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Abstract 25 

 26 

The human gut microbiome is highly personal. However, the contribution of the gut environment to variations 27 

in the gut microbiome remains elusive. Here, we profiled the gut microbiome composition and metabolism over 28 

9 consecutive days in 61 healthy adults and assessed gut environmental factors including segmental transit time 29 

and pH using a wireless motility capsule. Day-to-day fluctuations in gut environmental factors as well as 30 

segmental transit time and pH varied substantially between individuals. The gut environment explained more 31 

variations in gut microbiome and urine metabolome than dietary macronutrients or personal characteristics. 32 

Finally, we identified coffee-derived metabolites to be negatively correlated with small intestinal transit time and 33 

several microbial metabolites to be associated with colonic transit time including urinary proteolytic markers, 34 

faecal short-chain fatty acids, and breath methane. Our work suggests that the gut environment is key for 35 

understanding the individuality of the human gut microbiome composition and metabolism.    36 
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Introduction 37 

Diet provides substrates to the residents of the human gut and thereby influences the microbial composition and 38 

metabolism1,2. However, inter-individual variation in the gut microbiome composition is observed even with 39 

identical dietary intake3, and not all microbial-derived metabolites are equally sensitive to dietary changes4, 40 

suggesting that other factors in the gut contribute to the variations in microbial metabolism.  Gut transit time 41 

accounts for a large proportion of both inter- and intra-individual variation in the microbiome composition of 42 

healthy populations5–8. Long transit time through the whole gastrointestinal tract (GIT) is associated with changes 43 

in microbial metabolism towards increased protein degradation and methane production9. While the main 44 

microbial products of saccharolysis, i.e. short-chain fatty acids (SCFAs), are typically considered beneficial for the 45 

host10, microbial proteolysis results in metabolites associated with poor health outcomes, including as hydrogen 46 

sulfide, ammonia, branched-chain fatty acids (BCFAs), p-cresol, indole, and phenylacetate11,12. The marked 47 

changes in pH along the GIT are also linked to gut microbial composition and metabolism13. For instance, the 48 

presence of SCFAs and other organic acids such as lactate or succinate produced by the gut microbiota lowers 49 

the colonic pH13, which in turn inhibits bacteria sensitive to acidic environments14. Nonetheless, little is known 50 

about how the gut environmental factors, such as segmental transit times and GIT luminal pH variation, associate 51 

with diet-host-microbiota metabolism and thereby account for differences within and between healthy adults. 52 

Understanding how these factors associate with the host-microbiota metabolism could be crucial for developing 53 

future personalized dietary microbiome-based strategies. We, therefore, conducted a 9-day human study 54 

including 61 healthy volunteers (PRIMA, ClinicalTrials.gov identifier: NCT04804319), residing in Denmark. We 55 

combined assessment of whole gut and segmental gastrointestinal transit time and pH with bowel habits (i.e. 56 

stool consistency, stool frequency, and stool moisture), 24-h dietary records, measurements of breath hydrogen 57 

and methane, and multi-omics profiling of urine and faecal samples. The longitudinal study design and repeated 58 

sampling allowed us to follow inter-individual and day-to-day changes in the gut environmental factors, gut 59 

microbiota, and microbiota-derived metabolites including levels of faecal SCFAs and BCFAs, as well as urinary 60 

levels of products of microbial proteolysis.  61 

  62 
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Results  63 

Study design and participants' characteristics 64 

Our study was designed to explore links between gut environmental factors and variations in gut microbiome 65 

composition and host-microbiota co-metabolism within and between individuals (Figure 1A). To characterize 66 

these links, 61 healthy participants were enrolled (age 39 ± 13.5 years, BMI 23.6 ± 2.8 kg/m2, see Table 1 for 67 

participants’ characteristics and Methods for enrollment criteria) and asked to maintain their habitual lifestyle 68 

and diet for 9 consecutive days. All enrolled participants completed the 9-days trial (Supplementary Fig. 1) 69 

The study included two visits (day 2 and day 9) at which fasting blood glucose, insulin and C-peptide as well as 70 

breath hydrogen and methane were measured (Table 1). On the first visit, all participants were given a 71 

standardized breakfast corresponding to 25 % of their daily energy demand (rye bread with butter and jam, 72 

boiled egg and yoghurt with blueberries and walnuts, Supplementary Table 1) before a subset of the volunteers 73 

(n = 50) ingested a wireless motility capsule (SmartPill®) to measure whole gut and segmental transit time and 74 

pH15. Subsequently, postprandial breath hydrogen and methane measurements (t = 30 min, 60 min, 90 min, 120 75 

min, 150 min, 180 min, 210 min, 240 min, 270 min, 300 min, 330 min, and 360 min) and urine sampling (t = 30 76 

min, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 6-8 h, 8-10 h, 10-24 h) were obtained. 77 

The participants recorded their food intake on a daily basis (day 1 – 8) using 24-h dietary records as implemented 78 

in the myfood24® nutrition platform (https://www.myfood24.org) with input from the National Danish Food 79 

database (https://www.frida.fooddata.dk). Furthermore, the participants recorded their daily bowel habits 80 

including stool consistency assessed by the Bristol stool scale (BSS)16, the time of defecation of each bowel 81 

movement, and stool frequency (number of bowel movements per day), and collected daily urine and faecal 82 

samples (the first bowel movement). The study population had normal bowel habits with BSS of type 4 (median, 83 

Table 1) and 1 bowel movement per day (median, Table 1). 84 

In addition, transit time was also estimated by a self-administered sweet-corn transit time test17 on days 3 and 85 

5. We measured faecal water content (indication of stool moisture, a proxy marker of transit time17), pH, and 86 

microbial load in all collected faecal samples (n = 484). In addition, all collected urine samples (daily spot samples 87 

and postprandial samples, n = 1154) and a subset of faecal samples (n = 170) were profiled by untargeted liquid 88 

chromatography-mass spectrometry (LC-MS)-metabolomics to obtain urine and faecal metabolomes. Finally, we 89 

obtained the gut microbiome composition via 16S rRNA gene sequencing of a subset of faecal samples (n = 362) 90 

and assessed both relative microbiome profiles (RMP) and quantitative microbiome profiles (QMP) after 91 

adjustment for the microbial load as previously described18. 92 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.574598doi: bioRxiv preprint 

https://www.myfood24.org/
https://www.frida.fooddata.dk/
https://doi.org/10.1101/2024.01.23.574598
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 93 

Table 1. Participants' characteristics (N = 61) 94 

 
 Mean ± SD/ 

Median (25th-75th pct.) 
Range 

Sex, male/female 18/43 - 

Age, yr 39 ± 13.5 20 - 66 

Body mass index, kg/m2 23.6 ± 2.8 17.6 - 29.5 

Fasting glucose, mmol/L* 5.1 (4.9 - 5.4) 4.4 - 6.9 

Fasting insulin, mmol/L* 32.5 (24.2 - 51.7) 14.7 - 132.0 

Fasting C-pep, pmol/L* 407 (321 - 520) 186 - 771 

Dietary intake*   

Total energy intake, kcal/day 2256 ± 605 1276 - 5091 

Carbohydrate, E%  41.1 ± 8.7 14.2 - 69.4 

Protein, E% 15.5 ± 4.4 5.5 - 35.6 

Fat, E% 39.4 ± 8.2 16.5 - 62.3 

Fibre intake, g/1000kcal/day 24.0 ± 10.3 3 - 62 

Gut environmental factors*   

Stool consistency, Bristol stool scale 4 (3 - 5) 1 - 7 

Stool frequency, n per day 1 (1 - 2) 0 - 5 

Stool moisture, % 73 (69 -77) 28 - 93 

Faecal pH 6.8 (6.3 - 7.0) 5.4 - 7.3 

Faecal SCFAs µmol/g of faeces*   

Acetate 16.11 (8.29 - 26.06) 0.85 - 76.07 

Propionate 2.49 (1.56 - 3.93) 0.01 - 33.80 

Butyrate 1.43 (0.78 - 2.09) 0.04 - 5.96 

Valerate 1.20 (0.89 - 1.69) 0.33 - 4.10 

Caproate 0.54 (0.13 - 1.07) 0.01 - 6.88 

Faecal BCFAs, µmol/g of faeces*   

2-methylbutyrate 0.54 (0.39 - 0.71) 0.07 - 3.24 

Isovalerate 0.41(0.28 - 0.55) 0.08 - 2.23 

Isobutyrate 0.29 (0.22 - 0.37) 0.07 - 1.39 

Breath*   

Fasting hydrogen, ppm 6.5 (4.0 - 12.0) 0.5 - 51 

Fasting methane, ppm 1.0 (0 - 18) 0 - 67.5 

*-mean of all records/measurements, E%; energy percent, SCFAs; short-chain fatty acids, BCFAs; 

branched-chain fatty acids 

 95 
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Variations of gut environmental factors, gut microbiome and metabolomes over time  97 

