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Abstract 

Various biological processes in living cells are carried out by protein complexes, whose 

interactions can span across multiple protein structures. To understand the molecular mechanisms 

of such processes, it is crucial to know the quaternary structures of these complexes. Although the 

structures of many protein complexes have been determined through biophysical experiments, 

there are still many important complex structures that are yet to be determined, particularly for 

large complexes with multiple chains. To supplement experimental structure determination, many 

computational protein docking methods have been developed, but most are limited to two chains, 

and few are designed for three chains or more. We have previously developed a method, RL-

MLZerD, for multiple protein docking, which was applied to complexes with three to five chains. 

Here, we expand the ability of this method to predict the structures of large protein complexes with 

six to twenty chains. We use AlphaFold-Multimer (AFM) to predict pairwise models and then 

assemble them using our reinforcement learning framework. Our new method, AFM-RL, can 

predict a diverse set of pairwise models, which aids the RL assembly steps for large protein 

complexes. Additionally, AFM-RL demonstrates improved modeling performance when 

compared to existing methods for large protein complex docking. 
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Introduction 

Protein complex interactions play a crucial role in various cellular processes. These interactions 

can range from a simple pair of proteins to a complex network involving multiple proteins. The 

availability of the three-dimensional structure of these protein complexes is essential for 

understanding their interactions and functions. While experimental methods exist for determining 

the structure of protein complexes, it becomes increasingly difficult as the size of the complex 

grows. Not only is it costly and time-consuming, but it can also be technically challenging to 

experimentally determine the structure of large protein complexes. This is reflected in the limited 

number of experimentally solved structures of large protein complexes in the proteomes of humans 

and other organisms.  

Over the years, computational methods have been used to predict the protein structures of 

complexes of various sizes. Pairwise protein docking, which involves a protein complex with two 

chains, has been studied extensively 1�6, with impressive results shown in the Critical Assessment 

of PRedictions of Interactions (CAPRI)7 Competitions. Methods for multimeric protein docking 8�

10, which involves complexes with more than two chains, have also been developed, but they have 

limitations such as restrictions on the size of the protein complex, usually between 3 to 6 chains, 

and limitations in the type of symmetry supported 11�14. These methods also often require extra 

information to simplify the problem. 

The recent breakthrough of AlphaFold 15 for single protein structure prediction has given 

rise to numerous methods 16�19 extending it to the prediction of multiple protein complexes. One 

such example is ColabFold 16, where input sequences were concatenated with linker sequences. 

Another example is AF2Complex20, which predicts the interaction between multimeric protein 

complexes using the original AlphaFold method without retraining or paired MSA. Subsequently, 
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Deepmind released AlphaFold-Multimer21, an adaptation of the original framework trained to 

predict the structure of multiple protein docking. The method was applied to protein complexes of 

two to three chains. we also developed a multiple-chain docking method, Reinforcement Learning 

for Multimeric protein docking with LZerD 22 (RL-MLZerD). RL-MLZerD was applied to protein 

complexes with three to five chains.  

There is still a very limited number of computational methods for predicting the structure 

of large protein complexes. Complexes with six or more chains are still very challenging to predict 

due to the combinatorial explosion when such protein interactions are considered. AlphaFold-

Multimer can be directly applied to predict the structure of large protein complexes, however, as 

shown in Bryant et al. 23, there are two main challenges with this approach. First, the accuracy 

decreases as the number of chains increases. The second challenge is the GPU memory limitation, 

as a protein complex of 2500 sequences would quickly fill 40GB of memory. These two challenges 

highlight the need for a more robust approach to predicting the structure of large protein complexes. 

MoLPC 23 is an example of such an approach. They showed that one can predict the structure of 

the protein complex by first decomposing it into smaller subcomponents, and then assembling the 

full structure by searching and combining the subcomponents. As highlighted in their results, their 

approach quickly runs into two problems. The first is missing interfaces within the subcomponents, 

where the critical interface that is needed to accurately predict the large protein complex is missing 

within the subcomponents predicted. The second is high clash and overlaps of protein chains 

between subcomponents. 

