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Abstract

The human gut microbiome is highly personal. However, the contribution of the gut environment to variations
in the gut microbiome remains elusive. Here, we profiled the gut microbiome composition and metabolism over
9 consecutive days in 61 healthy adults and assessed gut environmental factors including segmental transit time
and pH using a wireless motility capsule. Day-to-day fluctuations in gut environmental factors as well as
segmental transit time and pH varied substantially between individuals. The gut environment explained more
variations in gut microbiome and urine metabolome than dietary macronutrients or personal characteristics.
Finally, we identified coffee-derived metabolites to be negatively correlated with small intestinal transit time and
several microbial metabolites to be associated with colonic transit time including urinary proteolytic markers,
faecal short-chain fatty acids, and breath methane. Our work suggests that the gut environment is key for

understanding the individuality of the human gut microbiome composition and metabolism.
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Introduction

Diet provides substrates to the residents of the human gut and thereby influences the microbial composition and
metabolism¥2. However, inter-individual variation in the gut microbiome composition is observed even with
identical dietary intake®, and not all microbial-derived metabolites are equally sensitive to dietary changes®,
suggesting that other factors in the gut contribute to the variations in microbial metabolism. Gut transit time
accounts for a large proportion of both inter- and intra-individual variation in the microbiome composition of
healthy populations®2. Long transit time through the whole gastrointestinal tract (GIT) is associated with changes
in microbial metabolism towards increased protein degradation and methane production®. While the main
microbial products of saccharolysis, i.e. short-chain fatty acids (SCFAs), are typically considered beneficial for the
host!®, microbial proteolysis results in metabolites associated with poor health outcomes, including as hydrogen
sulfide, ammonia, branched-chain fatty acids (BCFAs), p-cresol, indole, and phenylacetate!*?. The marked
changes in pH along the GIT are also linked to gut microbial composition and metabolism®3. For instance, the
presence of SCFAs and other organic acids such as lactate or succinate produced by the gut microbiota lowers
the colonic pH®, which in turn inhibits bacteria sensitive to acidic environments*. Nonetheless, little is known
about how the gut environmental factors, such as segmental transit times and GIT luminal pH variation, associate
with diet-host-microbiota metabolism and thereby account for differences within and between healthy adults.
Understanding how these factors associate with the host-microbiota metabolism could be crucial for developing
future personalized dietary microbiome-based strategies. We, therefore, conducted a 9-day human study
including 61 healthy volunteers (PRIMA, ClinicalTrials.gov identifier: NCT04804319), residing in Denmark. We
combined assessment of whole gut and segmental gastrointestinal transit time and pH with bowel habits (i.e.
stool consistency, stool frequency, and stool moisture), 24-h dietary records, measurements of breath hydrogen
and methane, and multi-omics profiling of urine and faecal samples. The longitudinal study design and repeated
sampling allowed us to follow inter-individual and day-to-day changes in the gut environmental factors, gut
microbiota, and microbiota-derived metabolites including levels of faecal SCFAs and BCFAs, as well as urinary

levels of products of microbial proteolysis.
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Results
Study design and participants' characteristics

Our study was designed to explore links between gut environmental factors and variations in gut microbiome
composition and host-microbiota co-metabolism within and between individuals (Figure 1A). To characterize
these links, 61 healthy participants were enrolled (age 39 * 13.5 years, BMI 23.6 + 2.8 kg/m?, see Table 1 for
participants’ characteristics and Methods for enrollment criteria) and asked to maintain their habitual lifestyle

and diet for 9 consecutive days. All enrolled participants completed the 9-days trial (Supplementary Fig. 1)

The study included two visits (day 2 and day 9) at which fasting blood glucose, insulin and C-peptide as well as
breath hydrogen and methane were measured (Table 1). On the first visit, all participants were given a
standardized breakfast corresponding to 25 % of their daily energy demand (rye bread with butter and jam,
boiled egg and yoghurt with blueberries and walnuts, Supplementary Table 1) before a subset of the volunteers
(n = 50) ingested a wireless motility capsule (SmartPill®) to measure whole gut and segmental transit time and
pH®. Subsequently, postprandial breath hydrogen and methane measurements (t = 30 min, 60 min, 90 min, 120
min, 150 min, 180 min, 210 min, 240 min, 270 min, 300 min, 330 min, and 360 min) and urine sampling (t = 30
min,1h,2h,3h,4h,5h,6h,6-8h,8-10h, 10-24 h) were obtained.

The participants recorded their food intake on a daily basis (day 1 — 8) using 24-h dietary records as implemented

in the myfood24® nutrition platform (https://www.myfood24.org) with input from the National Danish Food

database (https://www.frida.fooddata.dk). Furthermore, the participants recorded their daily bowel habits

including stool consistency assessed by the Bristol stool scale (BSS), the time of defecation of each bowel
movement, and stool frequency (number of bowel movements per day), and collected daily urine and faecal
samples (the first bowel movement). The study population had normal bowel habits with BSS of type 4 (median,

Table 1) and 1 bowel movement per day (median, Table 1).

In addition, transit time was also estimated by a self-administered sweet-corn transit time test'’ on days 3 and
5. We measured faecal water content (indication of stool moisture, a proxy marker of transit time?’), pH, and
microbial load in all collected faecal samples (n = 484). In addition, all collected urine samples (daily spot samples
and postprandial samples, n = 1154) and a subset of faecal samples (n = 170) were profiled by untargeted liquid
chromatography-mass spectrometry (LC-MS)-metabolomics to obtain urine and faecal metabolomes. Finally, we
obtained the gut microbiome composition via 16S rRNA gene sequencing of a subset of faecal samples (n = 362)
and assessed both relative microbiome profiles (RMP) and quantitative microbiome profiles (QMP) after

adjustment for the microbial load as previously described?®.
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93

94 Table 1. Participants' characteristics (N = 61)

Mean + SD/ Range

Median (25%™-75" pct.) g
Sex, male/female 18/43 -
Age, yr 39+13.5 20 - 66
Body mass index, kg/m? 23.6+2.8 17.6-29.5
Fasting glucose, mmol/L* 5.1(4.9-5.4) 4.4-6.9
Fasting insulin, mmol/L* 32.5(24.2-51.7) 14.7 -132.0
Fasting C-pep, pmol/L* 407 (321 - 520) 186 -771
Dietary intake*
Total energy intake, kcal/day 2256 + 605 1276 - 5091
Carbohydrate, E% 41.1+8.7 14.2-69.4
Protein, E% 15.5+4.4 5.5-35.6
Fat, E% 39.4+8.2 16.5-62.3
Fibre intake, g/1000kcal/day 24.0+10.3 3-62
Gut environmental factors*
Stool consistency, Bristol stool scale 4(3-5) 1-7
Stool frequency, n per day 1(1-2) 0-5
Stool moisture, % 73 (69 -77) 28-93
Faecal pH 6.8 (6.3-7.0) 5.4-7.3
Faecal SCFAs umol/g of faeces*
Acetate 16.11 (8.29 - 26.06) 0.85-76.07
Propionate 2.49 (1.56 - 3.93) 0.01-33.80
Butyrate 1.43 (0.78 - 2.09) 0.04 - 5.96
Valerate 1.20(0.89 - 1.69) 0.33-4.10
Caproate 0.54 (0.13-1.07) 0.01-6.88
Faecal BCFAs, umol/g of faeces*
2-methylbutyrate 0.54 (0.39-0.71) 0.07-3.24
Isovalerate 0.41(0.28 - 0.55) 0.08-2.23
Isobutyrate 0.29(0.22-0.37) 0.07-1.39
Breath*
Fasting hydrogen, ppm 6.5(4.0-12.0) 0.5-51
Fasting methane, ppm 1.0(0-18) 0-67.5

*-mean of all records/measurements, E%; energy percent, SCFAs; short-chain fatty acids, BCFAs;

branched-chain fatty acids
95

96
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97 Variations of gut environmental factors, gut microbiome and metabolomes over time

98 Daily sampling allowed us to evaluate the fluctuations of the gut environmental factors, faecal- and urine

99  metabolomes, gut microbiomes and diets within and between healthy adults over time (Supplementary Fig. 2).

