

Submitted Manuscript: Confidential

1
2
3
4
5
6
7
8

9 **High ionic strength vector formulations enhance gene transfer to airway epithelia**

10

11 **Authors:** Ashley L. Cooney^{1,2*}, Laura Marquez Loza^{1,2}, Kenan Najdawi^{1,2}, Christian M. Brommel^{1,2}, Paul
12 B. McCray, Jr.^{1,2,3}, and Patrick L. Sinn^{1,2,3}

13

14 **Affiliations:**

15 ¹University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA.

16 ²University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA.

17 ³University of Iowa, Department of Microbiology and Immunology, Iowa City, IA 52242, USA.

18

19 *Corresponding author. Email: ashley-peterson@uiowa.edu

20

21 **One Sentence Summary:** Formulating adenoviral, AAV, and lentiviral vectors with hypertonic saline
22 remarkably enhances lung gene transfer. (114 characters, including spaces)

23

24

25

26

27

28

29

30 **ABSTRACT** A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient
31 transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently
32 administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight
33 junctions, but its ability to improve gene transfer has not been investigated. Here we asked if increasing the
34 concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV,
35 and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all
36 three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and
37 enhanced gene transfer in mouse and pig airways *in vivo*. The mechanism of transduction enhancement
38 involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a
39 simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.

40

41 INTRODUCTION

42 Cystic fibrosis (CF) is an autosomal recessive disease caused by pathogenic variants of the cystic fibrosis
43 transmembrane conductance regulator (*CFTR*) gene. *CFTR* protein conducts Cl⁻ and HCO₃⁻ anions at the
44 apical surface of epithelial cells. Decreased activity or loss of *CFTR* in the airways leads to a series of
45 complications including bacterial colonization, chronic inflammation, and mucus accumulation. Numerous
46 studies have established that *CFTR* complementation restores anion transport both *in vitro* and *in vivo*¹⁻³. The
47 advent of the small molecule therapy of elexacaftor, tezacaftor, and ivacaftor (ETI), trade name Trikafta,
48 demonstrated that restoring *CFTR* improves lung function and quality of life in people with CF. Although
49 ETI treatment benefits the majority of people with CF, there remains a pressing need to develop treatments
50 for all people with CF. Gene therapy by *CFTR* complementation can restore anion channel activity
51 regardless of the mutation. Despite numerous clinical trials (reviewed in⁴), no CF gene therapies have
52 advanced past Phase II trials due, in part, to low efficacy of *CFTR* gene transfer.

53

54 The conducting airways are challenging to transduce using topically applied gene therapy reagents due to an
55 enormous surface area and multiple host defense mechanisms to resist viral vector uptake⁴. Vehicle
56 formulations such as lysophosphatidylcholine (LPC)^{2, 5}, EGTA^{6, 7}, methylcellulose⁸, and perflurocarbon⁹
57 improve viral vector transduction and subsequent transgene expression in cultured cells and animal models;
58 however, none of these examples are currently FDA approved for pulmonary administration. The ideal
59 vector formulation that enhances gene transfer would be FDA approved and cost effective. Hypertonic saline
60 (HTS) is commonly aerosolized at 3-7% as a topical lung treatment for people with CF to improve mucus
61 clearance. HTS transiently disrupts tight junctions¹⁰ and exhibits multiple actions including: a mucolytic
62 agent (disrupting mucus gel), an expectorant (hydrolyzing airway surface liquid), a mucokinetic agent

63 (promoting cough-mediated clearance), and increasing ion flux of two thiols (glutathione and thiocyanate)
64 that protect against oxidative injury (reviewed in¹¹). Thus, HTS hydrates surface epithelia, breaks ionic
65 bonds, dislodges mucus, and enhances mucociliary clearance¹². Clinical benefits and safety track records of
66 this treatment are well established for people with CF.

67
68 Here we screened reagents approved for topical airway delivery. We were interested in reagents which
69 decreased transepithelial resistance to increase access to basolateral receptors and enhance gene transfer. We
70 formulated adenoviral (Ad) vectors, adeno-associated viral (AAV) vectors, or the lentiviral vector human
71 immunodeficiency virus (HIV) with 1-7% NaCl and applied the mixtures to the apical surface of primary
72 human airway epithelial cells (HAE). We found that increasing the NaCl tonicity of the vector formulation
73 correlated with enhanced gene transfer in a dose dependent fashion and functionally restored CFTR anion
74 transport *in vitro*. Focused entry studies with Ad suggest that vector transduction improves with increasing
75 ionic strength, remains receptor-mediated, and requires a low pH endosomal step. Finally, we asked if
76 vectors delivered in hypertonic saline enhanced gene transfer *ex vivo* and *in vivo*. Ad and AAV transduction
77 was significantly increased in pig explants *ex vivo*. When we delivered Ad with NaCl to both mouse (7%
78 NaCl) and pig airways (5% NaCl), we observed significantly enhanced gene transfer *in vivo*. Additionally,
79 we aerosolized GP64 pseudotyped HIV lentivirus formulated in 5% NaCl to pig airways and observed
80 widespread reporter gene expression greater than the isotonic saline control. Together, these findings indicate
81 that formulating viral vectors with hypertonic saline for gene addition or gene editing approaches may be a
82 simple means to improve transduction.

83

84 RESULTS

85 Not all vehicles that decrease transepithelial resistance enhance gene transfer

86 Disrupting the epithelial cell tight junctions allows Ad5-based viral vectors access to their basolaterally
87 localized coxsackie and adenovirus receptor (CXADR)¹³. Unless otherwise specified, these studies use the
88 Ad5 serotype. We screened several compounds for their ability to reduce the transepithelial electrical
89 resistance (TEER) of HAE and improve transduction of an Ad vector. First, reagents were applied to the
90 apical surface of HAE for 5 minutes and then TEER was measured using an ohmmeter. Consistent with
91 previous reports, lysophosphatidylcholine (LPC) (0.1%) and EGTA (250 mM) reduced TEER and increased
92 gene transfer^{2, 6}. The clinically approved reagents doxorubicin (5 μ M), NaCl (3.6%), and surfactant (Infasurf,
93 35 mg/ml) all decreased TEER (**Supplemental Fig. 1A**). In separate cultures, Ad-GFP (MOI=250) in 50 μ l
94 of DMEM combined 1:1 with the test reagents was applied to the apical surface for 2 hours. 5 days post-
95 treatment, cells were imaged by fluorescence microscopy. Doxorubicin, surfactant, and 0.9% NaCl (PBS)

96 did not enhance Ad gene transfer. Of note, the 3.6% NaCl formulation (mixed 1:1 from 7.2%) conferred
97 remarkable transduction (**Supplemental Fig. 1B**). Based on this initial observation, this concentration of
98 NaCl was selected for the many of the subsequently described Ad-based studies.

99

100 **Increasing saline tonicity enhances gene transfer in a dose and time dependent manner**

101 To determine if increasing saline tonicity further improves Ad transduction in HAE, we performed a dose-
102 response of 1-7% NaCl formulation (final concentration, **Table 1**) with Ad-GFP (MOI=250). We observed a
103 dose-dependent increase in transduction efficiency with increasing NaCl tonicity (**Fig. 1A, B**). Basal,
104 secretory, and ciliated cells were all transduced in a dose-dependent manner (**Fig. 1C, Supplemental Fig.**
105 **2A**). HAE permeability to dextran also increased in the presence of 4-7% NaCl (**Fig. 1D**), which correlated
106 with increasing GFP expression (**Fig. 1E**). The highest concentrations of NaCl (5-7%) reduced cell viability
107 as determined by flow cytometry (**Supplemental Fig. 2B**) and increased LDH release (**Supplemental Fig.**
108 **2C**). To visualize that cell surface integrity and ciliation remained intact, we performed scanning electron
109 microscopy (SEM) on HAE that were untreated or treated with NaCl (3.6%) for 2 hours and observed no
110 overt physical differences compared to the no NaCl control (**Supplemental Fig. 2D**). The therapeutic range
111 of NaCl delivered to patients by aerosolization is up to 7%¹⁴; however, based on the cell viability results, we
112 restricted the delivered concentration of NaCl to 3.5-4.5% for subsequent *in vitro* studies.

113

114 We next asked how the length of exposure to NaCl or Ad impacted transduction in cultured HAE. As
115 depicted schematically (**Supplemental Fig. 3A**), HAE were incubated with constant Ad-GFP for 120 min
116 and varied times for NaCl (3.6%) at 5, 15, 30, 60, or 120 min. In parallel, HAE were incubated with constant
117 NaCl (3.6%) and varied Ad-GFP incubation times. GFP expression was visualized 5 days post-transduction
118 and quantified by flow cytometry (**Supplemental Fig. 3B**). The %GFP+ cells increased incrementally with
119 increasing temporal exposure to either Ad-GFP or NaCl, with significant increase at 1 hour Ad-GFP with
120 constant NaCl (3.6%) exposure and maximal expression after a 2 hour co-treatment. Given these time-
121 dependent results, we established a standard 2 hour co-delivery protocol.

122

123 **NaCl-mediated Ad transduction restores anion transport**

124 We hypothesized that the NaCl conferred increase in transduction efficiency would enhance Ad-CFTR
125 complementation of anion transport in CF airway epithelia. We next co-delivered Ad-CFTR formulated with
126 NaCl (3.6%) to the apical surface of primary CF HAE for 2 hours. Five days post-delivery, bioelectric
127 properties were measured in Ussing chambers as previously reported¹⁵. Without NaCl (3.6%) formulation,

128 no change in Cl⁻ conductance was observed in response to the CFTR agonists forskolin and IBMX (F&I) or
129 CFTR inhibitor GlyH in cultured primary CF epithelia treated with Ad-CFTR (**Fig. 2C**). In contrast, cells
130 that received Ad-CFTR and NaCl (3.6%) showed wild-type levels of Cl⁻ secretion as measured by short
131 circuit current (**Fig. 2A, B**) and conductance (**Fig. 2C, D**). Parallel CF airway cultures were transduced as
132 indicated to determine transgene expression by microscopy (**Fig. 2E**) and measured by flow cytometry (**Fig.**
133 **2F**) or western blot (**Fig. 2F, inset**). These results suggest that NaCl formulation of Ad-CFTR improved gene
134 transfer and conferred wild-type levels of CFTR mediated anion transport in CF epithelial cells.

135

136 **Impact of osmolarity, pH, and ionic strength on NaCl enhanced gene transfer**

137 To investigate possible mechanisms for the enhanced transduction by NaCl formulations, we compared 3.6%
138 NaCl to the ionic osmolytes 3.6% NaC₆H₁₁O₇ (NaGluconate), 3.6% KCl, 0.9% NaCl, and 0.9% NaCl with
139 the non-ionic osmolyte mannitol of equivalent osmolarity to the NaCl (3.6%) formulation (**Table 2**). The
140 indicated regents were co-delivered with Ad-GFP apically to HAE for two hours. Microscopy and flow
141 cytometry quantification was performed five days later. NaCl (3.6%) conferred the greatest increase in
142 transduction efficiency (**Fig. 3A, B**), whereas equivalent tonicity (3.6%) or osmolarity (620 mM, 1,230
143 mOsmo/L) with ionic or non-ionic osmolytes did not significantly enhance gene transfer. We next
144 determined if the pH of NaCl formulation impacts transduction. Given that the unadjusted pH of 3.6% NaCl
145 in deionized water is ~6, we adjusted the pH of the NaCl (3.6%) solution to 5, 6, 7, 7.4, and 8. Following
146 Ad-GFP delivery, and flow cytometry quantification protocols in HAE, no significant differences in %GFP+
147 cells were observed across this pH range (**Fig. 3C**). To investigate another potential mechanism, we asked if
148 ionic strength was responsible for enhanced vector transduction. We compared KCl (lower ionic strength
149 than NaCl for a given percent solution), mannitol (uncharged sugar) and N-methyl-D-glucamine gluconate
150 (charged sugars) at 1-7% tonicities (**Table 1** and **Fig. 3D**). We observed dose-dependent increases with KCl
151 and N-methyl-D-glucamine gluconate whereas mannitol did not enhance gene transfer (**Fig. 3E-G**). The
152 formulation was not dependent on osmolarity or pH, but ionic strength increased the Ad transduction
153 efficiency.

154

155 **NaCl-mediated gene transfer remains receptor dependent and requires a low pH endosome**

156 Next, we investigated whether the NaCl enhanced Ad5 transduction is receptor dependent, using
157 CRISPR/Cas9 RNPs to knockout the Ad5 receptor CXADR in primary human airway basal cells¹⁶⁻¹⁸. The
158 electroporated primary cells were seeded on transwell membranes and cultured at an air-liquid interface until
159 well-differentiated (~21 days). CXADR^{KO} cells and donor-matched airway epithelia were transduced with

160 Ad5-GFP and Ad21-GFP in the presence or absence of NaCl (3.6%). Ad21 enters airway cells through a
161 CXADR-independent mechanism using CD46 as a cellular receptor¹⁹. Ad5 + NaCl did not transduce
162 CXADR^{KO} epithelia, whereas Ad21 + NaCl readily transduced CXADR^{KO} cells (**Fig. 4A, B**). Following
163 receptor engagement and internalization, Ad5 transduction requires escape from low pH endosomes.
164 Inhibiting endosomal acidification with chloroquine (CQ) or bafilomycin A1 (Baf A1) significantly
165 decreased the NaCl enhanced transduction (**Fig. 4C**). These results indicate NaCl enhanced transduction
166 requires receptor engagement and low pH endosomal release.

167

168 **NaCl formulations enhance lentiviral and AAV gene transfer**

169 We next asked if formulating lentiviral or adeno-associated viral (AAV) vectors with increasing
170 concentrations of NaCl enhanced transduction. An HIV-based viral vector pseudotyped with the baculoviral
171 GP64 envelope glycoprotein²⁰ was applied to the apical surface of HAE with 3.5, 4, or 4.5% NaCl. A dose-
172 dependent increase in GFP expression was observed in non-CF HAE (**Fig. 5A**) and we therefore selected
173 4.5% NaCl for AAV and lentiviral studies. Primary human CF cultures that received GP64 HIV-GFP
174 (MOI=50) also showed remarkable levels of transduction (**Fig. 5B**). Notably, in the presence of NaCl
175 (4.5%), GP64 HIV-CFTR restored the CFTR-dependent anion transport in primary CF HAE. Without NaCl
176 formulation, improvements in CFTR-dependent currents were not observed (**Fig. 5C, D**). Interestingly,
177 NaCl-mediated entry did not enhance transduction of all pseudotyped lentiviral vectors. A screen of
178 additional envelopes from Vesicular Stomatitis Virus (VSVG)²¹, Jaagsiekte Sheep Retrovirus (JSRV)²², and
179 Baboon Endogenous Virus (BaEV)²³ in the presence or absence of NaCl (4.5%) revealed that only GP64 and
180 VSVG showed enhanced transduction (**Supplemental Fig. 4**).

181

182 To test the effect of NaCl formulation on AAV-based vectors, we selected the AAV2.5T capsid based on
183 previously established airway tropism²⁴. Similar to Ad and lentiviral studies, we applied AAV-GFP
184 (MOI=100,000 vg/cell) to the apical surface of HAE for 2 hours with or without NaCl (4.5%). Doxorubicin
185 (1 μ M) was added to the basolateral media 24 hours prior to the 2 hour AAV application. A 2 hour
186 application was chosen to be consistent with the Ad and HIV protocols, however we and others have shown
187 that overnight applications of AAV are effective in the absence of NaCl²⁵. Microscopy, flow cytometry
188 quantification, and Ussing chamber assays were performed 2 weeks post-transduction. The epithelia treated
189 with NaCl (4.5%) formulated AAV-GFP achieved significantly higher GFP expression (**Fig. 5E**) and
190 increased anion channel activity in responses to F&I and GlyH (**Fig. 5F, G**). These results confirm that
191 transduction with NaCl formulation is enhanced across all three viral vector systems.

