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Abstract: Microviridae is a family of phages with circular ssDNA genomes and they are widely 19 

found in various environments and organisms. In this study, Virome techniques were employed to 20 

explore potential members of Microviridae in poultry slaughterhouse, leading to the identification 21 

of 98 novel and complete microvirus genomes. Using a similarity clustering network classification 22 

approach, these viruses were found to belong to at least 6 new subfamilies within Microviridae 23 

and 3 higher-level taxonomic units. Analysis of their genomes found that the genome size, GC 24 

content and genome structure of these new taxa showed evident regularities, validating the 25 

rationality of our classification method. Compared with the 19 families classified by previous 26 

researchers for microviruses dataset, our method can divide microviruses into about 45 more 27 

detailed clusters, which may serve as a new standard for classifying Microviridae members. 28 
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Furthermore, addressing the scarcity of host information for microviruses, this study significantly 29 

broadened their host range and discovered over 20 possible new hosts, including important 30 

pathogenic bacteria such as Helicobacter pylori and Vibrio cholerae, as well as different taxa 31 

demonstrated differential host specificity. The findings of this study effectively expand the 32 

diversity of the Microviridae, providing new insights for their classification and identification. 33 

Additionally, it offers a novel perspective for monitoring and controlling pathogenic 34 

microorganisms in poultry slaughterhouse environments. 35 

 36 

Keywords: Poultry slaughterhouse; Microviruses; Genome; Clustering; Host 37 

1 Introduction 38 

China is a major player in livestock and poultry farming and consumption. According to the 39 

statistics, China's total meat consumption is nearly 100 million tons, accounting for 27% of the 40 

global total. In 2022, the domestic meat production reached 92.27 million tons, with poultry meat 41 

contributing 24.43 million tons, constituting 26.5% of the total global meat production(1). 42 

Slaughterhouses play a crucial role as an essential pathway for livestock and poultry meat 43 

products to move from farms to consumers' tables. They are also the key points for the gathering 44 

and transmission of pathogenic microorganisms(2). Due to the high density and mobility of 45 

poultry when entering the market or slaughterhouses, poultry comes from diverse sources and has 46 

varying hygienic conditions, and may carry multiple pathogenic microorganisms(3). The slaughter 47 

process is prone to contaminating the environment and the personnel involved. Additionally, the 48 

waste generated during poultry slaughter and processing further provides favorable conditions for 49 

the proliferation of pathogenic microorganisms(4). The interaction between animals, the 50 

environment, and occupational personnel forms a closed-loop microbial transmission chain. Some 51 

pathogenic microorganisms can infect occupational personnel through direct contact, while others 52 

may have an indirect impact by contaminating the environment. Existing research indicates that 53 

the detection rate of certain pathogenic microorganisms, such as Campylobacter and Salmonella in 54 

the case of bacteria, avian influenza viruses in the case of viruses, is significantly higher among 55 

occupational personnel in comparison to the general population(5-9). Therefore, conducting 56 
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extensive microbial research at the interface of animals, the environment, and occupational 57 

personnel in poultry slaughterhouses is of significant importance. 58 

Bacteriophages, a type of viruses that specifically infect bacteria, are the most abundant life 59 

forms on earth(10). It is estimated that there are as many as 10
31

 virus particles on earth(11, 12), 60 

representing a vast and largely untapped reservoir of biological resources. In the preliminary 61 

research conducted by our research group, we identified a significant number of pathogens from 62 

poultry slaughterhouse samples(2), along with a vast amount of novel bacteriophages 63 

(unpublished data). On the one hand, the abundant presence of pathogens in slaughterhouses 64 

creates favorable conditions for the survival of bacteriophages. Investigating the diversity, types, 65 

and hosts of bacteriophages in poultry slaughterhouses can enhance our understanding of the 66 

composition, transmission, and the interplay between pathogens and bacteriophages in such a 67 

unique environment. On the other hand, in poultry slaughterhouses, occupational personnel are at 68 

the core of operations, and exposures to pathogenic bacteria increase the risk of infections of this 69 

particular group of population, which is a major public health safety hazard. Therefore, it would 70 

be advantageous to fully explore and develop potential functional phage species based on the high 71 

diversity of phages in poultry slaughterhouses, we can effectively purify the environment, block 72 

the spread of pathogenic bacteria in poultry slaughterhouses to safeguard public health safety. 73 

Members of the Microviridae are one of the most widely distributed single-stranded DNA 74 

viruses and their natural hosts include pathogenic bacteria such as Spiroplasma, Chlamydia, and 75 

Enterobacteria(13). Despite earlier limited attention to the Microviridae, recent research indicates 76 

their significant importance in the virosphere(14). At present, the only subfamilies in Microviridae 77 

recognized by ICTV are Bullavirinae and Gokushovirinae(15), which cannot fully reflect the 78 

diversity of viruses in this familyWhile more Microviridae subfamilies, such as Alpavirinae(16) 79 

and Pichovirinae(14) have recently been proposed, the number of classified groups and host 80 

information about Microviridae remain severely limited in the literature. This study takes the 81 

unique and biologically significant environment of a poultry slaughterhouse in Guangzhou in 82 

Guangdong Province in China and employs  a multiple displacement amplification (MDA) 83 

method(17). Combined with metagenomics sequencing to obtain environmental virus sequencing 84 

data from the poultry slaughterhouse (DSV, Dataset of Slaughterhouse Virome) in Guangzhou. 85 

Within this dataset, we discovered a diverse set of novel viruses belonging to the Microviridae. A 86 
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detailed analysis of 98 nearly complete Microviridae genomes revealed their classification into at 87 

least six new subfamilies and three higher-level taxonomic units. Comparative analysis with 88 

publicly available viral databases demonstrated the high resolution of our classification. 89 

Additionally, over 20 potential hosts for microviruses were identified. This study expands our 90 

knowledge of the evolution, diversity, and host range of Microviridae, providing insights into the 91 

potential biosecurity and ecological significance of these microviruses in poultry slaughterhouses. 92 

2 Materials and Methods 93 

2.1 Sample Collection 94 

Atotal of three types of samples were collected from a poultry slaughterhouse in a district of 95 

Guangzhou: animals, occupational personnel, and environmental samples. The environmental 96 

samples included air, soil, sludge, swabs from transportation vehicles, and swabs from the 97 

slaughterhouse workshop. The collection protocols were as follows: (1) Animal Samples: Sterile 98 

cotton swabs were inserted into the oral cavity and cloaca of chickens or ducks, rotated three times, 99 

and then removed. The swab's tail was discarded, and the swab was immersed in sterile 0.5% 100 