100 Firstly, we observed that the gut environmental factors vary in the extent of their day-to-day fluctuations within
101 individuals (Figure 1B). The coefficient of variation within individuals (Supplementary Table 3) was ranging 0.3 —
102 8.1 % for faecal pH, 0 — 57.8 % for BSS, 0 - 73.1 % for stool frequency, 2.2 — 24 % for stool moisture, and 7.6 —
103 72.7 % for microbial load, suggesting that some individuals are more stable in terms of their gut environment
104  than others. Moreover, on average all of the gut environmental factors including BSS, stool frequency, stool
105 moisture, and microbial load fluctuated over the 9 days, whereas faecal pH remained stable (Figure 1B,
106  Supplementary Table 2A). In addition, Participant ID significantly accounted for day-to-day fluctuations in all of
107  the gut environmental factors (Supplementary Table 2B), indicating that the gut environment is to some extend

108  personal.

109 Next, we performed a permutational multivariate analysis of variance (PERMANOVA) on the gut microbiome
110 (QMP), urine metabolome, and faecal metabolomes and found that the individual explained more than 50 % of
111 the inter-individual variations in all three cases (Figure 1C). In contrast, the sampling day explained on average
112 6.7% of the urine metabolome variation but did not explain day-to-day variations in the gut microbiome and
113  faecal metabolome (Figure 1C). Nonetheless, by inspecting the B-diversities of individual microbiome and
114  metabolome profiles, we could see that some individuals showed less variation over the study period than others

115 (Supplementary Fig. 3).
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Figure 1. PRIMA study design and variations in gut environmental factors, gut microbiome and metabolomes.

(A) PRIMA study design. The study included two site visits, at which fasting blood and breath samples were taken. At visit

1, anthropometric measurements were attained, and all participants were given a standardized breakfast and a subset of

50 volunteers ingested SmartPills immediately after. Postprandial breath hydrogen and methane were measured every 30

min for 6 h, and postprandial urine was collected at 0.5 h, and every hour until 24-h as indicated. On days 3 and 5,

participants performed a sweet-corn test to measure whole gut transit time. In addition, daily 24-h dietary records (days 1

— 8), records of bowel habits (stool consistency, stool frequency, and time of defecation) as well as daily urine and faecal

samples were obtained.

(B) Inter- and intra-individual variations in the gut environmental factors over the 9 consecutive days. The red and blue

lines represent median and mean values, respectively. Grey lines represent intra-individual fluctuations over time.

Asterisks indicate the statistical significance of mixed-effect models accounting for repeated measures (***p-value <

0.001, **p-value < 0.01, *p-value < 0.05, ns; not significant, see Supplementary Table 2 for details).

(C) Percentage of variation explained by individual and study day in the gut microbiome, urine and faecal metabolome
based on PERMANOVA tests (* p-value < 0.05).
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Stool moisture and faecal pH contribute to intra-individual fluctuations in the gut microbiomes and
metabolomes

To explore what drives the intra-individual fluctuation in the metabolomes and the microbiome, we performed
distance-based redundancy analysis (db-RDA) with dietary macronutrients (carbohydrates, proteins, fats), fibres,
coffee, and alcohol, all previously linked to the gut microbiome®*° as well as the gut environmental factors (BSS,
stool frequency, time of defecation, faecal pH, stool moisture). While none of the dietary components
significantly explained intra-individual fluctuations in the gut microbiome or metabolomes, stool moisture, faecal
pH, BSS, and time of defecation had significant effects on the gut microbiome (QMP, genus level, Figure 2A).
Stool moisture, BSS, and time of defecation explained 3.5 %, 2 %, and 1.3 %, respectively, in line with previous
reports®%, All of these factors are proxies for gut transit time, suggesting that day-to-day variations in transit
time are reflected in the gut microbiome variation. Additionally, faecal pH explained 2.5 % of the QMP data
variation. In comparison, stool moisture, and faecal pH were also significant contributors to variation when

analyzing RMP, but BSS and time of defecation were not (Supplementary Fig. 4A).

Stool moisture and faecal pH further significantly explained 3.1 % and 3 %, respectively, of the intra-individual
variation in the urine metabolomes, despite both variables being quite stable over time (Figure 2B). This implies
that even subtle changes in the colonic water content and pH may impact the host-microbiota metabolism
reflected in the urine. Nevertheless, gut environmental factors did not significantly contribute to the intra-
individual fluctuations in the faecal metabolomes (Supplementary Figure 3B). In this context it should be noted
that faecal metabolome data were derived only from three consecutive days (spanning the SmartPill ingestion)

and stool moisture still tended (p = 0.081) to have an effect.
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Figure 2. Contributions of dietary and gut environmental factors on intra-individual variations in (A) gut microbiome and
(B) urine metabolome. The analysis was performed with distance-based redundancy analysis (db-RDA) with permutation
test on daily quantitative microbiome data (QMP) and untargeted urine metabolome data with Bray-Curtis distances. The
asterisks indicate statistical significance (*g-value < 0.05). See Supplementary Fig. 4A and 4B for relative microbiome

profiles and faecal metabolome.

Inter-individual variations in the whole gut and segmental transit times and pH

The use of ingestible SmartPills allowed us to obtain whole gut transit time (WGTT) and segmental transit times
including gastric emptying time (GET), small bowel transit time (SBT), colonic transit time (CTT), and intestinal
transit time (ITT, SBT + CTT) as well as pH throughout the GIT (Methods, Supplementary Fig. 4C). We noticed in
8 individuals that the capsule was retained in the stomach for more than 8 hours, which is a common event also
reported in other studies???. Therefore, GET and WGTT values from participants with GET > 8 h were excluded
from the statistical analyses (n = 8). Furthermore, CTT and WGTT could not be determined in one participant due

to the loss of signal to the receiver during the passage.

The median values of the segmental transit times were as follows; GET 4.8 h (range 3.1 - 6.2 h), WGTT 23.3 h
(12.4 - 72.3 h), CTT 13.6 h (2.1 - 63.5 h), and SBT 5.1 h (2.5 - 10.3 h), which are in agreement with previously
reported data on healthy populations®. For comparison, we also included two self-administered sweet-corn

transit time assessments (i.e. corn TT, on days 3 and 5) with a median of 23.56 h (10.8 - 109.7 h) at day 3 and
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19.7 h (12.0 - 84.5 h) at day 5. The median of the mean corn transit time across the two days was 21.72 h (11.75
— 97.08 h) (Figure 3A), similar to the WGTT obtained by the SmartPill. Additionally, the median coefficient of
intra-individual variation for the corn TT was 18.2% (range 0.4 — 77.9%) and we found a strong correlation
between the two measurements (Spearman correlation coefficient (SCC) = 0.8, p < 0.001) suggesting consistency
between the days within individuals. Notably, we did not observe any correlation between WGTT or CTT and the
corn TT (Supplementary Fig. 5) indicating that despite providing similar results on average, individually, these
two methods showed different results. Yet, when exploring the relationships between segmental transit times,
proxy markers, gut environmental factors and subject characteristics (Supplementary Fig. 5), we found that the
transit times recorded by both methods were negatively correlated to BSS and stool moisture, in agreement with

previous reports!’?4,

Large inter-individual variations in the gastrointestinal segmental pH were observed (Figure 3B) with the
following pH values in the upper GIT; the stomach (median 0.9, range 0.5 - 4.9), duodenum (6.1, 5.0 - 7.2), and
small intestine (7.4, 6.4 - 8.2). pH in the proximal colon was slightly acidic (6.3, 5.3 - 7.0) followed by a gradual
pH increase in the distal colon 6.9 (5.0 - 8.2) and sigmoid colon 7.2 (5.6 - 8.6). Interestingly, a small decrease in
pH was observed from the sigmoid colon to the rectum (7.0, 5.7 - 9.6) and also in the faecal pH (6.9, 6.6 - 7.3)

indicating that acidifying processes occur after entry into the rectum.
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Figure 3. Variations in the whole gut and segmental transit times and pH and their effect on the inter-individual
variability in the gut microbiome and urine metabolome.
(A) Boxplots showing segmental and whole gut transit time measured by the SmartPill (n = 50) at day 2 and mean transit
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time of sweet-corn (n = 61, day 3 and 5) with each dot representing an individual.

(B) Boxplots showing pH throughout the gastrointestinal tract measured by the SmartPill and in faeces measured by pH
meter at day 2 with each dot representing an individual.

(C) Contributions of clinical variables, dietary components, gut environmental factors, and subject characteristics to inter-
individual variations in the gut microbiome (QMP, sample closest to the capsule body exit)

(D) urine metabolome (24-h, day 2), respectively, quantified by distance-based redundancy analysis with permutation
tests. Effect sizes are plotted. The asterisks indicate statistical significance (*q < 0.1).