In this work, we introduce AFM-RL (Fig. 1), which similarly approaches the problem as 

our previous work, RL-MLZerD. Large protein complexes are assembled by first using AFM to 

predict the structure of pairwise docking poses (decoys). Next, the decoys are selected and 
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assembled. The key addition of this work is the forced sampling induced into AlphaFold-Multimer 

to ensure critical interfaces are not lost when the large complex is decomposed into small pieces 

while preserving high-quality pairwise prediction. Our results showed that AlphaFold-Multimer is 

forced to predict alternative interfaces and diversify the potential candidates when presented with 

multiple copies of the same protein chain. AFM-RL was benchmarked on a dataset of 57 protein 

complexes with six to twenty (6-20) chains. The average root mean square deviation (RMSD) and 

TM-SCORE of the best-assembled model across all targets are 10.09 Å and 0.81, respectively. 

AFM-RL showed a better performance when compared to MoLPC with an average RMSD of 

10.09 Å compared to 18.63 Å of MoLPC. 
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Fig. 1. Overview of AFM-RL. In the first step, pairwise docking of every pair of subunits 

is performed using AlphaFold-Multimer (AFM). 75 decoys are selected for each pair. In 

the subsequent step, pairwise decoys are assembled using reinforcement learning. When 

an assembly of a full subunit complex is successful without too many clashes, the reward 

may be propagated back to assembly states and decoy states used along the episode.   

 

Results 

Pairwise docking quality impact 

The success of any assembly method depends on the quality of the pairwise models. If there are 

no good quality pairwise models, the assembly stage of the process would be searching within the 

pool of bad models. Fig 2a shows the effect of the quality model on the final assembled complex. 

The y-axis is the RMSD of the resulting complex that was assembled using the pairwise models. 

The x-axis is the interacting pairwise coverage percentage. To determine the interacting pairwise 

coverage percentage, we select the pairs of chains that are interacting (any pair within a 5 Å radius 

compared to the native structure). For these interacting pairs, we count how many have a minimum 

of one predicted model within 4 Å of the same pair in the native structure. We then report the 

percentage of interacting pairs that meet these criteria. For example, if we have 4 interacting pairs 

and 3 of them have a predicted model that is within 4 Å of the native structure, the x-axis for that 

example would be 75%. We can observe from Fig 2a that as the coverage percentage increase, the 

resulting complex model quality also increases (lower RMSD). There is one outlier example in the 

plot, 1VF7 with interaction coverage percentages of 57.90% and RMSD of 43.61 Å. Despite 

capturing 57.90% of the interacting pair, the RMSD of the assembled complex is 43.61 Å. The 

complex is a 13 chains homomer which two layers of 7 and 6 chains, both forming a long cyclical 

structure. The predicted structure assembled the first layer as 9-interacting chains and the 

remaining 4 chains were placed around the top of the first layer, resulting in the high RMSD.  
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Fig. 2. Pairwise model impact on complex assembly. 

a. Comparison of complex RMSD against the interacting pairwise coverage. The y-axis is the 

complex RMSD, the x-axis is the pairwise coverage percentage for each target in the dataset. 

b. Comparison of forced sampling approach compared to regular pairwise and trimmer 

approach. 

 

 

 Next, we evaluate the performance of the forced sampling (redundant pair) approach 

compared to the regular pairwise and trimeric approaches. In the forced sampling approach, we 

use AFM to predict the subcomponents for all combinations of pairs. For each pair, we present 

AFM with three copies of the second chain. For example, for A and B chains, we provide AFM 

with A1B3. We then extract all the different sets of A1B1 predicted interactions. The regular 

pairwise approach predicts one copy for both chains, i.e A1B1. Lastly, the trimeric approach 

involves selecting three chains as subcomponents from all possible combinations and then 

extracting pairwise models from the predicted trimeric model. Fig 2b shows the interacting 

pairwise coverage percentage of the three approaches. For this comparison, we randomly selected 

10 examples. The redundant pair approach captured 100% of the interactions for 7 of the examples. 

Trimmer approach captured 100% interaction for 5 examples and lastly the regular pairwise 

approach captured 100% of the interaction for 3 examples. The trimeric approach had two example 
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where it captured more of the pairwise interactions, 4RDQ and 1AVO (66.67%, 100.00%) 

compared to the redundant approach (50.00%, 75%). Overall, the average interacting pairwise 

coverage for the redundant pair, regular pairwise, and trimeric approaches is 88.29%, 60.87%, and 

84.11%, respectively. 