Daily sampling allowed us to evaluate the fluctuations of the gut environmental factors, faecal- and urine 98 

metabolomes, gut microbiomes and diets within and between healthy adults over time (Supplementary Fig. 2).  99 

Firstly, we observed that the gut environmental factors vary in the extent of their day-to-day fluctuations within 100 

individuals (Figure 1B). The coefficient of variation within individuals (Supplementary Table 3) was ranging 0.3 – 101 

8.1 % for faecal pH, 0 – 57.8 % for BSS, 0 - 73.1 % for stool frequency, 2.2 – 24 % for stool moisture, and 7.6 – 102 

72.7 % for microbial load, suggesting that some individuals are more stable in terms of their gut environment 103 

than others. Moreover, on average all of the gut environmental factors including BSS, stool frequency, stool 104 

moisture, and microbial load fluctuated over the 9 days, whereas faecal pH remained stable (Figure 1B, 105 

Supplementary Table 2A). In addition, Participant ID significantly accounted for day-to-day fluctuations in all of 106 

the gut environmental factors (Supplementary Table 2B), indicating that the gut environment is to some extend 107 

personal. 108 

Next, we performed a permutational multivariate analysis of variance (PERMANOVA) on the gut microbiome 109 

(QMP), urine metabolome, and faecal metabolomes and found that the individual explained more than 50 % of 110 

the inter-individual variations in all three cases (Figure 1C). In contrast, the sampling day explained on average 111 

6.7% of the urine metabolome variation but did not explain day-to-day variations in the gut microbiome and 112 

faecal metabolome (Figure 1C). Nonetheless, by inspecting the β-diversities of individual microbiome and 113 

metabolome profiles, we could see that some individuals showed less variation over the study period than others 114 

(Supplementary Fig. 3).  115 
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 116 

Figure 1. PRIMA study design and variations in gut environmental factors, gut microbiome and metabolomes. 117 

(A) PRIMA study design. The study included two site visits, at which fasting blood and breath samples were taken. At visit 118 

1, anthropometric measurements were attained, and all participants were given a standardized breakfast and a subset of 119 

50 volunteers ingested SmartPills immediately after. Postprandial breath hydrogen and methane were measured every 30 120 

min for 6 h, and postprandial urine was collected at 0.5 h, and every hour until 24-h as indicated. On days 3 and 5, 121 

participants performed a sweet-corn test to measure whole gut transit time. In addition, daily 24-h dietary records (days 1 122 

– 8), records of bowel habits (stool consistency, stool frequency, and time of defecation) as well as daily urine and faecal 123 

samples were obtained.  124 

(B) Inter- and intra-individual variations in the gut environmental factors over the 9 consecutive days. The red and blue 125 

lines represent median and mean values, respectively. Grey lines represent intra-individual fluctuations over time. 126 

Asterisks indicate the statistical significance of mixed-effect models accounting for repeated measures (***p-value < 127 

0.001, **p-value < 0.01, *p-value < 0.05, ns; not significant, see Supplementary Table 2 for details). 128 

(C) Percentage of variation explained by individual and study day in the gut microbiome, urine and faecal metabolome 129 

based on PERMANOVA tests (* p-value < 0.05).  130 
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Stool moisture and faecal pH contribute to intra-individual fluctuations in the gut microbiomes and 131 

metabolomes 132 

To explore what drives the intra-individual fluctuation in the metabolomes and the microbiome, we performed 133 

distance-based redundancy analysis (db-RDA) with dietary macronutrients (carbohydrates, proteins, fats), fibres, 134 

coffee, and alcohol, all previously linked to the gut microbiome1,3,19 as well as the gut environmental factors (BSS, 135 

stool frequency, time of defecation, faecal pH, stool moisture). While none of the dietary components 136 

significantly explained intra-individual fluctuations in the gut microbiome or metabolomes, stool moisture, faecal 137 

pH, BSS, and time of defecation had significant effects on the gut microbiome (QMP, genus level, Figure 2A). 138 

Stool moisture, BSS, and time of defecation explained 3.5 %, 2 %, and 1.3 %, respectively, in line with previous 139 

reports6,20. All of these factors are proxies for gut transit time, suggesting that day-to-day variations in transit 140 

time are reflected in the gut microbiome variation. Additionally, faecal pH explained 2.5 % of the QMP data 141 

variation. In comparison, stool moisture, and faecal pH were also significant contributors to variation when 142 

analyzing RMP, but BSS and time of defecation were not (Supplementary Fig. 4A).  143 

Stool moisture and faecal pH further significantly explained 3.1 % and 3 %, respectively, of the intra-individual 144 

variation in the urine metabolomes, despite both variables being quite stable over time (Figure 2B). This implies 145 

that even subtle changes in the colonic water content and pH may impact the host-microbiota metabolism 146 

reflected in the urine. Nevertheless, gut environmental factors did not significantly contribute to the intra-147 

individual fluctuations in the faecal metabolomes (Supplementary Figure 3B).  In this context it should be noted 148 

that faecal metabolome data were derived only from three consecutive days (spanning the SmartPill ingestion) 149 

and stool moisture still tended (p = 0.081) to have an effect.  150 

  151 
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 152 

 153 

Figure 2. Contributions of dietary and gut environmental factors on intra-individual variations in (A) gut microbiome and 154 

(B) urine metabolome. The analysis was performed with distance-based redundancy analysis (db-RDA) with permutation 155 

test on daily quantitative microbiome data (QMP) and untargeted urine metabolome data with Bray-Curtis distances. The 156 

asterisks indicate statistical significance (*q-value < 0.05). See Supplementary Fig. 4A and 4B for relative microbiome 157 

profiles and faecal metabolome. 158 

 159 

Inter-individual variations in the whole gut and segmental transit times and pH  160 

The use of ingestible SmartPills allowed us to obtain whole gut transit time (WGTT) and segmental transit times 161 

including gastric emptying time (GET), small bowel transit time (SBT), colonic transit time (CTT), and intestinal 162 

transit time (ITT, SBT  + CTT) as well as pH throughout the GIT (Methods, Supplementary Fig. 4C). We noticed in 163 

8 individuals that the capsule was retained in the stomach for more than 8 hours, which is a common event also 164 

reported in other studies21,22. Therefore, GET and WGTT values from participants with GET > 8 h were excluded 165 

from the statistical analyses (n = 8). Furthermore, CTT and WGTT could not be determined in one participant due 166 

to the loss of signal to the receiver during the passage.  167 

The median values of the segmental transit times were as follows; GET 4.8 h (range 3.1 - 6.2 h), WGTT 23.3 h 168 

(12.4 - 72.3 h), CTT 13.6 h (2.1 - 63.5 h), and SBT 5.1 h (2.5 - 10.3 h), which are in agreement with previously 169 

reported data on healthy populations23. For comparison, we also included two self-administered sweet-corn 170 

transit time assessments (i.e. corn TT, on days 3 and 5) with a median of 23.56 h (10.8 - 109.7 h) at day 3 and 171 
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19.7 h (12.0 - 84.5 h) at day 5. The median of the mean corn transit time across the two days was 21.72 h (11.75 172 

– 97.08 h) (Figure 3A), similar to the WGTT obtained by the SmartPill. Additionally, the median coefficient of 173 

intra-individual variation for the corn TT was 18.2% (range 0.4 – 77.9%) and we found a strong correlation 174 

between the two measurements (Spearman correlation coefficient (SCC) = 0.8, p < 0.001) suggesting consistency 175 

between the days within individuals. Notably, we did not observe any correlation between WGTT or CTT and the 176 

corn TT (Supplementary Fig. 5) indicating that despite providing similar results on average, individually, these 177 

two methods showed different results. Yet, when exploring the relationships between segmental transit times, 178 

proxy markers, gut environmental factors and subject characteristics (Supplementary Fig. 5), we found that the 179 

transit times recorded by both methods were negatively correlated to BSS and stool moisture, in agreement with 180 

previous reports17,24. 181 

Large inter-individual variations in the gastrointestinal segmental pH were observed (Figure 3B) with the 182 

following pH values in the upper GIT; the stomach (median 0.9, range 0.5 - 4.9), duodenum (6.1, 5.0 - 7.2), and 183 

small intestine (7.4, 6.4 - 8.2). pH in the proximal colon was slightly acidic (6.3, 5.3 - 7.0) followed by a gradual 184 

pH increase in the distal colon 6.9 (5.0 - 8.2) and sigmoid colon 7.2 (5.6 - 8.6). Interestingly, a small decrease in 185 

pH was observed from the sigmoid colon to the rectum (7.0, 5.7 - 9.6) and also in the faecal pH (6.9, 6.6 - 7.3) 186 

indicating that acidifying processes occur after entry into the rectum. 187 
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 188 

Figure 3. Variations in the whole gut and segmental transit times and pH and their effect on the inter-individual 189 

variability in the gut microbiome and urine metabolome.  190 

(A) Boxplots showing segmental and whole gut transit time measured by the SmartPill (n = 50) at day 2 and mean transit 191 
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time of sweet-corn (n = 61, day 3 and 5) with each dot representing an individual.  192 

