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Abstract 28 

Here, we introduce a novel set of drug-adapted triple-negative breast cancer 29 

(TNBC) cell lines consisting of the parental cell lines MDA-MB-468, HCC38, and 30 

HCC1806 and their sublines adapted to cisplatin, doxorubicin, eribulin, paclitaxel, 31 

gemcitabine, or 5-fluorouracil. Whole exome sequencing in combination with the 32 

analysis of TCGA-derived patient data resulted in the identification of 135 biomarker 33 

candidates for the guidance of personalized TNBC therapies for further investigation, 34 

including 58 novel ones that had not been associated with drug resistance before. 35 

The analysis of exome sequencing data showed remarkably few overlaps among the 36 

resistant sublines, suggesting that each resistance formation process follows an 37 

individual, unpredictable route. This complexity was confirmed by cancer cell line 38 

drug sensitivity profiles to cytotoxic anti-cancer drugs and DNA damage repair 39 

inhibitors. Drug-adapted sublines of the same parental cell line and sublines adapted 40 

to the same drug substantially differed in their drug response patterns. Cross-41 

resistance levels were lowest for the CHK2 inhibitor CCT241533, the PLK1 inhibitor 42 

SBE13, and the RAD51 recombinase inhibitor B02, making CHK2, PLK1, and 43 

RAD51 promising drug targets for therapy-refractory TNBC. In conclusion, we 44 

present novel preclinical models of acquired drug resistance in TNBC and 58 novel 45 

candidate biomarkers for further investigation. Whole exome data and drug 46 

sensitivity profiles showed that each cancer cell line adaptation process follows an 47 

unpredictable route, which reflects recent findings on cancer cell evolution in 48 

patients, supporting the relevance of drug-adapted cancer cell lines as preclinical 49 

models of acquired resistance. 50 
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Introduction 55 

Triple negative breast cancer (TNBC) is characterized by the absence of 56 

estrogen, progesterone, and HER2 receptors 1. It is responsible for about 15% of 57 

breast cancer cases and associated with a poorer prognosis than hormone receptor 58 

or HER2 positive breast cancers 1,2. Current TNBC therapies are largely based on 59 

cytotoxic anti-cancer drugs with treatments including cisplatin, doxorubicin, eribulin, 60 

gemcitabine, paclitaxel, and 5-fluorouracil 1. TNBC often responds initially well to 61 

cytotoxic chemotherapy, but recurrence and resistance formation are common, 62 

eventually leading to therapy failure. This combination of an initial high response rate 63 

followed by rapid resistance formation is  referred to as the 'TNBC paradox' (Fornier 64 

and Fumoleau, 2012; Gupta et al., 2020). To improve TNBC therapy outcomes, new 65 

treatment approaches are needed, in particular those that are effective against 66 

treatment-refractory disease characterized by acquired resistance to cytotoxic 67 

chemotherapy. 68 

The processes underlying the formation of acquired drug resistance in cancer 69 

differ from those responsible for intrinsic resistance (Michaelis, Wass and Cinatl, 70 

2019; Oellerich et al., 2019; Santoni-Rugiu et al., 2019; Touat et al., 2020; 71 

Rothenburger et al., 2021). In contrast to intrinsic drug resistance, that occurs 72 

independently of therapy, and is a consequence of pre-existing often stochastic 73 

events in the tumor, acquired resistance is the direct consequence of selection and 74 

adaptation processes caused by cancer treatment (directed tumor evolution). These 75 

discrepancies in origin can result in differences between the mechanisms underlying 76 

intrinsic and acquired drug resistance (Michaelis, Wass and Cinatl, 2019; Oellerich et 77 

al., 2019; Santoni-Rugiu et al., 2019; Touat et al., 2020; Rothenburger et al., 2021). 78 
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Identifying and understanding these mechanisms is therefore essential to optimize 79 

cancer treatment for patients with therapy-refractory tumors. 80 

Cancer cell line adaptation to anti-cancer drugs provides a preclinical platform 81 

for the investigation of treatment-induced cancer cell evolution that has been shown 82 

in numerous studies to reflect clinically relevant acquired drug resistance 83 

mechanisms 5,10–18. Furthermore, the resulting drug-resistant cell lines allow detailed 84 

functional and systems level studies that are not possible using clinical samples 85 

(Michaelis, Wass and Cinatl, 2019).  86 

Here, we introduce a novel set of three parental TNBC sublines and their 15 87 

sublines adapted to cisplatin, doxorubicin, eribulin, gemcitabine, paclitaxel, or 5-88 

fluorouracil. The project cell lines were characterized by whole exome sequencing 89 

and the determination of response profiles to cytotoxic drugs and DNA damage 90 

repair inhibitors. The resulting data showed that the resistance formation processes 91 

are individual and unpredictable. The combined analysis of the resistance-92 

associated mutations in combination with patient data from The Cancer Genome 93 

Atlas (TCGA) resulted in 58 candidate resistance biomarkers for further investigation 94 

19.  95 

 96 

  97 
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Results 98 

Project cell line panel  99 

The project cell line panel consists of the parental TNBC cell lines MDA-MB-100 

468, HCC38, and HCC1806 and their sublines adapted to grow in the presence of 101 

cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, or 5-fluorouracil, drugs from 102 

drug classes that are used for the treatment of this cancer type (Fig.1A, SupFile.1) 103 