192

193 **Increased saline tonicity enhances gene transfer *ex vivo* and *in vivo***

194 We next asked if formulating vectors in NaCl (5%) would enhance gene transfer in an *ex vivo* model. Using
195 freshly excised newborn pig tracheal explants maintained on Surgifoam, we applied Ad-GFP or AAVH22-
196 GFP (a pig-tropic AAV capsid)²⁶ ± NaCl (5%) to the apical surface for 2 hours. One week later, tissues were
197 fixed and imaged by confocal microscopy. Fluorescence was quantified by transduction area per high power
198 field (**Supplemental Fig. 5A, B**). Transduction with both Ad and AAVH22 was markedly enhanced in *ex*
199 *vivo* tracheal explants when formulated with NaCl (5%).

200

201 Improving viral vector transduction *in vivo* has broad implications for advancing gene therapy for lung
202 diseases. We first asked if vectors formulated with NaCl (7%) improved gene transfer to mouse lungs. Ad-
203 luciferase was formulated with NaCl (7%) or NaCl (0.9%) and delivered intratracheally. 5 days post-
204 delivery, animals treated with vectors formulated in 7% NaCl demonstrated significantly increased luciferase
205 expression relative to saline control mice (**Fig. 6A**). We next asked whether NaCl formulation would
206 improve gene transfer in a large animal model. Newborn pigs received Ad-GFP via intratracheal delivery
207 with PBS or NaCl (5%). Five days after delivery, lungs were collected and divided into 20 regions for
208 systematic quantification as previously described² (**Fig. 6B**). GFP expression was scored using a
209 fluorescence dissecting microscope (0 = no expression, 1 = low expression, 2 = moderate expression, and 3 =
210 high expression). Formulation of Ad-GFP with NaCl (5%) resulted in a significantly increased the GFP+
211 score compared to PBS (**Fig. 6C-E**). **Fig. 6F** shows representative images of NaCl (5%) treated lung sections
212 at 2x and 10x, respectively. We also tested GP64 HIV-GFP formulated with NaCl (5%) or PBS in pigs. We
213 observed significantly enhanced transduction using NaCl formulation over PBS (**Fig. 6G-I**). In summary,
214 formulating either Ad or lentiviral vectors in 5-7% NaCl enhanced airway and alveolar gene transfer in mice
215 and pigs.

216

217 **DISCUSSION**

218 Here we show that NaCl (3.6-7%) enhanced the transduction efficiency of Ad, AAV, and lentiviral vectors.
219 This improved transduction restored functional CFTR anion transport in CF airway epithelia across all 3
220 vector platforms. For adenovirus vectors, the NaCl formulation enhanced transduction remained receptor
221 dependent, requiring a low pH endosomal escape. These *in vitro* findings of enhanced transduction also
222 translated to two animal models where formulating Ad or lentiviral vectors with 5% or 7% NaCl increased
223 transgene expression. Given that 3-7% NaCl is routinely aerosolized in people with CF²⁷, these findings have

224 important implications for improving viral vector transduction for CF and other lung diseases. Formulating
225 viral vectors with 3.6-7% NaCl could boost therapeutic efficacy, lower the therapeutic index, and overcome
226 previous expression threshold limitations for pulmonary gene therapy.

227

228 Formulations including LPC⁵, EGTA^{6, 7}, perfluorocarbon⁹, and methylcellulose⁸ have been instrumental in *in*
229 *vitro* and pre-clinical *in vivo* studies to improve gene transfer efficiency. Interestingly, the discovery that Ad-
230 based viral vectors use a basolateral receptor and gene transfer is boosted by tight junction disruption came
231 to light after the first CF gene therapy clinical trials⁴. Since none of the above mentioned formulations are
232 currently FDA approved for lung administration, each reagent would require a separate evaluation for co-
233 administration with a gene therapy vector. CF gene therapy clinical trials performed to date include vehicles
234 with a 150 mM NaCl concentration, which is equivalent to 0.9% isotonic NaCl (reviewed in⁴). Viral vectors
235 including AAV and lentiviral platforms are under investigation for CF gene therapy applications. 4D
236 Molecular Therapeutics began a Phase I AAV clinical trial in 2022 (clinicaltrials.gov) and Spirovant and
237 Carbon Biosciences are generating preclinical data to pursue clinical trials with AAV and bocavirus vectors.
238 Historically, achieving sufficient gene transfer for phenotypic correction has been challenging⁴. Efforts to
239 overcome these challenges include directed evolution for capsid²⁴ and envelope design²⁰, cassette
240 modification including promoter²⁸, cDNA²⁹, and polyadenylation signal, codon optimization²¹, and
241 immunomodulation (reviewed in⁴). Using a formulation generally recognized as safe for use in people with
242 CF such as NaCl (3-7%) could eliminate a hurdle for approval and advancement of a gene therapy reagent.

243

244 The effects of increased saline tonicity formulation on viral vector transduction have not been previously
245 investigated. To our knowledge, only one relevant report suggests that increased saline tonicity does not
246 enhance SARS-CoV-2 viral entry³⁰. In screening several lentiviral envelope pseudotypes (Supplemental Fig.
247 4) we observed that vectors with the GP64 and VSVG envelopes benefited from NaCl (4.5%) formulation,
248 while JSRV or BaEV did not. JSRV uses the GPI-linked apical receptor Hyal2³¹ while the BaEV uses
249 SLC1A4 and SLC1A5 as receptors. Although these receptors are present in HAE, transduction was not
250 enhanced with NaCl formulation. These results suggest that entry pathways may influence the effectiveness
251 of NaCl formulations. Indeed, different viruses have differing entry routes, including receptor-mediated
252 endocytosis or fusion at the plasma membrane. Further, it may be that some receptors, co-receptors, and
253 other binding or entry factors may be affected by the presence of high NaCl while others are not. We
254 speculate that virus like particles (VLPs)³² pseudotyped with envelopes such as VSVG or GP64 would also
255 be enhanced when formulated with hypertonic saline.

256

257 We originally suspected the mechanism for NaCl-mediated enhanced transduction was due to the osmotic
258 strength of the formulation. We know that the airway surface liquid volume is regulated in part by water
259 movement through the cell and that osmotically driven water permeability is regulated by aquaporins to
260 maintain airway epithelial cell homeostasis^{33, 34}. When a hypertonic solution is applied to epithelia, an
261 electrochemical gradient generates a driving force for fluid movement across the cell membrane, causing
262 hypertonic shock, followed by an adaptive regulatory increase in cell volume. The non-ionic osmolyte
263 mannitol did not enhance transduction. Instead, we learned that ionic strength is a key determinant in the
264 mechanism by which NaCl formulation enhance vector transduction. We speculate that NaCl formulation
265 may enhance transduction, in part, by increasing receptor access by disrupting tight junctions or by
266 enhancing endosomal escape. We observed that NaCl, KCl, and the charged sugar N-methyl-D-glucamine
267 enhanced transduction in a dose-dependent manner, although NaCl had the greatest impact in a given percent
268 solution. These findings suggest that Na⁺ regulation of the airway extracellular environment has the greatest
269 impact on viral transduction³⁵.

270
271 As mentioned in the Results, a concentration of 3.6% final concentration of NaCl was serendipitously chosen
272 for most of the studies using Ad because it was initially diluted 1:1 from a 7.2% pharmaceutical grade stock
273 solution. For *in vitro* studies in HAE, our dose response results suggest that 4.5% NaCl may be the best
274 compromise between efficacy and ultimate toxicity at doses of NaCl >6%. This was true for all vectors
275 tested. Of note, attempts to improve gene transfer of cultured cells on plastic using hypertonic saline resulted
276 in lifting of the cells. Our pilot studies *in vivo* suggested that vector formulations of 5-7% NaCl had the
277 greatest impact on gene transfer to the lungs of mice and pigs. This suggests that the dose limitation *in vitro*
278 may not apply to *in vivo* gene transfer and higher initial concentrations of NaCl may be necessary to
279 counteract the immediate dilution of the encountered airway surface liquid.

280
281 The goal of this study was to investigate whether FDA approved agents could improve lung gene therapy
282 efficacy. Hypertonic saline is a routinely used therapy for people with CF and other lung conditions and
283 could be rapidly adopted in vector formulations. We show evidence that formulating Ad, AAV or lentiviral
284 vectors with NaCl could advance gene therapy development for CF. Importantly, this finding has broad
285 implications for other genetic lung diseases such as alveolar type 2 deficiencies (ABCA3 Deficiency,
286 Surfactant Protein B Deficiency) or Primary Ciliary Dyskinesia.

287
288 **MATERIALS AND METHODS**

289 *Ethics statement*

290 Primary airway epithelia from human CF and non-CF donors were isolated from discarded tissue, autopsy, or
291 surgical specimens. Cells were provided by The University of Iowa *In Vitro* Models and Cell Culture Core
292 Repository. Information that could be used to identify a subject was not provided. All studies involving
293 human subjects received University of Iowa Institutional Review Board approval (Protocol #230167). Mice
294 and pig experimental protocols were reviewed and approved by the University of Iowa Institutional Animal
295 Care and Use Committee (IACUC), in accordance with the United States Department of Agriculture and
296 National Institutes of Health guidelines.

297

298 *Human airway epithelial cells*

299 The University of Iowa *In Vitro* Models and Cell Culture Core cultured and maintained HAE as previously
300 described³⁶. Briefly, following enzymatic disassociation of trachea and bronchus epithelia, the cells were
301 seeded onto collagen-coated, polycarbonate Transwell inserts (0.4 μ m pore size; surface area = 0.33 cm²;
302 Corning Costar, Cambridge, MA). HAE were submerged in Ultroser G (USG) medium for 24 hours (37°C
303 and 5% CO₂) at which point the apical media is removed to encourage polarization and differentiation at an
304 air-liquid interface. Transepithelial electrical resistance was measured using an Ohmmeter ($\Omega \cdot \mu\text{m}^2$).

305

306 *Viral vector production and formulation*

307 Vectors were produced by the University of Iowa Viral Vector Core
308 (<https://medicine.uiowa.edu/vectorcore/>). Ad5 and Ad21 CMV-eGFP CMV-mCherry, or F5Tg83-CFTR was
309 produce, purified, and titered as previously described³⁷. AAV2/2.5T, AAV2/H22 CMV-eGFP or F5Tg83-
310 CFTR Δ R was produced by triple transfection. Lentiviral HIV-CMV-eGFP or PGK-CFTR vectors
311 pseudotyped with GP64 were produced by a four-plasmid transfection method as previously described^{38, 39}
312 and titered using droplet digital PCR⁴⁰ and/or by flow cytometry. Similarly, VSVG, JSRV and BaEV
313 pseudotyped lentiviral vectors were made in-house by four-plasmid transfection and titered by flow
314 cytometry. Viral vectors were formulated with indicated NaCl concentrations (presented as final
315 concentrations). The following MOIs were used for each vector: Ad=250, AAV=100,000, and HIV=50. Ad
316 studies were performed by mixing pharmaceutical grade 7.2% NaCl with Ad-GFP (3.6% final). Additional
317 concentrations were made from a 10% NaCl solution of Sodium Chloride (Research Products International,
318 Mount Prospect, IL) in UltraPure Distilled Water (Invitrogen, Waltham, MA). Vectors were formulated with
319 NaCl in a final volume of 50 μ l and applied to the apical surface of HAE for 2 hours. AAV transduced
320 cultures were pre-treated with indicated concentraions of doxorubicin [1 μ M] for 24 hours prior to 2 hour
321 vector application. Other formulations tested include lysophosphatidylcholine (LPC) (9008-30-4, Millipore

322 Sigma, St. Louis, MO), Ethylene glycol-bis-2-aminoethylether)-N,N,N'-tetraacetic acid (EGTA)
323 (Research Products International, Mount Prospect, IL), and surfactant (Infasurf, pharmaceutical grade).

324
325 *Fluorescence microscopy and flow cytometry*

326 GFP images were acquired using a Keyence All-in-one Fluorescence Microscope BZ-X series (Osaka,
327 Japan). 0.33 cm² transwells were imaged at 2X magnification. GFP expression was quantified by flow
328 cytometry as previously reported^{39, 41}. Briefly, cells were stained with a fixable LIVE/DEAD stain (Thermo
329 Fisher Scientific, Waltham, MA), lifted in Accutase at 37°C for 30 minutes, and run through an Attune NxT
330 Flow Cytometer (Thermo Fisher Scientific, Waltham, MA). Cells were treated with the Foxp3/Transcription
331 Factor Staining Buffer Set (Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer's
332 recommendations and stained for 1 hour at 4°C with the following antibodies: NGFR (345110; 1:600,
333 BioLegend, San Diego, CA, USA), α-tubulin (NB100-69AF405, 1:300, Novus, Centennial, CO, USA) and
334 CD66c (12-0667-42, 1:600, Invitrogen, Waltham, MA). Expression was gated on live cells.

335

336 *LDH release assay*

337 LDH release was quantified according to the manufacturer's recommendations (LDH-Glo Cytotoxicity
338 Assay, Promega, Madison, WI). Briefly, basolateral media from each condition was collected in a 96 well
339 plate. The LDH detection reagents were mixed in a 1:1 ratio and applied to each well and incubated for 30
340 minutes. Luminescence was recorded using a SpectraMax i3x plate reader.

341

342 *Dextran permeability assay*

343 Tight junction permeability was assessed by passage of 3000-5000 average molecular weight Fluorescein
344 isothiocyanate-dextran (FD4, Sigma-Aldrich, St. Louis, MO) from the apical to basolateral side of well-
345 differentiated human airway epithelia. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) (Sigma-Aldrich,
346 St. Louis, MO) serves as a positive control for membrane permeabilization and was pre-treated (50 μM)
347 overnight prior to addition of dextran. 250 mM EGTA pre-treatment for 2 hours was used for a positive
348 experimental tight junction disruption control. Cells were left untreated or pre-treated with NaCl ranging
349 from 1-7% for 2 hours. At the time of the assay, pre-treatments were removed and fresh basolateral media
350 was added. 100 μl of 1 mg/ml dextran was applied apically for 30 minutes at 37°C. Basolateral media was
351 assessed for fluorescent units using a SpectraMax i3x plate reader.

352

353 *SEM*

354 Scanning electron microscopy (SEM) samples were processed by the Johns Hopkins Institute for Biomedical
355 Sciences Microscope Facility as a fee for service (<https://microscopy.jhmi.edu/Services/EMCostStruct.html>).

356

357 *Electrophysiology*

358 Short circuit current (I_{sc}) and conductance (G_{sc}) was measured as previously described³⁹. Briefly, cells were
359 pre-stimulated with forskolin and IBMX (F&I) overnight and their bioelectric properties were quantified by
360 Ussing chamber analysis. Assay protocol is as follows: amiloride, 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic
361 acid (DIDS), F&I, and GlyH-101 (GlyH). Results are reported as change in short circuit current (ΔI_{sc}) and
362 conductance (ΔG_{sc}) in response to F&I or GlyH.

363

364 *Western blot*

365 Protein from human airway epithelia transduced with Ad-CFTR alone or Ad-CFTR+NaCl (3.6%) was
366 harvested using RIPA buffer. 20 μ g of each sample was loaded on a Criterion Tris-Glycine 4-20% gel and
367 run at 110V for 1 hour and transferred overnight onto a PVDF membrane at 110 μ A at 4°C. After membrane
368 blocking, each membrane was probed for using the following primary antibodies: mouse anti-CFTR 596
369 (1:1000) (UNC) or CAR anti-rabbit (CXADR) (1:100) (PA5-31175, Invitrogen, Waltham, MA) was applied
370 for 2 hours. Following TBST washes, the LiCor secondary antibody was used at 1:10,000 for 30 minutes.
371 The membrane was imaged using an Odyssey imager.

