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Abstract

The possibility to obtain genome-wide ancient DNA data from multiple individuals has
facilitated an unprecedented perspective into prehistoric societies. Studying biological
relatedness in these groups requires tailored approaches for analyzing ancient DNA due to
its low coverage, post-mortem damage, and potential ascertainment bias. Here we present
READv2 (Relatedness Estimation from Ancient DNA version 2), an improved Python 3
re-implementation of the most widely used tool for this purpose. While providing increased
portability and making the software future-proof, we are also able to show that READv2 (a) is
orders of magnitude faster than its predecessor; (b) has increased power to detect pairs of
relatives using optimized default parameters; and, when the number of overlapping SNPs is
sufficient, (c) can differentiate between full-siblings and parent-offspring, and (d) can classify
pairs of third-degree relatedness. We further use READv2 to analyze a large empirical
dataset that has previously needed two separate tools to reconstruct complex pedigrees. We
show that READV2 yields results and precision similar to the combined approach but is
faster and simpler to run. READv2 will become a valuable part of the archaeogenomic toolkit
in providing an efficient and user-friendly classification of biological relatedness from
pseudohaploid ancient DNA data.
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Background

The analysis of biological relatedness has become an established part of the
archaeogenomic toolkit [1,2]. It has provided us with important insights into the social
structures of prehistoric groups [3—25], including Neandertals [26]. Furthermore, it serves as
a quality control (QC) step in many bioinformatic pipelines to identify sample duplicates or
exclude close relatives from population genomic analyses. This development has been
facilitated by advances in both ancient DNA wet lab procedures and specifically designed
bioinformatic methods, as the specific properties of ancient DNA do not allow the application
of most approaches used with modern DNA [2]. Studies of biological relatedness in
prehistoric groups are now reaching up to almost 100 individuals from the same site [22],
highlighting the need for further development of methods to produce optimized and efficient
tools in this area.

In 2018, we published READ (Relationship Estimation from Ancient DNA) [27] as one of the
first tools specifically designed to infer biological relatedness from ultra-low coverage ancient
DNA data. READ uses pseudohaploid input data and divides the genome into 1 Mbp
windows, estimating the pairwise mismatch rate [28] per window and then using the
genome-wide mean for relationship classification. The values are normalized by the
expected pairwise mismatch rate for an unrelated pair of individuals from the same
population to account for differences in background relatedness due to population diversity
and SNP ascertainment. READ then uses this normalized pairwise mismatch rate (P0) to
classify pairs of individuals as identical/twins, first-degree relatives (parent-offspring and full
siblings), second-degree relatives (nephew/niece-uncle/aunt, grandparent-grandchild or
half-siblings), or unrelated. This has been shown to work quite well with as little as 0.1x
shotgun coverage per genome [27]. Recent years have seen the introduction or application
of more advanced methods into the field which work with lower amounts of data (Table S1),
provide resolution for more distant degrees of relatedness, and/or are able to differentiate
between different types of relationships for the same degree (e.g. parent-offspring versus full
siblings) [29-35].

Nevertheless, READ continues to be a popular tool in the field partly for its user-friendliness.
Since READ uses pseudohaploid genotype calls as input, it allows the use of the same files
used for other population genetic analysis without the need to generate files including
sequencing read counts, calculate genotype likelihoods, or use imputation. Furthermore,
READ has very simple assumptions estimating the expected pairwise mismatch rate from
the data without the need for population allele frequencies, which allows using it as part of
initial QC procedures or in populations (or species) for which little additional information is
available.

READ [27] had been implemented as a Python 2 script, taking plain text Plink files
(tped/tfam) as input. However, the last version of Python 2 was released in 2020 and some
systems have already stopped supporting the language. Furthermore, READ wrote a large
number of temporary files to the hard disk which were then analyzed by a separate R script
called from the Python script. The output of the R script was then again read into Python and
the final output was prepared. This back and forth between two scripts in different languages
created ample possibilities for incompatibilities and unhandled errors. As READ continues to
be used by many researchers in the archaeogenomics community, a reimplementation in
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Python 3 is warranted and provides the opportunity to add new features and improvements
to its resource usage to be prepared for larger datasets.

Here, we re-implement the original READ [27] (READv1 hereafter) in Python 3 as READv2.
The input file format has been changed from plain text Plink tped/tfam to binary Plink
bed/bim/fam, requiring less space on the hard disk. All analyses are carried out within the
same Python script using NumPy [36] and pandas [37] libraries, avoiding the excessive use
of temporary files and the calling of a separate R script. Furthermore, by using a simulated
dataset with known relationships and aDNA characteristics, we tested different window sizes
which, in READv1, had been set to a default value without proper comparison.
Consequently, we change the default values, obtaining a minor gain in accuracy. Finally,
when the amount of data is sufficient, we add and test new features for classifying
third-degree relatives and for distinguishing between siblings and parent-offspring when a
pair has been classified as first-degree relatives.

