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Abstract

The question of how metabolism impacts development is seeing a renaissance [1, 2]. How metabolism
exerts instructive signaling functions is one of the central issues that need to be resolved. We tackled
this question in the context of mouse embryonic axis segmentation. Previous studies have shown that
changes in central carbon metabolism impact Wnt signaling [3-6] and the period of the segmenta-
tion clock [7], which controls the timing of axis segmentation. Here, we reveal that glycolysis tunes
the segmentation clock period in an anti-correlated manner: higher glycolytic flux slows down the
clock, and vice versa. Transcriptome and gene regulatory network analyses identified Wnt signaling
and specifically the transcription factor Tcf712, previously associated with increased risk for dia-
betes [8, 9], as potential mechanisms underlying flux-dependent control of the clock period. Critically,
we show that deletion of the Wnt antagonist Dkk1 rescued the slow segmentation clock phenotype
caused by increased glycolysis, demonstrating that glycolysis instructs Wnt signaling to control the
clock period. In addition, we demonstrate metabolic entrainment of the segmentation clock: periodic
changes in the levels of glucose or glycolytic sentinel metabolite fructose 1,6-bisphosphate (FBP) syn-
chronize signaling oscillations. Notably, periodic FBP pulses first entrained Wnt signaling oscillations
and subsequently Notch signaling oscillations. We hence conclude that metabolic entrainment has an
immediate, specific effect on Wnt signaling. Combined, our work identifies a glycolysis-FBP-Wnt sig-
naling axis that tunes developmental timing, highlighting the instructive signaling role of metabolism
in embryonic development.
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1 Introduction

Central carbon metabolism impacts gene expres-
sion and signal transduction via modulating epi-
genetic and protein post-translational modifica-
tions, while exerting its bioenergetic function by
producing energy, reducing equivalents, and cel-
lular building blocks to fuel biological processes
[1, 2, 10-14]. While such a widespread role of
metabolism is well-known, how metabolism acts
as an instructive rather than a permissive signal
to control phenotypic outcomes remains a central
question. In the definition we use, an instructive
signal is information-rich, hence having the capa-
bility of tuning a phenotypic outcome, as opposed
to a permissive signal leading to a binary effect
[15, 16].

To reveal tunability, it is crucial to be able
to tune metabolism dynamically and to monitor
its impact, for instance at the level of signaling,
in real time and in a quantitative manner. Such
an approach is applicable to the study of verte-
brate embryo mesoderm segmentation. Presomitic
mesoderm (PSM) is segmented into somites, the
precursors for vertebrae and skeletal muscles, in
a periodic fashion [17]. The timing of this pro-
cess is tightly regulated by a molecular oscilla-
tor known as the segmentation clock, which is
best characterised by oscillatory activity of the
Notch signaling pathway [18]. Temporal period-
icity of Notch signaling oscillations is translated
into spatial periodicity of somites by integrating
additional information encoded by graded signal-
ing pathways such as Wnt, FGF, and retinoic
acid [17, 19-21]. In the mouse PSM, FGF and
Wnt signaling pathways are also the components
of the segmentation clock, exhibiting oscillatory
activities coupled to Notch signaling oscillations
[19, 22, 23]. Importantly, this highly complex net-
work of interconnected signaling pathways can
be dynamically perturbed and functionally stud-
ied by using a combination of quantitative live
imaging and a dynamical systems approach. For
instance, using microfluidics-based entrainment,
we previously showed that the segmentation clock
network can be efficiently controlled via external
periodic pulses of Notch and Wnt signaling cues,
achieving synchronization and tuning of signaling
oscillation period [19, 24].
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Here, we build on the quantitative live imag-
ing, genetics, and entrainment approach that pro-
vide a powerful experimental framework to tackle
the central question of how metabolism plays an
instructive role. In the PSM, changes in central
carbon metabolism impact Wnt signaling [3-6]
and the period of the segmentation clock [7]. In
particular, glycolysis has been shown to establish
an activity gradient from the posterior to anterior
PSM [3, 4], being functionally linked to graded
signaling activity within the mouse PSM [4-6].
Furthermore, it has been shown that active glycol-
ysis is required for maintaining the segmentation
clock oscillation [3]. In this work we addressed
whether and how glycolysis plays an instruc-
tive role in regulation of developmental timing of
mammalian embryo segmentation.

2 Results

2.1 Glycolytic flux tunes the period
of the segmentation clock

We first asked whether changes in glycolytic flux
would have any effect on the segmentation clock
period. To manipulate glycolytic flux using genet-
ics, we utilised a conditional cytoPFKFB3 (here-
after termed as TG) transgenic mouse line that
we previously generated [6]. In this TG line, a
cytoplasmic, dominant active form of the gly-
colytic enzyme PFKFB3 [25] is expressed from the
Rosa26 locus upon CRE-recombination, leading
to a glucose-dose dependent increase of glycolytic
flux in PSM explants [6]. To quantify the seg-
mentation clock period using real-time imaging,
we used a fluorescent reporter mouse line, which
reflects the oscillatory gene activity of Notch-
target gene Lfng [26].

Using this experimental strategy, we found
that in TG explants cultured in 2.0 mM glucose,
the segmentation clock slowed down by about 20%
compared to control explants, without arrest of
segmentation clock or morphological segmentation
defects (Fig. 1A, 1B, Supplementary Video 1).
The slowing down of segmentation clock oscilla-
tions was also evident when using a Wnt reporter
line, i.e., Azin2-Achilles knock-in reporter [24]
(Extended Data Fig. 1, Supplementary Video 2).
To test whether the observed effect on the seg-
mentation clock oscillations is indeed due to an
increased glycolytic flux, and not merely the effect
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of the overexpression of cytoPFKFB3 protein per
se, we cultured TG explants in reduced glucose
concentrations, in order to reduce glycolytic flux
(Extended Data Fig. 2A). Indeed, lowering glucose
concentration rescued the clock period phenotype
in TG explants (Fig. 1B), indicating that the seg-
mentation clock period responds to glycolytic flux
rather than cytoPFKFB3 protein per se.