372

373 *Sugar tonicity and ionic vs. non-ionic osmolytes*

374 KCl, mannitol, and N-methyl-D-glucamine (NMDG) gluconate were formulated 1-7% and co-delivered with
375 Ad-GFP (MOI=250) for 2 hours apically. Molarities and osmolarities are presented in Table 1. Sodium
376 chloride (NaCl), mannitol, sodium gluconate, and potassium chloride (KCl) were made with equal
377 percentages (3.6%) or equal molarity (1,23 mOsmol/L) to NaCl as shown in Table 2. Each solution was
378 mixed with Ad-GFP (MOI=250) and applied apically to airway epithelia for 2 hours. GFP expression was
379 quantified by flow cytometry 5 days post-transduction.

380

381 *CXADR KO*

382 CRISPR/Cas9 was used to knockout the coxsackie and adenovirus receptor CXADR by nucleofection
383 (Lonza, Basel Switzerland). Well-differentiated human airway epithelia were lifted in TrypLE and
384 electroporated with ribonucleoproteins (RNP). CXADR Exon 4 was targeted with the following guide
385 RNAs: gRNA 1: ACGTAACATCTCGCACCTGAAGG and gRNA 2:
386 AGTACCTGCTAACCATGAAGTGG¹⁷. Alt-R S.p. HiFi Cas9 nuclease (1081058, IDT, Coralville, IA) was
387 mixed with crRNA and trcrRNA duplex to form the RNP. RNP and cells were mixed with the nucleofector
388 solution and electroporated using program U-024 and seeded in a 6 well plate in Pneumacult ExPlus media.
389 2 days later, cells were lifted and reseeded on a Corning 3413 collagen coated membranes. Cells were

390 maintained in Pneumacult ALI-M media for 3 weeks to differentiate. Ad5-GFP (CXADR-dependent) and
391 Ad21-GFP (CXADR-independent) were formulated with DMEM or NaCl (3.6%) and applied to the apical
392 surface of airway epithelia for 2 hours. GFP expression was quantified 5 days post-transduction by flow
393 cytometry.

394

395 *Inhibitors of endosomal acidification*

396 Endosomal acidification inhibitors choloroquine (CQ) (200 μ M) (C6628, Millipore Sigma, St. Louis, MO)
397 and baflomycin A1 (Baf A1) (1 μ M) (19148, Millipore Sigma, St. Louis, MO) were used to pre-treat airway
398 epithelia for 2 hours prior to Ad-GFP transduction in the presence or absence of NaCl (3.6%). GFP was
399 quantified by flow cytometry 5 days post-transduction.

400

401 *Pig explants transduction*

402 0.25 cm² tracheal explants from newborn pigs were cultured on Surgifoam (1972, Ethicon, Raritan, NJ) for
403 3-5 days prior to transduction. Ad5-mcherry (1x10⁹ TU), AAVH22-GFP (2x10¹⁰ vg) were applied with or
404 without NaCl (5%) to the apical surface of the trachea by inverting the trachea onto a tissue culture dish
405 containing the viral solution for 2 hours then returned to an upright position on Surgifoam. 5 days post-
406 transduction, tracheal explants were mounted on a microscope slide and imaged for fluorescent expression
407 using confocal microscopy. Expression was quantified using Image J (FIJI) by measuring fluorescence
408 intensity per high power field.

409

410 *Adenoviral transduction of mouse airways*

411 6-8 week old Balb/c mice were sedated with ketamine/xylazine (87.5 + 2.5 mg/kg). Ad-CMV-firefly
412 luciferase was delivered intratracheally with 1x10⁹ TU formulated with NaCl (0.9% or 7% final). 5 days later
413 mice were given intraperitoneal D-luciferin (50227, Millipore Sigma, St. Louis, MO) imaged for
414 luminescence expression using the Xenogen IVIS-200.

415

416 *Viral gene transfer in pig airways*

417 Newborn pigs were sedated using isoflurane and viral vector formulated with NaCl (0.9% or 5% final) and
418 aerosolized intratracheally using a MADgic Laryngo-Tracheal Mucosal Atomization Device (Teleflex,
419 Morrisville, NC). Doses for each vector for each pig were as follows: 2.8x10¹⁰ infectious genomic units
420 (IGU) of helper-dependent Ad-CMV-GFP and 7x10⁸ TU of GP64 HIV-CMV-GFP. 1 week later, pigs were
421 humanely euthanized and lungs were analyzed for GFP expression. Lungs were systematically divided and
422 fixed in 4% paraformaldehyde, subjected to a sucrose gradient, and embedded in OCT for cryosectioning.

423 Sectioned lung slides were mounted using DAPI and imaged using a Keyence All-in-one Fluorescence
424 Microscope BZ-X series (Osaka, Japan).

425

426 *Statistics*

427 Student's two-tailed t-test, one-way analysis of variance (ANOVA) with Tukey's multiple comparison test,
428 or two-way ANOVA with Dunnett's multiple comparison test were used to analyze differences in mean
429 values between groups. Results are expressed as mean \pm SEM. P values ≤ 0.05 were considered significant.
430 R² values in Fig. 1E represent exponential growth of nonlinear regression.

431

<i>Tonicity</i>	<i>Isotonic</i>	<i>Hypertonic</i>						
	DMEM							
% NaCl	0.64%	1%	2%	3%	4%	5%	6%	7%
Molarity	110 mM	170 mM	340 mM	510 mM	680 mM	860 mM	1.03 mM	1.2 M
Osmolarity	219 mOsmol/L	342 mOsmol/L	684 mOsmol/L	1,027 mOsmol/L	1,369 mOsmol/L	1,711 mOsmol/L	2,053 mOsmol/L	2,693 mOsmol/L
% KCl	0.4%	1%	2%	3%	4%	5%	6%	7%
Molarity	50 mM	130 mM	270 mM	400 mM	540 mM	670 mM	800 mM	940 mM
Osmolarity	107 mOsmol/L	268 mOsmol/L	537 mOsmol/L	805 mOsmol/L	1,073 mOsmol/L	1,341 mOsmol/L	1,610 mOsmol/L	1,878 mOsmol/L
% mannitol		1%	2%	3%	4%	5%	6%	7%
Molarity		55 mM	110 mM	170 mM	220 mM	270 mM	330 mM	380 mM
Osmolarity		55 mOsmol/L	110 mOsmol/L	170 mOsmol/L	220 mOsmol/L	270 mOsmol/L	330 mOsmol/L	380 mOsmol/L
% NMDG gluconate		1%	2%	3%	4%	5%	6%	7%

Molarity	50 mM	100 mM	150 mM	200 mM	260 mM	310 mM	360 mM
Osmolarity	342 mOsmol/L	684 mOsmol/L	1,027 mOsmol/L	1,369 mOsmol/L	1,711 mOsmol/L	2,053 mOsmol/L	3,693 mOsmol/L

432 **Table 1: Molarity and osmolarity of NaCl, KCl, mannitol, and NMDG up to 7%.** Tonicity, molarity,
433 and osmolarity of DMEM and 1-7% NaCl, KCl, mannitol, and N-methyl-D-glucamine gluconate (NMDG).
434 Hypertonic indicated a NaCl solution >0.9% DMEM has additional inorganic salts (i.e., CaCl₂, MgSO₄, KCl,
435 and NaHCO₃) and is considered isotonic.

	3.6% NaCl	0.9% NaCl	0.9% NaCl +mannitol	3.6% NaGluconate	3.6% NaCl
Molecular weight	58.44 g/mol	58.44 g/mol	Mannitol: 182.172 g/mol	590 g/mol	74.55 g/ml
Tonicity (%)	3.6%	0.9%	11.2%	3.6%	3.6%
Molarity	620 mM	150 mM	620 mM	61 mM	480 mM
Osmolarity	1,230 mOsmol/L	310 mOsmol/L	1,230 mOsmol/L	120 mOsmol/L	970 mOsmol/L

437 **Table 2. Molarity and osmolarity of ionic and non-ionic osmolytes.** Molecular weight, tonicity, molarity
438 and osmolarity for NaCl (0.9% and 3.6%), mannitol, NaGluconate, and KCl are presented.

439 REFERENCES

440

441

442 1. Cooney, A.L. et al. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. *JCI Insight* **1** (2016).

443 2. Cooney, A.L. et al. Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following
444 aerosol delivery of piggyBac/adenovirus. *Nucleic Acids Res* **46**, 9591-9600 (2018).

445 3. Cooney, A.L. et al. A Novel AAV-mediated Gene Delivery System Corrects CFTR Function in Pigs. *Am J Respir Cell
446 Mol Biol* **61**, 747-754 (2019).

447 4. Cooney, A.L., McCray, P.B., Jr. & Sinn, P.L. Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. *Genes
448 (Basel)* **9** (2018).

449 5. Cmielewski, P., Anson, D.S. & Parsons, D.W. Lysophosphatidylcholine as an adjuvant for lentiviral vector mediated gene
450 transfer to airway epithelium: effect of acyl chain length. *Respir Res* **11**, 84 (2010).

451 6. Wang, G. et al. Increasing epithelial junction permeability enhances gene transfer to airway epithelia In vivo. *Am J Respir
452 Cell Mol Biol* **22**, 129-138 (2000).

453 7. Wang, G. et al. Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. *J*
454 *Virol* **72**, 9818-9826 (1998).

455 8. Sinn, P.L., Shah, A.J., Donovan, M.D. & McCray, P.B., Jr. Viscoelastic gel formulations enhance airway epithelial gene
456 transfer with viral vectors. *Am J Respir Cell Mol Biol* **32**, 404-410 (2005).

457 9. Kazzaz, J.A. et al. Perfluorochemical liquid-adenovirus suspensions enhance gene delivery to the distal lung. *Pulm Med*
458 **2011**, 918036 (2011).

459 10. Hogman, M., Mork, A.C. & Roomans, G.M. Hypertonic saline increases tight junction permeability in airway epithelium.
460 *Eur Respir J* **20**, 1444-1448 (2002).

461 11. Elkins, M.R. & Bye, P.T. Mechanisms and applications of hypertonic saline. *J R Soc Med* **104 Suppl 1**, S2-5 (2011).

462 12. Tarran, R., Donaldson, S. & Boucher, R.C. Rationale for hypertonic saline therapy for cystic fibrosis lung disease. *Semin*
463 *Respir Crit Care Med* **28**, 295-302 (2007).

464 13. Excoffon, K.J. et al. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human
465 airway epithelia. *PLoS One* **5**, e9909 (2010).

466 14. Terlizzi, V., Masi, E., Francalanci, M., Taccetti, G. & Innocenti, D. Hypertonic saline in people with cystic fibrosis:
467 review of comparative studies and clinical practice. *Ital J Pediatr* **47**, 168 (2021).

468 15. Cooney, A.L., Singh, B.K. & Sinn, P.L. Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon in
469 vivo delivery. *Mol Ther* **23**, 667-674 (2015).

470 16. Lei, L. et al. CFTR-rich ionocytes mediate chloride absorption across airway epithelia. *J Clin Invest* **133** (2023).

471 17. Ortiz-Zapater, E. et al. Epithelial coxsackievirus adenovirus receptor promotes house dust mite-induced lung
472 inflammation. *Nat Commun* **13**, 6407 (2022).

473 18. Krishnamurthy, S. et al. Functional correction of CFTR mutations in human airway epithelial cells using adenine base
474 editors. *Nucleic Acids Res* **49**, 10558-10572 (2021).

475 19. Sirena, D. et al. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. *J Virol* **78**, 4454-
476 4462 (2004).

477 20. Sinn, P.L. et al. Novel GP64 envelope variants for improved delivery to human airway epithelial cells. *Gene Ther* **24**,
478 674-679 (2017).

479 21. Marquez Loza, L.I. et al. Increased CFTR expression and function from an optimized lentiviral vector for cystic fibrosis
480 gene therapy. *Mol Ther Methods Clin Dev* **21**, 94-106 (2021).

481 22. Sinn, P.L. et al. Gene transfer to respiratory epithelia with lentivirus pseudotyped with Jaagsiekte sheep retrovirus
482 envelope glycoprotein. *Hum Gene Ther* **16**, 479-488 (2005).

483 23. Girard-Gagnepain, A. et al. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-
484 cytokine-stimulated and resting HSCs. *Blood* **124**, 1221-1231 (2014).

485 24. Excoffon, K.J. et al. Directed evolution of adeno-associated virus to an infectious respiratory virus. *Proc Natl Acad Sci U*
486 *SA* **106**, 3865-3870 (2009).

487 25. Zhang, L.N. et al. Dual therapeutic utility of proteasome modulating agents for pharmacogen therapy of the cystic
488 fibrosis airway. *Mol Ther* **10**, 990-1002 (2004).

489 26. Steines, B. et al. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. *JCI Insight* **1**, e88728
490 (2016).

491 27. Elkins, M.R. et al. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. *N Engl J Med*
492 **354**, 229-240 (2006).

493 28. Yan, Z. et al. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a
494 Synthetic Promoter and Tandem Array Enhancers. *Hum Gene Ther* **26**, 334-346 (2015).

495 29. Ostedgaard, L.S. et al. Cystic fibrosis transmembrane conductance regulator with a shortened R domain rescues the
496 intestinal phenotype of CFTR-/- mice. *Proc Natl Acad Sci U S A* **108**, 2921-2926 (2011).

497 30. Machado, R.R.G. et al. Inhibition of Severe Acute Respiratory Syndrome Coronavirus 2 Replication by Hypertonic Saline
498 Solution in Lung and Kidney Epithelial Cells. *ACS Pharmacol Transl Sci* **4**, 1514-1527 (2021).

499 31. Rai, S.K., DeMartini, J.C. & Miller, A.D. Retrovirus vectors bearing jaagsiekte sheep retrovirus Env transduce human
500 cells by using a new receptor localized to chromosome 3p21.3. *J Virol* **74**, 4698-4704 (2000).

501 32. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. *Cell* **185**, 250-265
502 e216 (2022).

503 33. Kreda, S.M., Gynn, M.C., Fenstermacher, D.A., Boucher, R.C. & Gabriel, S.E. Expression and localization of epithelial
504 aquaporins in the adult human lung. *Am J Respir Cell Mol Biol* **24**, 224-234 (2001).

505 34. Verkman, A.S., Matthay, M.A. & Song, Y. Aquaporin water channels and lung physiology. *Am J Physiol Lung Cell Mol*
506 *Physiol* **278**, L867-879 (2000).

507 35. Bartoszewski, R., Matalon, S. & Collawn, J.F. Ion channels of the lung and their role in disease pathogenesis. *Am J*
508 *Physiol Lung Cell Mol Physiol* **313**, L859-L872 (2017).

509 36. Karp, P.H. et al. An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures.
510 *Methods Mol Biol* **188**, 115-137 (2002).

511 37. Anderson, R.D., Haskell, R.E., Xia, H., Roessler, B.J. & Davidson, B.L. A simple method for the rapid generation of
512 recombinant adenovirus vectors. *Gene Ther* **7**, 1034-1038 (2000).

513 38. Sinn, P.L., Coffin, J.E., Ayithan, N., Holt, K.H. & Maury, W. Lentiviral Vectors Pseudotyped with Filoviral
514 Glycoproteins. *Methods Mol Biol* **1628**, 65-78 (2017).

515 39. Cooney, A.L., Thurman, A.L., McCray, P.B., Jr., Pezzullo, A.A. & Sinn, P.L. Lentiviral vectors transduce lung stem cells
516 without disrupting plasticity. *Mol Ther Nucleic Acids* **25**, 293-301 (2021).