 

 

Comparison with AlphaFold-Multimer 

Out of the 57 complexes in the dataset, we were able to predict 42 with AFM, but the remaining 

15 could not be predicted end-to-end on a 40GB GPU workstation due to an Out of Memory error, 

highlighting the limitations of full end-to-end prediction. On average, AFM predicted structures 

with an RMSD of 5.53 Å and a TM-score of 0.91, compared to 5.45 Å and 0.87 for AFM-RL. 

When comparing individual cases, AFM predicted structures with a lower RMSD for 27 examples, 

compared to 15 for AFM-RL. Individual results are shown in Supplementary Table S1 and S2. 

Overall, end-to-end prediction with AFM is effective when the structure is small enough to 

fit into memory and the conformation is simple. However, for large and complex structures with 

numerous chains that cannot be predicted end-to-end, AFM-RL is able to assemble the structure 

accurately, emphasizing the importance of gradually assembling the complex from its 

subcomponents. 

 

Comparison with MoLPC 

First, we explain the comparison criteria for this section. Full complex RMSD is calculated by 

using all of the CA atoms in the complex without discarding any of them. Partial RMSD, on the 

other hand, is using MMAlign to calculate the RMSD and TM-score. In this case, we refer to the 
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RMSD as partial RMSD because some CA atoms from the structure are discarded. This usually 

occurs when the best alignment found by MMAlign corresponds to the core part of the complex. 

 

 

Fig. 3. Comparison of AFM-RL results against MoLPC  

a, The full RMSD of the predicted complex. b, The partial RMSD of the predicted complex. c, 

The ratio of residue covered in the partial RMSD calculation. For all the panels, the AFM-RL 

result is on the y-axis, and MoLPC is on the x-axis. 

 

We show the full complex RMSD (Fig 3, panel A) of AFM-RL compared to MoLPC for 

all the examples in our dataset. On average, the best-assembled complex of AFM-RL has an 

RMSD of 10.09 Å compared to 18.63 Å of MoLPC. When we compare individual cases, AFM-

RL has 50 examples with lower RMSD compared to MoLPC. There are 5 cases (excluding 2BX9) 

where MoLPC has a lower RMSD compared to AFM-RL. Additionally, there are 3 examples 

(3TXQ, 2BX9, and 1TYF) where AFM-RL can assemble the complex to completion, but MoLPC 

is only able to assemble the structure partially: 3TXQ: 10 out of 11 chains, 2BX9: 3 out of 14 

chains, and 1TYF: 7 out of 14 chains. 

Next, in Fig 3b, we compare the partial RMSD of AFM-RL against MoLPC. On average, 

AFM-RL has a 4.26 Å RMSD compared to 5.71 Å of MoLPC with 0.81 and 0.69 TM-score, 

respectively. Similarly, there are 43 individual examples where AFM-RL has a lower RMSD 

compared to 12 (excluding 2BX9 and 3TXQ) of MoLPC. Finally, when we evaluate the ratio of 
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the sequence included in the partial RMSD and TM-score calculation, on average, AFM-RL has a 

ratio of 81% compared to 66% of MoLPC, highlighting the overall quality of the modeled structure 

from AFM-RL. This is because MMalign was able to superimpose more residues from the AFM-

RL model compared to MoLPC. 

Furthermore, we rank and score all the models assembled by AFM-RL and compare the 

top 5 models against the best-assembled model from MoLPC (we compare against the best model 

because MoLPC only produces a single output model). On average, the top 5 models of AFM-RL 

have a 16.48 Å RMSD compared to 18.63 Å of MoLPC for the full complex RMSD. The average 

partial RMSD of AFM-RL is 3.96 Å compared to 5.71 Å of MoLPC, with a 0.78 TM-score 

compared to 0.69 of MoLPC. Finally, a partial residue ratio of 82% compared to 66% of MoLPC 

(Fig 3c). 

 

 

Example of docking models 

Figure 4 shows four examples of structures assembled by AFM-RL. The models are shown with 

each chain in a different color, while the native structure is in gray. 1MGQ (Fig 4a) and 6LYP (Fig 

4c) are both 7-chain complexes. All 7 chains interact cyclically. Overall, AFM-RL assembled both 

structures with an RMSD of 1.34 Å and 2.79 Å, respectively. Figure 4, panel B is 7AB3, a 6-chain 

complex. The overall structure forms a U-shape with two chains interacting on the left, right, and 

center. Both AFM and AFM-RL were able to assemble the structure with RMSD of 1.05 Å and 

2.16 Å, respectively. However, MoLPC predicted a cyclical structure. The interaction interface of 

2 pairs was predicted incorrectly and created additional interaction between another pair, resulting 

in an overall complex RMSD of 18.51 Å. The last example is 1M3U (Fig 4d), a 10-chain complex, 

with a Dihedral symmetry. The structure breaks into two layers of 5 chains with each layer forming 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.20.576386doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.20.576386
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

cyclical interactions. AFM-RL assembled the structure with the lowest RMSD of 1.2 Å, followed 

by AFM with 1.3 Å, and finally MoLPC with an RMSD of 5.44 Å. 