Results

Resource demands

As some of the choices made during reimplementation are aimed at increasing the
computational speed of READv2, we first test the resource demand using an empirical
dataset. Rivollat et al. [22] recently reconstructed pedigrees from 94 individuals genotyped at
~1.15 million autosomal SNPs. READv2 analyzed the 4371 pairs in this dataset in ~8.5
minutes compared to nearly 5 hours for READv1 (Figure 1A). This substantial performance
gain can be attributed to the use of binary input files, loading the full data into memory, and
using NumPy [36] and pandas [37] for the analysis. The gain in running time comes at the
cost of an increased memory demand (Figure 1B), but the required 5.64 GB is well within the
standard resources provided by current personal computers. We also tested the resource
demands for subsampled datasets. Subsampling to 50% of the individuals reduced the
running time of READv2 to about one quarter (Figure 1A), suggesting a quadratic
relationship due to the pairwise comparisons made. Subsampling 50% of the SNPs did
reduce the running time by only about one-third. Subsampling had similar effects on memory
usage even though the exact proportions of reduction differ slightly (Figure 1B). Using
READvV2 it was even feasible to analyze a full simulated dataset of 696 individuals and
241,860 pairs of individuals (see Methods and [38]) in less than 4 hours, but this required
237.5 GB of memory. This highlights that even for such extremely large datasets, READv2
provides an option to analyze the full dataset at once if enough memory is available (e.g. on
clusters).
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Figure 1: Time (A) and memory usage (B) comparison of READv1 and READv2 in a
cluster node with two Intel Xeon E5 2630 v4 at 2.20 GHz/core CPUs and 128 GB
RAM. The resource usage was tested with the dataset from Rivollat et al. [22] with 94
individuals. READv2 performs conspicuously better in terms of running time
compared to READv1. However, READv1 uses slightly less memory for the same
operations, because READv1 writes the results of intermediate steps to the hard
drive and reads them back to perform further analyses instead of holding all the data
in the memory as READv2 does.

Window size

READv1 [27] used a default window size of 1,000,000bp which was inspired by GRAB [39],
but it was never tested whether other window sizes could result in better accuracy.
Therefore, we tested different window sizes (ranging from 100kbp to 20Mbp) on simulated
data with known degrees of relationship [38]. In addition to this window-based approach
where the test statistic PO is estimated from the mean across all windows, we tested
calculating a genome-wide PO without splitting the genomes into separate windows.
Interestingly, READv2 seemed to perform slightly better for smaller compared to larger
window sizes, but overall the genome-wide estimate worked best (Figure 2, see Figure S1
for additional window sizes). The differences are more pronounced for second-degree
relationships. At 0.05X and 0.1X, we observe high false positive rates for second- and
third-degree relatedness as many unrelated pairs are classified into these categories (Figure
S2). At 0.01X, unrelated individuals are even classified as first-degree or identical twins
(Figure S2), resulting in a reduced false positive rate for second- and third-degree but an
increased false positive rate for first-degree. Overall, READv2 performs well down to at least
0.1X sequence data in the simulated dataset. This corresponded to on average about 1,878
overlapping SNPs for each pair of individuals at an expected mismatch for unrelated
individuals of ~0.247 (Table 1). For the implementation of READv2, we set the genome-wide
estimates as default, but users can adjust the settings if they wish to use different window
sizes. All analyses below are based on the new default settings.

We need to note that the normalization value, i.e. the expected pairwise mismatch between
unrelated individuals, can be seen as a useful approximation for the average amount of
information per SNP in a dataset. The average mismatch for unrelated pairs is expected to
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reflect average heterozygosity under Hardy-Weinberg equilibrium for the SNP set used and
it can vary substantially between populations and ascertainment schemes [27]. Therefore,
an accurate assessment of the performance requires taking both the number of overlapping
SNPs as well as the average mismatch for unrelated pairs into account. We use the product
of these two values as the “effective number of overlapping SNPs” for our analyses below in
order to make the number of SNPs needed more comparable across datasets with different
SNP panels or population background diversities. The “effective number of overlapping
SNPs” can thus be considered to represent a measure of the amount of information
available for a pair to be used in kinship estimation.
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Figure 2: The power (i.e. the proportion of correctly classified pairs) and false
positive rates (proportion of unrelated pairs classified into the respective degree) of
READv2 assignment using simulated first-degree (n=118), second-degree (n=150),
and third-degree pairs (n=144). The analyses were performed using varying window
sizes (1Mb, 5Mb, 20Mb) (additional window sizes are shown in Figure S1) and for the
genome-wide estimate (“Whole genome”), and also using varying coverages (0.01X,
0.05X%, 0.1X, 0.2X, 0.3X, 0.4X, 0.5X, 1X, 5X). Classification proportions are shown in
Figure S2. Overall, the genome-wide estimate performs better than any of the
window-based methods.
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Table 1: Number of overlapping SNPs in the simulated dataset (corresponding to the
analysis shown in Figures 2 and S1)