20–26. Drug-resistant sublines were established by continuous exposure to stepwise 104 

increasing drug concentrations as previously described 17. All parental cell lines were 105 

initially sensitive to therapeutic concentrations of the respective drugs, as indicated 106 

by IC50 (concentration that reduces cell viability by 50%) values within the range of 107 

clinical drug plasma concentrations (Cmax) (SupFig.1A) 27. The relative resistance 108 

factors (IC50 drug-adapted subline/ IC50 respective parental cell line) ranged from 5.5-109 

fold (HCC38rPCL2.5) to 5916.7-fold (HCC1806rERI50) (Fig.1B, SupFile.1).  110 

 111 

Characterization of the cell line panel by whole exome sequencing 112 

We initially performed whole exome sequencing on the project cell line panel. 113 

Between 186 (HCC38rDOX40) and 739 (HCC38rGEM20) DNA sequence variants 114 

were detected in the drug-adapted sublines that differed from the respective parental 115 

cell lines (SupFig.2A, SupFile.2). Missense variants were most common, followed by 116 

synonymous variants (SupFig.2B). Insertions/ deletions (INDELs), frameshift 117 

mutations, stop-gain, stop-loss, and splice variants were identified at lower 118 

frequencies (SupFig.2B).  119 

We grouped the resistance-associated variants into five categories (Fig.2A, 120 

see methods): 1. Gained variants, variants only called in the drug-adapted subline, 121 

but detectable at low confidence in the respective parental cell line; 2. De novo 122 
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variants, variants called in the drug-adapted subline but undetectable in the 123 

respective parental cell line; 3. Not-called variants, variants only called in the 124 

parental cell line, but detectable with low confidence in the resistant subline; 4. Lost 125 

variants; variants called in the parental cell line, but undetectable in the drug-adapted 126 

subline; and 5. Shared variants; variants called in both the parental and drug-127 

adapted cell lines that increased or decreased by at least two-fold are presented 128 

(Fig.2A).  129 

The number of gained variants ranged from 44 (HCC38rDOX40) to 381 130 

(HCC38rGEM20), of de novo variants from 31 (HCC38rDOX40) to 225 (MDA-MB-131 

468rPCL20), of not-called variants from 88 (HCC38rGEM20 and HCC1806rDOX12.5) to 132 

345 (MDA-MB-468rPCL20), of lost variants from 129 (HCC38rGEM20) to 398 (MDA-133 

MB-468rPCL20), and of shared variants from 128 (MDA-MB-468rPCL20) to 368 134 

(HCC38rGEM20) (Fig.2B-2D, SupFile.3). 135 

 136 

Analysis of the distribution of de novo variants 137 

To identify variants that may have a functional role in drug resistance, we 138 

initially looked at genes that harbored de novo variants in at least two different 139 

sublines from more than one parental cell line, resulting in a list of 81 genes (Fig.3A, 140 

SupFile.4). This list includes 48 genes that had already been described to be 141 

involved in drug resistance in cancer and 33 new candidate genes with a possible 142 

role in drug resistance (Fig.3A, SupFile.4). Notably, 24 of the 33 new candidate 143 

genes had already been reported to be of relevance in cancer (Fig.3A, SupFile.4). 144 

Among the five genes with de novo variants in the most cell lines were the 145 

mucin genes MUC6 (15 cell lines), MUC2 (14 cell lines), MUC4 (13 cell lines), and 146 

MUC16 (9 cell lines) (Fig.3A, SupFile.4). These are large genes that are known to be 147 
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commonly mutated and have been reported to be involved in cancer cell drug 148 

resistance 28–32. De novo mutations in CDC27, which has also been linked to drug 149 

resistance in cancer, were also found in 9 resistant sublines 33,34 (Fig.3A, SupFile.4). 150 

GXYLT1, KRTAP4-11, and RGPD4 were the genes among those had not 151 

previously been associated with drug resistance that displayed de novo mutations in 152 

the most (7) resistant sublines (Fig.3A, SupFile.4). GXYLT1 promotes metastasis 153 

formation in colorectal cancer through MAPK signaling, a pathway known to provide 154 

resistance to a range of anti-cancer drugs 35–38.  RGPD4 was correlated with 155 

vascular invasion in HBV-associated hepatocellular carcinoma, and it is known that 156 

there is an overlap between pro-angiogenic, pro-metastatic, and resistance-157 

associated signaling in cancer 36,39. There is no known link between KRTAP4-11 and 158 

cancer, but KRTAP4-11 expression levels were reported to predict the methotrexate 159 

response in rheumatoid arthritis patients 39. Hence, it seems plausible that these 160 

genes and their products may be involved in cancer cell drug resistance. 161 

Taken together, our analysis identified many genes already known to be 162 

involved in cancer cell drug resistance alongside a substantial number of novel 163 

candidates potentially contributing to therapy failure. Further research will have to 164 

characterize the roles of these individual genes in detail. 165 

When we compared the overlaps between exactly the same de novo variants 166 

in sublines adapted to the same drug the numbers were too small to draw any 167 

meaningful conclusions (Fig.3B, Sup.Fig3A). Notably, de novo variants in drug-168 

resistant sublines may not always represent actual novel variants that are selected 169 

because they contribute to cancer cell resistance. Many apparent de novo mutations 170 

have probably already been present in a small fraction of the cells of the parental cell 171 

line, but have not been detected due to limited sequencing depth. Hence, overlaps in 172 
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de novo variants between sublines of the same parental cell line can also be used to 173 

indicate the levels of relatedness between the founding subpopulations of the 174 

different resistant sublines. 175 

Analysing de novo variants shared between the sublines of each resistant 176 

sublines indicated the largest overlap (22.6% on average) and, thus, relatedness 177 

among the HCC1806 sublines, followed by the HCC38 (15.0%), and the MDA-MB-178 

468 (7.7%) sublines (Fig.3C). There were noticeable differences in the overlaps 179 

between de novo variants of the sublines of the individual parental cell lines. For 180 

example, only three de novo variants were shared between HCC38rCDDP3000 (out of 181 

