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Abstract 

Structural variants (SVs) such as deletions, inversions, duplications, and Transposable Ele-

ment (TE) Insertion Polymorphisms (TIPs) are prevalent in plant genomes and have played an im-

portant role in evolution and domestication, as they constitute a significant source of genomic 

and phenotypic variability. Nevertheless, most methods in quantitative genetics focusing on crop 

improvement, such as genomic prediction, consider Single Nucleotide Polymorphisms (SNPs) as 

the only type of genetic marker. Here, we used rice to investigate whether combining the struc-

tural and nucleotide genome-wide variation can improve prediction ability of traits when com-

pared to using only SNPs. Moreover, we also examine the potential advantage of Deep Learning 

(DL) networks over Bayesian Linear models, which have been widely applied in genomic predic-

tion. Specifically, the performance of BayesC and a Bayesian Reproducible Kernel Hilbert space 

regressions were compared to two different DL architectures, the Multilayer Perceptron, and the 

Convolution Neural Network. We further explore their prediction ability by using various marker 

input strategies and found that exploiting structural and nucleotide variation improves prediction 

ability on complex traits in rice. Also, DL models outperformed Bayesian models in 75% of the 

studied cases. Finally, DL systematically improved prediction ability of binary traits against the 

Bayesian models. 

Introduction 

 Rice (Oryza sativa) constitutes a fundamental staple crop, essential to humans for its nu-

tritional and caloric value. World rice production has reached a plateau (FAO, 2023), and following 

the conventional breeding techniques, rice yield will soon not meet the high demand caused by 

the increasing world population. Therefore, we need to explore new approaches to secure global 

nutritional requirements by increasing at the same time the quality and quantity of rice yield. 

Genomic Prediction (GP) can help to achieve these goals, accelerating the breeding progress 

(Meuwissen et al. 2001). Various studies in plants have shown the effectiveness of GP in increasing 

breeding speed (Jighly et al. 2019, Tessema et al. 2020, Xu et al. 2020, Krishnappa et al. 2021). GP 

framework has been widely used in rice studies for predicting various quantitative traits, reporting 

moderate to high predictive performance (Xu et al. 2021). Complex traits are controlled by nu-

merous loci that are difficult to detect with genetic mapping. GP assumes that quantitative trait 

loci (QTL) will be in linkage disequilibrium (LD) with molecular markers. Thus, instead of detecting 

all the QTL associated with a trait, an indirect association between marker and trait is exploited.  

Conceptually, since the number of genotyped individuals n, is typically smaller than the 

number of molecular markers p, GP faces statistical challenges such as large sampling variance 

and increased mean-square error. To overcome this limitation, variables must be selected or re-

strictions on the solutions must be applied or sometimes both. The main classes of GP methods 

are the genomic relationship-based method such as Genomic Best Linear Unbiased Prediction 

(GBLUP, VanRaden, 2008) and the SNP effect-based methods such as the Bayesian family (Meu-

wissen et al. 2001, Habier et al. 2011, Pérez and De Los Campos, 2014) and LASSO (Tibshirani, 

2011). Some Bayesian models do not necessarily assume homogeneity across marker effects. They 

perform variable selection and shrinkage on the effects simultaneously using priors other than 
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Gaussian. BayesC is an example of this category assuming as a prior a normal distribution with 

constant variance while a fraction of marker has no effect (Habier et al. 2011). On the other hand, 

methods such as GBLUP involve restriction on the square of solutions (L2 norm), with the effect 

of the markers assuming to be normally distributed with equal variance.  

Deep Learning (DL) networks are a collection of machine learning algorithms that have 

exhibited excellent performance in some prediction tasks (Min et al. 2017; Pattanayak 2017). The 

DL models are trained in such a way to find complex relationships between data. DL networks 

consist of multiple layers and interconnected nodes. Each layer uses as input the output of the 

previous layer to optimize the prediction or classification. Numerous DL architectures have been 

proposed, such as Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Convolu-

tional Neural Network (CNN, LeCun et al. 2015). DL has been around for decades but only recently 

started to be widely implemented because of the easy implementation framework provided by 

various online libraries (e.g https://keras.io/, https://pytorch.org/). The performance of the DL 

networks depends on the accuracy of hyperparameter choice, which is not an easy task and re-

quires abundant computation resources (Young et al. 2015, Chan et al. 2018). For a review of DL 

tools applied to genomic prediction, see (Pérez-Enciso and Zingaretti, 2019). 

