

Dispersion-free inertial focusing (DIF) for high-yield polydisperse micro-particles filtration and analysis

*Kevin C. M. Lee^{1,2}, Bob M. F. Chung^{1,2}, Dickson M. D. Siu,^{1,2} Sam C. K. Ho^{1,2}, Daniel K. H. Ng¹,
Kevin K. Tsia^{1,2*}*

1. *The University of Hong Kong, Pokfulam road, Hong Kong, HKSAR*
2. *Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong*

* Corresponding author, e-mail: tsia@hku.hk

* Corresponding author, e-mail: tsia@hku.hk

8 Keywords: Particle focusing; Inertial focusing; Polydisperse particles; Particle filtration;
9 Particle analysis

10 Abstract:

11 Inertial focusing excels at the precise spatial ordering and separation of microparticles by size
12 within fluid flows. However, this advantage, brought by its inherent size-dependent dispersion,
13 could turn into a drawback that challenges applications requiring consistent and uniform
14 positioning of polydisperse particles, such as microfiltration and flow cytometry. To overcome
15 this fundamental challenge, we introduce Dispersion-Free Inertial Focusing (DIF). This new
16 method minimizes particle size-dependent dispersion while maintaining the high throughput
17 and precision of standard inertial focusing, even in a highly polydisperse scenario. We
18 demonstrate a rule-of-thumb principle to reinvent inertial focusing system and achieve an
19 efficient focusing of particles ranging from 6 to 30 μm in diameter onto a single plane with less
20 than 3 μm variance and over 95% focusing efficiency at highly scalable throughput (2.4-30
21 mL/hr) – a stark contrast to existing technologies that struggle with polydispersity. We
22 demonstrated that DIF could be applied in a broad range of applications, particularly enabling
23 high-yield continuous microparticle filtration and large-scale high-resolution single-cell
24 morphological analysis of heterogeneous cell populations. This new technique is also readily
25 compatible with the existing inertial microfluidic design and thus could unleash more diverse
26 systems and applications.

27 **1. Introduction**

28 High-precision particle alignment in continuous high-speed fluidic flow is crucial for
29 applications that require robust and large-scale particle manipulation and analysis. Among
30 different fluidic control mechanisms, inertial focusing (IF) stands out for its superior
31 performance in the automatic and precise ordering of flowing particles purely by a pressure-
32 driven fluid flow ^[1,2]. It has galvanized a wide range of proven applications of inertial
33 microfluidics, covering chemistry, life science research, biomedical diagnostics/treatments, and
34 biotechnology ^[2].

35 IF has shown promise in applications that demand high-precision separation of particles by size,
36 such as isolating cancer cells ^[3,4] and malaria parasites ^[5,6] from body fluids. This success is
37 made possible by its unique and inherent property – *dispersed positioning of particles*
38 *according to their sizes*, which we term *dispersion*. This effect results from the two fundamental
39 forces in IF that involve the interactions between fluid, particles, and microchannel (i.e., shear-
40 gradient-induced and wall-induced lift forces). Consequently, the particle size strongly
41 influences the equilibrium positions (foci) of the inertial force field – resulting in dispersion,
42 i.e., particles with different sizes are focused at different positions ^[7–9].

43 For instance, in its most straightforward geometry, a straight long channel with a low/high-
44 aspect-ratio rectangular cross-section focuses large particles into a single plane at the center of
45 the long walls while focusing small particles into the same plane with spurious streams near the
46 short walls ^[10]. Other state-of-the-art microfluidic approaches incorporate additional force
47 fields in the channel, such as secondary flow drag force and viscoelastic force, to shape the
48 dispersion with the aim of particle separation ^[11–13]. Typical examples include multi-orifice
49 (a.k.a. expansion-contraction) channels, which focus small and large particles to different
50 planes within the channel cross section ^[14–18]; curvilinear channels, which distribute particles
51 by size along the long wall ^[19–26]. Therefore, the existing IF systems are not yet to be robustly
52 free of dispersion.

53 In applications where uniform positioning of polydisperse particles (i.e., minimal dispersion) is
54 essential, using existing IF systems must compromise the focusing yield. Representative
55 applications include high-definition particle analysis (e.g., flow cytometry ^[27], imaging flow
56 cytometry ^[28], and deformability cytometry ^[29]) and efficient microplastic filtration ^[30]. Notably,
57 there is a dramatic shift in advanced microfluidic imaging flow cytometry applications toward
58 high-throughput and in-depth morphological profiling of cells ^[28]. The prerequisite is to ensure

59 the heterogeneous population of cells can be well confined within a thin cross-section such that
60 high-resolution and in-focus images of all single cells can be captured. Note that natural
61 samples (e.g., single cells ^[31] and micropastics ^[32]) commonly have sizes spanning from
62 micrometers to tens of micrometers, giving a polydispersity (i.e., max-min size ratio) larger
63 than 4. Existing IF systems, due to their inherent dispersion, can only guarantee uniform
64 focusing of particles (cells) with a polydispersity no more 2. Therefore, imaging flow cytometry
65 based on these systems would miss significant portions of the sample and limit the yield and
66 accuracy of the downstream analysis. Similarly, common approaches for microplastic filtration
67 utilize streamlined division to retrieve clean water from water contaminated by irregular plastic
68 fragments. The thinner the microplastic-carrying stream, the more the clean water can be
69 retrieved. In general, these methods necessitate focusing polydisperse particles into a single
70 slice as thin as a few micrometers for high-yield filtration. However, the higher the microplastic
71 polydispersity, the thicker the microplastic-carrying stream due to the dispersion. The
72 dispersive focusing common in the current inertial microfluidic designs inevitably deteriorates
73 the yield in these applications.

74 To address the unmet need, we establish a rule of thumb that enables Dispersion-free Inertial
75 Focusing (DIF), which focuses polydisperse particles at high throughput and precision with
76 minimal dispersion. Through our extensive numerical analysis and experimental validations
77 that cover a broad range of particle sizes and flow rates, we establish a universal strategy for
78 efficient automated compression of the inherent dispersion, called *field-zoning-aware particle*
79 *pre-localization*. As a result, we developed a dispersion-free single-plane focusing (known as
80 single-file focusing) that can efficiently focus polydisperse particles (i.e., >95% for 6-30 μm in
81 diameter, polydispersity = 5) into a thin slice (i.e., < 3 μm thin) consistently across a wide range
82 of flow rate (2.4-30 mL/hr). Our experimental benchmarking also demonstrated that this DIF
83 system outperforms the state-of-the-art IF systems regarding minimal dispersion in positioning
84 polydisperse particles onto a single plane. Finally, we showcase the applicability of the DIF
85 system in two distinct applications beyond the reach of conventional methods: continuous
86 microparticle filtration and high-throughput, in-depth image-based single-cell analysis. This
87 new technique is also readily compatible with the common inertial microfluidic design and thus
88 could unleash more diverse applications of IF that require dispersion-free processing of
89 polydisperse particles.

90

91 **2. Result**

92 *2.1. Underlying rationales of DIF*

93 The central concept of DIF rests upon the strategic shaping and localization of the distribution
94 of the polydisperse particles for achieving size-insensitive inertial focusing. The rationale is
95 motivated by the inherent size-dependent property of the fundamental zoning (or
96 compartmentalization) effect of inertial focusing. Consider the most commonly studied
97 geometry, i.e., high-aspect-ratio (HAR) rectangular straight channel, the inertial force field is
98 divided into multiple zones across the channel cross-section, each containing a focus and
99 surrounded by a border that prevents particle from crossing. We revisited this mechanism by
100 conducting a comprehensive numerical analysis (See **Methods and Figure S1**), and we
101 confirmed the existence of the size-sensitive residual focusing zones (located near the short
102 walls), which create two satellite streams of particles (**Figure 1a(i, iii) and Video S1**). More
103 importantly, these residual zones expand significantly with decreasing particle sizes (~40%)
104 (**Figure 1a(ii) and Table 1**), i.e., small particles tend to disperse more than the large particles
105 – leading to dispersion. In other words, no satellite streams will be formed if the *polydisperse*
106 particle distribution can first be strategically localized outside the size-dependent residual zones.
107 Thus, a HAR channel with emptied residual zones can, in principle, focus particles into a thin
108 slice regardless the polydispersity of particles.

109 Creating such a targeted particle distribution for DIF needs a flow condition that satisfies *all*
110 three requirements that have largely been overlooked in the existing inertial focusing methods:
111 (1) it should generate a pinching effect for particle localization; (2) it should not generate any
112 residual zoning effect; and (3) it should ensure the localization adapts with the downstream
113 inertial force field (in this case at the long walls). Here, we investigate the *field-zoning-aware*
114 *particle pre-localization* by a HAR symmetric orifice structure (**Figure 1b, S2, and Video S2**).
115 It creates the favorable flow condition by a consistent secondary flow with four converging
116 spiraling vortices, one at each quadrant (**Figure 1b(i)**). This design differs from the secondary
117 circulatory flow generated by other spiral and serpentine designs, Dean flow, which is
118 ineffective for creating the pinching effect (**Figure S3**)^[33]. Furthermore, we refined this orifice
119 structure design (by maximizing the repetition frequency) so that the secondary flow outruns
120 the inertial force to make the zoning effect virtually absent. Consequently, the polydisperse
121 particles can effectively be pinched by the secondary vortex flow along the long walls of the
122 channel (**Figure 1b(iii)**). This particle distribution is thus shaped and localized outside the
123 residual zone of the HAR rectangular channel (0% in the residual zone in **Figure 1b(ii)**). We

124 emphasize that the requirement for achieving all three conditions for DIF has been largely
125 overlooked in the existing inertial focusing methods, including the well-known spiral^[26,34],
126 serpentine^[35], and orifice designs^[16] (Also see our benchmarking shown in Section 2.4).

127 *2.2. Overall design for DIF*

128 Based on the above rationale, we developed a single-plane DIF system by cascading the
129 aforementioned HAR orifice to the inlet of the HAR rectangular straight channel with the same
130 cross-section (a length of 15 mm and 25 mm, respectively) (**Figure 1c(i) and Video S3**). Our
131 numerical computational fluid dynamic (CFD) particle tracing clearly shows that the field-
132 zoning-aware pre-localization forces particles to evade from the residual zones (near the short
133 wall) of the downstream inertial force field. The dispersion of such particle distribution is thus
134 automatically compressed by the downstream inertial focusing – resulting in single-plane DIF
135 of polydisperse particles, free from dispersion (**Figure 1c(ii)**).

136 Furthermore, we experimentally verified this DIF design by imaging the 3D flowing trajectories
137 of 6- μ m and 15- μ m fluorescent microspheres under a confocal microscope (**Figure 1c(iii) and**
138 **S6**). Consistent with the CFD simulation, our experiment demonstrated that the DIF design can
139 focus both small particles (i.e., 6 μ m) and large particles (i.e., 15 μ m) onto the same plane,
140 (**Figure 1c(iii), case 1**). In contrast, all other designs exhibit dispersion in different ways. The
141 orifice alone distributes polydisperse particles along the long wall (**Figure 1c(iii), case 2**) and
142 the HAR rectangular straight channel alone introduces satellite streams (**Figure 1c(iii), case 3**).
143 Importantly, reversing the order of orifice and straight channel cannot eliminate dispersion
144 (**Figure 1c(iii), case 4**). These experimental demonstrations justify the importance of pre-
145 localizing particle distribution strategically achieved by the three necessary flow conditions in
146 order to achieve dispersion compression effectively in DIF. We note that the presented HAR
147 symmetric orifice for particle localization is not the only viable geometry for DIF. An
148 alternating asymmetric HAR orifice, which could create a similar localization, also enables
149 single-plane DIF (**Figure S5**). It thus showcases that DIF is a generic concept that is applicable
150 to any microfluidic system as long as the condition of *field-zoning-aware particle pre-*
151 *localization* is satisfied - providing a high degree of flexibility to design future dispersion-free
152 systems.