BSA-PBS buffer for preservation. Three chickens or ducks from each of the three spaces (caged 101 

area, pre-slaughter area, slaughter area) had their oral and cloacal swabs mixed to form one 102 

sample. (2) Occupational Personnel Nasal Swab Samples: To collect nasal swab samples from 103 

occupational personnel, a sterile cotton swab was gently inserted into the nasal pharynx of the 104 

participating volunteer. After a few seconds, the swab was gently rotated and removed. The swab's 105 

tail was discarded, and the swab was immersed in sterile 0.5% BSA-PBS buffer for preservation. 106 

Nasal swab samples from a single person with both nostrils were placed in an individual sample 107 

collection tube. Written informed consent was obtained from all participants. (3) Air Samples: 108 

BioSamplers KIT (225-9595, SKC, Eighty Four, PA) were installed at approximately 1.5 meters 109 

above floor at the ventilation points in the slaughter area, pre-slaughter area, and caged area (3 110 

sampling points in total). Using 0.5% BSA-PBS buffer at a flow rate of 8 mL/h, sampling was 111 

conducted for 12 hours per day at 110V. Each day's collection was considered one air sample, and 112 

this process was repeated continuously for 3 days. The collected samples were stored in PBS 113 

buffer. (4) Soil Samples: Soil samples were collected using the quincunx sampling method at 114 
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various spaces(18), including the entrance of the poultry slaughterhouse, the slaughter workshop, 115 

and the pre-slaughter caged area. Each sample weighed 5-10g. (5) Sludge Samples: Sludge 116 

samples were collected at the four corners of the sewage discharge pool, with approximately 10 117 

mL of sewage collected per sample. (6) Environmental Swab Samples: Sterile cotton swabs were 118 

used to collect environmental samples from the slaughter workshop, pre-slaughter area, caged area, 119 

and poultry transportation vehicles. Five swab samples were collected from each space or vehicle, 120 

discarding the swab tails and placing them in sterile 0.5% BSA-PBS buffer for preservation. After 121 

collection, all samples were stored at 4°C, transported to the laboratory in a cooler, and then stored 122 

long-term at -80°C in an ultra-low-temperature freezer. This study was approved by the Medical 123 

Ethics Committee of the School of Public Health, Sun Yat-sen University (Permit No.  [2018] No. 124 

001). 125 

2.2 Sample Pool Preparation 126 

In order to analyze the virus content and types in samples from different spaces (i.e. slaughter 127 

area, pre-slaughter area, caged area) and different types (i.e. air, animals, sludge.) within the 128 

slaughterhouse, we combined samples of the same type collected from the same space to prepare 129 

sample pools: (1) Combined oral and cloacal swabs from 20 ducks in each of the three spaces 130 

(caged area, pre-slaughter area, slaughter area) to create a pool (total of 60 ducks). Combined oral 131 

and cloacal swabs from 30 chickens in each of the three spaces to create a pool (total of 90 132 

chickens). (2) Combined nasal swab samples from 20 frontline slaughterhouse workers into one 133 

pool. (3) Combined air samples collected continuously for 3 days from each sampling point, 134 

creating one pool per sampling point. (4) Combined soil samples collected from each space 135 

(mixed samples with four or more points) into one pool. (5) Combined sludge samples collected 136 

from each sewage discharge pool into one pool. (6) Combined swab samples from seven 137 

slaughterhouse process points in the workshop into one pool. (7) Combined swab samples 138 

collected from three poultry transportation vehicles into one pool. Sample pool information is 139 

provided in Supplementary Table S2. 140 

Table 1. Sample information. 141 

Sample Source Sample Sample Pool Names Sequencing 
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Classification Quantity (Abbreviations) Number 

Animal 

Chicken 90 SC C-SXAO 

Duck 60 SD D-SXAO 

Human Occupational Personnel 20 SN CD-SXO-S 

Environment 

Air 

caged area 3 AC CD-SXA-1 

pre-slaughter area 3 AW CD-SXA-2 

slaughter area 3 AS CD-SXA-3 

soil 12 Soil CD-SXG 

sludge 4 Sludge CD-SXD 

swab 

transport vehicle 15 ST CD-SXt 

slaughterhouse 

workshop 

35 SS CD-SXS 

2.3 Virus Enrichment, Nucleic Acid Extraction and Amplification 142 

Virus-like particles (VLPs) were enriched separately based on the different properties of the 143 

samples. Approximately 0.4g of sludge and soil samples were taken, and each was added to about 144 

2–5 volumes of sterile SB buffer (0.2 M NaCl, 50 mM Tris-HCl, 5 mM CaCl2, 5 mM MgCl2, pH 145 

7.5). For air samples and swab samples, they were directly added to 2–5 volumes of sterile SB 146 

buffer and shaken to fully dissolve the virus particles. After three cycles of freeze-thawing, the 147 

particles were completely resuspended in 10 times the volume of pre-chilled SB buffer. All 148 

samples were centrifuged at 1,000, 3,000, 5,000, 8,000, 10,000, and 12,000 × g for 5 minutes at 149 

4°C using a Sigma 3K30 centrifuge (Sigma Laborzentrifugen GmbH, Germany), and the 150 

supernatant was collected. Subsequently, the supernatant was filtered through 0.22 μm Millipore 151 

filters (Burlington, MA) to further remove any cell debris and organelles. The filtrate was 152 

transferred to 28% sucrose solution and ultra centrifuged at 300,000 × g for 2 hours in a Himac CP 153 

100WX ultracentrifuge (Hitachi, Tokyo, Japan). The supernatant was discarded, and the pellet was 154 

re-suspended in 720 μl of water, 90 μl of 10 × DNase I Buffer, and 90 μl of DNase I (1 U/μl) 155 

(TAKARA, Japan). The suspension was thoroughly re-suspended, incubated at 37°C with shaking 156 

for 60 minutes, stored overnight at 4°C, and then transferred to a 2 ml centrifuge tube. 157 
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Total nucleic acids were extracted using the HP Virus DNA/RNA Kit (R6873; Omega 158 

Bio-Tek, Norcross, USA), and carrier RNA was not used during the process to avoid potential 159 

interference with sequencing results. The concentration of RNA was quantified using the Qubit™ 160 

dsDNA HS Assay Kit (Q32851) and Qubit™ RNA HS Assay Kit (Q32855) (Thermo Fisher 161 