Despite their features, various works have shown a performance of DL in genomic predic-

tion comparable to linear models (González-Recio et al. 2014; Ma et al. 2017; Bellot et al. 2018; 

Montesinos-López et al. 2018). Zingaretti et al. (2020) did not find a considerable advantage of DL 

over linear models, except when epistasis component was important. Ehret et al. (2015) found 

non-relevant differences between a GBLUP and a MLP model. In a wheat study (Ma et al. 2017), 

DL performed better than GBLUP when used to predict phenotypes from genotypes. Similarly, 

Gianola et al. (2011) found that MLP performed better than a Bayesian linear model in wheat. In 

another study in wheat, Pérez-Rodríguez et al. (2012) extensively compared the prediction per-

formance of Radial Basis Function Neural Networks and Bayesian Regularizes Neural Networks 

against several linear models and semiparametric models such as Reproducible Kernel Hilbert 

Space (RKHS). The authors concluded that the non-linear models, such as DL, demonstrated a 

higher prediction ability than the linear models. Evaluating the potential of DL algorithms, Sandhu 

et al. (2021) showed higher prediction ability against the linear models in spring wheat.  For an 

extensive review in GP using DL models see Montesinos-López et al. (2021).  

While genomic prediction of quantitative traits has been broadly studied, binary and ordi-

nal traits are of great importance in plant breeding as well. Particularly, in rice, culm morphology 

and stay green related traits are important targets for genetic improvement (Kamal et al. 2019, 

Chigira et al. 2023, Lee and Masclaux-Daubresse 2021). However, the prediction ability of differ-

ent types of traits depends on the statistical models used. Thus, many studies in Genomic Selec-

tion (GS) focus on improving existing models or develop new ones as it was pointed out by Mon-

tesinos-López et al. (2019).  

Most of the studies in GP rely only on SNPs, disregarding other sources of genomic variation such 

as structural variants (SVs). Among the different types of SVs, TIPs account for an important frac-

tion and play a key role in plant evolution, from domestication to adaptation and breeding (Dubin 

et al. 2018).   Studies in tomato and in rice found that the use of TIPs can lead to the identification 

of novel associations not detected by SNPs in genome-wide association studies (Akakpo et al. 

2020; Carpentier et al. 2019; Domínguez et al. 2020; Castanera et al. 2021). In a recent study, we 

showed that TIPs explain a sizable fraction of the genetic variance in several rice agronomic traits 

and significantly improve genomic prediction (Vourlaki et al. (2022). However, TIPs are not the 

only type of structural variation in the genome. Other SVs such as deletions, inversions, and 
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duplications account for an important fraction of genetic variation and have been key in the do-

mestication and diversification of plant crops (Lye and Purugganan, 2019). SVs have a high poten-

tial to generate large effect mutations when they affect genes or gene regulatory regions.  Over 

the last few years, several studies have demonstrated the importance of presence-absence varia-

tion and structural variation as a source of gene expression and phenotypic variability in plant 

crops including rice, tomato or soybean (Qin et al. 2021, Alonge et al. 2020, Liu et al. 2020).  

Here we investigate whether merging all the structural and nucleotide genome-wide vari-

ation can improve phenotypic prediction compared to using only SNPs in rice. Finally, we further 

explore the performance of DL in GP by (i) using multiple marker input strategies, (ii) proposing 

several approaches to accommodate large scale marker information, and (iii) optimizing network 

architectures. We also provide documented python code based in tensorflow 2 (Abadi et al. 2016) 

in the following link https://github.com/ivourlaki/Deep-Learning-in-rice-for-prediction.git. 

Materials and Methods 

Rice accessions and traits 

In this study we used a subset of 738 accessions from the 3,000-rice genome project (Li et 

al. 2014). Accessions were chosen based on the availability of at least 15x of sequencing depth. 

The 738 accessions are representative of the main rice population groups: Aus/Boro (AUS, N=75), 

Indica (IND, N=451), Japonica (Jap,N=166), Aromatic (ARO, N=17). An additional group of admixed 

varieties (ADM, N=29) consisting of accessions that cannot be assigned to a specific rice group was 

also used. SNP-based group assignment from Alexandrov et al. (2015) and Sun et al. (2017) was 

used to identify the different subsets of this study. Studied traits are publicly available at IRRI SNP-

Seek database (https://snp-seek.irri.org/). Among continuous traits, grain weight and time to flow-

ering were used, whereas culm diameter (1st internode) and leaf senescence were selected among 

the binary traits available. Some of the ordinal traits were binned to balance the number of ob-

servations per class. Particularly, in leaf senescence values equal to 1 were assigned to class 1 

while the rest ones range from 2-9 were recorded as 2 and were assigned to class 2. Finally, time 

to flowering was log-transformed.  