SB; small bowel; SBT; small bowel transit time, CTT; colonic transit time, WGTT; whole gut transit time, BMI; body mass
index, gluc; glucose, BSS; Bristol stool scale; CH4; methane, H2; hydrogen.

Colonic transit time and pH contribute to inter-individual variations in the gut microbiome and metabolomes

To quantify the degree by which subject characteristics (i.e. age, sex, and BMI), clinical variables (fasting glucose
and C-peptide, breath measurements), diet (mean intake of carbohydrates, proteins, fats, fibres, coffee and
alcohol), and gut environmental factors explain inter-individual variations in the gut microbiome and the
metabolomes, we performed db-RDA with permutation tests on data derived from faecal samples and 24-h urine
collected on day 2 for all participants (n = 61, Supplementary Table 4). Moreover, we performed the same

analysis with whole gut and segmental transit times and pH derived from the SmartPills on day 2 (n = 50).

As seen for the intra-individual QMP fluctuations, we found that stool moisture and distal colon pH were
important factors associated with the inter-individual variation in QMPs (Figure 3C) accounting for 5.5 % and 5
% of the variation, respectively, on day 2. Importantly, stool moisture and distal pH also showed significant
contributions to the inter-individual variation in QMP on other days as well (Supplementary Table 4). But unlike
previously reported data from larger cohorts, BSS did not explain a significant proportion of the microbiome

variation in this population.

WGTT, CTT, corn TT, and faecal pH explained 9.1 %, 6.2%, 4.9 %, and 5.4 %, respectively, of the inter-individual
variations in the 24-h urine metabolome, in addition to age, which explained 4.5 % of the variation (Figure 3D).
These contributions were consistent when testing against the urine metabolomes on different days
(Supplementary Table 4). On the contrary, segmental transit time did not significantly contribute to the inter-
individual variation in the faecal metabolomes, whereas pH in the distal colon, alcohol and fibre intake showed
the largest effects explaining 6.8 %, 6.2 %, and 5.9 % respectively, however this was not significant after adjusting

for multiple testing (Supplementary Table 4).

Altogether, these results emphasize that the personal environment in the gut contributes considerably to the

inter-individual differences not only in the gut microbiota but also in the urinary metabolic profiles.
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Intra-individual fluctuations in microbial-derived metabolites and their associations to gut environmental
factors and diet

We assessed intra-individual fluctuations in breath hydrogen and methane between days 2 and 9 (Table 1, Figure
4A, Supplementary Fig. 6A). Additionally, concentrations of SCFAs, namely acetate, propionate, butyrate,
valerate, and caproate, and BCFA, namely isobutyrate, isovalerate, and 2-methylbutyrate, were quantified by LC-
MS targeted analysis in all faecal samples collected between the SmartPill ingestion and egestion for each subject
(n =170) (Table 1, Figure 4B and 4C, Supplementary Fig. 6B and 6C). In agreement with previous data, acetate
was found in the highest concentrations (median 16.11 umol/g of faeces, range 0.85 - 76.07), followed by
propionate (2.49 umol/g of faeces, 0.01 - 33.80) and butyrate (1.43 umol/g of faeces, 0.04 - 5.96) in all subjects.
For the majority of the subjects, 2-methylbutyrate (0.54 umol/g of faeces, 0.07 - 3.24) was the most abundant
BCFA.

Secondly, microbial-derived metabolites represented in our in-house collection of reference compounds were
identified in the obtained faecal and urine metabolomes. We were particularly interested in proteolytic markers,
including p-cresol sulphate, phenylacetylglutamine, and indoxyl sulphate, since we have previously linked these
to inter-individual variations in gut transit time®”2°, All three proteolytic markers were detected in all urine
samples from the 61 subjects (Figure 6D, Supplementary Fig. 6D). In addition, we identified seventeen other
microbial-derived metabolites in the urine. We calculated the CV for intra-individual variations (CVintra) of the
identified metabolites in breath, faeces and urine among all participants. Substantial differences in intra-
individual variations were observed (Figure 4E). Breath methane and hydrogen had a median CVin, of 141 % and
47 %, respectively, yet we found a moderate positive correlation between the two-time points for both gases
(hydrogen: SCC=0.42, p <0.001; methane: SCC=0.66, p < 0.001). Moreover, faecal concentrations of the SCFAs
and BCFAs fluctuated considerably from day-to-day (median CVina ranging from 26 % to 40 %) with valerate
varying the least and acetate the most. Similarly, the relative abundances of the measured metabolites in urine
varied substantially from day to day with a median CVintra Of 26 %, 42 % and 39 % for phenylacetylglutamine,
indoxyl sulphate, and p-cresol sulphate, respectively. These findings suggest that microbial-derived metabolites

in breath, faeces and urine fluctuate from day-to-day on a habitual diet.
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Figure 4. Concentrations and intra-individual variations in microbial-derived metabolites measured in breath, faeces
and urine. (A) Fasting breath levels of hydrogen and methane (ppm) on days 2 and 9 for the first 26 individuals.

(B) Faecal concentrations of short-chain fatty acids (SCFAs) for 26 selected individuals over 4 days.

(C) Faecal concentrations of branched chain-fatty acids (BCFAs) for 26 selected individuals over 4 days.

(D) Relative abundances of urinary markers of microbial proteolysis for 26 selected individuals over 9 days. See Figure S5
for profiles of all 61 study participants.

(E) Boxplots showing coefficients of intra-individual variations for microbial-derived metabolites measured in breath,
faeces and urine. Each dot represents an individual.

Given that gut environmental factors explained large proportions of the gut microbiome and urine metabolome
intra- and inter-individual variations, we hypothesized that specific metabolites would be linked to these factors.
Indeed, by correlating gut environmental factors with microbial-derived metabolites using repeated
measurements (Figure 5A and Supplementary Fig. 7), we found several significant associations. In particular,
stool moisture was negatively correlated to several markers of microbial proteolysis including urinary
phenylacetylglutamine (r = -0.12, g < 0.1), faecal isobutyrate (r = -0.39, q < 0.05), isovalerate (r =-0.37, q < 0.1),
and faecal 2-methylbutyrate (r = -0.43, g < 0.05) over days, similar to a previous cross-sectional study?®. Fasting
breath methane was negatively associated with stool moisture (r = -0.62, g < 0.05) on both days, indicating
increased methanogenesis with longer colonic transit time reflected by lower stool moisture. Moreover, daily
faecal pH was positively correlated to urinary p-cresol sulphate (r =0.12, g < 0.1) in contrast to faecal SCFAs that
showed a negative correlation to faecal pH with butyrate showing the strongest correlation (r = -0.77, q < 0.001)
in line with previous human studies?’. In addition, phenyllactic acid was positively correlated to microbial load (r
=0.42, g < 0.05). Taken together, our findings suggest that slower colonic transit and/or higher pH are linked to
increased microbial proteolysis and methanogenesis as opposed to microbial saccharolysis resulting in SCFAs

that are consistently associated with lower colonic pH.


https://doi.org/10.1101/2024.01.23.574598
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.574598; this version posted January 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

> RS
O 5§ .
<o & o N
Q Q& & &° N @ '\59
> 5 oY N N @ ¥ e & o o> & F >
& & & & & &S & S & & & FORO, £
@ X @ ) o ¢ & & & S X P & & S W©
v @ > QL R o & N & ¢ ¢ & o8
& O $ & @ e & § & & & O 1@ 3 & P & & o S
& O @ ¢ & Y & & & & N S X O N @ © S @ N N CRN 2
NN S S R R S S i & & & H © Q:\b & & Q:\b O\'Z") & " & 604:\ bo\e" ©
A QY ¥ ° SR A I T AR R LA AR Q‘\Q » 3 & & \Qé e '\é \(‘é Repeated measures
P 1 correlation coefficient
06
Stool moisture . *k Kk * * 0.46
) 032
Bristol scale 0.18
0.04
R . = - i i * of
) . 024
Microbial load *% 038
Stool f o
tool freq. * S0
08
Spearman correlation
B SBT coefficient
0s
CTT ok * *k
04
ITT * 03
WGTT * - 02
0.1
SB pH
0
Proximal pH s
Distal pH * 02
: 03
Sigmoid pH
04
Rectal pH
276 o