 

 
 

Fig. 4. Examples of AFM-RL predicted models.  

The native structure solved by an experimental method is in grey, and the generated models 

are shown in colors. Each chain is colored in a different color. a, Structure of a heptameric 

sm-like protein from methanobacterium thermoautotrophicum, PDB ID: 1MGQ. A 7-chain 

complex. RMSD, 1.34 Å. b, Structure of E. coli toxin-antitoxin system HipBST (HipT 

S57A), PDB ID: 7AB3. A 6-chain complex. RMSD, 2.16 Å. c, Structure of mechano-

sensitive ion channel protein 1, mitochondrial wild type, PDB ID: 6LYP. A 7-chain 

complex. RMSD, 2.79 Å. d, the Crystal structure of E. coli ketopantoate hydroxymethyl 

transferase complex, PDB ID: 1M3U. A 10-chain complex. RMSD, 1.20 Å.  
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 Next, Fig 5 highlights two examples of a complex with non-typical conformations and how 

each method assembled the complex. The first example is 4ZWS (Fig 5 a-d), a 7-chain complex. 

It is an alpha-helix-rich complex with C1 symmetry. However, chains F and G (gray and purple 

color) form an opening with a rotation of around 120°. Fig 5a shows the native structure, Fig 5b 

shows the AFM prediction, Fig 5c shows the AFM-RL assembled structure, and Fig 5d shows the 

MoLPC structure. AFM predicted a cyclical structure and did not capture the opening of the two 

chains. AFM-RL perfectly captured the opening and rotation of the two chains. MoLPC predicted 

a non-cyclical structure and failed to capture the rotation of the two chains. Overall, AFM-RL 

assembled the lowest RMSD structure with 2.51 Å RMSD compared to 9.81 Å and 16.25 Å of 

AFM and MoLPC. The second example is 7NAK (Fig 5 e-h), an 8-chain complex with H 

symmetry. Fig 5e shows the native, Fig 5f shows the predicted AFM, Fig 5g shows the AFM-RL 

assembled structure, and Fig 5h shows MoLPC. Both AFM and AFM-RL were able to predict the 

complex structure with RMSD of 1.15 Å and 1.14 Å, respectively. However, MoLPC predicted a 

cyclical structure, resulting in an RMSD of 45.05 Å. 
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Fig. 5. Example case study of a predicted model from all methods.  

The first example (panel a-d) is the Crystal structure of the bacteriophage T4 recombination 

mediator protein UvsY, PDB ID: 4ZWS. A 7-chain complex. a. The native structure was 

solved by experiment. b. The predicted structure by AFM, RMSD 9.81 Å. c. Predicted 

structure by AFM-RL, RMSD 2.51 Å. d. The predicted structure by MoLPC, RMSD 16.25 

Å. The second example (panel e-h) is the structure of activated human SARM1, PDB ID: 

7NAK. An 8-chain complex. e. The native structure was solved by experiment. f. Predicted 

structure by AFM, RMSD 1.15 Å. g. Predicted structure by AFM-RL, RMSD 1.14 Å. h. 

Predicted structure by MoLPC, RMSD 45.05 Å.   

 

 

Finally, Fig 6 shows two examples where AFM-RL can assemble the complex completely 

without facing several clashes of the chains or missing critical interaction interfaces. The first 

example is 1TYF (Fig 6, a-c), a 14-chain complex. It forms 2 layers of 7 chains each, the top layer 

interacting with the bottom layer through the beta-strand in the middle of each chain in the layer. 

The interaction is small and is the only connection between the layers. Fig 6a shows the native 

complex, Fig 6b and Fig 6c show the predicted structure by AFM-RL and MoLPC, respectively. 