Simulated | Average number of Average number of effectively overlapping SNPs (Number

Coverage overlapping SNPs [min, max] of SNPs times expected pairwise mismatch of unrelated
individuals) [min, max]

5X 181,462 [174800, 181778] 44,844 [43197, 44928]

1X 77,331 [57424, 78292] 19,105 [14184, 19336]

0.5X 30,914 [21265, 31520] 7,630 [5243, 7783]

0.4X 21,875 [14741, 22414] 5,398 [3633, 5532]

0.3X 13,636 [8993, 14094] 3,364 [2215, 3481]

0.2X 6,737 [4294, 7083] 1,661 [1058, 1744]

0.1X 1,878 [1109, 2073] 463 [273, 511]

0.05X 497 [275, 590] 122 [68, 145]

0.01X 21 [6, 44] 511, 11]

Third-degree relationship

For READv1, we did not introduce the option to classify pairs of individuals as third-degree
relatives. One reason was that we expected most applications with very low coverage data,
so the ranges for second-degree, third-degree, and unrelated pairs would overlap
substantially, leading to false classifications. Furthermore, the 1000 Genomes Project [40]
dataset that was used for testing only included a very limited number of third-degree
relatives. Nevertheless, other researchers have modified READv1 to classify up to
third-degree relatives [25,41], suggesting that the READ approach might be able to perform
such classifications in certain situations. For Figure 2, we also tested the ability of READv2
to classify third-degree relatives. As expected, the third-degree classification requires more
data than second- or first-degree classifications. For low amounts of data, we see
third-degree relatives frequently being assigned to other categories and unrelated pairs
being classified as third-degree (Figure S2). From about 0.3X sequencing coverage, power
and false positive rates are similar to the values observed for first- and second-degree.
Therefore, we decided to implement a threshold for the amount of overlapping data below
which pairs falling into the third-degree category are automatically classified as “unrelated”
while a third-degree classification is performed for larger amounts of data. Sequencing
coverage of 0.3X corresponds to ~13,600 overlapping SNPs in this simulated data or ~3,400
“effectively overlapping SNPs” when this value is multiplied by the expected distance of
unrelated pairs. To avoid false classifications in empirical data, we implement a conservative
threshold of 5000 “effectively overlapping SNPs”, below which we do not attempt to classify
third-degree relatives.
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Distinguishing between parent-offspring and siblings

Based on the estimate for a normalized pairwise mismatch rate, READ classifies pairs of
individuals into degrees of relationship. For first-degree relatives, two options exist:
parent-offspring and full siblings. Parent-offspring pairs share exactly one chromosome for
each position of the genome while siblings should approximately share zero or two
chromosomes for about one-quarter of the genome each, and one chromosome for the
remaining half of the genome. By plotting the variation in the pairwise mismatch rate across
the genome, some studies have resolved individual pairs of first-degree relatives [22,42],
while ancIBD [35] and KIN [32] implicitly model this as part of their Hidden Markov Models
(HMM). We explored whether READv2 could use the empirical distribution across windows
to distinguish between parent-offspring and full-sibling relationships. Larger windows appear
more suitable for this purpose (Figures S3 and S4), so we perform this analysis with 20Mb
windows. In default settings, READv2 will assess the degree of relationship based on a
genome-wide estimate of the pairwise mismatch rate, followed by a separate round of
classification for first-degree relatives based on 20Mb windows. As a test statistic, we use
the proportion of windows classified as unrelated (i.e. no shared chromosome) or identical
(i.e. both chromosomes shared), corresponding to Cotterman coefficients kO and k2,
respectively. As expected, this proportion is low for parent-offspring and around 0.5 for full
siblings when sufficient data are available (Figure 3). For low amounts of data, the proportion
of kO and k2 windows first starts to increase for parent-offspring pairs and later also for
siblings. While the two types are well separated down to 0.5X coverage in the simulated
dataset (or ~8,000 “effectively overlapping SNPs”), they overlap at 0.2X and below. We used
these results to set thresholds for the separation of parent-offspring from full siblings based
on the proportion of windows classified as unrelated or identical. A pair of first-degree
relatives is classified as parent-offspring if the proportion is below 0.3, as siblings if the
proportion is between 0.35 and 0.6, and as “N/A” otherwise. Since low amounts of
overlapping data result in proportions >0.6, this allows us to avoid a classification if the
amount of data is insufficient. There is, however, the risk that parent-offspring would be
classified as full siblings for a specific range of overlapping data (between ~1600 and ~5000
effectively overlapping SNPs).
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Figure 3: Proportion of windows that are classified as either unrelated or
identical/twins. The analysis was done by using a window size of 20Mb with 68
parent-offspring and 49 sibling pairs. Dashed lines indicate the thresholds chosen to
distinguish between parent-offspring and siblings in the classification. The area
under the blue dashed line shows the “parent-offspring” zone, while the area
between the red lines presents the “siblings” zone. The separation is clear for
coverages over 0.5X and roughly 8,000 effectively overlapping SNPs. As the
coverage and the number of effectively overlapping SNPs reduce, the distributions
begin to overlap and the proportions increase overall. Note that the average
effective number of overlapping SNPs is slightly different from Table 1 as a different
subsampling of the full dataset was used for the analysis in Figure 2 and Table 1.

