

1 **Full Title:**

2

3 **Progressive engagement of SST+ interneurons via Elfn1 regulates the barrel-septa**
4 **response identity in the somatosensory cortex of mice**

5

6 **Short Title:**

7

8 **Progressive engagement of SST+ neurons regulate barrel-septa identity**

9

10 **Authors:**

11

12 Ali Özgür Argunşah^{1,2}, Tevye Jason Stachniak^{1,2,3}, Jenq-Wei Yang^{1,2}, Linbi Cai^{1,2}, George
13 Kanatouris^{1,2}, Theofanis Karayannis^{1,2,*}

14

15 ¹Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zurich
16 Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

17 ²Neuroscience Center Zurich, University of Zurich and ETH Zurich, Winterthurerstrasse
18 190, CH-8057 Zurich, Switzerland.

19 ³Division of Biomedical Sciences, Faculty of Medicine, Memorial University of
20 Newfoundland, St. John's, A1B 3V6, Canada.

21

22 ***Correspondence:** karayannis@hifo.uzh.ch

23

24 **Abstract**

25 The vibrissae system of rodents, akin to human hands and fingers, provides
26 somatosensory information coming from individual whiskers for object exploration and
27 recognition. Just as separated digits enhance somatosensation in humans, the ability of
28 mice to sense objects through multiple whiskers in segregated streams is crucial. The
29 segregation begins at the level of the whiskers and is maintained through their precise
30 somatotopic organization in the Brainstem→ Thalamus→ Cortex axis, culminating in the
31 so-called barrels and the in-between “spaces” called septa. Here, by performing *in-vivo*

32 silicon probe recordings simultaneously in the barrel and septa domains in mice upon
33 repeated 10Hz single and multi-whisker stimulation, we identify and characterize a
34 temporal divergence in the spiking activity between these domains. Further, through
35 genetic fate-mapping, we reveal that cortical SST+ and VIP+ inhibitory neurons show a
36 layer-dependent differential preference in septa versus barrel domains. Utilizing a genetic
37 manipulation that affects the temporal facilitation dynamics onto only these two inhibitory
38 cell classes, we largely abolish the temporal response divergence between the two
39 cortical domains. Finally, using *in-vivo* viral tracing, whole-brain clearing and imaging, we
40 show a differential barrel and septa projection pattern to cortical regions S2 and M1. We
41 hence reveal that local temporally engaging cortical inhibition provided by SST+ neurons
42 contribute to the functional segregation of barrel and septa domains and potentially their
43 downstream targets.

44

45 **Introduction**

46 Although the somatosensory whisker system is one of the principal means by which mice
47 sense their environment and navigate the world, the number of whiskers is relatively low.
48 This relatively small number of vibrissae is represented in the whisker somatosensory
49 cortex as barrel “islands” (columns) separated by the septal “sea” (compartments),
50 reminiscent of the whisker pad pattern, with sparse hair follicles separated with significant
51 spaces between them. In contrast, other sensory systems such as the auditory and the
52 visual have densely packed anatomical receptor configurations and cortical
53 representations. Although all sensory cortices are composed of canonical microcircuits[1]
54 that include similar populations of excitatory and inhibitory neurons, maintaining
55 separation of individual whisker information may require anatomical specializations found
56 only in barrel cortex, such as the barrel and septa domains. These domains may therefore
57 create a distinct spatiotemporal stimulus representation and information coding in the
58 barrel cortex, compared to other sensory modalities. Such cortical columns have also
59 been shown to exist in other sensory cortical areas organized in specific sensory-receptor
60 to cortical-column mapping[2,3]. Cortical columns are thought to be separate processing
61 units acting as transfer modules between converging sensory stimuli and cognitive
62 faculties and/or motor output. In the barrel cortex, thalamocortical inputs coming from the

63 Ventro-Postero medial (VPM) and Postero-medial (PoM) nuclei segregate into the barrel
64 and septa domains, respectively[4–7]. Further, information processing and flow within and
65 from these domains target anatomically distinct sensory and motor areas[8–11]. It has
66 been suggested that while the primary whisker somatosensory cortex (wS1) sends high
67 dimensional information needed for object recognition to the secondary somatosensory
68 cortex (wS2), the projections to the primary motor cortex (M1) carry less complex
69 information unrelated to information coming from individual whiskers[6,10,12,13]. This
70 divergence is also found in the barrel- and septa-related circuits. While barrel circuits are
71 more involved in processing spatiotemporal whisker-object interactions, the septal circuits
72 are more sensitive to the frequency of whisker movements, which suggests the use of
73 temporal versus rate coding of information in barrel and septa, respectively[14,15]. Hence
74 the existence of the septal region separating the barrels may provide the means that mice
75 possess to separate these two interconnected yet very distinct information-processing
76 routes along the temporal domain, in order to make sense of their somatosensory
77 environment. This operational identity of barrels and septa has often been attributed to
78 the parallel bottom-up thalamocortical pathways of the the VPM and PoM. Here, by
79 performing *in-vivo* simultaneous silicon probe recordings in the barrel and septa domains
80 in mice, we first characterize the temporal divergence between these domains. Through
81 genetic labeling and passive tissue clearing, we reveal that cortical SST+ and VIP+
82 neurons show a layer-dependent differential distribution in the barrel versus septa
83 domains. By altering the short-term synaptic dynamics of incoming excitation onto these
84 interneurons upon removal of the synaptic protein *Elfn1*, we find that the domain-specific
85 divergence of responses to a repetitive single-whisker stimulus is degraded. Finally,
86 utilizing *in-vivo* retrograde viral-based tracing, we show a layer-specific projection
87 preference between these domains and downstream regions wS2 and M1. Hence, in
88 addition to the thalamocortical pathway-specific inputs, we reveal a key contribution of
89 local lateral cortical inhibition provided by SST+ neurons in setting up the functional
90 segregation of barrel and septa domains and subsequently the receiving downstream
91 regions.

92

93

94 **Results**

95 **Barrel and Septa columns display differentially adaptive spiking to repeated single**
96 **whisker stimulation**

97

98 To characterize the temporal stimulus response profiles of barrel and septal domains
99 simultaneously, we performed *in-vivo* silicon probe recordings under urethane-induced
100 light-anesthesia from mouse somatosensory whisker barrel cortex (wS1), after the onset
101 age of whisking, postnatal day (P)20-30. Activity within identified barrels was recorded
102 upon a 2s-long stimulation at 10Hz. Whisker stimulation was performed on either just one
103 principal whisker (single-whisker stimulus or SWS, Figure 1A, 20 repetitions per principal
104 whisker) or via both the principal whisker and most of the macro vibrissae together (multi-
105 whisker stimulus or MWS, Supp. Figure 1A). Every mouse received both stimulation
106 paradigms and post-hoc histology was used to assess the location of the multi-shank
107 silicon probes, in order to assign the recorded activity to the stimulated principal barrel,
108 the adjacent septa, or the adjacent unstimulated neighboring barrel (in the case of SWS)
109 (Figure 1B and Supp Figure 1B). While this distinctive experimental paradigm is relatively
110 low throughput, it has allowed us to investigate all these domains simultaneously.

111

112 It has previously been shown that electrophysiological responses upon whisking-based
113 object detection saturate rapidly after a single whisker touch, whereas object localization
114 may require multiple whisker touches[16,17]. Correspondingly, when a single whisker is
115 stimulated repeatedly, the response to the first pulse represents principally bottom-up
116 thalamic-driven responses, whereas the later pulses in the train are expected to also
117 gradually engage cortico-thalamo-cortical and cortico-cortical loops. We therefore first
118 tested whether the initial pulses of the stimulus train (the first three out of total 20 pulses
119 in 2s) evoked differential responses among the principal barrel, the adjacent septa, and
120 the neighboring barrel upon SWS and MWS.

121

122 Earlier studies in which whisker-evoked responses were recorded either from barrel or
123 from septa domains in separate experiments reported that the responses of barrel
124 neurons to single principal whisker stimulation are much higher than those evoked in the

125 septal neurons[12,18]. The analysis of the data we obtained from the simultaneous
126 recordings at these domains, do not reveal such differences in first two pulse responses
127 among these columns in any of the laminae recorded upon single whisker stimulation
128 (SWS) (Figure 1D,G and J, First and Second Pulses). However response differences
129 emerged starting from the 3rd pulse upon SWS for L2/3 (Figure 1C,D and E, Third Pulse),
130 L4 (Figure 1F,G and H, Third Pulse) and L5 (Figure 1I,J and K, Third Pulse), and starting
131 from the 2nd pulse upon MWS in L4 (Supp. Figure 1E and F, Second Pulse), but not in
132 L2/3 or L5 (Supp. Figure 1C,D,G,H and I). While such differences also emerged between
133 stimulated principal and unstimulated neighboring barrels in L2/3 and L4 (starting at
134 different pulses; for L2/3: 7th pulse, for L4: 4th pulse, Figure 1E and H, Barrel-vs-
135 Neighbour (BN) column), L5 did not show any significant difference (Figure 1K, BN
136 column). Interestingly, an inverted pattern of significant changes emerged between septa
137 and adjacent unstimulated neighboring barrels (Figure 1E, H and K, SN column). When
138 multiple whiskers were activated simultaneously, a divergence between barrel and septa
139 domains occurred almost exclusively in Layer 4 (Supp. Figure 1I).

140

141 **SST+ and VIP+ neuron densities within Barrel and Septa Domains Diverge in Layer 142 4**

143

144 It is known that barrel and septa domains receive different thalamic projections, from VPM
145 and PoM respectively[19–22]. Our electrophysiological experiments show a significant
146 divergence of responses over time upon both SWS and MWS in L4 between barrels
147 (principal and neighboring) and adjacent septa that could be driven by this distinct
148 thalamocortical innervation or by differences in local circuitry. We therefore next assessed
149 the spatial distribution of local inhibitory cells in these domains, which could indicate their
150 active role in domain-specific activation. Specifically, we made a comprehensive
151 analysis of the barrel versus septa localization of two inhibitory cell populations that
152 provide distinct regulation of cortical activity also in the temporal aspect, somatostatin
153 positive (SST+) and vasointestinal peptide positive (VIP+) cells.

154

155 Earlier research examining three inhibitory neuron populations in mouse barrel cortex
156 showed that, while parvalbumin positive (PV+) cells do not show any differential density
157 preference between barrel and septa columns, SST+ and VIP+ cells are significantly
158 denser in the septa than in the barrels in L4[23]. Using a different strategy, we aimed to
159 test the reported differential SST+ and VIP+ neuronal distributions. To label the two
160 neuronal populations, we crossed the SST-Cre and VIP-Cre lines with a tdTomato
161 reporter mouse line (Ai14). To comprehensively quantify the density of SST+ and VIP+
162 cells in the barrel and septa domains in 3D we utilized a passive CLARITY-based tissue
163 clearing protocol, followed by light-sheet microscopy using a custom-built light-sheet
164 microscope (mesoSPIM)[24,25]. The auto-fluorescence from the tissue was acquired with
165 488nm laser, which allows for the reliable detection of individual barrels in wS1, whereas
166 the tdTomato positive SST+ or VIP+ neurons were detected by a 594nm laser, which
167 permits us to localize and count cells in these two distinct domains accurately (Figure 2A
168 and Supp. Figure 2). By adjusting the angle of each barrel column (in 3D using Imaris),
169 we precisely identified the column of the barrel and septa in L2-3, L4 and L5, using the
170 barrel borders for every plane (XY,YZ,XZ) in L4 (see Methods). Once the columns were
171 accurately determined, we counted the number of tdTomato positive neurons in the
172 barrels and septa and corresponding volumes for density estimation. We found that
173 despite the known opposite distribution change along the depth of wS1 , both SST+ and
174 VIP+ neuronal densities were higher in L4 septa compared to barrels, but we detected no
175 difference in L2/3 and L5 (Figure 2B and C).

176
177 Based on the similarity of initial responses of all columns upon SWS and the subsequent
178 divergence emerging over time (Figure 1C-K), as well as the confirmation that SST+ and
179 VIP+ cell have higher densities in septa compared to barrel in L4 (Figure 2B and C), we
180 wanted to identify potential temporal adaptation mechanisms present in SST+ or VIP+
181 interneurons that could cause such physiological differences.

182
183 Out of these two interneuron classes, SST+ interneurons tend to be more spontaneously
184 active and supply powerful regulation to the local neuronal activity through dense
185 feedback connections to nearby pyramidal neurons[26] In contrast, VIP+ interneurons

186 have been reported to exert their influence on network function via a dis-inhibitory circuit
187 such that when driven by local, long-range, or neuromodulatory inputs, they inhibit SST+
188 interneurons (and to a lesser extent PV+ interneurons), resulting in reduced inhibition of
189 pyramidal neurons[27–29].

190

191 **SST+ and VIP+ interneurons exclusively express *Elfn1* and the former contribute**
192 **stronger to the temporal regulation**

193

194 To explore potential genetic mechanisms that would be common to both SST+ and VIP+
195 inhibitory populations, which could contribute to the sensory adaptation observed, we
196 performed gene expression analysis using the Allen Institute database[30] (Figure 3A).
197 Subsequently, we also explored gene expression differences amongst all neuronal
198 populations in three different databases to confirm identified candidates[31] (Figure 3B).
199 To find gene with expression profiles that match closest to SST+ and VIP+ cells and
200 furthest from excitatory cells (Exc) and parvalbumin positive (PV+) cell , we defined two
201 distance metrics, combined correlation (CC) and combined p-value (Cp) (see Methods).
202 This approach favors genes that are significantly correlated with the SST and VIP genes
203 and uncorrelated with Exc and PV+ cell gene markers . In the Allen database, the Exc
204 neuron marker included everything that expressed the *Emx1* gene, whereas VIP, SST
205 and PV genes were used for the respective neuronal populations. Although *Emx1* is a
206 developmental gene that may also label non-neuronal cell types, since we only
207 considered neuronal expression, it does not pose a problem for our analysis.