153 *2.3. Experimentally evaluating efficiency of single-plane DIF system*

154 We next quantify and evaluate the efficiency of our single-plane DIF method in handling
155 polydisperse particles through particle flow characterization using our home-built ultrafast laser
156 scanning microscope (**Figure 2**)^[36,37]. We systematically tracked the flow behaviors of 5 sets
157 of monodisperse fluorescent microspheres (i.e., 6, 10, 15, 20, and 25 μm) across a wide range
158 of flow rates (i.e., 2.4, 6, 12, 18, 24 and 30 mL/hr) (**Figure 2**). Particles are imaged at a
159 downstream position (40 mm) to ensure they are in a steady focusing state. Note that the images
160 are taken from the short wall, and the optical image focus is set to the middle of the long wall.
161 Thanks to the narrow depth of focus (DOF) brought by this high-resolution imaging system,
162 the degree of sharpness of particle images can be used to indicate the particle position deviation
163 away from the single plane. Hence, accurate particle recognition (in-focus versus out-of-focus)
164 (**Figure 2c-d**) and quantitative particle analysis can be performed (**Figure 2e**). We quantified
165 the particle focusing efficiency in DIF by a parameter, *loss*, which is defined as the ratio of out-
166 of-focus particles to the total number of particles (**Figure 2e and Table 2-3**). In general, all
167 particles in DIF are in sharp image focus, whereas a considerable amount of out-of-focus
168 particle images were captured in the HAR straight channel (**Figure 2a-b**). The loss of the DIF
169 system is quantified to be as low as $1.5 \pm 2\%$ (mean \pm standard deviation (std)) across all particle
170 sizes, while the loss of the HAR straight channel is as high as $12 \pm 13.9\%$, 7-8 times higher in
171 both mean and standard deviation than DIF (**Figure 2e**). It shows a steep decreasing trend for
172 the larger particle sizes, i.e., the loss is as high as 41.7% for 6 μm particles, whereas as low as
173 almost 0% for 25 μm particles (**Figure 2e**). These observations agree very well with our earlier
174 numerical simulation and experimental results – giving solid proof of the effective dispersion
175 suppression and the superior single-plane focusing performance of polydisperse particles.

176 2.4. Comparison with the State-of-the-art Inertial Focusing Systems

177 We further performed an experimental benchmarking of the DIF system against the
178 representative inertial focusing systems, namely an asymmetric orifice (STEP), a spiral
179 (SPIRAL), and a rectangular straight channel (RECT)) (**Figure 3b and Methods**). Our
180 experiments, focused on analyzing the flow trajectories of fluorescent microspheres, revealed
181 a distinctive advantage of DIF: its ability to achieve consistent single-plane focusing across a
182 diverse particle size range (6-25 μm). In contrast, the comparison systems exhibited highly
183 variable focusing profiles that were notably sensitive to different particle sizes. Moreover, DIF
184 demonstrated remarkable robustness across a broad spectrum of flow rates, a stark contrast to
185 the performance of traditional inertial focusing methods. This was evidenced in experiments
186 involving both monodisperse and polydisperse particles (**Figure 3b-c**).

187 Based on this comparative study, we also observed that dispersion in other inertial focusing
188 methods can mainly be categorized into two types and the combination of both: the presence of
189 satellite streams (spreading type) or a lateral shift of the single file (drifting type). These two
190 types of effects can be quantified by two dimensionless parameters based on the statistical
191 moments of the focusing profiles (i.e., measured by the fluorescence intensity profile) (**Figure**
192 **3d and Methods**). Here we define dispersion as the cumulative effect of the two, i.e., the sum
193 of spreading and drifting. In our comparative analysis, it is apparent that DIF stands out as the
194 method exhibiting minimal dispersion across the board (**Figure 3d**). Effectively, it maintains
195 the high precision across the broadest range of particle sizes – giving a tolerance of sample
196 polydispersity that exceeds other methods by at least 2-fold (**Figure 3e**). Notably, systems
197 relying on secondary flow mechanisms, such as STEP and SPIRAL, were found to be more
198 prone to dispersion than even the RECT design. Specifically, the STEP configuration, while
199 achieving precise single-stream focusing, was limited by its narrow operational particle size
200 range. On the other hand, the high drifting and low spreading effects in SPIRAL explain its
201 excellent performance in separating particles by size but highlight its limitations when it comes
202 to focusing in polydisperse scenarios. These findings underscore that DIF is not only superior
203 in achieving precise single-plane focusing but also in maintaining this precision across a wide
204 range of particle sizes and flow rates, making it an unparalleled solution that diversifies
205 applications of inertial focusing from particle separation by size only.

206 *2.5. Efficient, continuous particle filtration by single-plane DIF*

207 We first applied the single-plane DIF system for high-throughput continuous membrane-less
208 microfiltration (**Figure 4**), which is an indispensable process used in diverse applications
209 including pharmaceutical manufacturing^[38], water treatment^[39], and microfluidic
210 desalination^[40] and many more). Its utility is particularly valuable in removing suspended
211 polydisperse particles, e.g., major pathogens, large bacteria, yeast cells, and microplastics. An
212 ideal microfilter should offer high efficiency (E), high yield (Y), high throughput (T) and long
213 lifetime where:

$$E = (1 - C_{out}/C_{in}) \cdot 100\% \quad (1)$$

$$Y = V_{out}/V_{in} \cdot 100\% \quad (2)$$

$$T = V_{out}/t \quad (3)$$

214 where C_{out} is the output particle concentration, C_{in} is the input particle concentration, V_{out} is the
215 output fluid volume, V_{in} is the input fluid volume and t is the total time of filtrating the volume

216 of V_{out} . Commercial standard membrane-based filters have been providing high efficiency,
217 yield, and throughput. However, owing to the unavoidable membrane clogging and fouling,
218 these membrane-based filters suffer from a limited lifetime and thus require frequent
219 replacement.^[41-43] It is thus cost-ineffective in handling large fluid volumes and long-term
220 operations, e.g., microplastic removal from drinking water and environmental samples.^[44,45]

221 On the other hand, existing IF-based microfilters utilize stream bifurcation (or generally
222 fractionation) to continuously deplete the microparticles, bypassing the use of the membrane
223 and its notorious clogging problem.^[41] However, the size-dispersion nature of these IF-based
224 microfilters makes it challenging to efficiently filter the polydisperse particles while retaining
225 the purified fluid volume at the output – leading to an inherent compromise between efficiency
226 and yield of microfiltration. For example, state-of-the-art IF-based microfiltration designs
227 based on Dean flow extensively sacrifice the yield, as high as 50%, to ensure filtering all
228 particles, which are theoretically distributed over half of the channel cross-section.^[45-49] The
229 yield can be improved by cascading multiple filters by either a narrower filtering band (the
230 range of particle size can be filtered) or fluid recirculation. However, the approach of
231 engineering filtering bands comes at the expense of complex design, large footprint and high
232 hydraulic resistance, all of which forbid large-scale parallelization.^[49] Recirculation on the
233 other hand sacrifices the filtration time and eventually limits the filtration throughput.^[45,49]

234 To address the widespread practicality of IF-based microfiltration, here we show that DIF can
235 be engineered to offer single-pass, high-efficiency, high-yield and parallelizable microfiltration
236 (**Figure 4**). Specifically, we developed a DIF-based microfiltration chip that has three outlets
237 in series, each of which is separately connected to three rectangular microchannels using plastic
238 tubing (**Figure 4a and S8**). These connections are used to control the hydraulic resistance ratios
239 among the three outlets such that the polydisperse particles focused by DIF can be exclusively
240 filtered at the second outlet (**Figure 4a(i, ii)**). Thanks to the efficient focusing in DIF, we can
241 maximize the filtering yield by configuring this DIF microfilter to isolate only a thin fluid layer
242 (as thin as 10 μm) from the second outlet (see simulated streamlines (red) in **Figure 4b and**
243 **S8**).

244 We then used this DIF microfilter to deplete microspheres from a monodisperse (6 μm) and a
245 highly polydisperse (6 + 10 + 15 + 20 + 25 + 30 μm , >100 times in volumetric variation)
246 samples. The experimental result of both samples shows the particle trajectories highly
247 consistent with the simulation result, where particles are precisely guided toward and depleted

248 at the second outlet (**Figure 4**). It indicates the highly efficient focusing performance in DIF in
249 which polydisperse particles are robustly focused on the same plane. The fluorescence images
250 of samples collected from these outlets further verify that particles are significantly depleted
251 from the sample (**Figure 4d**). Supported by a separate flow cytometry measurement, the
252 filtration efficiency of this DIF microfilter is quantified to be 97.5% and 97.4% for
253 monodisperse and polydisperse cases, respectively – yielding a 40x concentration reduction in
254 the depleted sample (**Figure 4e**). The superior filtration yield is also supported by the highly
255 consistent fluorescence particle distributions between input and enriched samples (**Figure S9-14**). Given that the filtration yield is as high as 83.3% as well as its simple geometrical designs,
256 DIF could thus be promising in diversifying the applications of IF-based particle filtration.
257

258 *2.6. A high-throughput and unbiased imaging flow cytometry by single-plane DIF*

259 To showcase the versatility of DIF, we further employed it to overcome an enduring problem
260 of imaging flow cytometry that has limited its wide adoption. The rationale of combining
261 advanced imaging with flow cytometry is to gain access to richer morphological information
262 of cells at a large scale and thus to permit a deeper morphological understanding of single-cell
263 states and functions [50,51]. Supercharged by deep learning, this strategy of imaging flow
264 cytometry can now offer automated big-data-driven analytical methods to extract the
265 biologically relevant information hidden in the images. This capability has shown promise in a
266 broad range of applications, including fundamental biological discovery (e.g., single-cell
267 analysis [52]), translational medicine (e.g., liquid biopsy [53–55]), and pharmaceutics (e.g., drug
268 screening [53,56,57]).

269 However, the demand for high-quality and high-resolution images of the fast-flowing cells has
270 long been a bottleneck due to the necessity for cells in suspension to be precisely aligned within
271 the optical depth of focus (DOF). Achieving such alignment is especially challenging for
272 polydisperse cell populations and requires a single-plane (i.e., single-file) cell focusing within
273 a thickness of few micrometers in order to achieve sub-cellular resolution e.g., less than 3 μm
274 by a typical 40X objective lens (**Figure S15**). Traditional flow cytometry platforms based
275 hydrodynamic focusing or IF frequently fall short in this aspect, leading to a low yield of in-
276 focus cells albeit their high-throughput operations. More importantly, the size-dispersion nature
277 of IF inevitably biases the high-quality cell image analytics (from deep-learning model training
278 to morphological profiling), i.e., only the cells with a specific size will be included in the
279 analysis. Highly precise single-plane focusing of polydisperse cells is thus critical yet missing
280 in imaging flow cytometry.

281 Here, we design another DIF chip integrated with our ultrafast laser scanning imaging system
282 to demonstrate high-yield imaging flow cytometry at a high imaging throughput of 5,000
283 cells/sec. First, we tested its imaging performance with diverse types of human cells, including
284 peripheral blood mononuclear cells (PBMCs), leukemia cells (HL60), two types of lung cancer
285 cells (H1975, H2170), and breast carcinoma (MDA-MB-231) (**Figure 5**). Across all five cell
286 types, our DIF system consistently aligned the flowing cells within a single plane as supported
287 by the fact that all the cells in a continuous image segment are optically in-focus (**Figure 5b**),
288 even the cells are highly heterogeneous in size within the same cell type (**Figure 5c**).
289 Overcoming the common analytical bias in imaging flow cytometry, our DIF system faithfully
290 quantified the significant variation of cell sizes across different cell types (broadly spanning
291 from 5 μ m to 30 μ m) (**Figure 5d and S16**). More importantly, it reveals rare outliers (i.e., the
292 very small or large cells) within each cell type, that would have otherwise been missed by
293 current imaging flow cytometer systems (**Figure 5d**).