Markers 

We used the filtered SNP dataset in Vourlaki et al. (2022). Specifically, a binary ped file 

format with the 3K RG CoreSNPs dataset for all chromosomes was downloaded from the SNP-

Seek database. The original dataset consisted of 404,399 bi-allelic SNPs from 3,034 rice accessions, 

including the 738 accessions selected. We filtered out markers with minor allele frequency f 0.01 

and missing rate)>)1% using plink2 (Purcell et al. 2007; Chang et al. 2015). Also, missing genotypes 

were imputed using Beagle 5.2 with default parameters (Browning et al. 2018). After filtering the 

final dataset consisted of 228,871 SNPs.  
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The TIP dataset described in Castanera et al. (2021) (containing two categories: MITE-DTX and 

RLX-RIX) was complemented with non-TE deletions (DEL), duplications (DUP) and inversions (INV) 

downloaded from SNP-seek database (3K RG Large Structural Variants release 1.0). We filtered 

out SVs events containing multiple overlapping deletions as these complex variants are difficult 

to genotype with short reads and are thus less reliable.  SVs genotypes were recorded as 0/1 (ab-

sence/presence).  All the markers with minor allele frequency f 0.01 were filtered out. Finally, the 

dataset used in our analysis consists of 52,120 MITE-DTX, 21,517 RLX-RIX, 74,136 DEL, 25,670 DUP 

and 7,527 INV. 

Genetic variance inference 

 To estimate the genetic variance components explained by each marker set, we fitted the 

following linear model using RKHS (Gianola et al. 2006): 

� = � + 	�	�� 	+ 	��� 	+ 	�                                                                               (1) 

where � is the general mean, � is the phenotype vector of size n (the number of accessions), � is 

an identity incidence matrix, �# and �$ are random effects of each of the marker groups and e is 

the residual. Random effects are assumed to be normally distributed �#~�(0, �#�#$), 
�$~�(0, �$�$$), with constant variance  �#�#$ and �$�$$. Where �#, �$ are genomic relationship 

matrices (GRM) obtained from the markers used in the corresponding model. We fitted the model 

five times using as  �# the GRM form SNPs while as �$, GRM was obtained from MITE-DTX, RLX-

RIX, DEL, DUP, INV, separately. The GRM were calculated using AGHMatrix (Amadeu et al. 2016). 

Model was implemented in BGLR package (Pérez and de Los Campos 2014) using default priors to 

estimate �#$, �$$.  

Genomic Prediction Models 

Bayesian Regression Models 

Two Bayesian methods were employed in this study: Bayesian RKHS and BayesC. RKHS is 

a kernel-based method that uses a ridge regression L2 regularization technique like GBLUP. 

BayesC is a variable selection method that estimates the effect of the markers. Both methods 

were applied to each trait separately. Particularly, for each method, various models were designed 

and applied comparing the predictive performance of using all the markers together versus using 

only SNPs. For RKHS, the models are described as follows:  

� = � + 	�	�� 	+ 	��� 	+ 	��� 	+ 	��� 	+ 	��� 	+ 	��� 	+ 	�,                                                (2)                                                                      

Where �#, �$, �), �*, �+, �, are random effects �~�(0, ��$) with � corresponds to a GRM com-

puted using SNPs, MITE-DTX, RLX-RIX, DEL, DUP, INV, respectively. Apart from model (2) where 

the different marker types are applied at the same time, other models were studied as well. Par-

ticularly, we were interested in investigating whether one matrix represented by different type of 

markers could result in a higher prediction in comparison to model (2) and to use only SNPs. As a 

result, the following models were studied: 

 

� = � + 	�	����_�������� + 	� 

 

                                                                              (3) 

� = � + 	�	����_���� + 	� 

 

                                                                              (4) 
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� = � + 	�	�������_���� 	+ 	�                                                                               (5) 

 

Where �#=>_?@AB@CDE, �#=>_FGHE, �IBC>JK_FGHE, are the effects of the 10,000 most associated mark-

ers among the six sets, the 10,000 most associated SNP effects and by using the SNPs linked to 

structural variation.  LD between SNPs and SVs was calculated using ngsLD software (Fox et al. 

2019), and we considered that a SNP was linked to an SV when r2 >= 0.8.  

