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Abstract (250 words) 

Purpose: Despite significant advances in the treatment paradigm for patients with metastatic 

melanoma, melanoma brain metastasis (MBM) continues to represent a significant treatment 

challenge. The study of MBM is limited, in part, by shortcomings in existing preclinical models. 

Surgically eXplanted Organoids (SXOs) are ex vivo, three-dimensional cultures prepared from 

primary tissue samples with minimal processing that recapitulate genotypic and phenotypic 

features of parent tumors and are grown without artificial extracellular scaffolding. We aimed to 

develop the first matched patient-derived SXO and cell line models of MBM to investigate 

responses to targeted therapy. 

Methods: MBM SXOs were created by a novel protocol incorporating techniques for 

establishing glioma and cutaneous melanoma organoids. A BRAFV600K-mutant and BRAF-

wildtype MBM sample were collected directly from the operating room for downstream 

experiments. Organoids were cultured in an optimized culture medium without an artificial 

extracellular scaffold. Concurrently, matched patient-derived cell lines were created. Drug 

screens were conducted to assess treatment response in SXOs and cell lines. 

Results: Organoid growth was observed within 3-4 weeks, and MBM SXOs retained histological 

features of the parent tissue, including pleomorphic epithelioid cells with abundant cytoplasm, 

large nuclei, focal melanin accumulation, and strong SOX10 positivity. After sufficient growth, 

organoids could be manually parcellated to increase the number of replicates. Matched SXOs 

and cell lines demonstrated sensitivity to BRAF and MEK inhibitors. 

Conclusion: Here, we describe the creation of a scaffold-free organoid model of MBM. Further 

study using SXOs may improve the translational relevance of preclinical studies and enable the 

study of the metastatic melanoma tumor microenvironment. 

Keywords: Metastatic melanoma, organoids, melanoma brain metastasis, preclinical cancer 

model 

 

 

Introduction 

Melanoma brain metastasis (MBM) represents a significant treatment challenge [1]. While 

combinatorial systemic targeted therapy in some subtypes has shown reasonable control rates 

in extracranial tumor burden, this treatment regimen has produced a less durable response in 

progressive central nervous system (CNS) disease [2-4]. The recent CheckMate 204 trial 

demonstrated concordant intracranial and extracranial benefits with combined immune 

checkpoint inhibitors; however, further study is needed to assess optimal therapy regimens, 
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particularly in symptomatic MBM [5, 6]. The decreased effectiveness of systemic targeted 

therapy to brain metastases has been thought to be related to poor blood-brain barrier 

penetration, the unique brain-tumor interface, and immune considerations of the brain-tumor 

immune microenvironment (TIME) [7-9]. While these interactions are critical to investigate, 

existing model systems have limited our ability to evaluate the response of MBM to 

immunotherapy in the laboratory. 

Two-dimensional melanoma cell lines are essential for high-throughput, in vitro drug sensitivity 

studies; however, these systems do not reflect the complex cellular heterogeneity of human 

metastatic brain tumors [10]. Patient-derived xenograft models enable studies of drug 

responses in a relevant cellular milieu but are intrinsically low-throughput, carry long latency 

times, and the strains used for xenotransplantation limit evaluation of the TIME [11, 12]. Patient-

derived three-dimensional organoids have emerged as an attractive system for modeling the 

heterogenous microenvironment of advanced cancers [13]. Traditional approaches to organoid 

modeling have used isogenic cell lines or enzymatically dissociated patient-derived tumor 

samples [14]. However, these techniques often simultaneously rely on the supplementation of 

exogenous growth factors and sample engrafting in an artificial extracellular matrix (ECM), such 

as Matrigel, Geltrex, or collagen gel scaffolds [13, 15]. Additionally, their clonal nature limits 

elements of the TIME that may drive treatment response or resistance.  

Recently, our group demonstrated an optimized and efficient method to produce Surgically 

eXplanted Organoids (SXOs) of low-grade glioma from resected tumor samples that faithfully 

maintain the histology, genetics, and cellular composition of the parent tissue [16]. These SXOs 

can be established at an almost 90% success rate from both low- and high-grade gliomas and 

model the differential sensitivities to drugs that selectively target IDH-mutant gliomas [16, 17]. 

Notably, this approach to producing SXOs does not require an artificial ECM, thus providing a 

more faithful and physiologically relevant ex vivo model system. Recently, a minimally 

processed technique was used to generate patient-derived organoids from cutaneous 

melanoma samples [18, 19]. While this technique has clear advantages over protocols that 

dissociate tissues to single or near-single cell suspensions, it requires engraftment into an 

artificial ECM, is derived from a clonal progenitor cell, and exists in a system that lacks crucial 

elements of the TIME. To create an SXO model of MBM, we sought to adapt these techniques 

to incorporate elements of the glioma SXO model approach with variations in media 

concentrations to facilitate the growth of these metastatic lesions [16, 18, 19]. 