294 The fact that DIF achieves size-insensitive in-focus imaging of cell suspension critically makes
295 it advantageous for reliable high-resolution analysis of cell morphology. This attribute contrasts
296 with the common microfluidic imaging flow cytometry approaches where the imaging quality
297 is often limited. Thus, the most effective cytometric analysis is restricted to cell-size
298 characterizations. While cell size is a crucial cell phenotype indicative of cell type and state, it
299 is not always effective, especially when it comes to high heterogeneity between cell types and
300 within a cell type. It can be evident from the partially overlapped size distributions among
301 different cell types captured in our measurements (**Figure 5d**). A notable clinical example is
302 circulating tumor cell (CTC) classification in blood, which is crucial for enabling downstream
303 CTC enrichment and, thus, minimal residual disease (MRD) monitoring. Size-based cell
304 detection and separation by IF has been widely adopted in CTC enrichment as the CTC is
305 generally conceived larger than the blood cells ^[58]. However, it is also known that size-based
306 detection struggles to sensitively detect small CTCs and classify subtypes of cancer cells.^[53,59]
307 In this regard, high-throughput morphological analysis of cells offers new dimensions for cell
308 classification, as demonstrated in our DIF-based imaging flow cytometer (**Figure 5e-f**).

309 By extracting cell morphology features from the images that are not related to cell size (see
310 **Table S2** for feature definitions, **Fig. S17**), we are able to distinguish not only between the
311 PBMCs and the other cancer cell types but also between the cancer types (**Figure 5e**). By
312 further quantifying the classification accuracy by the area-under-curve (AUC) of the receiver-
313 operating-characteristic (ROC) curve (**Figure 5f, S18 and Table 4**), we observed that the

314 classification power of size-uncorrelated morphological features is superior to that of the size-
315 correlated in all cases. Furthermore, the improvement brought by the morphological features
316 (compared to cell size only) becomes more pronounced when the cell types being classified are
317 more similar. The improvement scales from <2% for identifying cancer cells from PBMCs,
318 <10% for classifying different cancer types, to >10% for classifying cancer sub-types. It is
319 noteworthy that adding the size-correlated features (**Table 4**) does not significantly improve
320 the classification accuracy. Hence, these results suggest the significance of DIF in enabling
321 large-scale, in-depth analysis of cell morphology.

322 Finally, we challenged the performance of DIF-enabled imaging flow cytometry with a mixture
323 of human PBMC and fluorescently labelled HL60 cells, which is similar to a practical scenario
324 of leukemic cell detection in the blood (**Figure 6a**). In this experiment, our high-throughput
325 imaging flow cytometer was configured to include fluorescence detection plus multiple imaging
326 contrasts all simultaneously, including bright-field (BF), differential phase gradient contrast
327 (DPC), and quantitative phase images (QPI) [53,59]. Again, the ability of DIF to favor high-
328 quality imaging of heterogeneous cell populations can be evident from the consistent imaging
329 performance between the cases of PBMCs and HL60 cells alone (Top panel of **Figure 6b**)
330 versus the spike-in case (Bottom panel of **Figure 6b**). Note that the fluorescence label is used
331 as a marker for identifying HL60 in this mixture (**Figure 6b**) and validating the spike-in ratio.
332 (**Figure 6c, d**) The measured spike-in ratio PBMC: HL60 ratio based on the fluorescence 48.5:1
333 agrees very well with the targeted ratio (49:1) (**Figure 6c, e**). This high consistency is attributed
334 to the unbiased single-plane cell focusing by DIF (see **Figure 6b**).

335 Without relying on the fluorescence signal, HL60 cells are hardly distinguishable from PBMCs
336 in terms of their sizes (**Figure 6b, d**). This can also be evident from the significant overlap
337 between the size distributions of the two cell populations. To explore further if there are subtle
338 differences in the cell morphology between two populations, we investigated the subset of
339 PBMC and HL60 that shares the same size range (labeled as “crosstalk” subset and see the
340 dotted line box in **Figure 6e**). Our high-dimensional phenotypic analysis (based on an extended
341 set of 78 size-uncorrelated imaging features) clearly distinguishes these two clusters of cells
342 (**Figure 6f**). By examining the multi-contrast images, we observed that HL60s are, in general,
343 richer in morphological textures than PBMCs with similar size (**Figure 6g**). The significance
344 of the morphological features, which can only be revealed in in-focus images, can further be
345 supported by the comparable classification accuracies (i.e., AUCs of ROC curves) between the
346 “crosstalk” subset of cells (0.984) and the case using all the cells (0.989). (**Figure 6h**).

347 Furthermore, features ranking also shows that size-uncorrelated parameters are among the top-
348 ranked features contributing to the classification (**Figure 6i**). This spike-in demonstration thus
349 substantiates the unique capability of DIF to enable high-throughput, high-quality
350 morphological analysis of cells, going beyond conventional IF methods, which are highly cell-
351 size-biased.

352 **3. Conclusion**

353 IF, an inherently dispersive focusing technique, is broadly conceived as effective and intuitive
354 for separating polydisperse microparticles based on their sizes. Yet, its high precision, high
355 throughput, simplicity, and low cost have not benefited applications that require minimal
356 dispersion. Here, we present DIF, which bases on the localized input particle distribution to
357 counterintuitively gather polydisperse particles instead of separating them. We reported the
358 design rationale of DIF and reinvent a standard single-plane IF system to achieve a tight
359 focusing of particles and cells into a single slice as thin as $<3\text{ }\mu\text{m}$ -thick across a more diverse
360 size range (6 - 30 μm , i.e., >100 times difference in volume). This focusing performance (>95%
361 efficiency) is also consistent across a wide range of practical flow rates (2.4 - 30 mL/hr).

362 The concept and method of DIF would have a two-fold impact on technological and application
363 fronts. First, its effective dispersion suppression comes from inserting an extra secondary-flow-
364 dominant system instead of tailor-making a multi-field system. Fundamentally different from
365 the prevailing approach, this method rests upon the strategy of *field-zoning-aware particle pre-*
366 *localization*, which effectively localizes polydisperse particle distribution away from the
367 residual focusing zone. This thus effectively suppresses the inherent dispersion in the current
368 IF system. We note that DIF is a generic concept that is applicable to any microfluidic system
369 as long as the condition of *field-zoning-aware particle pre-localization* is satisfied (as shown
370 in **Figure S5**). It thus offers a high degree of flexibility to design future dispersion-free systems.
371 As a result, our work could incentivize microfluidic developers to reinvent IF-based
372 microfluidic devices that unleash more diverse forms of particle focusing (or, generally,
373 manipulation) regardless of particle size. Second, DIF diversifies the applications of IF, which
374 have long been limited to size-dependent particle or cell separation/enrichment. In this work,
375 we demonstrated that DIF can further be employed in applications where particle/cell size is
376 irrelevant, e.g., holistic microfiltration and high-resolution imaging flow cytometry, which were
377 once challenging with the traditional IF-based devices.

378 Notably, our DIF-based membrane-less microfilter efficiently and continuously depletes
379 microparticles by 40 times at high throughput, regardless of size. This kind of microfiltration
380 technique could thus impact desalination, water purification and pharmaceutical and biomedical
381 processes that have been relying on membrane filtration. In addition, we also demonstrated that
382 DIF critically enables high-resolution morphological analysis of cells at high yield, i.e., >95%
383 of the cells are in-focus, in contrast to ~50% in the case of typical IF-based imaging cytometry
384 [59]. This attribute critically allows unbiased, accurate image-based cell classification, regardless
385 of cell size, which is particularly pertinent in a wide range of imaging cytometry applications.
386 Notable examples include in-depth morphological profiling and analysis of cells, which have
387 been proven promising in mining specific patterns in the profile to reveal disease-associated
388 phenotypes [60] or mechanism of action of drugs [61]; and image-activated cell sorter [62,63] in
389 which high-quality in-focus images are the key to triggering valid sorting decision for
390 downstream molecular analysis. We note that DIF's precision in microfiltration not only serves
391 synthetic particle systems but also holds great promise for biological applications. For example,
392 in liquid biopsy, the integration of DIF could efficiently filter out the highly heterogeneous cell
393 population in blood and thus could improve the purity of cell-free samples for downstream cf-
394 DNA extraction – enhancing the sensitivity of cancer biomarker detection [64–66]. This capability
395 to handle a diverse range of cell sizes and types positions DIF as a valuable tool for advancing
396 diagnostic technologies.

397 In addition to the applications we have demonstrated, we note that the principles of DIF could
398 also be readily applicable to sub-micrometer particles (especially with the size 0.1 – 1 μm and
399 diverse shapes. Examples include bacterial populations and microvesicles with variable
400 contents, which could effectively be isolated and analyzed using DIF [67–69]. The caveat is the
401 required higher pump pressure in the microfluidic channel. It could significantly deform the
402 elastic channels (e.g., PDMS) and, thus, risk the degradation in its performance. Nevertheless,
403 this could be mitigated using rigid microfluidic channels, such as glass channels [70], which
404 could be easily applicable to DIF.

405 Overall, we envision that the simple channel geometry involved in DIF renders itself a versatile
406 element that can be easily integrated with a wide range of state-of-the-art microfluidic systems.
407 For instance, DIF could be combined with microfluidic cell sorters for targeted cell enrichment
408 [71], droplet-based microfluidic devices for sequencing-based screening [72], and structured
409 microparticles for functional cell screening [73]. It thus would have a far-reaching impact in

410 different disciplines including biological/chemical research, clinical medicine, and
411 pharmaceutical development.

412 **4. Experimental Methods**

413 *4.1. Microfluidic chip fabrication*

414 The microfluidic channels were fabricated using a standard soft lithography, which involved
415 photolithography and molding.

416 *4.1.1. Photolithography:* A 4-inch silicon wafer (UniversityWafer, Inc., US) was first coated
417 with an 80 μ m-thick layer of photoresist (SU-8 2025, MicroChem, US) using a spin coater
418 (spinNXG-P1, Apex Instruments Co., India), followed by soft-baking (at 65 °C for 3 minutes
419 and then at 95 °C for 9 minutes). After cooling under the ambient temperature, a maskless
420 photolithography machine (SF-100 XCEL, Intelligent Micro Patterning, LLC, US) was used to
421 transfer the channel pattern (designed by a computer-aided design to the coated-wafer with 8-
422 second exposure time, followed by a post-baking process (for 2 minutes at 65 °C and then 7
423 minutes at 95 °C). The patterned wafer was developed with the SU-8 developer (MicroChem,
424 US) for 10 minutes, followed by rinsing with IPA and drying. Finally, the wafer was hard baked
425 at 180 °C for 15 minutes to complete the process and ready for the molding.

426 *4.1.2. Molding of polydimethylsiloxane (PDMS)-glass chip:* The PDMS precursor
427 (SYLGARD® 184 Silicone Elastomer kit, Dow Corning, US) was mixed with the curing agent
428 with a 10:1 ratio before pouring onto the silicon wafer. A custom-designed glass block was
429 placed on the silicon wafer to control the channel height of regions beside the inlet and outlet
430 to be 1 mm. After degassing in a vacuum chamber, the wafer was then incubated in an oven at
431 80 °C for 2 hours for PDMS curing. After demolding, the PDMS block was punched using a
432 PDMS puncher with a 1 mm diameter (Miltex 33-31 AA, Integra LifeSciences, US) to open
433 inlets and outlets for plastic tubings (BB31695- PE/2, Scientific Commodities, Inc., US)
434 insertion. Microchannels were then formed by bonding the PDMS block to a glass slide using
435 oxygen plasma (PDC-002, Harrick Plasma, US), followed by baking at 80 °C for 10 minutes in
436 an oven.

437 *4.1.3. Molding of PDMS-PDMS chip:* The PDMS precursor (SYLGARD® 184 Silicone
438 Elastomer kit, Dow Corning, US) was mixed with the curing agent with a 10:1 ratio. Half of
439 the mixture was poured onto the silicon wafer with the channel pattern and another half onto a
440 plain wafer. After degassing in a vacuum chamber, both wafers were then incubated in an oven

441 at 80 °C for 2 hours for PDMS curing. After demolding, the PDMS block with the pattern was
442 punched using a PDMS puncher with a 1 mm diameter (Miltex 33-31 AA, Integra LifeSciences,
443 US) to open inlets and outlets for plastic tubings (BB31695- PE/2, Scientific Commodities, Inc.,
444 US) insertion. Microchannels were then formed by bonding two PDMS blocks using oxygen
445 plasma (PDC-002, Harrick Plasma, US), followed by baking at 80 °C for 30 minutes in an oven.
446 For channels that can only be fabricated in HAR (i.e., DIF and STEP in Figure 3), 3mm-wide
447 microchips were cropped out of the PDMS block. The long sides of the channel were coated
448 with uncured 10:1 PDMS mixture and then sandwiched between two glass slides for 2 hours of
449 incubation at 80 °C to clear the side wall for imaging.