To further probe whether glycolytic flux
instructs the segmentation clock period, we inves-
tigated the impact of tuning (i.e., increasing and
decreasing) glycolytic flux in wild-type explants.
Importantly, we found that the segmentation clock
period was tunable in wild-type explants by mod-
ulating glycolytic flux. Increasing glucose led to
a slower segmentation clock (Fig. 1C), which
we also observed when fructose 1,6-bisphosphate
(FBP), a glycolytic sentinel metabolite [6, 27],
was supplemented to the medium (Fig. 1D). On
the other hand, replacing glucose with galactose,
which leads to minimum glycolytic flux (Extended
Data Fig. 2B) [28], resulted in the acceleration
of the segmentation clock (Fig. 1D). Therefore,
minimizing glycolytic flux speeds up the segmen-
tation clock, while increasing glycolytic flux has
the opposite effect.

Taken together, our data shows that glycolytic
flux tunes the segmentation clock period in an
anti-correlated manner.

2.2 Characterizing glycolytic
flux-induced transcriptional
responses in PSM cells

To gain insight into the mechanism underly-
ing the glycolytic flux-dependent control of the
segmentation clock period, we next looked into
flux-induced transcriptional responses and their
potential mechanisms operating in the PSM.
First, we Dbuilt PSM-specific enhancer-
mediated gene-regulatory network (eGRN) using
the GRaNIE (Gene Regulatory Network Infer-
ence including Enhancers) method [29], which
constructs eGRN based on co-variation of chro-
matin [i.e., transcription factor (TF) binding site]
accessibility, TF expression and corresponding
target gene expression across samples. We gener-
ated paired transcriptome [i.e., RNA sequencing
(RNA-seq)] and chromatin accessibility [i.e.,
assay for transposase-accessible chromatin with

173

174

175

176

177

178

sequence (ATAC-seq)] data from wild-type, non-
cultured PSM tissues. The PSM tissues were
microdissected into tailbud, posterior PSM, ante-
rior PSM, and somite regions, so that a resulting
eGRN is linked to gene expression changes follow-
ing PSM cell differentiation along the embryonic
axis, which also mirrors metabolic state changes
[3, 4] (Extended Data Fig. 3A).

The resulting eGRN includes 2522 genes out
of 28629 (= 9%) genes expressed in the PSM
and consists of 69 regulons, where each regu-
lon represents a set of target genes regulated by
a TF through their accessible enhancer regions
(Extended Data Fig. 3A). These regulons include
those associated with TFs that regulate PSM cell
differentiation, such as Cdx2 [30] and T [31], pro-
viding evidence for the validity of the PSM-specific
eGRN inferred with the GRaNIE method.

For the identification of glycolytic flux-
responsive genes, we performed transcriptome
analysis using explants from control and TG
explants cultured in different glucose concentra-
tions for three hours. We limited our analysis to
the tailbud region, where the clock period pheno-
type is most apparent. Combined with the dataset
from our previous study [6], this analysis revealed
617 flux-responsive differentially expressed genes
(DEGs) that were either upregulated (Cluster (C)
1 and C3) or downregulated (C2, C4, and C5) by
increasing glycolytic flux (Fig. 2A, Supplementary
Table 1).

By matching the flux-responsive DEGs to the
PSM-specific eGRN, we revealed that 132 DEGs
are part of the regulons. Intriguingly, the vast
majority of those (90 out of 132 DEGs) are part
of the Tcf712 regulon (Fig. 2B, Extended Data
Fig. 3B). Gene expression of the Tcf7]12 regulon
is downregulated with both increased glycolytic
flux and FBP supplementation (Fig. 2C, Extended
Data Fig. 3C), conditions that we found to cause
slowing down of the segmentation clock (Fig. 1).

Tecf712 is tightly linked to Wnt signaling [32,
33], and identified as a repressor in our eGRN
analysis (Extended Data Fig. 3A). Therefore,
these results reveal a glycolysis-Wnt-signaling
axis where increased glycolytic flux activates the
Tcf712 regulon, providing the mechanistic basis for
the anti-correlation between glycolytic flux and
Wnt signaling target gene expression. Function-
ally, the glycolysis-Wnt-signaling axis could hence
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Fig. 1 Glycolytic flux tunes the segmentation clock period in an anti-correlated manner. (A) Kymographs
showing the dynamics of the Notch signaling reporter (= LuVeLu [26]) in control (Ctrl) and cytoPFKFB3 (TG) PSM
explants in 2.0 mM glucose condition. (B-D) Quantification of the segmentation clock period in various metabolic conditions.
The clock periods were determined as a mean of LuVeLu periods between 400-600 min of the imaging. Since the clock
period is highly sensitive to temperature, the comparisons are always made within each experiment. (B) The clock period
in TG and Ctrl explants cultured in 0.5 mM or 2.0 mM glucose. (C) Effects of glucose titration on the clock period in
wild-type explants [0.5 mM (0.5G) vs. 2.0 mM (2.0G) vs. 10 mM (10G) glucose]. (D) Effects of fructose 1,6-bisphosphate
(FBP) or galactose (GALA) on the clock period in wild-type explants [CTRL, culture medium with 2.0 mM glucose; FBP,
culture medium with 2.0 mM glucose and 10 mM FBP; GALA, culture medium with 2.0 mM galactose (without glucose)].
One-way ANOVA with Tukey’s post hoc test (*p <0.05, **p <0.01, ***p <0.001). Mean + standard deviation (SD) are
shown in the graph, and individual data points represent biological replicates.

underlie the observed tuning of segmentation clock 20« Dickkopf-1 (Dkk1) [34, 35], a developmentally
period. 205 critical Wnt signaling inhibitor that acts at the
26 level of ligand-receptor interaction. We asked

2.3 GlycolysiS_Wnt Signa]ing axis 207 whether partial deletion of Dkk! could rescue the

controls the segmentation clock ** clock period phenotype observed in TG embryos,
period 200 where elevated glycolytic flux correlated with Wnt