208

209 We characterized five genes that have the highest CC and lowest Cp as potential
210 contributors to the temporal adaptation profiles present in SST+ or VIP+ interneurons
211 (Figure 3B and Supp. Figure 3A and B). Out of the five candidate genes that were
212 common between the two SST+ and VIP+ populations of neurons, *Elfn1* is known to be
213 involved in short-term plasticity and has been shown to affect the short-term excitatory
214 input dynamics onto SST+ neurons[32].

215

216 Having identified *Elfn1* as the sole synaptic gene that is expressed in SST+ and VIP+ with
217 known short-term plasticity effects, we went on to directly characterize the synaptic
218 facilitation levels of excitatory inputs onto SST+ and VIP+ interneurons in WT and *Elfn1*
219 *knock-out (KO)* mice. We made acute slices from SST-Cre X tdTomato and VIP-Cre X
220 tdTomato (Ai14) mice. Upon local neuropil stimulation and whole-cell recording from
221 SST+ neurons in L2/3, we found a strong short-term facilitation of excitatory transmission
222 in response to 10Hz neuropil stimulation (Figure 3C), which is in line with previous
223 work[32,33]. When performing the same type of recordings from VIP+ cells, we found that
224 genetic deletion of *Elfn1* also reduced the facilitation ratio at VIP interneurons (Multipolar,
225 posthoc characterization). However, at 10 Hz, WT VIP+ multipolar cells displayed minimal
226 facilitation, hence the loss of *Elfn1* produced synaptic depression instead (Figure 3D).
227 Although 10 Hz represents the same frequency used for the whisker stimulation, closer
228 examination of whisker evoked spiking, trace by trace, indicated that spiking consistency
229 is low, thus comparisons between *in vitro* and *in vivo* data should be made cautiously.
230 Nonetheless, the substantial reduction in facilitation for SST+ neurons, compared to
231 multipolar VIP+ neurons, which comprise only a minority of the VIP+ population (the
232 majority being bipolar, calretinin positive VIP+ neurons, which are unaffected in *Elfn1KO*
233 mice[33]) suggest that any effect that the removal of *Elfn1* would have on the domain-
234 dependent effects we observe in sensory-driven activity *in vivo*, would be dominated by
235 its impact on SST+ neurons, and not on VIP+ ones.

236

237 **Barrel-Septa response differences disappear in *Elfn1KO* mice**

238

239 Having characterized physiological and anatomical differences between barrel and septa
240 domains and having found a potential responsible gene for the physiological divergence
241 between these anatomical domains, we next explored how the lack of *Elfn1* affects the
242 sensory-driven activity *in vivo*.

243

244 Simultaneous recordings in barrel and septa domains in *Elfn1KO* mice upon SWS (Figure
245 4) and MWS (Supp. Figure 4) in fact revealed a lack of stimulus-dependent emerging
246 differences between these domains found in WT controls upon SWS. While the

247 differences between barrels, septa and unstimulated neighbors upon SWS were largely
248 diminished in L2/3 (Figure 4A,B and C) and L5 (Figure 4G,H and I), the observed
249 differences in L4 between barrels and septa were not as strong between barrels and
250 unstimulated neighbors (Figure 4D,E and F). Interestingly, response differences between
251 barrel and septa domains upon MWS did not differ compared to WT controls, apart from
252 the fact that the emergence of dissimilarities started at the 5th pulse as opposed to 2nd in
253 WT (Supp. Figure 4G and 2I, respectively). This finding suggests that activity spillover
254 from principal barrels is normally constrained by the delayed inhibition provided by the
255 presence of *Elfn1* in excitatory synapses onto SST+ neurons, which have been shown to
256 supply late recurrent inhibition in the cortex and hippocampus[32,34].

257

258 **Barrels and Septa response identity is lost in *Elfn1KO* mice**

259

260 It has been shown that the septal circuits are more sensitive to the frequency of whisker
261 movements, which exemplifies the use of temporal vs rate coding of information in barrel
262 and septa, respectively[14,15]. Hence it is conceivable that the existence of the septal
263 regions separating the barrels provides a means to allow mice to separate these two
264 interconnected yet very distinct information-processing routes along the temporal domain.
265 In order to assess the information content of each of the two anatomical domains in WT
266 animals and how it may change when activity between them converges in the *KO* animals,
267 we trained a one-versus-all error-correcting output code (ECOC) classifier[35] with a
268 GentleBoost[36] ensemble of decision trees using WT firing profile data from three
269 domains (3-class classification). First, we performed 10-fold cross validation over the WT
270 dataset (Figure 5A and B, left columns) and later we tested the WT-data-trained classifier
271 with *Elfn1KO* firing profiles to compare the classifier performance.

272

273 The results show that in L2/3 and L4, barrel columns (Stimulated barrels and unstimulated
274 neighbors) we get higher classification accuracy compared to septa for SWS data (Figure
275 5A, left column, L2/3 and L4), while L5 receiver operating characteristic (ROC) curves
276 almost completely overlap for all conditions (Figure 5A, left columns, L5). Interestingly,
277 while decoding accuracy for unstimulated neighbors was not drastically altered upon *KO*-

278 testing (Figure 5A, right column, all layers, turquoise), barrel and septa performances
279 dropped significantly (Figure 5A, right column, gray and purple). This might not be
280 surprising given that barrel, septa and neighbor response profiles are closer in *Elfn1KO*
281 compared to WT (Supp. Figure 5A). We also saw that MWS-based decoders perform
282 worse both for WT-crossvalidation and *KO* testing (Figure 5B) which is most likely due to
283 the fact that barrel vs septa responses in WT animals are more similar to one another,
284 while this is not the case for *Elfn1KO* animals (S5B Fig). However, most interestingly,
285 layer 5 decoding performance completely drops to chance levels for the *KO*-test case
286 (Figure 5B, L5, WT-Train, KO-Test).

287

288 It is quite interesting to observe that while response profiles of the tested domains got
289 closer in *Elfn1KO* versus WT upon SWS (Supp. Figure 5A), the opposite happened upon
290 MWS (Supp. Figure 5B).

291

292 **wS1 Barrel Columns and Septal Domains have different wS2 and M1 Layer- 293 dependent projection preferences**

294

295 We identified that barrel and septa respond differently in WT mice and that this difference
296 disappears in the *Elfn1KO* animals upon SWS and amplified upon MWS. Following up
297 from this observation, we finally aimed to explore if the projection targets of these two
298 wS1 domains are distinct, in a similar manner to what has been revealed for visual cortex
299 domain projections[37]. By utilizing *in vivo* retrograde AAV injections in two of the main
300 target cortical regions of wS1, we characterized the projections from wS1 to wS2 and M1.

301

302 We injected a retrograde AAV virus expressing GFP in wS2 or M1 in different mice (N=4
303 for S2 and N=6 for M1) and 4 weeks after the injection the brains were processed using
304 passive tissue clearing and imaged using a custom-built light-sheet microscope
305 (mesoSPIM) (Figure 6A). The auto-fluorescence of the barrels allowed for labeling of
306 barrel columns in 3D, similar to our analysis on interneuron population distributions (Fig
307 2A and S2 Fig). We counted the number of neurons in wS1 barrel and septa domains

308 and measured the corresponding domain volumes to estimate projection densities as a
309 proxy for connectivity levels between S1-S2 and S1-M1.

310

311 Our analysis showed that while barrels host significantly more wS2-projection cells in L2/3
312 (Figure 6B), septa domains host more M1-projecting neurons (Figure 6C). Overall our
313 findings suggest that barrels verus septa domains do not only process distinct sensory-
314 driven information regulated by local SST+ cell inhibition, but also transmit this information
315 in a biased manner to downstream regions wS2 and M1.

316

317 **Discussion**

318

319 In the absence of visual stimuli, humans aim to identify an object by handling, with the
320 first touch initiating the information accumulation process, and every subsequent touch
321 leading to the full identification and characterization of the object, through evidence
322 accumulation(Armstrong-James & Fox, 1987; Kheradpezhohu et al., 2017; Petersen,
323 2007).As is known, this process includes parrarel ascending pathways that bring the
324 peripheral touch events through central pathways to the cortex in a somatotopic manner.
325 Similarly, mice actively use their whiskers in place of arms and hands, again
326 somatotopically mapping the whisker spatial pattern information one-to-one to the
327 characterisitc cortical barrels.[40,41].

328

329 Although a large number of other species have whiskers, only a subset of animals with
330 whiskers display a barrel pattern. For example, cats have whiskers and barrel-like
331 structures in the brainstem nuclei (barrelettes) but have no barrels visible in their
332 cortex[42–44]. It is the volitional whisking behavior that seems to correlate with an animal
333 having barrels in their wS1 or not. The fact that animals whisk to identify surrounding
334 structures and only have cortical barrels when they whisk, is suggestive of the importance
335 of the one to one mapping in individual whisker information processing in the cortex. Here
336 we find that septa play an important role in separating these parrarel whisker streams by
337 regulating the lateral cortico-cortical information flow generated upon repetitive whisker
338 touch. This process is tightly controlled by the short-term facilitation properties of

339 incoming input onto SST+ interneurons which is enabled by the expression of the Elfn1
340 gene.

341

342 It has previously been shown that, in contrast to L2/3 and L5/6, where SST+ cells are
343 layer 1 targeting Martinotti type, the axons of SST+ INs in layer 4 of somatosensory cortex
344 largely remain within layer 4[45]. In addition, while Martinotti cells receive facilitating
345 synapses from PCs and form inhibitory synapses onto dendrites of neighboring PCs[46],
346 non-Martinotti SST cells predominantly inhibit L4 FS cells in Layer 4[45,47]. Regarding
347 the inputs onto the two L4 populations, SST+ and PV+ inhibitory cells are also activated
348 in a divergent manner during thalamocortical activation at naturalistic whisking
349 frequencies, with FS interneurons transiently excited due to the rapid depression of their
350 thalamocortical inputs, whereas SST+ cells the opposite[48].

351

352 Somatosensation requires the accumulation of spatial and temporal information through
353 repeated coordinated movement of corresponding sensory organs and these organs are
354 often consisted of separate units such as hands and fingers or snout and whiskers.
355 Although it has been speculated that the information relayed to and from barrels may
356 differ from that of the septa[6,9,38], it has been unclear how this segregation is
357 accomplished. The one-to-one topographic mapping of whiskers, thalamic barreloids, and
358 cortical barrels favors an *a priori* assumption of bottom-up segregation of cortical domain
359 identity. In contrast, our simultaneous recordings in the barrel and septa domains
360 demonstrate that their sensory responses to the first whisker deflection do not significantly
361 differ (Figure 1C-K). This would suggest that the first touch serves as an initiating signal
362 in both domains, and it is only with repetitive activation of individual whiskers that their
363 responses strongly diverge. Our work reveals that in addition to distinct feedforward
364 thalamocortical projections, the cortical distribution of SST+ and VIP+ neurons (Figure 2)
365 and the short-term synaptic dynamics onto SST+ interneurons (Figure 3) also contribute
366 to this divergence and help shape cortical response identity. In our comparative gene
367 analysis between septa-enriched and non-enriched cell types, we identified new gene
368 candidates, including a long non-coding RNA of unknown function, for further study as
369 potential mediators of differential response dynamics in wS1. Amongst the handful of

370 other genes found in our bioinformatics screen and based on previous work[32–34,49],
371 *Elfn1* was a strong candidate for mediating a stimulus-dependent domain divergence.
372 Indeed we found that its removal abolishes the functional temporal divergence between
373 barrel and septa domains (Figure 4). Thus, in addition to thalamo-cortical feedforward
374 projections, we find that intracortical activity, shaped by SST+ inhibitory cells contributes
375 to cortical domain response identity.

376

377 To further study if the spiking divergence in the temporal domain carries important
378 sensory information, we trained an ECOC-based classifier to decode sensory stimuli
379 among these separate yet interconnected domains. While the temporal profiles recorded
380 at barrel domains upon SWS were successfully classified by the algorithm, the septal
381 data was not (Figure 5A). These findings are consistent with previous suggestions that
382 high dimensional temporal information (e.g., relating to object identity or location) is
383 transmitted from wS1 to wS2 via the barrels, whereas low dimensional sensory
384 information (e.g., object detection) is sent from wS1 to wM1 via septa[6,10,12,14,15].
385 Indeed, our retrograde labeling is consistent with this interpretation, with projection cells
386 from wS1 barrels showing a bias to wS2, whereas projections from wS1 septa being
387 biased to M1. When we instead examine multi-whisker stimulation, our sensory decoding
388 from the classifier fails (Figure 5B), suggesting an impaired transmission of high
389 dimensional data, at least in our experimental paradigm. Interestingly, the deletion of
390 *Elfn1* decayed the ability of SWS to support sensory decoding which we attribute to the
391 corresponding loss of SST+ interneuron contributions to frequency segregation. In
392 addition, we saw a loss of differentiation between SW and MW stimuli and between barrel
393 and septal regions (Figure 5A and Supp. Figure 5A and B).