98 in total, 3.1%) and HCC38rPCL2.5 (out of 92 in total, 3.3%), while 53 variants were 182 

shared between HCC38rERI10 (out of 131 in total, 40.5%) and HCC38rGEM20 (out of 183 

203 in total, 26.1%) (Fig.3C, SupFig.3B). However, there were no patterns 184 

suggesting consistent overlaps between sublines adapted to certain drugs. 185 

Therefore, there is no indication that certain drugs may select certain pre-existing 186 

cell line subpopulations. 187 

 188 

Gene ontology (GO) terms related to gene variants that changed in drug-189 

resistant sublines 190 

Next, we performed a gene ontology (GO) term analysis of de novo, gained, 191 

not called, and lost variants as well as shared variants with a two-fold increase or 192 

decrease in allele frequency (Sup.Fig4A, B).  193 

There was a limited overlap between GO terms among sublines adapted to 194 

the same drug (SupFig.4C, E).  The extracellular matrix-related GO terms 195 

‘extracellular matrix constituent lubricant activity’, ‘extracellular matrix’, and 196 
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‘maintenance of gastrointestinal epithelium’ were most common which reflects the 197 

high number of variants observed in the mucin genes (SupFig.4C, E). 198 

A GO term analysis among the sublines of the same parental cell lines 199 

resulted in very similar results, again revealing an overrepresentation of extracellular 200 

matrix-related GO terms (SupFig.4D, F). Further research will have to investigate the 201 

potential role of mucins and changes to the extracellular matrix in acquired drug 202 

resistance in TNBC cells. 203 

 204 

Potential clinical relevance of selected variants 205 

The potential clinical relevance of de novo, gained, and shared variants with a 206 

two-fold increase was analyzed using patient data derived from The Cancer Genome 207 

Atlas (TCGA) data 40. Initially, we investigated exact variants, i.e., variants that have 208 

the same chromosomal position and base change in the TCGA data set. Next, we 209 

analyzed variants in the same chromosomal position but with a different base 210 

change that resulted in the same consequence i.e., a missense variant. Here, 27 211 

Exact and 40 Same Consequence resistance-associated increased variants were 212 

identified in TCGA-derived patient mutation data (Fig.4A, Fig.4B).  213 

We also focused on all protein truncating variants in cells lines. Variants were 214 

selected from the TCGA database if they were of a similar consequence (i.e., a 215 

frameshift). Here, 65 resistance-associated variants were found to have protein 216 

truncating variants of similar consequence identified in the sublines were also 217 

identified in the TCGA-derived patient mutation data (Fig.4, Fig.4C). 218 

The fraction of mutated tumors was too low for a meaningful analysis of the 219 

potential role of the variants in clinical drug response. Hence, we used gene 220 

expression data to evaluate further the role of the respective genes and their 221 
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products in response to the respective drugs. The following numbers of Exact and 222 

Same Consequence variants could be examined for the respective drugs: cisplatin: 223 

22 (9 Exact, 13 Same consequence), doxorubicin: 9 (3 Exact, 6 Same 224 

Consequence), paclitaxel: 12 (5 Exact, 7 Same Consequence), gemcitabine: 16 (8 225 

Exact and 8 Same Consequence), 5-fluorouacil: 8 (2 Exact, 6 Same Consequence) 226 

(Fig.4B, Sup.File.5).  227 

For the protein truncating variants, the number of analyzed genes was; 228 

cisplatin: 16, doxorubicin: 14, paclitaxel: 7, gemcitabine: 22, 5-fluorouacil: 2. From 229 

these genes, Kaplan Meier curves were plotted for high and low gene expression 230 

and filtered for FDR and statistical significance (see methods). For the protein 231 

truncating variant analysis, we focused on Kaplan Meier curves in which low gene 232 

expression was associated with poor patient outcome, as truncations are most likely 233 

to result in a loss of function (Fig.4C, SupFile.6). 234 

In total, we identified 62 genes whose expression was associated with the 235 

therapy response in cancer patients (Fig.4, Sup.File.5, SupFile.6). This included five 236 

genes with a known role in resistance to the drug that the cell line, in which we 237 

identified the variants, was adapted to (COL22A1, FAT4, RGS9, SLC2A12, SLC4A8) 238 

(Fig.4, SupFile.7). Expression levels of 18 further genes have been reported to 239 

mediate resistance to other drugs (ABCB10, ADNP, C20orf27, CHST11, EXT1, 240 

FKBP7, NCOR1, PIK3C2B, ABCA8, ACIN1, DNAH5, MTCH2, INHBA, KLF11, 241 

SLC22A23, SLC24A1, SMC1B, TYK2) (SupFile.7). For another 12 genes, there is 242 

evidence that they contribute to both (HUWE1, ITGB4, MSK1, PHF2, TRPM7, 243 

BRD7, CES2, IDO1, MSH2, PRLR, RPL14, TOP2A (Fig.4F) (SupFile.7).   244 

In addition to these 35 genes and their products with a known role in drug 245 

resistance, we identified 27 genes that have not previously been linked to drug 246 
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resistance (ANK2, C11orf80, C5orf42, DNAJC13, EPB41, FGF14, FLG, GBGT1, 247 