(B) Boxplots showing pH throughout the gastrointestinal tract measured by the SmartPill and in faeces measured by pH 193 

meter at day 2 with each dot representing an individual.  194 

(C) Contributions of clinical variables, dietary components, gut environmental factors, and subject characteristics to inter-195 

individual variations in the gut microbiome (QMP, sample closest to the capsule body exit) 196 

(D) urine metabolome (24-h, day 2), respectively, quantified by distance-based redundancy analysis with permutation 197 

tests. Effect sizes are plotted. The asterisks indicate statistical significance (*q < 0.1).  198 

SB; small bowel; SBT; small bowel transit time, CTT; colonic transit time, WGTT; whole gut transit time, BMI; body mass 199 

index, gluc; glucose, BSS; Bristol stool scale; CH4; methane, H2; hydrogen. 200 

Colonic transit time and pH contribute to inter-individual variations in the gut microbiome and metabolomes 201 

To quantify the degree by which subject characteristics (i.e. age, sex, and BMI), clinical variables (fasting glucose 202 

and C-peptide, breath measurements), diet (mean intake of carbohydrates, proteins, fats, fibres, coffee and 203 

alcohol), and gut environmental factors explain inter-individual variations in the gut microbiome and the 204 

metabolomes, we performed db-RDA with permutation tests on data derived from faecal samples and 24-h urine 205 

collected on day 2 for all participants (n = 61, Supplementary Table 4). Moreover, we performed the same 206 

analysis with whole gut and segmental transit times and pH derived from the SmartPills on day 2 (n = 50).  207 

As seen for the intra-individual QMP fluctuations, we found that stool moisture and distal colon pH were 208 

important factors associated with the inter-individual variation in QMPs (Figure 3C) accounting for 5.5 % and 5 209 

% of the variation, respectively, on day 2. Importantly, stool moisture and distal pH also showed significant 210 

contributions to the inter-individual variation in QMP on other days as well (Supplementary Table 4). But unlike 211 

previously reported data from larger cohorts, BSS did not explain a significant proportion of the microbiome 212 

variation in this population.  213 

WGTT, CTT, corn TT, and faecal pH explained 9.1 %, 6.2%, 4.9 %, and 5.4 %, respectively, of the inter-individual 214 

variations in the 24-h urine metabolome, in addition to age, which explained 4.5 % of the variation (Figure 3D). 215 

These contributions were consistent when testing against the urine metabolomes on different days 216 

(Supplementary Table 4). On the contrary, segmental transit time did not significantly contribute to the inter-217 

individual variation in the faecal metabolomes, whereas pH in the distal colon, alcohol and fibre intake showed 218 

the largest effects explaining 6.8 %, 6.2 %, and 5.9 % respectively, however this was not significant after adjusting 219 

for multiple testing (Supplementary Table 4).  220 

Altogether, these results emphasize that the personal environment in the gut contributes considerably to the 221 

inter-individual differences not only in the gut microbiota but also in the urinary metabolic profiles. 222 

  223 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.574598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.574598
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Intra-individual fluctuations in microbial-derived metabolites and their associations to gut environmental 224 

factors and diet 225 

We assessed intra-individual fluctuations in breath hydrogen and methane between days 2 and 9 (Table 1, Figure 226 

4A, Supplementary Fig. 6A). Additionally, concentrations of SCFAs, namely acetate, propionate, butyrate, 227 

valerate, and caproate, and BCFA, namely isobutyrate, isovalerate, and 2-methylbutyrate, were quantified by LC-228 

MS targeted analysis in all faecal samples collected between the SmartPill ingestion and egestion for each subject 229 

(n = 170) (Table 1, Figure 4B and 4C, Supplementary Fig. 6B and 6C). In agreement with previous data, acetate 230 

was found in the highest concentrations (median 16.11 µmol/g of faeces, range 0.85 - 76.07), followed by 231 

propionate (2.49 µmol/g of faeces, 0.01 - 33.80) and butyrate (1.43 µmol/g of faeces, 0.04 - 5.96) in all subjects. 232 

For the majority of the subjects, 2-methylbutyrate (0.54 µmol/g of faeces, 0.07 - 3.24) was the most abundant 233 

BCFA.  234 

Secondly, microbial-derived metabolites represented in our in-house collection of reference compounds were 235 

identified in the obtained faecal and urine metabolomes. We were particularly interested in proteolytic markers, 236 

including p-cresol sulphate, phenylacetylglutamine, and indoxyl sulphate, since we have previously linked these 237 

to inter-individual variations in gut transit time9,17,25. All three proteolytic markers were detected in all urine 238 

samples from the 61 subjects (Figure 6D, Supplementary Fig. 6D). In addition, we identified seventeen other 239 

microbial-derived metabolites in the urine. We calculated the CV for intra-individual variations (CVIntra) of the 240 

identified metabolites in breath, faeces and urine among all participants. Substantial differences in intra-241 

individual variations were observed (Figure 4E). Breath methane and hydrogen had a median CVIntra of 141 % and 242 

47 %, respectively, yet we found a moderate positive correlation between the two-time points for both gases 243 

(hydrogen: SCC = 0.42, p < 0.001; methane: SCC = 0.66, p < 0.001). Moreover, faecal concentrations of the SCFAs 244 

and BCFAs fluctuated considerably from day-to-day (median CVIntra ranging from 26 % to 40 %) with valerate 245 

varying the least and acetate the most. Similarly, the relative abundances of the measured metabolites in urine 246 

varied substantially from day to day with a median CVIntra of 26 %, 42 % and 39 % for phenylacetylglutamine, 247 

indoxyl sulphate, and p-cresol sulphate, respectively.  These findings suggest that microbial-derived metabolites 248 

in breath, faeces and urine fluctuate from day-to-day on a habitual diet. 249 
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Figure 4. Concentrations and intra-individual variations in microbial-derived metabolites measured in breath, faeces 251 

and urine. (A) Fasting breath levels of hydrogen and methane (ppm) on days 2 and 9 for the first 26 individuals. 252 

(B) Faecal concentrations of short-chain fatty acids (SCFAs) for 26 selected individuals over 4 days. 253 

(C) Faecal concentrations of branched chain-fatty acids (BCFAs) for 26 selected individuals over 4 days.  254 

(D) Relative abundances of urinary markers of microbial proteolysis for 26 selected individuals over 9 days. See Figure S5 255 

for profiles of all 61 study participants.  256 

(E) Boxplots showing coefficients of intra-individual variations for microbial-derived metabolites measured in breath, 257 

faeces and urine. Each dot represents an individual. 258 

Given that gut environmental factors explained large proportions of the gut microbiome and urine metabolome 259 

intra- and inter-individual variations, we hypothesized that specific metabolites would be linked to these factors. 260 

Indeed, by correlating gut environmental factors with microbial-derived metabolites using repeated 261 

measurements (Figure 5A and Supplementary Fig. 7), we found several significant associations. In particular, 262 

stool moisture was negatively correlated to several markers of microbial proteolysis including urinary 263 

phenylacetylglutamine (r = -0.12, q < 0.1), faecal isobutyrate (r = -0.39, q < 0.05), isovalerate (r = -0.37, q < 0.1), 264 

and faecal 2-methylbutyrate (r = -0.43, q < 0.05) over days, similar to a previous cross-sectional study26. Fasting 265 

breath methane was negatively associated with stool moisture (r = -0.62, q < 0.05) on both days, indicating 266 

increased methanogenesis with longer colonic transit time reflected by lower stool moisture. Moreover, daily 267 

faecal pH was positively correlated to urinary p-cresol sulphate (r = 0.12, q < 0.1) in contrast to faecal SCFAs that 268 

showed a negative correlation to faecal pH with butyrate showing the strongest correlation (r = -0.77, q < 0.001) 269 

in line with previous human studies27. In addition, phenyllactic acid was positively correlated to microbial load (r 270 

= 0.42, q < 0.05). Taken together, our findings suggest that slower colonic transit and/or higher pH are linked to 271 

increased microbial proteolysis and methanogenesis as opposed to microbial saccharolysis resulting in SCFAs 272 

that are consistently associated with lower colonic pH. 273 

 274 

  275 
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276 
Figure 5. Correlation analysis between gut environmental factors, segmental transit times and pH assessed by the 277 

SmartPill and microbial-derived metabolites.  278 

(A-B) The colour gradient shows (A) repeated measures correlation coefficient or (B) the Spearman correlation coefficient 279 

and the asterisks indicate statistical significance (****q < 0.001,*** q < 0.01,** q < 0.05,*q < 0.1). Blue, brown, and yellow 280 

bars indicate breath, faecal, and urine metabolites, respectively. The black bar indicates repeated measure correlations 281 

where daily values for each variable have been used (panel A, Supplementary Fig. 7), whereas the green bar indicates 282 

analysis based on data collected on day 2 (panel B). Postprandial hydrogen and methane were only measured at one-time 283 

point and therefore were not included in the repeated measure analysis.  CH4; methane, CTT; colonic transit time, (f); 284 

faecal, ITT; intestinal transit time, H2; hydrogen, SB; small bowel, SBT; small bowel transit time, TMAO; trimethylamine N-285 

oxide; WGTT; whole gut transit time 286 

 287 

Since diet provides the substrates for gut microbial metabolism, we performed the same analysis exploring the 288 

relationships between daily intake of macronutrients, dietary fibres, and microbial-derived metabolites 289 