Scientific, Waltham, USA). 162 

Virome research heavily relies on amplification, as the viral biomass in natural samples is 163 

often very low. Due to variations in most amplification methods, quantitative studies of viral data 164 

present challenges at present(19, 20). In the current study, uniform genome amplification (WGA) 165 

and transcriptome amplification (WTA) were performed using the repi-g Cell WGA and WTA Kit 166 

(150052, Qiagen, Hilden, Germany), based on the multiple displacement amplification (MDA) 167 

method(17, 21-23).  168 

2.4 Library Construction and Sequencing 169 

The amplified DNA was quantified using gel electrophoresis and Nanodrop 2000 170 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA). Ultrasonic random shearing 171 

(Covaris M220) was performed to generate fragments with lengths ≤800 bp. Fragment ends were 172 

repaired using T4 DNA Polymerase (M4211, Promega, Madison, Wisconsin), Klenow DNA 173 

Polymerase (KP810250, Epicentre, Madison, Wisconsin), and T4 Polynucleotide Kinase (EK0031, 174 

Thermo Fisher Scientific, Waltham, MA). Fragments in the range of 300-800 bp were collected 175 

after electrophoresis. After amplification, the libraries were pooled, and paired-end sequencing of 176 

150 bp, 250 bp, or 300 bp was performed on the Novaseq 6000, HiSeq X ten, and Miseq platforms 177 

(Illumina, San Diego, California)(24-26). 178 

2.5 Sequence Filtering 179 

All samples underwent metavirome sequencing, yielding approximately 700 million raw 180 

sequence reads. The sequencing data were subjected to quality control and removal of low-quality 181 

and adapter sequences using Fastp (version 0.20.0) (27). The reads were then assembled into 182 

contigs using Megahit (version 1.2.9) (28, 29). The contigs were aligned and annotated against the 183 

NCBI non-redundant protein database using Diamond (version 0.9.24.125) (30). Subsequently, 184 
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Megan6was employed for further classification of the annotated results(31). A total of 98 viral 185 

sequences (Contig ID are shown in Table S1) were identified as complete genomes and annotated 186 

as belonging to the Microviridae for further in-depth analysis. 187 

2.6 Open Reading Frame (ORF) Prediction and Alignment 188 

Cenote-Taker2 was used to predict open reading frames (ORFs) in the 98 viral genomes(32). 189 

The major capsid protein or capsid protein sequence (major capsid protein is preferred if available, 190 

otherwise capsid protein is chosen. These proteins are collectively referred to as "Cap") was 191 

selected from the predicted results of each viral sequence. NCBI BLASTP(33, 34) was used to 192 

compare ORF sequences with the NR database, with an Expect threshold (e-value) set to 10
-5

. For 193 

each ORF in the alignment results, the top ten protein sequences with their complete genomic 194 

sequences were downloaded based on identity. Duplicate sequences were removed from all 195 

downloaded sequences. SnapGene (www.snapgene.com, version 4.3.6) was utilized to open the 196 

Cenote-Taker2 output file for visualizing the genomic structure. 197 

 198 

2.7 Clustering Analysis Based on Sequence Similarity 199 

Cap sequences predicted for DSV microvirus were collected, along with top 10 ranked Cap 200 

sequences from the aforementioned BLASTP results, and introduced 20 Cap sequences from 201 

microviruses that have been definitively classified by the ICTV. A total of 577 sequences were 202 

aligned with each other using DIAMOND (version 0.9.14.115) to build a matrix of sequence 203 

similarities. A clustering network graph was constructed based on alignment scores using 204 

Gephi(35) (version 0.9.7). The nodes were colored on different sequence sources, hosts, or virus 205 

classification results. Furthermore, the Cap sequences used by Paul et al. (36) were integrated with 206 

the above data. The same method was employed to construct a similarity clustering network graph 207 

and color it, aiming to compare the network clustering resolution of our research method with that 208 

of Paul et al. 209 

 210 

2.8 Host prediction 211 
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All complete genome sequences included in the analysis in section 2.7 were subjected to host 212 

prediction using hostG(37) (output results taking genus, genus_score > 0.7) and cherry(38) (output 213 

results taking Top_1_label, Score_1 > 0.7), analyzing the relationship between these viruses and 214 

their hosts, as well as the proportion of these hosts. 215 

2.9 Phylogenetic Tree Based on Cap Sequences 216 

Cap is a conserved gene of microviruses(39) with approximately 500 amino acids in length, 217 

and is commonly used as a phylogenetic marker for the classification of evolutionary branches or 218 

subfamilies within the Microviridae. Multiple sequence alignment was performed using 219 

MAFFT(40) ambiguous regions were removed using TrimAl(41) , and a maximum likelihood 220 

phylogenetic tree based on Cap sequences was constructed using IQtree(42) (version 2.1.4). 221 

ModelFinder(43) was set to MFP (for ModelFinder Plus), and 1000 ultrafast bootstrap replicates 222 

were used. The tree was visualized using iTOL(44) (version 6.5.2) (https://itol.embl.de). 223 

2.10 Principles of Classification and Naming of Viral Sequences 224 

According to the clustering in Figure 1 and cherry host prediction results, DSV-related viral 225 

sequences are named respectively. Taking cluster_1 as an example, if a sequence has host 226 

prediction results, it is named based on the host, such as the contig sequences 227 

CD-SXS-WGA-1-k141_397009 and CD-SXD-WGA-1-k141_230904 are named Bdellovibrio 228 

microvirus C1_1 and Bdellovibrio microvirus C1_2, respectively. Similarly, 229 

CD-SXG-WGA-1-k141_33139 and CD-SXG-WGA-1-k141_32996 are named Escherichia 230 

microvirus C1_1 and Escherichia microvirus C1_2. If the sequence has no host prediction results, 231 

contig sequences like CD-SXD-SXG-WGA-all--k141_113185 and 232 

CD-SXD-SXG-WGA-all--k141_328845 are named DSV microvirus C1_1 and DSV microvirus 233 

C1_2, and so forth. The original sequence ID and their corresponding names are listed in Table S1. 234 

3 Results 235 

3.1 Discovery of Novel Subfamilies of Microviridae 236 
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According to the ICTV standards, Microviridae includes two subfamilies (Bullavirinae and 237 