GXYLT1, KCND2, OGN, RNF213, TBC1D9, USH2A, AGAP6, CDON, CEBPZ, 248 

CNEP1R1, COG6, CUBN, EFCAB6, HSD17B3, KIAA0586, SETX, SYNGR1, 249 

ZKSCAN3, ZNF442) (Fig.4E).  250 

Eight of the genes and gene products (CDON, FLG, GXYLT1, ITGB4, 251 

NCOR1, PHF2, SLC2A12, USHS2A) had already been identified in our analysis of 252 

de novo variants (SupFile.4). Six of them have previously been associated with 253 

cancer drug resistance (ITGB4, NCOR1, PHF2, SLC2A12, USHS2A) (Fig.3, Fig.4, 254 

SupFile.4, SupFile.7. Further research will have to define in more detail the potential 255 

use of the expression levels of and variants in these genes as biomarkers for the 256 

direction of clinical therapies. 257 

 258 

Complex sensitivity patterns of drug-resistant sublines against cytotoxic 259 

drugs 260 

Determining drug sensitivity profiles in the project cell line panel against the 261 

drugs of adaptation, i.e., cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, and 262 

5-fluorouracil (Fig.5A, SupFile.1), revealed complex resistance patterns that did not 263 

follow clear, predictable rules. For example, two out of the three doxorubicin-adapted 264 

sublines (HCC38rDOX40, HCC1806rDOX12.5) displayed increased (collateral) 265 

sensitivity to cisplatin, while MDA-MB-468rDOX50 displayed cross-resistance to 266 

cisplatin (Fig.5A, SupFile.1). Moreover, all resistant sublines remained sensitive to or 267 

showed collateral sensitivity against at least one of the other chemotherapeutic 268 

agents (Fig.5A, SupFile.1). The 5-fluorouracil-resistant HCC1806r5-F1500 subline was 269 

the only resistant cell line that remained sensitive to all other investigated cytotoxic 270 

drugs (Fig.5A, SupFile.1). 271 
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Only five of the nine sublines adapted to the ABCB1 substrates doxorubicin, 272 

eribulin, and paclitaxel (including all three eribulin-resistant sublines) displayed 273 

cross-resistance to all other ABCB1 substrates. Among the ABCB1 substrate-274 

adapted sublines, all eribulin and paclitaxel-adapted sublines displayed cross 275 

resistance to the respective other drug (Fig.5A, SupFile.1). Notably, eribulin and 276 

paclitaxel are both tubulin-binding agents, but differ in their mechanisms of 277 

interaction with tubulin. Eribulin is a destabilizing agent that binds to the vinca 278 

binding site of tubulin and inhibits microtubule formation, while paclitaxel is a 279 

stabilizing agent that binds to the taxane-binding site that impairs microtubule 280 

degradation 41–45. Further research will have to show to which extent the tubulin-281 

binding agent cross-resistance profile of the tubulin-binding agent-adapted sublines 282 

is the consequence of the expression of ABCB1 (and/ or other transporters), tubulin-283 

related resistance mechanisms, or both. 284 

Taken together, it is not possible to predict how resistance formation to a 285 

certain drug will affect the sensitivity patterns of the resulting sublines to other 286 

cytotoxic agents. However, all of the drug-resistant triple-negative breast cancer 287 

sublines remained sensitive and/ or displayed collateral sensitivity to at least one of 288 

the tested chemotherapeutic drugs. Future research will have to elucidate the 289 

underlying mechanisms to identify biomarkers for personalized therapy approaches 290 

that can guide effective drugs to the right patients 5. 291 

 292 

Complex sensitivity patterns of drug-resistant sublines against DNA damage 293 

response inhibitors 294 

Triple-negative breast cancer cells have been shown to harbor defects in DNA 295 

damage repair signaling, which can result in a dependence on the remaining intact 296 
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DNA damage repair pathways and, in turn, in sensitivity to certain DNA damage 297 

response inhibitors 4. Hence, we tested a panel of inhibitors targeting critical nodes 298 

of DNA damage repair signaling in the project cell lines (Fig.5B).  299 

All parental cell lines displayed sensitivity to the tested DNA damage 300 

response inhibitors in therapeutic concentrations, i.e., within the Cmax values 301 

reported for these agents (if available) (SupFig.5). However and similarly to the 302 

results obtained for cytotoxic anti-cancer drugs, the DNA damage response inhibitor 303 

sensitivity profiles in the resistant sublines were complex and unpredictable (Fig.5C, 304 

SupFile.1). Relative to the respective parental cell lines, the sensitivity remained 305 

unchanged for 128 DNA damage response inhibitor/ resistant subline combinations. 306 

Increased resistance (cross-resistance) was detected in 96 DNA damage response 307 

inhibitor/ resistant subline combinations, and increased sensitivity (collateral 308 

vulnerability) was recorded in 16 DNA damage response inhibitor/ resistant subline 309 

combinations. Neither sublines of the same parental cell line nor sublines adapted to 310 

the same drugs displayed substantial overlaps in their DNA damage response 311 

inhibitor sensitivity profiles. Generally, cross-resistance levels were lowest for the 312 