(Supplementary Table 5). We found positive associations between the urinary levels of hippurate  290 

and the intake of proteins (r = 0.17, q < 0.05) but not fruits and vegetables28,29. Interestingly, we also observed a 291 

tendency for a negative association between intake of starch and urinary levels of TMAO (r = -0.13, p = 0.02, q = 292 

0.09), and between intake of dietary fibres and several proteolytic metabolites including all three faecal BCFAs 293 

(isobutyrate: r = -0.32, p = 0.02 , q = 0.14, isovalerate: r = -0.31, p = 0.03, q = 0.14 , 2-methylbutyrate: r = -0.29, p 294 

= 0.04, q = 0.18), urinary p-cresol sulphate (r = -0.11, p = 0.04, q = 0.09), and phenylacetylglutamine (r = -0.12, p 295 

= 0.03, q = 0.09).  296 
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Inter-individual variations in microbial-derived metabolites and their associations to segmental transit time 297 

and pH 298 

Several microbial-derived metabolites were associated with gut environmental factors measured in faeces 299 

longitudinally over 9 days. Therefore, we next wanted to explore links between the microbial-derived 300 

metabolites and whole gut and segmental transit times and pH (Figure 5B) measured on day 2. Spearman 301 

correlation analysis showed that a shorter CTT was significantly associated with higher faecal propionate levels 302 

(SCC = -0.25, q < 0.1) and a similar trend was observed with faecal butyrate (SCC = -0.29, p < 0.05). Notably, the 303 

same trends for SCFAs were observed with ITT and WGTT but not with SBT. A tendency for a negative correlation 304 

between faecal butyrate and rectal pH was also observed (SCC = -0.37, p < 0.05), but not with pH in other 305 

segments of the colon, suggesting that butyrate production may contribute to the reduced pH observed in 306 

rectum and in faeces. The correlation was the opposite between faecal butyrate and pH in the small intestine 307 

(SCC = 0.33, p < 0.05) and no correlations were found between other faecal SCFAs and small intestinal pH.   308 

Furthermore,  longer CTT and ITT were associated with significantly higher urinary levels of p-cresol sulphate 309 

(SCC = 0.48, SCC = 0.44, respectively, q < 0.05) and similar tendencies were found with phenylacetylglutamine 310 

(SCC = 0.43, SCC = 0.40, p < 0.01), indoxyl-sulphate (SCC = 0.39, SCC = 0.36, p < 0.05) and indole-lactic acid (SCC 311 

= 0.36, SCC = 0.35, p < 0.05), which was not observed for SBT indicating that CTT determines the abundance of 312 

the proteolytic metabolites. These findings support the hypothesis that longer passage through the colon is 313 

linked to microbial proteolysis possibly due to the depletion of substrates for saccharolytic fermentation9,30. In 314 

line herewith, indoxyl-glucuronide was positively associated with pH in the distal colon (SCC = 0.33, q < 0.1) and 315 

a similar trend between urinary p-cresol sulphate and rectal pH (SCC = 0.32, p < 0.05) was observed. The same 316 

tendencies were found for other proteolytic markers emphasizing that microbial proteolysis is linked to higher 317 

colonic pH. Notably, the correlations between proteolytic markers and pH were stronger with pH in the distal 318 

colon than with pH in the small intestine and the proximal colon indicating higher contribution of microbial 319 

proteolysis to pH in the distal gut compared to the proximal gut. 320 

Positive correlations were found between postprandial methane and CTT (SCC = 0.37, q < 0.05), ITT (SCC = 0.4, p 321 

< 0.05), and WGTT (SCC = 0.32, p < 0.05), but not SBT with the same tendencies for fasting breath methane. In 322 

summary, these results show that CTT and colonic pH but not SBT and small intestinal pH are associated with 323 

levels of microbial-derived metabolites in breath, faeces and urine.  324 

  325 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.574598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.574598
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Untargeted metabolomics revealed novel associations with segmental transit time and pH 326 

Untargeted metabolomics is a powerful tool that can be applied to study host-microbiota interactions. To explore 327 

unknown metabolic features related to the gut environment, we employed univariate and multivariate statistical 328 

models on all molecular features identified in the urine (n = 641 in positive mode, n = 651 in negative mode) and 329 

faeces (n = 453 in positive mode, n = 445 in negative mode).  Firstly, we used sparse partial least squares (SPLS) 330 

models using the SmartPill-derived data and urine metabolomes from  331 

24-h postprandial urine that was collected on day 2. Similarly, faecal metabolomes collected closest to the 332 

SmartPill egestion were used. Secondly, we performed linear regression models on the same data and further 333 

investigated features selected by both models (446 unique features). 334 

Apart from urinary levels of p-cresol sulphate and phenylacetylglutamine positively associated with WGTT, 335 

sigmoid, rectal and faecal pH, several metabolic features in urine and faeces were associated with whole gut and 336 

segmental transit times and pH (Figure 6A and 6B). To investigate these features in further detail, the 337 

corresponding samples were analyzed by tandem MS and by matching with authentic standards when available, 338 

resulting in the identification of 33 metabolites (Supplementary Table 6 and 7). However, a large number of 339 

features (n = 382) remain unidentified.  340 

In urine, we identified 5-hydroxy-2-oxindole sulphate, 3-hydroxy-2-oxindole sulphate, and 4-hydroxybenzoic acid 341 

sulphate to be positively associated with WGTT and/or CTT. Moreover, 3-hydroxy-2-oxindole glucuronide was 342 

positively correlated to faecal pH. Similar to p-cresol sulphate and phenylacetylglutamine, these metabolites 343 

likely originate from microbial catabolism of the aromatic amino acids tryptophan and tyrosine, emphasising the 344 

link between longer transit time/higher faecal pH and increased microbial proteolysis. In support of this, faecal 345 

tryptophan levels were negatively linked to faecal pH potentially indicating that tryptophan is being less utilized 346 

by the gut microbiota with shorter transit time and/or when carbohydrates are available. Moreover, higher levels 347 

of amino acid proline in faeces and picolinoylglycine in urine were associated with increased faecal and rectal 348 

pH, respectively. 349 

Several dicarboxylic acids in faeces, pimelic (C7) suberic (C8), and sebacic acid (C10) were positively associated 350 

with WGTT and CTT. Pimelic acid and suberic acid may originate from microbial metabolism of fatty acids (e.g. 351 

oleic acid)31,32, which may imply that the excretion of microbial metabolites derived from dietary fats increases 352 

with increasing transit time. Faecal glutaric acid (C4) was, however, negatively correlated with WGTT, sigmoid, 353 

rectal and faecal pH. We also identified pipecolic acid in faeces, which was negatively associated with WGTT and 354 
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CTT. Pipecolic acid is highly abundant in plants, however, it can also be produced by the gut microbiota from 355 

lysine33. Furthermore, higher urinary levels of citric acid were positively associated with pH in the proximal colon. 356 

Moreover, faecal levels of 2-oxindole-3-acetic acid, previously linked to the New Nordic diet and Mediterranean 357 

diet34,35, were negatively associated with WGTT, CTT, and faecal pH. Similarly, faecal pantothenic acid and vitamin 358 

B, nicotinic acid (B3, niacin), were negatively associated with CTT and/or faecal pH. Additionally, there was a 359 

negative correlation between dihydroferulic acid glucuronide and argininic acid in urine and rectal pH, while p-360 

hydroxyphenyllactic acid in faeces was negatively linked with fecal pH. 361 

4-Hydroxyhippuric acid and several urinary markers of coffee intake were negatively associated with pH in the 362 

small intestine, namely 1-methyluric acid, 1-methylxanthine, 1,3-dimethyluric acid, 1,7-dimethyluric acid, and 363 

1,3,9-trimethyluric acid. Faecal 1-methylxanthine and 1,3,9-trimethyluric acid were also negatively associated 364 

with WGTT and/or faecal pH indicating that coffee consumption might be linked to both, intestinal pH and transit 365 

time. We also found a positive association between rectal pH and urinary 4-methylcatechol sulphate, a microbial 366 

metabolite of quercetin, found in many plant-based foods36. In addition, taurine in urine and a cholic acid in 367 

faeces were positively associated with small intestinal pH, suggesting a link between bile acids and small 368 

intestinal pH in agreement with the fact that secretion of bile into the small intestine neutralizes the acidic chyme 369 

from the stomach37. 370 

Finally, in line with our previous work where the urinary level of pseudouridine was inversely associated with 371 