20 signaling downregulation. Excitingly, we indeed
To functionally test whether the glycolysis-Wnt- »n  found that in TG embryos in which one allele of
signaling axis underlies the flux-dependent tuning . Dkk! was deleted, the segmentation clock period
of the segmentation clock period, we performed 2: was rescued in most of the samples (Fig. 3A).
a genetic rescue experiment using a mutant for as  Critically, we found that lactate secretion was not
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Fig. 2 Tcf712 regulon responds to glycolytic flux changes within PSM cells. (A) A heatmap showing glycolytic
flux-responsive differentially expressed genes (DEGs) between wild-type (WT) and cytoPFKFB3 (TG) PSM explants cul-
tured for three-hour in various (i.e., 0.5 mM, 2.0 mM, and 10 mM) glucose conditions (adjusted p-value <0.01, WT vs.
TG for each glucose condition). Normalized counts by variance stabilizing transformation (VST) were used to calculate
the z-scores. The datasets were integrated with the datasets from Miyazawa et al. (2022) [6]. DEGs that are parts of the
PSM-specific eGRN are marked by green. (B) A table showing the number of the flux-responsive DEGs that are included
in each PSM-specific regulon. (C) A box plot showing fold changes in gene expression of the flux-responsive Tcf712 targets

between different metabolic conditions.

affected by Dkk!I heterozygosity (Fig. 3B). TG
explants maintained high glycolytic flux even in a
DEkk1 heterozygous background, despite showing
a rescued clock phenotype. These findings indi-
cate that the proximate cause of the observed
clock phenotype in TG embryos are changes in
signaling, rather than cellular metabolic state.
To further probe the mechanism underlying
the clock period phenotype, we also examined
whether there is a correlation between cellular
redox state and the segmentation clock period,
as recently suggested in an embryonic stem cell
(ESC)-based model for the segmentation clock [7].
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To this end, we quantified the NAD"™ /NADH ratio
in control and TG explants under different cul-
ture conditions. As expected, the NADT/NADH
ratio changed in response to alterations in gly-
colytic flux (Extended Data Fig. 4). Importantly
however, the NAD* /NADH ratio was comparable
between control explants cultured in 10 mM glu-
cose and TG explants cultured in 2.0 mM glucose
(Extended Data Fig. 4), which showed a signifi-
cant difference in the segmentation clock period
(Fig. 1).

Taken together, these data provide strong evi-
dence that the tuning effect of glycolytic flux on
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the segmentation clock period is not mediated via
changes in cellular bioenergetic state but rather,
via modulation of Wnt signaling.

2.4 Metabolic entrainment of the
segmentation clock

To further investigate how glycolytic flux is linked
to oscillatory signaling and the segmentation
clock, we used a dynamical systems approach
based on entrainment. Entrainment offers a quan-
titative and non-disruptive approach to reveal
functional dependencies within a dynamical sys-
tem. We had previously established microfluidics-
based entrainment of the mouse embryo segmen-
tation clock, using periodic pulses of signaling
pathway modulators, such as a Notch signaling
inhibitor and a Wnt signaling activator [19, 24].
Based on our finding of a functional glycolysis-
Wnt-signaling axis, we wondered whether the seg-
mentation clock network could also be entrained
by periodic changes in glycolytic flux.

As glycolytic flux in PSM cells can be con-
trolled via the concentration of glucose in the
culture medium (Extended Data Fig. 2), we
used microfluidics to implement periodic changes
in glucose concentration during the culture of
PSM explants and monitored segmentation clock
dynamics using real-time imaging of a Notch
signaling reporter. Strikingly, we found that peri-
odic alternations of glycolytic flux are indeed
sufficient to entrain Notch signaling oscillations
underlying the segmentation clock (Fig. 4A, 4A’,
4B, 4B’, Supplementary Video 3). We quanti-
fied entrainment based on phase-locking (Fig. 4A’,
4B’, Extended Data Fig. 5B) and also using the
first Kuramoto order parameter (Fig. 4A, 4B),
which effectively measures how synchronous dif-
ferent samples are oscillating.

In addition to periodic changes in glucose, we
also tested whether periodic pulses of the sentinel
metabolite FBP would be sufficient to entrain the
segmentation clock. Indeed, our results revealed
evidence for Notch signaling entrainment by peri-
odic application of FBP (Fig. 4C, 4C’, Extended
Data Fig. 5B, Supplementary Video 4). In con-
trast, periodic application of pyruvate, the end
product of glycolysis, was not sufficient to entrain
the segmentation clock (Extended Data Fig. 5A,
5A’, 5B, Supplementary Video 5). These results

291
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293

294

295

show that transient, periodic perturbations of gly-
colysis, specifically at the level of the sentinel
metabolite FBP, can entrain the segmentation
clock. This provides additional, independent sup-
port for glycolytic flux-signaling closely linked to
developmental timing.

Importantly, we used metabolic entrainment
to further disentangle the functional dependen-
cies between glycolysis, Wnt and Notch signaling
pathways. Do periodic FBP pulses entrain Wnt
signaling directly or indirectly through Notch sig-
naling entrainment? We previously had shown
that Wnt and Notch signaling oscillations are cou-
pled within the segmentation clock network [19].
This means that entrainment of Notch signal-
ing oscillations eventually leads to entrainment of
Wnt signalling oscillations with a time delay, and
vice versa. Thus, we next quantified the timing
of metabolic entrainment in regard to both Notch
and Wnt signaling oscillations, in order to dis-
tinguish direct from more indirect dependencies
between glycolysis and Wnt signaling. Notably,
we found that periodic FBP pulses first entrained
Wnt signaling oscillations, while entrainment of
Notch signaling oscillations followed with consid-
erable delay (Fig. 4C, 4D, Supplementary Video
6). Hence, this dynamic entrainment analysis pro-
vides strong evidence that glycolysis/FBP has a
direct effect on Wnt signaling within the segmen-
tation clock network.