394

395 Thus, in addition to any contributions from distinct thalamocortical input pathways, our
396 findings reveal an important role for short-term plasticity driving cortical SST+ cell-
397 mediated delayed inhibition in diversifying the response properties between individual
398 barrels and septal regions, creating contrast in somatosensory information processing.

399

400

401 **Acknowledgments**

402 We thank members of the Karayannis lab for suggestions and comments on the
403 manuscript. Authors also thank Rahel Kaestli for help with tissue clearing and light-sheet
404 image acquisition.

405

406 **Funding**

407 This work was supported by Swiss National Science Foundation Grant S-41260-01-01
408 (T.K) and European Research Council Grant 679175 (T.K).

409

410 **Author Contributions**

411 **Conceptualization:** Ali Özgür Argunşah, Tevye Jason Stachniak, Jenq-Wei Yang,
412 Theofanis Karayannis.

413 **Data curation:** Ali Özgür Argunşah, Tevye Jason Stachniak, Jenq-Wei Yang, Linbi Cai.

414 **Formal analysis:** Ali Özgür Argunşah, Tevye Jason Stachniak.

415 **Funding acquisition:** Theofanis Karayannis.

416 **Investigation:** Ali Özgür Argunşah, Tevye Jason Stachniak, Linbi Cai.

417 **Methodology:** Ali Özgür Argunşah, Tevye Jason Stachniak, Jenq-Wei Yang, Linbi Cai,
418 George Kanatouris.

419 **Project administration:** Theofanis Karayannis.

420 **Software:** Ali Özgür Argunşah.

421 **Supervision:** Theofanis Karayannis.

422 **Validation:** Ali Özgür Argunşah, Tevye Jason Stachniak.

423 **Visualization:** Ali Özgür Argunşah, Tevye Jason Stachniak, Linbi Cai.

424 **Mice:** Tevye Jason Stachniak, Linbi Cai, George Kanatouris.

425 **Immunohistochemistry:** Tevye Jason Stachniak, Linbi Cai, George Kanatouris.

426 **Writing – original draft:** Ali Özgür Argunşah

427 **Writing – review & editing:** Ali Özgür Argunşah, Tevye Jason Stachniak, Theofanis
428 Karayannis.

429

430 **Declaration of Interest**

431 The authors declare no competing interests.

432

433 **Methods**

434

435 **RESOURCE AVAILABILITY**

436 **Lead Contact**

437 Further information and requests for resources and reagents should be directed to and
438 will be fulfilled by the Lead Contact, Theofanis Karayannis (karayannis@hifo.uzh.ch)

439

440 **Materials Availability**

441 This study did not generate new unique reagents.

442

443 **Data and Code Availability**

444 The datasets and analysis routines are available from the corresponding author on
445 reasonable request.

446

447 **Mice**

448 All the animal experiments followed the guidelines of the Veterinary Office of Switzerland
449 and were approved by the Cantonal Veterinary Office Zurich and the University of Zurich.
450 husbandry with a 12-h reverse dark-light cycle (7 a.m. to 7 p.m. dark) at 24 °C and variable
451 humidity. Adult (5- to 10-week-old) male C57BL6J wide type mice were used for
452 retrograde tracing. Animal lines used in this study are VIP-IRES-Cre (*Vip*^{tm1(cre)Zjh}/J)[50],
453 SST-IRES-Cre (*Sst*^{tm2.1(cre)Zjh}/J) [50], Ai14 (B6;129S6-Gt(ROSA)26Sor^{tm14(CAG-}
454 ^{tdTomato}Hze/J)[51] and HTB ((Gt(ROSA)26Sortm1(CAG-neo,-HTB)Fhg)[52], and Elfn1KO
455 (Elfn1tm1(KOMP)Vlcg). Both male and female mice were used in cortical brain slice
456 physiology and in vivo physiology experiments.

457

458 **In-Vitro Electrophysiology**

459 Whole-cell patch-clamp electrophysiological recordings were performed on labelled SST
460 neurons located in neocortical layers 2/3 and 4 of barrel cortex (L2/3, L4, approximately
461 bregma -0.5 to -2.0 mm) in acute brain slices prepared from postnatal day 7- 22 (P7–P22)
462 male and female mice. Coronal brain slices from barrel cortex were prepared in cold

463 artificial cerebrospinal fluid (aCSF) containing (in mM): 128 NaCl, 26 NaHCO₃, 10 D-
464 glucose, 3 KCl, 1 MgCl₂, 2 CaCl₂ and 1.25 NaH₂PO₄, aerated with 95% O₂ / 5% CO₂.
465 Acute slices were perfused at a rate of 2–3 ml/min with oxygenated ACSF at room
466 temperature. Patch electrodes were made from borosilicate glass (Harvard Apparatus)
467 and had a resistance of 2-4 MΩ. The intracellular solution had (in mM): 125 K gluconate,
468 2 KCl, 10 HEPES, 10 phosphocreatine, 4 MgCl₂, 1 EGTA, 0.1 CaCl₂, 4 ATP, 0.4 GTP,
469 pH 7.35, 290 mOsm. Experiments were performed in voltage-clamp mode using the
470 Axopatch 200B amplifier (Molecular Devices). Visually guided patch of fluorescent
471 labelled cells was performed on a Zeiss Axioscope using a Retiga Electro camera (01-
472 ELECTRO-M-14-C-OC, Teledyne Scientific Imaging). Access resistance was monitored
473 to ensure the stability of recording conditions. Recordings with access resistance >40
474 MΩ, or whole cell capacitance <4 pF were excluded. No compensation was made for
475 access resistance and no correction was made for the junction potential between the
476 pipette and the ACSF. Following a baseline stabilization period (2-3 min), evoked synaptic
477 currents recorded in 2 min (12 sweeps) at V_h= -70 mV were averaged and analyzed using
478 Clampfit10 (Molecular Devices). Five electrical stimuli from a Digitimer isolated stimulator
479 (DS2A Mk.II) were delivered at 50 Hz through a monopolar glass pipette (2-4 MΩ)
480 positioned in L2/3, close to the soma of the recorded cells. The stimulating electrode was
481 placed typically 100 - 250 μm from the recorded cell, parallel to the pial surface. A similar
482 distance was maintained in L4 recordings, with the stimulating electrode parallel to the
483 L2/3-L4 boundary. For the L2/3 to L4 recordings, the simulating electrode was then
484 moved to lower L3 within the same column, again approximately 100 - 250 μm from the
485 recorded cell but offset slightly to avoid directly stimulating the recorded cell's axon.
486 Stimulation intensity and duration were adjusted to produce stable evoked EPSC
487 amplitudes.

488

489 **In-Vivo Silicon Probe Recording**

490 We used 4 Elfn1KO and 4 WT littermates at the age of P20 to P30 for the multi-electrode
491 recordings. Mice were anesthetized by urethane (1.5g/1kg) throughout the whole
492 experiment. A heating pad was used to maintain the mouse's body temperature at 37°C.
493 The depth of anesthesia was checked with breathing speed and paw reflexes throughout

494 the experiment. The skull of the right hemisphere was exposed by removing the skin on
495 top, and a metallic head holder was implanted on the skull with cyanoacrylate glue and
496 dental cement. A 20G needle was used to open a ~3mm x 3mm cranial window which
497 exposed the S1 barrel field (wS1). Extreme care was taken not to cause damage or
498 surface bleeding during surgery.

499

500 wS1 neural activities were recorded with an 8-shank-64-channel silicon probe. Each of
501 the 8 shanks has 8 recording sites (100 μ m apart). The distance between each shank is
502 200 μ m (NeuroNexus Technologies, Ann Arbor, MI, USA). The silicon probe was labeled
503 with Dil (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, Molecular Probes,
504 Eugene, OR, USA) and inserted perpendicularly into the barrel cortex. A silver wire was
505 placed into the cerebellum as a ground electrode. All data were acquired at 20 kHz and
506 stored with MC_RACK software (Multi Channel systems). The total duration of multi-
507 electrode recordings varied between 3 h and 5 h. After each experiment, the animal was
508 deeply anesthetized by ketamine (120 mg/kg, ketamine, 50 mg/mL, HamelnPharma,
509 Hameln Germany) and perfused through the aorta with ringer solution. The brain was
510 kept in 4% PFA. Tangential sections (200- μ m thick) were prepared for cytochrome-
511 oxidase (CO) histochemistry. By combining the Dil and CO staining, the insertion position
512 of the 8 shank probes were identified in the barrel cortex. Only the shanks located within
513 the identified individual barrels were used for the data analysis.

514

515 **Whisker Stimulation**

516 A single whisker was stimulated 1mm from the snout in rostral-to caudal direction (about
517 1mm displacement) using a stainless-steel rod (1 mm diameter) connected to a miniature
518 solenoid actuator. The movement of the tip of the stimulator bar was measured precisely
519 using a laser micrometer (MX series, Metralight, CA, USA) with a 2500 Hz sampling rate.
520 The stimulus takes 26 ms to reach the maximal 1 mm whisker displacement, with a total
521 duration of 60 ms until it reaches baseline (Yang et al., 2017). The whisker was stimulated
522 at 10Hz for 2s. Each principal whisker in case of SWS and multiple whiskers at once in
523 the case MWS was stimulated 20 times (20 trials).

524

525 **Analysis of Silicon Probe Data**

526 Extracellular silicon probe data were analyzed using a custom-made Matlab script (Matlab
527 2019a, Mathworks, MA, USA). The raw data signal was band-pass filtered (0.8-5 kHz)
528 and the multi-unit activity (MUA) was extracted with the threshold of 7.5 times the
529 standard deviation (SD) of baseline. The current source density (CSD) map was used to
530 identify L2-3 and L4. The earliest CSD sink was identified as layer 4, followed by L2-3
531 (Reyes-Puerta et al., 2015; van der Bourg et al., 2017). MUA was smoothed using a
532 Gaussian kernel (0 mean, 5ms sigma).

533

534 **Decoder Analysis**

535 We employed a classification approach utilizing error-correcting output codes (ECOC)
536 models with a gentle adaptive boosting (GentleBoost) strategy to train classifiers. This
537 method is particularly effective in handling imbalanced data and unequal misclassification
538 costs.

539

540 Like Logit Boost, each weak learner in the ensemble fitted a regression model to response
541 values, $y_n \in \{-1, +1\}$. The mean-squared error, stored in the FitInfo property of the
542 ensemble object by fitcensemble, is computed as:

543

$$544 N \sum_{n=0}^d d(t)_n (y_n - h_t(x_n))^2$$

545

546 where, $d(t)_n$ represents observation weights at step t (summing up to 1), and $h_t(x_n)$
547 denotes predictions from the regression model h_t fitted to response values y_n . As the
548 strength of individual learners diminishes, the weighted mean-squared error converges
549 towards 1.

550

551 The training of classifiers utilized wild-type data. In the case of single whisker (SW) data,
552 three classes were considered: barrel, septa, and neighbors. For multi-whisker (MW)
553 data, two classes were defined: barrel and septa. Subsequently, Elfn1 knockout (KO) SW
554 or MW data was introduced into the trained model to obtain predictions, respectively.

555

556 **Retrograde tracing and tissue processing**

557 Mice were anesthetized by isoflurane and a small craniotomy was made above the
558 injection site (M1 or S2). 200nl AAV24-retro GFP was injected in the M1 or S2. 4 weeks
559 after injection, the animals were transcardially perfused using 1X PBS and 4% PFA.
560 Following that, the whole brains were used for hydrogel-based tissue clearing by putting
561 in a hydrogel solution (1% PFA, 4% Acrylamide, 0.05% Bis) for 48h before the hydrogel
562 polymerization was induced at 37 C. Afterwards, the brains were put in 40ml of 8% SDS
563 and kept shaking at room temperature until the tissue was cleared sufficiently (around 2
564 months). Then the brains were washed 3 times in PBS and put into a self-made refractive
565 index matching solution (RIMS) for the last clearing step. They were left to equilibrate in
566 5ml of RIMS for at least 4 days at room temperature before being imaged.

567

568 **Imaging of injected brain**

569 After clearing, brains were imagined by a home-built mesoscale selective plane
570 illumination microscope (mesoSPIM). The detailed steps were described elsewhere
571 (Voigt, F.F et al, 2019). The images were acquired by laser 488nm & 561nm with 0.8X
572 magnification (pixel size: 8.23um) for the view of the whole brain and 2X magnification
573 (pixel size: 3.26um) for the view of the ipsilateral barrel cortex. 488nm laser was to acquire
574 the fluorescence of virus while 561nm was to acquire an auto-fluorescence background
575 to visualize barrels in the barrel cortex.