Gokushovirinae) and seven described genera(15). Among them, the subfamily Bullavirinae has 238 

three genera, comprising 14 species. The subfamily Gokushovirinae has four genera, consisting of 239 

eight species. We selected 98 complete DNA viral genomes from the DSV dataset, annotated as 240 

Microviridae, with a genome integrity exceeding 90%, for in-depth analysis. All DSV genomes 241 

have lengths ranging from 4 - 6 kb, consistent with the genome size of Microviridae(13). As 242 

predicted, these viruses all have Cap with lengths of 450-600 amino acids (AA). According to the 243 

Cap similarity clustering network graph (Figure 1), the Microviridae sequences from DSV, along 244 

with the related sequences aligned in NR and the Microviridae sequences from ICTV (totaling 577 245 

sequences), roughly cluster into 9 clusters (cluster_1 to 8 and Bullavirinae). Among them, the 14 246 

sequences of Bullavirinae (14 distinct species recognized by ICTV) formed a separate cluster 247 

(light green). It is worth noting that cluster_1 (C1) and cluster_2 (C2) include an additional 6 248 

ICTV sequences, all of which belong to Gokushovirinae. In C1, there are 5 ICTV sequences, 4 of 249 

which belong to Chlamydiamicrovirus, and 1 belongs to Spiromicrovirus. In C2, 1 ICTV sequence 250 

belongs to Bdellomicrovirus. According to this classification standard, the other unclassified 251 

viruses in C1 and C2 should also belong to the Gokushovirinae. The remaining 6 clusters 252 

(cluster_3 to 8) do not include ICTV sequences, suggesting that these clusters might represent 253 

novel subfamilies within the Microviridae. 254 

Based on the similarity of these 9 clusters, we can further categorize them into 5 major 255 

families, tentatively referred to as Family_Red, Family_Blue, Family_Green, Family_Yellow, and 256 

the independent Bullavirinae cluster. Among them, Family_Yellow  includes 3 clusters, namely 257 

cluster_6 (C6), cluster_7 (C7), and cluster_8 (C8). Family_Red includes C1, C2, and cluster_3 258 

(C3), which contain 6 Gokushovirinae ICTV sequences. Therefore, for now, we equate 259 

Family_Red with the Gokushovirinae. However, Family_Blue, Family_Green, and 260 

Family_Yellow do not include any ICTVsequences, suggesting that they are newly discovered 261 

taxonomic units in this study, at least on par with Gokushovirinae and Bullavirinae. Since 262 

Microviridae is already classified at the family level, whether Family_Blue, Family_Green, and 263 

Family_Yellow are proposed as new subfamilies or families requires further discussion. 264 

 265 
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 266 

Figure 1.  Similarity clustering network of Cap of microviruses from poultry slaughterhouses and related 267 

microvirus groups. The network includes identified microvirus Cap sequences from the DSV data (n=98), along 268 

with related Cap sequences from the NR data (n=459) and microvirus Cap sequences from the ICTV data (n=20). 269 

The similarity clustering network was constructed using Gephi (version 0.9.7) based on Diamond (version 270 

0.9.14.115) alignment score. Gray connections represent Diamond Blastp score >480. 271 

 272 

3.2 Expanding the Potential Hosts of Microviruses. 273 

Host prediction was performed on the 98 newly discovered microvirus sequences from this 274 

study, along with their associated 459 NR sequences and 20 ICTV sequences, using hostG(37) and 275 

cherry(38) . In the hostG results, only NC_002643.1 from ICTV was accurately predicted to have 276 

a host (Bdellovibrio). However, in the cherry results, the majority of hosts were consistent with 277 

the ICTV results, indicating that the success rate and accuracy of cherry predictions were higher 278 

than hostG. According to the hostG results, the main hosts for DSV were Bdellovibrio and 279 

Chlamydia (Figure 2a, b). For NR sequences, the hosts were mainly distributed in the Bdellovibrio, 280 

Chlamydia, and Parabacteroides. Although these results align well with the current understanding 281 

of microvirus hosts, results from cherry suggest (Figure 2c, d) that the hosts of microviruses may 282 

be far more diverse than these three genera. 283 

Although Bdellovibrio bacteriovorus and Escherichia coli are the predominant hosts in the 284 
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NR-derived virus hosts, respectively. Cherry also predicted hosts such as Caulobacter vibrioides 285 

and Bacillus halmapalus, indicating numerous microvirus hosts that have not been previously 286 

reported. Among the DSV-derived virus hosts, Bdellovibrio bacteriovorus still dominated, 287 

followed by Caulobacter vibrioides and Candidatus Pelagibacter ubique, representing novel hosts. 288 

In addition, NR data revealed the presence of human and animal pathogens such as Helicobacter 289 

pylori and Enterobacter cancerogenus. The DSV data also identified potential hosts including 290 

Vibrio cholerae and Pseudomonas aeruginosa. This suggests that the host range of microviruses 291 

within the Microviridae may be extensive, and that there are likely more potential hosts yet to be 292 

discovered. 293 

From the perspective of sample types, the highest abundance of microviruses was observed in 294 

soil and sludge samples, corresponding to a higher diversity and quantity of their respective hosts 295 

(Figure 2e). Bdellovibrio bacteriovorus, as a typical host for microviruses, showed a higher 296 

proportion across various samples. Caulobacter vibrioides also exhibited high abundance in sludge, 297 

soil, and the slaughterhouse workshop (Figure 2e). While Escherichia coli, Gordonia terrae, and 298 

Pseudomonas aeruginosa were predicted only in soil samples, Vibrio cholerae was exclusively 299 

found in sludge samples. Other host bacteria were detected across different sample types. This 300 

indicates a close relationship between the detection of microviruses and the distribution of their 301 

host bacteria, displaying certain characteristics in various sample types. 302 
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 303 

Figure 2. The host types and quantity statistics of microviruses from poultry slaughterhouses and related groups. 304 

(a) hostG(37) results of DSV sequences. (b) hostG results of NR sequences. (c) cherry(38) results of DSV 305 

sequences. (d) cherry results of NR sequences. Score > 0.7. (e) Host types and quantity predicted by cherry for 306 

corresponding DSV sequences. AS (All soil and sludge of slaughterhouse); Soil (Soil of slaughterhouse); Sludge 307 

(Sludge of slaughterhouse); SS (Swab of slaughterhouse workshop); ST (Swab of poultry transport vehicle); SCD 308 

(Oral and cloacal swabs of chickens and ducks). 309 
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3.3 Genome Length and GC Content 310 