Herein, we detail the creation of three-dimensional, scaffold-free SXOs of MBM directly from 

primary patient tumor samples (Fig. 1). Additionally, we show that the MBM SXOs retain the 
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histopathologic characteristics of the parent tissue and mirror predicted sensitivities to targeted 

therapeutics. To our knowledge, this is the first report of a scaffold-free organoid model of 

melanoma and is the first organoid model of MBM. These findings suggest that MBM SXOs may 

serve as a novel, physiologically relevant model system for therapeutic screening and 

translational studies of this disease. 

 

 

Fig. 1. Overview of the creation of Surgically Explanted Organoids (SXOs) of Melanoma 

Brain Metastases (MBM). Tissue samples of MBM were collected from the operating room, 

manually parcellated, and cultured in optimized Melanoma Organoid Complete Media. SXOs 

reached maturity 2-4 weeks after explant and were cultured for at least four weeks before use in 

downstream experiments. Additionally, primary tissue and derivative organoids were 

cryopreserved for future analyses. Organoids were randomized to all treatment groups. Figure 

created with BioRender. 
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Materials and Methods 

Human specimens 

All patient tissue and blood samples were collected following ethical and technical guidelines on 

the use of human samples for biomedical research at the University of Pittsburgh and the 

University of Pittsburgh Medical Center after informed consent was obtained from patients 

under the Institutional Review Board Protocol (19080321). The study was conducted according 

to the principles of the Declaration of Helsinki. 

 

Organoid creation and culture in melanoma complete media 

Tumor tissue was collected and processed as previously described [16]. Freshly resected tumor 

tissue was collected directly from the operating room, suspended in ice-cold Hibernate A 

(BrainBits HA), and brought to the lab on ice for processing within 30 minutes of resection. 

Tumor pieces were submerged in RBC Lysis Buffer (ThermoFisher 00433357) and incubated 

on a rocker at room temperature for 10 minutes. Then, the RBC Lysis Buffer was aspirated, and 

the tumor pieces were washed with Hibernate A solution containing Glutamax (2 mM, 

ThermoFisher 35050061), Penicillin/Streptomycin (100 U/mL and 100 µg/mL, respectively, 

ThermoFisher 15140122), and Amphotericin B (0.25 µg/mL, Gemini Bio-Products 400104). 

Tissues were transferred to a sterile culture dish, manually parcellated using a 1.0 mm biopsy 

punch (ThermoFisher 12460401), and suspended in 1 mL of Melanoma Organoid Complete 

Media (formula below) [18]. Each organoid in 1 mL of media was plated per well of a 24-well 

flat-bottom ultra-low adherence plate (Corning 3473). Plates were incubated in a humidified 

incubator at 37°C, 5% CO2, and 21% O2 under continuous orbital rotation at 120 rpm. SXO 

media was replaced every other day, with 75-90% of media being replaced. Melanoma 

Organoid Complete Media formula [18]: 250 mL DMEM (Sigma D6429), 125 mL Nutrient 

Mixture Ham’s F12 (Sigma N4888), 125 mL MCDB 105 Medium (Cell Applications 117-500), 50 

mL fetal bovine serum (Gibco 26140079), 5 mL Glutamax (2 mM, ThermoFisher 35050061), 5 

mL Penicillin/Streptomycin (100 U/mL and 100 µg/mL, respectively, ThermoFisher 15140122), 

10 mL B-27 supplement (Gibco 17504044), 1 mL Normocin (Invivogen ant-nr-1). Melanoma 

Organoid Complete Media stocks were used up to 1 month after preparation. 

 

Human melanoma brain metastasis cell generation 

The MBM739 cell line was generated from a human melanoma brain metastasis (UPMC739). 

The Human Tumor Dissociation Kit (Miltenyi Biotec 130095929) was used per the 

manufacturer’s protocol to generate a single-cell suspension from the tumor sample. After 
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dissociation, cells were cultured in DMEM (Sigma D6546) supplemented with 10% fetal bovine 

serum, 5 mL Glutamax (2 mM, ThermoFisher 35050061), and 5 mL Penicillin/Streptomycin (100 

U/mL and 100 µg/mL, respectively, ThermoFisher 15140122) at 37°C, 5% CO2, and 21% O2. 

Cells were cultured in adherent culture dishes and passaged 1-2 times per week with 0.25% 

trypsin. 