576

577 **Tissue Processing for Passive Clearing and Imaging**

578 The method used for hydrogel-based tissue clearing is explained in detail elsewhere [53].
579 Briefly, the animals were transcardially perfused using 1x PBS and Hydrogel solution (1%
580 PFA, 4% Acrylamide, 0.05% Bis). The collected brains were post-fixed for 48 h in a
581 Hydrogel solution (1% PFA, 4% Acrylamide, 0.05% Bis). Afterward, the Hydrogel
582 polymerization was induced at 37 °C. Following the polymerization, the brains were
583 immersed in 40 mL of 8% SDS and kept shaking at room temperature until the tissue was
584 cleared sufficiently (10–40 days depending on the animal's age). Finally, after 2–4 washes
585 in PBS, the brains were put into a self-made refractive index matching solution (RIMS)

586 [54]. They were left to equilibrate in 5 mL of RIMS for at least 4 days at RT (Room
587 Temperature) before being imaged. After clearing, brains were attached to a small weight
588 and loaded into a quartz cuvette, then submerged in RIMS, and imaged using a home-
589 built mesoscale selective plane illumination microscope (mesoSPIM)[24]. The
590 microscope consists of a dual-sided excitation path using a fiber-coupled multiline laser
591 combiner (405, 488, 515, 561, 594, 647 nm, Omicron SOLE-6) and a detection path
592 comprising an Olympus MVX-10 zoom macroscope with a 1 \times objective (Olympus
593 MVPLAPO 1x), a filter wheel (Ludl 96A350), and a scientific CMOS (sCMOS) camera
594 (Hamamatsu Orca Flash 4.0 V3). For imaging tdTomato and eGFP a 594 nm excitation
595 with a 594 long-pass filter (594 LP Edge Basic, AHF) and 488 nm & 520/35 (BrightLine
596 HC, AHF) were used respectively. The excitation paths also contain galvo scanners
597 (GCM-2280-1500, Citizen Chiba) for light-sheet generation and reduction of streaking
598 artifacts due to absorption of the light-sheet. In addition, the beam waist is scanning using
599 electrically tunable lenses (ETL, Optotune EL-16-40-5D-TC-L) synchronized with the
600 rolling shutter of the sCMOS camera. This axially scanned light-sheet mode (ASLM) leads
601 to a uniform axial resolution across the field-of-view of 5–10 μ m (depending on zoom and
602 wavelength). The field of views ranged from 10.79 mm at \times 1 or x0.8 magnification (Pixel
603 size: 5.27 μ m) for overview datasets. Further technical details of the mesoSPIM are
604 described elsewhere[24,25]. The images generated with the mesoSPIM were
605 preprocessed using Fiji and Imaris software to generate the images of the barrel cortex.
606 For the quantification of neurons, the collected RAW files were converted to HDF5 format,
607 and each z-plane was median filtered (window size 2 pixels) and convolved with a disc
608 kernel (radius 1.5, convolution window size 10). The convolution was performed on the
609 log-transformed z-plane and the convolution result was thresholded (threshold 0.3). On
610 the convolved, thresholded z-planes local maxima were detected and then consolidated
611 into cell detections in 3D space by matching and grouping detections on adjacent slices
612 that are less than 5 pixels apart. Grouped detections were discarded if they spanned less
613 than 4 adjacent slices. For the remaining grouped detections 3D cell positions were
614 defined by the detection at median z location. 3D consolidated detections were filtered
615 anatomically and morphologically using a semi-automated procedure to exclude non

616 cortical detections and detections not corresponding to neurons (e.g., blood vessels).
617 Analysis was performed manually using Imaris

618

619 **Analysis of cleared brain imaging data**

620 Barrel cortex was imaged in 3D with 2X objective. The images were processed through
621 Fiji and Imaris to visualize the 3D structure of the barrel cortex. XY-, YZ-, XZ- projections
622 were visualized in Imaris, which allows us to adjust the correct angle for each barrel
623 column to be vertical against XY-plane. This method allowed us identify barrel and septa
624 in layers 2-3 and 5 and layer 4. In addition, the depth information is also precisely acquired
625 for each barrel column. SST+ or VIP+ neuron numbers, S2-projected and M1-projected
626 S1 neuron numbers were counted in icy. Max projection for each 50 ums along barrel
627 columns was acquired and neurons on each max projection image were counted
628 automatically by icy with the same threshold for all the brains. Each barrel was drawn
629 according to the barrel map from each brain by max projection. The area of septa was
630 calculated by subtracting the whole selected area from all the selected barrel areas.

631

632 **Gene expression analysis**

633 Two metrics were computed, Expression of all genes correlated with SST, VIP, PV and
634 EMX genes and compared with ttest and plotted in 2D. Since we wanted high correlation
635 and strong similarity with VIP and SST and the opposite for PV and Emx1, we used a
636 combined similarity and correlation scores using the following formulas, $C_p =$
637 $pSST \cdot pVIP \cdot (1-pPV) \cdot (1-pEMX)$, where pSST is the p value came out of a ttest between
638 all genes and SST etc. $CC = cSST \cdot cVIP \cdot (1-cPV) \cdot (1-cEMX)$ where cSST is the correlation
639 between SST gene and all genes.

640

641 **Statistical Analysis**

642 Data are represented as mean \pm SEM unless stated otherwise. Statistical comparisons
643 have been done using a one-tailed Mann-Whitney-U test. In the case of the Gaussian
644 cluster analysis, a two-tailed t-test was applied on the epsilon distance between starter
645 cells and pre-synaptic partners to check the statistical significance threshold was set to
646 $p < 0.05$; in the Figures, different degrees of evidence against the null hypothesis are

647 indicated by asterisks ($p<0.05$: *; $p<0.01$: **; $p<0.001$: ***). Cell densities in Figure 2 and
648 6 were compared using repeated measures ANOVA. All tests were conducted using
649 custom codes in Matlab.

650

651 **Figures Legends**

652

653 **Figure 1. Layer specific temporal divergences emerge in barrel and septa domains**
654 **upon repeated single-whisker stimulation.** (A) Acute *in-vivo* silicon probe (8x8) recordings were performed after the start of active whisking (>P21). Principal whiskers were stimulated one by one for 2s at 10Hz. (B) Left: Probe locations were labeled after each experiment using histology. Right: Only the triplets of electrodes were used in the analysis in which principal barrel (B), adjacent septa (S) and the adjacent neighboring barrel (N) were captured by the probe insertion sites for any experiment. 14 barrel columns, 9 septal columns, 18 unstimulated neighboring barrels from N=4 mice. (C) Analysis for Layer 2/3. Left: Average firing profiles of barrel (black), unstimulated neighbor (blue) and septa (pink) columns upon 2s-long 10Hz repeated whisker stimulation. Middle: Average firing rates per stimulating pulse. Right: Average firing rates for 1st, 2nd, 3rd, and 20th pulses zoomed in. (D) Pair-wise statistical comparisons of three conditions for 1st, 2nd, 3rd, and 20th pulses (Mann-Whitney-U-Test). (E) Pair-wise statistical comparisons of three conditions for all pulses (Mann-Whitney-U-Test). (F-G-H) Same with C-D-E but for Layer 4. (I-J-K) Same with C-D-E but for Layer 5. (*: $p<0.05$; **: $p<0.01$; ***: $p<0.001$; Dark shading is a function of p value and white stands for $p>0.05$.)

669

670 **Figure 2. SST+ and VIP+ neuron densities differ at Barrel and Septa Domains in**
671 **Layer 4.** (A) A passive CLARITY-based tissue clearing protocol was performed on the collected brains which were subsequently imaged in their entirety using a custom-built light-sheet microscope (mesoSPIM). 594nm wavelength was used to image tdTomato, 488nm wavelength was used to image autofluorescence. (B) SST+ neuron density distribution over laminae for barrel and septal domains (N=4 mice, n=54 Barrels and surrounding septa per barrel). Normalized cell densities plotted as a function of depth. 0 μ m represents the top of layer 4. SST+ interneuron density is significantly higher in septa

678 (p=0.0015, F=30.64, repeated-measures ANOVA). (C) VIP+ neuron density distribution
679 over laminae for barrel and septal domains. (N=4 mice, n= 53 Barrels and surrounding
680 septa per barrel). Normalized cell densities plotted as a function of depth. 0 μ m represents
681 the top of layer 4. VIP+ interneuron density is also significantly higher in septa (p=0.0.21,
682 F=9.63, repeated-measures ANOVA)

683

684 **Figure 3. Elfn1 is predominantly expressed in SST+ and VIP+ Interneurons and**
685 **responsible for the short-term plasticity related temporal engagement.** (A) Scatter
686 plot showing genes exclusively expressed by SST+ and VIP+ neurons only. X-axis is the
687 combined correlation which is calculated as follows: cSST.*cVIP.*(1-cPV).*(1-cEXC),
688 where cX represents the correlation between the test sequence and the neuronal type of
689 interest X. This formula favors genes that are highly expressed in SST and VIP cells and
690 not expressed in Exc and PV cells. The higher the combined correlation, the better.
691 Similarly, Y-Axis is the combined p-value which is calculated as follows pSST.*pVIP.*(1-
692 pPV).*(1-pEXC), where pX represents the p-value (two-sample t-test) between the test
693 sequence and the neuronal type of interest X. This formula favors genes that significantly
694 similar with SST and VIP cells and different from Exc and PV cells. Lower the combined
695 p-value, better. (B) Elfn1 gene expression data across three RNA-seq datasets containing
696 cortical excitatory neurons and inhibitory interneuron subtypes visualized as boxplots of
697 RPKM expression levels. Boxes show median and interquartile ranges, and whiskers
698 show full data without outliers. (C) Excitatory synaptic events evoked by repetitive local
699 electrical stimulation produce strongly facilitating EPSCs onto SST interneurons. At 10
700 Hz, this is principally due to a suppression of initial release probability. For wildtype SST
701 interneurons EPSCs facilitate rapidly at 10 Hz (p=0.003, 3×10^{-7} , 3×10^{-11} and 3×10^{-15}
702 for 2nd 3rd 4th and 5th stimuli vs 1st stimuli, respectively). Elfn1 knockout removes this
703 facilitation (P = 1, 1, 1, 1 vs 1st). Responses in KO neurons facilitate less than in WT
704 neurons (P= 0.0001, 6×10^{-7} for 4th and 5th stimuli ANOVA with Bonferroni post hoc). (D)
705 Elfn1 KO also alters EPSC facilitation ratio onto multipolar VIP interneurons at 10 Hz.
706 Wildtype VIP interneurons do not display substantial facilitation at 10 Hz (p=1, 1, 1 and 1
707 for 2nd 3rd 4th and 5th stimuli vs 1st stimuli, respectively). Elfn1 knockout induces synaptic
708 depression (p=1,6x10⁻⁴, 5x10⁻⁶, 1x10⁻⁶ vs 1st). Responses in KO neurons depress more

709 than in WT neurons ($p=0.03$, 0.0004 , 0.001 for 3rd, 4th, and 5th stimuli ANOVA with
710 Bonferroni post hoc). * $p<0.05$, ** $p<0.01$, *** $p<0.001$

711

712 **Figure 4. Loss of Elfn1 abolishes barrel-septa response divergences upon single-**
713 **whisker stimulation.** (A) Analysis for Layer 2/3. Left: Average firing profiles of barrel
714 (gray), unstimulated neighbor (turquois) and septa (purple) columns upon 2s-long 10Hz
715 repeated whisker stimulation. Middle: Average firing rates per stimulating pulse (11 barrel
716 columns, 7 septal columns, 11 unstimulated neighbors from N=4 mice.). Right: Average
717 firing rates for 1st, 2nd, 3rd, and 20th pulses. (B) Pair-wise statistical comparisons of three
718 conditions for four pulses. (C) Pair-wise statistical comparisons of three conditions for all
719 pulses. (D-E-F) Same with A-B-C but for Layer 4. (G-H-I) Same with A-B-C but for Layer
720 5. (*: $p<0.05$; **: $p<0.01$; ***: $p<0.001$; Two-sided Mann-Whitney U Test. White represents
721 $p>0.05$.)

722

723 **Figure 5. Decoding analysis shows an alteration of columnar domain identity in**
724 ***Elfn1KO* animals.** (A) Decoder analysis based on the single whisker stimulation
725 response profiles. Left column represents the receiver operating characteristic (ROC)
726 curve of the classification performance of the decoder trained and cross-validated using
727 WT data. Right column represents the ROC curve of the classification performance after
728 training with WT and testing with KO data. (B) Decoder analysis based on the multi
729 whisker stimulation response profiles. Left column represents the receiver operating
730 characteristic (ROC) curve of the classification performance of the decoder trained and
731 cross-validated using multi-whisker WT data. Right column represents the ROC curve of
732 the classification performance after training with WT and testing with KO data.

733

734 **Figure 6. wS1 barrel and septa columns differentially project to wS2 and M1** (A) The
735 representation of the experimental protocol and timelines. The retro-AAV-CAG-GFP was
736 injected in either S2, or M1 at P20-30 and the brains were dissected 4 weeks after the
737 virus injection following the tissue clearing and whole brain imaging. (B) Normalized cell
738 density profiles of S2 and M1 projection neurons at barrel columns. 0 μ m represents the
739 top of layer 4. Layer 2/3-barrel columns send significantly more projections to S2

740 (p=0.0293, F=7.02, repeated-measures ANOVA). (C) Normalized cell density profiles of
741 S2 and M1 projections neurons at septa columns. 0 μ m represents the top of layer 4.
742 Layer 5 septal columns send significantly more projections to M1 (p=0.0402, F=5.98,
743 repeated measures ANOVA).