450 *4.2. Imaging*

451 *4.2.1. 2D Particle flow trajectory imaging:* An inverted microscope (Ti2E, Nikon Instruments
452 Inc., JP) with an epi-fluorescence imaging module (a multi-bandpass filter set including FITC
453 (480/515) and TRITC (540/575) detection) was used to capture the trajectories of flowing
454 fluorescent microspheres in the microfluidic channel. All images were captured using a 40X
455 objective lens (NA = 0.7), except for the case of whole-field imaging in particle filtration which
456 was captured using a 4X objective lens (NA = 0.2). For each trajectory image, a bright-field
457 image was captured together with the fluorescence image in order to identify the position of
458 channel walls on the fluorescence image. The exposure time of the fluorescence image was set
459 to 1 s to ensure capturing enough fluorescent microparticles.

460 *4.2.2. 3D particle flow trajectory imaging:* A confocal microscope (A1R MP+ Multiphoton
461 microscope, Nikon Instruments Inc., JP) was used to capture the trajectories of 6 μm and 15
462 μm green-fluorescent microsphere flowing at a linear speed of 0.87 m/s (equivalently at 10
463 mL/hr volumetric flow rate). A 20X dry objectives lens (NA = 0.75) was used to provide a ~0.4
464 μm lateral (x/y axis) and a ~1 μm axial (z-axis) diffraction-limited resolution across the entire
465 imaging field of view (120 μm (x) x 120 μm (y) x 80 μm (z)). The exposure time and the frame
466 averaging factor were set to be 10 μs and 4 for each scanning point, respectively.

467 *4.2.3. Ultrafast laser scanning imaging:* A home-built ultrafast laser scanning system, called
468 multiplexed asymmetric-detection time-stretch optical microscopy (multi-ATOM), was
469 employed for continuously capturing high-resolution single-cell images with multiple label-
470 free contrasts and an in-sync fluorescence signal.^[53,59] Detailed system configuration and
471 working principle refer to Ref. 31 and 32. In short, the system applied a concept of all-optical
472 laser scanning to achieve an ultrafast imaging line-scan rate of 10 MHz. A 40X objective lens

473 (NA = 0.65) projected the illuminating laser across a 1D field of view of 60 μm perpendicular
474 to the fluid flow direction, at 1 μm optical resolution and with a 3 μm depth of view. This multi-
475 ATOM system generated differential-phase, bright-field, and quantitative-phase contrasts – all
476 simultaneously captured by a high-speed single-pixel photodetector (electrical bandwidth = 12
477 GHz). In the system backend, a signal processing system built upon a real-time field
478 programmable gate array (FPGA) (electrical bandwidth = 2 GHz, sampling rate = 4 GSa/s) was
479 implemented to automatically detect and segment cells from the digitized data stream, at a
480 processing throughput equivalent to >10,000 cell/s in real-time. All segmented cell images were
481 sent through four 10G Ethernet links and were stored by four data storage nodes with a total
482 memory capacity of over 800 GB. The detailed algorithm for image reconstruction can be
483 referred to Ref. 31 and 32. In the fluorescence detection module, a continuous wave laser
484 (wavelength = 488 nm) was employed to generate line-shaped fluorescence excitation, that was
485 spatially and temporally synchronized with the multi-ATOM imaging signal. The epi-
486 fluorescence signal was detected by photomultiplier tubes (PMT). The same FPGA was
487 configured to synchronously obtain the signal from multi-ATOM and fluorescence detection
488 from every single cell at high speed.

489 *4.3. Computational fluid dynamics (CFD) simulation*

490 All simulations were performed in COMSOL Multiphysics 5.6 using single-phase laminar
491 flow with stationary study. The medium was defined as water (density = 1 g/cm³) and the
492 discretization of fluid was set to P2+P1.

493 *4.3.1. Secondary flow modelling:* For each periodic unit of each simulated geometry, the inlet
494 was conditioned with a fully developed flow profile at the list of flow rates in the unit of mL/hr;
495 the outlet was conditioned to have a pressure of 0 Pa. The cross-sectional position of streamlines
496 at the start and the end were extracted for computing the displacement of streamlines across the
497 cross-section, which is the secondary flow generated by the simulated structure.

498 *4.3.2. Direct numerical simulation (DNS) of inertial force field:* DNS is based on the Flow at
499 Specific Particle Position (FSPP) method [74]. In brief, a microparticle flowing inside a
500 microchannel was modeled as a hollow sphere placed at the center of a long pipe with a
501 rectangular cross-section (40 μm (w) x 80 μm (h)). The particle is restricted from moving laterally
502 while allowed to move longitudinally and rotate freely to obtain the lift force. The channel walls
503 were set as moving walls to render a moving frame to simplify the simulation. A fluid flow was
504 introduced by setting the two ends of the pipe as inlet and outlet, which was conditioned with

505 a fully developed flow profile at the list of flow rates in the unit of mL/hr and a pressure of 0
506 Pa, respectively. Ordinary differential equations were set up to introduce the conservation of
507 linear and angular moments. Under this condition, the lift force at a specific location on the
508 channel cross-section can be acquired when the linear speed and the angular momentum reach
509 equilibrium. Repeat the simulation with different lateral positions of the particle; inertial forces
510 were sampled through the entire channel cross-section – resulting in an inertial force field. The
511 same procedure was repeated with different particle sizes and flow rates to examine the
512 dispersion.

513 *4.3.3. Filtration modelling:* The flow condition of the outlet of the DIF filter was simulated
514 according to Figure S6. The inlet condition was set to have a fully developed profile at the flow
515 rate of 1 m/s. To simulate the depletion effects at the outlets induced by different remote
516 channels, these outlets are conditioned to have the corresponding pressures of 70, 40 and 0 Pa,
517 respectively. The streamline of the middle 10 μ m-thick layer was plotted to visualize the single-
518 plane depletion effect.

519 *4.4. Particle sample preparation*

520 *4.4.1. Fluorescent polystyrene microspheres:* Fluorescent polystyrene microspheres
521 (Phosphorex, Inc, US) had 1% solid content without any prior surface treatment suspended in
522 1 mL de-ionized water containing a small amount of surfactant and 2 mM of sodium azide. Six
523 different sizes, 6 μ m (2106C), 10 μ m (2106G, 2227), 15 μ m (2106L), 20 μ m (2229), 25 μ m
524 (2230), 30 μ m (2231) were selected where 2106C, 2106G and 2106L were in green color while
525 2227, 2229, 2230 and 2231 were in orange color. Samples were first wetted, diluted and filtered
526 prior to the experiment to minimize aggregation and the chance of channel clogging.
527 Specifically, for each sample, 100 μ L solution was diluted by 10 mL 10% bovine serum
528 albumin (BSA) solution for 15 minutes, centrifuged under 100g for 5 minutes, and then
529 resuspended in 5 mL deionized water to give a 0.02% solid content. Samples were filtered by
530 a cell strainer with a 30 μ m pore size (SKU 43-50030-50, pluriSelect Life Science, DE) right
531 before being pumped into the microchannels. The mixture used in particle filtration was
532 prepared by mixing 6 μ m, 10 μ m, 15 μ m, 20 μ m, 25 μ m and 30 μ m particle suspensions (0.02%
533 solid content), 1 mL from each.

534 *4.4.2. Human peripheral blood mononuclear cells (PBMCs):* PBMCs were negatively isolated
535 by a PBMC isolation kit (130-115-169, Miltenyi Biotec Inc., CA) from human buffy coats
536 provided by the Hong Kong Red Cross. Written consents for clinical care and research purposes

537 were obtained from the donors. The research protocol was approved by the Institutional Review
538 Board of the University of Hong Kong (IRB Reference No.: UW 17-219) and complied with
539 the Declaration of Helsinki and acts in accordance with ICH GCP guidelines, local regulations
540 and Hospital Authority and the University policies. Buffy coats and all reagents used were
541 prewarmed to room temperature. 3 mL of the buffy coat was 1:1 diluted by PBS in a 15 mL
542 centrifuge tube. 5mL of Ficoll was layered on top carefully to avoid mixing with the solution
543 below. The solution was centrifuged under 400g for 20 minutes producing 5 distinct layers in
544 the centrifuge tube. The second layer from the top which corresponds to PBMCs was then
545 carefully extracted using a 1mL pipette tip. Next, the extracted PBMCs were rinsed with 1X
546 PBS once by centrifuging under 200g for 5 minutes and resuspended in fresh 1X PBS.

547 *4.4.3. Human cancer cell lines:* Culture medium for MDA-MB-231 (HTB-26TM, ATCC, US),
548 and MCF-7 (HTB-22DTM, ATCC, US) culturing in DMEM medium (GibcoTM) supplemented
549 with 10% PBS and 1% 100x antibiotic-antimycotic (Anti-Anti, Thermo Fisher Scientific, US).
550 Cells were cultured in a 5% CO₂ incubator at 37 °C and the medium was renewed twice a week.
551 Cells were pipetted out and adjusted to be around 105 cells per mL of 1x PBS. Prevention of
552 mycoplasma contamination was done by adding Antibiotic-Antimycotic (Thermo Fisher
553 Scientific, US) during cell culture. Cellular morphology was routinely checked during cell
554 culture under the light microscope prior to imaging experiments. The adenocarcinoma cell lines
555 H1975 (L858R and T790M)) and the squamous cell carcinoma cell lines (H2170) were obtained
556 from American Type Culture Collection (ATCC) and authenticated using the Human STR
557 profiling cell authentication service. They were expanded and cultured in the tissue culture
558 flasks (surface area of 75 cm²) (TPP). The full culture medium was ATCC-modified RPMI-
559 1640 (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 1% antibiotic-
560 antimycotic (Gibco). The cells were placed in a CO₂ incubator at 37°C and 5% CO₂. Passage
561 or change of medium was done 2-3 times a week depending on cell confluence.

562 *4.4.4 Live-cell fluorescence labelling:* HL60s were stained with CellTrackerTM Green CMFDA
563 dye (Thermo Fisher Scientific, US), which gave rise to the green fluorescence signals. The
564 lyophilized product was first warmed at room temperature and dissolved in dimethyl sulfoxide
565 (DMSO) to a final concentration of 1 mM. Briefly, 20µl of DMSO was then added to each vial
566 as stock solution. After washing the sample with PBS three times by removing the supernatant
567 after centrifugation at 1000 rpm, the cell samples were stained with the staining solution, which
568 was composed of the CellTrackerTM stock solution and the serum-free RPMI 1640 medium at
569 a concentration of 1:1000. Samples in the staining solution were incubated at 37°C for 30

570 minutes and resuspended with PBS after removing the staining solution with centrifugation as
571 aforementioned.

572 *4.5. Flow cytometry:* In the DIF-based microfiltration demonstrations, six samples (i.e., the
573 input, enriched and filtrated samples of both the monodisperse and polydisperse cases) were
574 analyzed using BD FACSAriaIII (BD Bioscience, IN). For fluorescence measurement, a 488
575 nm laser and a FIT-C channel were used for excitation and detection, respectively. The recorded
576 event count was set to 10,000 for each sample. A gating was performed on the FIT-C signal to
577 identify fluorescent microspheres. The average event rates were recorded for comparison.

578 *4.6 Data analysis (quantifying dispersion):* The dispersion is defined as the sum of spreading
579 and drifting. These two parameters were quantified as two dimensionless numbers based on the
580 statistical moments of the intensity profiles shown in **Figure 3d**. For each system, the spreading
581 is calculated by averaging the standard deviations computed from each monodispersed profile;
582 the drifting is calculated by calculating the mean of each intensity profile, its standard deviation
583 of mean along particle size, and the flow-rate-averaged standard deviations (see Table S1 for
584 the equations).

585 *4.7 Data availability:* The data that support the findings of this study are available from the
586 corresponding author upon reasonable request.