To test this feature in an independent dataset, we selected SNP genotype data from the
1000 Genomes Project where individuals from different populations have been genotyped
using the lllumina Omni2.5M chip HD genotype SNP array including 2,458,861 SNPs. We
selected the populations CHS (Han Chinese South) and YRI (Yoruba) which contained the
largest number of first-degree relatives: 105 parent-offspring pairs and 8 sibling pairs for
CHS, and 112 parent-offspring pairs and 4 sibling pairs for YRI. The overall number of full
siblings in the dataset is low, not allowing for proper testing of the feature. However, as
siblings would be classified as “N/A” for increased noise, the critical test is whether
parent-offspring pairs are classified as siblings at reduced amounts of data. These tests
have been performed in each population separately. Similar to the simulations,
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parent-offspring pairs are correctly classified when the amount of overlapping data is large
(>14,000 effectively overlapping SNPs, Figure 4). Below this point, initially, parent-offspring
pairs are increasingly classified as “N/A”. From 8,000 effectively overlapping SNPs and less,
however, we see substantial numbers of parent-offspring pairs classified as siblings. For
very low amounts of overlapping data (< 2,000 effectively overlapping SNPs), all are
classified as “N/A”. These results are very similar to the results seen for the simulated data.
To be conservative and avoid wrongly classifying parent-offspring pairs as siblings, we
implement a default cutoff of 10,000 effectively overlapping SNPs below which classification
is not performed.


https://doi.org/10.1101/2024.01.23.576660
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.576660; this version posted January 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

CHS
1.00 A I
0.75 1
@ Classified as
[
S B va
20.50' . P .
8 arent-Offspring
o Siblings
0.25 4
0.00
N I I A Y A S N R
PSRN IR SR M P SR A AT S
A R N R S RS q/@ib ‘x@?‘
Effective number of overlapping SNPs
YRI

Proportions

Classified as

B

. Parent-Offspring
Siblings

1.00 1 —
[
0.754
0.504
0.25 4
0.00+ I I O

(2}
&,
7o |
9.

H b O 0 9 X N D O M
M7 o AC AN T 6D oD U 00 (O A
Q" QA AT X WA D 2 o 6N
¥ AY o A0 9 X797 Y HBY N
V \“"\\\‘ﬂ’%u\%@«@

Effective number of overlapping SNPs

Figure 4: Classification of known parent-offspring pairs in empirical data. The feature
was tested with CHS (Han Chinese South) and YRI (Yoruban) populations from the
1000 Genomes Project for different amounts of overlapping SNPs (n=105 and 122,
respectively). Similar to the result of the analysis made with the simulated data,
parent-offspring pairs are correctly classified for high amounts effectively overlapping
SNPs for both populations. As this number reduces, more siblings and N/A
classifications start to be seen.
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Empirical data application: Rivollat et al. (2023)

A recent study conducted the tremendous effort of obtaining genome-wide data for 94
individuals from the same site in Neolithic France, Gurgy ‘les Noisats, and then
reconstructing pedigrees for the individuals buried at the site [22]. The authors first ran
READ [27] to estimate the degree of relatedness for each pair of individuals, followed by
IcMLkin [29] to differentiate between parent-offspring and siblings among first-degree
relationships. They further used BREADR [33] for individual pairs as well as imputation and
ancIBD [35] for higher degrees. We have already shown that READv2 can process this
dataset a lot faster than READv1 (Figure 1A). By adding the new feature to differentiate
parent-offspring and siblings, we are able to perform the analysis that originally needed two
different tools with different input files in a single analysis that is orders of magnitude faster
than the first step of the original analysis alone. About 94% of the pairs of individuals in this
dataset have more than 40,000 overlapping SNPs at an expected pairwise mismatch rate for
unrelated individuals of 0.245, i.e. the product for most of them is >10,000 representing a
situation where the new feature of READv2 should be applicable. All 86 first-degree pairs
identified by READv1 in the original study were confirmed by READv2 (Supplementary Data
1). For 81 of them, READv2 was able to discern parent-offspring and siblings, all in
agreement with the pedigree in [22]. Four of the remaining five were not classified due to
their low amounts of overlapping data (less than 7,000 effectively overlapping SNPs), and of
these, two parent-offspring pairs would have been classified as siblings if the threshold had
not been in place. Further, due to low coverage, two of these four were only classified by
context in [22] rather than by a clear signal in the classification softwares. The fifth pair had
sufficient data but fell between the ranges of sibling and parent-offspring used by READv2.