Combined, we show for the first time metabolic
entrainment of the segmentation clock, which fur-
ther establishes a signaling function of glycolysis.
Moreover, our analysis of entrainment dynamics
supports a specific, direct functional connection
of glycolytic flux-signaling to the Wnt signaling
pathway.

3 Discussion

3.1 Glycolysis-FBP-Wnt signaling
axis within the PSM.

In this study, we show that glycolytic flux tunes
the timing of axis segmentation through its
instructive function on Wnt signaling. This is
supported by our finding that in conditions of
increased glycolytic flux, the partial deletion of
Dkk1 rescued the segmentation clock period (Fig.
3). Previously, several mechanisms have been pro-
posed regarding how glucose metabolism impacts
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Fig. 3 Genetic rescue of the slow segmentation clock phenotype in cytoPFKFB3 embryos without affecting
glycolytic flux. (A) Quantification of the segmentation clock period in control (Ctrl) and cytoPFKFB3 (TG) explants
with one allele of Dkk! (HET), compared to samples with wild-type Dkk1 copy number (WT). The clock period under 2.0
mM glucose condition was determined as a mean of LuVeLu periods between 400-600 min of imaging. One-way ANOVA
with Tukey’s post hoc test (*p <0.05, ¥**p <0.01, ***p <0.001). Mean £+ SD are shown in the graph, and individual data
points represent biological replicates. (B) Lactate secretion was quantified as a proxy for glycolytic flux within PSM cells.
After 12 h ex vivo culture in 2.0 mM glucose, the amount of lactate secreted from control (Ctrl) and cytoPFKFB3 (TG)
PSM explants was quantified in wild type (WT) samples with normal Dkk! copy number and in samples with one allele of
Dkk1 (HET). Welch’s unpaired t-test (n.s., not significant). Mean + SD are shown in the graph, and individual data points

represent biological replicates.

Wt signaling via post-translational modifications
[5, 36, 37]. Our results presented here reveal
a key signaling role for the glycolytic sentinel
metabolite FBP. We propose that the ’glycolysis-
FBP-Wnt signaling axis’ is a module that connects
metabolism, signaling and developmental timing.

More specifically, combined with our previous
study [6], we provide in vivo evidence that glycol-
ysis controls Wnt signaling in a dose-dependent,
anti-correlated manner (Fig. 1-3). Hence, while
increasing glycolytic flux leads to a decrease in
Wnht-signaling target gene expression and a slow-
ing down of segmentation, we also see evidence
for the inverse: decreasing glycolytic flux within
a physiological range correlates with increased
Wnt target gene expression and accelerated seg-
mentation. Furthermore, we showed that periodic
application of FBP first synchronizes Wnt signal-
ing oscillations and subsequently Notch signaling
oscillations during metabolic entrainment (Fig. 4).
These findings indicate that glycolytic flux, or its
dynamics, tunes Wnt signaling activity to control
the timing of the segmentation clock.

These results appear to contrast with find-
ings in studies using in vitro stem cell models for

mesoderm specification, in which glycolytic inhi-
bition led to downregulation, not upregulation, of
Wnt signaling [4, 5, 38-40]. One potential reason
for this apparent discrepancy could be rooted in
the strength of perturbation applied to glycolytic
flux. In the studies mentioned above, glycolysis
was either strongly impaired pharmacologically
or bypassed altogether (i.e., no glucose condi-
tion), which caused downregulation of Wnt (and
other signaling) activity. This indeed shows that
ongoing glycolysis is required, permissively, for
signaling. In contrast, we show that tuning gly-
colytic flux within the physiological range, both
lowering and increasing flux, leads to an anti-
correlated response at the level of Wnt signaling
targets and segmentation clock period. Combined,
the available evidence hence suggest the existence
of multiple functional dependencies between gly-
colysis and signaling. First, a permissive glycolytic
function for signaling is evident, i.e., some gly-
colytic activity is per se required. In addition, we
show here that an instructive, tunable glycolysis-
FBP-Wnt signaling axis exists, controlling the
period of the segmentation clock in wvivo. Future
mechanistic studies will further resolve both the
permissive and instructive glycolytic function in
different contexts.
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Fig. 4 Metabolic entrainment of the segmentation clock. (A-D) Detrended (via sinc-filter detrending, cut-off
period = 240 min) time-series of LuVeLu (A-C) and Axin2-Achilles (D) intensity oscillations in wild-type PSM explants
during metabolic entrainment (dashed lines: individual samples, bold black line: median values, grey shades: the first to
third quartile range). Changes in the first Kuramoto order parameter are shown in magenta. Samples were incubated either
in a constant (i.e., 2.0 mM) glucose condition with periodic mock pulses (gray) (A) or alternating culture conditions (B-D)
with a period of 140-min and a pulse length of 30-min [alternating between: (B) 2.0 mM (white) to 0.5 mM (yellow) glucose
conditions; (C, D) the medium with (cyan) or without (white) 20 mM FBP on top of 2.0 mM glucose]. To keep molarity of
the medium at constant during experiments, non-metabolizable glucose (i.e., 3-O-methyl-glucose) was added to the medium
when necessary. (A’-D’) Stroboscopic maps showing step-wise changes in the phase of LuVeLu (A’-C’) and Axin2-Achilles
oscillations (D’) during metabolic entrainment. At each pulse of metabolic perturbations with glucose (A’, B’) or FBP (C’,
D’), the phase of the oscillator (i.e., new phase) is plotted against its phase at the previous pulse (i.e., old phase). Darker
dots represent later time points. Stroboscopic maps of a single representative sample are shown on the right (the numbers
in the plots indicate the number of the pulses).

Intriguingly, during metabolic entrainment, we
noticed that periodic changes in glycolytic flux
and FBP levels induce periodic changes in tissue
shape (Supplementary Video 3-6). This suggests a
potential additional link between glycolysis, Wnt
signaling, and tissue shape changes. Importantly,
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399

however, periodic pulse of pyruvate also caused
a similar shape change phenotype but did not
result in segmentation clock entrainment. While
we therefore conclude that tissue shape changes
are not sufficient for entrainment, their link to
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metabolic signaling needs to be a focus of future
studies.