587 **5. Acknowledgements**

588 We thank Prof. Barbara P. Chan for her kind support in sharing the state-of-the-art confocal
589 microscope. We also thank Dr. Abigail P. Chen for her assistance in operating the confocal
590 microscope. The work is supported by the Research Grants Council and the Innovation and
591 Technology Commission of the Hong Kong Special Administrative Region of China (grant
592 nos. 17125121, 17208918, RFS2021-7S06, RIF7003-21, and ITS/318/22FP), Platform
593 Technology Funding of the University of Hong Kong.

594 **6. Conflict of interest**

595 We declare there is no conflict of interest.

596 Received: ((will be filled in by the editorial staff))

597 Revised: ((will be filled in by the editorial staff))

598 Published online: ((will be filled in by the editorial staff))

599

600 **Figure**

601 **Figure 1. Rationale and method of DIF. (a) Dispersion: inherent zoning effect of inertial**

602 **focusing.** (i) A quadrant of inertial force field of a standard HAR rectangular straight channel

603 was simulated for 5 particle sizes, each at 3 flow rates. A zoom-in view shows the zoning effect.

604 (ii) A line plot showing size dependency of the residual zones (equivalently particles input to

605 it). (iii) A sequence of scatter plots from the simulation visualizing the progression and

606 dispersion of inertial focusing of polydisperse particles. **(b) Solution: a localized particle**

607 **distribution by secondary-flow pinching.** (i) A quadrant of the secondary flow of a HAR

608 symmetric orifice was simulated for 5 particle sizes, each at 3 flow rates. A zoom-in view shows

609 the converging vortex, which adapts to the zoning in (a). (ii) A line plot showing the ratio of

610 particle output to the residual zones of the HAR rectangular channel. (iii) A sequence of scatter

611 plots from the simulation visualizing the progression of localization of polydisperse particles

612 by the converging flow. **(c) Method of implementation.** (i) Schematic of the single-plane DIF

613 system formed by cascading the orifice structure to the inlet of the rectangular channel. (ii) A

614 sequence of scatter plots from simulation visualizing dispersion-free particle focusing

615 mechanism where the localized particle distribution enables an automatic dispersion

616 compression downstream. (iii) Experimental justification of rationale and method of DIF.

617 Trajectories of fast-flowing 6 μm and 15 μm fluorescent microspheres were captured in four

618 scenarios using a commercial confocal microscope: (1) orifice to straight, (2) orifice, (3)

619 straight, and (4) straight to orifice. The fact that only case 1 offers dispersion-free focusing

620 supports the design rationale and methods.

621 **Figure 2. Evaluating dispersion-suppression efficiency of DIF by ultrafast imaging. (a)**

622 **Snapshots at various flow rates (Q).** Cascaded image segments of 6 μm particles captured at

623 6 different volumetric flow rates. **(b) Snapshots at various particle sizes (D).** Cascaded image

624 segments of 5 different sets of particles with different sizes that are captured at the flow rate of

625 18 mL/hr. Red dotted circles indicate optically defocused particles, equivalently outside the

626 single file. Scale bar = 20 μm . **(c, d) Supporting data.** (c) 72 zoom-in images of representative

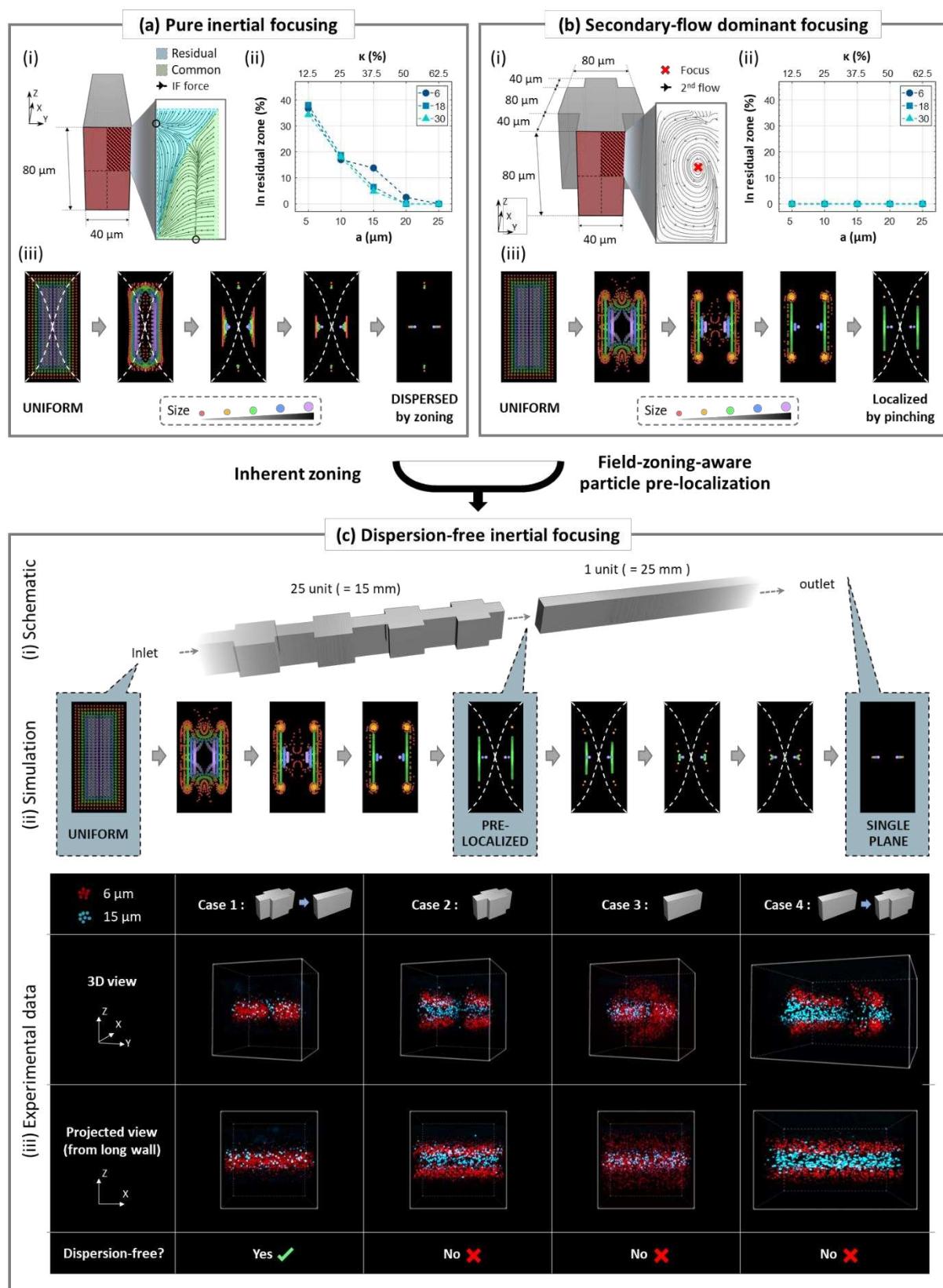
627 particles within (left, sharp images) and outside (right, burry images) the focal file. Scale bar =

628 5 μm . (d) A histogram showing the distribution of the measured size of particles being used

629 (D_{Measure}). **(e) Focusing loss against flow rate and particle size.** Two bar plots quantifying the

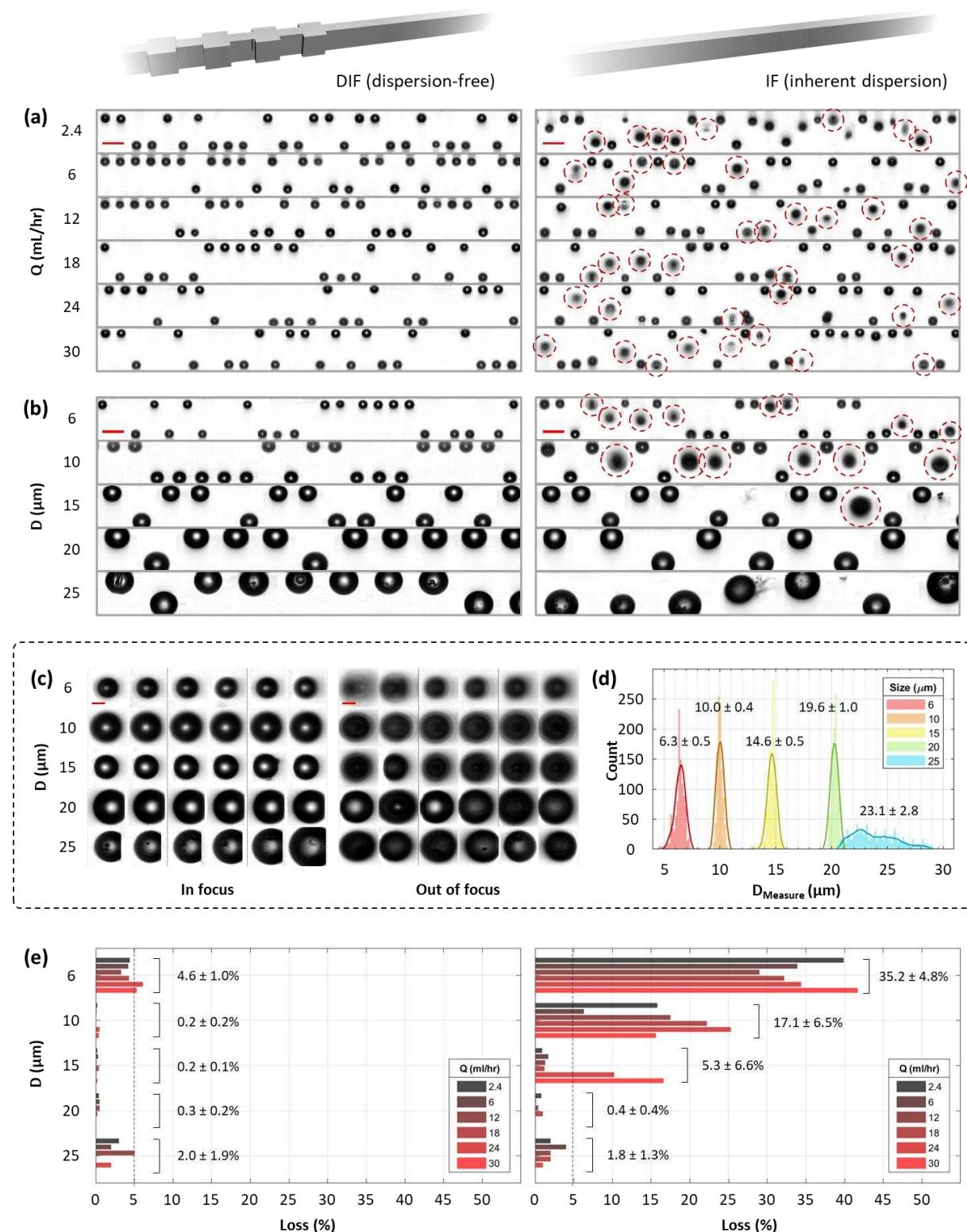
630 loss of the DIF system (left) and the HAR channel (right) for 5 sets of particles with different

631 sizes at 6 different volumetric flow rates. The dotted line indicates the loss at 5%.