AFM-RL successfully assembled the full complex (RMSD 2.53 Å) as our forced sampling 

approach captured the critical interaction between the layers. However, MoLPC was only able to 
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assemble the bottom half of the layer (Fig 6c) with the 7 chains having RMSD of 4.79 Å. The next 

example is 3TXQ (Fig 6, d-f), an 11-chain complex. All the chains interact cyclically. Fig 6d shows 

the native, Fig 6e and Fig 6f show the predicted structure by AFM-RL and MoLPC, respectively. 

AFM-RL was able to predict the full complex structure without one chain clashing with another. 

However, MoLPC was able to assemble 10 chains and couldn't fit the last chain into the complex 

without it clashing with another chain in the complex. Overall, AFM-RL's full 11-chain complex 

has an RMSD of 1.71 Å compared to 2.11 Å of the 10-chain MoLPC predicted complex. 

 

 

Fig. 6. Example case study of completed complex prediction by AFM-RL compared to 

the partial prediction by MoLPC  

The first example (panel a-c) is the structure of ATP-dependent Clp protease proteolytic, 

PDB ID: 1TYF. A 14-chain complex. a. The native structure was solved by experiment. b. 

The Predicted structure by AFM-RL, RMSD 2.51 Å. c. The predicted structure by MoLPC, 

RMSD 4.79 Å for 7 chains out of 14. The second example (panel d-f) is the structure of 

phage 44RR small terminase gp16, PDB ID: 3TXQ. An 11-chain complex. d. The native 
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structure was solved by experiment. e. Predicted structure by AFM-RL, RMSD 1.71 Å. f. 

Predicted structure by MoLPC, RMSD 2.11 Å for 10 out of 11 chains.   

 

 

Discussion 

Regular AFM was not trained to predict the structure of large complexes; However, it can still be 

used for the prediction of large complexes with good quality. The main limitation of this end-to-

end prediction approach is the intensive GPU memory requirement. Even with a 40 GPU memory, 

some examples from this dataset could not fit into memory. While this is a major limitation for 

regular AFM, our method, AFM-RL, does not have this limitation. AFM-RL can be used to predict 

the structure of large protein complexes by decomposing the structure into a small set of sub-

structures and then assembling them step-by-step, which avoids the GPU memory limitation. 

In this work, we show how AFM can be extended with RL to predict the structure of large 

complexes. Using our forced sampling approach, AFM generated a diverse set of pairwise 

structures that resulted in multiple interfaces for a single pair of proteins. The average interacting 

pairwise coverage percentage for the examples in our dataset is 84%. On average, our predicted 

complex structure has a lower RMSD of 10.09 Å and a higher TM-score of 0.81 compared to 

MoLPC's RMSD of 18.63 Å and a TM-score of 0.69 across all examples.  

The predicted structure from our method can be used to aid experimental structural 

predictions. Experimentalists can first run our method to gain insight into the full complex 

structure and its subcomponents, plausible complex conformations, pairwise interactions, and 

topology. All of these findings can be used to reduce the complexity of their experiments.  

The future direction of this work would be to apply the method to large protein complexes 

across multiple organisms. This large-scale application would generate thousands of needed 3D 

structures of protein complexes, which will aid in understanding biomolecular activities and 
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interactions in cells. Finally, we plan to develop a self-service portal where users can submit the 

sequence of their protein complex and our servers run the prediction pipeline, generating 

downloadable models from an interactive web browser. 
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Methods 

Dataset construction  

We evaluated AFM-RL on the same dataset as MoLPC. We selected complexes with 6 to 15 chains. 

Due to the computation intensity requirement and limited GPU availability, we limited the number 

of selected examples from each chain to a minimum of three and randomly selected the 3 example 

complexes. For 15 chains, there are only 2 examples; we show results for only one example out of 
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the two. AFM resulted in an Out-Of-Memory (OOM) error for the second example during the 

pairwise step. We have 57 complexes in total. The PDB list for all the complexes is provided in 

Supplementary Table S1. 

 

Pairwise docking  

AFM-RL builds protein complex models in two steps. First, it constructs a pool of pairwise decoys 

for each pair of chains. In the second step, it searches through the pool of pairwise decoys and 

explores different combinations as assembly episodes within the RL framework. The resulting 

assembled models are evaluated, and rewards are propagated in the RL's Q-table, which records 

preferred decoys with high probability scores, to guide efficient searches for assembly. 

In the pairwise docking stage, AlphaFold-Multimer (AFM) was used to generate candidate 

decoys for each pair of chains. For each pair, we ran AFM with duplicated copies of one of the 

chains in order to force AFM to expand sampling and provide more than one interface for the pair. 