CHK2 inhibitor CCT241533, the PLK1 inhibitor SBE13, and the RAD51 recombinase 313 

inhibitor B02 among the investigated DNA damage response inhibitors (Fig.5C, 314 

SupFile.1). 315 

Cross-resistance patterns were even inconsistent between DNA damage 316 

repair inhibitors with the same targets. For example, different sensitivity patterns 317 

were observed between the ATR inhibitors ceralasertib and berzosertib as well as 318 

the CHK1 inhibitors rabusertib, MK-8776, SRA737, and prexasertib (Fig.5C, 319 

SupFile.1). The reasons for these discrepancies are unclear. Notably, the activity of 320 

the DNA damage repair inhibitors may be modified by interaction with additional 321 
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targets, and off-target resistance mechanisms (e.g., processes associated with drug 322 

uptake or efflux) may contribute to these differences 46.  323 

In summary and in line with the findings from the investigation of cytotoxic 324 

anti-cancer drugs, the drug-adapted triple-negative breast cancer sublines displayed 325 

complex, unpredictable sensitivity patterns against DNA damage agents, further 326 

demonstrating that improved future therapies will depend on an improved 327 

understanding of the underlying molecular processes resulting in the identification of 328 

biomarkers that can guide effective therapies to individual patients after treatment 329 

failure 5. Notably, CHK2, PLK1, and RAD51 may have potential as next-line 330 

therapies for triple-negative breast cancer patients, whose tumors have stopped 331 

responding to chemotherapy. 332 

 333 

Investigation of drug sensitivity patterns by the Delta (Δ) method 334 

Finally, we used the delta (Δ) method to identify potential patterns in the 335 

response of the project cell lines to all investigated cytotoxic drugs and DNA damage 336 

response inhibitors 47. The IC50 values were transformed to ΔIC50 values for each 337 

drug (see methods) and correlated across the drug panel, with linear regression 338 

analysis and statistical significance (Sup. Table1). Positive correlations indicate that 339 

increased drug resistance is seen with both agents, whilst negative correlations 340 

indicate that whilst increasing drug resistance is observed to one agent, acquired 341 

vulnerability is observed in the other agent. In the MDA-MB-468, HCC38, and 342 

HCC1806 sublines, we observed 19, 20, and 60 positive correlations and 2, 8, and 1 343 

negative correlations, respectively (Sup. Table1). 344 

We were most interested in the agents that demonstrate negative correlations 345 

as they may identify potential next-line treatments.  However, among the 11 negative 346 
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correlations, there were no consistent results across all three cell lines (Fig.6). This 347 

further confirms that resistance mechanisms are complex, individual, and 348 

unpredictable and that the identification of potential next-line therapies after 349 

treatment failure will depend on an improved understanding enabling therapy 350 

monitoring and biomarker-guided treatment adaptation.  351 

 352 

Discussion 353 

In this study, we introduce and characterize a novel set of 15 drug-adapted 354 

cell lines derived from three parental cell lines that were sensitive to clinical plasma 355 

concentrations of the respective drugs. Viability tests confirmed that all drug-adapted 356 

sublines had developed substantial resistance to the respective drugs. 357 

Next, we applied whole exome sequencing to identify biomarker candidates 358 

for the guidance of anti-cancer therapies. In a first step, we focused on de novo 359 

mutations, i.e. mutations found in a resistant subline but undetectable in the 360 

respective parental cell line. Considering genes that displayed de novo mutations in 361 

at least two sublines of two different parental cell lines resulted in 81 resistance-362 

associated variants, 48 of which were already known to be involved in cancer cell 363 

drug resistance while 33 variants were novel. 364 

In a second approach, we used TCGA data to investigate the potential clinical 365 

relevance of genes that harbored resistance-associated variants in the resistant 366 

sublines. This resulted in the identification of 64 genes, whose expression was 367 

associated with drug response in cancer patients. This included 37 genes and gene 368 

products with a known role in drug resistance and 27 genes that had not been linked 369 

to drug resistance before. 370 
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Eight of the genes and gene products (CDON, FLG, GXYLT1, ITGB4, 371 

NCOR1, PHF2, SLC2A12, USHS2A) were detected by both approaches, including 372 

six ones with an already documented role in cancer drug resistance (ITGB4, 373 

NCOR1, PHF2, SLC2A12, USHS2A). Hence, our study identified in total 135 genes 374 

that may represent novel resistance biomarkers, 58 of which had not been 375 

associated with drug resistance in cancer before. Further research will have to 376 

investigate and define in more detail the role of variants in and the expression of 377 

these genes as biomarkers for the tailoring of personalized cancer therapies. 378 

Notably, drug-adapted cancer cell lines have already been shown to represent 379 

clinically relevant resistance mechanisms in numerous studies 5,10–18. 380 

Interestingly, the analysis of exome sequencing data resulted in remarkably 381 

few overlaps between the investigated resistant sublines, including sublines derived 382 

from the same parental cell line and sublines adapted to the same drug. This 383 

suggests that resistance formation is each time the consequence of a complex, 384 

individual, and unpredictable evolutionary process. 385 

This complexity was confirmed by the determination of drug sensitivity 386 

profiles, both to cytotoxic anti-cancer drugs and DNA damage repair inhibitors. Drug-387 

adapted sublines of the same parental cell line and sublines adapted to the same 388 

drug displayed substantially different drug response patterns. Nevertheless and 389 

notably, cross-resistance levels were lowest for the CHK2 inhibitor CCT241533, the 390 