The genome sizes and GC content of viruses within the same family or genus are usually 311 

relatively consistent(45, 46). Based on the identification of 9 clusters in the previous sections, we 312 

further created boxplots illustrating their genome size and GC content (Figure 3). Both genome 313 

size and GC% exhibited high consistency within each of the 9 clusters, while significant 314 

differences were observed among different clusters. For instance, Bullavirinae showed distinct 315 

genome sizes and GC content compared to other groups. Individual scattered black dots outside 316 

the boxes in the figure represent sequences from the NR data. These results indicate that the 317 

genome characteristics of microviruses from different taxonomic groups exhibit good consistency 318 

and indirectly validate the reliability of our classification method based on the similarity clustering 319 

network graph.  320 

 321 

Figure 3. Genomic features of each cluster of microviruses from poultry slaughterhouses and related groups. (A) 322 

Distribution of microviruses genome sizes in each cluster from Result 3.1. (B) Distribution of microviruses 323 

genome %GC content in each cluster from Result 3.1. Red, blue, green, yellow, and black correspond to 324 

Family_Red, Family_Blue, Family_Green, Family_Yellow, and Bullavirinae, respectively. Turkey's test was used, 325 

where P < 0.05 indicates significant differences, and P > 0.05 indicates no significant differences. In the group 326 

where the maximum mean value is located, mark it with the letter "a." Then, compare this mean value with the 327 

mean values of other groups one by one. If there is no significant difference, label them with the same letter "a." 328 

Continue this process until encountering a mean value with a significant difference, then label it with the letter "b." 329 

Subsequently, use "b" as the standard for further comparisons. Repeat this process, labeling consecutive mean 330 
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values with the letters "b" until encountering a mean value with a significant difference, which is then labeled as 331 

the letter "c." This pattern continues for subsequent comparisons. The plot displays median values, 25th and 75th 332 

percentiles, 1.5 interquartile ranges, and outlier data points. 333 

3.4 Phylogenetic Analysis Based on Cap Sequences 334 

To better illustrate the diversity of DSV-related microviruses and their evolutionary origins, 335 

phylogenetic trees were constructed for each cluster based on the results in Figure 1. The 336 

sequences of DSV-related microviruses were classified and named according to the sample source 337 

and host type of the viruses (see Materials and Methods 2.10 for reference). 338 

C1 is the cluster with the highest number of members among the eight clusters and exhibits 339 

the most diverse range of host sources (Figure 4. Displayed are partial positions of the 340 

phylogenetic tree. Some phylogenetic branches have been collapsed, the complete phylogenetic 341 

tree is detailed in Figure S1). Notably, in addition to typical hosts such as Escherichia coli and 342 

Bdellovibrio bacteriovorus, this cluster has hosts that were previously unreported, such as 343 

Caulobacter vibrioides, Pseudomonas aeruginosa, and Helicobacter pylori. Caulobacter vibrioides 344 

is a Gram-negative oligotrophic bacterium widely distributed in freshwater lakes and streams, 345 

serving as an important model organism for studying cell cycle regulation, asymmetric cell 346 

division, and cell differentiation(47). Pseudomonas aeruginosa is a common multidrug-resistant 347 

pathogen, characterized by its capsule, Gram-negative nature, and aerobic or facultatively 348 

anaerobic growth, causing diseases in plants and animals, including humans(48). Helicobacter 349 

pylori is a Gram-negative, flagellated spiral bacterium, classified as a class I carcinogen, 350 

responsible for approximately 89% of gastric cancer cases and associated with 5.5% of cancer 351 

cases worldwide(49-51). In general, hosts within the same clustering branch are relatively 352 

homogeneous. For example, in Figure 4, the hosts in the purple-colored block branch are primarily 353 

Bdellovibrio bacteriovorus, while the hosts in the deep blue-colored block branch are mainly 354 

Caulobacter vibrioides. 355 

From the sample sources perspective, DSV viruses in this cluster mainly originate from soil 356 

(CD-SXG) and sludge (CD-SXD), with a few from swab samples taken in the slaughterhouse 357 

workshop environment (CD-SXS) (Supplementary Table S1). In comparison, the sources of NR 358 
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viruses are more diverse, including animal metagenomes, wastewater metagenomes, human 359 

metagenomes, and blackflies. As seen in the genomic structure diagram in Figure 4, members of 360 

C1 typically possess signature genes such as Major capsid protein or capsid protein(Cap), and 361 

Replication associated protein (Rep). Moreover, the genomes in this cluster often exhibit a 362 

sequential arrangement of Cap, Minor capsid protein (MinCP), Scaffold protein(SP), Rep, and 363 

DNA binding protein (DBP). However, a few viruses in this cluster have genome organization 364 

sequences that deviate from this pattern, such as DSV microvirus C1_4. Furthermore, 365 

Replication-associated protein was not predicted in DSV microvirus C1_1 and DSV microvirus 366 

C1_3. Coincidentally, these two sequences also lack host prediction results, likely suggesting the 367 

novelty of these viral genomes. Overall, sequences with closer phylogenetic relationships tend to 368 

exhibit more apparent consistency in host specificity and genomic structure. 369 

 370 
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Figure 4. Phylogenetic tree, hosts, and genomic structure of cluster_1 microviruses from poultry slaughterhouse 371 

and related sources. The maximum likelihood phylogenetic tree was constructed based on the Cap sequences of 372 

Microviruses using IQtree (version 2.1.4). ModelFinder was set to MFP, and 1000 ultrafast bootstrap replicates 373 

were performed, displaying bootstrap values > 70. The red branches represent DSV microvirus sequences, green 374 

branches represent ICTV sequences, and black branches represent NR sequences. The third column shows host 375 

annotations predicted by Cherry, and the fourth column displays partial genomic structure diagrams. 376 

 377 

 378 

C2 is a small viral cluster with a consistent host source, all being Bdellovibrio bacteriovorus, 379 

and a highly consistent genomic structure (Figure 5). The viruses in this cluster exhibit a 380 

sequential arrangement of Cap, MinCP, SP, DBP, and Rep, with Hypothetical protein (HYP) 381 

inserted on either side of DBP. Bdellovibrio microvirus C2_2 and Bdellovibrio microvirus C2_1 382 

are closely related to AZL82867.1 and QJB19506.1, respectively. The genome of AZL82867.1 is 383 

derived from Honey bees, while QJB19506.1 originates from wastewater metagenome. This 384 

observation suggests the widespread presence of microviruses and their Bdellovibrio 385 

bacteriovorus hosts in various environmental settings. Only three sequences in C3 were predicted 386 

to have hosts (Figure S2), indicating that this group lacks sufficient host information and is a 387 

relatively novel group compared to C1 and C2. The predicted hosts for these three sequences are 388 