To reveal the detailed mechanisms of glycolytic
flux signaling, it will be crucial to identify FBP
sensor molecules that mechanistically link intra-
cellular FBP levels and Wnt signaling. Probing
FBP-protein interactions is one exciting direction
that in different contexts have already indicated
the widespread regulatory potential of FBP [41-
44]. In addition, our transcriptome and eGRN
analyses identified genes within the Tcf712 regulon
as particularly glycolytic flux-sensitive (Fig. 2).
This raises the possibility that Tcf712 is a part of
the FBP sensing mechanisms and hence FBP-Wnt
signaling axis. Notably, Tcf712 has been strongly
associated with type 2 diabetes and is involved in
gluocse homeostatis and insulin secretion in pan-
creatic S-cells [8, 9]. An exciting possibility that
requires further investigation is that FBP directly
impacts Tcf712 activity in an allosteric manner
within the segmentation clock network but poten-
tially also in other biological contexts including
pancreatic [-cells.

3.2 Glycolytic flux control of the
segmentation clock period.

The primary function of the glycolysis-FBP-Wnt
signaling axis that we revealed in this study is
the control of segmentation clock period in mouse
embryos. Previously, Wnt signaling had been func-
tionally linked to the regulation of the segmen-
tation clock period [45], although the underly-
ing mechanisms were not addressed. Our work
reveals the direct impact of metabolic state on
Wnt-signaling and clock period and hence empha-
sises the need for future studies to identify how
Wnt signaling impacts the period of segmenta-
tion clock oscillations. Recently, a series of studies
have reported on potential mechanisms of how,
in general, the oscillation period can be tuned.
Accordingly, a study using in vitro stem cell sys-
tem reported that the segmentation clock period
is controlled by mitochondrial respiration, cellu-
lar redox state, and ultimately protein translation
rate [7]. Additionally, several in wvitro studies
emphasized that differences in protein turnover
rates underlie species-specific developmental tim-
ing [7, 46-49]. How our in vivo findings on the
link of glycolysis, Wnt signaling and develop-
mental timing relate to these in witro studies is

not resolved yet. In principle, our finding that
increased glycolytic flux leads to a slowing down
of the segmentation clock is compatible with a
role of mitochondrial respiration, since glycolysis
and respiration are considered to be inversely cor-
related (i.e., Crabtree effect). However, we found
that glycolytic flux-signaling shows specificity at
the level of FBP, as periodic pulses of pyruvate are
not sufficient to entrain the segmentation clock,
which could argue against an involvement of mito-
chondrial respiration. In addition, our findings
revealed that glycolysis functions via Wnt sig-
naling (Fig. 3), and not via cellular redox state
(Extended Data Fig. 4). We also found clear evi-
dence for a direct immediate effect of FBP on
Wt signaling using metabolic entrainment (Fig.
4). Combined, our findings hence argue against a
widespread, bioenergetic mechanism. Instead we
identifies a non-bioenergetic metabolic signaling
role and reveals the glycolysis-FBP-Wnt signal-
ing axis as a regulator of the segmentation clock
period.

3.3 Future direction

In conclusion, our study provides evidence that
glycolysis is instructive in regulation of Wnt sig-
naling. This regulatory function is crucial for
controlling developmental timing and potentially
embryonic patterning. The association between
glycolysis and Wnt signaling in many biologi-
cal contexts, ranging from development to disease
states [9, 50-52], underscores the critical need to
now explore how ubiquitously the glycolysis-FBP-
Wnt signaling axis functions in living systems.

These findings also raise the more general
question about the significance of the functional
link between metabolic activity and develop-
mental timing. We discuss here two, potentially
interconnected, hypotheses regarding the broader
implications of this relationship.

One appealing hypothesis is that the intrinsic
temporal organization of metabolism, which man-
ifests as metabolic rhythms and cycles at various
temporal and spatial scales [53], serves as the core
template for biological timing and oscillations [54].
In this study, we provide the first demonstration
that if present, metabolic cycles (in our case exper-
imentally generated via entrainment) can potently
entrain the segmentation clock and developmen-
tal timing. Thus, as a next logical step, efforts
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need to be intensified to elucidate the presence of
metabolic rhythms and cycles in living systems.
In addition, the link between metabolism,
developmental signaling and timing could serve
the integration of environmental cues, such as
changes in nutritional resources. Interestingly, we
show that access to higher glucose concentrations
slows down the pace of embryonic segmentation.
In order to understand the significance of this
functional dependence between metabolism, sig-
naling and timing, it will be critical to study the
dynamic interplay of organisms with their natural
environment, considering the entire life cycle.

4 Methods

4.1 Animal work

All animals were housed in the EMBL animal
facility under veterinarians’ supervision and were
treated following the guidelines of the European
Commission, revised directive 2010/63/EU and
AVMA guidelines 2007. All the animal experi-
ments were approved by the EMBL Institutional
Animal Care and Use Committee (project code:
21-001_HD_AA). The detection of a vaginal plug
was designated as embryonic day (E) 0.5, and all
experiments were conducted with E10.5 embryos.

4.2 Mouse lines

The following mice used in this study were
described previously and were genotyped
using primers described in these references:
Agzin2-Achilles [24], Hprt“r® [55], LuVeLu [26],
RosaQ6loxP—stop—loxP—cytoPFKFB3 [6], Dkk1 mutant
[35]. While the Dkk! mutant line was maintained
on C57BL/6j genetic background, the other
mouse lines were maintained on CD1 genetic
background. For the genetic rescue experiments,
the following primers were used to detect the
mutant allele of Dkk1 [56]: forward, 5-GCT
CTA ATG CTC TAG TGC TCT AGT GAC- 3.
Reverse, 5'-GTA GAA TTG ACC TGC AGG
GGC CCT CGA-3'.

