances to achieve more accurate QL-dispersion estimation in small count scenarios and the idea

of divided counts to extract out the overdispersion arising from transcript quantification. Implementa-

tion of low-level functions in C++ allows edgeR to handle larger datasets more efficiently. New data

analyses include transcript-level differential expression, differential exon usage, differential transcript

usage, differential methylation analysis, pseudo-bulk analysis of single-cell RNA-seq and hypothesis

tests relative to a fold-change threshold. edgeR 4.0 also includes direct support for pathway analysis

and gene set enrichment analysis.

Code availability

edgeR software is freely available from https://bioconductor.org/packages/edgeR. Instruc-

tions for installing edgeR and other Bioconductor packages are given at https://bioconductor.

org/install. The package source code can be git cloned from git@git.bioconductor.org:

packages/edgeR. Additional documentation and datasets used in the edgeR User’s Guide are

available from https://bioinf.wehi.edu.au/edgeR.

Data availability

The example datasets shown in this article are publicly available as described in Materials and

Methods. The TCGA data is available from https://tcga-data.nci.nih.gov. The RNA-seq

data analysed by Chen et al. [10] and Fu et al. [33] is available as GEO series GSE60450. The

RNA-seq data analysed by Fu et al. [34] is available as GEO series GSE118617.
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Figure 2: Example diagnostic plots produced by edgeR. (a) Multidimensional scaling (MDS) plot

of the human TCGA breast cancer data set of 882 individual RNA-seq samples, generated by the

plotMDS function in edgeR. Samples are coloured by breast cancer subtype identified by PAM50

signatures. Samples of the same cancer subtype are clustered together on the MDS plot. The

proportions of variance explained by the first two dimensions are also shown. (b) Scatter plot of the

biological coefficient of variation (BCV) against the average abundance of each gene in the mouse

mammary gland RNA-seq data set, generated by the plotBCV function in edgeR. The plot shows the

square-root estimates of the common, trended and tagwise NB dispersions. (c) Scatter plot of the

quarter-root QL dispersion against the average abundance of each gene in the mouse mammary

gland RNA-seq data set, generated by the plotQLDisp function in edgeR. The “Raw” and “Squeezed”

values represent the dispersion estimates before and after the empirical Bayes moderation towards

the trend. (d) MD plot showing the log-fold change and average abundance of each gene between

the lactating and pregnant samples in the basal cell population, generated by the plotMD function in

edgeR. Significantly up and down DE genes are highlighted in red and blue, respectively. (e) Plot

showing relative log-fold changes by exons for the Foxp1 gene in an RNA-seq experiment where two

of the exons were silenced in the KO group. The plot is generated by the plotSpliceDGE function in

edgeR. The relative logFC is the difference between the exon’s logFC and the overall logFC for the

gene, as computed by the diffSpliceDGE function in edgeR. The significant differentially used exons

are highlighted in red. The size of the red dots are weighted by its significance. The start position of

each exon is labelled at the bottom.
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Figure 3: The data structure of (a) DGEList-class object, and (b) DGEGLM-class and DGELRT-

class object.
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