277 Figure 5. Correlation analysis between gut environmental factors, segmental transit times and pH assessed by the

278 SmartPill and microbial-derived metabolites.

279 (A-B) The colour gradient shows (A) repeated measures correlation coefficient or (B) the Spearman correlation coefficient
280 and the asterisks indicate statistical significance (****q < 0.001,*** q < 0.01,** q < 0.05,*q < 0.1). Blue, brown, and yellow
281 bars indicate breath, faecal, and urine metabolites, respectively. The black bar indicates repeated measure correlations
282 where daily values for each variable have been used (panel A, Supplementary Fig. 7), whereas the green bar indicates
283 analysis based on data collected on day 2 (panel B). Postprandial hydrogen and methane were only measured at one-time
284 point and therefore were not included in the repeated measure analysis. CH4; methane, CTT; colonic transit time, (f);
285 faecal, ITT; intestinal transit time, H2; hydrogen, SB; small bowel, SBT; small bowel transit time, TMAQ; trimethylamine N-
286 oxide; WGTT; whole gut transit time

287

288  Since diet provides the substrates for gut microbial metabolism, we performed the same analysis exploring the
289  relationships between daily intake of macronutrients, dietary fibres, and microbial-derived metabolites
290 (Supplementary Table 5). We found positive associations between the urinary levels of hippurate
291  and the intake of proteins (r = 0.17, q < 0.05) but not fruits and vegetables?®%, Interestingly, we also observed a
292  tendency for a negative association between intake of starch and urinary levels of TMAO (r=-0.13, p=0.02, q =
293  0.09), and between intake of dietary fibres and several proteolytic metabolites including all three faecal BCFAs
294  (isobutyrate:r=-0.32, p =0.02, g =0.14, isovalerate: r =-0.31, p = 0.03, g = 0.14 , 2-methylbutyrate: r =-0.29, p
295  =0.04, g =0.18), urinary p-cresol sulphate (r =-0.11, p = 0.04, g = 0.09), and phenylacetylglutamine (r =-0.12, p
296 =0.03, g =0.09).
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Inter-individual variations in microbial-derived metabolites and their associations to segmental transit time
and pH

Several microbial-derived metabolites were associated with gut environmental factors measured in faeces
longitudinally over 9 days. Therefore, we next wanted to explore links between the microbial-derived
metabolites and whole gut and segmental transit times and pH (Figure 5B) measured on day 2. Spearman
correlation analysis showed that a shorter CTT was significantly associated with higher faecal propionate levels
(SCC =-0.25, g < 0.1) and a similar trend was observed with faecal butyrate (SCC = -0.29, p < 0.05). Notably, the
same trends for SCFAs were observed with ITT and WGTT but not with SBT. A tendency for a negative correlation
between faecal butyrate and rectal pH was also observed (SCC = -0.37, p < 0.05), but not with pH in other
segments of the colon, suggesting that butyrate production may contribute to the reduced pH observed in
rectum and in faeces. The correlation was the opposite between faecal butyrate and pH in the small intestine

(SCC =0.33, p < 0.05) and no correlations were found between other faecal SCFAs and small intestinal pH.

Furthermore, longer CTT and ITT were associated with significantly higher urinary levels of p-cresol sulphate
(SCC = 0.48, SCC = 0.44, respectively, q < 0.05) and similar tendencies were found with phenylacetylglutamine
(SCC=0.43,SCC=0.40, p < 0.01), indoxyl-sulphate (SCC = 0.39, SCC = 0.36, p < 0.05) and indole-lactic acid (SCC
=0.36, SCC = 0.35, p < 0.05), which was not observed for SBT indicating that CTT determines the abundance of
the proteolytic metabolites. These findings support the hypothesis that longer passage through the colon is
linked to microbial proteolysis possibly due to the depletion of substrates for saccharolytic fermentation®?°, In
line herewith, indoxyl-glucuronide was positively associated with pH in the distal colon (SCC =0.33, q < 0.1) and
a similar trend between urinary p-cresol sulphate and rectal pH (SCC = 0.32, p < 0.05) was observed. The same
tendencies were found for other proteolytic markers emphasizing that microbial proteolysis is linked to higher
colonic pH. Notably, the correlations between proteolytic markers and pH were stronger with pH in the distal
colon than with pH in the small intestine and the proximal colon indicating higher contribution of microbial

proteolysis to pH in the distal gut compared to the proximal gut.

Positive correlations were found between postprandial methaneand CTT (SCC=0.37, g < 0.05), ITT (SCC=0.4, p
< 0.05), and WGTT (SCC = 0.32, p < 0.05), but not SBT with the same tendencies for fasting breath methane. In
summary, these results show that CTT and colonic pH but not SBT and small intestinal pH are associated with

levels of microbial-derived metabolites in breath, faeces and urine.
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Untargeted metabolomics revealed novel associations with segmental transit time and pH

Untargeted metabolomics is a powerful tool that can be applied to study host-microbiota interactions. To explore
unknown metabolic features related to the gut environment, we employed univariate and multivariate statistical
models on all molecular features identified in the urine (n = 641 in positive mode, n = 651 in negative mode) and
faeces (n = 453 in positive mode, n = 445 in negative mode). Firstly, we used sparse partial least squares (SPLS)
models using the SmartPill-derived data and urine metabolomes from
24-h postprandial urine that was collected on day 2. Similarly, faecal metabolomes collected closest to the
SmartPill egestion were used. Secondly, we performed linear regression models on the same data and further

investigated features selected by both models (446 unique features).

Apart from urinary levels of p-cresol sulphate and phenylacetylglutamine positively associated with WGTT,
sigmoid, rectal and faecal pH, several metabolic features in urine and faeces were associated with whole gut and
segmental transit times and pH (Figure 6A and 6B). To investigate these features in further detail, the
corresponding samples were analyzed by tandem MS and by matching with authentic standards when available,
resulting in the identification of 33 metabolites (Supplementary Table 6 and 7). However, a large number of

features (n = 382) remain unidentified.

In urine, we identified 5-hydroxy-2-oxindole sulphate, 3-hydroxy-2-oxindole sulphate, and 4-hydroxybenzoic acid
sulphate to be positively associated with WGTT and/or CTT. Moreover, 3-hydroxy-2-oxindole glucuronide was
positively correlated to faecal pH. Similar to p-cresol sulphate and phenylacetylglutamine, these metabolites
likely originate from microbial catabolism of the aromatic amino acids tryptophan and tyrosine, emphasising the
link between longer transit time/higher faecal pH and increased microbial proteolysis. In support of this, faecal
tryptophan levels were negatively linked to faecal pH potentially indicating that tryptophan is being less utilized
by the gut microbiota with shorter transit time and/or when carbohydrates are available. Moreover, higher levels
of amino acid proline in faeces and picolinoylglycine in urine were associated with increased faecal and rectal

pH, respectively.

Several dicarboxylic acids in faeces, pimelic (C7) suberic (C8), and sebacic acid (C10) were positively associated
with WGTT and CTT. Pimelic acid and suberic acid may originate from microbial metabolism of fatty acids (e.g.
oleic acid)®***?, which may imply that the excretion of microbial metabolites derived from dietary fats increases
with increasing transit time. Faecal glutaric acid (C4) was, however, negatively correlated with WGTT, sigmoid,

rectal and faecal pH. We also identified pipecolic acid in faeces, which was negatively associated with WGTT and
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CTT. Pipecolic acid is highly abundant in plants, however, it can also be produced by the gut microbiota from

lysine33. Furthermore, higher urinary levels of citric acid were positively associated with pH in the proximal colon.

Moreover, faecal levels of 2-oxindole-3-acetic acid, previously linked to the New Nordic diet and Mediterranean
diet33°, were negatively associated with WGTT, CTT, and faecal pH. Similarly, faecal pantothenic acid and vitamin
B, nicotinic acid (B3, niacin), were negatively associated with CTT and/or faecal pH. Additionally, there was a
negative correlation between dihydroferulic acid glucuronide and argininic acid in urine and rectal pH, while p-

hydroxyphenyllactic acid in faeces was negatively linked with fecal pH.

4-Hydroxyhippuric acid and several urinary markers of coffee intake were negatively associated with pH in the
small intestine, namely 1-methyluric acid, 1-methylxanthine, 1,3-dimethyluric acid, 1,7-dimethyluric acid, and
1,3,9-trimethyluric acid. Faecal 1-methylxanthine and 1,3,9-trimethyluric acid were also negatively associated
with WGTT and/or faecal pH indicating that coffee consumption might be linked to both, intestinal pH and transit
time. We also found a positive association between rectal pH and urinary 4-methylcatechol sulphate, a microbial
metabolite of quercetin, found in many plant-based foods®. In addition, taurine in urine and a cholic acid in
faeces were positively associated with small intestinal pH, suggesting a link between bile acids and small
intestinal pH in agreement with the fact that secretion of bile into the small intestine neutralizes the acidic chyme

from the stomach?®’.