744

745 **Supplementary Figure Legends**

746

747 **Supplementary Figure 1. Layer 4 presents the highest level of temporal**
748 **divergences between barrel and septa domains upon repeated multi-whisker**
749 **stimulation.** (A) Acute *in-vivo* silicon probe (8x8) recordings were performed after the
750 start of active whisking (>P21). Most of the principal whiskers were stimulated for 2s at
751 10Hz. (B) Left: Probe locations were labeled after each experiment using histology. Right:
752 Only the triplets of electrodes were used in the analysis in which principal barrel (B),
753 adjacent septa (S) and the adjacent neighboring barrel (N) were captured by the probe
754 insertion sites for single whisker stimulation experiments. Only barrels and septa were
755 used for multi whisker analysis. 14 barrel columns, 9 septal columns from n=4 mice. (C)
756 Analysis for Layer 2/3. Left: Average firing profiles of barrel (black) and septa (pink)
757 columns upon 2s-long 10Hz repeated whisker stimulation. Middle: Average firing rates
758 per stimulating pulse. Right: Average firing rates for 1st, 2nd, 3rd, and 20th pulses. (D) Pair-
759 wise statistical comparisons of three conditions for four pulses. (E-F) Same with C-D but
760 for Layer 4. (G-H) Same with C-D but for Layer 5. (I) Barrel-Septa comparison for Layer
761 2/3,4 and 5 (*: p<0.05; **: p<0.01; ***: p<0.001; Two-sided Mann-Whitney U Test. White
762 represents p>0.05.)

763

764 **Supplementary Figure 2. SST+ and VIP+ neuron densities differ at Barrel and Septa**
765 **Domains in Layer 4.** Left: Example SST-tdTomato brain virtual slice on left. Right Top:
766 Inner ring represents barrel borders; outer ring represents septal borders. Right Bottom:
767 Same as top but without green channel.

768

769 **Supplementary Figure 3. Elfn1 is solely expressed in SST+ and VIP+ Interneurons**
770 **and responsible for the short-term plasticity related temporal engagement.** (A) Each

771 bar shows the differential expression of Elfn1 in a comparison within one of the datasets.
772 Fold-Changes are relative to the other 3 groups of neuron subtypes within the same
773 dataset. (B) Gene expression data for other four candidates across three RNA-seq
774 datasets containing cortical excitatory neurons and inhibitory interneuron subtypes. Each
775 dot represents a single sample.

776

777 **Supplementary Figure 4. Loss of Elfn1 does not alter barrel-septa response profiles**
778 **upon multi-whisker stimulation.** (A) Analysis for Layer 2/3. Left: Average firing profiles
779 of barrel (gray) and septa (purple) columns upon 2s-long 10Hz repeated whisker
780 stimulation. Middle: Average firing rates per stimulating pulse (11 barrel columns, 7 septal
781 columns from n=4 mice.). Right: Average firing rates for 1st, 2nd, 3rd, and 20th pulses. (B)
782 Pair-wise statistical comparisons of three conditions for four pulses. (C-D) Same with A-
783 B but for Layer 4. (E-F) Same with A-B but for Layer 5. (G) Barrel-Septa comparison for
784 Layer 2/3,4 and 5 (*: p<0.05; **: p<0.01;***:p<0.001; Two-sided Mann-Whitney U Test.
785 White represents p>0.05.)

786

787 **Supplementary Figure 5. Visual presentation of WT vs Elfn1KO response profiles.**
788 (A) Visual comparison of mean firing rates of WT vs KO SWS responses for all three
789 conditions and layers. (B) Visual comparison of mean firing rates of WT vs KO MWS
790 responses for both conditions and all layers.

791

792 **References**

793

- 794 1. Douglas RJ, Martin KAC. Neuronal circuits of the neocortex. Annual Review of
795 Neuroscience. 2004. doi:10.1146/annurev.neuro.27.070203.144152
- 796 2. Horton JG, Adams DL. The cortical column: A structure without a function. Philosophical
797 Transactions of the Royal Society B: Biological Sciences. 2005.
798 doi:10.1098/rstb.2005.1623
- 799 3. Harris KD, Mrsic-Flogel TD. Cortical connectivity and sensory coding. Nature. 2013.
800 doi:10.1038/nature12654
- 801 4. Kim U, Ebner FF. Barrels and septa: Separate circuits in rat barrel field cortex. Journal of
802 Comparative Neurology. 1999;408. doi:10.1002/(SICI)1096-
803 9861(19990614)408:4<489::AID-CNE4>3.0.CO;2-E

804 5. Bureau I, Von Paul F Saint, Svoboda K. Interdigitated paralemniscal and lemniscal
805 pathways in the mouse barrel cortex. *PLoS Biol.* 2006;4.
806 doi:10.1371/journal.pbio.0040382

807 6. Alloway KD. Information processing streams in rodent barrel cortex: The differential
808 functions of barrel and septal circuits. *Cerebral Cortex.* 2008. doi:10.1093/cercor/bhm138

809 7. Staiger JF, Petersen CCH. Neuronal circuits in barrel cortex for whisker sensory
810 perception. *Physiol Rev.* 2021;101. doi:10.1152/physrev.00019.2019

811 8. Shepherd GMG, Svoboda K. Laminar and columnar organization of ascending excitatory
812 projections to layer 2/3 pyramidal neurons in rat barrel cortex. *Journal of Neuroscience.*
813 2005;25. doi:10.1523/JNEUROSCI.1173-05.2005

814 9. Chakrabarti S, Alloway KD. Differential origin of projections from SI barrel cortex to the
815 whisker representations in SII and MI. *Journal of Comparative Neurology.* 2006;498.
816 doi:10.1002/cne.21052

817 10. Sato TR, Svoboda K. The functional properties of barrel cortex neurons projecting to the
818 primary motor cortex. *Journal of Neuroscience.* 2010;30. doi:10.1523/JNEUROSCI.3774-
819 09.2010

820 11. Audette NJ, Urban-Ciecko J, Matsushita M, Barth AL. POM Thalamocortical Input Drives
821 Layer-Specific Microcircuits in Somatosensory Cortex. *Cereb Cortex.* 2018;28.
822 doi:10.1093/cercor/bhx044

823 12. Brecht M, Sakmann B. Dynamic representation of whisker deflection by synaptic
824 potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat
825 somatosensory cortex. *Journal of Physiology.* 2002. doi:10.1113/jphysiol.2002.018465

826 13. Cai L, Yang JW, Wang CF, Chou SJ, Luhmann HJ, Karayannis T. Identification of a
827 Developmental Switch in Information Transfer between Whisker S1 and S2 Cortex in
828 Mice. *Journal of Neuroscience.* 2022;42. doi:10.1523/JNEUROSCI.2246-21.2022

829 14. Melzer P, Champney GC, Maguire MJ, Ebner FF. Rate code and temporal code for
830 frequency of whisker stimulation in rat primary and secondary somatic sensory cortex.
831 *Exp Brain Res.* 2006;172: 370–386. doi:10.1007/s00221-005-0334-1

832 15. Melzer P, Sachdev RNS, Jenkinson N, Ebner FF. Stimulus frequency processing in awake
833 rat barrel cortex. *Journal of Neuroscience.* 2006;26. doi:10.1523/JNEUROSCI.2620-
834 06.2006

835 16. O'Connor DH, Hires SA, Guo Z V., Li N, Yu J, Sun QQ, et al. Neural coding during
836 active somatosensation revealed using illusory touch. *Nat Neurosci.* 2013;16.
837 doi:10.1038/nn.3419

838 17. Pammer L, O'Connor DH, Hires SA, Clack NG, Huber D, Myers EW, et al. The
839 mechanical variables underlying object localization along the axis of the whisker. *Journal*
840 *of Neuroscience.* 2013;33. doi:10.1523/JNEUROSCI.4316-12.2013

841 18. Armstrong-James M, Fox K. Spatiotemporal convergence and divergence in the rat S1
842 “Barrel” cortex. *Journal of Comparative Neurology.* 1987;263.
843 doi:10.1002/cne.902630209

844 19. Koralek KA, Jensen KF, Killackey HP. Evidence for two complementary patterns of
845 thalamic input to the rat somatosensory cortex. *Brain Res.* 1988;463. doi:10.1016/0006-
846 8993(88)90408-8

847 20. Chmielowska J, Carvell GE, Simons DJ. Spatial organization of thalamocortical and
848 corticothalamic projection systems in the rat SMI barrel cortex. *Journal of Comparative*
849 *Neurology.* 1989;285. doi:10.1002/cne.902850304

850 21. Ahissar E, Sosnik R, Bagdasarian K, Haidarliu S. Temporal frequency of whisker
851 movement. II. Laminar organization of cortical representations. *J Neurophysiol*. 2001;86.
852 doi:10.1152/jn.2001.86.1.354

853 22. Sosnik R, Haidarliu S, Ahissar E. Temporal frequency of whisker movement. I.
854 Representations in brain stem and thalamus. *J Neurophysiol*. 2001;86.
855 doi:10.1152/jn.2001.86.1.339

856 23. Almási Z, Dávid C, Witte M, Staiger JF. Distribution patterns of three molecularly
857 defined classes of gabaergic neurons across columnar compartments in mouse barrel
858 cortex. *Front Neuroanat*. 2019;13. doi:10.3389/fnana.2019.00045

859 24. Voigt FF, Kirschenbaum D, Platonova E, Pagès S, Campbell RAA, Kastli R, et al. The
860 mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. *Nat
861 Methods*. 2019;16. doi:10.1038/s41592-019-0554-0

862 25. Vladimirov N, Voigt F, Naert T, Araujo GR, Cai R, Reuss AM, et al. The Benchtop
863 mesoSPIM: a next-generation open-source light-sheet microscope for large cleared
864 samples. *bioRxiv*. 2023.

865 26. Urban-Ciecko J, Barth AL. Somatostatin-expressing neurons in cortical networks. *Nat
866 Rev Neurosci*. 2016;17. doi:10.1038/nrn.2016.53

867 27. Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B. A disinhibitory circuit mediates motor
868 integration in the somatosensory cortex. *Nat Neurosci*. 2013;16. doi:10.1038/nn.3544

869 28. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepcs A. Cortical interneurons that
870 specialize in disinhibitory control. *Nature*. 2013;503. doi:10.1038/nature12676

871 29. Karnani MMM, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, Snider WGG, et al.
872 Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex.
873 *Neuron*. 2016;90. doi:10.1016/j.neuron.2016.02.037

874 30. Yao Z, van Velthoven CTJ, Nguyen TN, Goldy J, Sedeno-Cortes AE, Baftizadeh F, et al.
875 A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation.
876 *Cell*. 2021;184. doi:10.1016/j.cell.2021.04.021

877 31. Huntley MA, Srinivasan K, Friedman BA, Wang TM, Yee AX, Wang Y, et al. Genome-
878 wide analysis of differential gene expression and splicing in excitatory neurons and
879 interneuron subtypes. *Journal of Neuroscience*. 2020;40. doi:10.1523/JNEUROSCI.1615-
880 19.2019

881 32. Stachniak TJ, Sylwestrak EL, Scheiffele P, Hall BJ, Ghosh A. Elfn1-induced constitutive
882 activation of mglur7 determines frequency-dependent recruitment of somatostatin
883 interneurons. *Journal of Neuroscience*. 2019;39. doi:10.1523/JNEUROSCI.2276-18.2019

884 33. Stachniak TJ, Kastli R, Hanley O, Argunsah AÖ, Van Der Valk EGT, Kanatouris G, et al.
885 Postmitotic prox1 expression controls the final specification of cortical VIP interneuron
886 subtypes. *Journal of Neuroscience*. 2021;41. doi:10.1523/JNEUROSCI.1021-21.2021

887 34. Tomioka NH, Yasuda H, Miyamoto H, Hatayama M, Morimura N, Matsumoto Y, et al.
888 Elfn1 recruits presynaptic mGluR7 in trans and its loss results in seizures. *Nat Commun*.
889 2014;5. doi:10.1038/ncomms5501

890 35. Allwein EL, Schapire RE, Singer Y. Reducing multiclass to binary: A unifying approach
891 for margin classifiers. *Journal of Machine Learning Research*. 2001;1.