PLK1 inhibitor SBE13, and the RAD51 recombinase inhibitor B02 among the 391 

investigated DNA damage response inhibitors. Thus, CHK2, PLK1, and RAD51 may 392 

be promising drug targets in TNBC patients after failure of the established therapies, 393 

in particular if reliable biomarkers are found that identify cancer patients that are 394 

likely to benefit from the respective treatments. 395 
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Overall, the results from the characterization of the project cell line panel by 396 

whole exome sequencing and from the determination of drug sensitivity profiles both 397 

indicated that cancer cell resistance formation is a complex, individual, and 398 

unpredictable process. This finding is in agreement with data from studies, in which 399 

cancer cell lines were repeatedly adapted to the same drug in independent 400 

experiments 17,48,49 and with recent findings from the comprehensive analysis of 401 

cancer cell evolution in lung cancer patients 50–54. 402 

In conclusion, we here present a novel set of drug-adapted TNBC cell lines as 403 

preclinical models of acquired drug resistance. An initial characterization by whole 404 

exome sequencing in combination with patient-derived TCGA data resulted in the 405 

identification of 135 biomarker candidates for the guidance of personalized TNBC 406 

therapies for further investigation, including 58 ones that are novel and had not been 407 

associated with drug resistance in cancer before. Finally, whole exome data and 408 

drug sensitivity profiles showed that each cancer cell line adaptation process follows 409 

an individual, unpredictable route, which reflects recent clinical findings from the 410 

monitoring of cancer cell evolution in patients 50–54. This further supports the 411 

relevance of drug-adapted cancer cell lines as preclinical models of acquired 412 

resistance that can be analyzed and manipulated at a level of detail that is 413 

impossible in the clinical setting. 414 

  415 
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Materials and Methods 416 

Cell culture  417 

MDA-MB-468, HCC38 and HCC1806 were obtained from ATCC. The drug-418 

adapted sublines (Fig.1A, SupFile.1) were established by continuous exposure to 419 

stepwise increasing drug concentrations as previously described and derived from 420 

the Resistant Cancer Cell Line (RCCL) collection 421 

(https://research.kent.ac.uk/industrial-biotechnology-centre/the-resistant-cancer-cell-422 

line-rccl-collection/)(Michaelis et al., 2011; Michaelis, Wass and Cinatl, 2019). All cell 423 

lines were cultured in Iscove’s Modified Dulbecco’s medium (IMDM) supplemented 424 

with 10% fetal bovine serum (Sigma-Aldrich, Germany), 2mM L-glutamine, 25mM 425 

HEPES (Fisher Scientific, UK), 100IU/mL penicillin, and 100µg/mL streptomycin (Life 426 

Technologies, UK) at 37 °C in a humidified atmosphere at 5 % CO2. The drug-427 

adapted sublines were continuously cultured in the presence of the respective 428 

concentrations of the drugs. 429 

 430 

Compounds  431 

Compounds were purchased from the indicated suppliers: Adavosertib, 432 

Alisertib, Berzosertib, Ceralasertib, MK-8776, Olaparib, Prexasertib, Rabusertib, 433 

Rucaparib, SBE13, Tozasertib (Adooq Bioscience), AZD0156, BI2536, Doxorubicin, 434 

Gemcitabine (Selleckchem), B02, Cisplatin, 5-Fluorouracil (Sigma-Aldrich), 435 

CCT241533, SRA737 (Institute of Cancer Research), Eribulin (Eisia), Paclitaxel 436 

(Cayman Chemicals). All drug stocks were prepared in DMSO, and stored at -20 °C, 437 

except cisplatin which was prepared in 0.9% NaCl solution and stored in the dark at 438 

room temperature. 439 

 440 

Cell growth and viability assays 441 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.20.576412doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.20.576412
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cell viability was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-442 

diphenyltetrazolium bromide (MTT) dye reduction assay after 120-hour incubation, 443 

modified as previously described 55,56. Concentrations that reduce cell viability by 444 

50% relative to an untreated control (IC50) were determined and used to calculate the 445 

resistance factor (RF; IC50 of drug-adapted cell line / IC50 of drug-naive cell line). 446 

 447 

Whole exome sequencing 448 

Whole exome sequencing (WES) was performed using the Nextera Exome 449 

Enrichment Kit (Illumina). 2 x 100 nucleotide paired end sequences were input into 450 

Illumina HisSeq2000 with an output of 100 nucleotide paired end reads in FASTQ 451 

format. The sequencing was performed in two lanes providing two sets of FASTQ 452 

data per cell line. 453 

 454 

Variant calling  455 

FASTQC was used to control the quality of the raw sequence data 57, prior to 456 

the removal of sequencing adaptors with parameters. Trimmomatic (settings: 457 

NexteraPE-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING WINDOW: 4:15 458 

MILEN:36) 58. Raw FASTQ files were aligned to the human reference genome 459 

(GRCH37) using the Burrows-Wheeler Alignment (v.0.7.17) with an output as 460 

Sequence Alignment Map (SAM) format applying the default settings -M -R 59–61. 461 

Only paired reads were used and Samtools flagstat used to print statistics 462 

throughout each of the subsequent steps. SAM files were input into Picard tools 463 

SortSam (v.2.17.10), where the read alignments were sorted by coordinate and 464 

converted to a Binary Alignment Map (BAM) format output (Picard Toolkit.2019. 465 

Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad 466 
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Institute). Picard Tools MarkDuplicates (v2.17.10) was used for the removal of PCR 467 

duplicates (Picard Toolkit. 2019. Broad Institute, GitHub 468 

Repository. http://broadinstitute.github.io/picard/; Broad Institute). 469 

GenomeAnalysisTK-3.7.0 was used to perform base score recalibration 62. SAMtools 470 

mpileup was used to generate Binary Variant Call Format (BCF) files from the BAM 471 

files, which were then input into BCFtools to call the SNVs and INDELS to generate 472 

a Variant Calling Format (VCF) 63. Variants were annotated with VEP 64. 473 

 474 

Variant filtering 475 

Only variants in the protein sequences were considered. To identify high 476 

confidence variants, variants with a Phred score < 30, variants with less than 10 477 

reads supporting the base call, or with < 3 reads supporting the variant were 478 

removed. Moreover, common variants with a frequency of ≥ 0.001% in the genome 479 

aggregation database (gnomAD) were removed 65, if not  ≥ 3 samples were 480 

annotated in The Cancer Genome Atlas (TCGA), or ≥ 10 samples in the Catalogue 481 