Notably, both READv1 and READv2 identified one additional pair of first-degree relatives
(GLN207A-GLN279) that the original study did not detect with READv1. This likely reflects
the stochasticity of random sequencing read sampling in the independent genotype calls as
the original study had them just above the first-degree classification threshold, while our
results have them just below the threshold. Rivollat et al. had them as siblings in their
pedigree based on the classification of other relatives and the IcMLkin results. READv2 also
classified them as siblings. Another notable pair is GLN285A-GLN285B, which IcMLkin had
as an outlier suggestive of a sibling relationship. READv2 classified them as
parent-offspring. Rivollat et al. did not directly classify them as parent-offspring but excluded
a sibling relationship due to the presence and absence of relationships with other individuals.
Another pair, GLN288-GLN289B, was not classified by IcMLkin due to the low coverage of
GLN289B. READV2 classified this pair as parent-offspring as also concluded by [22] due to
the classification of other related individuals.

This re-analysis of the data from Gurgy ‘les Noisats’ [22] illustrates that READv2 alone can
lead to very similar results as the combination of READv1 and IcMLkin in the original study.
Both of these latter approaches appear to miss some cases that were only resolved through
context or by excluding certain types of relationships with additional data (e.g. uniparental
markers, age at death). Both approaches also fail in similar cases due to low amounts of
overlapping data. This highlights that READv2 can be used in such studies to resolve large
pedigrees when combined with additional data. READv2 has the advantage that it is much
faster than the combined approach and all results can be obtained by running a single tool.
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Discussion

We introduce a new version of the popular tool for inferring biological relatedness from
ancient DNA data, READ. Firstly, READv2 can be described as a Python 3
re-implementation of READv1 with substantially improved running times. The
implementation in a single language should also increase portability and avoid possible
version conflicts. Secondly, READv2 has an updated default behavior as the pairwise
mismatch rate is not derived from the mean across genomic windows but as a genome-wide
estimate, leading to up to 5% improvement in classification accuracies. Finally, we added
two new features: the ability to classify up to third-degree relatives, which requires at least
5000 effectively overlapping SNPs, and the ability to differentiate between different types of
first-degree relationships, viz. full siblings and parent-offspring, which requires at least
10,000 effectively overlapping SNPs. The introduction of “effectively overlapping SNPs” as a
measurement of the amount of available data should also make studies and datasets more
comparable and increase the possibility of generalizing from benchmarking results as
previous studies mostly compared the raw number of overlapping SNPs or sequencing
depth without taking the information content per SNP into account.

We introduced READvV2 as a version with increased efficiency and compared it to READv1.
Other studies have already covered comparing the general READ approach to other
methods used in the field [31-33,43,38]. Methods such as ancIBD [35], KIN [32], TKGWV2
[31] as well as the genotype likelihood-based IcMLkin [29] and ngsRelate [30] have specific
advantages, either providing more precise results with lower amounts of data or by being
able to detect higher than second-degree relatedness confidently. In contrast to READ, they
often require additional data preparation and/or information, such as read counts, estimation
of genotype likelihoods, imputation, or population allele frequencies, which are often difficult
to obtain for aDNA data or simply not available for certain populations. ancIBD [35] and KIN
[32] were both specifically designed for ancient DNA data and their HMM approaches allow
for the classification of higher degrees of relatedness as well as the differentiation between
siblings and parent-offspring pairs. READv2 is very similar in its approach to BREADR [33]
and TKGWV2 [31], with each tool having its own unique feature. READv2 has the
functionality to separate the different first-degree relationships, BREADR has a better
quantification of uncertainty, and TKGWV2 works well with lower amounts of input data. We
expect READv2 to find its own niche in this ecosystem of different methods. The
combination of increased efficiency and READv1’s user-friendliness qualify it as a QC step in
data processing pipelines or as the first tool in an analysis of biological relatedness, which
can be followed up with other tools to detect more fine-scale patterns or to verify results.
Adding the possibility of differentiation between siblings and parent-offspring pairs when
sufficient amounts of data are available provides additional value for such an initial analysis.
This feature requires about 10,000 “effectively overlapping SNPs”, which, assuming the
popular 1240K SNP capture panel with 1.15 million autosomal SNPs and European Neolithic
populations, would correspond to about 0.2X coverage per individual which is the case for a
large proportion of all published human ancient genome-wide data [44]. Furthermore, the
increased resolution of potentially classifying individuals as third-degree relatives for larger
amounts of overlapping data (>5000 effectively overlapping SNPs) will improve the
reconstruction of more complex pedigrees. Finally, we expect that the substantially improved
running times make READ analysis feasible for future data sets, which will undoubtedly
increase in sample sizes.
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Material and Methods