517 40. Wang, Y., Bergelson, S. & Feschenko, M. Determination of Lentiviral Infectious Titer by a Novel Droplet Digital PCR
518 Method. *Hum Gene Ther Methods* **29**, 96-103 (2018).

519 41. Cooney, A.L. et al. Reciprocal mutations of lung-tropic AAV capsids lead to improved transduction properties. *Front*
520 *Genome Ed* **5**, 1271813 (2023).

521

522 **Acknowledgments:** We thank Ian Thornell for the insightful conversations which helped us identify ionic
523 strength as the mechanism for NaCl-mediated vector transduction. We thank Amber Vu for her work
524 on lentiviral envelopes and Soumba Traore for guidance on CXADR knockout of airway epithelia.
525 We thank Linda Powers, Brie Hilken, and Nick Gansemer for orchestrating the pig experiments and
526 delivering the viral vector. We thank Ian Thornell, Lynda Ostedgaard, Cami Hippee, Lorellin
527 Durnell, and Stephanie Clark for their critical review of this manuscript.

528 **Funding:**

529 National Institutes of Health grant R01HL133089 (PLS)
530 National Institutes of Health grant P01HL152960 (PBM)

531 National Institutes of Health grant R01HL171035 (PLS, PBM)
532 National Institutes of Health grant P01HL51670 (PBM)
533 Cystic Fibrosis Foundation grant SINN22G0 (PLS)
534 Cystic Fibrosis Foundation grant SINN23G0 (PLS)
535 Cystic Fibrosis Foundation grant STOLTZ19 (PLS)
536 Emily's Entourage grant (PLS)
537 The University of Iowa Center for Gene Therapy, National Institutes of Health grant P30DK54759
538 (PLS)
539 Roy J. Carver Chair in Pulmonary Research (PBM)
540 American Society of Gene and Cell Therapy Career Development Award (ALC)

541 **Author contributions:**

542 Conceptualization: ALC, PBM, PLS
543 Methodology: ALC, LML, KN, CMB
544 Investigation: ALC
545 Visualization: ALC, PBM, PLS
546 Funding acquisition: PBM, PLS
547 Project administration: ALC
548 Supervision: PBM, PLS
549 Writing – original draft: ALC
550 Writing – review & editing: ALC, PBM, PLS

551 **Competing interests:** PBM is on the SAB and performs sponsored research for Spirovant Science, Inc.

552 **Figures**

553 **Fig. 1. Increasing saline tonicity enhances apical Ad gene transfer in airway epithelia. (A)** Ad-CMV-
554 eGFP (MOI=250) was co-delivered to primary human airway epithelial cultures with DMEM or
555 NaCl ranging from 1-7% (final concentration) and imaged 5 days post-transduction. 0.33 cm²
556 transwells were imaged at 2X. **(B)** Percentage of GFP+ cells in each condition quantified by flow
557 cytometry. **(C)** Percentages of GFP+ cells by cell type from 1-7% NaCl. **(D)** Tight junction
558 permeability was measured by the passage of dextran from the apical to basolateral media. Airway
559 epithelial cells were left untreated or treated with NaCl (1-7%) for 2 hours. Following the treatment,
560 apical dextran was applied and basolateral media was collected 30 minutes later and measured for
561 fluorescent units were measured using a plate reader. **(E)** Correlative %GFP ($R^2=0.75$). from Fig. 1B
562 and Dextran Permeability ($R^2=0.86$) from Fig. 1D were plotted together. N=3, *p<0.05, **p<0.005,
563 ***p<0.0005, ****p<0.00005. Statistical differences were determined by one-way ANOVA.

564 **Fig. 2. Apically applied Ad-CFTR + 3.6% NaCl restores anion transport defect in CF airway epithelia.**

565 (A, B) Short circuit current measurements of CF airway epithelia alone or treated with Ad-CFTR or
566 Ad-CFTR + 3.6% NaCl (MOI=250) compared to non-CF. Responses to Forskolin and IBMX (F&I)
567 and GlyH-101 (GlyH) are reported. (C, D) Short circuit conductance in response to F&I and GlyH
568 N=5. (E) Representative images of parallel CF cultures transduced with Ad-GFP (MOI=250) and (F)
569 quantified by flow cytometry (N=3). Inset: representative western blot of CF HAE untreated or
570 transduced with Ad-CFTR or Ad-CFTR + 3.6% NaCl. Western blot was probed for CFTR (green)
571 and Vinculin (red) (loading control). *p<0.05, **p<0.005, ***p<0.0005. Statistical differences were
572 determined by Student's t-test or one-way ANOVA.

573 **Fig. 3. Entry is dependent on ionic strength but not osmolarity, osmolytes, or pH. (A)** Isotonic NaCl

574 (0.9%), Isotonic NaCl + the non-ionic osmolyte mannitol with equivalent osmolarity (620 mM, 1,230
575 mOsmol/L) to 3.6% NaCl, NaGluconate (3.6%), and KCl (3.6%) were co-delivered apically to HAE
576 with Ad-GFP (MOI=250) for 2 hours. (B) 5 days post-transduction, cells were imaged and GFP
577 expression was quantified by flow cytometry. (C) Ad-GFP was co-delivered with NaCl (3.6%) at pH
578 5, 6, 7, 7.4 and 8 for 2 hours. 5 day post-transduction GFP was quantified by flow cytometry. (D)
579 KCl, mannitol, or N-methyl-D-glucamine (NMDG) gluconate 1-7% was formulated with Ad-GFP
580 (MOI=250) and applied to the apical surface of HAE for 2 hours. Cultures were imaged 5 days post-
581 transduction and GFP expression was quantified by flow cytometry for (E) KCl, (F) mannitol, or (G)
582 NMDG gluconate. N=3, *p<0.05, ****p<0.00005. Statistical differences were determined by one-
583 way ANOVA.

584 **Fig. 4. NaCl-mediated transduction requires receptor and low pH entry step.** Ad5 utilizes CXADR for

585 entry and Ad21 utilizes CD46. (A) CRISPR/Cas9 with gRNA targeted to CXADR was electroporated
586 into HAE and allowed to re-differentiate at air liquid interface for 3 weeks. In parallel with non-
587 electroporated cells from the same donor, Ad5-GFP and Ad21-GFP were applied apically to HAE
588 with or without NaCl for 2 hours. Cultures were imaged 5 days post-transduction and representative
589 images are shown. (B) GFP was quantified by flow cytometry. Inset: Western blot for CXADR in
590 parallel on CXADR KO or scrambled airway epithelial cultures. (C) HAE were pre-treated with
591 endosomal acidification inhibitors chloroquine (CQ) (200 μ M) or bafilomycin A1 (1 μ M) for 2 hours.
592 Next, Ad5-GFP (MOI=250) was delivered with or without NaCl (3.6%) for 2 hours. GFP expression
593 was quantified by flow 5 days post-transduction. N=3, *p<0.05, **p<0.005, ***p<0.00005.
594 Statistical differences were determined by one-way ANOVA.

595 **Fig. 5. Increasing saline tonicity enhances GP64 pseudotyped lentiviral and AAV transduction. (A)**

596 GP64 pseudotyped HIV-CMV-eGFP (MOI=50) was co-delivered to airway epithelia with DMEM,

597 3.5%, 4%, or 4.5% NaCl for 2 hours and then removed. 1 week post-transduction GFP expression
598 was quantified by flow cytometry. **(B)** Parallel CF cultures were transduced with GP64 HIV-CMV-
599 eGFP. GFP expression was visualized by fluorescence microscopy and quantified by flow cytometry
600 5 days later. **(C, D)** As described in Figure 2, CF airway epithelia were transduced with GP64-HIV-
601 CFTR (MOI=50) formulated with DMEM or 4.5% NaCl for 2 hours and incubated for 1 week. Short
602 circuit current of F&I and GlyH in untreated or treated CF cells compared to non-CF. **(E)** AAV with
603 the 2.5T capsid expressing CMV-eGFP was co-delivered (MOI=100,000) with DMEM or 4.5% NaCl
604 for 2 hours. Airway cells were pre-treated with doxorubicin (1 μ M) for 24 hours prior to transduction.
605 2 weeks post-transduction, airway cultures were imaged and GFP was quantified by flow cytometry.
606 **(F, G)** CF airway cultures were treated overnight with doxorubicin (1 μ M) and the next day cells
607 were treated with AAV2.5T-CFTR alone or with 4.5% NaCl for 2 hours. Two weeks post-
608 transduction, electrical properties were measured by Ussing chambers as described in (C, D). N=3,
609 *p<0.05, **p<0.005. Statistical differences were determined by Student's t-test or one-way ANOVA.

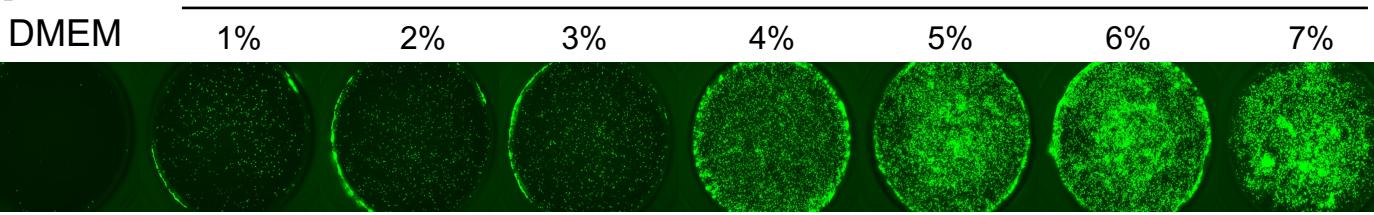
610 **Fig. 6. Increased saline tonicity enhances transduction of mouse and pig airways.** **(A)** 6-8 week old
611 Balb/c mice received intratracheal Ad-luciferase formulated with NaCl (0.9% or 7% final
612 concentration). Mice were imaged by IVIS 5 days after delivery. N=5. **(B-G)** Ad-GFP was
613 formulated with PBS or 10% NaCl (5% final concentration) and aerosolized intratracheally to
614 newborn pigs. 5 days after delivery lungs were divided into 20 regions **(B)** as previously reported ².
615 **(C)** Representative fluorescent dissecting scope images of GFP expression. **(D)** Individual lung
616 regions were scored using a dissecting fluorescent microscope (0= no expression, 1= low expression,
617 2=moderate expression, and 3= high expression). **(E)** Combined GFP+ scores. **(F)** Lungs were fixed,
618 processed, sectioned, and counterstained with DAPI. Representative 2X and 10X images from 5%
619 NaCl condition shown. **(G-I)** GP64 HIV-GFP formulated with PBS or NaCl (5% final concentration)
620 was aerosolized to newborn pigs intratracheally. One week later, lungs were collected as described in
621 B. Lobe regions were scored for GFP expression and representative images of fluorescent dissecting
622 microscope shown. Pig experiments: n=1 animal per condition. 10 slides per lung were evaluated.
623 **p<0.005. ****p<0.00005. Statistical differences were determined by Student's t-test.

624 **Supplemental Fig. 1. Clinically approved agents decrease transepithelial resistance but only**
625 **hypertonic saline (3.6% NaCl) enhances gene transfer.** **(A)** Transepithelial electrical resistance
626 (TEER) of HAE was measured using an ohmmeter (normalized to 0.33 cm² transwell area) after 5
627 minute incubation with indicated reagents: Ultraser G (USG), Dulbecco's Modified Eagle Medium
628 (DMEM), phosphate buffered saline (PBS) with (+/+) or without (-/-) calcium and magnesium, 0.1%
629 lysophosphatidylcholine (LPC), 250 mM EGTA, 5 μ M doxorubicin (Dox), surfactant (Infasurf) (35

630 mg/ml), or 3.6% NaCl. **(B)** Ad-GFP (MOI=250) was applied apically to HAE with PBS -/-, LPC,
631 EGTA, Dox, Surfactant, or 3.6% NaCl for 2 hours. Cultures were imaged 5 days post-transduction.
632 ***p<0.00005.

633 **Supplemental Fig. 2. Effects of NaCl treatment on primary human airway epithelia.** **(A)** Distribution of
634 cell types with increasing %NaCl 5 days after treatment. Nerve growth factor receptor (NGFR)=basal
635 cells, CD66c=secretory cells, α -tubulin=ciliated cells. **(B)** HAE from **(A)** were treated with
636 LIVE/DEAD followed by immediate fixation prior to assaying by flow cytometry. %Live cells
637 reported for 1-7% NaCl. **(C)** Cytotoxicity as measured by %LDH release for 1-7% NaCl. **(D)** SEM
638 images after 2 hour treatment with DMEM or NaCl (3.6%). N=3, p<0.05. Scale bar=50 μ m. Arrows
639 indicate cilia.

640 **Supplemental Fig. 3. NaCl-mediated entry of Ad-GFP is time dependent.** **(A)** Experiment schematic.
641 Ad-GFP (green bar) was applied for 2 hours with 3.6% NaCl (gray bar) present at 120, 60, 30, 15, or
642 5 minutes. Parallel cultures were incubated with 3.6% NaCl for 2 hours with Ad-GFP present for 120,
643 60, 30, 15, or 5 minutes. The 2 hour co-treatment group was shared between groups. **(B, C)** Images
644 were acquired 5 days post-transduction. Representative fluorescence microscopy images at each time
645 interval. **(D)** GFP quantification by flow cytometry. N=3, *p<0.05, ***p<0.0005. Statistical
646 differences were determined by one-way ANOVA.


647 **Supplemental Fig. 4. NaCl-mediated entry does not enhance all lentiviral pseudotypes.** Baculovirus
648 glycoprotein 64 (GP64), Vesicular Stomatitis Virus (VSVG), Jaagsiekte Sheep Retrovirus (JSRV),
649 Baboon Endogenous Virus (BaEV) pseudotyped HIV-GFP (MOI=10) were treated for 2 hours
650 without and with 4.5% NaCl. GFP expression was quantified 5 days later by flow cytometry. N=3,
651 *p<0.05, **p<0.005.

652 **Supplemental Fig. 5. NaCl formulated with Ad and AAV enhances transduction in pig tracheal
653 explants.** Each vector (Ad-mCherry 1x10⁹ TU; AAVH22-GFP 2x10¹⁰ vg) was formulated with NaCl
654 (5% final concentration) and applied to the apical surface of pig tracheal explants for 2 hours. **(A)**
655 mCherry or GFP fluorescence expression was visualized 5 days post-transduction. **(B)** Images were
656 quantified using ImageJ and reported as fluorescent intensity per high power field (HPF). N=5,
657 *p<0.05, **p<0.005.