892 36. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of
893 boosting. *Annals of Statistics*. 2000. doi:10.1214/aos/1016218223

894 37. Meier AM, Wang Q, Ji W, Ganachaud J, Burkhalter A. Modular network between
895 postrhinal visual cortex, amygdala, and entorhinal cortex. *Journal of Neuroscience*.
896 2021;41. doi:10.1523/JNEUROSCI.2185-20.2021

897 38. Petersen CCH. The functional organization of the barrel cortex. *Neuron*. 2007.
898 doi:10.1016/j.neuron.2007.09.017

899 39. Kheradpezhouh E, Adibi M, Arabzadeh E. Response dynamics of rat barrel cortex
900 neurons to repeated sensory stimulation. *Sci Rep*. 2017;7. doi:10.1038/s41598-017-11477-
901 6

902 40. Van Der Loos H, Woolsey TA. Somatosensory cortex: Structural alterations following
903 early injury to sense organs. *Science* (1979). 1973;179. doi:10.1126/science.179.4071.395

904 41. Woolsey TA, Welker C, Schwartz RH. Comparative anatomical studies of the Sml face
905 cortex with special reference to the occurrence of “barrels” in layer IV. *Journal of*
906 *Comparative Neurology*. 1975;164. doi:10.1002/cne.901640107

907 42. Rice FL, Gomez C, Barstow C, Burnet A, Sands P. AComparative analysis of the
908 development of the primary somatosensory cortex: Interspecies similarities during barrel
909 and laminar development. *Journal of Comparative Neurology*. 1985;236.
910 doi:10.1002/cne.902360405

911 43. Rice FL. An attempt to find vibrissa-related barrels in the primary somatosensory cortex
912 of the cat. *Neurosci Lett*. 1985;53. doi:10.1016/0304-3940(85)90180-6

913 44. Nomura S, Itoh K, Sugimoto T, Yasui Y, Kamiya H, Mizuno N. Mystacial vibrissae
914 representation within the trigeminal sensory nuclei of the cat. *Journal of Comparative*
915 *Neurology*. 1986;253. doi:10.1002/cne.902530110

916 45. Xu H, Jeong HY, Tremblay R, Rudy B. Neocortical Somatostatin-Expressing GABAergic
917 Interneurons Disinhibit the Thalamorecipient Layer 4. *Neuron*. 2013;77.
918 doi:10.1016/j.neuron.2012.11.004

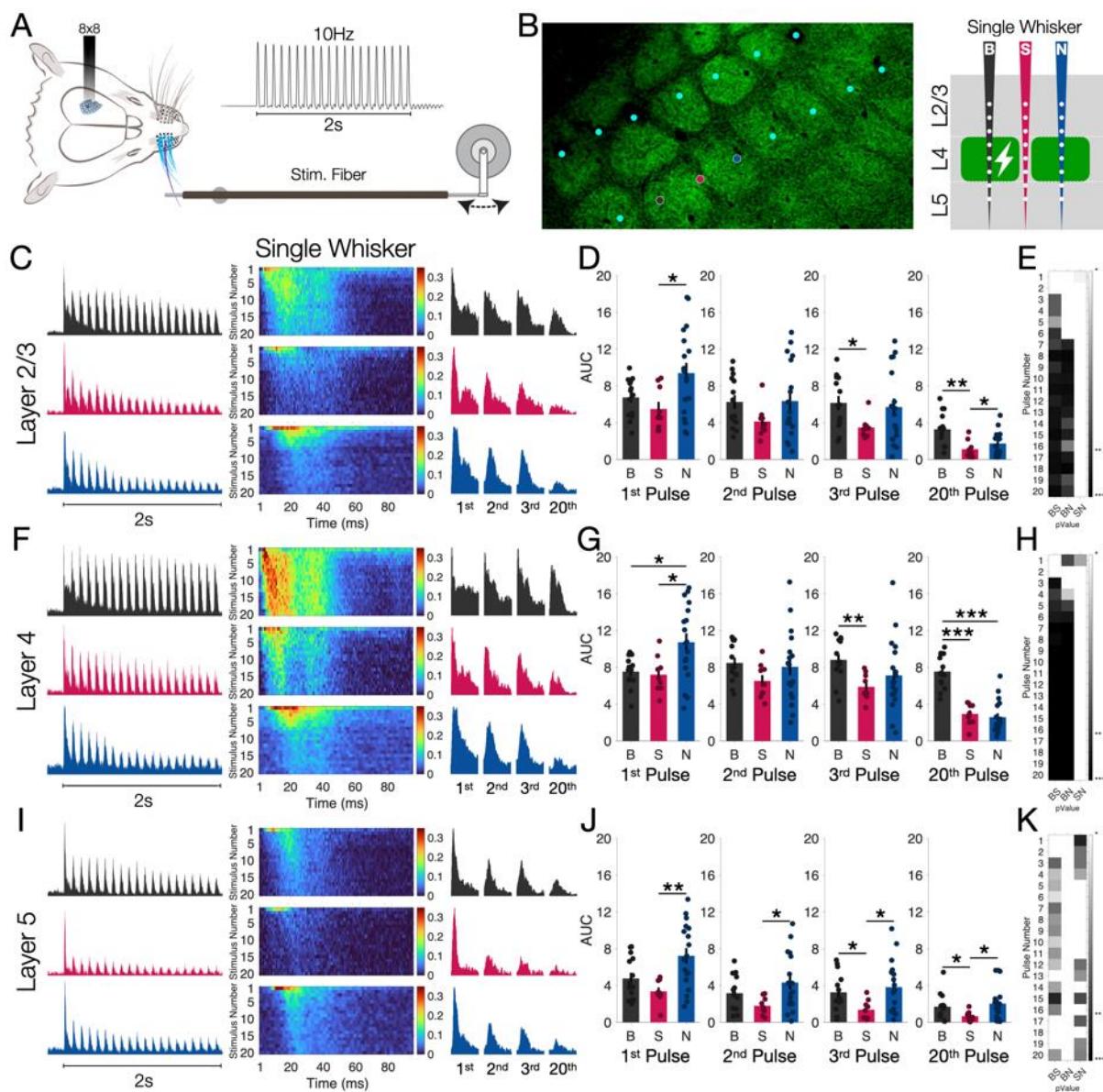
919 46. Silberberg G, Markram H. Disynaptic Inhibition between Neocortical Pyramidal Cells
920 Mediated by Martinotti Cells. *Neuron*. 2007;53. doi:10.1016/j.neuron.2007.02.012

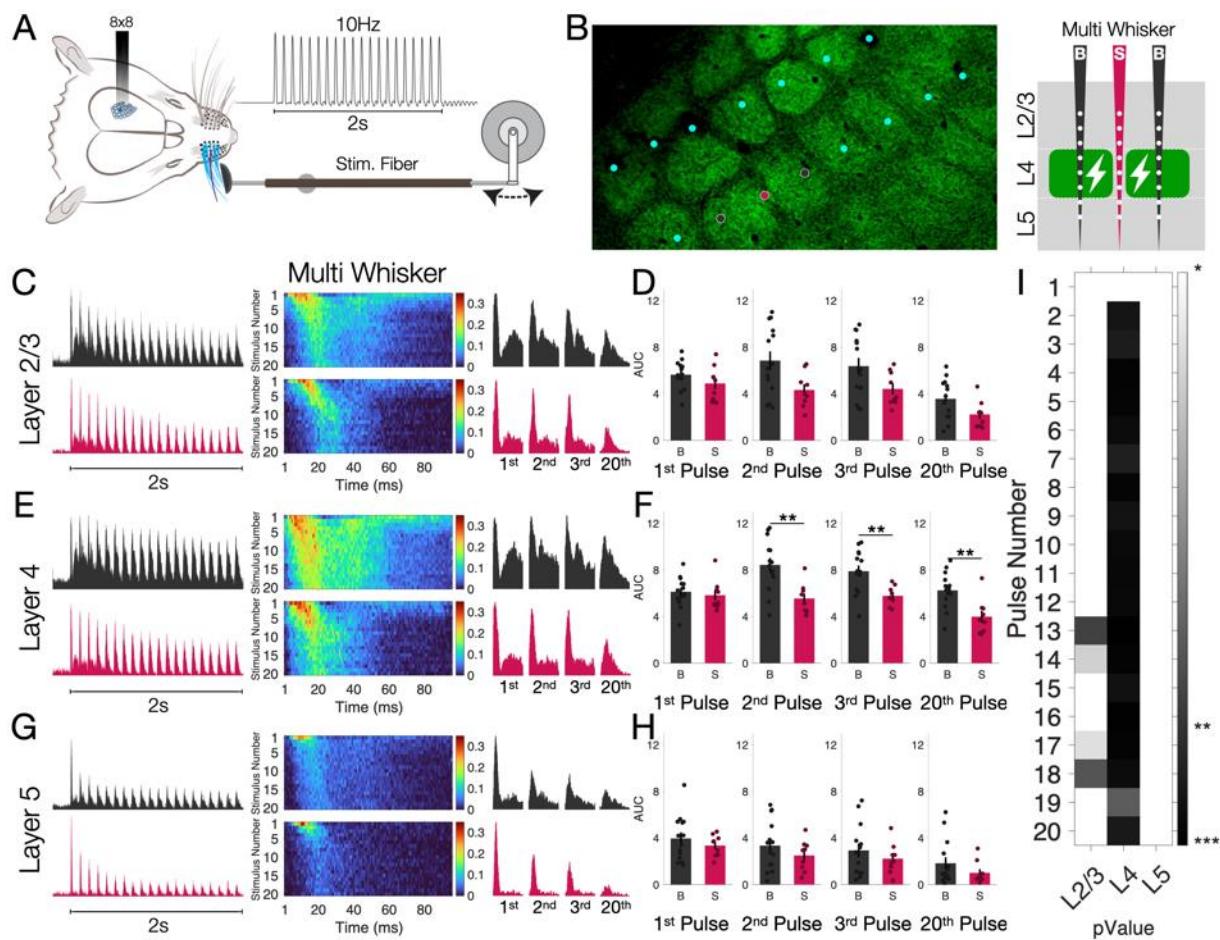
921 47. Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A. Distinct subtypes of somatostatin-
922 containing neocortical interneurons revealed in transgenic mice. *Journal of Neuroscience*.
923 2006;26. doi:10.1523/JNEUROSCI.0661-06.2006

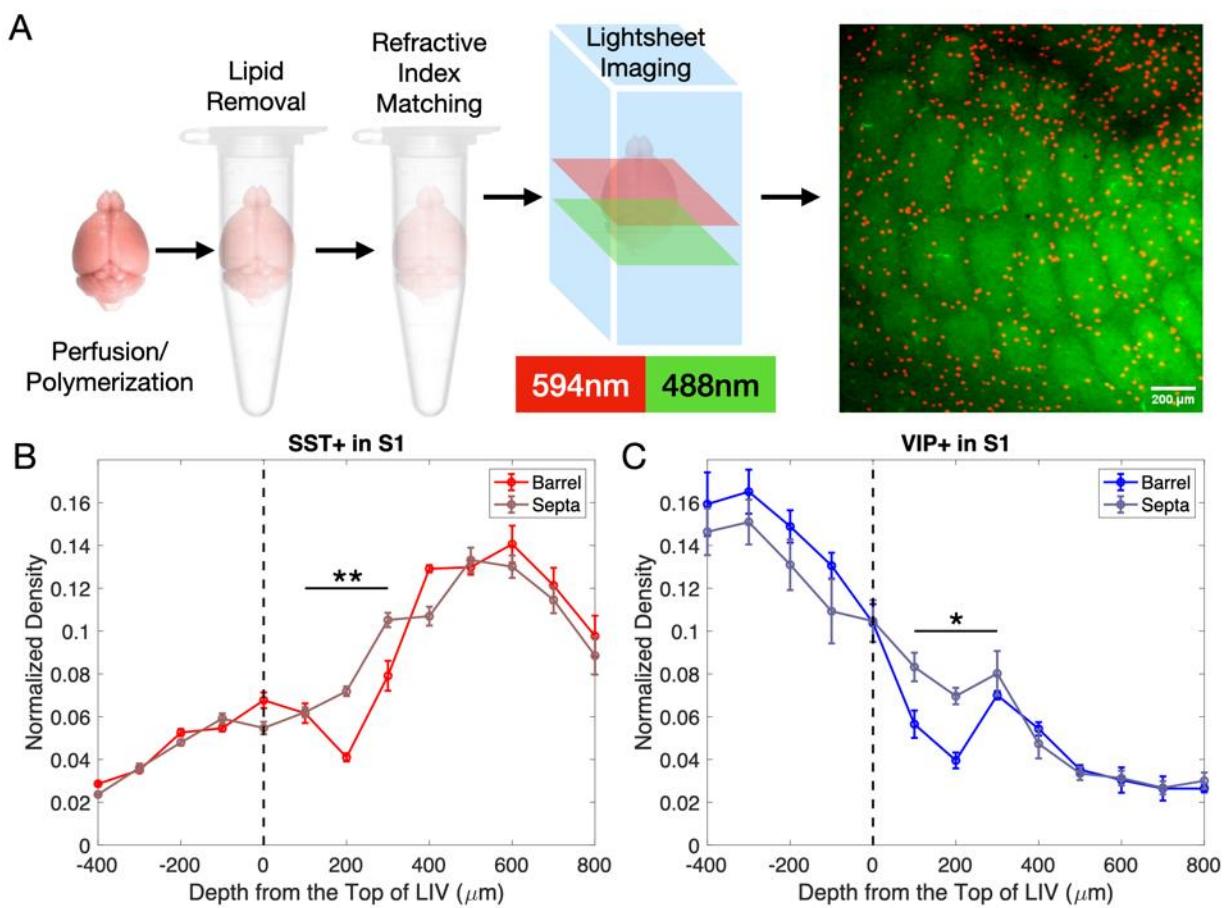
924 48. Tan Z, Hu H, Huang ZJ, Agmon A. Robust but delayed thalamocortical activation of
925 dendritic-targeting inhibitory interneurons. *Proc Natl Acad Sci U S A*. 2008;105.
926 doi:10.1073/pnas.0710628105