CTT9, we found a negative association between pH in the sigmoid colon and urinary pseudouridine, a primary 372 

constituent of RNA. Similarly, pseudouridine was also identified in faeces where it showed an inverse relationship 373 

to faecal pH as did deoxyxanthosine and xanthine, suggesting that increased cell turnover is linked to lower 374 

colonic pH.  375 

Altogether, by employing untargeted LC-MS metabolomics, we identified several RNA-, microbial-, and food-376 

derived metabolites newly associated with WGTT, CTT and pH in the distal part of the colon emphasizing an 377 

interplay between the gut environment and the diet-microbiota interactions.  378 
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Figure 6. Metabolites identified via LC-MS untargeted metabolomics associated with segmental transit time and pH. (A-380 

B) Volcano plots derived from regression models where each dot represents a metabolic feature with blue representing 381 

statistically significant associations (q < 0.1) in (A) urine and (B) faeces. The x-axis shows the regression coefficient values 382 

(estimate) indicating either positive or negative associations. CTT; colonic transit time, SB; small bowel, WGTT; whole gut 383 

transit time 384 
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Discussion 386 

Gut transit time and pH are important determinants of gut microbiota composition and metabolism7. Here, we 387 

showed that the gut environment also significantly explains both intra- and inter-individual variations in the gut 388 

microbiome composition and host-microbiota co-metabolism, as reflected by associations to microbial-derived 389 

metabolites measured in breath, faeces and urine. 390 

In this study, we demonstrated that whole gut and segmental transit time and pH measured by the SmartPills as 391 

well as the sweet-corn test substantially varied between healthy individuals. The considerable differences in 392 

luminal pH among individuals can introduce challenges in studies using ingestible sampling devices that rely on 393 

pH sensitivity to target specific regions of the gut38,39. Furthermore, these insights are of fundamental importance 394 

since pH and transit time are key factors for shaping microbial growth and enzyme activities40. Therefore, the 395 

regional variations in pH and transit time could potentially be key for shaping the regional microbiome and 396 

metabolism along the GIT, and potentially explain inter-individual differences in the gut microbiome composition 397 

and microbiome-responses to foods. In support hereof, distal colonic pH and WGTT contributed the most to 398 

faecal microbiome and metabolome variation. Future studies sampling along the GIT combined with 399 

measurements of regional pH and transit time are needed to ultimately disentangle this. Recently, a study using 400 

ingestible sampling devices38 showed indeed that microbiome and metabolome compositions differ along the 401 

GIT.  402 

The daily sampling during the 9 days allowed us to follow day-to-day fluctuations in microbial-derived 403 

metabolites. All of the microbial-derived metabolites in this study showed large variations both between and 404 

also within individuals, which highlights the importance of the need for repeated measurements in human study 405 

designs.  We showed that the variations in many microbial-derived metabolites were linked to gut environmental 406 

factors with a strong link between longer transit time and increased levels of metabolites derived from microbial 407 

proteolysis including p-cresol sulphate. Interestingly, more than 40 % of plasma variation in p-cresol sulphate has 408 

previously been explained by microbiome variation41, suggesting that the inter-individual differences in this 409 

metabolic feature might largely be confounded by differences in bowel habits. In fact, many of the metabolites 410 

associated with longer transit time in our study have been reported to be elevated in patient groups with 411 

constipation42–44 demonstrating the need for transit time estimates in future microbiome studies. Based on our 412 

data, stool frequency was an insensitive measure for a small cohort with healthy individuals whereas stool 413 

moisture appeared as a significantly more informative proxy marker.  414 
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By untargeted metabolomics, we discovered aromatic amino acid-derivatives and dicarboxylic acids including 415 

pimelic acid, which have not previously been linked with intestinal transit time and/or pH.  Pimelic acid can 416 

originate from microbial metabolism of fatty acids31,32 and has previously been found at elevated faecal levels in 417 

patients with chronic kidney disease45 and colorectal cancer46; who often suffer from constipation47,48. Moreover, 418 

pimelic acid can be synthesized by the gut microbiota as a part of biotin (vitamin B7) synthesis31 and biotin 419 

deficiency has been linked to obesity49 and irritable bowel disease49. Recently, metabolic profiling of samples 420 

collected along the gastrointestinal tract in humans has shown that the abundance of dicarboxylic acids increases 421 

towards the distal gut38. The authors hypothesized that this might be due to the catabolism of host epithelial 422 

cells, which combined with our results suggests that longer intestinal transit time might be associated with 423 

increased shedding of epithelial cells into the intestine. However, additional research is needed to better 424 

understand the interplay between dicarboxylic acids, gut environment and host physiology. 425 

Besides dicarboxylic acids, we found that faecal nicotinic and pantothenic acids showed an inverse relationship 426 

to faecal pH. Pantothenic acid, also known as vitamin B5, is synthesized by the gut microbiota and has previously 427 

been linked to dietary fibre intake50 and significantly decreased faecal levels were found in patients with 428 

Parkinson’s disease19. Nicotinic acid can be synthesized by gut microbiota from tryptophan and contributes to 429 

gut homeostasis51. As higher faecal pH is positively correlated to a longer transit time, a longer transit time may 430 

imply lower tryptophan availability in the gut for the synthesis of nicotinic acid. Nicotinic acid, as well as 431 

pantothenic acid, were both previously found at decreased faecal levels in patients with ulcerative colitis when 432 

compared with healthy individuals52. However, since dietary wholegrains and fibres are rich in both vitamins53 433 

the inverse relationship to faecal pH might originate from decreased carbohydrate availability in the colon with 434 

a longer passage.  In addition, we identified several coffee-derived metabolites associated with lower small 435 

intestinal pH including 1-methylxanthine, which was also linked to shorter WGTT. Previous studies have shown 436 

that coffee stimulates colonic motility possibly due to the release of gut hormones regulating motility and/or 437 

localized effects of specific coffee-derived metabolites54–56, yet this needs further elucidation. 438 

Collectively, our data support previous findings suggesting a shift in microbial metabolism from saccharolysis 439 

(carbohydrate fermentation) towards utilization of other substrates (i.e. proteins and lipids) with longer passage 440 

through the colon9,30. 441 

Curiously, we found a negative association between intake of daily dietary fibres and several of the proteolytic 442 

markers, suggesting that the presence of fibres in the gut, and consequently the formation of SCFAs leading to 443 

lower pH, might attenuate microbial proteolysis. Indeed, it has been shown that p-cresol sulphate and 444 

phenylacetylglutamine were significantly lower in vegetarians than non-vegetarians18 and following a diet high 445 
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in resistant starch57 while decreasing their levels via low-protein diets has been challenging7. Furthermore, 446 

supplementation with probiotics and/or prebiotics has been shown to decrease serum levels of p-cresol sulphate 447 

in chronic kidney disease patients58 and urinary levels in healthy volunteers59. Fibre availability in the colon 448 

therefore seems to play a role in the microbial fermentation of proteins that has been linked to unfavourable 449 

health outcomes11,12 and further investigations are required to disentangle the underlying mechanisms. 450 

Although we recognize that our study is limited in cohort size and based on correlations and associations, it is to 451 

our knowledge the first study to link intestinal segmental transit times and pH with intra- and inter-individual 452 

differences in the gut microbiome composition and metabolism in a healthy population. While this study 453 

included a rather homogenous healthy group of volunteers (residents in Denmark, predominantly women), it 454 

provides valuable insights into longitudinal changes of faecal SCFAs and pH over a period of more than one week, 455 

which have not previously been documented. Our results show an important role of gut transit time and pH with 456 

regard to the inter-individual gut microbiome composition and production of microbial-derived metabolites. 457 

These results emphasise that the gut environment is important to consider in human microbiome studies in the 458 

quest for understanding the healthy gut microbiome and disentangling personal microbiome responses to foods 459 

and other lifestyle factors. 460 

  461 
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Methods 462 

Study participants 463 

A 9-day human study (PRIMA) among healthy subjects was conducted at the Department of Nutrition, Exercise 464 

and Sports (NEXS) at the University of Copenhagen in Denmark from April to December 2021. The research 465 

protocol was approved by the Municipal Ethical Committee of the Capital Region of Denmark (H-20074067) and 466 

all participants provided written informed consent to participation. The study was registered at ClinicalTrails.gov 467 

(ID: NCT04804319).  468 

Sixty-one healthy participants living in Denmark (43 women and 18 men) were enrolled and completed the study. 469 

Participants were healthy by self-report (did not suffer from inflammatory bowel syndrome, small intestinal 470 

overgrowth, inflammatory bowel disease, chronic or infections disease, diabetes or cancer), aged 18-75 years 471 

with a BMI between 18.5 and 30.0 kg/m2 with no intake of medication with the exception of mild antidepressants 472 

and contraceptive pills. Intake of antibiotics, diarrhoea inhibitors and laxatives one month prior to the trial was 473 

not allowed. Furthermore, pregnant or lactating women were not included in the trial.  474 