4.3 Ex vivo culture of PSM explants

Dissection and ex vivo culture of PSM explants
were performed as described before [6]. In brief,
E10.5 embryos were collected in DMEM/F12

542

543
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(without glucose, pyruvate, glutamine, and phe-
nol red; Cell Culture Technologies) supplemented
with 2.0 mM glucose (Sigma-Aldrich, G8769),
2.0 mM glutamine (Sigma-Aldrich, G7513), 1.0%
(w/v) BSA (Cohn fraction V; Equitech-Bio,
BAC62), and 10 mM HEPES (Gibco, 15360-106).
PSM explants were isolated using a micro scalpel
(Feather Safety Razor, No. 715, 02.003.00.715)
and were cultured in DMEM/F12 supplemented
with 0.5-2.0 mM glucose, 2.0 mM glutamine, and
1.0% (w/v) BSA (Cohn fraction V; Equitech-
Bio, BAC62) at 37°C, under 5% COas, 60% Oo
condition.

4.4 Live imaging of Notch and Wnt
signaling reporter lines

To monitor Notch and Wnt signaling activity
using real-time imaging, LuVeLu [26] and Azin2-
Achilles knock-in [24] reporter lines were utilized,
respectively. Following dissection, PSM explants
were washed once with culture medium and were
transferred into agar wells (600 nm-width, 3% low
Tm agarose, Biozyme, 840101) in 4-well slides
(Lab-Tek, #155383). Imaging was performed with
a LSM780 laser-scanning microscope (Zeiss), at
37°C, under 5% COs, 65% O2 condition. Samples
were excited by a 514 nm-wavelength argon laser
through 20xPlan-Apochromat objective (numeri-
cal aperture 0.8). Image processing was done using
the Fiji software [57]. For extracting period and
phase of signaling oscillations, wavelet analysis
was performed using pyBOAT [58].

4.5 NAD*T/NADH and lactate
measurements

PSM explants without somites were cultured
for one hour in DMEM/F12 supplemented with
varying amounts of glucose or galactose (Sigma,
G0750). The explants were flash frozen by lig-
uid Ny following one hour ex wivo culture and
were stored at -80°C until use. NADT/NADH
measurements were performed according to the
manufacturer’s instructions (Promega, G9071). In
brief, eight explants were lysed in 90 pl of 0.1N
NaOH with 0.5% DTAB and were split into two
tubes (40 ul per tube). Samples were then incu-
bated at 60°C for 15 min with or without adding
20 yl of 0.4N HCI for NAD* and NADH measure-
ments, respectively. After neutralisation either by
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0.5M Trizma base solution (for NADT samples)
or Trizma-HCI solution (for NADH samples), the
lysates were used for NADT/NADH measure-
ments. Lactate measurements were performed as
described before [6].

4.6 ATAC- and RNA-sequencing
analysis

PSM explants of E10.5 wild-type embryos (CD1
genetic background) were microdissected into
tail bud, posterior PSM, anterior PSM, and
somite regions by micro scalpel in cold PBS.
Each tissue region was transferred into a micro
well (ibidi, #80486) and mechanically dissoci-
ated to a cell suspension in 4.2 pl cold PBS.
Finally, 0.7 pl and 3.3 pl cell suspensions were
used for RNA-sequencing (RNA-seq) and ATAC-
sequencing (ATAC-seq), respectively. For the com-
parison between control and cytoPFKFB3 PSM
explants, explants were cultured for three-hour ex
vivo before collecting tail buds for RNA-seq anal-
ysis.

ATAC-seq. We followed the Omni-ATAC proto-
col [59] with some modifications. For transposi-
tion reactions, 3.3 ul cell suspensions were mixed
with 5.0 ul 2x TD buffer (20 mM Tris-HCl pH
7.6, 10 mM MgCls, 20% dimethyl formamide),
1.0 ul TDE1l (Hlumina, #15027865), 0.1 pl 1%
digitonin (Promega,#G9441), 0.1 pl 10% Tween-
20 (Sigma, #11332465001), 0.1 pl 10% NP-40
(sigma, #11332473001), and 0.4 pl nuclease-free
water. After 30 min incubation at 37°C on a
thermomixer set at 600 rpm, the samples were
purified by a DNA Clean and Concentrator-5
(Zymo Research, D4014) and DNA concentrations
were determined by Qubit Fluorometer (dsDNA
High Sensitivity Kit, ThermoFisher, Q32851). The
samples were diluted to 20 ng/pl and used as
templates for library preparations by PCR. PCR
reactions were performed using primers from Nex-
tera XT Index Kit (Illumina, FC-131-1001) and
NEBNext High Fidelity 2X PCR Master Mix
(NEB, M0541). After purification with Qiagen
MinElute PCR Purification Kit (Qiagen, 28004),
individual libraries were size selected (100-800
bp) with Ampure XP beads (Beckman Coul-
ter, #A63881). Libraries were quantified using
the Qubit Fluorometer (dsDNA High Sensitiv-
ity Kit) and average fragment length distribu-
tion was determined by the Bioanalyzer (Agilent,
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High Sensitivity DNA kit, 5067-4626). Prepared
libraries were multiplexed in pools of equimolar
concentrations and sequenced on the NextSeq 500
(Illumina) platform with 75-bp paired-end read-
ings. After demultiplexing and barcode trimming
(Trimmomatic Galaxy Version 0.36.6), sequencing
reads were quality checked (FastQC Galaxy Ver-
sion 0.73) and aligned to Mus Musculus genome
(GRCm38) with the Bowtie2 aligner (Galaxy
Version 2.3.4.2, options -I 0 -X 2000 —dovetail
—sensitive). Multi-mapping and duplicate reads
were removed; finally only reads mapping to major
chromosomes were kept [60].