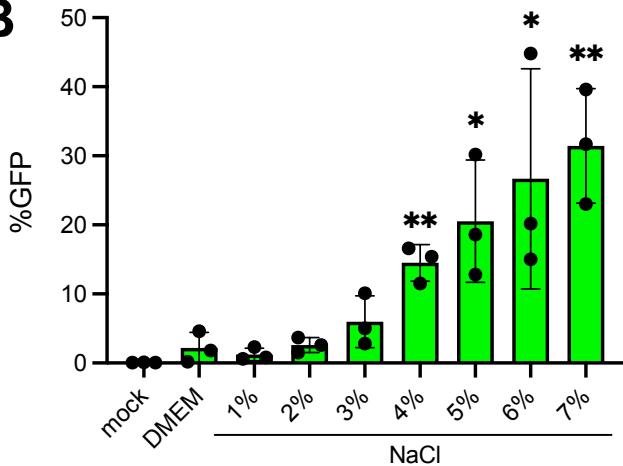
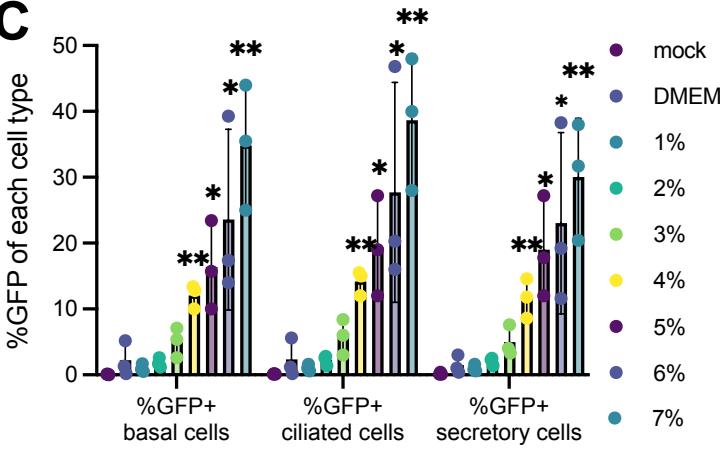
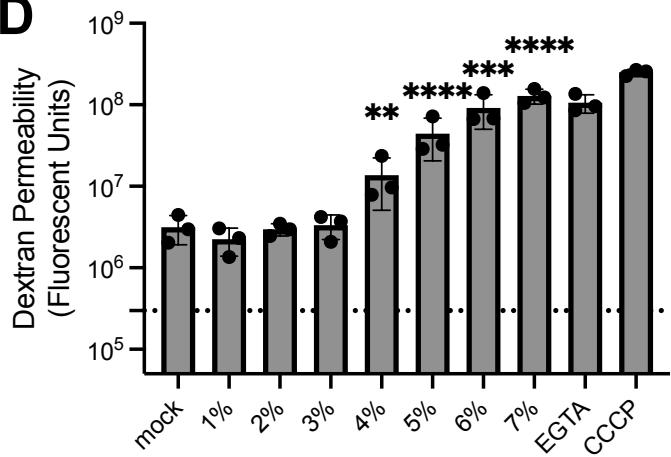
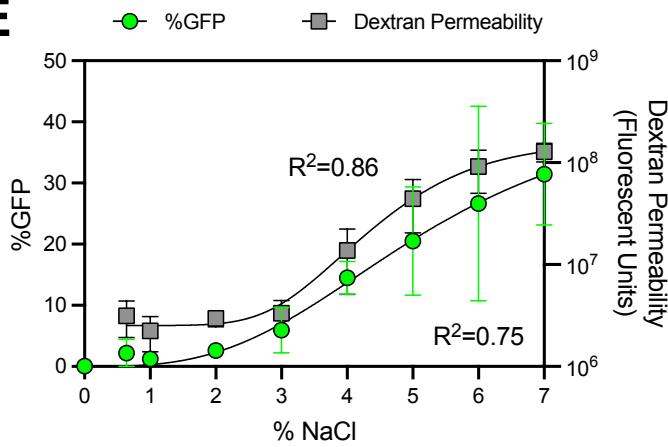

658

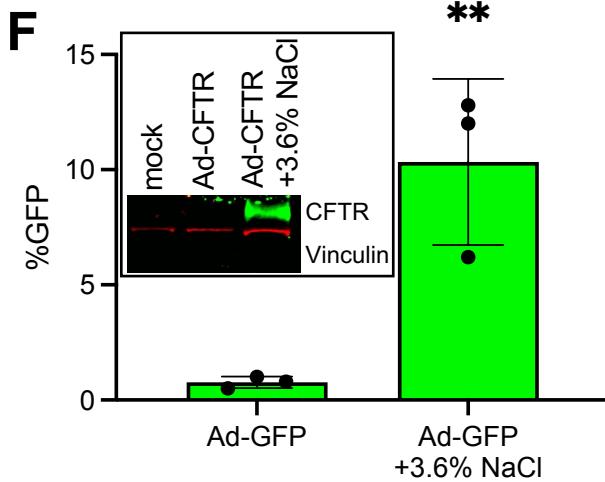
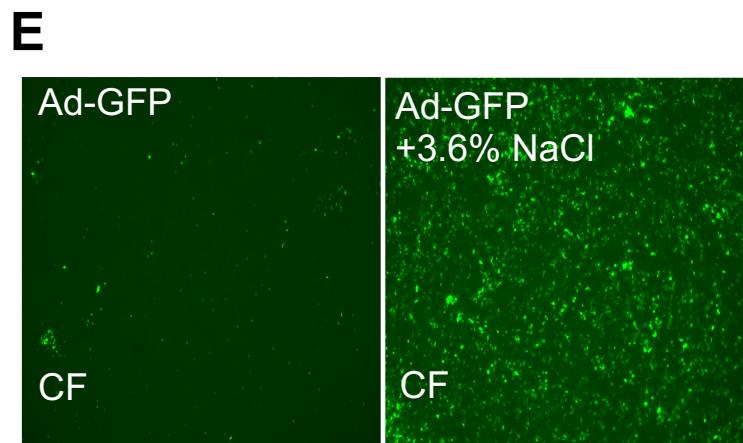
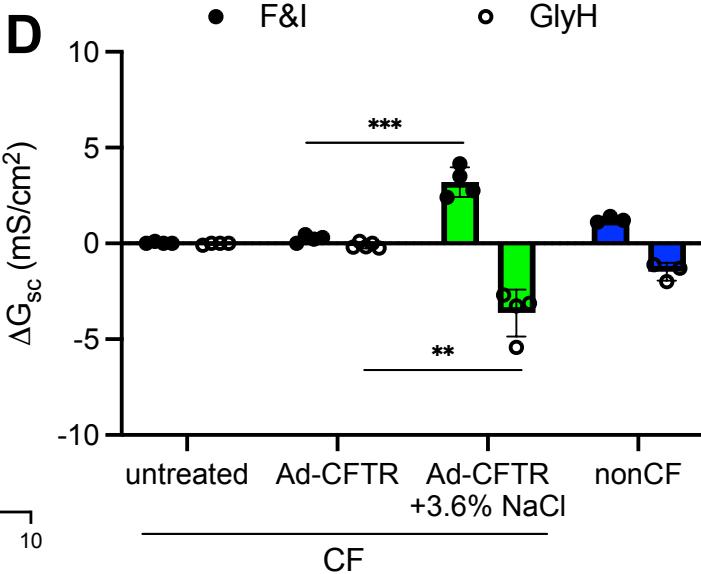
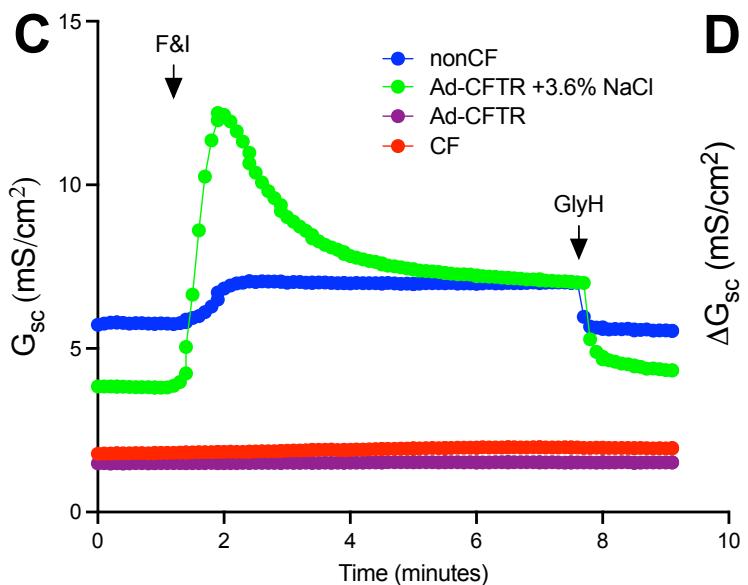
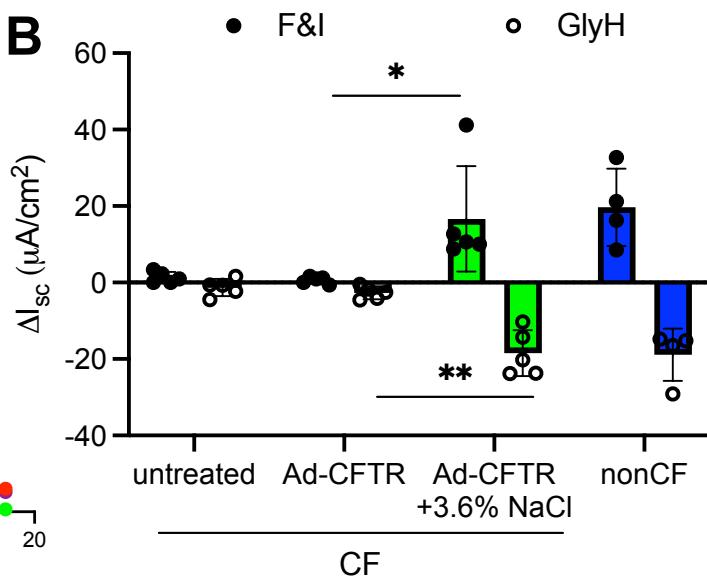
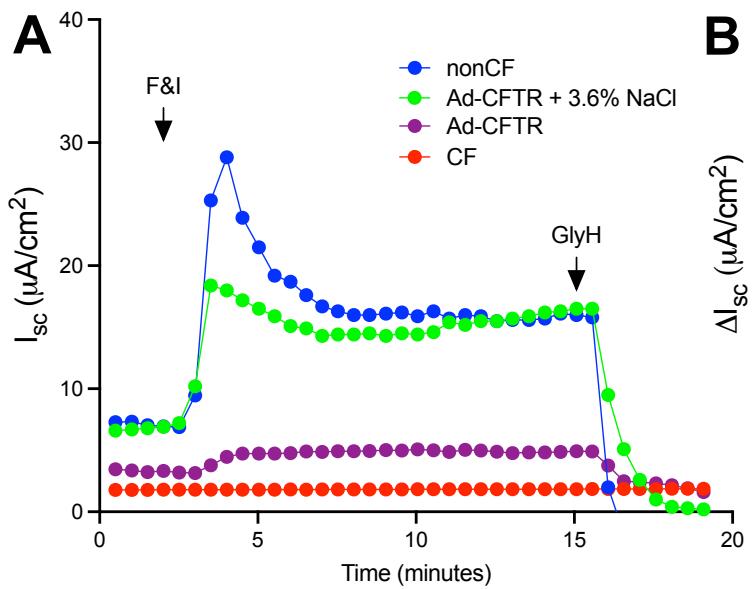
Fig. 1


A


B

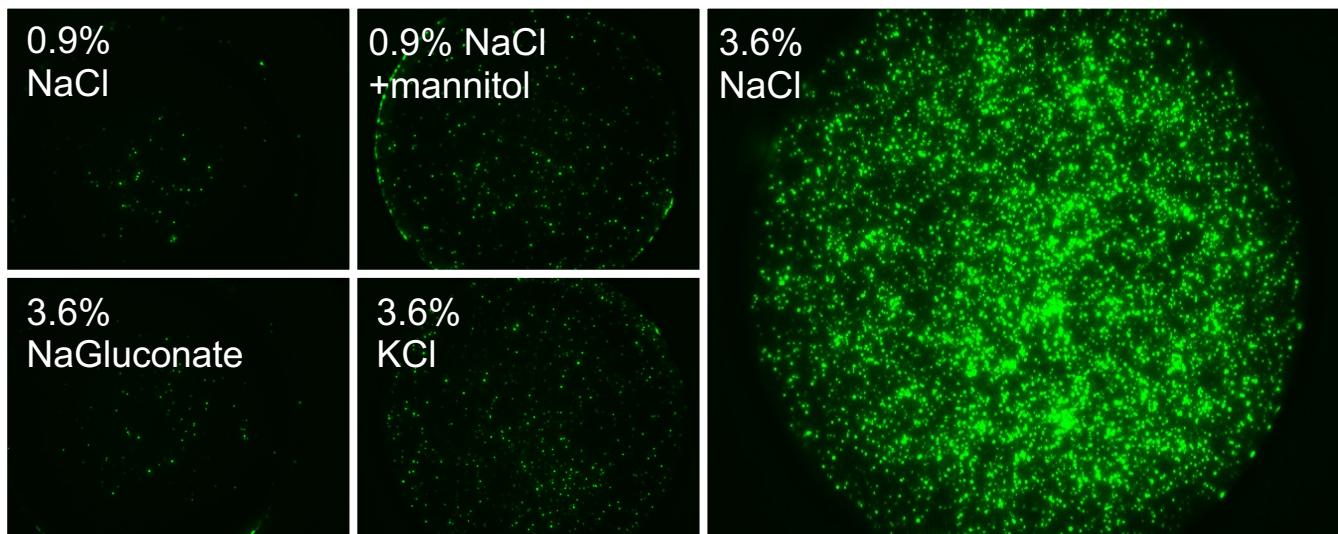

C

D

E

Fig. 1. Increasing saline tonicity enhances apical Ad gene transfer in airway epithelia. (A) Ad-CMV-eGFP (MOI=250) was co-delivered to primary human airway epithelial cultures with DMEM or NaCl ranging from 1-7% (final concentration) and imaged 5 days post-transduction. 0.33 cm² transwells were imaged at 2X. (B) Percentage of GFP+ cells in each condition quantified by flow cytometry. (C) Percentages of GFP+ cells by cell type from 1-7% NaCl. (D) Tight junction permeability was measured by the passage of dextran from the apical to basolateral media. Airway epithelial cells were left untreated or treated with NaCl (1-7%) for 2 hours. Following the treatment, apical dextran was applied and basolateral media was collected 30 minutes later and measured for fluorescent units. (E) Correlative %GFP ($R^2=0.75$) and Dextran Permeability ($R^2=0.86$) from Fig. 1B and Fig. 1D were plotted together. $N=3$, * $p<0.05$, ** $p<0.005$, *** $p<0.0005$, **** $p<0.00005$. Statistical differences were determined by one-way ANOVA.