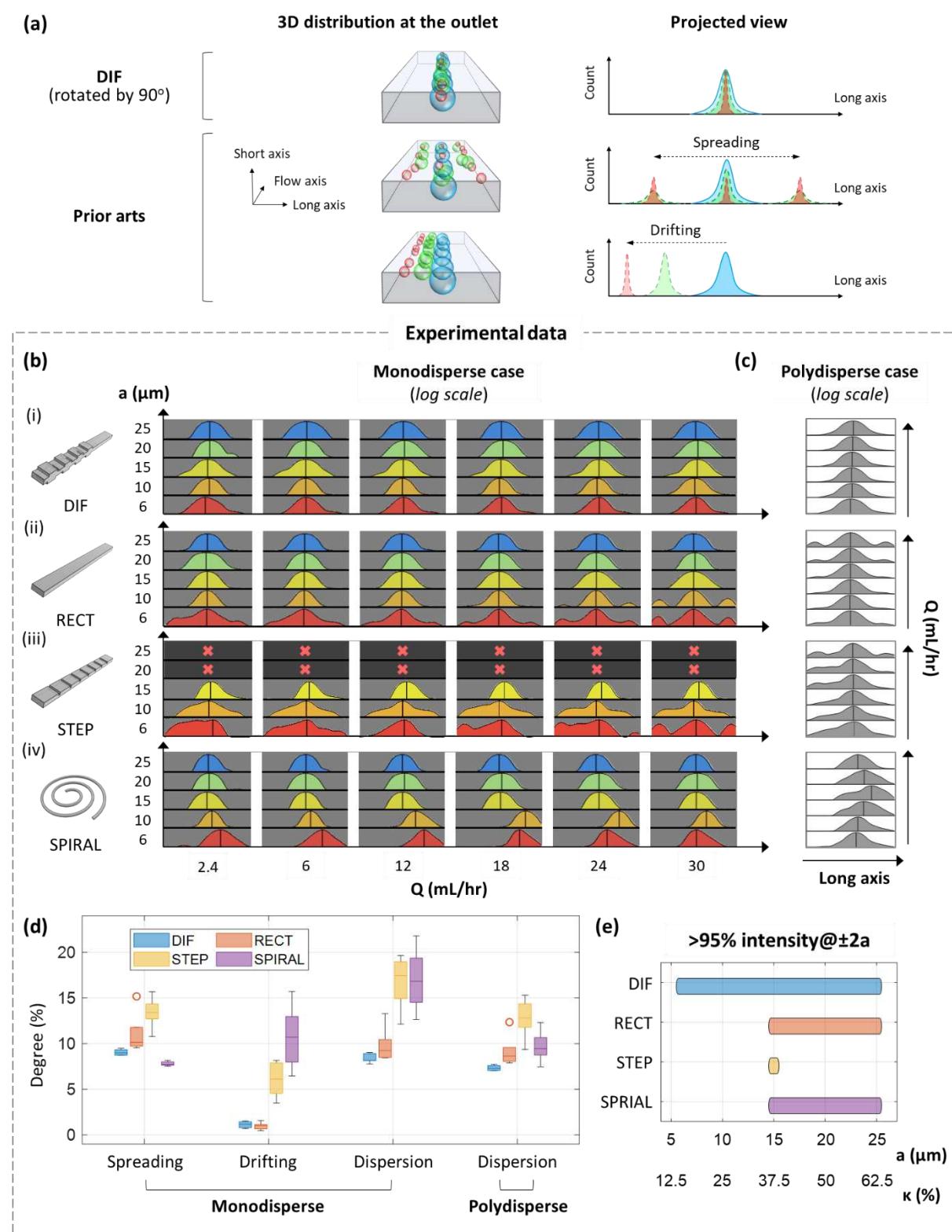

632 **Figure 3. Benchmarking dispersion of state-of-the-art IF and our DIF system. (a)**
633 **Graphical illustration.** Influenced by its inherent dispersion, state-of-the-art IF systems
634 inconsistently posit polydisperse particles, resulting in spreading and/or drifting. DIF system
635 specifically suppresses the dispersion to posit all particles uniformly. **(b-e) Experimental**
636 **result. (b-c) Fluorescence intensity profile.** Trajectories of 5 sets of fast-flowing fluorescence
637 microspheres, each with a different diameter (a), were individually captured at 6 different flow
638 rates (Q) by fluorescence microscopy from the long axis of the microchannel. Data were
639 collected from 4 systems: (i) DIF, (ii) Rectangular pipe (RECT), (iii) Rectangular pipe with
640 sparsely spaced asymmetric grooves (STEP), and (iv) spiral (SPIRAL). The intensity profiles
641 after focusing are plotted in a montage to compare their consistency across different particle
642 sizes and flow rates. These profiles are shown individually in (b) and in a size-average way to
643 mimic polydisperse samples in (c). The intensity is on a logarithmic scale. **(d) Dispersion.** A
644 bar plot showing the degree of spreading, drifting, and their sum, dispersion, calculated from
645 monodisperse and polydisperse profiles. **(d) Operational particle-size range.** A bar plot
646 showing the particle sizes confined efficiently onto a single file with a thickness twice the
647 particle diameter.

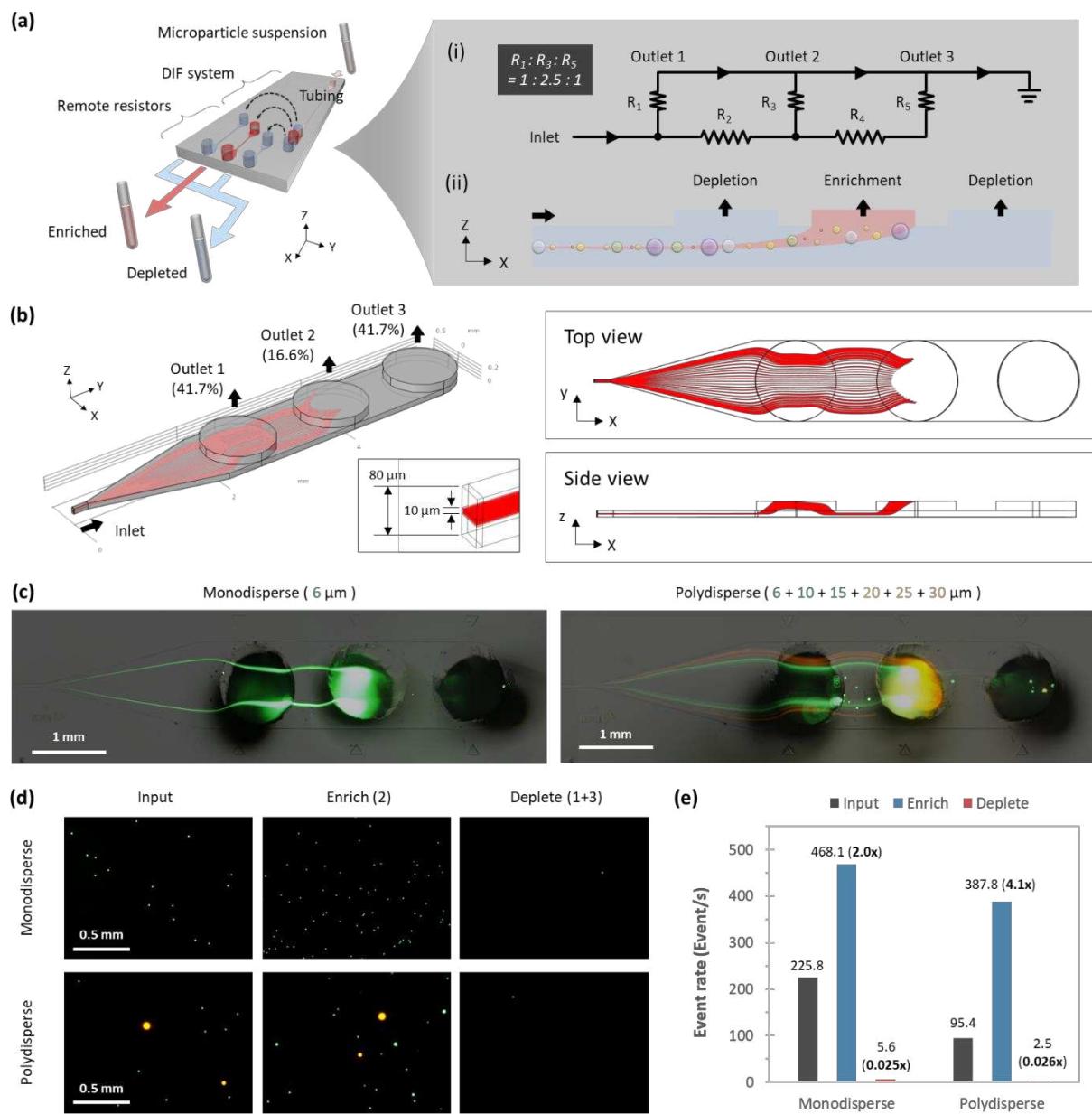
648 **Figure 4. Application I: High-throughput microfiltration based on a DIF microfilter. (a)**
649 **Design of a DIF microfilter.** The outlet of the DIF system is tailored for the streamline division
650 along the vertical direction and thus depletion of the single file. Three isolated channels, each
651 with a different length, are connected to the three outlets of DIF through plastic tubing as remote
652 resistors to control the division. (i) the equivalent electrical circuitry model (ii) the side view of
653 the designed streamline division. **(b) COMSOL simulation of single file depletion.** A 10 μm -
654 thick section is designed to be guided to outlet 2 for depletion. **(c-e) Filtration result of**
655 **monodisperse and polydisperse samples.** Two sets of particle suspensions, monodisperse and
656 polydisperse, underwent filtration. The monodisperse one consists of 6 μm particles and the
657 polydisperse one consists of 6, 10, 15, 20, 25 and 30 μm particles. **(c) Particle flow trajectories**
658 **captured at the outlet. (d) Fluorescent images of samples from different outlets. (e) Event**
659 **rate of samples from different outlets counted using flow cytometry.**

660 **Figure 5. Application II: High-throughput imaging flow cytometry based on DIF. (a)**
661 **Experimental setup and workflow.** Five types of biological cells are individually injected into
662 the DIF system at an 18 mL/hr pump rate and imaged by an ultrafast laser scanning system
663 downstream at a 10 MHz scanning rate with <3 μm depth of focus (DOF). A continuous image
664 segment is reconstructed from the recorded serial data stream for each cell type. Then, high-