Experimental design and sample collection 475 

Seven days prior to the study, the participants were asked not to consume any sweet corn as two self-476 

administered sweet-corn tests to evaluate the whole gut transit time were part of the study. Prior to both of the 477 

visits, the participants were asked to abstain from alcohol intake, smoking, and strenuous exercise.  478 

The participants were asked to maintain their habitual diet and register their food intake online via the Myfood24 479 

tool (myfood24.org) with nutritional values based on the Danish food composition database FRIDA version 4.1 480 

(frida.fooddata.dk) for eight consecutive days during the study. During the trial, the participants collected daily 481 

stool samples (first bowel movement whenever possible), stored the samples in their domestic freezers and 482 

transported them to the laboratory while being kept cold. Moreover, the participants self-reported daily their 483 

defecation patterns including stool consistency assessed by the BSS and stool frequency, their physical activity, 484 

intake of dietary supplements and medication (limited to pain killers in a few cases), as well as their 485 

gastrointestinal symptoms. The gastrointestinal symptoms were assessed based on a 10 scale scoring system (0 486 

– no symptoms, 10 – the most severe symptoms) in regards to stomach ache, bloating, constipation, diarrhea, 487 

and overall comfort. Furthermore, the participants collected seven daily spot morning urine samples (days 1, 2, 488 

4, 5, 6, 7, 8) and two 24-hr urine samples (days 2-3 and days 8-9) during the study period. The collected urine 489 

samples were stored in participants’ domestic freezers, transported to the study site in a cooling bag, and stored 490 

at -20°C overnight. After thawing at 5°C, aliquots of 1 mL were taken and stored at - 80°C until further use. In 491 
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addition, the participants consumed 100 g of sweet corn prior to their evening meal on days 3 and 5 and recorded 492 

the time of the corn egestion17. 493 

At both of the visits (day 2 and day 9), fasting blood and breath samples were collected. During the first visit, 494 

anthropometric measurements (height, body weight, and BMI) were obtained. Furthermore, the first visit also 495 

included a standardized meal test for all participants (n = 61). The test meal consisted of rye bread (with butter 496 

and jam), a boiled egg, a portion of natural yoghurt along with nuts walnuts and blueberries, and a glass of water 497 

(100 ml) with 250 mg of dissolved paracetamol (Table S1), which was used as a marker of postprandial gastric 498 

emptying of liquids60. The meal portion size was calculated as 25 % of the daily energy demand of each participant 499 

based on the Harris-Benedict equation22. Postprandial urine samples (at 30 min, 60 min, 120 min, 180 min, 500 

240 min, 300 min, 360 min, and between 6-8 h, 8-10 h, and 10-24 h) and postprandial breath exhalations (at 501 

30 min, 60 min, 90 min, 120 min, 150 min, 180 min, 210 min, 240 min, 270 min, 300 min, 330 min, and 360 min) 502 

were collected. A subset of participants (n = 50) ingested a SmartPill® capsule immediately after the meal with a 503 

bit of additional water if needed. All participants drank 150 ml of water at 2 h and 4h after the meal, respectively. 504 

At 6 h, all participants received a sandwich and 500 ml of water and left the study site. 505 

SmartPill data collection and analysis 506 

The SmartPill® capsule is a single-use wireless gastrointestinal capsule (26.8 mm x 13 mm), which transmits data 507 

on luminal pH, temperature, and pressure to a portable receiver, which was worn by the participants from 508 

ingestion to egestion and thereafter returned to the study personnel. The capsule measures a pH range of 1-9, 509 

with an accuracy of+-0.5 pH units, pressure at a range of 0-350 mmHg (± 5 mmHg), and temperature ranging 510 

between 20°C and 40 °C (±1 °C)23. Upon receiving the portable receiver, the raw data were downloaded from the 511 

receiver to the manufacturer’s software via a docking station. Intestinal segmental transit times were 512 

determined based on landmark changes in the pH values as follows: gastric emptying (GE) was defined as the 513 

time point with an abrupt increase of ≥ 3 pH units indicating passage from the stomach into the duodenum. The 514 

passage from the small intestine into the ileocaecal junction (ICJ) was defined as the first time point with a 515 

decrease of at least one pH unit. The body exit of the capsule was defined as the time point with a decrease in 516 

temperature and/or a loss of data. The time of capsule residence in each of the gastrointestinal segments 517 

corresponds to gastric emptying time (GET), small intestinal transit time (SITT), colonic transit time (CTT) and 518 

combined, whole gut transit time (WGTT). Regional pH and pressure profiles were also obtained and the median 519 

values were determined. The segmental transit time and pH values in the colon were further segmented into 520 

proximal, distal and recto-sigmoid, respectively. The proximal colon pH and transit time were estimated as 521 

median values of the first 32.3% of the total CTT, while for pH in the distal colon, median values of the next 32.6% 522 
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of the total CTT, and for the recto-sigmoid pH the median pH of the last 35.4% of the total CTT was used based 523 

on previously reported data, which determined the percentages of total CTT according to the location of radio-524 

opaque markers (visualized by X-rays) in the different segments of the colon16. In addition, the median pH value 525 

measured during the last 10 min prior to the capsule egestion was registered as rectal pH. 526 

Dietary records 527 

Detailed 24-h weighted food intakes were recorded for 8 consecutive days by the participants via the online 528 

Myfood24 tool (myfood24.org) with nutritional values based on the Danish food composition database FRIDA 529 

version 4.1 (frida.fooddata.dk). The collected data included information about the intake of macronutrients 530 

(carbohydrate, protein, fat), dietary fibre (AOACFIB), coffee and alcohol intake in addition to information about 531 

more than 80 nutrients. Under-reporting was identified by calculating the average daily energy demand for each 532 

person divided by the reported caloric intake with a cut-off value of 0.861. Accordingly, approximately 25 % of 533 

the daily dietary records were under-reported and the data were removed in the subsequent analyses in this 534 

study. In contrast, no over-reporters (> 2.5) were detected. The complete dietary profiles were used in the 535 

principal component analysis, whereas macronutrient profiles, coffee and alcohol intake were used in the 536 

redundancy analyses. 537 

Breath exhalations measurements 538 

Fasting and postprandial levels of hydrogen and methane were measured in all breath samples by the M.E.C. 539 

Lactotest 202 Xtend device (M.E.C. R&D sprl, Brussels, Belgium). 540 

Biochemical analysis of blood  541 

Blood samples were upon collection immediately put on ice until they were centrifuged for precipitation of blood 542 

cells and stored at -80°C. Glucose was measured in plasma samples by using Pentra ABX 400 (HORIBA ABX, 543 

Montpellier, France) with a detection limit of 0.11 mmol/L.  Serum insulin and C-peptide levels were measured 544 

by using Immulite 2000 XPi (Siemens Healthcare Diagnostics Ltd., Llaneris Gwynedd LL554EL, UK) with the 545 

detection limit of 14.4 pmol/L and 27 pmol/L, respectively. Prior to the analyses, both instruments’ performances 546 

were validated using external and internal insulin, c-peptide and glucose controls. Three participants arrived for 547 

the second visit in a postprandial state, the blood was collected and analysed accordingly but the glucose, insulin 548 

and c-peptide values were not included in the data analysis. 549 

Faecal measurements 550 
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Faecal samples were upon receipt stored at -20°C overnight, thawed and homogenized in sterile water with a 551 

sample to water ratio of 1:1 (w/v) (faecal slurry). Subsequently, pH was measured in the faecal slurry using a 552 

digital pH meter (Mettler Toledo). The homogenized samples were subsequently aliquoted to cryotubes and 553 

stored at -80 °C until further analyses. Stool moisture was determined by evaporating the water of one aliquot 554 

(1 approximately 1 mL) using a vacuum concentrator (Speed-Vac, Christ RVC 2-25) and by calculating the faecal 555 

weight difference before and post-evaporation.  556 

Faecal SCFAs and BCFAs were quantified by LC-MS in samples collected between day 2 and day 5 (n = 170) as 557 

previously described34. In brief, the samples were thawed, mixed with ethanol and purified by filtration (0.2 µm 558 

filter). Subsequently, the samples were derivatized with 3-nitrophenylhydrazine and labelled internal SCFA 559 

standards were added. Dilution series of external SCFA standards spiked with internal SCFA standards, and all 560 

derivatized samples were analyzed on UPLC-QTOF-MS (Synapt G2, Waters®) in negative ionization mode (cone 561 

voltage 3.0 kV) with an ACQUITY BEH C18 guard column (2.1 x 5 mm, 1.7 µm, Waters) coupled to an ACQUITY 562 

BEH C18 column (2.1 x 100 mm, 1.7 µm, Waters®) and with the collision energy of 6.0 eV. The faecal 563 

concentrations of SCFAs and BCFAs were determined using vendor software (Quanlynx, Waters®). 564 