Fig. 2

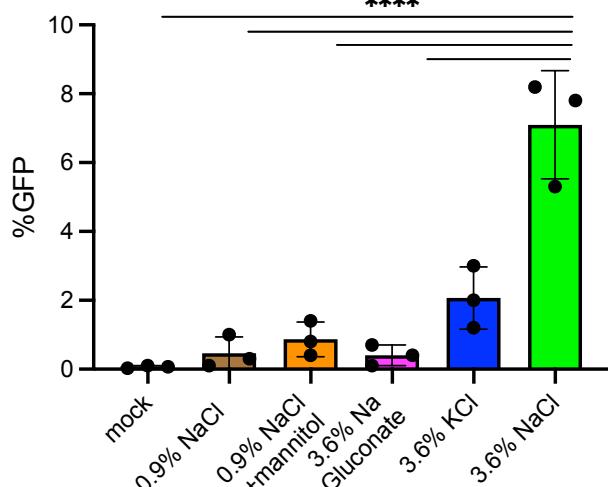
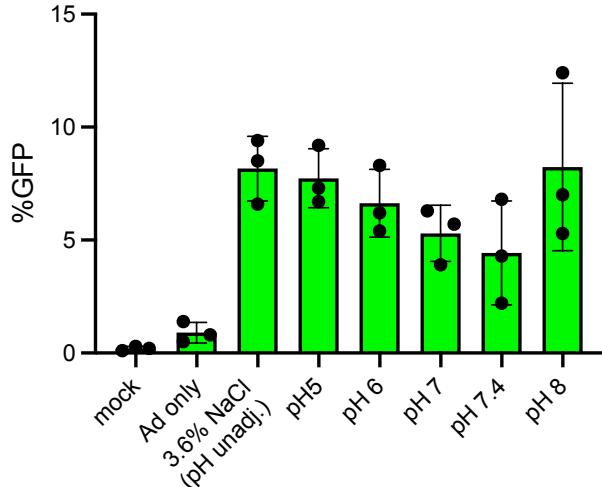
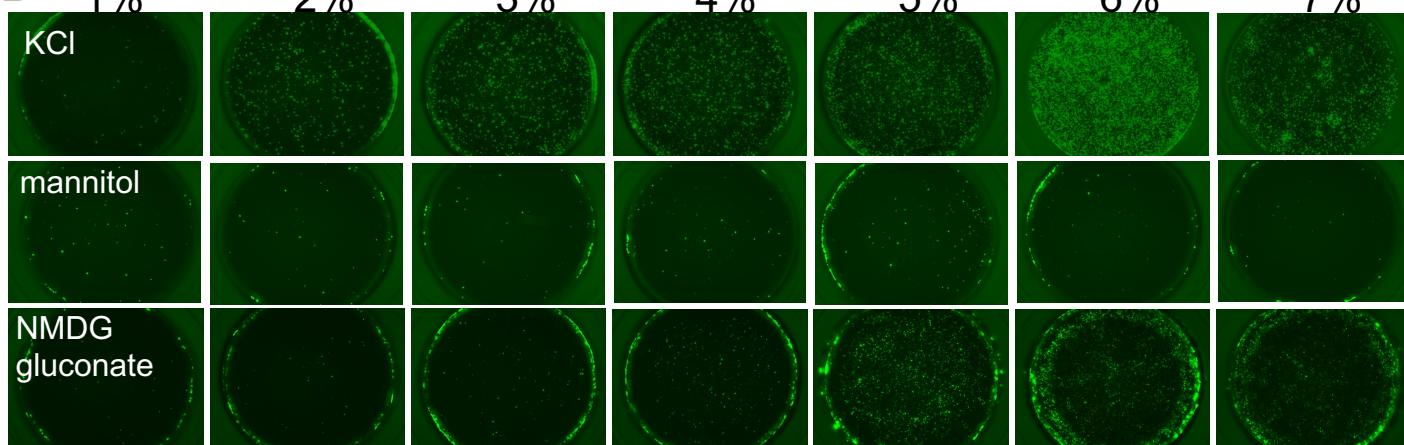
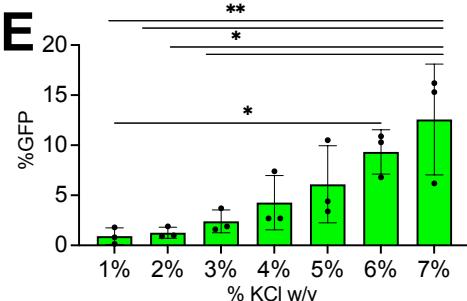
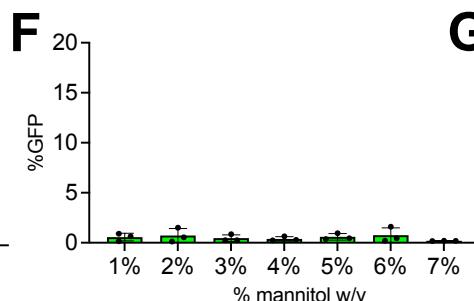

Fig. 2. Apically applied Ad-CFTR + 3.6% NaCl restores anion transport defect in CF airway epithelia. (A, B) Short circuit current measurements of CF airway epithelia alone or treated with Ad-CFTR or Ad-CFTR + 3.6% NaCl (MOI=250) compared to non-CF. Responses to Forskolin and IBMX (F&I) and GlyH-101 (GlyH) are reported. **(C, D)** Short circuit conductance in response to F&I and GlyH N=5. **(E)** Representative images of parallel CF cultures transduced with Ad-GFP (MOI=250) and **(F)** quantified by flow cytometry (N=3). Inset: representative western blot of CF HAE untreated or transduced with Ad-CFTR or Ad-CFTR + 3.6% NaCl. Western blot was probed for CFTR (green) and Vinculin (red) (loading control). *p<0.05, **p<0.005, ***p<0.0005. Statistical differences were determined by Student's t-test or one-way ANOVA.

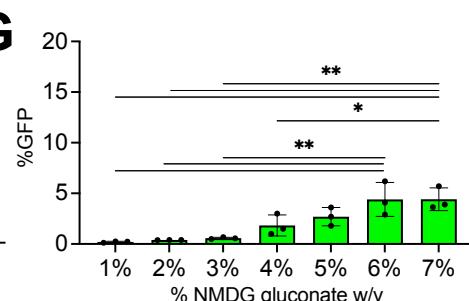
Fig. 3


A

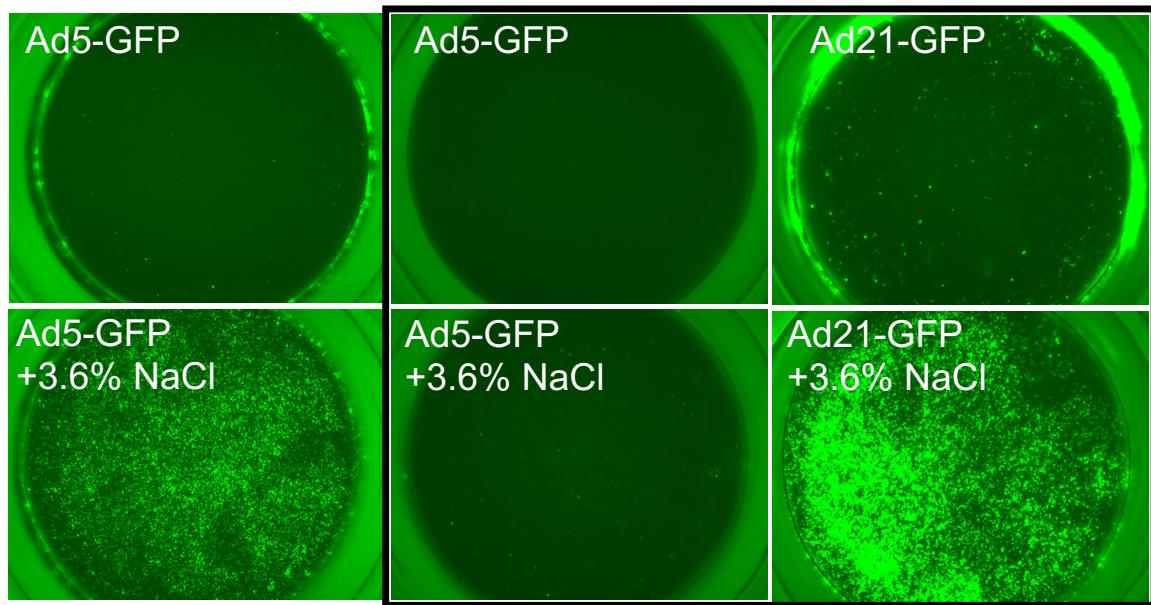

B


C


D


E

F


G

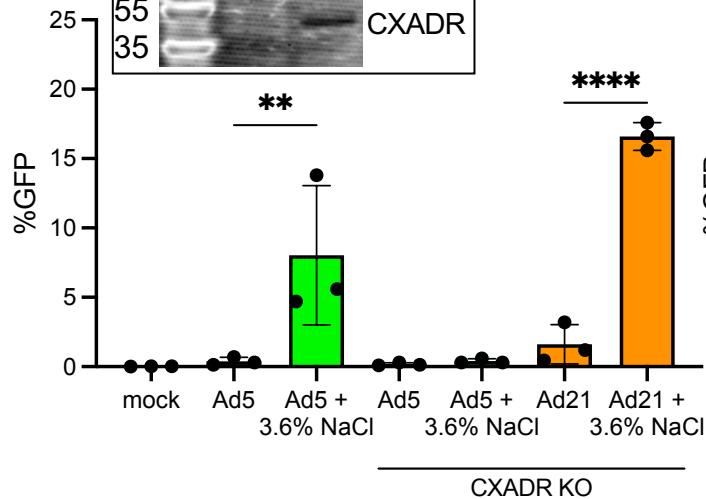
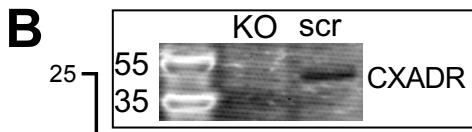
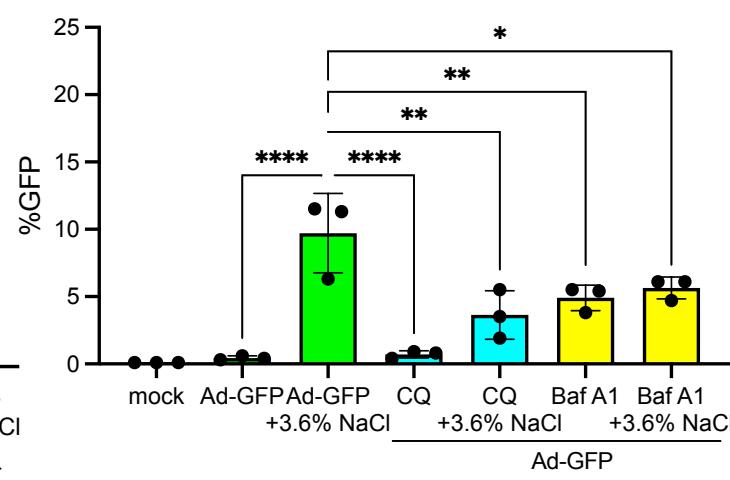
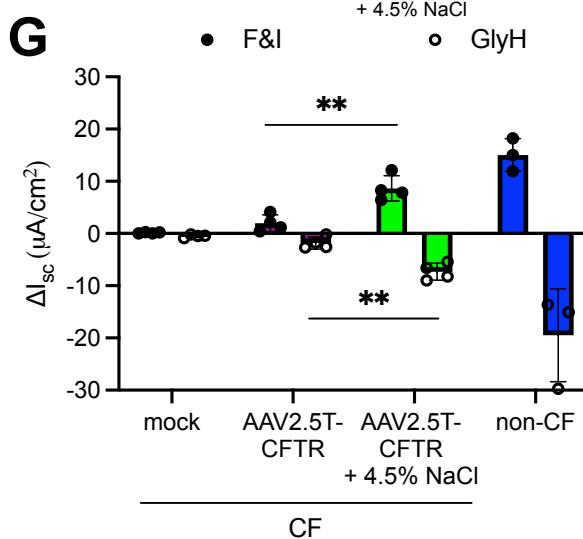
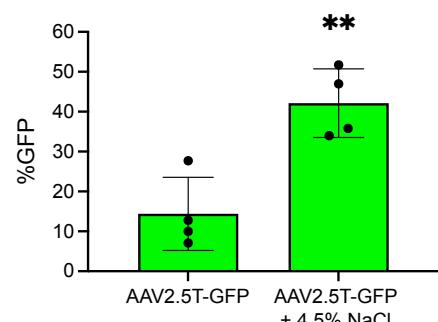
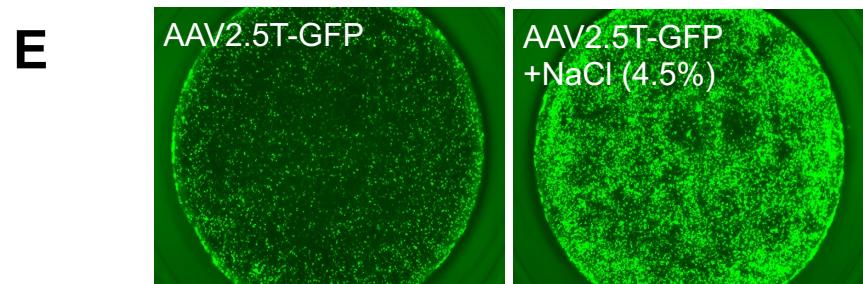
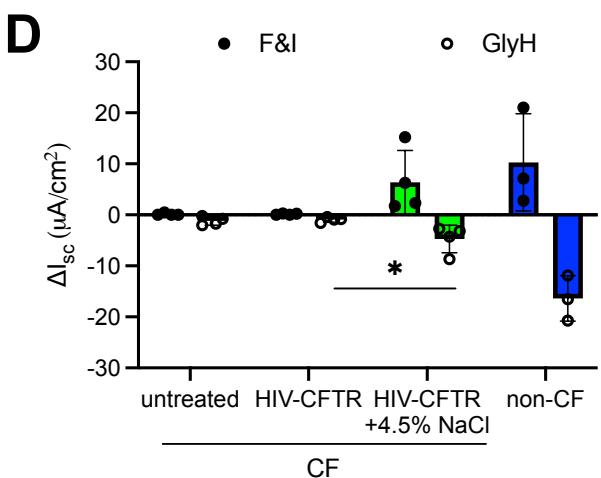
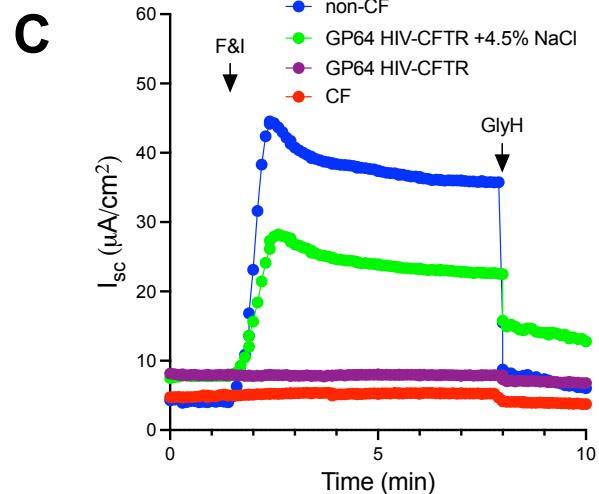
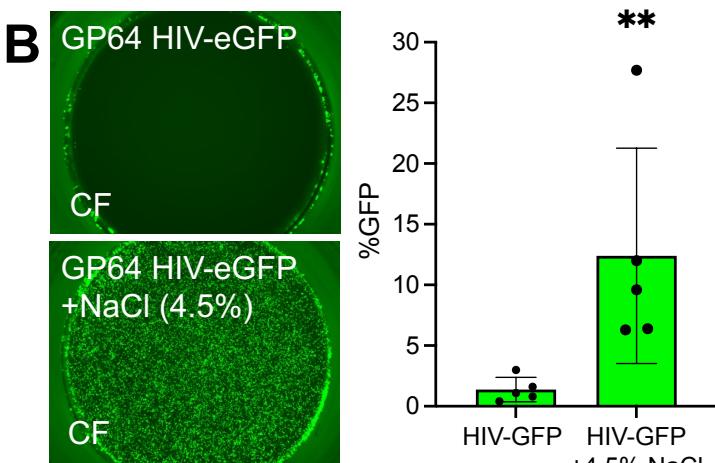
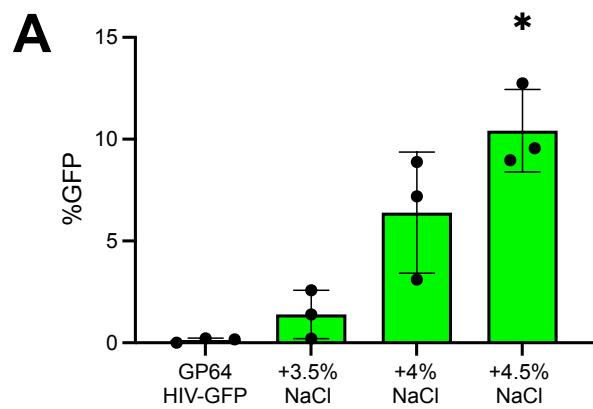


Fig. 3. Entry is dependent on ionic strength but not osmolarity, osmolytes, or pH. (A)
Isotonic NaCl (0.9%), Isotonic NaCl + the non-ionic osmolyte mannitol with equivalent osmolarity (0.62 M) to 3.6% NaCl, NaGluconate (3.6%), and KCl (3.6%) were co-delivered apically to HAE with Ad-GFP (MOI=250) for 2 hours. 5 days post-transduction, cells were imaged **(B)** and GFP expression was quantified by flow cytometry. **(C)** Ad-GFP was co-delivered with NaCl (3.6%) at pH 5, 6, 7, 7.4 and 8 for 2 hours. 5 day post-transduction GFP was quantified by flow cytometry. **(D)** KCl, mannitol, or N-methyl-D-glucamine gluconate (NMDG) 1-7% was formulated with Ad-GFP (MOI=250) and applied to the apical surface of HAE for 2 hours. Cultures were imaged 5 days post-transduction and GFP expression was quantified by flow cytometry for **(E)** KCl, **(F)** mannitol, or **(G)** NMDG. N=3, *p<0.05, ***p<0.00005. Statistical differences were determined by one-way ANOVA.