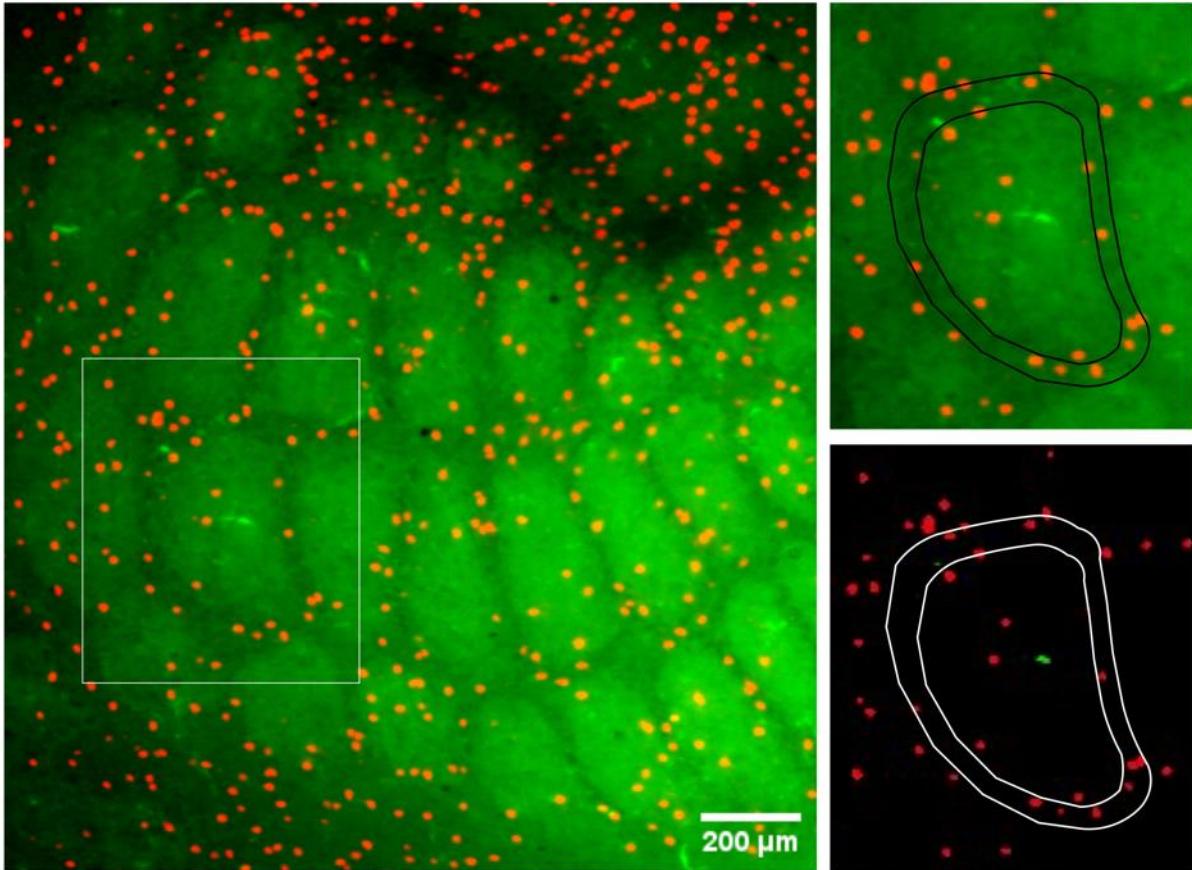
927 49. Stachniak TJ, Argunah AÖ, Yang J-W, Cai L, Karayannis T. Presynaptic kainate
928 receptors onto somatostatin interneurons are recruited by activity throughout development
929 and contribute to cortical sensory adaptation. *Journal of Neuroscience*. 2023;43.
930 doi:10.1523/JNEUROSCI.1461-22.2023

931 50. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, et al. A Resource of Cre Driver
932 Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex. *Neuron*. 2011;71:
933 995–1013. doi:10.1016/j.neuron.2011.07.026

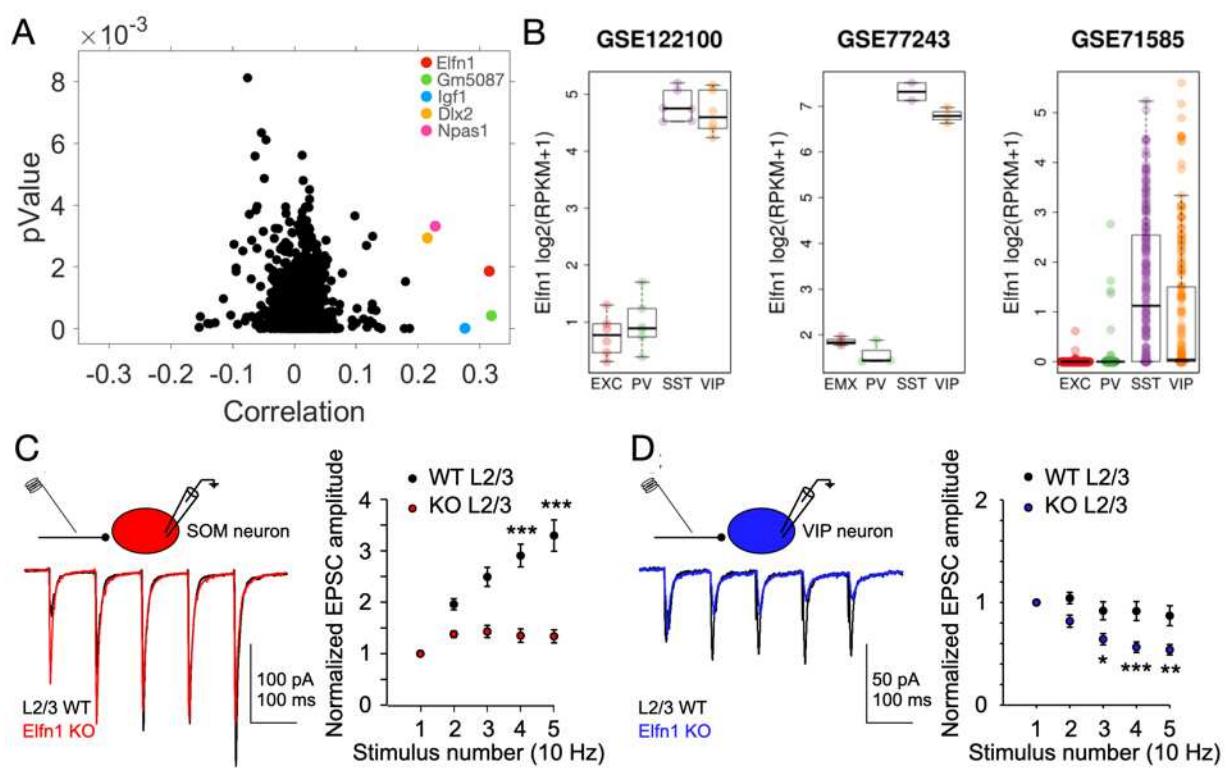
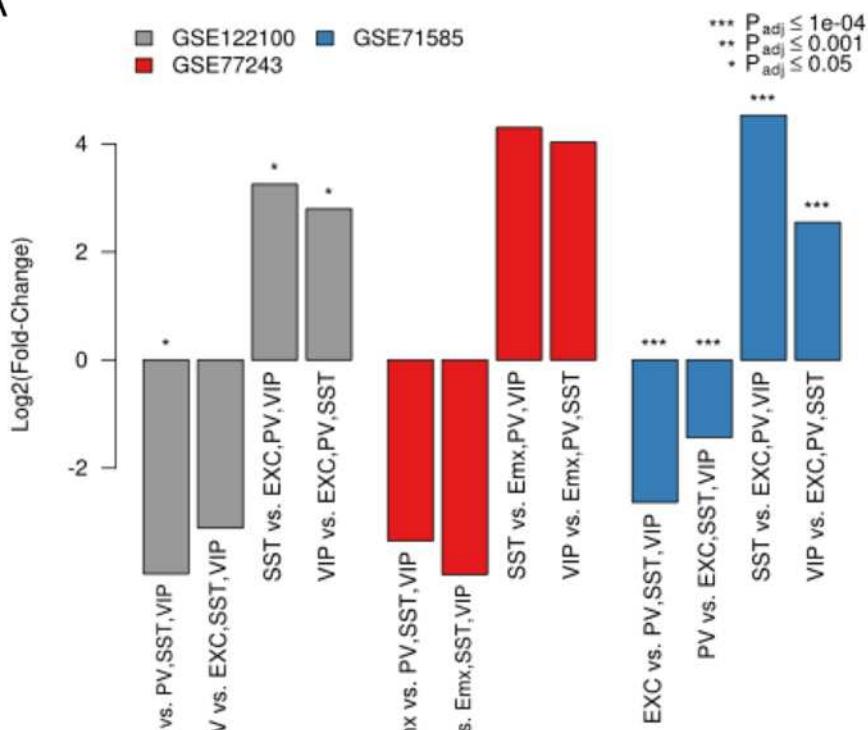
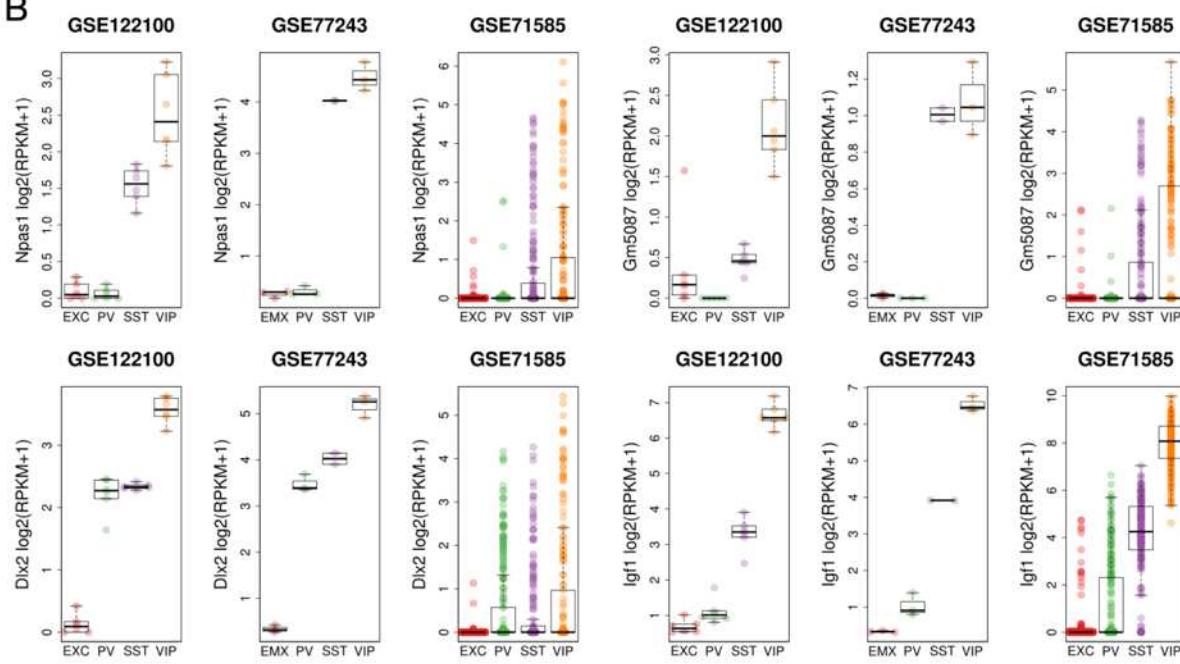

934 51. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and
935 high-throughput Cre reporting and characterization system for the whole mouse brain. *Nat*
936 *Neurosci*. 2010;13: 133–140. doi:10.1038/nn.2467

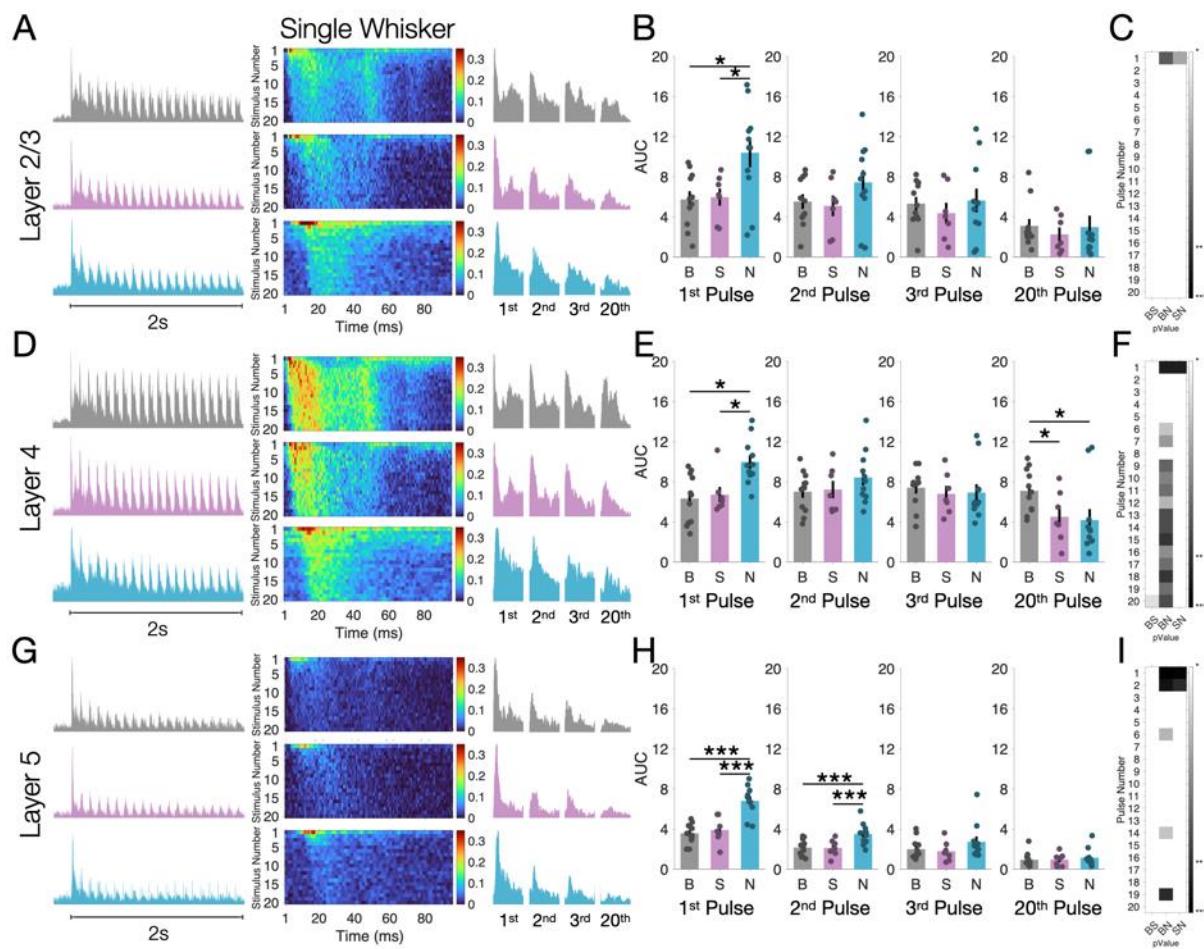

937 52. Li Y, Stam FJ, Aimone JB, Goulding M, Callaway EM, Gage FH. Molecular layer
938 perforant path-associated cells contribute to feed-forward inhibition in the adult dentate