RNA-seq. We followed the Smart-seq2 protocol
[61] with some modifications. In brief, dissociated
cells were lysed with three times volume of cell
lysis buffer (0.02% Triton-X with RNasin), snap
frozen by liquid Na, and stored at -80°C until
cDNA synthesis. cDNAs were synthesized using
SuperScript IV Reverse Transcriptase (Thermo
Fisher Scientific) and amplified by PCR with
HiFi Kapa Hot start ReadyMix (Kapa Biosys-
tems, KK2601). After clean-up with SPRI beads,
concentrations of cDNA (50-9000 bp) samples
were determined by the Bioanalyzer (Agilent,
High Sensitivity DNA kit). 250 pg cDNAs were
then used for tagmentation-based library prepa-
ration. Libraries were quantified using the Qubit
Fluorometer (dsDNA High Sensitivity Kit) and
average fragment length distribution was deter-
mined by the Bioanalyzer (Agilent, High Sensitiv-
ity DNA kit, 5067-4626). Prepared libraries were
multiplexed in pools of equimolar concentrations
and sequenced on the NextSeq 500 (Illumina) with
75-bp paired-end (for the wild-type, non-cultured
PSM explants) or single-end (for the comparison
between control and cytoPFKFB3 explants) read-
ings. After demultiplexing and barcode trimming
(TrimGalore Galaxy Version 0.4.3.1), sequencing
reads were quality checked (FastQC Galaxy Ver-
sion 0.69) and aligned to Mus Musculus genome
(GRCm38) with the with the STAR aligner (ver-
sion 2.5.2b, default options) [60]. Multi-mapping
reads were removed and RNA-seq quality assessed
with Picard CollectRnaSeqMetrics (Galaxy ver-
sion 2.7.1.1)
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4.7 GRaNIE analysis

Enhancer-mediated gene regulatory network
(eGRN) was constructed from the matched RNA-
seq and ATAC-seq data (24 samples for each) of
the PSM explants from E10.5 wild-type embryos
using the developer’s version of the now pub-
lished GRaNIE package (https://bioconductor.
org/packages/release/bioc/html/GRaNIE.html)
[29]. Raw gene counts from RNA-seq data
were produced with a summarizeOverlaps func-
tion from the GenomicAlignments R package
(https://bioconductor.org/packages/release/
bioc/html/GenomicAlignments.html) [62], cor-
rected for different experimental batches using
Combat-seq function from the R package sva
[63] and log2 normalised. ATAC-seq peak
counts were generated using DiffBind R package
(https://bioconductor.org/packages/DiffBind /),
and peak positions were identified using MACS2
software  (https://genomebiology.biomedcentral.
com/articles/10.1186/gb-2008-9-9-1r137) [64]. The
details of the GRaNIE approach are described
here [29]. Briefly, in the first step the expression
of each TF was correlated with accessibility of
each of the accessible regions (=ATAC-seq peak)
with and without a known binding site of the
TF (foreground and background, respectively).
Known binding sites were defined using the
HOCOMOCO database v.10 [65]. Significantly
correlated TF-peak links were identified using
empirical FDR of 30% (calculated separately for
each TF) and an absolute correlation Pearson’s
coefficient of >0.4. In the second step chromatin
accessibility at the ATAC-seq peaks was corre-
lated with the expression of all genes less than
250kb away from the peak and peak-gene links
were retained if they were positively and signif-
icantly (P <0.05) correlated (our assumption is
that accessibility at the regulatory region pos-
itively correlates with expression of the linked
gene), and if their Pearson’s correlation coefficient
was >0.4. This resulted in the eGRN consisting
of 69 TFs, 5154 TF-peak-gene connections of
2522 unique genes. TF regulons were defined as
all TF-gene links of each TF within the network.
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4.8 Microfluidics-based
segmentation clock entrainment

PDMS chips and PTFE tubing (inner diame-
ter: 0.6 mm, APT AWG24T) for microfluidics-
based entrainment experiments were prepared as
described before [19, 24]. Culture media were pre-
pared on the day of experiments by adding a
metabolite of interest [either glucose, FBP, pyru-
vate (Sigma, P4562), or 3-OMG (Sigma, M4879)]
to DMEM/F12 supplemented with 2.0 mM glu-
tamine (Sigma-Aldrich, G7513), 0.01% (w/v) BSA
(Cohn fraction V; Equitech-Bio, BAC62), and 1%
penicillin-streptomycin (Gibco, 15140122). The
PDMS chip (soaked in PBS) and the culture
medium (filled in 10 mL syringes; BD Biosciences,
300912, diameter 14.5 mm) were degassed before
use for at least one hour in a vacuum desiccator
chamber.

Following dissection, PSM explants with two
intact somites were transferred to the PDMS chip
and sample inlets were plugged with a PDMS-
filled PTFE tubing. The tubings connected to the
syringes with medium were then connected to the
medium inlets and the samples were placed in the
incubator (37°C, 5% COs, 65% O-) installed on a
LSM780 laser-scanning microscope (Zeiss) for pre-
culture. Pumping was started for both the control
and treatment medium at the flow rate of 20 pl/hr.
A half hour later, only the control medium was
pumped into the chip for another 30 min at the
flow rate 60 pl/hr. After the pre-culture, imaging
was started under constant or alternating culture
conditions.

For data analysis, moving ROIs (30-pixel in diam-
eter) were placed in the posterior PSM to obtain
intensity profiles of LuVeLu or Axin2-Achilles
reporters over time. To extract the period and
phase of LuVeLu and Axin2-Achilles oscillations,
the intensity profiles were analysed using a wavelet
analysis workflow [58]. Entrainment of Notch and
Wnt signaling oscillations was analysed using
stroboscopic maps and the first Kuramoto order
parameter as described before [24].

4.9 Data availability

The ATAC-seq and RNA-seq data generated in
this study were deposited in the BioStudies under
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the accessioin number E-MTAB-13692, E-MTAB-
13693, and E-MTAB-13694. For identifying gly-
colytic flux-responsive genes, the RNA-seq data
from our previous study [available in the European
Nucleotide Archive (ENA) under the accession
number PRJEB55095] were also used [6].