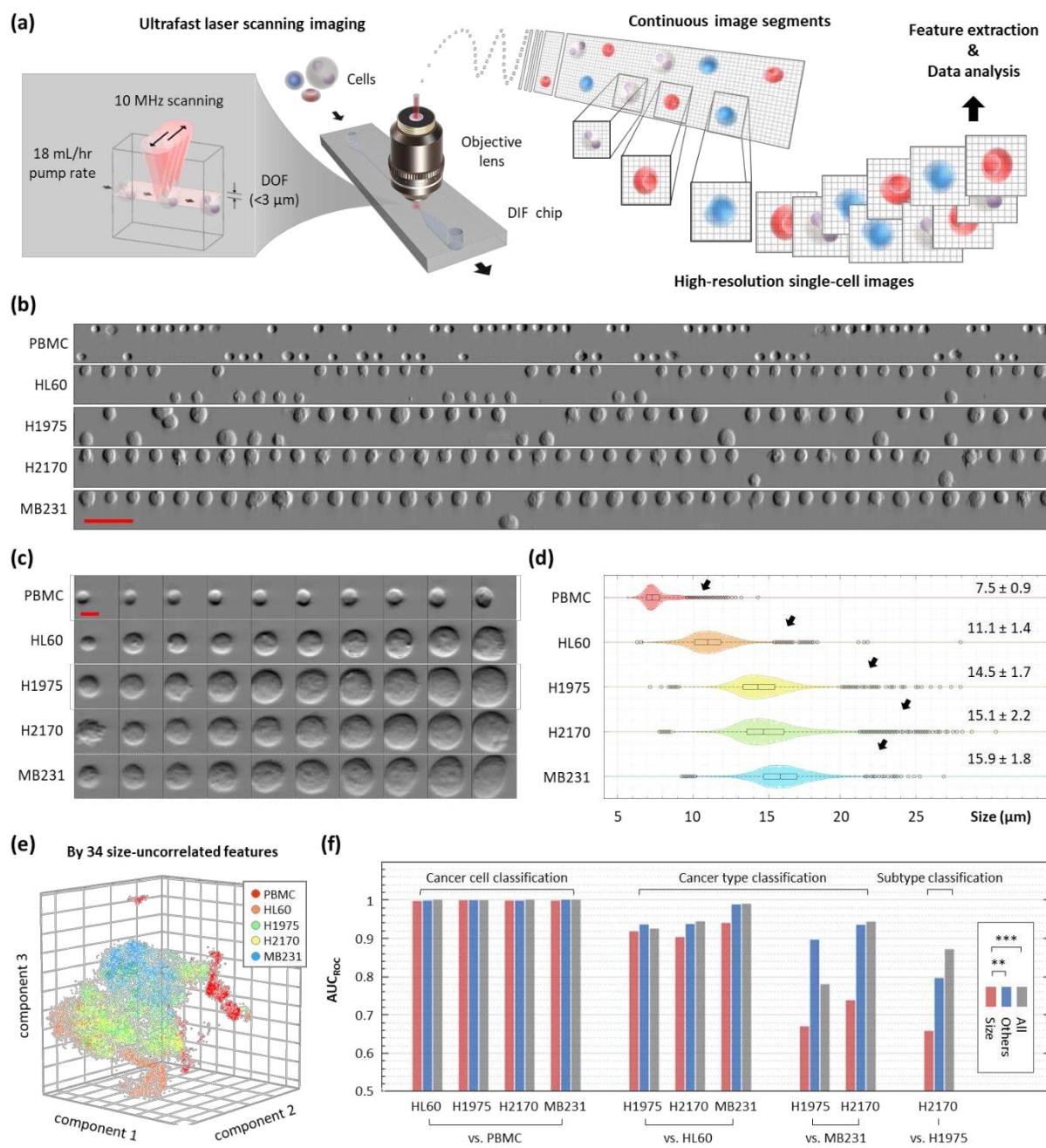

665 resolution single-cell images are cropped from the segment for the subsequent image-based
666 feature extraction and data analysis. **(b) Continuous image segments.** Five segments from
667 PBMC, HL60, H1975, H2170 and MB231 are shown. Scale bar = 50 μ m. **(c) Single-cell images.**
668 Ten single-cell images that are representative in size are shown for each cell type. Scale bar =
669 10 μ m. **(d) Size distribution.** A violin plot embedding a boxplot visualizes the broad and
670 skewed size distribution of each cell type. Black arrows point to outliers of all distributions
671 (black circles). The distributions are also quantified in (mean \pm std). **(e) High-dimensional**
672 **distribution by size-uncorrelated features.** The data distribution in the high-dimensional
673 space of 34 size-uncorrelated features is reduced to 3D by tSNE and shown in a scatter plot. **(f)**
674 **Classification accuracy of cell types.** A bar plot shows the accuracy of using size (red), size-
675 uncorrelated (blue) and all (grey) features quantified by the AUC of the ROC curve. Wilcoxon
676 signed-rank test is used to verify the statistical significance of the difference between different
677 sets of features. ** and *** denote $p < 0.01$ $p < 0.001$, respectively.

678 **Figure 6. Application II: High-throughput imaging flow cytometry based on DIF (con't).**
679 **(a) Experimental setup and workflow.** Fluorescent-labelled HL60 cells are spiked into
680 unlabelled PBMCs at a 1:49 ratio. The high-throughput imaging flow cytometry captures the
681 image and fluorescence signal from all single cells individually for subsequent data analysis.
682 **(b) Continuous image segments.** Three segments from PBMC, HL60 and mixture are shown.
683 Arrow indicates HL60 in the mixture. Scale bar = 50 μ m. DPC = differential phase-gradient
684 contrast. BF = bright field. QP = quantitative phase. Fluo = fluorescence. **(c) Histogram of the**
685 **fluorescence signal of three samples.** $n = 30,000$. **(d) Histogram of the size of three samples.**
686 $n = 30,000$. **(e) Size vs. fluorescence scatter plot.** The red dotted line shows the fluorescence
687 threshold set for digitally labelling cell types. The black dotted line box encloses a subset of
688 PBMC and HL60 that overlaps in size. **(f) High-dimensional distribution by size-
689 uncorrelated features.** The data distribution in the high-dimensional space of 78 size-
690 uncorrelated features is reduced by t-SNE and shown in a 3D scatter plot. **(g) Single-cell images**
691 **of cells crosstalked in size.** Ten representative images of cells boxed in (f) are shown for each
692 type. Scale bar = 10 μ m. **(h) Classification accuracy of cell types.** A bar plot shows the
693 accuracy of classifying all and crosstalked PBMC and HL60 using size (red), size-uncorrelated
694 (blue) and all (grey) features quantified by the AUC of ROC curve. **(i) Correlation to the size**
695 **of all features.** A bar plot showing the correlation to the size against feature rank. The average
696 correlation to the size of the top and the bottom 10% ranked features are shown.

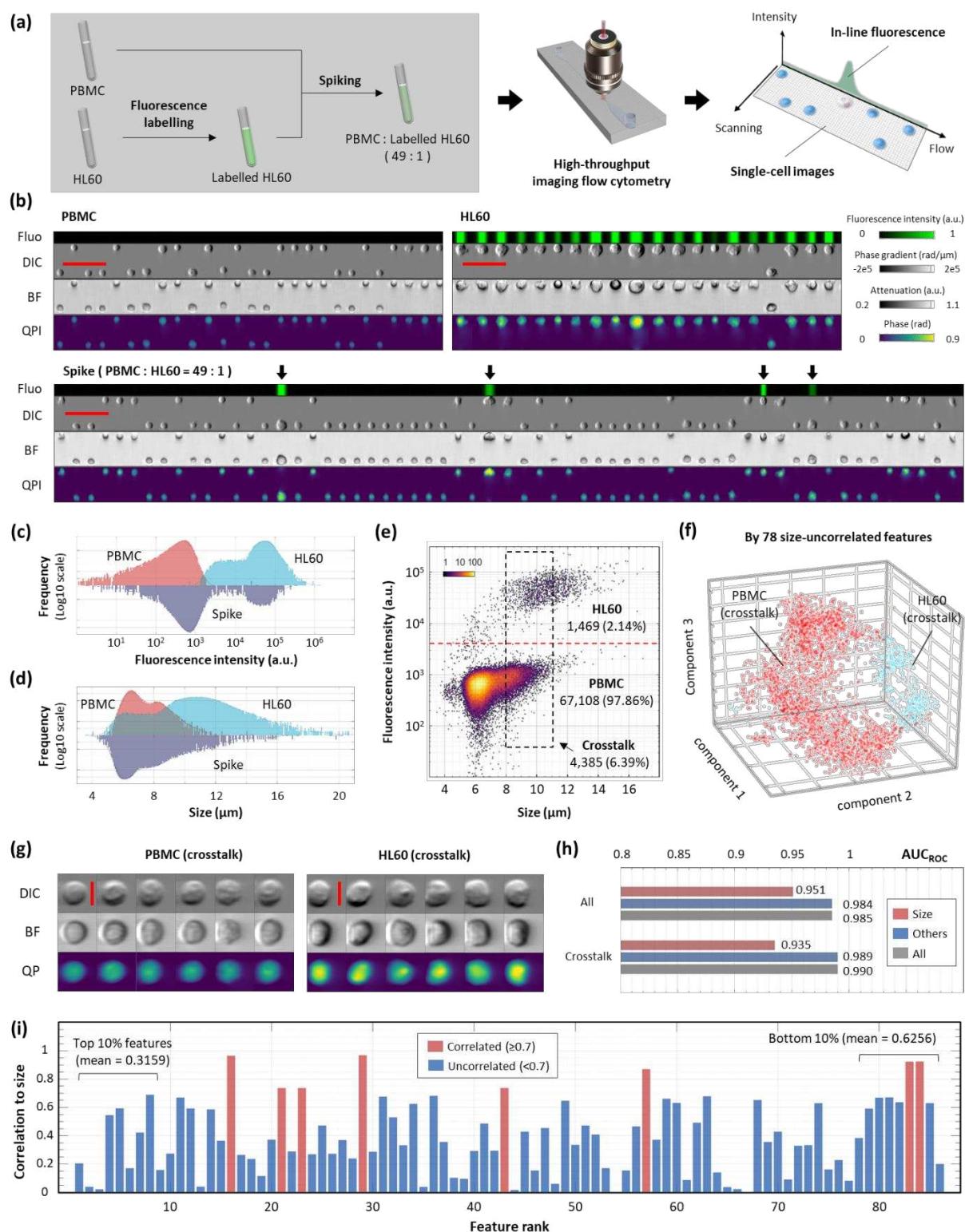

697


698 **Figure 1. Rationale and method of DIF.**

699


700 **Figure 2. Evaluating dispersion-suppression efficiency of DIF by ultrafast imaging.**

703


704 **Figure 4. Application I: High-throughput microfiltration based on DIF filter.**

705

706

707 **Figure 5. Application II: High-throughput imaging flow cytometry based on DIF system.**

708

709 **Figure 6. Application II: High-throughput imaging flow cytometry based on DIF system**
710 **(con't).**

711 **Table**

Particle size (μm)	Volumetric flow rate (mL/hr)		
	6	18	30
5	36.7%	38.0%	34.3%
10	17.0%	18.7%	18.0%
15	13.8%	6.5%	4.8%
20	2.5%	0.0%	0.0%
25	0.0%	0.0%	0.0%

712

713 **Table 1. Ratio of residual zone (equivalently loss) of the HAR rectangular pipe at various**
714 **particle sizes and flow rates (by direct numerical simulation).**

715

Particle size (μm)	Volumetric flow rate (mL/hr)					
	2.4	6	12	18	24	30
6	4.4%	4.2%	3.3%	4.3%	6.1%	5.3%
10	0.2%	0.1%	0.0%	0.0%	0.5%	0.4%
15	0.2%	0.3%	0.1%	0.4%	0.1%	0.2%
20	0.4%	0.5%	0.5%	0.2%	0.0%	0.0%
25	3%	2%	5%	0%	2%	0%

716

717 **Table 2. Loss of the single-plane DIF system (100%-yield) at various particle sizes and**
718 **flow rates (by experiment).**

719

Particle size (μm)	Volumetric flow rate (mL/hr)					
	2.4	6	12	18	24	30
6	39.9	33.9	29.0	32.2	34.4	41.7
10	15.8	6.3	17.5	22.2	25.3	15.6
15	0.9	1.7	1.3	1.2	10.2	16.6
20	0.8	0.1	0.4	1.0	0.0	0.0
25	2	4	2	2	1	0

720

721 **Table 3. Loss of the HAR rectangular pipe (100%-yield) at various particle sizes and**
722 **flow rates (by experiment).**

		Size correlated	Size uncorrelated	All
Cancer vs. PBMCs classification	PBMC vs. HL60	0.9969	0.9978	1.0000
	PBMC vs. H1975	0.9987	0.9991	0.9989
	PBMC vs. H2170	0.9982	0.9982	1.0000
	PBMC vs. MB231	0.9980	0.9998	1.0000
Cancer type classification	HL60 vs. H1975	0.9175	0.9355	0.9247
	HL60 vs. H2170	0.9030	0.9366	0.9442
	HL60 vs. MB231	0.9401	0.9884	0.9900
	MB231 vs. H1975	0.6698	0.8957	0.7800
	MB231 vs. H2170	0.7378	0.9354	0.9426
Cancer sub-type classification	H1975 vs H2170	0.6578	0.7962	0.8713

723 **Table 4. Area under curve (AUC) of the receiver-operating-characteristic (ROC) curve**
724 **analysis between 5 types of cells.**

725 **References**

726 [1] J. M. Martel, M. Toner, *Annu Rev Biomed Eng* **2014**, *16*, 371.

727 [2] J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M. E. Warkiani, W. Li, *Lab Chip*
728 **2016**, *16*, 10.

729 [3] N. V. Menon, S. Bin Lim, C. T. Lim, *Curr Opin Pharmacol* **2019**, *48*, 155.

730 [4] S. Zhu, F. Jiang, Y. Han, N. Xiang, Z. Ni, *Analyst* **2020**, *145*, 7103.

731 [5] M. E. Warkiani, A. K. P. Tay, B. L. Khoo, X. Xiaofeng, J. Han, C. T. Lim, *Lab Chip*
732 **2015**, *15*, 1101.

733 [6] J. Shrestha, S. R. Bazaz, L. Ding, S. Vasilescu, S. Idrees, B. Söderstörm, P. M.
734 Hansbro, M. Ghadiri, M. E. Warkiani, *Lab Chip* **2022**.

735 [7] J. Zhou, I. Papautsky, *Lab Chip* **2013**, *13*, 1121.

736 [8] H. Amini, W. Lee, D. Di Carlo, *Lab Chip* **2014**, *14*, 2739.

737 [9] C. Liu, G. Hu, X. Jiang, J. Sun, *Lab Chip* **2015**, *15*, 1168.