Of Somatic Mutations In Cancer (COSMIC) 40,66,67.  482 

 483 

Definition of variants 484 

De novo variants: variants that are called in drug-resistant subline, but not 485 

called in parental cell line, even at low confidence. Gained variants: variants that are 486 

called in the drug-resistant subline and are called in low confidence in parental cell 487 

line. Not called variants: variants that are called in the parental cell line, but not 488 

called in the drug-resistant subline, even at low confidence. Lost variants: variants 489 

that are called in the parental cell line and are called in low confidence in the drug-490 

resistant subline. Shared variants: variants that are called in both the parental and 491 

drug-resistant subline.  492 
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 493 

Gene Ontology 494 

Gene ontology (GO) functional enrichment analysis  was conducted using 495 

G:profiler 68. 496 

 497 

TCGA analysis 498 

Variant data was extracted via the GDSC Data portal and the Bioconductor R 499 

package TCGAbiolinks was used to obtain clinical data 69,70. Chromosomal locations 500 

of patient variants were remapped from GRCh38 to GRCh37 using the NCBI 501 

Genome Remapping service. Pan-cancer gene expression and survival data was 502 

extracted for each chemotherapeutic agent. Survival analyses were conducted to 503 

determine the response of the patient treated with the chemotherapeutic agent for 504 

when the gene expression was high or low. Cox proportional hazards regression was 505 

used to calculate the hazard ratio for cohorts expressing high vs low expression 506 

levels of the given gene. The ‘surv_cutpoint’ function of the package survminer in R 507 

allowed for the identification of the optimal expression cut-ff point to give the lowest 508 

p-value for high vs low expression. The cut-off selected was between the 20th and 509 

80th percentiles of gene expression values as previously described by Uhlen et al., 510 

2017. The calculations used overall survival as the measure of clinical outcome. 511 

Overall survival is defined as days to last medical follow up or death as was 512 

previously described by Ng et al., 2016. The calculations were performed using the 513 

R survminer and survival packages. From this Kaplan-Meier survival curves were 514 

generated using the R package ggsurvplot. Statistical analysis using the Wald test 515 

(or log rank (Mantel-Cox)) test was performed to obtain the p-value of significance 516 

for each Kaplan-Meier graph. It should be noted that eribulin variants were omitted 517 
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from this analysis as at the time of analysis, no eribulin patient data was available for 518 

the further analysis steps. 519 

 520 

Statistical analysis and data manipulation 521 

GraphPad Prism 6 (GraphPad software Inc, USA) was used to generate 522 

dose-response curves and determine GI50 values using non-linear regression (with 523 

variable slope). Statistical significance was calculated using a two-tailed T-test, 524 

assuming unequal variance in GraphPad Prism 6 (GraphPad software Inc, USA).  525 

Delta method was used as described by Bracht et al., 2006 . IC50 values were 526 

transformed to ∆ IC50 values: ∆ IC50 = log (average IC50 in drug over all cell lines) – 527 

log (individual IC50 in drug for each cell line). Linear regression analysis of ∆IC50X 528 

versus ∆IC50Y where X and Y represent two different drugs from the panel, were 529 

performed. The Pearson correlation coefficient (r) was used to establish the level of 530 

significance in a two tailed test with (n-2) degrees of freedom, where p ≤ 0.05. 531 

 532 

  533 
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Figure Legends 828 

Figure 1: Confirmation of the resistance status of the project cell lines. A) 829 

Panel of drug-naive (MDA-MB-468, HCC38, HCC1806) and drug-adapted Triple 830 

Negative Breast Cancer cell lines. B) Left; dose response curve, bottom; IC50 values, 831 

right; resistance factor (see methods); when drug-naive and drug-adapted cell lines 832 

are treated with the respective agent; cisplatin, doxorubicin, eribulin, paclitaxel, 833 

gemcitabine, 5-Fluorouracil. Circles indicate drug-naive cell lines, crosses indicate 834 

drug-adapted cell lines. Green; MDA-MB-468-derived, blue; HCC38-derived, orange; 835 

HCC1806-derived. Data from n ≥ 3, statistics calculated using student t-test and 836 

plotted with mean ± SD. 837 

Figure 2: Characterization of drug-adapted cell lines. A) Diagram illustrating the 838 

difference between; Gained, De novo, Not-called, Lost and Shared variants. B) 839 

Count of Gained (blue) and De novo (green) variants, C) count of Lost (orange) and 840 

Not-called (pink) variants, D) left panel; count of Shared (purple) variants, right 841 

panel; two-fold increase or decrease of shared variants.  842 

Figure 3: Novel candidates with link to therapy failure identified. A) Flow chart 843 

of genes that have de novo variants observed in ≥2 sublines from >1 parental cell 844 

line. B) Venn diagrams of exact de novo variants shared between sublines adapted 845 

to the same drug. C) Summary of relatedness between sublines adapted from the 846 

same parental (%).  847 

Figure 4: Novel gene identified with potential relevance to drug resistance in 848 

clinical samples. A) Increased variants and de novo and gained protein truncating 849 

variants as input and screened with known TCGA variants. B) Summary of variants 850 

identified and subsequent genes where the Kaplan-Meier graph was statistically 851 

significant for high and low gene expression (see methods). C) ADNP Kaplan-Meier 852 

identified in the doxorubicin, paclitaxel, gemcitabine, and 5-fluorouracil cell lines. D) 853 