Azospirillum brasilense (A. brasilense) and Enterobacter cancerogenus (E. cancerogenus). A. 389 

brasilense is a microaerophilic nitrogen-fixing bacterium widely present in the rhizosphere 390 

worldwide, promoting plant growth(52, 53). E. cancerogenus is a significant pathogen commonly 391 

found in human clinical specimens such as blood and cerebrospinal fluid. It is not sensitive to 392 

penicillin and cephalosporin(54), and exploring bacteriophage targeting such multidrug-resistant 393 

pathogens is meaningful for developing phage therapy methods. 394 
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 395 

Figure 5. Phylogenetic tree, hosts, and genomic structure of cluster_2 microviruses from poultry slaughterhouse 396 

and related sources. The maximum likelihood phylogenetic tree was constructed based on the Cap sequences of 397 

Microviruses using IQtree (version 2.1.4). ModelFinder was set to MFP, and 1000 ultrafast bootstrap replicates 398 

were performed, displaying bootstrap values > 70. The red branches represent DSV microvirus sequences, green 399 

branches represent ICTV sequences, and black branches represent NR sequences. The third column shows host 400 

annotations predicted by Cherry, and the fourth column displays partial genomic structure diagrams. 401 

 402 

Cluster_4 (C4) generally exhibits a relatively tidy genome structure (Figure S3). It is 403 

noteworthy that, despite being in the same cluster, there are significant differences in the host 404 

sources between DSV and NR viruses in C4. The majority of NR viruses are derived from 405 

wastewater metagenome samples, and their hosts are predominantly Bacillus halmapalus. Bacillus 406 

halmapalus, a halophilic bacterium, is a Gram-positive, alkaliphilic, alkalitolerant, facultative 407 

anaerobe. It is commonly isolated from soil, and its pathogenicity is not well understood(55). In 408 

DSV, only two viruses have Bacillus halmapalus as their host, and both are derived from sludge 409 

samples, aligning with the source of this bacterial species. Unlike NR, the primary hosts for DSV 410 

viruses are Candidatus Pelagibacter ubique. Except for Candidatus Pelagibacter microvirus C4_1, 411 

which originates from a swab of the transportation vehicle (CD-SXt), the rest are all from sludge 412 

samples (CD-SXD) (Table S1). Studies suggest that Candidatus Pelagibacter species may be 413 

among the most abundant bacteria globally and play a crucial role in the carbon cycle on Earth. 414 

Croceibacter atlanticus belongs to the phylum Bacteroidetes and is a species isolated from the 415 

Atlantic Ocean(56). Croceibacter microvirus C4_1 is the only virus in this cluster derived from 416 

swab of duck oral and cloaca (D-SXAO) (Table S1), and it is specifically associated with the host 417 
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Croceibacter atlanticus. This observation once again confirms the conclusion from Figure 2e that 418 

the detection of microviruses is closely related to the distribution of their host bacteria and the 419 

source of the samples.  420 

Cluster_5 (C5), as shown in Figure S4. Although most NR sequences include Cap and Rep, 421 

DSV sequences, such as Bdellovibrio microvirus C5_2/4/7, Escherichia microvirus C5_1/2/13, 422 

only predict 2 ORFs: capsid protein and MinCP. We have not observed a correlation between this 423 

situation and sample sources, indicating a potentially higher novelty and lower conservation of 424 

genes in DSV sequences. C6 (Figure S5), similar to C3 (Figure S2), is a smaller cluster without 425 

predicted hosts, indicating a need for further research on this cluster. The genomic structure of the 426 

C7 sequences is primarily arranged in the order of Cap, MinCP, SP, Rep, and DBP (Figure S6). 427 

Croceibacter microvirus C7_1 and Croceibacter microvirus C7_2, two viruses within the same 428 

major branch, share Croceibacter atlanticus as their host (previously introduced in C4). This 429 

branch is the only one with predicted host results, while other branches lack host predictions. 430 

Therefore, C7 is also a potentially interesting virus cluster worthy of in-depth research. C8 (Figure 431 

S7) has two distinct hosts, with Ralstonia solanacearum being the dominant host and 432 

Achromobacter xylosoxidans as the second host. Ralstonia solanacearum is considered one of the 433 

most important plant pathogens due to its lethal nature, persistence, wide host range, and extensive 434 

geographical distribution(57). Achromobacter xylosoxidans belongs to the genus Achromobacter 435 

and is commonly found in moist environments, causing diseases such as bacteremia, pneumonia, 436 

pharyngitis, and urinary tract infections(58, 59). 437 

 438 

3.5 Comparing DSV Viruses in Microvirus’s Virosphere 439 

To better understand the relationship between the identified microviruses in the poultry 440 

slaughterhouse and other reported microviruses in the Microviridae family, we expanded our focus 441 

beyond the 577 viral genomes highlighted in this study (Figure 1). To this end, an additional set of 442 

4077 microvirus Cap sequences (utilizing 4,007 sequences for this study) studied by Paul et al.(36) 443 

were incorporated into our analysis for a more comprehensive clustering analysis. In the study by 444 

Paul et al., microviruses were broadly classified into 19 families, corresponding to the 19 445 
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color-coded clusters in Figure 6. Upon comparing the clustering results between Figure 1 and 446 

Figure 6, there is a good overall agreement between the two figures. Specifically, the four families 447 

identified in Figure 1 are concentrated within the purple cluster in Figure 6, representing the 448 

largest cluster in Family 3, as defined by Paul et al. DSV viral sequences are predominantly 449 

distributed within Gokushovirinae A(36), Shukshmavirinae(60) and Group D(61) of Family 3. 450 

Additionally, three scattered sequences are found in Pichovirinae(14), Gokushovirinae B and 451 

Gokushovirinae C(36), indicating that microviruses in the poultry slaughterhouse environment 452 

primarily belong to these groups. This result suggests that, although microviruses in the poultry 453 

slaughterhouse environment exhibit high diversity and novelty, they may still be relatively 454 

underrepresented in the entire microvirus virosphere. Family 3, possibly due to its close 455 

association with the human environment, is the largest group within the Microviridae. The 456 

expansion of other groups awaits further supplementation with samples from different sources and 457 

microbial hosts. 458 

 459 

Figure 6.  The microviruses collection with diverse taxa. Similarity clustering network was constructed 460 

using microviruses Cap sequences identified from DSV data (n=98), along with related Cap sequences from NR 461 