Bacterial load in faeces was determined using approximately 500 µL of frozen faecal slurry (238 – 816 mg) and 565 

diluting it 400,000 times in physiological solution (8.5 g/L NaCl; VWR International). Next, 1 ml of the microbial 566 

cell suspension obtained was stained with 1 μL SYBR Green I (1:100 dilution in dimethylsulfoxide; shaded 20 min 567 

incubation at 37 °C; 10,000 concentrate, Thermo Fisher Scientific). The flow cytometry analysis of the bacterial 568 

cells present in the suspension was performed using a Cytoflex flow cytometer (CytoFLEX 3; Beckman) as 569 

previously described (Supplementary Fig. 8)18. The final microbial load was calculated per gram of faeces. 570 

  571 
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Microbiome profiling   572 

DNA was extracted in random order from the faecal slurries (n=484) using DNeasy PowerLyzer PowerSoil kit 573 

(Qiagen, 12855-100) and the  V3-region of the 16S rRNA gene was PCR amplified using 0.2 µl Phusion High-574 

Fidelity DNA polymerase (ThermoFisher Scientific, F-553L), 4 µl HF-buffer, 0.4 µl dNTP (10 mM of each base), 1 575 

µM forward primer (PBU; 5’-A-adapter-TCAG-barcode-CCTACGGGAGGCAGCAG-3’) and 1 µM reverse primer 576 

(PBR; 5’-trP1-adapter-ATTACCGCGGCTGCTGG-3’) and 0.05-5 ng faecal DNA in 20 µl total reaction volume. Both 577 

primers (TAG Copenhagen A/S) were linked to sequencing adaptors and the forward primer additionally 578 

contained a unique 10 bp barcode (Ion Xpress™ Barcode Adapters) for each sample. The PCR program consisted 579 

of an initial denaturation for 30s at 98 °C, followed by 24 cycles of 98 °C for 15 s and 72°C for 30 s, and a final 580 

extension at 72 °C for 5 min. The PCR products were purified by the HighPrep ™ PCR clean-up system (AC-60500 581 

Magbio) according to the manufacturer's protocol. The resulting DNA concentrations were determined by Qubit 582 

HS assay and libraries constructed with mixing equimolar amounts of each PCR product. Partial 16S rRNA gene 583 

sequencing was performed on an Ion S5™ System (ThermoFisher Scientific) using OneTouch 2 Ion5: 520/530 kit 584 

- OT2 400bp and an Ion 520 Chip. The raw data were pre-processed into an ASV table using our in-house 585 

pipeline62 based on the DADA2 algorithm and settings recommended for IonTorrent reads63,  with taxonomy 586 

assigned to the ASVs using the RDP database (v18). The resulting ASV table, taxonomy and ASV sequences were 587 

merged into a phyloseq object for further analysis. For quantitative microbiome profiling (QMP) analyses, the 588 

relative abundances derived from the pre-processed 16S rRNA sequencing analysis were adjusted for the 589 

bacterial loads as previously published64. In brief, samples with < 10 000 reads were removed (n = 362) and 590 

downsized to even sampling depth, defined as the ratio between sample size (16S rRNA gene copy number 591 

corrected sequencing depth) and bacterial load. 16S rRNA gene copy numbers were retrieved from the ribosomal 592 

RNA operon copy number database rrnDB7365. The copy number corrected sequencing depth of each sample 593 

was rarefied to the level necessary to equate the minimum observed sampling depth in the cohort while assuring 594 

a minimum number of 10 000 reads in each sample and optimizing the chosen sampling depth to exclude as few 595 

samples as possible. In case of no copy number correction, an average copy number of 3.88 was used6.  596 

  597 
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Metabolic profiling 598 

Preparation of urine and faecal samples 599 

Untargeted urine and faecal metabolomics were performed as previously published34. All urine samples were 600 

thawed on ice, centrifuged at 10,000g at 4 °C for 2 min, and transferred to a new tube to remove solid particles. 601 

The urine samples were kept cold on ice during preparation. Samples were randomized and pipetted into 15 602 

plates (96-well). All urine samples from the same individual were placed on the same 96-well plate. Subsequently, 603 

they were diluted 1:5 with an internal standard mixture (L-Adenine-8-13C (Cambridge Isotope Lab), L-Phenyl-d5-604 

Alanine-2,3,3-d3 (Cambridge Isotope Lab), Caffeic Acid 13C3 (Toronto Research Chemicals), Caffeine 13C3 (Toronto 605 

Research Chemicals), L-Tyrosine 13C9 (Sigma Aldrich), Para-aminobenzoic acid (Sigma Aldrich), L-Tryptophan-606 

(indole-d5) (Sigma Aldrich), Hippuric Acid-[13C6] (IsoSciences), Cortisone-d8 (Sigma Aldrich), and Glycocholic Acid-607 

[2H4] (IsoSciences). Quality control (QC) samples were obtained by mixing 20 µl of each urine sample in a given 608 

plate (plate pools) and by mixing 20 µl of each plate pool to create the global pool. The QC samples, blank assays 609 

(0.1% formic acid), and mixtures of known standards (including 33 microbial-derived compounds) were included 610 

in each plate. The plates were sealed and stored at 4 °C until analysis (24 h max, otherwise stored at -80 °C). If 611 

the plate was frozen and thawed again before analysis, the plate was gently mixed by vortex stirring for 30 min 612 

immediately prior to analysis. 613 

Faecal homogenates collected between day 2 and day 5 (n = 170) were thawed at room temperature for 30 min 614 

and vortexed. Approximately 50 mg±5mg (≈50 µL) of the homogenates were mixed with 96 % ethanol, internal 615 

standard mixture (L-Adenine-8-13C (Cambridge Isotope Lab), L-Phenyl-d5-Alanine-2,3,3-d3 (Cambridge Isotope 616 

Lab), Caffeic Acid 13C3 (Toronto Research Chemicals), Caffeine 13C3 (Toronto Research Chemicals), L-Tyrosine 13C9 617 

(Sigma Aldrich), Lysophosphatidylcholine (17:1d7) (Avanti Polar Lipids), L-Tryptophan-(indole-d5) (Sigma Aldrich), 618 

Hippuric Acid-[13C6] (IsoSciences), Cortisone-d8 (Sigma Aldrich), and Glycocholic Acid-[2H4] (IsoSciences)) 619 

resulting in a 1:60 dilution. The diluted samples were vortexed for 30 s and subsequently mixed at 60 °C for 2 620 

min in a Thermo mixer at 1400 rpm, before being centrifuged at 14000 rpm (Eppendorf centrifuge 5417R), 4 °C 621 

for 2 min. The supernatants were filtered through a 0.2 µm filter and 200 µL of each faecal suspension was 622 

transferred to a 96-well plate, evaporated using a cooled vacuum centrifuge, and re-dissolved in 200 µL 0,1% 623 

formic acid prior to the UPLC-MS. All faecal samples from the same individual were placed on the same 96-well 624 

plate and QC samples were prepared in the same way as for the urine samples. In addition, each 96-well plate 625 

contained blank assays (96% ethanol) and mixtures of known standards (including 33 microbial-derived 626 

compounds).  627 

 628 
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UPLC-ESI-Q-TOF-MS Analysis  629 

Both urine and faecal samples were profiled by ultra-performance liquid chromatography (UPLC) coupled with a 630 

quadrupole-Time of Flight Mass Spectrometer (q-TOF-MS) equipped with electrospray ionization (ESI) (Synapt 631 

G2, Waters®) in both positive and negative ionization mode34. Blank samples (0.1% formic acid), assay blanks, 632 

standard mixtures, and QC samples were injected regularly to evaluate LC-MS system stability, possible 633 

contamination and/or loss of metabolites. The injected samples (5 µL) were separated on a reversed-phase 634 

column (ACQUITY HSS T3 C18 column, 2.1x100 mm, 1.8 µm, Milford, USA) coupled with a pre-column (ACQUITY 635 

VanGuard HSS T3 C18 column, 2.1x5 mm, 1.8 µm, Milford, USA). The mobile phases consisted of 0.1% formic 636 

acid in water (solvent A) and 0.1% formic acid in 70:30 acetonitrile: methanol (solvent B). The duration of the 637 

analytical run was 7 min with the following flow rate: start condition (0.5 mL/min), 1 min (0.5  mL/min), 2 min 638 

(0.6 mL/min), 3 min (0.7 mL/min), 4 min (0.8 mL/min), 4.5 min (1.0 mL/min), 6.4 min (1.1 mL/min), 6.6 min (1.0 639 

mL/min), 6.8 min (0.5 mL/min), 7.0 min (0.5 mL/min), and the following gradient: start condition (5% B), 1 min 640 

(8% B), 2 min (15% B), 3 min (40 % B), 4 min (70 % B), 4.5 min (100 % B), 6.6 min (5% B), 7 min (5% B). Mass 641 

spectrometry data were acquired in full scan mode with a scan range of 50-1000 mass/charge (m/z). Data-642 

dependent acquisition (DDA) was performed on the top 3 most abundant ions on QC samples (only urine) to 643 

provide MS2 data. Electrospray settings were the following: the cone voltage was 2.5 kV and 3.2 kV; the collision 644 

energy was 6.0 and 4.0 eV, the temperature of the ion source and desolvation nitrogen gas temperature was 120 645 