Finally, in line with our previous work where the urinary level of pseudouridine was inversely associated with
CTT%, we found a negative association between pH in the sigmoid colon and urinary pseudouridine, a primary
constituent of RNA. Similarly, pseudouridine was also identified in faeces where it showed an inverse relationship
to faecal pH as did deoxyxanthosine and xanthine, suggesting that increased cell turnover is linked to lower

colonic pH.

Altogether, by employing untargeted LC-MS metabolomics, we identified several RNA-, microbial-, and food-
derived metabolites newly associated with WGTT, CTT and pH in the distal part of the colon emphasizing an

interplay between the gut environment and the diet-microbiota interactions.
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380 Figure 6. Metabolites identified via LC-MS untargeted metabolomics associated with segmental transit time and pH. (A-
381 B) Volcano plots derived from regression models where each dot represents a metabolic feature with blue representing
382 statistically significant associations (q < 0.1) in (A) urine and (B) faeces. The x-axis shows the regression coefficient values
383 (estimate) indicating either positive or negative associations. CTT; colonic transit time, SB; small bowel, WGTT; whole gut

384 transit time
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Discussion

Gut transit time and pH are important determinants of gut microbiota composition and metabolism’. Here, we
showed that the gut environment also significantly explains both intra- and inter-individual variations in the gut
microbiome composition and host-microbiota co-metabolism, as reflected by associations to microbial-derived

metabolites measured in breath, faeces and urine.

In this study, we demonstrated that whole gut and segmental transit time and pH measured by the SmartPills as
well as the sweet-corn test substantially varied between healthy individuals. The considerable differences in
luminal pH among individuals can introduce challenges in studies using ingestible sampling devices that rely on
pH sensitivity to target specific regions of the gut®?°, Furthermore, these insights are of fundamental importance
since pH and transit time are key factors for shaping microbial growth and enzyme activities*’. Therefore, the
regional variations in pH and transit time could potentially be key for shaping the regional microbiome and
metabolism along the GIT, and potentially explain inter-individual differences in the gut microbiome composition
and microbiome-responses to foods. In support hereof, distal colonic pH and WGTT contributed the most to
faecal microbiome and metabolome variation. Future studies sampling along the GIT combined with
measurements of regional pH and transit time are needed to ultimately disentangle this. Recently, a study using
ingestible sampling devices® showed indeed that microbiome and metabolome compositions differ along the

GIT.

The daily sampling during the 9 days allowed us to follow day-to-day fluctuations in microbial-derived
metabolites. All of the microbial-derived metabolites in this study showed large variations both between and
also within individuals, which highlights the importance of the need for repeated measurements in human study
designs. We showed that the variations in many microbial-derived metabolites were linked to gut environmental
factors with a strong link between longer transit time and increased levels of metabolites derived from microbial
proteolysis including p-cresol sulphate. Interestingly, more than 40 % of plasma variation in p-cresol sulphate has
previously been explained by microbiome variation*!, suggesting that the inter-individual differences in this
metabolic feature might largely be confounded by differences in bowel habits. In fact, many of the metabolites
associated with longer transit time in our study have been reported to be elevated in patient groups with
constipation**™* demonstrating the need for transit time estimates in future microbiome studies. Based on our
data, stool frequency was an insensitive measure for a small cohort with healthy individuals whereas stool

moisture appeared as a significantly more informative proxy marker.
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By untargeted metabolomics, we discovered aromatic amino acid-derivatives and dicarboxylic acids including
pimelic acid, which have not previously been linked with intestinal transit time and/or pH. Pimelic acid can
originate from microbial metabolism of fatty acids®3? and has previously been found at elevated faecal levels in
patients with chronic kidney disease® and colorectal cancer?®; who often suffer from constipation*”*®. Moreover,
pimelic acid can be synthesized by the gut microbiota as a part of biotin (vitamin B7) synthesis®! and biotin
deficiency has been linked to obesity?® and irritable bowel disease®. Recently, metabolic profiling of samples
collected along the gastrointestinal tract in humans has shown that the abundance of dicarboxylic acids increases
towards the distal gut®. The authors hypothesized that this might be due to the catabolism of host epithelial
cells, which combined with our results suggests that longer intestinal transit time might be associated with
increased shedding of epithelial cells into the intestine. However, additional research is needed to better

understand the interplay between dicarboxylic acids, gut environment and host physiology.

Besides dicarboxylic acids, we found that faecal nicotinic and pantothenic acids showed an inverse relationship
to faecal pH. Pantothenic acid, also known as vitamin B5, is synthesized by the gut microbiota and has previously
been linked to dietary fibre intake® and significantly decreased faecal levels were found in patients with
Parkinson’s disease®®. Nicotinic acid can be synthesized by gut microbiota from tryptophan and contributes to
gut homeostasis®. As higher faecal pH is positively correlated to a longer transit time, a longer transit time may
imply lower tryptophan availability in the gut for the synthesis of nicotinic acid. Nicotinic acid, as well as
pantothenic acid, were both previously found at decreased faecal levels in patients with ulcerative colitis when
compared with healthy individuals®2. However, since dietary wholegrains and fibres are rich in both vitamins®?
the inverse relationship to faecal pH might originate from decreased carbohydrate availability in the colon with
a longer passage. In addition, we identified several coffee-derived metabolites associated with lower small
intestinal pH including 1-methylxanthine, which was also linked to shorter WGTT. Previous studies have shown
that coffee stimulates colonic motility possibly due to the release of gut hormones regulating motility and/or

localized effects of specific coffee-derived metabolites®*=¢, yet this needs further elucidation.

Collectively, our data support previous findings suggesting a shift in microbial metabolism from saccharolysis
(carbohydrate fermentation) towards utilization of other substrates (i.e. proteins and lipids) with longer passage

through the colon®%.

Curiously, we found a negative association between intake of daily dietary fibres and several of the proteolytic
markers, suggesting that the presence of fibres in the gut, and consequently the formation of SCFAs leading to
lower pH, might attenuate microbial proteolysis. Indeed, it has been shown that p-cresol sulphate and

phenylacetylglutamine were significantly lower in vegetarians than non-vegetarians®® and following a diet high
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in resistant starch®” while decreasing their levels via low-protein diets has been challenging’. Furthermore,
supplementation with probiotics and/or prebiotics has been shown to decrease serum levels of p-cresol sulphate
in chronic kidney disease patients®® and urinary levels in healthy volunteers®. Fibre availability in the colon
therefore seems to play a role in the microbial fermentation of proteins that has been linked to unfavourable

11,12

health outcomes**'* and further investigations are required to disentangle the underlying mechanisms.

Although we recognize that our study is limited in cohort size and based on correlations and associations, it is to
our knowledge the first study to link intestinal segmental transit times and pH with intra- and inter-individual
differences in the gut microbiome composition and metabolism in a healthy population. While this study
included a rather homogenous healthy group of volunteers (residents in Denmark, predominantly women), it
provides valuable insights into longitudinal changes of faecal SCFAs and pH over a period of more than one week,
which have not previously been documented. Our results show an important role of gut transit time and pH with
regard to the inter-individual gut microbiome composition and production of microbial-derived metabolites.
These results emphasise that the gut environment is important to consider in human microbiome studies in the
guest for understanding the healthy gut microbiome and disentangling personal microbiome responses to foods

and other lifestyle factors.
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Methods

Study participants

A 9-day human study (PRIMA) among healthy subjects was conducted at the Department of Nutrition, Exercise
and Sports (NEXS) at the University of Copenhagen in Denmark from April to December 2021. The research
protocol was approved by the Municipal Ethical Committee of the Capital Region of Denmark (H-20074067) and
all participants provided written informed consent to participation. The study was registered at ClinicalTrails.gov

(ID: NCT04804319).

Sixty-one healthy participants living in Denmark (43 women and 18 men) were enrolled and completed the study.
Participants were healthy by self-report (did not suffer from inflammatory bowel syndrome, small intestinal
overgrowth, inflammatory bowel disease, chronic or infections disease, diabetes or cancer), aged 18-75 years
with a BMI between 18.5 and 30.0 kg/m? with no intake of medication with the exception of mild antidepressants
and contraceptive pills. Intake of antibiotics, diarrhoea inhibitors and laxatives one month prior to the trial was

not allowed. Furthermore, pregnant or lactating women were not included in the trial.
Experimental design and sample collection

Seven days prior to the study, the participants were asked not to consume any sweet corn as two self-
administered sweet-corn tests to evaluate the whole gut transit time were part of the study. Prior to both of the

visits, the participants were asked to abstain from alcohol intake, smoking, and strenuous exercise.