(n=459), ICTV microviruses Cap sequences (n=20), and an additional set of Cap sequences reported by Paul et al. 462 

(n=4007) (red dots represent DSV sequences, black dots represent NR sequences, and dark green dots represent 463 

ICTV sequences; other dots are colored based on the families defined by Paul et al.(36) ). Clusters corresponding 464 
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to those in Figure 1 are enclosed by ellipses of four different colors. Labels such as Pichovirinae, Shukshmavirinae, 465 

Group D, Alpavirinae, Gokushovirinae A/B/C correspond to subfamilies reported by previous studies(14, 16, 60, 466 

61) and suggested classifications by Paul et al.(36) The similarity clustering network graph was created using 467 

Gephi (version 0.9.7) based on Diamond (version 0.9.14.115) alignment score, with gray edges indicating 468 

Diamond Blastp score >0. 469 

 470 

On the other hand, according to the clustering results in Figure 6, the 19 major families 471 

delineated by Paul et al. can be further subdivided into approximately 45 smaller clusters. 472 

Particularly, within family 3 (the purple clusters), our clustering method can split it into as many 473 

as 20 smaller clusters. Specifically, Group D, Shukshmavirinae, Pichovirinae, and Gokushovirinae 474 

C each form independent cluster, while Gokushovirinae A and Gokushovirinae B can be further 475 

divided into multiple clusters at the same hierarchical level. These clusters are at least equivalent 476 

in status to Group D, Shukshmavirinae, and Pichovirinae. Additionally, families of other colors 477 

can also be further subdivided into smaller clusters. For example, family 5 identified as 478 

Alpavirinae(16) can be distinctly clustered into 4 different clusters in this study. This suggests that 479 

these smaller clusters may represent novel subfamilies or families that require further 480 

identification. 481 

3.6 The Relationship between the Clusters of Microviruses and Their Host 482 

Sources 483 

According to the cherry(38) results, the points in Figure 1 and Figure 6 are colored coded on 484 

host types in Figure 7. As shown in Figure 7a, clusters C2, C4, C5, a portion of C7, C8, and the 485 

Bullavirinae cluster exhibit clear host specificity, while the host colors in cluster C1 are highly 486 

mixed. Specifically, Bdellovibrio bacteriovorus is mainly the host for C2 and C5, the hosts for C4 487 

are primarily Bacillus halmapalus and Candidatus Pelagibacter ubique, the main host for C8 is 488 

Ralstonia solanacearum, and only some sequences in C7 have host results, all of which are 489 

associated with Croceibacter atlanticus. Cluster C1 includes a significant number of Bdellovibrio 490 

bacteriovorus viruses, as well as viruses infecting Escherichia coli, Caulobacter vibrioides, 491 

Croceibacter atlanticus, and other bacteria. This may suggest that this group of viruses is more 492 
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prone to host jumping compared to other viruses group. 493 

Similar to the results in Figure 7a, the host sources of Family_Red members in Figure 7b 494 

remain diverse, primarily involving Bdellovibrio bacteriovorus, Caulobacter vibrioides, 495 

Croceibacter atlanticus, Escherichia coli. As the number of members increases, Family_Green 496 

shows an expanded range of host types, mainly associated with Caulobacter vibrioides, 497 

Bdellovibrio bacteriovorus, and Candidatus Pelagibacter ubique. Family_Blue continues to be 498 

dominated by Bacillus halmapalus and Candidatus Hamiltonella defensa. Although the number of 499 

Family_Yellow  members has increased significantly, a majority still lacks predicted hosts. Apart 500 

from the four main groups focused on in this study, the host types of most smaller groups are 501 

relatively singular, such as Bacillus halmapalus (family4), Escherichia coli (family5), Rhodobacter 502 

capsulatus (family7) (Figure 7b). These results suggest variations in host specificity among 503 

different viral groups. Moreover, the good correspondence between similarity clustering networks 504 

and host prediction results is evident. 505 

 506 

Figure 7. Host specificity of different clusters of Microviruses. (a) Similarity clustering network constructed 507 

using microviruses Cap sequences identified in DSV data (n=98), along with related Cap sequences from NR 508 

(n=459), and microviruses Cap sequences from ICTV (n=20), colored based on host types. (b) Based on the 509 

sequences in (a), an extended similarity clustering network was constructed by introducing Cap sequences reported 510 

by Paul et al. (n=4007), also colored according to host types. The similarity clustering network graph was created 511 

using Gephi (version 0.9.7) based on Diamond (version 0.9.14.115) alignment score, with gray edges indicating 512 

Diamond Blastp score >0. 513 
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 514 

4 Discussion 515 

Viruses are the most abundant life forms on earth. It is estimated that there are as many as 516 

10
31

 virus particles on earth(11, 12). However, The International Committee on Taxonomy of 517 

Viruses (ICTV) has officially recognized only around 12,000 known virus species 518 

(https://ictv.global/vmr, Version: VMR MSL38 v1). Viruses are often considered the "dark matter" 519 

of life sciences. Due to the challenges in cultivating many viruses, our understanding is limited to 520 

those that are easily cultivated and have significant impacts on humans or the economy. Advances 521 

in high-throughput sequencing and virome technologies have overcome the dependency on host 522 

cell cultures in traditional virology research, greatly enhancing the efficiency of discovering and 523 

identifying new viruses(62) . In recent years, virome technologies has been widely applied in 524 

various studies, including marine environments and research on vertebrates and invertebrates, 525 

leading to the identification of numerous novel viruses(63, 64) and significantly expanding our 526 

knowledge of the viral world. 527 

Microviridae is one of the most common families of single-stranded DNA (ssDNA) viruses. 528 

Compared to double-stranded DNA (dsDNA) phages, the genomes of Microviridae are smaller, 529 

typically exhibiting higher safety by being less prone to carry virulence and resistance genes(36). 530 

Moreover, they are widely distributed across various ecosystems(65, 66), representing a relatively 531 

accessible and exploitable source of DNA resources. As of now, the ICTV recognizes only two 532 

subfamilies within Microviridae, namely Bullavirinae and Gokushovirinae. However, this 533 

classification does not fully capture the extensive diversity of newly reported microviruses(36). In 534 

recent years, numerous new taxonomic groups within the Microviridae family have been proposed. 535 