For example, instead of presenting AFM with an input fasta file of A1B1, we provided A1B3. This 

ensures that AFM provides more than one candidate interface and interaction site between A and 

B. This forced sampling is used to diversify the candidates for each pair produced by AFM. Finally, 

we ran AFM with the replication option, which outputs 25 candidate pairs, which are then 

multiplied by 3 from the duplicated copies, resulting in 75 candidates for each of the pairs in the 

complex.  
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Fig. 7. Pseudocode of AFM-RL. For each episode, AState_list represents the assemble 

state visited for the episode, DSAction_list represents the selected actions (decoys) for each 

decoy state. The build_model function takes the AState_list and DSAction_list and returns 

the assembled model. Fitted_score computes a score of a model. Update_state_table 

updates the state value estimate for the assemble state that participated in building the 

model, update_action_qtable uses the Bellman Fold equation to update the decoy state 

actions value estimate that participated in the model building. 

 

Assembling pairwise decoys with RL 
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Similar to our previous work, the RL framework shown in Fig 1. is used to assemble the generated 

pairwise decoys. An RL episode is denoted as a docking process, the pseudocode of which is 

provided in Fig. 7. which makes choices of two types of states along the path. The first one is 

called assembly states (circles in the diagram in Fig. 1), which denote subunit combinations, e.g. 

AD > AC (adding C to the complex by choosing a decoy of the AC pair). Starting from an empty 

state at the top of the diagram, subunits are added one at a time by choosing a pairwise decoy until 

a terminal state is reached, where all subunits are assembled. The second type of state is called 

decoy states (an array of boxes in Fig. 1), which denotes decoys in the pool generated for each 

subunit pair. Thus, an episode consists of a set of selections of assembly states and a decoy state 

at each assembly state. 

Accordingly, there are two types of actions, one that selects the next assembly state and 

the other that specifies a decoy from a decoy pool for a subunit pair. The next assembly state is 

selected with the Upper Confidence Bound (UCB) policy 24, which tries to balance exploitation 

and exploration with the following score: 

 

v୧  ൅ C ൈඨln N

n୧                                                                             ሺEq. 1ሻ 
    

where vi is the value of assemble state i, C is a hyper-parameter, which was set to 1.0 at the 

beginning and slowly reduced by 1.0/(the total number of episodes) after each episode is performed. 

N is the total number of visits to the parent state of the assemble state i, ni is the number of visits 

to the assembly state i. When N is small at the early stage of computation, states are selected mainly 
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by vi, while less-visited states are more explored as N becomes larger. At the beginning of the 

computation when values are not accumulated yet, the next assembly state is randomly chosen. 

The second type of action deals with the decoy state. Each time an assembly state is visited, 

a decoy-state is selected from a pool using e-greedy 25 as the policy. The e-greedy policy dictates 

that the agent exploits the best action (i.e. the decoy with the highest shape score) among possible 

choices most of the time (i.e. 1-e) but randomly selects a decoy-state with probability e. We set e 

to 1.0 at the beginning and slowly reduced it by 1.0/(the total number of episodes) after each 

episode was performed. 

Here we briefly walk through the algorithm (Fig. 1, 7). The docking procedure starts from 

a root node in Fig. 1, and the next assembly state is selected according to the UCB policy, followed 

by a selection of a decoy-state. This procedure is iterated until the full complex is built. The 

developed full chain complex model is evaluated by a scoring function that is a linear combination 

of four scoring terms, a molecular mechanics potential 9, the solvent accessible surface area, the 

radius of gyration (RG), and atom clash counts. RG is included to encourage compact assemblies. 

An atom clash is recognized if two heavy atoms are closer than 3 Å to each other. Weights of the 

terms were determined by a logistic regression classifier with 4-fold cross-validation trained on 

complex models of two quality classes, with an interface RMSD (as defined in the CAPRI 

evaluation 7) less than or over 4.0 Å. 

During an episode, a partially-assembled complex is checked for atom clashes due to the 

newly selected action at the decoy state. If the resulting partially-assembled complex at the state 

has several atomic clashes higher than the threshold (n-1) * 100, where n is the number of 

assembled protein chains, the newly selected decoy state is rejected and replaced with a different 

decoy that is ranked among the top 5 by Q score until an acceptable model is found. The modeling 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.20.576386doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.20.576386
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

process moves on to the next assembly state to add the next subunit if the top 5 decoy selections 

still result in a model with a high number of atomic clashes.  