The participants were asked to maintain their habitual diet and register their food intake online via the Myfood24
tool (myfood24.org) with nutritional values based on the Danish food composition database FRIDA version 4.1
(frida.fooddata.dk) for eight consecutive days during the study. During the trial, the participants collected daily
stool samples (first bowel movement whenever possible), stored the samples in their domestic freezers and
transported them to the laboratory while being kept cold. Moreover, the participants self-reported daily their
defecation patterns including stool consistency assessed by the BSS and stool frequency, their physical activity,
intake of dietary supplements and medication (limited to pain killers in a few cases), as well as their
gastrointestinal symptoms. The gastrointestinal symptoms were assessed based on a 10 scale scoring system (0
— no symptoms, 10 — the most severe symptoms) in regards to stomach ache, bloating, constipation, diarrhea,
and overall comfort. Furthermore, the participants collected seven daily spot morning urine samples (days 1, 2,
4,5, 6, 7, 8) and two 24-hr urine samples (days 2-3 and days 8-9) during the study period. The collected urine
samples were stored in participants’ domestic freezers, transported to the study site in a cooling bag, and stored

at -20°C overnight. After thawing at 5°C, aliquots of 1 mL were taken and stored at - 80°C until further use. In
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addition, the participants consumed 100 g of sweet corn prior to their evening meal on days 3 and 5 and recorded

the time of the corn egestion?’.

At both of the visits (day 2 and day 9), fasting blood and breath samples were collected. During the first visit,
anthropometric measurements (height, body weight, and BMI) were obtained. Furthermore, the first visit also
included a standardized meal test for all participants (n = 61). The test meal consisted of rye bread (with butter
and jam), a boiled egg, a portion of natural yoghurt along with nuts walnuts and blueberries, and a glass of water
(100 ml) with 250 mg of dissolved paracetamol (Table S1), which was used as a marker of postprandial gastric
emptying of liquids®. The meal portion size was calculated as 25 % of the daily energy demand of each participant
based on the Harris-Benedict equation??. Postprandial urine samples (at 30 min, 60 min, 120 min, 180 min,
240 min, 300 min, 360 min, and between 6-8 h, 8-10 h, and 10-24 h) and postprandial breath exhalations (at
30 min, 60 min, 90 min, 120 min, 150 min, 180 min, 210 min, 240 min, 270 min, 300 min, 330 min, and 360 min)
were collected. A subset of participants (n = 50) ingested a SmartPill® capsule immediately after the meal with a
bit of additional water if needed. All participants drank 150 ml of water at 2 h and 4h after the meal, respectively.

At 6 h, all participants received a sandwich and 500 ml of water and left the study site.
SmartPill data collection and analysis

The SmartPill® capsule is a single-use wireless gastrointestinal capsule (26.8 mm x 13 mm), which transmits data
on luminal pH, temperature, and pressure to a portable receiver, which was worn by the participants from
ingestion to egestion and thereafter returned to the study personnel. The capsule measures a pH range of 1-9,
with an accuracy of+-0.5 pH units, pressure at a range of 0-350 mmHg (+ 5 mmHg), and temperature ranging
between 20°C and 40 °C (+1 °C)%. Upon receiving the portable receiver, the raw data were downloaded from the
receiver to the manufacturer’s software via a docking station. Intestinal segmental transit times were
determined based on landmark changes in the pH values as follows: gastric emptying (GE) was defined as the
time point with an abrupt increase of 2 3 pH units indicating passage from the stomach into the duodenum. The
passage from the small intestine into the ileocaecal junction (ICJ) was defined as the first time point with a
decrease of at least one pH unit. The body exit of the capsule was defined as the time point with a decrease in
temperature and/or a loss of data. The time of capsule residence in each of the gastrointestinal segments
corresponds to gastric emptying time (GET), small intestinal transit time (SITT), colonic transit time (CTT) and
combined, whole gut transit time (WGTT). Regional pH and pressure profiles were also obtained and the median
values were determined. The segmental transit time and pH values in the colon were further segmented into
proximal, distal and recto-sigmoid, respectively. The proximal colon pH and transit time were estimated as

median values of the first 32.3% of the total CTT, while for pH in the distal colon, median values of the next 32.6%
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of the total CTT, and for the recto-sigmoid pH the median pH of the last 35.4% of the total CTT was used based
on previously reported data, which determined the percentages of total CTT according to the location of radio-
opaque markers (visualized by X-rays) in the different segments of the colon?®. In addition, the median pH value

measured during the last 10 min prior to the capsule egestion was registered as rectal pH.
Dietary records

Detailed 24-h weighted food intakes were recorded for 8 consecutive days by the participants via the online
Myfood24 tool (myfood24.org) with nutritional values based on the Danish food composition database FRIDA
version 4.1 (frida.fooddata.dk). The collected data included information about the intake of macronutrients
(carbohydrate, protein, fat), dietary fibre (AOACFIB), coffee and alcohol intake in addition to information about
more than 80 nutrients. Under-reporting was identified by calculating the average daily energy demand for each
person divided by the reported caloric intake with a cut-off value of 0.8%1. Accordingly, approximately 25 % of
the daily dietary records were under-reported and the data were removed in the subsequent analyses in this
study. In contrast, no over-reporters (> 2.5) were detected. The complete dietary profiles were used in the
principal component analysis, whereas macronutrient profiles, coffee and alcohol intake were used in the

redundancy analyses.
Breath exhalations measurements

Fasting and postprandial levels of hydrogen and methane were measured in all breath samples by the M.E.C.

Lactotest 202 Xtend device (M.E.C. R&D sprl, Brussels, Belgium).
Biochemical analysis of blood

Blood samples were upon collection immediately put on ice until they were centrifuged for precipitation of blood
cells and stored at -80°C. Glucose was measured in plasma samples by using Pentra ABX 400 (HORIBA ABX,
Montpellier, France) with a detection limit of 0.11 mmol/L. Serum insulin and C-peptide levels were measured
by using Immulite 2000 XPi (Siemens Healthcare Diagnostics Ltd., Llaneris Gwynedd LL554EL, UK) with the
detection limit of 14.4 pmol/L and 27 pmol/L, respectively. Prior to the analyses, both instruments’ performances
were validated using external and internal insulin, c-peptide and glucose controls. Three participants arrived for
the second visit in a postprandial state, the blood was collected and analysed accordingly but the glucose, insulin

and c-peptide values were not included in the data analysis.

Faecal measurements


http://www.myfood24.org/
https://doi.org/10.1101/2024.01.23.574598
http://creativecommons.org/licenses/by-nc-nd/4.0/

551
552
553
554
555
556

557
558
559
560
561
562
563
564

565
566
567
568
569
570

571

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.23.574598; this version posted January 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Faecal samples were upon receipt stored at -20°C overnight, thawed and homogenized in sterile water with a
sample to water ratio of 1:1 (w/v) (faecal slurry). Subsequently, pH was measured in the faecal slurry using a
digital pH meter (Mettler Toledo). The homogenized samples were subsequently aliquoted to cryotubes and
stored at -80 °C until further analyses. Stool moisture was determined by evaporating the water of one aliquot
(1 approximately 1 mL) using a vacuum concentrator (Speed-Vac, Christ RVC 2-25) and by calculating the faecal

weight difference before and post-evaporation.

Faecal SCFAs and BCFAs were quantified by LC-MS in samples collected between day 2 and day 5 (n = 170) as
previously described?. In brief, the samples were thawed, mixed with ethanol and purified by filtration (0.2 um
filter). Subsequently, the samples were derivatized with 3-nitrophenylhydrazine and labelled internal SCFA
standards were added. Dilution series of external SCFA standards spiked with internal SCFA standards, and all
derivatized samples were analyzed on UPLC-QTOF-MS (Synapt G2, Waters®) in negative ionization mode (cone
voltage 3.0 kV) with an ACQUITY BEH C18 guard column (2.1 x 5 mm, 1.7 um, Waters) coupled to an ACQUITY
BEH C18 column (2.1 x 100 mm, 1.7 um, Waters®) and with the collision energy of 6.0 eV. The faecal

concentrations of SCFAs and BCFAs were determined using vendor software (Quanlynx, Waters®).