READ Re-implementation

READv1 [27] was written in Python2 and R, with an R script called from the Python script to
carry out specific analyses. A description of the READ workflow can be found in the
Introduction section. The first step of this project was to re-implement READv1 in Pythong3, in
order to update the script, increase efficiency and portability, and avoid possible version
conflicts. The R script parts of READv1 were implemented using the Pandas library [37] in
Python 3. Furthermore, with the reimplementation, the input file format was changed to
binary PLINK bed/bim/fam files using the PLINKIO library
(https://github.com/mfranberg/libplinkio). In order to avoid excessive loops and improve the
method's runtime, the pairwise comparison was implemented with the NumPy [36] library. In
addition to the window-based approach for estimating the pairwise mismatch rate (P0), a
single genome-wide estimate using all covered sites was implemented. In this case, the
uncertainty for the pairwise mismatch rate is estimated using a block-jackknife approach with
block sizes of 5 Mb as commonly employed in human population genomic studies [45].

For READv1, the classification thresholds were set to the mid-point between the expected
PO values for each degree. Consequently, we also set the cutoff for third-degree
classifications halfway between the expected PO for unrelated individuals (i.e. 1.0) and
third-degree relatives (0.9375). Pairs of individuals with a normalized PO between 0.90625
and 0.96875 are now classified as third-degree relatives if the number of effectively
overlapping SNPs (number of overlapping SNPs times the pairwise mismatch rate expected
for unrelated individuals) is 5000 or higher, otherwise they are classified as unrelated.

To differentiate between parent-offspring and sibling pairs, the genome is divided into
windows of 20Mb and the classification is made based on the proportion of windows that are
classified as either “identical/twin”, “unrelated”, or “third degree”. If that proportion is less
than 0.3, the pair is classified as “parent-offspring”; if it is between 0.35 and 0.6, the pair is
classified as “siblings”. For other proportions, or when the number of effectively overlapping
SNPs is below 10,000, the type is not specified beyond “first-degree”. Furthermore, we
expanded the output table by including information such as the number of overlapping
SNPs, the number of effectively overlapping SNPs, and the kinship coefficient 6 (= 1 -
normalized PO) to fulfill several user requests. An overview of the READv2 workflow can be
found in Figure 5. READv2 is available with instructions on its usage at:

https://github.com/GuntherLab/READv2
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Figure 5: Flowchart of READv2. The novel steps and classification results that differ
from READv1 have been highlighted in grey.

Simulated pedigree data

The next step after the reimplementation was to create a benchmark with simulated data
with known relationships to test the performance of READ. We used simulated ancient
genome data representing pairs of individuals with known relationships [38]. Specifically, we
applied simulation software PED-SIM (v 1.3) [46] to produce genotypes from pedigrees of
various relationship degrees and types separately, including first-, second-, and third-degree
relatedness. We created founder genotype data from scratch as follows: We chose SNPs
with minor allele frequencies (MAF) equal to or higher than 0.01 of the modern-day Tuscany
(TSI) sample (n=112) from the WGS data of the 1000 Genomes Project [47], and used them
for the founder data generation. For the resulting 8,677,101 biallelic autosomal SNPs, we
recorded the reference or alternative alleles at each SNP position as observed in the TSI
dataset and calculated the alternative allele frequency (AAF) per SNP in TSI. We then
created the genotypes of each founder by randomly choosing, for each SNP independently,
the alternative or reference allele with probability AAF and 1-AAF, respectively, and
repeating this twice to create a diploid genotype per founder. Note that this method of
creating diploid genotypes eliminates any background relatedness among founders as well
as any homozygosity tracts within founder genomes. We repeated the creation of founder
data 12 times (or runs), each producing different sets of founders.

We independently generated 120 unrelated founders (10 individuals per run for n=12 runs)
used for first-degree and 240 unrelated founders (20 individuals per run for n=12 runs) for
second- and third-degree pedigree simulations. A sex-specific genetic map [48] with linear
interpolation and crossover interference model [49] was used to simulate genotype data of
related individuals using the “--m” and “--intf’ options, respectively. We provided all possible
sex combinations for the relationships in the PED-SIM parameter file (def file) using the “--d”
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option. In this way, we simulated distinct pedigrees with the same structure but varied with
respect to the sex of the individuals. Additionally, we assigned the sex of the founders with
the “--sexes” option. We also used the “--keep phase” parameter to keep phase information

in the output, the “-miss rate 0° parameter not to introduce missingness, and the
“-founder_ids --fam” parameters.

We simulated 72 pedigrees for first-degree relationships, 96 for second-degree relationships,
and 96 for third-degree relationships. The founders of each pedigree and simulated
individuals from distinct pedigrees were treated as “unrelated”. For each relationship type,
we chose n=48 pairs. For instance we simulated n=72 individuals (n=24 trios) for
parent-offspring relationships, resulting in 48 unique pairs. Consequently, the dataset
comprises 696 individuals (n=72 for parent-offspring, grandparent-grandchild, and
great-grandparent-great-grandchild and n=96 for siblings, half-sibling, avuncular, first cousin,
and grand avuncular relationships).