 

Histopathology and immunohistochemistry 

SXOs and primary tissue samples were fixed in 10% formalin for 1 hour and then washed and 

resuspended in 70% ethanol. After the alcohol wash, SXOs were transferred to the cap of a 1.5 

mL cryotube, resuspended in 0.5% agarose gel, and allowed to solidify overnight at 4°C. The 

following morning, the agarose-organoid molds were transferred to a cassette, dehydrated in 

10% formalin, 70% ethanol three times for 30 minutes, 90% ethanol twice for 30 minutes, 100% 

ethanol three times for 30 minutes, xylene three times for 20 minutes, and embedded in 

paraffin. Paraffin blocks were sectioned at 4-um thickness. For hematoxylin and eosin (H&E) 

staining, slides were deparaffinized in xylene (9 min), 100% ethanol (3 min), 95% ethanol (1 

min), and stained with hematoxylin (20 sec). Slides were rinsed in water, soaked in clarifier (40 

sec), washed in water, and then bluing agent (20 sec). Slides were then rinsed, stained with 

eosin (20 sec), followed by serial incubation in 100% ethanol (3 min) and xylene (3 min), and 

then mounted for microscopic examination. Immunohistochemistry (IHC) staining was 

performed via the Cell Signaling Technology® citrate unmasking protocol. Antibodies used 

included an anti-human Sox10 rabbit antibody (1:100, Abcam ab227680) and an anti-human 

Gp100 mouse antibody (1:100, Abcam ab732, clone HMB45). 

 

Cell viability assay 

Cell viability assays were performed by seeding 5,000 cells/well in a 96-well opaque walled 

plate. Replicates were then treated with the BRAF inhibitor, dabrafenib (Sellekchem S2807), 

MEK inhibitor, trametinib (Selleckchem S2673), or combined treatment. The CellTiter-Glo 

Luminescent Viability Assay (Promega G7571) was used to measure cell viability at 24, 48, and 

72 hours following the manufacturer’s protocol. Luminescence was measured using the Tecan 

M1000 Pro Microplate Reader. 

 

Organoid viability assay 

Organoids were treated with the respective drug diluted in Melanoma Complete Media. At the 

desired time point, SXO viability was assessed using the ReadyProbe Cell Viability Kit 
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(Invitrogen R37610). Briefly, treated organoids were removed from the incubator, approximately 

90% of the media was removed, and 500 µl fresh media was added. Then, 20 µL of the 

NucBlue/Hoechst and 20 µL of the propidium iodide dye were added. Organoids were then 

returned to the incubator under orbital rotation for 20 minutes. Fluorescent live cell imaging of 

the organoids was then captured on the Nikon CrestOptics X-Light V3 spinning disk confocal 

microscope at 40X magnification. An executable application was run within the Nikon NIS-

Elements software to denoise and generate a three-dimensional maximal projection of the 

organoid. Organoid viability was quantified using the Nikon NIS-Elements software to generate 

the percent viability of live cells (Hoechst positive) relative to dead cells (Hoechst plus propidium 

iodide). Prior correlation of cellularity and viability between live cell imaging and traditional 

histopathology establishes the utility of this assay in assessing treatment response [20]. 

 

Statistical analysis 

SXOs were allocated to experiments randomly. All statistical tests were two-sided, where 

applicable. Student’s t-tests were used to assess the statistical significance of differences 

between groups. Statistical analyses were performed with GraphPad Prism (9.5.1.528, 

GraphPad Software, LLC) and included both descriptive statistics and tests of statistical 

significance. All data are plotted as mean ± standard deviation. For all tests, p-values less than 

0.05 were considered statistically significant. 

 

 

Results 

We created two unique models of MBM. Patient 1 (UPMC739) was a 54-year-old male with a 5-

year history of BRAFV600K-mutant oligometastatic melanoma to the bowel and kidney who had 

undergone multiple extracranial resections as well as nivolumab and encorafenib/binimetinib 

treatments following multiple episodes of disease progression. He presented with new 

symptomatic multifocal brain metastases and underwent resection of a symptomatic left 

temporal lobe mass (Fig. 2a). Patient 2 (UPMC754) was a 62-year-old male with a 2-year 

history of BRAF-wildtype metastatic melanoma to the lungs who had undergone prior resection 

and treatment with nivolumab and duvelisib. He underwent resection of a symptomatic new 

large left cerebellar mass in the setting of multifocal MBM (Fig. 2b). Clinical pathologies were 

consistent with metastatic melanoma, denoted by epithelioid tumor cells with amphophilic 

cytoplasm, severe pleomorphism, prominent nucleoli, and variable (UPMC739) or absent 

(UPMC754) pigment staining. The tumor cells were positive for SOX10, gp100, and patchy 
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MelanA by immunohistochemistry (IHC). From each tumor sample, we successfully generated 

SXOs and cultured them in Melanoma Organoid Complete Media [18] for four weeks before 

treatment studies. In parallel, we established a two-dimensional cell line, MBM739, from the 

primary tissue of UPMC739 using an available human tumor dissociation protocol. Cells were 

passaged weekly until capable of sufficient self-renewal for downstream assays.  