Bacterial load in faeces was determined using approximately 500 uL of frozen faecal slurry (238 — 816 mg) and
diluting it 400,000 times in physiological solution (8.5 g/L NaCl; VWR International). Next, 1 ml of the microbial
cell suspension obtained was stained with 1 uL SYBR Green | (1:100 dilution in dimethylsulfoxide; shaded 20 min
incubation at 37 °C; 10,000 concentrate, Thermo Fisher Scientific). The flow cytometry analysis of the bacterial
cells present in the suspension was performed using a Cytoflex flow cytometer (CytoFLEX 3; Beckman) as

previously described (Supplementary Fig. 8)'8. The final microbial load was calculated per gram of faeces.
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Microbiome profiling

DNA was extracted in random order from the faecal slurries (n=484) using DNeasy PowerlLyzer PowerSoil kit
(Qiagen, 12855-100) and the V3-region of the 16S rRNA gene was PCR amplified using 0.2 pl Phusion High-
Fidelity DNA polymerase (ThermoFisher Scientific, F-553L), 4 ul HF-buffer, 0.4 ul dNTP (10 mM of each base), 1
UM forward primer (PBU; 5’-A-adapter-TCAG-barcode-CCTACGGGAGGCAGCAG-3’) and 1 uM reverse primer
(PBR; 5’-trP1-adapter-ATTACCGCGGCTGCTGG-3’) and 0.05-5 ng faecal DNA in 20 ul total reaction volume. Both
primers (TAG Copenhagen A/S) were linked to sequencing adaptors and the forward primer additionally
contained a unique 10 bp barcode (lon Xpress™ Barcode Adapters) for each sample. The PCR program consisted
of an initial denaturation for 30s at 98 °C, followed by 24 cycles of 98 °C for 15 s and 72°C for 30 s, and a final
extension at 72 °C for 5 min. The PCR products were purified by the HighPrep ™ PCR clean-up system (AC-60500
Magbio) according to the manufacturer's protocol. The resulting DNA concentrations were determined by Qubit
HS assay and libraries constructed with mixing equimolar amounts of each PCR product. Partial 16S rRNA gene
sequencing was performed on an lon S5™ System (ThermoFisher Scientific) using OneTouch 2 lon5: 520/530 kit
- OT2 400bp and an lon 520 Chip. The raw data were pre-processed into an ASV table using our in-house
pipeline® based on the DADA?2 algorithm and settings recommended for lonTorrent reads®, with taxonomy
assigned to the ASVs using the RDP database (v18). The resulting ASV table, taxonomy and ASV sequences were
merged into a phyloseq object for further analysis. For quantitative microbiome profiling (QMP) analyses, the
relative abundances derived from the pre-processed 16S rRNA sequencing analysis were adjusted for the
bacterial loads as previously published®. In brief, samples with < 10 000 reads were removed (n = 362) and
downsized to even sampling depth, defined as the ratio between sample size (16S rRNA gene copy number
corrected sequencing depth) and bacterial load. 16S rRNA gene copy numbers were retrieved from the ribosomal
RNA operon copy number database rrnDB73%. The copy number corrected sequencing depth of each sample
was rarefied to the level necessary to equate the minimum observed sampling depth in the cohort while assuring
a minimum number of 10 000 reads in each sample and optimizing the chosen sampling depth to exclude as few

samples as possible. In case of no copy number correction, an average copy number of 3.88 was used®.
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Metabolic profiling
Preparation of urine and faecal samples

Untargeted urine and faecal metabolomics were performed as previously published34. All urine samples were
thawed on ice, centrifuged at 10,000g at 4 °C for 2 min, and transferred to a new tube to remove solid particles.
The urine samples were kept cold on ice during preparation. Samples were randomized and pipetted into 15
plates (96-well). All urine samples from the same individual were placed on the same 96-well plate. Subsequently,
they were diluted 1:5 with an internal standard mixture (L-Adenine-8-13C (Cambridge Isotope Lab), L-Phenyl-d5-
Alanine-2,3,3-d3 (Cambridge Isotope Lab), Caffeic Acid *3Cs (Toronto Research Chemicals), Caffeine 13C; (Toronto
Research Chemicals), L-Tyrosine 3Cq (Sigma Aldrich), Para-aminobenzoic acid (Sigma Aldrich), L-Tryptophan-
(indole-ds) (Sigma Aldrich), Hippuric Acid-[*3Cs] (IsoSciences), Cortisone-d8 (Sigma Aldrich), and Glycocholic Acid-
[Ha] (IsoSciences). Quality control (QC) samples were obtained by mixing 20 pl of each urine sample in a given
plate (plate pools) and by mixing 20 ul of each plate pool to create the global pool. The QC samples, blank assays
(0.1% formic acid), and mixtures of known standards (including 33 microbial-derived compounds) were included
in each plate. The plates were sealed and stored at 4 °C until analysis (24 h max, otherwise stored at -80 °C). If
the plate was frozen and thawed again before analysis, the plate was gently mixed by vortex stirring for 30 min

immediately prior to analysis.

Faecal homogenates collected between day 2 and day 5 (n = 170) were thawed at room temperature for 30 min
and vortexed. Approximately 50 mg+5mg (=50 pL) of the homogenates were mixed with 96 % ethanol, internal
standard mixture (L-Adenine-8-13C (Cambridge Isotope Lab), L-Phenyl-d5-Alanine-2,3,3-d3 (Cambridge Isotope
Lab), Caffeic Acid 3Cs (Toronto Research Chemicals), Caffeine 3Cs (Toronto Research Chemicals), L-Tyrosine *Cy
(Sigma Aldrich), Lysophosphatidylcholine (17:1d5) (Avanti Polar Lipids), L-Tryptophan-(indole-ds) (Sigma Aldrich),
Hippuric Acid-[*3Cs] (IsoSciences), Cortisone-d8 (Sigma Aldrich), and Glycocholic Acid-[?Hs] (IsoSciences))
resulting in a 1:60 dilution. The diluted samples were vortexed for 30 s and subsequently mixed at 60 °C for 2
min in a Thermo mixer at 1400 rpm, before being centrifuged at 14000 rpm (Eppendorf centrifuge 5417R), 4 °C
for 2 min. The supernatants were filtered through a 0.2 um filter and 200 uL of each faecal suspension was
transferred to a 96-well plate, evaporated using a cooled vacuum centrifuge, and re-dissolved in 200 uL 0,1%
formic acid prior to the UPLC-MS. All faecal samples from the same individual were placed on the same 96-well
plate and QC samples were prepared in the same way as for the urine samples. In addition, each 96-well plate
contained blank assays (96% ethanol) and mixtures of known standards (including 33 microbial-derived

compounds).
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UPLC-ESI-Q-TOF-MS Analysis

Both urine and faecal samples were profiled by ultra-performance liquid chromatography (UPLC) coupled with a
quadrupole-Time of Flight Mass Spectrometer (g-TOF-MS) equipped with electrospray ionization (ESI) (Synapt
G2, Waters®) in both positive and negative ionization mode34. Blank samples (0.1% formic acid), assay blanks,
standard mixtures, and QC samples were injected regularly to evaluate LC-MS system stability, possible
contamination and/or loss of metabolites. The injected samples (5 puL) were separated on a reversed-phase
column (ACQUITY HSS T3 C18 column, 2.1x100 mm, 1.8 um, Milford, USA) coupled with a pre-column (ACQUITY
VanGuard HSS T3 C18 column, 2.1x5 mm, 1.8 um, Milford, USA). The mobile phases consisted of 0.1% formic
acid in water (solvent A) and 0.1% formic acid in 70:30 acetonitrile: methanol (solvent B). The duration of the
analytical run was 7 min with the following flow rate: start condition (0.5 mL/min), 1 min (0.5 mL/min), 2 min
(0.6 mL/min), 3 min (0.7 mL/min), 4 min (0.8 mL/min), 4.5 min (1.0 mL/min), 6.4 min (1.1 mL/min), 6.6 min (1.0
mL/min), 6.8 min (0.5 mL/min), 7.0 min (0.5 mL/min), and the following gradient: start condition (5% B), 1 min
(8% B), 2 min (15% B), 3 min (40 % B), 4 min (70 % B), 4.5 min (100 % B), 6.6 min (5% B), 7 min (5% B). Mass
spectrometry data were acquired in full scan mode with a scan range of 50-1000 mass/charge (m/z). Data-
dependent acquisition (DDA) was performed on the top 3 most abundant ions on QC samples (only urine) to
provide MS? data. Electrospray settings were the following: the cone voltage was 2.5 kV and 3.2 kV; the collision
energy was 6.0 and 4.0 eV, the temperature of the ion source and desolvation nitrogen gas temperature was 120