Simulated ancient DNA sequencing and processing

We used the gargammel software [50] to simulate ancient DNA-like read data. This ancient
read simulator cuts a given FASTA file into short sequences of variable lengths, which reflect
the distribution of actual ancient read lengths, and adds post-mortem DNA damage. Then, it
adds lllumina adapters to the ends of the reads. Finally, sequencing errors and quality
scores are introduced, producing ancient-looking FASTQ files. To generate input FASTA files
for gargammel, for each individual separately (two files for each individual), at each SNP
position, we inserted alternative alleles according to their genotype into the human reference
genome (GRCh37) via vcftools consensus [51]. We then cut the FASTA files into 100 bp
sequence intervals surrounding each SNP (50 bp on each side) using bedtools getfasta [52].
This step was performed because the most time-consuming step of the dataset preparation
is mapping a vast number of genomes to the reference genome; limiting the number of reads
to those surrounding the variable sites allowed significantly reducing the computation time.
For aDNA read size distribution, we used the size distribution file (sizedist.size) from
gargammel, but we removed values higher than 120 bp, resulting in a distribution with a
mean of 66.2 bp and a median of 61 bp, ranging between 35 bps and 119 bps. Using Briggs
model parameters, we specified the deamination patterns (-damage 0.024, 0.36, 0.009,
0.55) [53]. We set the final depth of coverage of the samples as 5x without any present-day
human or microbial contamination.

We processed the gargammel-simulated read data following the same procedure as applied
to ancient genome sequencing in the field [54]. Firstly, we removed the adapters from the
simulated ancient reads and then merged the paired-end reads only if they had at least 11
base pairs (bp) length overlap using AdapterRemoval v2.3.1 [55]. Secondly, the generated
single-end ancient reads were mapped to a human reference genome (hs37d5) using the
bwa software (v0.7.15) [56] with the “aln” option, and the non-default parameters “-/ 16500,
“n 0.07” and “-0 2°. We eliminated the reads with a minimum of 10% mismatches to the
human reference genome. Finally, the remaining reads were trimmed ten bps from both
ends to remove C-to-T substitutions (or reciprocally G-to-A) resulting from post-mortem
damage of aDNA using the bamUlil software with the “trimBAM " option [57]. BAM files are
available from Zenodo (https://zenodo.org/doi/10.5281/zenodo.10079684 and
https://zenodo.or i/10.5281/zenodo.10079624) [38]. Genotypes were called from the
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BAM files using ANGSD v0.933 [58] with the options -checkBamHeaders 0 -doHaploCall 1
-doCounts 1 -doGeno -4 -doPost 2 -doPlink 2 -minMapQ 30 -minQ 30 -doMajorMinor 1 -GL
1 -domaf 1. Pseudohaploid tped/tfam files were then generated with the ANGSD tool
haploToPlink and converted to binary Plink files using Plink [59].

Benchmarking

In order to reduce the memory and runtime of the window size comparisons, the dataset was
divided into groups of 70 by involving all related individuals, i.e. all 3 individuals (two parents
and one offspring) in a parent-offspring relationship, in a group with Plink —keep-fam
command. The normalization value was calculated as the median mismatch per subsample
of the data. To test the performance of READ for different coverages, the original simulation
data was downsampled with SAMTOOLS view -s [60]. In order to see how window size
affects the results and compare the window-based and genome-wide approaches, the power
of the method (TP/(TP+FN)) and the proportion of unrelated pairs classified as related (false
positive rate) were calculated for each coverage and window size (results shown in Figure

1).

While the window size comparisons were performed on the dataset separated into groups of
70, the tests for distinguishing between siblings and parent-offspring were conducted on the
full dataset at once.

Empirical data from The 1000 Genomes Project [40] with known relationships have been
used for further testing. The autosomal lllumina Omni2.5M chip HD genotype SNP array
data consists of 2,368 individuals from 15 different populations with 2,458,861 SNPs. The
populations with the most parent-offspring pairs, namely YRI (Yoruba in Ibadan, Nigeria) and
CHS (Southern Han Chinese, China), were selected for further steps. The populations were
separated into different .bed files with the PLINK —keep-fam option and later SNPs were
down-sampled with the PLINK —thin option. Since the data was from modern samples and
contained diploid genotype calls, the data were made homozygous by randomly selecting
one allele at each position.