Fig. 4


A

B

C

Fig. 4. NaCl-mediated transduction requires receptor and low pH entry step. Ad5 utilizes CXADR for entry and Ad21 utilizes CD46. (A) CRISPR/Cas9 with gRNA targeted to CXADR was electroporated into HAE and allowed to re-differentiate at air liquid interface for 3 weeks. In parallel with non-electroporated cells from the same donor, Ad5-GFP and Ad21-GFP were applied apically to HAE with or without NaCl for 2 hours. Cultures were imaged 5 days post-transduction and representative images are shown. (B) GFP was quantified by flow cytometry. Inset: Western blot for CXADR in parallel on CXADR KO or scrambled airway epithelial cultures. (C) HAE were pre-treated with endosomal acidification inhibitors chloroquine (CQ) (200 μ M) or bafilomycin A1 (1 μ M) for 2 hours. Next, Ad5-GFP (MOI=250) was delivered with or without NaCl (3.6%) for 2 hours. GFP expression was quantified by flow 5 days post-transduction. N=3, *p<0.05, **p<0.005, ***p<0.00005. Statistical differences were determined by one-way ANOVA.

Fig. 5

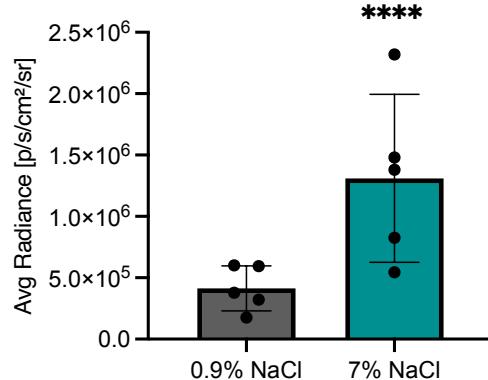


Fig. 5. Increasing saline tonicity enhances GP64 pseudotyped lentiviral and AAV transduction.

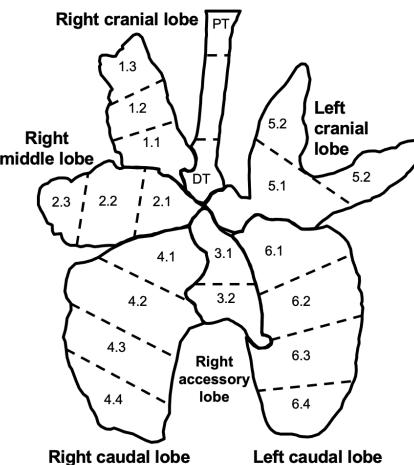
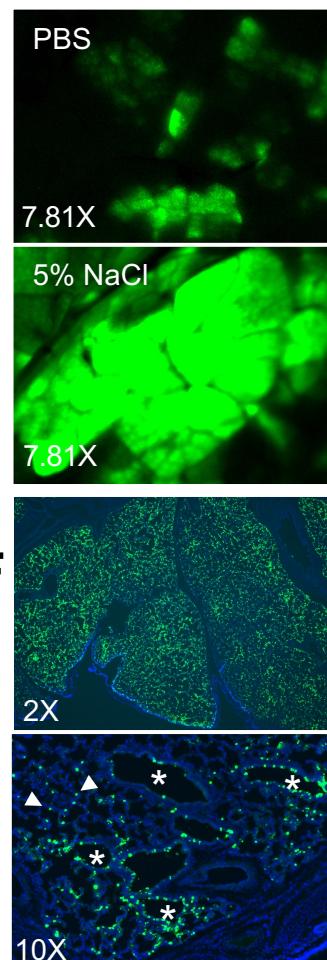
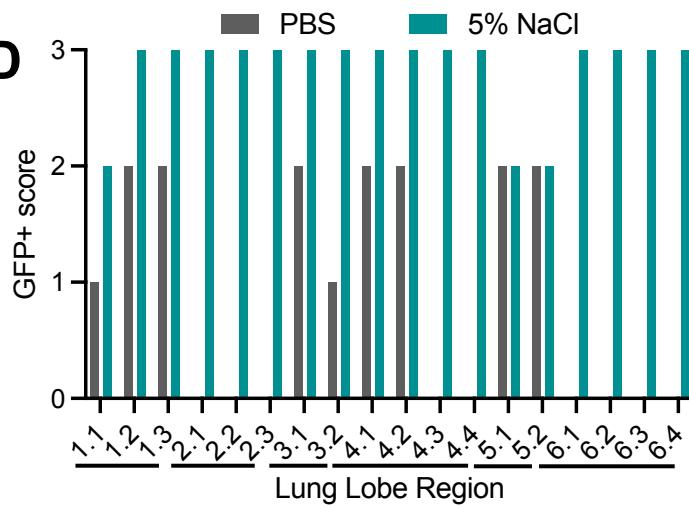
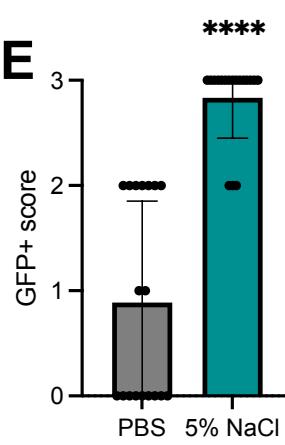
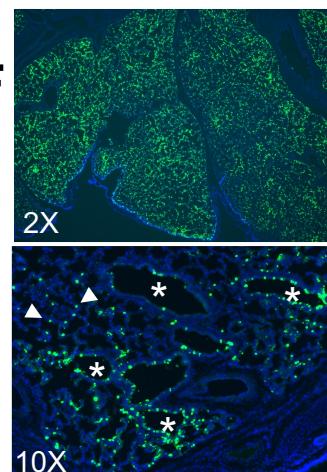

(A) GP64 pseudotyped HIV-CMV-eGFP (MOI=50) was co-delivered to airway epithelia with DMEM, 3.5%, 4%, or 4.5% NaCl for 2 hours and then removed. 1 week post-transduction, cells were imaged using fluorescence microscopy and GFP expression was quantified by flow cytometry. **(B)** Parallel CF cultures were transduced with GP64 HIV-CMV-eGFP and quantified by flow cytometry. As described in Figure 2, CF airway epithelia were transduced with GP64-HIV-CFTR formulated with DMEM or 4.5% NaCl for 2 hours and incubated for 1 week. **(C, D)** Short circuit current of F&I and GlyH in untreated or treated CF cells compared to non-CF. **(E)** AAV with the 2.5T capsid expressing CMV-eGFP was co-delivered (MOI=100,000) with DMEM or 4.5% NaCl for 2 hours. Airway cells were pre-treated with doxorubicin (1 μ M) for 24 hours prior to transduction. 2 weeks post-transduction, airway cultures were imaged and GFP was quantified by flow cytometry. **(F, G)** CF airway cultures were treated overnight with doxorubicin (1 μ M) and the next day cells were treated with AAV2.5T-CFTR alone or with 4.5% NaCl for 2 hours. Two weeks post-transduction, electrical properties were measured by Ussing chambers as described in (C, D). N=3, *p<0.05, **p<0.005. Statistical differences were determined by Student's t-test or one-way ANOVA.