738 [10] J. Zhou, I. Papautsky, *Lab Chip* **2013**, *13*, 1121.

739 [11] J. Bingyan, P. Tao, Y. Shuai, Z. Mingyong, *Progress in Chemistry* **2021**, *33*, 1780.

740 [12] Q. Zhao, D. Yuan, J. Zhang, W. Li, *Micromachines (Basel)* **2020**, *11*, 461.

741 [13] J. Zhou, I. Papautsky, *Microsyst Nanoeng* **2020**, *6*, 1.

742 [14] J.-S. Park, S.-H. Song, H.-I. Jung, *Lab Chip* **2009**, *9*, 939.

743 [15] T. S. Sim, K. Kwon, J. C. Park, J.-G. Lee, H.-I. Jung, *Lab Chip* **2011**, *11*, 93.

744 [16] A. J. Chung, D. R. Gossett, D. Di Carlo, *Small* **2013**, *9*, 685.

745 [17] S. A. Dar, S.-I. Yeh, *Microfluid Nanofluidics* **2022**, *26*, 1.

746 [18] D. Jiang, C. Ni, W. Tang, D. Huang, N. Xiang, *Biomicrofluidics* **2021**, *15*, 41501.

747 [19] J. Zhang, S. Yan, W. Li, G. Alici, N.-T. Nguyen, *RSC Adv* **2014**, *4*, 33149.

748 [20] Y. Ying, Y. Lin, *Sci Rep* **2019**, *9*, 1.

749 [21] D. Di Carlo, D. Irimia, R. G. Tompkins, M. Toner, *Proceedings of the National
750 Academy of Sciences* **2007**, *104*, 18892.

751 [22] S. Razavi Bazaz, A. Mashhadian, A. Ehsani, S. C. Saha, T. Krüger, M. Ebrahimi
752 Warkiani, *Lab Chip* **2020**, *20*, 1023.

753 [23] C. Ni, Z. Zhou, Z. Zhu, D. Jiang, N. Xiang, *Anal Chem* **2022**.

754 [24] S. Shen, C. Tian, T. Li, J. Xu, S.-W. Chen, Q. Tu, M.-S. Yuan, W. Liu, J. Wang, *Lab
755 Chip* **2017**, *17*, 3578.

756 [25] M. Rafeie, S. Hosseinzadeh, J. Huang, A. Mihandoust, M. E. Warkiani, R. A. Taylor,
757 *Biomicrofluidics* **2019**, *13*, 34118.

758 [26] L. Zhao, M. Gao, Y. Niu, J. Wang, S. Shen, *Sens Actuators B Chem* **2022**, *369*,
759 132284.

760 [27] Y. Gong, N. Fan, X. Yang, B. Peng, H. Jiang, *Electrophoresis* **2019**, *40*, 1212.

761 [28] K. C. M. Lee, J. Guck, K. Goda, K. K. Tsia, *Trends Biotechnol* **2021**, *39*, 1249.

762 [29] M. Urbanska, H. E. Muñoz, J. Shaw Bagnall, O. Otto, S. R. Manalis, D. Di Carlo, J.
763 Guck, *Nat Methods* **2020**, *17*, 587.

764 [30] E. Ece, N. Hacıosmanoğlu, F. Inci, *Biosensors (Basel)* **2023**, *13*, 332.

765 [31] R. Milo, R. Phillips, *Cell Biology by the Numbers*, Garland Science, **2015**.

766 [32] A. Shamskhany, Z. Li, P. Patel, S. Karimpour, *Front Mar Sci* **2021**, *8*, 760649.

767 [33] J. M. Martel, M. Toner, *Physics of Fluids* **2012**, *24*, 1.

768 [34] J. Cruz, K. Hjort, K. Hjort, *Journal of Micromechanics and Microengineering* **2020**,
769 *31*, 015008.

770 [35] C. Ni, Z. Zhou, Z. Zhu, D. Jiang, N. Xiang, *Anal Chem* **2022**, *94*, 15639.

771 [36] K. C. M. Lee, M. Wang, K. S. E. Cheah, G. C. F. Chan, H. K. H. So, K. K. Y. Wong,
772 K. K. Tsia, *Cytometry Part A* **2019**.

773 [37] D. M. D. Siu, K. C. M. Lee, M. C. K. Lo, S. V Stassen, M. Wang, I. Z. Q. Zhang, H. K.
774 H. So, G. C. F. Chan, K. S. E. Cheah, K. K. Y. Wong, *Lab Chip* **2020**.

775 [38] R. H. Davis, *Current Trends and Future Developments on (Bio-) Membranes* **2019**, 29.

776 [39] H. S. Santana, J. L. Silva, B. Aghel, J. Ortega-Casanova, *SN Appl Sci* **2020**, 2, 1.

777 [40] S. H. Roelofs, A. van den Berg, M. Odijk, *Lab Chip* **2015**, 15, 3428.

778 [41] M. E. Warkiani, A. K. P. Tay, G. Guan, J. Han, *Sci Rep* **2015**, 5, 1.

779 [42] A. Gul, J. Hruza, F. Yalcinkaya, *Polymers (Basel)* **2021**, 13, 846.

780 [43] M. W. Hakami, A. Alkhudhiri, S. Al-Batty, M.-P. Zacharof, J. Maddy, N. Hilal, *Membranes (Basel)* **2020**, 10, 248.

782 [44] Y. Picó, D. Barceló, *ACS Omega* **2019**, 4, 6709.

783 [45] C. K. Chen, J. Zhang, A. Bhingarde, T. Matotek, J. Barrett, B. D. Hardesty, M. M. B. Holl, B. L. Khoo, *Chemical Engineering Journal* **2022**, 428, 132614.

785 [46] N. Xiang, X. Shi, Y. Han, Z. Shi, F. Jiang, Z. Ni, *Anal Chem* **2018**, 90, 9515.

786 [47] N. Xiang, Q. Li, Z. Shi, C. Zhou, F. Jiang, Y. Han, Z. Ni, *Electrophoresis* **2020**, 41, 875.

788 [48] Y. Fang, S. Zhu, W. Cheng, Z. Ni, N. Xiang, *Lab Chip* **2022**, 22, 3545.

789 [49] B. Miller, M. Jimenez, H. Bridle, *Sci Rep* **2016**, 6, 1.

790 [50] K. C. M. Lee, J. Guck, K. Goda, K. K. Tsia, *Trends Biotechnol* **2021**, 39, 1249.

791 [51] M. Doan, I. Vorobjev, P. Rees, A. Filby, O. Wolkenhauer, A. E. Goldfeld, J. Lieberman, N. Barteneva, A. E. Carpenter, H. Hennig, *Trends Biotechnol* **2018**, 36, 649.

794 [52] N.-K. Chlis, L. Rausch, T. Brocker, J. Kranich, F. J. Theis, *Nucleic Acids Res* **2020**, 48, 11335.

796 [53] D. M. D. Siu, K. C. M. Lee, M. C. K. Lo, S. V Stassen, M. Wang, I. Z. Q. Zhang, H. K. H. So, G. C. F. Chan, K. S. E. Cheah, K. K. Y. Wong, *Lab Chip* **2020**.

798 [54] Y. Zhou, A. Yasumoto, C. Lei, C.-J. Huang, H. Kobayashi, Y. Wu, S. Yan, C.-W. Sun, Y. Yatomi, K. Goda, *Elife* **2020**, 9, e52938.

800 [55] M. Doan, J. A. Sebastian, J. C. Caicedo, S. Siegert, A. Roch, T. R. Turner, O. Mykhailova, R. N. Pinto, C. McQuin, A. Goodman, *Proceedings of the National Academy of Sciences* **2020**, 117, 21381.

803 [56] H. Kobayashi, C. Lei, Y. Wu, C.-J. Huang, A. Yasumoto, M. Jona, W. Li, Y. Wu, Y. Yalikun, Y. Jiang, B. Guo, C.-W. Sun, Y. Tanaka, M. Yamada, Y. Yatomi, K. Goda, *Lab Chip* **2019**, DOI 10.1039/C8LC01370E.

806 [57] H. Kobayashi, C. Lei, Y. Wu, A. Mao, Y. Jiang, B. Guo, Y. Ozeki, K. Goda, *Sci Rep* **2017**, 7, DOI 10.1038/s41598-017-12378-4.

808 [58] Y. Belotti, C. T. Lim, *Anal Chem* **2021**, 93, 4727.

809 [59] K. C. M. Lee, M. Wang, K. S. E. Cheah, G. C. F. Chan, H. K. H. So, K. K. Y. Wong, K. K. Tsia, *Cytometry Part A* **2019**.

811 [60] G. Pegoraro, T. Misteli, *Trends in Genetics* **2017**, 33, 604.

812 [61] S. Ziegler, S. Sievers, H. Waldmann, *Cell Chem Biol* **2021**, 28, 300.

813 [62] N. Nitta, T. Sugimura, A. Isozaki, H. Mikami, K. Hiraki, S. Sakuma, T. Iino, F. Arai, T. Endo, Y. Fujiwaki, H. Fukuzawa, M. Hase, T. Hayakawa, K. Hiramatsu, Y. Hoshino, M. Inaba, T. Ito, H. Karakawa, Y. Kasai, K. Koizumi, S. W. Lee, C. Lei, M. Li, T. Maeno, S. Matsusaka, D. Murakami, A. Nakagawa, Y. Oguchi, M. Oikawa, T. Ota, K. Shiba, H. Shintaku, Y. Shirasaki, K. Suga, Y. Suzuki, N. Suzuki, Y. Tanaka, H. Tezuka, C. Toyokawa, Y. Yalikun, M. Yamada, M. Yamagishi, T. Yamano, A. Yasumoto, Y. Yatomi, M. Yazawa, D. Di Carlo, Y. Hosokawa, S. Uemura, Y. Ozeki, K. Goda, *Cell* **2018**, 175, 266.

821 [63] A. A. Nawaz, M. Urbanska, M. Herbig, M. Nötzel, M. Kräter, P. Rosendahl, C. Herold, N. Toepfner, M. Kubánková, R. Goswami, *Nat Methods* **2020**, 1.

823 [64] Y.-H. Cheng, C.-H. Wang, K.-F. Hsu, G.-B. Lee, *Anal Chem* **2022**, 94, 4311.

824 [65] H. G. Kye, C. D. Ahrberg, B. S. Park, J. M. Lee, B. G. Chung, *Biochip J* **2020**, 14, 195.

825 [66] C. D. M. Campos, S. S. T. Gamage, J. M. Jackson, M. A. Witek, D. S. Park, M. C.
826 Murphy, A. K. Godwin, S. A. Soper, *Lab Chip* **2018**, *18*, 3459.
827 [67] T. Zhang, Z.-Y. Hong, S.-Y. Tang, W. Li, D. W. Inglis, Y. Hosokawa, Y. Yalikun, M.
828 Li, *Lab Chip* **2020**, *20*, 35.
829 [68] D. T. Kysela, A. M. Randich, P. D. Caccamo, Y. V Brun, *PLoS Biol* **2016**, *14*,
830 e1002565.
831 [69] A. Ståhl, K. Johansson, M. Mossberg, R. Kahn, D. Karpman, *Pediatric nephrology*
832 **2019**, *34*, 11.
833 [70] Y. Yalikun, N. Ota, B. Guo, T. Tang, Y. Zhou, C. Lei, H. Kobayashi, Y. Hosokawa, M.
834 Li, H. Enrique Muñoz, *Cytometry Part A* **2020**, *97*, 909.
835 [71] C. A. LaBelle, A. Massaro, B. Cortés-Llanos, C. E. Sims, N. L. Allbritton, *Trends*
836 *Biotechnol* **2021**, *39*, 613.
837 [72] *Nature Reviews Methods Primers* **2023**, *3*, 33.
838 [73] J. De Rutte, R. Dimatteo, M. M. Archang, M. Van Zee, D. Koo, S. Lee, A. C. Sharow,
839 P. J. Krohl, M. Mellody, S. Zhu, *ACS Nano* **2022**, *16*, 7242.
840 [74] D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, M. Toner, *Phys Rev Lett* **2009**,
841 *102*, 94503.
842