 

 

Fig. 2. Preoperative axial and coronal T1 post-contrast magnetic resonance imaging (MRI) of 

(a) Patient 1 (UPMC739) revealing a large left temporal lobe melanoma metastasis, and (b) 

Patient 2 (UPMC754) revealing a large left cerebellar melanoma metastasis. 

 

 

MBM SXOs preserve histologic features of the parent tumor 

We assessed SXO cytoarchitecture and viability with assistance from a board-certified 

neuropathologist (T.E.R.). We found that the SXO models recapitulated the histopathologic 

features of the parent tumor on hematoxylin and eosin (H&E) staining, with epithelioid cells and 

pleomorphic nuclei (Fig. 3). On visual inspection, the SXOs from UPMC739 were melanotic in 

appearance. In contrast, the SXOs from UPMC754 were tan and amelanotic, consistent with the 

degree of pigmentation present in the primary tumor histology. These pigmentation patterns 

were retained in culture, both grossly and on histopathology. Additionally, the IHC of both SXO 

models demonstrated diffuse positivity for SOX10, a reliable marker of multiple histologic 

subtypes of malignant melanoma [21], and UPMC739 was positive for gp100. 
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Fig. 3. Surgically eXplanted Organoids (SXOs) of melanoma brain metastases retain the 

cellularity and histopathologic characteristics of the parent tissue. Explanted tissue and 

organoids were formalin-fixed and paraffin-embedded for histopathologic analysis at routine 

intervals, including at the time of surgery, two weeks post-resection, and one month post-

resection. H&E slides demonstrate similar histological characteristics of SXOs to the parent 

tissue, including pleomorphic epithelioid cells with abundant cytoplasm, large nuclei, and focal 

(UPMC739) or absent (UPMC754) melanin accumulation. Immunohistochemistry shows that 

primary tissue and SXOs are diffusely SOX10 positive and gp100 positive (UPMC739). Scale 

bar = 125 µm and insets = 50 µm. 

 

 

Matched patient-derived cell line and surgically eXplanted organoids (SXOs) 

demonstrated sensitivity to dabrafenib and trametinib 

To evaluate whether our patient-derived MBM models demonstrate predicted sensitivities to 

targeted molecular therapies, we treated the MBM739 cell line with dabrafenib (BRAF inhibitor), 
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trametinib (MEK inhibitor), or combined BRAF-MEK inhibition with both agents (Fig. 4a). Using 

the doses determined from the cell line, we then administered the effective doses of each 

treatment to the MBM SXOs for 48 hours. We evaluated their response using an established 

method for live cell fluorescence imaging microscopy [20]. There was an appreciable increase in 

the propidium iodide (PI) signal with monotherapy treatment and a significant decrease in the 

organoid viability with dual-targeted molecular therapy (Fig. 4b). Further, Live-Dead analysis of 

the organoids treated with dabrafenib and trametinib alone showed a decrease in viability, 

however, combined BRAF-MEK inhibition resulted in a statistically significant decrease in MBM 

SXO viability (Fig. 4c) 

 

 

Fig. 4. Matched patient-derived cell line and surgically eXplanted organoids (SXOs) of 

BRAFV600K-mutant metastatic melanoma to the brain demonstrate sensitivity to combined 

targeted therapy agents, dabrafenib and trametinib. (a) Decreased viability of the two-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.18.576318doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.576318
http://creativecommons.org/licenses/by/4.0/


 11

dimensional cell line MBM739, derived from UPMC739, in response to increasing dabrafenib, 

trametinib, or combined agents as assessed by the Cell-Titer Glo assay. (b) Fluorescent-based 

viability assay of MBM SXOs revealed maintenance of organoid structural integrity with 

increased cell death after 48 hours of treatment. (c) Quantification of SXO viability demonstrates 

the mild effect of monotherapy and a synergistic effect with dual-targeted therapy. Data are 

presented as means ± standard deviation; ns = not significant; * p<0.05. n = 3 for all treatment 

groups. Scale bar = 250 µm. 