Left; novel genes associated with drug resistance, right; Kaplan-Meier example of a 854 

novel gene KIAA0588. E) Left; genes found to have a role in drug resistance 855 

mechanisms, right; Kaplan-Meier example of known gene TOP2A. 856 

Figure 5: Complex sensitivity patterns to cytotoxic and DDR targeted agents. 857 

A) Heat map of fold-resistance and collateral sensitivity to cytotoxic agents. B) 858 
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Summary of DNA repair pathways targeted by agents used in screening. C) Heat 859 

map of fold-resistance and collateral sensitivity to DDR agents.  860 

Figure 6: No trend of sensitivity patterns by Delta (Δ) method. Graphs 861 

demonstrating negative correlation; collateral sensitivity in one agent but resistance 862 

in to the other (blue), positive correlation; resistance to both agents (red) and no 863 

statistical correlation (black) for each group of cells lines belong to MDA-MB-468, 864 

HCC38 and HCC1806. For calculation of delta method values see methods.865 

Supplementary Figure 1: Chemo-naïve cell lines are clinically sensitive to 866 

chemotherapy agents. IC50 values, of drug-naïve cell lines treated with the 867 

respective agent; cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, 5-868 

Fluorouracil. Green; MDA-MB-468-derived, blue; HCC38-derived, orange; 869 

HCC1806-derived. Black line indicates known Cmax values for chemotherapy agent. 870 

Data from n ≥ 3, statistics calculated using student t-test and plotted with mean ± 871 

SD. 872 

 873 

Supplementary Figure 2: Variant counts. A) Total number of variants called for the 874 

panel of drug-naïve and drug resistant cell lines. B) Different type of variants called 875 

for the panel of drug-naïve and drug resistant cell line including; missense, 876 

synonymous, frameshift, inframe insertion, inframe deletion, stop lost, stop gain, 877 

splice acceptor and splice donor variants.  878 

 879 

Supplementary Figure 3: De novo variant overlaps. The number of de novo 880 

variants found overlapped in A) drug-resistant cell lines adapted to the same drug, B) 881 

drug-resistant cell lines adapted from the same parental cell line.  882 

 883 

Supplementary Figure 4: Gene ontology (GO) terms related to gene variants 884 

that changed in drug-resistant sublines. A) Number of variants considered 885 

increased in drug-resistant sublines (de novo variants, gained variants and shared 886 

variants which demonstrated ≥2 increase in variant allele frequency). B) Number of 887 

variants considered decreased in drug-resistant sublines (not called variants, lost 888 

variants and shared variants which demonstrated ≤2 decrease in variant allele 889 

frequency). The number and overlapping GO terms found in increased and 890 
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decreased variants were compared between cell lines adapted to the same drug (C, 891 

E) and cell lines derived from the same parental cell line (D, F). Green bars indicate 892 

increased variants (A, C, D) and red bars indicate decreased variants (B, C, D). 893 

 894 

Supplementary Figure 5: Chemo-naïve cell lines are clinically sensitive to DNA 895 

damage response (DNA damage response) inhibitors. IC50 values, of drug-naïve cell 896 

lines treated with the stated drug. Green; MDA-MB-468-derived, blue; HCC38-897 

derived, orange; HCC1806-derived. Black line indicates known Cmax values for 898 

DDR agent. Data from n ≥ 3, statistics calculated using student t-test and plotted with 899 

mean ± SD 900 

 901 

Supplementary Table 1:  Drug correlation of delta (Δ) values. The IC50 values 902 

were transformed to ΔIC50 values for each drug (see methods) and correlated across 903 

the drug panel, with linear regression analysis and statistical significance. Values in 904 

table indicate r value of correlation where positive values indicate positive correlation 905 

and negative values indicate negative correlation. P values of the correlation are 906 

indicated in the blue color scheme, with light blue (p≤0.05) being the lowest 907 

statistical significance, and dark blue (p≤0.00001) the highest statistical significance.  908 

 909 

Supplementary File 1: Mean IC50 values, S.D and resistance factor for project panel 910 

treated with chemotherapy agents and DNA damage response inhibitors. 911 

 912 

Supplementary File 2: Basic variant characterization of the project panel 913 

 914 

Supplementary File 3: Variants found to be; de novo, gained, not called, lost and 915 

shared in drug-resistant cell lines 916 

 917 

Supplementary File 4: List of genes that have de novo variants in ≥2 drug resistant 918 

cell lines. Values in the table indicate the variant allele frequency of de novo variants 919 

identified in stated genes. PMID for genes identified to be previously implicated in 920 

cancer and drug resistance.  921 

 922 
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Supplementary File 5: Exact and same consequence variants Kaplan-Meir graphs 923 

when stated gene is expressed high and low and patient is treated with stated drug. 924 

Data extracted from the TCGA. 925 

 926 

Supplementary File 6: Protein truncating variants Kaplan-Meir graphs when stated 927 

gene is expressed high and low and patient is treated with stated drug. Data 928 

extracted from the TCGA. 929 

 930 

Supplementary File 7: Genes identified in both (i) Exact and same consequence 931 

variants and (ii) protein truncating variants analysis. Analysis identifies variant type, 932 

cell line and references if gene has been indicated in resistance to the stated drug, 933 

or other drug resistance. Green highlighted rows indicate novel resistant candidates.  934 
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949 Figure 3950 

951 
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