Once an episode generated a complex model, the model evaluation score is checked to see 

if it has the best score that has been discovered thus far from all episodes. This signifies a newly 

discovered model with the best score, and a such model is assigned a full reward of 100 points. 

Any other model score that falls short of this criterion is assigned a partial reward if the Metropolis 

criterion is met: 

 

P ൌ exp ൬ 
െΔE

 kୠT
൰                                                                      ሺEq. 2ሻ    

 

 

Where E is the score difference between the new model and the current best model. We report 

the results with a normalization factor, kୠT, which was set to 6.0. A complex model is accepted if 

P is larger than a random number generated between 0 and 1. As a variation of the method, we 

also report results where we set P to a constant value of 0.6, thereby giving a constant 60% chance 

of acceptance for assembled model regardless of the model score. 

If a model score is close to the current best, it has a high chance to be accepted even if it is 

lower than the best. If the model is accepted, a partial reward is assigned by discounting the 100 

points based on the calculated probability to reflect the difference between the current best score 

and the score of the new model. On the other hand, a reward of 10 points is provided if the model 

does not pass the metropolis criterion. This is because the model is geometrically possible (if it is 

not rejected by a high number of atom clashes) and thus we do not want to penalize the path that 

generated the model. A penalty reward of -2 is assigned if the model is rejected due to a high 
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number of atomic clashes. Thus, unlike conventional RL methods where the goal is fixed, the goal 

of AFM-RL is constantly being updated based on the current best-discovered model. 

Parameters used in RL, namely, the normalization factor (Eq. 2) set to 6.0, the full reward 

set to 100, the reward of 10 given to a rejected model, and the penalty of -2, were determined by a 

small number of tests on a couple of targets. We showed in our previous work how the different 

parameters affect the results.  

At last, we explain how values are updated in the RL framework. Values for assembly 

states, v୧ used in Eq. (1), in eligible states are updated at the end of an episode as follows: 

 

          v୧ ൌ  v୧ ൅ ηሾr୲ሿ  , n୧ ൌ n୧ ൅ 1.                                                              ሺEq. 3ሻ 
 

Where η is the learning rate, set to 1.0;  r୲  is the reward assigned to the complex model at the end 

of the episode (e.g. 100 points). n୧ is the number of times the assembly state was visited. The 

eligible states that are updated are those which participated in the model building path of the 

episode. According to Eq. (3), the same reward value is added to all the eligible states along the 

episode. 

The reward obtained at the end of the episode is also propagated to the decoy states 

selected. The update is based on the temporal difference using the Bellman-Ford Equation 26:  

 

New DS୅୯୲ୟୠ୪ୣሺs, aሻ ൌ  DS୅୯୲ୟୠ୪ୣሺs, aሻ ൅  α ቂRሺs, aሻ ൅  γmax DS୅୯୲ୟୠ୪ୣሺsᇱ, aᇱሻ െ
 DS୅୯୲ୟୠ୪ୣሺs, aሻቃ                                                                                                          ሺEq. 4ሻ                  
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where s is the assembly state, and a is the selected action (decoy) for the assembly state. 

New DS_A୯୲ୟୠ୪ୣሺs, aሻ is the updated Q score for the assembly-decoy state pair, DS_A୯୲ୟୠ୪ୣሺs, aሻ is 

the old Q score,  is the learning rate, where we use an adaptive learning rate which decays from 

1.0 to  1.0 * 0.85(episode/1000) after every 1000 episodes. Rሺs, aሻ is the reward. For a terminal state, it 

is the reward given to the episode and it is 0 for all intermediate states.   is the discount rate for 

future rewards, which was set to 0.25. max DS_A୯୲ୟୠ୪ୣሺs′, a′ሻ is the maximum score among decoys 

(a′) of the next state visited s�. 

Typically, 1500 to 12,000 models are generated for a target complex. They are clustered 

by LB3DClust 27, and are then ranked by the sum of score ranks by the scoring function mentioned 

above and the VoroMQA score 28. For each cluster, the best scoring model was selected as the 

representative. 

 

 

Data availability  

The dataset used in this work is also made available at https://doi.org/10.5281/zenodo.7623376.  

 

Code availability 

The source code for AFM-RL is available at https://github.com/kiharalab/AFM-RL 
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