°C and 400 °C for positive and negative ionization mode, respectively.
Metabolite identification and structure elucidation

Tandem mass spectrometry (MS?) analyses were performed by a UHPLC system coupled to a Vion IMS QTOF
mass spectrometer (Waters®) for obtaining spectra with higher mass accuracy. The samples were separated on
a reversed-phase column (ACQUITY HSS T3 C18 column, 2.1x100 mm, 1.8 um, Milford, USA) coupled with a pre-
column (ACQUITY VanGuard HSS T3 C18 column, 2.1x5 mm, 1.8 um, Milford, USA) at a temperature of 50 °C. The
mobile phases consisted of 0.1% formic acid in water (solvent A), methanol (solvent B), 0.1% formic acid in 70:30
acetonitrile: methanol (solvent C), and isopropanol (solvent D). The duration of the analytical run was 10 min
with the following flow rate: start condition (0.4 mL/min), 0.75 min (0.4 mL/min), 6 min (0.5 mL/min), 6.5 min
(0.5 mL/min), 8 min (0.6 mL/min), 8.1 min (0.4 mL/min), 9 min (0.4 mL/min), 10 min (0.4mL/min), and the
following gradient: start condition (100% A), 0.75 min (100% A), 6 min (100% B), 6.5 min (70% C, 30 % D), 8 min
(70% C, 30 % D), 8.1 min (70% C, 30 % D), 9 min (100% A), 10 min (100% A). Full scan acquisition was performed
on selected urine samples with a scan range of 50-1500 m/z. Targeted MS? was performed on a selected list of

precursors at three different collision dissociation energies 10, 30, and 50 eV.
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Mass spectra were manually interpreted and metabolites were identified by matching the precursor ion and

fragmentation patterns with databases such as HMDB (https://hmdb.ca/), Metline (https://metlin.scripps.edu/),

mzCloud (https://www.mzcloud.org/) and an in-house database. Furthermore, authentic standards were run
together with the samples with the highest intensity on the same batch and platform. If needed, the authentic
standards were sulfated or glucuronidated with either biomimetic synthesis® or chemical synthesis3*. The
identification level of metabolites that were identified was classified according to Sumner et al. as level |
(confirmed by matching to a standard with two orthogonal measures (rt, m/z), level Il (matching MS?
fragmentation to a spectral library), level Il (compound classification), or level IV (unknown)®. See
Supplementary Table 6 and Table 7 for further details. 3-Hydroxy-2-oxindole, 5-hydroxyoxindole , 2-picolinic
acid, 4-methylcatechol, xanthine, 2-oxindole-3-acetic acid, pantothenic acid, nicotinic acid, tryptophan, sebacic
acid, pipecolic acid, glutaric acid, citric acid, psedouridine, taurine, 1,3-dimethyluric acid, suberic acid, 1,3,7-
trimethyluric acid were purchased from Sigma-Aldrich. 4-Hydroxyhippuric acid, 1-methylxanthine and 1-

methyluric acid were purchased from Toronto Research Chemicals.
Metabolomics data processing

The raw data obtained by UPLC-MS were converted to mzML format by publicly available msConvert
(ProteoWizard Toolkit)®’. The converted data were pre-processed using the open-source R package XCMS (v3.18)
using the centWave algorithm (requiring 3 consecutive scans with an intensity of over 10 counts)®. The pre-
processing steps included noise filtering, peak picking, retention time alignment and feature grouping across
samples, and filling of missing features, which were done separately for the urine and faecal samples (and for
positive and negative mode), respectively. The detailed pre-processing parameter settings can be found in
Supplementary Table 8. Noise filtering settings included that features should be detected in a minimum of 10 %
of all samples. Features with a retention time below 0.5 min or above 6.8 min were excluded. Data tables were
generated comprising mass-to-charge ratio (m/z), retention time (rt), and intensity (peak area) for each variable
in every sample. Each detected peak is represented by a feature defined by a rt and a m/z. The obtained data
were corrected for within- and between-batch intensity drift using the LOESS correction method®. The processed
data were normalized by the probabilistic quotient normalization (PQN)”® method to correct for variations in
urine and faecal concentrations within- and between-batches. Upon analyses of 15 plates with urine samples,
QC samples clustered closely together in the principal component analysis (PCA) score plots confirming a stable
UPLC system during the course of analysis with the exception of two plates in the negative mode and one plate

in the positive mode, which had to be removed from further statistical analyses (Supplementary Fig. 9).
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Moreover, features with high variability after normalization across the pooled QC samples were filtered out (CV%
> 50 %). Finally, the CAMERA package’ (v1.52) was used to group features together based on retention time

(tolerance = 0.1s) and to annotate possible adducts and isotopes.
Statistical Analysis

Statistical analyses were conducted in R (v 4.2). The area under the curves (AUC) for hydrogen and methane
concentrations during the postprandial period was calculated using the trapezoid rule in GraphPad Prism (v

9.2.0). The normality of data was assessed with the Gaussian distribution and Shapiro-Wilk test procedure.

Mixed-effects linear regression models were used to examine the day-to-day fluctuations and inter-individual
variation in gut environmental factors using data from all 9 days. The models were generated using the Ime4 R
package (v 1.1-31) as Imer(gut environmental factor ~ factor(Day) + (1 | Participant ID), moreover ranova
function from the ImerTest package (v 3.1-3) was used to perform the random effects-likelihood ratio tests to
infer whether Participant ID significantly contributes to explaining the variation in the gut environmental factors.
A p-value of < 0.05 was considered statistically significant. Coefficients of intra-individual variation were
calculated as CVintra = (SDintra / Mea@nintra) ¥ 100 where mean and SD were based on all measurements from a single

individual over the 9 days.

Gut microbiome beta-diversity analysis using Bray Curtis distances as well as metabolome and diet beta-diversity
analyses using Euclidian distances were performed with the phyloseq package (v 1.42.0) and PERMANOVA tests
by adonis2 function from the vegan package (v 2.6) with 999 permutations and strata = Participant ID when

testing the day-to-day fluctuations.

Single time point correlations were calculated using standard Spearman’s rank correlation, as implemented in
the Hmisc R package (v 4.7), and heatmaps were generated by the corrplot package (v0.92). Repeated measure

correlations were performed using the rmcorr (v 0.5)72.

Distance-based redundancy analysis (db-RDA) was performed to quantify the effect sizes of gut environmental
factors and other variables on the intra-individual and inter-individual variation in the gut microbiome (both
relative and quantitative profiles at genus level), faecal metabolome, and urine metabolome. The analyses were
performed with Bray-Curtis dissimilarity using the capscale function as implemented in the vegan package (v
2.6). With regards to intra-individual analyses, data available from all samples (day 1- day 9) and strata =
Participant ID were used. For the inter-individual analyses, data collected on day 2 (visit 1) were used separately

for all participants (n = 61) and for the SmartPill subgroup (n = 50). The statistical significance was determined
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by permutation test with 9999 random permutations (anova.cca function) and p-values were adjusted for
multiple testing by false discovery rate (Benjamin—Hochberg)’?, an adjusted p-value (g-value) below 0.1 was

considered significant.

For the untargeted metabolomics data, the area of each m/z feature was log-transformed and missing values
were imputed and replaced by values reflecting half of the minimum intensity of the given m/z feature. Linear
regression models and sparse partial least squares (SPLS) models were performed to examine the relationship
between the m/z features and the variables of interest (i.e. segmental transit time and pH). The modelling was
performed using the SmartPill-derived data and the 24-h postprandial urine metabolome collected at day 2 as
well as the faecal metabolome closest to the time of the SmartPill egestion. The linear mixed models were
performed with the Ime4 R package (v 1.1-31). The multivariate SPLS models were performed with the caret R
package (v 6.0-92). P values were corrected for multiple testing by the Benjamin—Hochberg false discovery rate
(g-value). Features with a g-value < 0.1 were considered to be statistically significant and only features selected

by both the linear regression and SPLS were further submitted for identification including the MS?2.
Data availability

All sequencing data have been submitted to the NCBI Sequence Read Archive (SRA). BioProject ID:
PRINA1027590.

Code availability

No custom code was generated for this work.
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