 

 

Discussion 

Here, we detail a protocol for a novel preclinical model of MBM and the first known scaffold-free 

organoid model of melanoma. Further, we have shown the ability to screen the sensitivity of 

MBM SXOs to targeted therapeutic agents. The generation of this model answers a prior unmet 

need for a physiologically relevant preclinical system to guide translational studies of MBM. 

Melanoma is highly aggressive and carries a significant mortality rate due to its rapid 

proliferation, early and recurrent metastatic disease propensity, particularly to the CNS, and 

intratumor heterogeneity [22, 23]. While combination targeted molecular therapy and 

immunotherapy have shown success in treating extracranial disease burden, the degree of 

disease response for MBM has been more limited. While a recent study demonstrated that 

treatment of asymptomatic MBM with nivolumab plus ipilimumab (Checkmate 204, open-label 

phase 2 results) was feasible, there remain critical subsets of patients who either develop 

symptomatic MBM or who progress despite combinatorial therapy [6]. 

Alternatively, the outcomes in MBM may be attributable to the paucity of relevant model 

systems that faithfully and reliably model human metastatic melanoma to the brain [24]. Two-

dimensional cell lines frequently lack intratumoral heterogeneity, traditional xenograft models 

limit the study of the TIME, and genetically engineered mouse models often produce oligoclonal 

tumors compared to the polyclonal heterogeneity seen in human melanoma, particularly in the 

case of metastatic disease [24]. Thus, the protocol outlined here may bridge a translational gap 

by providing a preclinical MBM model that is temporally related to the primary human tumor, has 

minimal ex vivo processing, retains the key histopathologic features of the primary tumor, and 

mirrors predicted drug sensitivities of the primary tumor based on known molecular profiles. 

A downstream application of this model system is in performing preclinical therapeutic 

screening. In addition to being useful in testing sensitivity to targeted molecular therapies, as 

seen in the current study and our prior studies targeting IDH-mutant glioma [16, 17], we have 
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shown that SXOs provide reliable treatment responses in multi-modality evaluations of targeted 

therapeutics [25, 26]. Our study demonstrated the utility of this model system in assessing 

treatment response to targeted agents against upregulated cell signaling pathways in BRAF-

mutant MBM [27-29]. Patient-derived organoids have been used to perform comprehensive 

drug screens in extracranial platforms for breast, liver, and colorectal cancers, among others 

[13, 30, 31]. Notably, the minimally processed SXO model can be produced in a clinically 

relevant timeline [32]. As with the results from our prior studies, the cultured MBM SXOs reach 

maturity within 2-4 weeks of creation, in line with the timing for postoperative recovery, 

histopathologic analysis of biopsied or resected tissue, and genomic sequencing profiles to 

result. With clinical practice for most hematologic and solid malignancies centered around 

individual cancer’s genetic profile, a comprehensive preclinical drug screen of the patient's 

tumor would be an additional tool to guide personalized oncology [33]. 

Beyond their initial applications in translational therapeutic screenings, SXOs offer a novel 

avenue to understand melanoma biology. Glioma SXOs have demonstrated preservation of the 

tumor, non-immune, and infiltrating immune cells, enabling the study of the tumor 

microenvironment [16, 34]. Particularly when studying melanoma, where systemic 

immunotherapy has shown significant efficacy, a model system to study these interactions ex 

vivo is critical. A recent study by Ou et al. created a scaffolded organoid model of extracranial 

malignant melanoma. They found they could successfully model the immunosuppressive 

microenvironment and sensitivity to immune checkpoint blockade in vivo [35]. Additionally, we 

have recently shown the ability to perform stable isotope tracing of glioma SXOs, providing 

another unique avenue to study tumor metabolism in metastatic cancer of the brain [36]. 

 

Limitations 

We acknowledge that our study is not without limitations. All replicates were derived from two 

patients and may not fully represent the generalizability of this protocol. Further, the sensitivity 

of the BRAFV600K-mutant MBM SXO to dabrafenib and trametinib may have been confounded by 

prior exposure to encorafenib and binimetinib, an alternative BRAF/MEK inhibitor combination. 

The number of SXO replicates is limited (n = 3 for histology and n = 3 for drug treatments). It 

should be noted that the generation and maintenance of SXOs is contingent on precise 

attention to culture media, and our study marries the culture needs of rapidly-derived tissue 

explants and melanoma-specific media, which was critical in the generation of these models. 

This is further supported by prior organoid studies in which different culture media conditions 

with the appropriate growth factors are required to create and propagate breast, lung, and brain 
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cancer organoids [13, 16, 34]. Additionally, an expeditious relay between the operating room 

and the laboratory is essential, as these explants have shown high sensitivity to delays in 

culture conditions. 
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