°C and 400 °C for positive and negative ionization mode, respectively. 646 

Metabolite identification and structure elucidation 647 

Tandem mass spectrometry (MS2) analyses were performed by a UHPLC system coupled to a Vion IMS QTOF 648 

mass spectrometer (Waters®) for obtaining spectra with higher mass accuracy. The samples were separated on 649 

a reversed-phase column (ACQUITY HSS T3 C18 column, 2.1x100 mm, 1.8 µm, Milford, USA) coupled with a pre-650 

column (ACQUITY VanGuard HSS T3 C18 column, 2.1x5 mm, 1.8 µm, Milford, USA) at a temperature of 50 ℃. The 651 

mobile phases consisted of 0.1% formic acid in water (solvent A), methanol (solvent B), 0.1% formic acid in 70:30 652 

acetonitrile: methanol (solvent C), and isopropanol (solvent D). The duration of the analytical run was 10 min 653 

with the following flow rate: start condition (0.4 mL/min), 0.75 min (0.4  mL/min), 6 min (0.5 mL/min), 6.5 min 654 

(0.5 mL/min), 8 min (0.6 mL/min), 8.1 min (0.4 mL/min), 9 min (0.4 mL/min), 10 min (0.4mL/min), and the 655 

following gradient: start condition (100% A), 0.75 min (100% A), 6 min (100% B), 6.5 min (70% C, 30 % D), 8 min 656 

(70% C, 30 % D), 8.1 min (70% C, 30 % D), 9 min (100% A), 10 min (100% A). Full scan acquisition was performed 657 

on selected urine samples with a scan range of 50-1500 m/z. Targeted MS2 was performed on a selected list of 658 

precursors at three different collision dissociation energies 10, 30, and 50 eV. 659 
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Mass spectra were manually interpreted and metabolites were identified by matching the precursor ion and 660 

fragmentation patterns with databases such as HMDB (https://hmdb.ca/), Metline (https://metlin.scripps.edu/), 661 

mzCloud (https://www.mzcloud.org/) and an in-house database. Furthermore, authentic standards were run 662 

together with the samples with the highest intensity on the same batch and platform. If needed, the authentic 663 

standards were sulfated or glucuronidated with either biomimetic synthesis66 or chemical synthesis34. The 664 

identification level of metabolites that were identified was classified according to Sumner et al. as level I 665 

(confirmed by matching to a standard with two orthogonal measures (rt, m/z), level II (matching MS2 666 

fragmentation to a spectral library), level III (compound classification), or level IV (unknown)25. See 667 

Supplementary Table 6 and Table 7 for further details. 3-Hydroxy-2-oxindole, 5-hydroxyoxindole , 2-picolinic 668 

acid, 4-methylcatechol, xanthine, 2-oxindole-3-acetic acid, pantothenic acid, nicotinic acid, tryptophan, sebacic 669 

acid, pipecolic acid, glutaric acid, citric acid, psedouridine, taurine, 1,3-dimethyluric acid, suberic acid, 1,3,7-670 

trimethyluric acid were purchased from Sigma-Aldrich. 4-Hydroxyhippuric acid, 1-methylxanthine and 1-671 

methyluric acid were purchased from Toronto Research Chemicals. 672 

Metabolomics data processing  673 

The raw data obtained by UPLC-MS were converted to mzML format by publicly available msConvert 674 

(ProteoWizard Toolkit)67. The converted data were pre-processed using the open-source R package XCMS (v3.18) 675 

using the centWave algorithm (requiring 3 consecutive scans with an intensity of over 10 counts)68. The pre-676 

processing steps included noise filtering, peak picking, retention time alignment and feature grouping across 677 

samples, and filling of missing features, which were done separately for the urine and faecal samples (and for 678 

positive and negative mode), respectively. The detailed pre-processing parameter settings can be found in 679 

Supplementary Table 8. Noise filtering settings included that features should be detected in a minimum of 10 % 680 

of all samples. Features with a retention time below 0.5 min or above 6.8 min were excluded. Data tables were 681 

generated comprising mass-to-charge ratio (m/z), retention time (rt), and intensity (peak area) for each variable 682 

in every sample. Each detected peak is represented by a feature defined by a rt and a m/z. The obtained data 683 

were corrected for within- and between-batch intensity drift using the LOESS correction method69. The processed 684 

data were normalized by the probabilistic quotient normalization (PQN)70 method to correct for variations in 685 

urine and faecal concentrations within- and between-batches. Upon analyses of 15 plates with urine samples, 686 

QC samples clustered closely together in the principal component analysis (PCA) score plots confirming a stable 687 

UPLC system during the course of analysis with the exception of two plates in the negative mode and one plate 688 

in the positive mode, which had to be removed from further statistical analyses (Supplementary Fig. 9).  689 
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Moreover, features with high variability after normalization across the pooled QC samples were filtered out (CV% 690 

> 50 %). Finally, the CAMERA package71 (v1.52) was used to group features together based on retention time 691 

(tolerance = 0.1s) and to annotate possible adducts and isotopes.  692 

Statistical Analysis  693 

Statistical analyses were conducted in R (v 4.2). The area under the curves (AUC) for hydrogen and methane 694 

concentrations during the postprandial period was calculated using the trapezoid rule in GraphPad Prism (v 695 

9.2.0). The normality of data was assessed with the Gaussian distribution and Shapiro-Wilk test procedure.  696 

Mixed-effects linear regression models were used to examine the day-to-day fluctuations and inter-individual 697 

variation in gut environmental factors using data from all 9 days. The models were generated using the lme4 R 698 

package (v 1.1-31) as lmer(gut environmental factor ~ factor(Day) + (1 | Participant ID), moreover ranova 699 

function from the lmerTest package (v 3.1-3) was used to perform the random effects-likelihood ratio tests to 700 

infer whether Participant ID significantly contributes to explaining the variation in the gut environmental factors. 701 

A p-value of < 0.05 was considered statistically significant. Coefficients of intra-individual variation were 702 

calculated as CVintra = (SDintra / Meanintra) * 100 where mean and SD were based on all measurements from a single 703 

individual over the 9 days. 704 

Gut microbiome beta-diversity analysis using Bray Curtis distances as well as metabolome and diet beta-diversity 705 

analyses using Euclidian distances were performed with the phyloseq package (v 1.42.0) and PERMANOVA tests 706 

by adonis2 function from the vegan package (v 2.6) with 999 permutations and strata = Participant ID when 707 

testing the day-to-day fluctuations. 708 

Single time point correlations were calculated using standard Spearman’s rank correlation, as implemented in 709 

the Hmisc R package (v 4.7), and heatmaps were generated by the corrplot package (v0.92). Repeated measure 710 

correlations were performed using the rmcorr (v 0.5)72. 711 

Distance-based redundancy analysis (db-RDA) was performed to quantify the effect sizes of gut environmental 712 

factors and other variables on the intra-individual and inter-individual variation in the gut microbiome (both 713 

relative and quantitative profiles at genus level), faecal metabolome, and urine metabolome. The analyses were 714 

performed with Bray-Curtis dissimilarity using the capscale function as implemented in the vegan package (v 715 

2.6). With regards to intra-individual analyses, data available from all samples (day 1- day 9) and strata = 716 

Participant ID were used. For the inter-individual analyses, data collected on day 2 (visit 1) were used separately 717 

for all participants (n = 61) and for the SmartPill subgroup (n = 50). The statistical significance was determined 718 
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by permutation test with 9999 random permutations (anova.cca function) and p-values were adjusted for 719 

multiple testing by false discovery rate (Benjamin–Hochberg)73, an adjusted p-value (q-value) below 0.1 was 720 

considered significant. 721 

For the untargeted metabolomics data, the area of each m/z feature was log-transformed and missing values 722 

were imputed and replaced by values reflecting half of the minimum intensity of the given m/z feature. Linear 723 

regression models and sparse partial least squares (SPLS) models were performed to examine the relationship 724 

between the m/z features and the variables of interest (i.e. segmental transit time and pH). The modelling was 725 

performed using the SmartPill-derived data and the 24-h postprandial urine metabolome collected at day 2 as 726 

well as the faecal metabolome closest to the time of the SmartPill egestion. The linear mixed models were 727 

performed with the lme4 R package (v 1.1-31). The multivariate SPLS models were performed with the caret R 728 

package (v 6.0-92). P values were corrected for multiple testing by the Benjamin–Hochberg false discovery rate 729 

(q-value). Features with a q-value < 0.1 were considered to be statistically significant and only features selected 730 

by both the linear regression and SPLS were further submitted for identification including the MS2.   731 

Data availability  732 

All sequencing data have been submitted to the NCBI Sequence Read Archive (SRA). BioProject ID: 733 

PRJNA1027590. 734 

Code availability  735 

No custom code was generated for this work. 736 
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