939 gyrus. - Supporting Information. Proc Natl Acad Sci U S A. 2013;110: 9106–11.
940 doi:10.1073/pnas.1306912110
941 53. Chung K, Deisseroth K. CLARITY for mapping the nervous system. Nat Methods.
942 2013;10. doi:10.1038/nmeth.2481
943 54. Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, et al. Single-cell
944 phenotyping within transparent intact tissue through whole-body clearing. Cell. 2014;158.
945 doi:10.1016/j.cell.2014.07.017


947 Figures

948


Figure 3, Argunsah et al., 2024

A

B

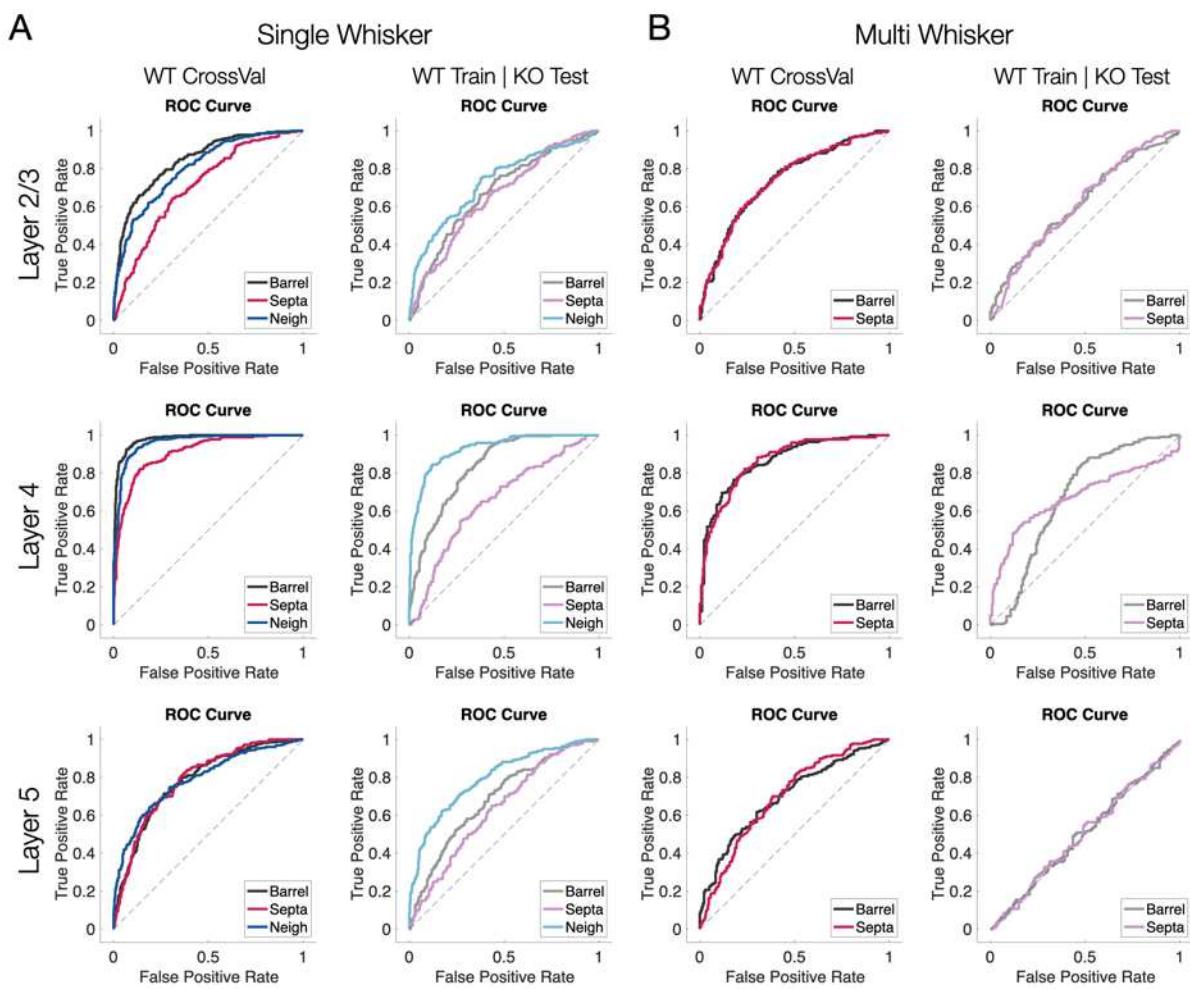
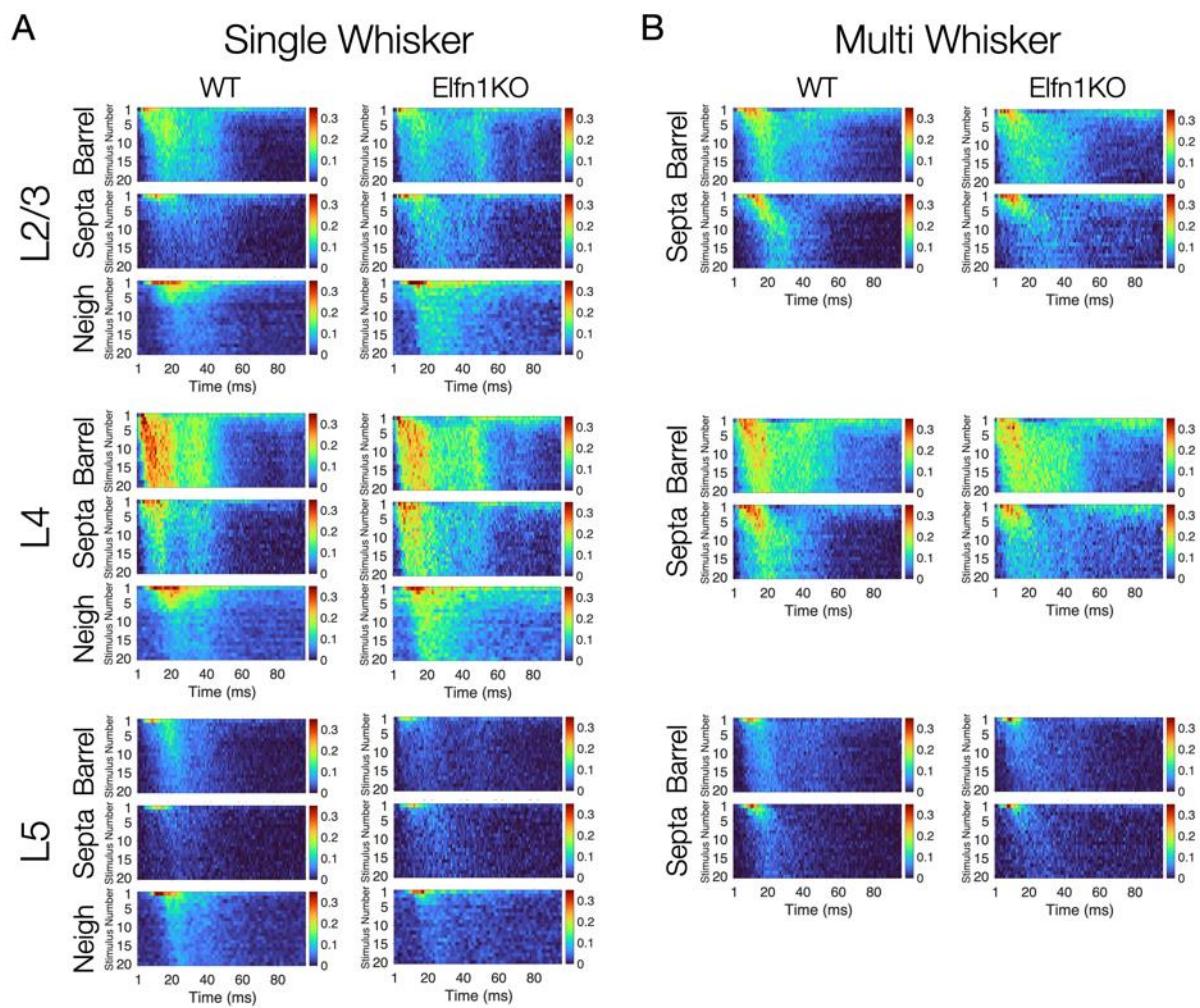
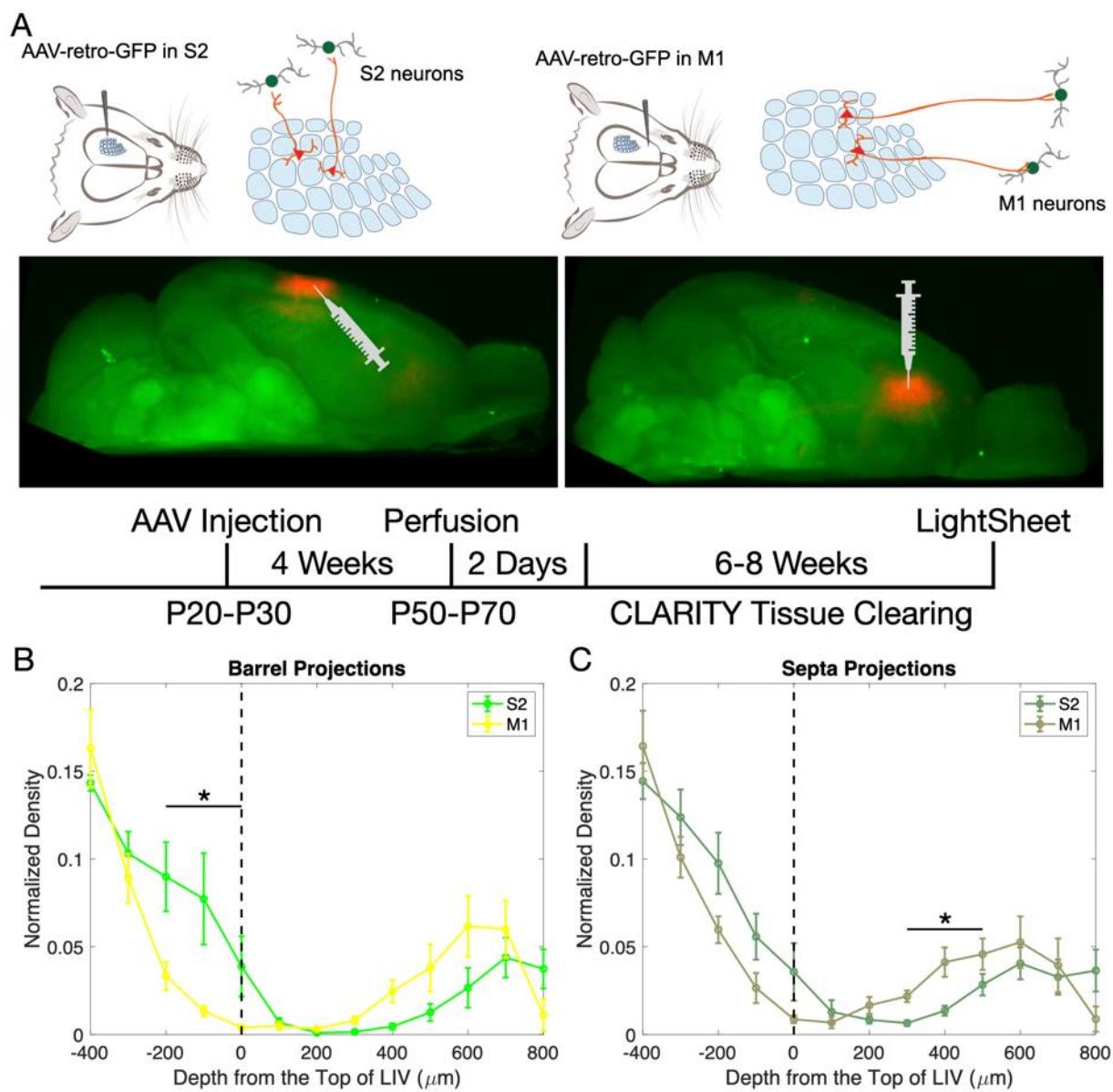




Figure 5, Argunsah et al., 2024