Fig. 6

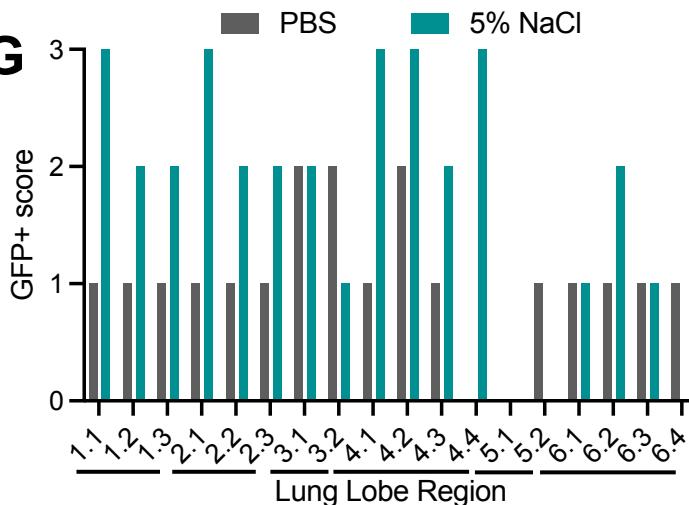

A


B

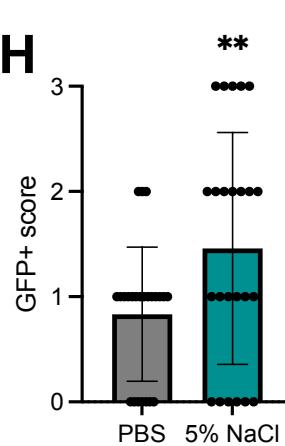

C


D

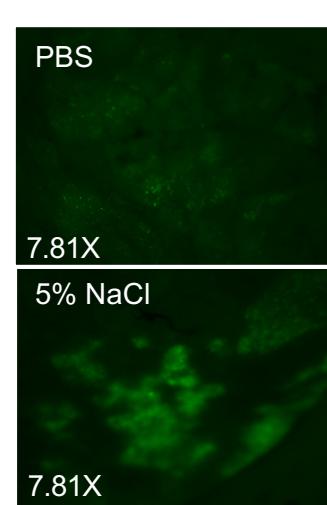
E



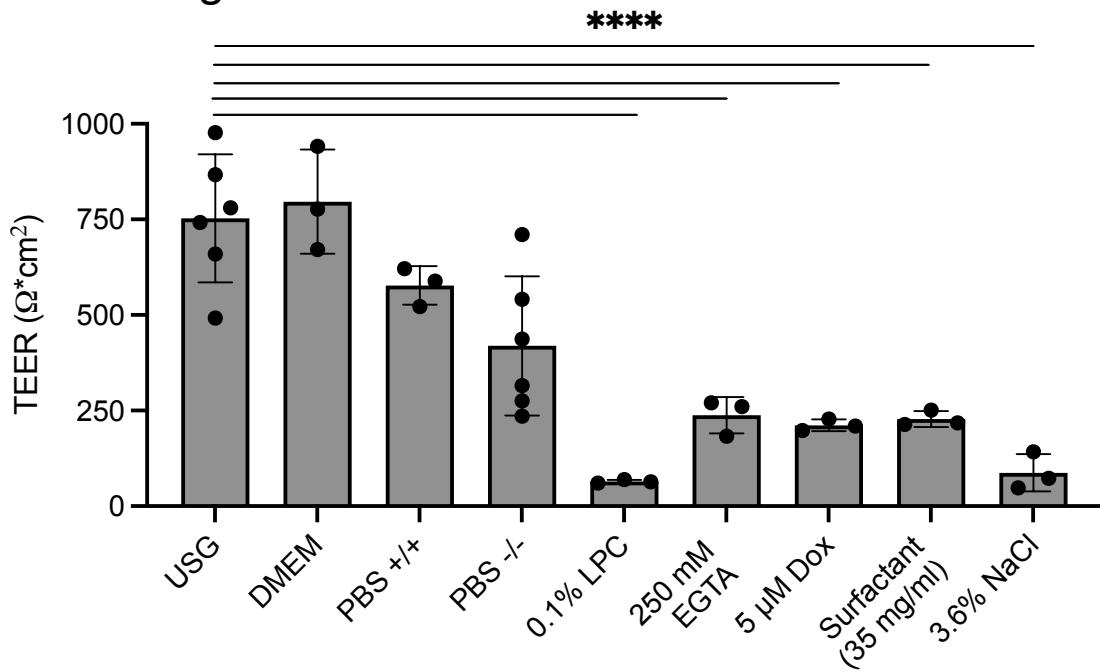
F

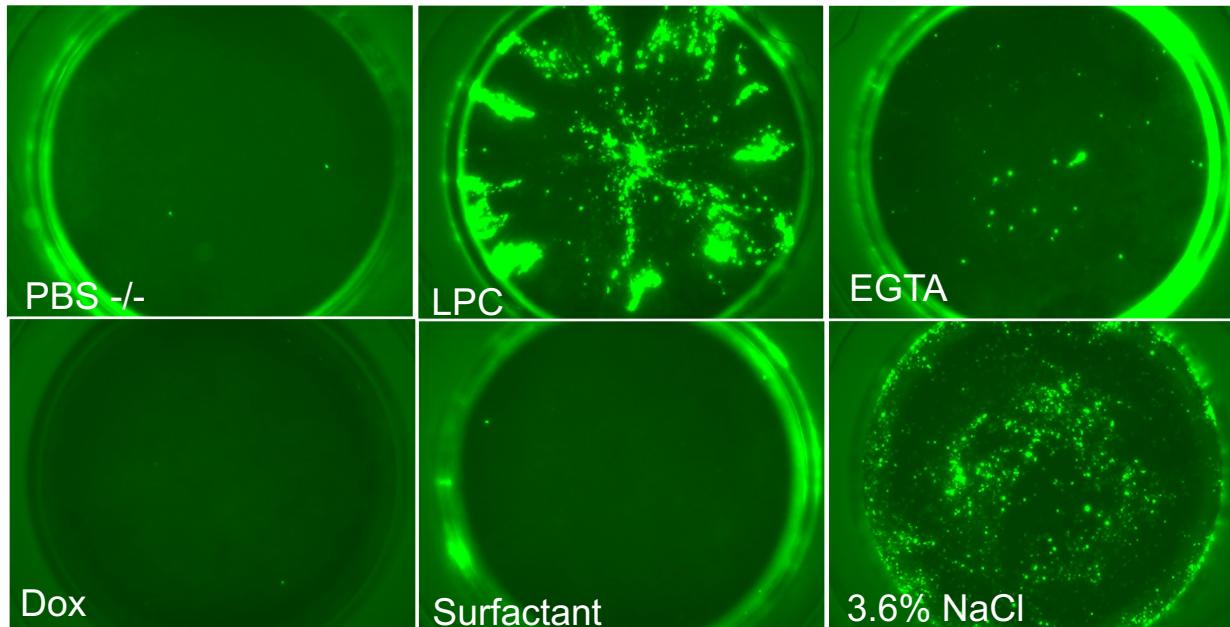


*=airways
arrows=alveoli


G

H

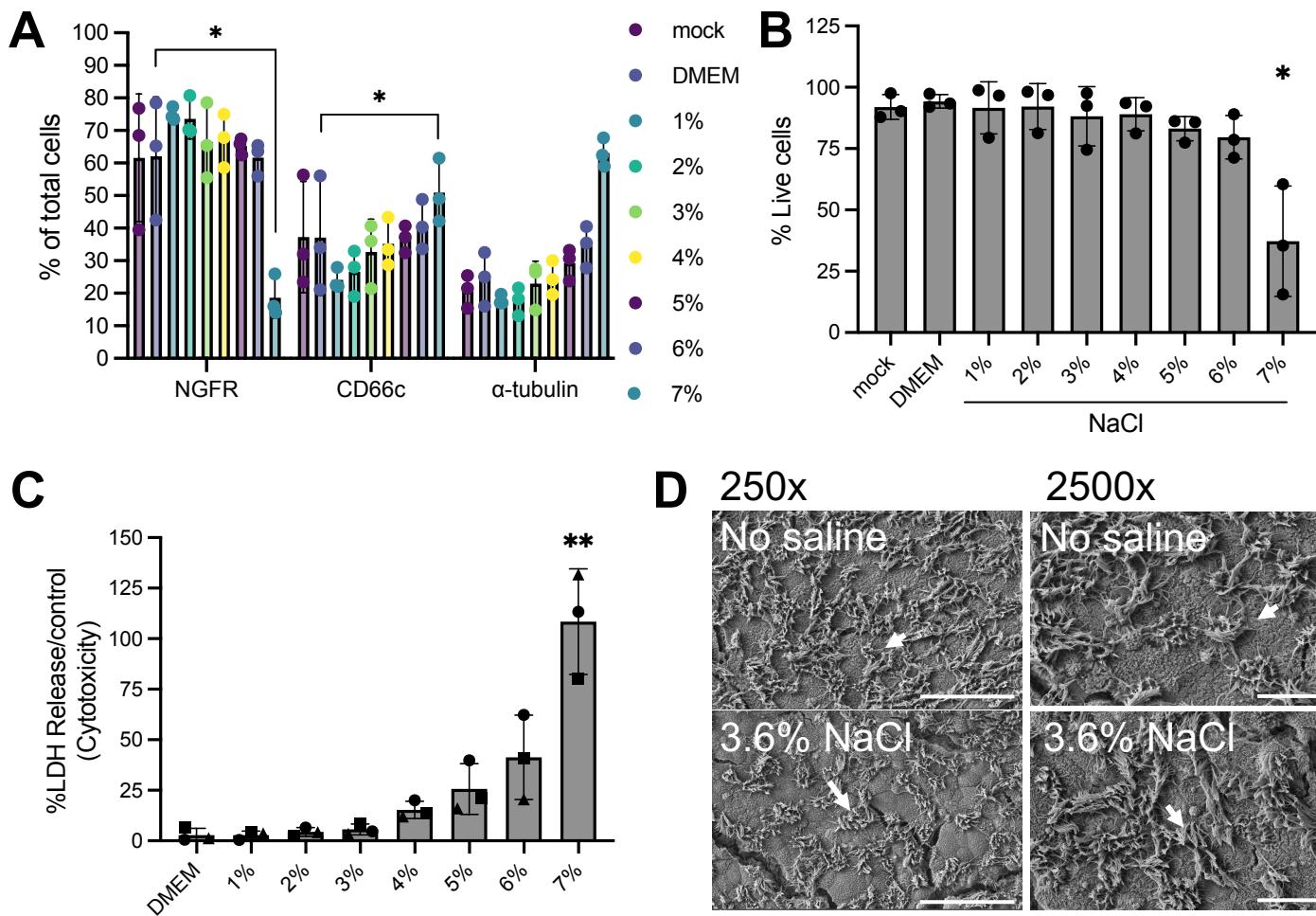

I


Fig. 6. Increased saline tonicity enhances transduction of mouse and pig airways. (A) 6-8 week old Balb/c mice received intratracheal Ad-luciferase formulated with NaCl (0.9% or 7% final concentration). Mice were imaged by IVIS 5 days after delivery. N=5. (B-G) Ad-GFP was formulated with PBS or 10% NaCl (5% final concentration) and aerosolized intratracheally to newborn pigs. 5 days after delivery lungs were divided into 20 regions (B) as previously reported². (C) Representative fluorescent dissecting scope images of GFP expression. (D) Individual lung regions were scored using a dissecting fluorescent microscope (0= no expression, 1= low expression, 2=moderate expression, and 3= high expression). (E) Combined GFP+ scores. (F) Lungs were fixed, processed, sectioned, and counterstained with DAPI. Representative 2X and 10X images from 5% NaCl condition shown. (G-I) GP64 HIV-GFP formulated with PBS or NaCl (5% final concentration) was aerosolized to newborn pigs intratracheally. One week later, lungs were collected as described in B. Lobe regions were scored for GFP expression and representative images of fluorescent dissecting microscope shown. Pig experiments: n=1 animal per condition. 10 slides per lung were evaluated. **p<0.005. ****p<0.00005. Statistical differences were determined by Student's t-test.

Supplemental Fig. 1

A

B

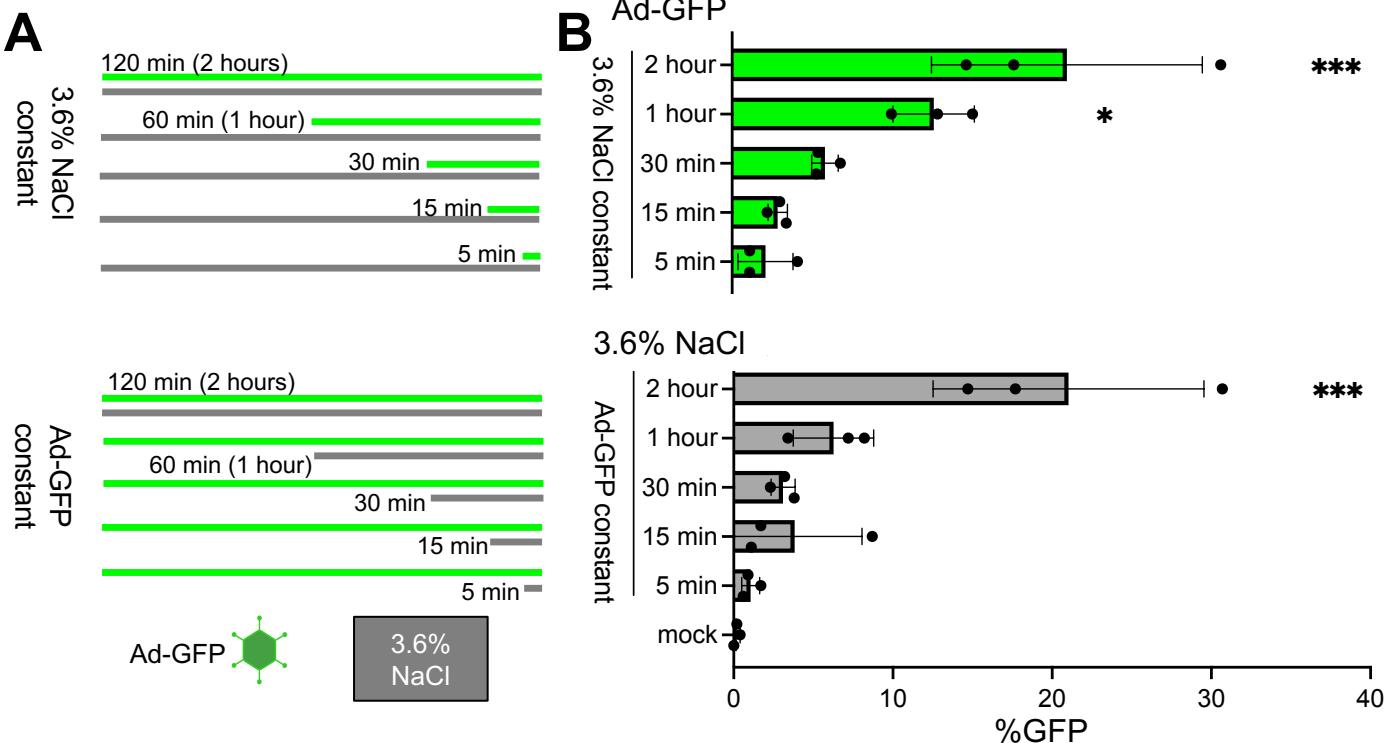


Supplemental Fig. 1. Clinically approved agents decrease transepithelial resistance but only

hypertonic saline (3.6% NaCl) enhances gene transfer. (A) Transepithelial electrical resistance (TEER) of HAE was measured using an ohmmeter (normalized to 0.33 cm^2 transwell area) after 5 minute incubation with indicated reagents: Ultraser G (USG), Dulbecco's Modified Eagle Medium (DMEM), phosphate buffered saline (PBS) with (+/+) or without (-/-) calcium and magnesium, 0.1% LPC, 250 mM EGTA, 5 μM doxorubicin (Dox), surfactant (Infasurf)(35 mg/ml), or 3.6% NaCl. (B) Ad-GFP (MOI=250) was applied apically to HAE with PBS -/-, LPC, EGTA, Dox, Surfactant, or 3.6% NaCl for 2 hours. Cultures were imaged 5 days post-transduction.

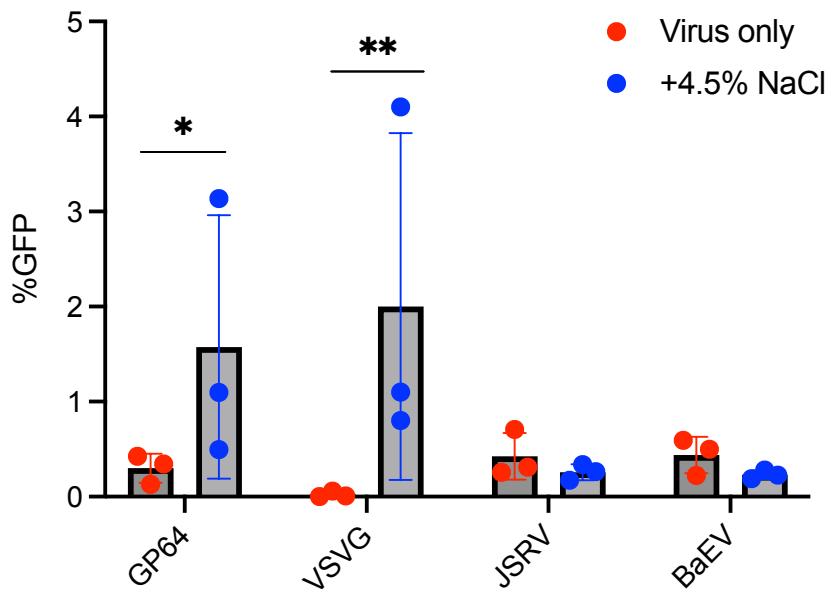
****p<0.00005.

Supplemental Fig. 2


Supplemental Fig. 2. Effects of NaCl treatment on primary human airway epithelia. (A)

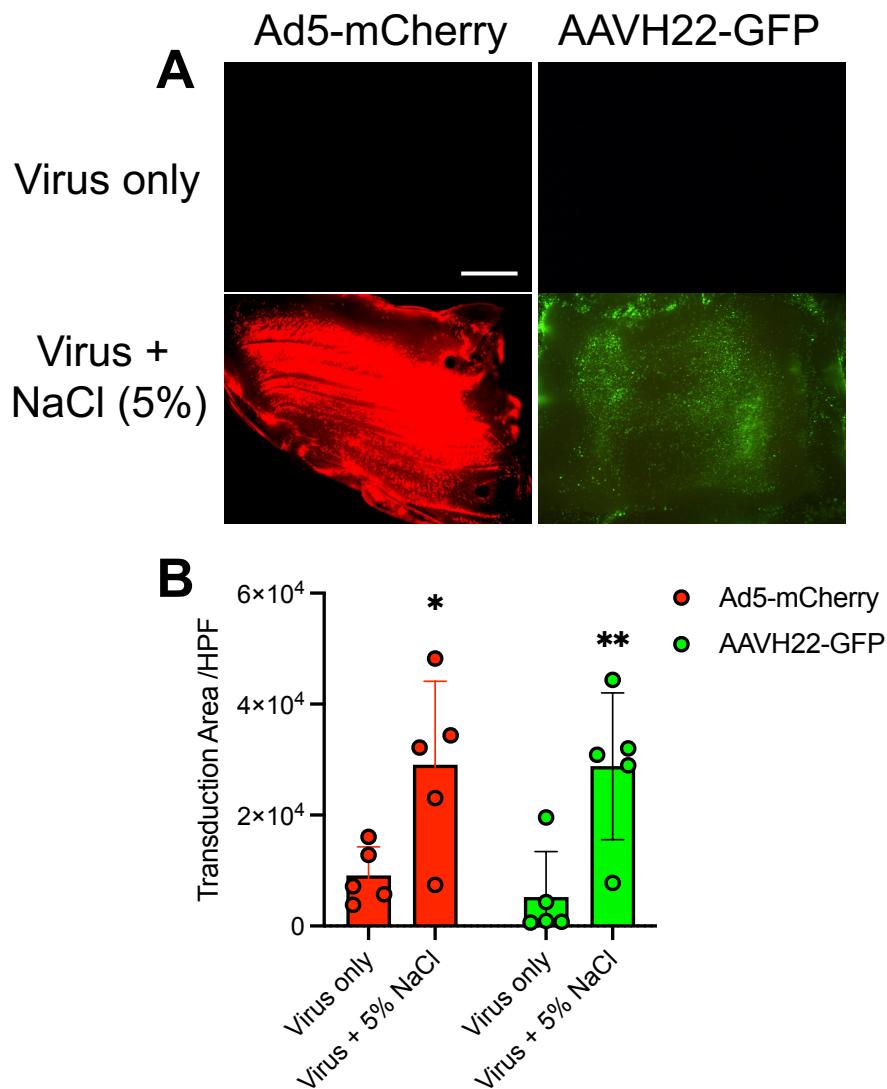
Distribution of cell types with increasing %NaCl 5 days after treatment. Nerve growth factor receptor (NGFR)=basal cells, CD66c=secretory cells, α -tubulin=ciliated cells.

(B) HAE from (A) were treated with LIVE/DEAD followed by immediate fixation prior to assaying by flow cytometry. %Live cells reported for 1-7% NaCl. (C)


Cytotoxicity as measured by %LDH release for 1-7% NaCl. (D) SEM images after 2 hour treatment with DMEM or NaCl (3.6%). N=3, $p<0.05$. Scale bar=50 μ m. Arrows indicate cilia.

Supplemental Fig. 3

Supplemental Fig. 3. NaCl-mediated entry of Ad-GFP is time dependent. (A) Experiment schematic. Ad-GFP (green bar) was applied for 2 hours with 3.6% NaCl (gray bar) present at 120, 60, 30, 15, or 5 minutes. Parallel cultures were incubated with 3.6% NaCl for 2 hours with Ad-GFP present for 120, 60, 30, 15, or 5 minutes. The 2 hour co-treatment group was shared between groups. (B, C) Images were acquired 5 days post-transduction. Representative fluorescence microscopy images at each time interval. (D) GFP quantification by flow cytometry. N=3, *p<0.05, ***p<0.0005. Statistical differences were determined by one-way ANOVA.


Supplemental Fig. 4

Supplemental Fig. 4. NaCl-mediated entry does not enhance all lentiviral pseudotypes.

Baculovirus glycoprotein 64 (GP64), Vesicular Stomatitis Virus (VSVG), Jaagsiekte Sheep Retrovirus (JSRV), Baboon Endogenous Virus (BaEV) pseudotyped HIV-GFP (MOI=10) were tested without and with 4.5% NaCl. N=3, *p<0.05, **p<0.005.

Supplemental Fig. 5

Supplemental Fig. 5. NaCl formulated with Ad and AAV enhances transduction in pig tracheal explants.

Each vector (Ad-mCherry 1×10^9 TU; AAVH22-GFP 2×10^{10} vg) was formulated with NaCl (5% final concentration) and applied to the apical surface of pig tracheal explants for 2 hours. (A) mCherry or GFP fluorescence expression was visualized 5 days post-transduction. (B) Images were quantified using ImageJ and reported as fluorescent intensity per high power field (HPF). N=5, *p<0.05, **p<0.005.