For instance, Krupovic et al. introduced a novel Microviridae subfamily named Alpavirinae, 536 

which was identified as prophage(16). Additionally, several newly proposed subfamilies of 537 

Microviridae include Pichovirinae from the human gut(14), Sukshmavirinae from termites(60), 538 

Group D from dragonflies(61), and Aravirinae and Stokavirinae from sphagnum- dominated 539 

peatlands(39). Paul et al. comprehensively analyzed the genomes of microviruses using their 540 

classification method, providing insights into the diversity, distribution, and host range of this viral 541 
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group(36). The proposed new classifications are clearly represented in the clustering network 542 

graph of this study (Figure 6), indicating a good validation across different research efforts. 543 

As far as we know, this study represents a relatively comprehensive compilation of members 544 

of the Microviridae, providing an overview of the classification of Microviridae and holding 545 

significant importance for the identification, exploration, and expansion of Microviridae. However, 546 

due to the large number of potential new taxa, this study did not assign explicit taxonomic names 547 

to them, focusing instead on demonstrating relationships between clusters. We believe that as 548 

more members of Microviridae are discovered and identified, this family will continue to give rise 549 

to new taxa and may undergo redefinition. To address this situation, there is an urgent need for a 550 

universal and straightforward method for classification, such as utilizing numbers or letters to 551 

systematically name newly emerging taxa. 552 

The evolutionary trajectory of dsDNA phages is primarily influenced by horizontal gene 553 

exchange, driving the diversity and adaptive evolution of this phage class. However, for ssDNA 554 

phages, the evolutionary patterns may fundamentally differ(67-69). For instance, in microviruses, 555 

gene recombination is not widespread, and the presence of Cap may limit the insertion of foreign 556 

DNA sequences(70) , potentially restricting gene transfer at the horizontal level. Despite these 557 

factors, microviruses exhibit high mutation rates in their genomes(71), suggesting that they may 558 

employ different evolutionary strategies to enhance adaptability. This adaptability is evident in the 559 

diverse clusters and extensive host range discovered in this study, as well as the diversity in hosts 560 

and genome structures found even within the same phylogenetic branch. Additionally, both this 561 

study and others(14) have observed differences in the genome structures of microviruses from 562 

various sample sources or types. This reflects the complexity and diversity of their evolution, 563 

showcasing their ability to adapt to different environments. 564 

At present, the mainstream view suggests that the hosts of microviruses are primarily 565 

intracellular parasitic bacteria and Enterobacteria. For instance, the host of the Bullavirinae is 566 

Enterobacteria, and detailed studies have been conducted on representatives of this family, such as 567 

the phage ΦX174(69). Members of the the Gokushovirinae only infect Chlamydia, Bdellovibrio 568 

and Spiroplasma(13, 72). However, an increasing number of studies indicate that microviruses can 569 

infect a broader range of bacterial hosts, including Vibrio parahaemolyticus(73, 74) , 570 

Salmonella(75), Shigella flexneri(76) and other bacteria. To address the question of infecting hosts, 571 
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this study employed two new host prediction methods. The hostG utilizes shared protein clusters 572 

between viruses and prokaryotes to create a knowledge graph and trains a graph convolutional 573 

network for prediction(37). While it achieves high prediction accuracy, its results tend to be 574 

conservative and can only predict hosts at the genus level. Cherry is described as having the 575 

highest accuracy in identifying virus-prokaryote interactions, outperforming all existing methods 576 

at the species level, with an accuracy of 80%(38). The results from Cherry indicate that the hosts 577 

of the Microviridae exhibit extremely high diversity, including various pathogens such as 578 

Mycoplasma pulmonis, Helicobacter pylori, Vibrio cholerae, Clostridioides difficile, and 579 

Pseudomonas aeruginosa. Additionally, this study identified some plant-pathogenic bacteria, such 580 

as Ralstonia solanacearum (R. solanacearum) and Candidatus Liberibacter asiaticus (CLas). 581 

Bacterial wilt, caused by R. solanacearum, is economically significant as it can infect over 250 582 

plant species, including potatoes, tomatoes, and tobacco, causing substantial yield losses in 583 

tropical and subtropical regions(77, 78). CLas is the pathogen responsible for citrus 584 

Huanglongbing (HLB, also known as citrus greening disease)(79), a highly destructive disease 585 

threatening global citrus production. There has been limited research on Microviridae infecting 586 

plant-pathogenic bacteria, and the findings of this study suggest that Microviridae also holds 587 

potential for applications in the control of bacterial diseases in plants. 588 

5 Conclusion 589 

This study employed virome techniques to thoroughly explore potential members of 590 

Microviridae in a poultry slaughterhouse, successfully identifying and analyzing 98 novel and 591 

complete microvirus genomes. Based on the similarity of Cap proteins, it was discovered that 592 

these genomes represent at least six new subfamilies within Microviridae, distinct from 593 

Bullavirinae and Gokushovirinae, as well as three higher-level classification units. These new taxa 594 

exhibit obvious regularities in genome size, GC content, and genome structure, further 595 

highlighting the rationality of the classification method used in this study. Additionally, based on 596 

the 19 families classified by previous researchers for all microviruses, our approach divides 597 

microviruses into about 45 more detailed clusters, which may serve as a new standard for 598 

classifying Microviridae members. The current information on microviruses' hosts remains limited, 599 
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and this study significantly expands their host range. In addition to typical hosts such as 600 

intracellular parasitic bacteria and Enterobacteria, we identified over 20 potential new hosts, 601 

including important pathogens like Helicobacter pylori and Vibrio cholerae. Moreover, we 602 

revealed distinct host specific differences among different taxa. These new findings will contribute 603 

to a deeper understanding of the interactions between Microviridae and their hosts. 604 
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QKI28927.1

QXP07984.1
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AXL14652.1
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UDN67867.1

CD-SXD-WGA-1-k141 112834

AXL15244.1
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AXL14712.1

AXL14696.1

AJK28312.1

AXL14691.1

AXL14681.1

AXL15148.1

CD-SXD-SXG-WGA-allk141 38523

CD-SXG-WGA-1-k141 33057
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QCQ85101.1

AZL82974.1
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DAG75517.1
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DAW86913.1

ARQ16017.1
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QXP08221.1
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CD-SXD-SXG-WGA-allk141 328845

CD-SXS-WGA-1-k141 396956
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