5 Acknowledgments

We thank Irene Miguel-Aliaga, Kristina Staporn-
wongkul, and Vikas Trivedi for their feedback
on the manuscript, Vladimir Benes and Laura
Villacorta for technical advice and support for
RNA-seq analysis and Jonathan Landry for help-
ing RNAseq data analysis. This work is sup-
ported by the EMBL Advanced Light Microscopy
Facility (ALMF), Genomics Core Facility, and
all the member of Laboratory Animal Resource
(LAR). H.M. was supported by the EMBL
Interdisciplinary Postdoc (EI3POD) programme
under H2020 Marie Sklodowska-Curie Actions
COFUND (grant number 664726) and the Japan
Society for the Promotion of Science (JSPS).
E.E. was supported by the Human Frontier Sci-
ence Program (HFSP) fellowship. This work was
supported by the European Molecular Biology
Laboratory and received funding from the Euro-
pean Research Council under an ERC consolida-
tor grant agreement n.866537 to A.A. and the
German Research Foundation/DFG (project SFB
1324 — project number 331351713) to A.A.

6 Author contributions

H.M.: Conceptualization, Methodology, Formal
analysis, Investigation, Writing - Original Draft,
Visualization, Supervision

J.R.: Conceptualization, Methodology, Formal
analysis, Investigation, Writing - Original Draft,
Visualization

P.G.L.S.: Methodology, Software, Investigation
E.E.: Methodology, Formal analysis, Investigation
D.B.: Software, Formal analysis, Investigation
C.G.: Software, Formal analysis

J.Z.: Supervision, Funding acquisition
A.A.:Conceptualization, Methodology, Writing —
Original draft preparation, Supervision, Project
administration, Funding acquisition

819

822

823
824

825

829

830

831
832

833

13

Declarations

The authors declare that they have no conflict of
interests.

Appendix A Extended Data

A.1 Extended Data Fig. 1 —
Increasing glycolytic flux slows
down Wnt signaling
oscillations.

Extended Data Fig.2 —
Glycolytic flux shows

glucose-dose dependency in
PSM cells.

Extended Data Fig.3 —
Building a PSM-specific eGRN
using the GRaNIE method.

Extended Data Fig.4 —
Response of cellular redox
state to alterations in
glycolytic flux within PSM
cells.

Extended Data Fig.5 —
Segmentation clock

entrainment by periodic,
transient glycolytic cues.
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Extended Data Fig. 1 Increasing glycolytic flux slows down Wnt signaling oscillations. (A) Kymographs
showing the dynamics of the Axin2-Achilles knock-in reporter in control (Ctrl) and cytoPFKFB3 (TG) PSM explants in 2.0
mM glucose condition. (B) Quantification of the Wnt signaling oscillation periods in Ctrl and TG explants cultured in 2.0
mM glucose. The periods were determined as a mean of Axin2-Achilles periods between 400-600 min of the imaging. Welch’s
unpaired t-test, ***p <0.001. Mean + SD are shown in the graph, and individual data points represent biological replicates.
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Extended Data Fig. 2 Glycolytic flux shows glucose-dose dependency in PSM cells. (A, B) Lactate secretion
was quantified as a proxy for glycolytic flux within PSM cells. The amount of lactate secreted from PSM explants during
12 h ex vivo culture was quantified. (A) Comparison of lactate secretion between control (Ctrl) and cytoPFKFB3 (TG)
explants cultured in 0.5 mM or 2.0 mM glucose (the data for 2.0 mM glucose condition is adapted from Miyazawa et al. 2022
[6]). (B) The effect of replacing glucose with galactose on lactate secretion from wild-type explants. Welch’s unpaired t-test,
*p <0.05, **p <0.01 vs. Ctrl. Mean £ SD are shown in the graph, and individual data points represent biological replicates.
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Extended Data Fig. 3 Building a PSM-specific

eGRN using the GRaNIE method. (A) A heatmap showing

gene expressions of each PSM-specific regulon (i.e., means of all the targets) identified by the GRaNIE method. Normalized
counts by variance stabilizing transformation (VST) were used to calculate the z-scores. (B) A network showing TFs
(colored squares) and their glycolytic flux-responsive target genes (colored circles). (C) Box plots showing fold changes
in gene expressions of flux-sensitive DEGs that constitutes each PSM-specific regulon. The fold changes were calculated

between different metabolic conditions.
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Extended Data Fig. 4 Response of cellular redox state to alterations in glycolytic flux within PSM cells.
Quantification of NADt/NADH ratio following one-hour ex vivo culture of control (Ctrl) and cytoPFKFB3 (TG) PSM
explants under various culture conditions. For the galactose (GALA) condition, 2.0 mM galactose was supplemented to the
culture medium instead of glucose. Mean + SD are shown in the graph, and individual data points represent biological

replicates. Welch’s unpaired t-test, ¥*p <0.05.
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Extended Data Fig. 5 Segmentation clock entrainment by periodic, transient glycolytic cues. (A) Detrended
(via sinc-filter detrending, cut-off period = 240 min) time-series of LuVeLu intensity oscillations in wild-type PSM explants
exposed to periodic pulses of 20 mM pyruvate (dashed lines: individual samples, bold black line: median values, grey shades:
the first to third quartile range). Changes in the first Kuramoto order parameter are shown in magenta. To keep molarity
of the medium at constant during experiments, 20 mM non-metabolizable glucose (i.e. 3-O-methyl-glucose) was added to
the basal medium containing 2.0 mM glucose. (A’) Stroboscopic maps showing step-wise changes in the phase of LuVeLu
oscillations in response to periodic pyruvate pulses. Darker dots represent later time points (the numbers in the plots
indicate the number of the pulses). (B) Stroboscopic maps showing the phase of Notch (i.e., LuVeLu) and Wnt (i.e., Axin2-
Achilles) oscillations at the last pulse of metabolite. Filled circles represent entrained samples, while open circles represent
non-entrained samples. Samples are considered to be entrained when a phase difference between the last and second last
pulses is less then 7/8. CON-Gluc, constant (2.0 mM) glucose condition; ALT-Gluc, alternating (from 2.0 mM to 0.5 mM)
glucose condition.
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