Empirical data application

We downloaded 1240K SNP capture BAM files for 94 individuals excavated in Gurgy ‘les
Noisats’ [22,61] from the European Nucleotide Archive [62]. Genotypes at ~1.15 million
autosomal SNPs were called using ANGSD v0.933 [58] with the options -checkBamHeaders
0 -doHaploCall 1 -doCounts 1 -doGeno -4 -doPost 2 -doPlink 2 -minMapQ 30 -minQ 30
-doMajorMinor 1 -GL 1 -domaf 1. Pseudohaploid tped/tfam files were then generated with
the ANGSD tool haploToPlink which were converted to bed/bim/fam with Plink v1.90b4.9
[63]. We then ran READvVZ2 in default settings. To compare the resources needed from
running READv1 and READv2, we also halved the number of individuals (with the Plink
command —thin-indiv 0.5) and the number of SNPs (with the Plink command —thin 0.5).
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Figure S1: The power and false positive rates of READv2 for first-degree, second-degree,
and third-degree pairs with additional window sizes. As also shown in Figure 2, READ
performs well for coverages over 0.1X to classify first-degree pairs and over 0.3X for
second- and third-degree pairs. Although there is not much difference between window
sizes, the genome-wide estimate works the best overall.
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Figure S2: Proportions of simulated individuals with known biological relatedness classified
into the different categories. Columns correspond to the true relationship while rows
show the different window sizes, and colors represent the classification outcomes.
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Variance of PO Along Windows of Varying Sizes
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Figure S3: Variance of normalized PO values along the windows of varying sizes for 1X
coverage. The variance of parent-offspring and sibling pairs are visibly separated for large
window sizes (1Mb, 10Mb, and 20Mb). However, as the window size decreases, that clear
separation is lost. Moreover, the scale differs between window sizes used.
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Figure S4: Examples of histograms of normalized PO values for simulated parent-offspring
(top) and sibling (bottom) pairs for varying window sizes. Smaller window sizes show very
noisy distributions for parent-offspring and sibling pairs. However, windows of 20Mb result in
distributions centered in the first-degree region with wider distribution for sibling pairs.
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Table S1: Comparison of various available kinship inferring methods in terms of
minimum coverage and minimum inferred relationship degree. The values shown here
are retrieved from the original papers. We need to note that the numbers of SNPs and
coverages are not always straightforward to compare between studies due to differences in
(the size of) the underlying SNP panel and the background relatedness of the population.

Min. Coverage Size of SNP | Degree Within Degree Type of Data
Method . Wt
panel used up to Differentiation Needed
Biallelic
. genotypes,
. First degree
IcMLkin . 3 ; genotype
[29] 2X 100,000 Third (pare'nt.of'fspirlng, likelihoods and
siblings) .
population allele
frequencies*
First degree, some Genotype
nasRelate second degree likelihoods and
9 1X 100,000 Third (half-siblings) and population allele
[30] ; P
some third degree frequencies
(first cousins)*
Pseudohaploid
TKGWV2 0.026X ~22,000,000 | Second - genotypes and
[31] population allele
frequencies
e . . Aligned reads***
KIN [32] 0.05X Not-specified Third First degree (.bam files)
BREADR 0.04X ~29,000,000 | Second - Pseudohaploid
[33] genotypes
anclBD 0.25X (WGS) or 1X - . First and second Imputed
[35] (1240k SNP capture) 1,200,000 Sixth degree genotypes™***
correctKin ~85,000 overlfpplng ~1,200,000 Fourth ) Pseudohaploid
[34] markers genotypes
READv1 0.1X ~1,200,000 Second ; Pseudohaploid
[27] genotypes
0.05X or ~500 SNPs
(first degree)
R.EADv2 0.1X or ~2,000 SNPs 200,000 Third First degree Pseudohaploid
(this study) (second degree) genotypes
0.3X or ~15,000 SNPs
(third degree)

*Estimated from the input data

**Optional, can be estimated from the data

***The required input files for KIN (the number of overlapping sites, the number of pairwise differences, and the
probability of runs of homozygosity (ROH) in the windows where individuals have the same long allele sequence)
are created by KINgaroo, which is provided together with the KIN package, by using these .bam files.
****Imputed genotypes are created with GLIMPSE [64] by using aligned sequence data (.bam files) as a part of
the pipeline.

1 The authors of correctKin report their results with the term “overlapping markers”, which stands for the
percentage of markers shared by both genotypes.

I This classification is not automatically performed by the tool but can be achieved by comparing different

statistics against each other.
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Table S2: The number of Parent-Offspring and Sibling pairs present in the genotyping data
in populations from the 1000 Genomes Project [40].

ASW 46 8
CDX 2 NA
CEU 1 NA
CHS 105 8
CLM 69 NA
GBR 2 1
GIH NA NA
IBS 100 NA
KHV 41 1
LWK 5 NA
MXL 60 3
PEL 70 1
PUR 66 NA
TSI 1 NA
YRI 112 4

Supplementary Data 1 - READv2 results for the Rivollat data [22]. Explanations of the
columns can be found in the second tab. This table also represents an example of the output
of READv2.
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