For BayesC, the complete models were: 

� = � +	����_��������
	�	 + �                                                                               (6) 

� = � +	����_����	�	 + 	�                                                                               (7) 

� = � +	�������_����	�	 + 	�                                                                               (8) 

Where �#=>_?@AB@CDE, �!"#_%&'(,	�)*+#,-_%&'( are the standardized genotypes for the 10,000 most 

associated markers among all marker sets, the 10,000 most associated SNPs and the linked SNPs 

respectively. The 10,000 most associated were selected based on a linear regression-based ge-

nome-wide association analysis (GWAS) analysis. A detailed description is given in <Input Strate-

gies= section. Finally, where �, is the vector of effects for the corresponding matrix.  

Using either RKHS or BayesC, phenotypes to be predicted were removed from the dataset 

and the model fitted using the remaining phenotypes. Prediction ability was assessed by compu-

ting two different metrics related to the type of trait. We computed the mean squared error (MSE) 

between predicted and observed phenotypes for the quantitative traits, whereas binary cross-

entropy was employed for the binary traits.   Both models were implemented using BGLR package. 

BayesC assumes that a proportion of markers will have zero effect with probability sampled from 

a beta distribution, �~����(�=, �=). Here we chose �= = 5 and Ã0 = 0.01. For the case of binary 

traits option <response_type=ordinal= was applied in both methods (RKHS, BayesC). Finally, BGLR 

was run for 100,000 iterations using default priors for RKHS.  

Multilayer Perceptron 

 One of the most popular DL architectures is the Multilayer Perceptron (MLP). MLP is a fully 

connected feedforward artificial neural network which transforms any input dimension to the de-

sired dimension. All the neurons are connected to every neuron in the previous layer and then 

connected to every neuron in the next layer. Each neuron receives the initial inputs multiplied by 

a corresponding weight coefficient. Then the sum of all inputs multiplied by weight plus a bias, is 

passed to an activation function which introduces the non-linearity to the network transforming 

the inputs accordingly. We can represent the output of each hidden layer as (note the transposes): 

�� = �A��(�N�)� + �(�N�)�D                                                                               (9) 

Where �Qis the output of the l layer, �(QN#)R  is the bias vector of the first layer, � is a single matrix 

of all training examples so that we could compute all the prediction using a single matrix multipli-

cation, �(QN#)R  is the weight matrix and � is a nonlinear activation function. The model is trained 

successively, that is, the output of neurons from the previous layer will be the input for the next 

layer. Figure 1 shows the basic workflow of MLP network.  
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Figure 1: Multilayer perceptron (MLP) representation with markers (A) and PCs (B) as input layers; bottom 

center shows the basic workflow of a perceptron or else neuron (C).   

Convolutional Neural Networks  

Convolutional neural networks (CNNs) can utilize spatial relationships between nearby var-

iables (e.g., pixels) of the input matrix. This architecture can accommodate situation where input 

variables are distributed along a space and are associated with each other such as linkage dise-

quilibrium between nearby markers (Pérez-Enciso and Zingaretti, 2019).  A CNN has hidden layers 

which typically consist of convolutional layers, pooling layers, flatten layers and fully connected 

dense layers. In each convolutional layer, CNN automatically performs a convolution that is a lin-

ear operation performed along the input of predefined width and strides by applying kernels or 

filters. The weights used are the same for all marker windows. The filter moves along windows of 

same sizes consist of markers performing a multiplication operation (dot product) until the entire 

matrix is traversed.   The output of the convolutional function can be described as an integral 

transformation (Widder, 1954), as follows: 

�(�) = (� 7 �)(�) =L �(� 2 �)�(�)
�

                                                                            (10) 

where � represents the kernel, convolution is the transformation of � into �(�). The operation is 

performed over an infinite number of copies � resulting in the weighted sum shifting over the 

kernel. An activation function is applied after each convolution to produce the output layer. After 

nonlinearity has been applied to the feature map produced by the first layer, a pooling layer usu-

ally follows, aiming to reduce the dimensionality and smoothen the representation (Figure 2). The 

benefit of using CNN is their ability to develop an internal representation of a two-dimensional 
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matrix extracting the most important features. CNN leverages the fact that nearby input variables 

are more strongly related than the distant ones.  

 
Figure 2: Convolutional Neural Network (CNN) representation used in study.  

Cross-validation and Independent Prediction  

Here we evaluate the prediction accuracy by following two challenging validation scenar-

ios relevant for breeding programs: prediction of individuals from two different population groups 

and prediction of randomly selected individuals from the rest ones. For the first strategy, we pre-

dicted performance of the admixed (ADM, N=29) and aromatic (ARO, N=17) groups using the rest 

accessions (IND, JAP and AUS/Boro). Since accessions to be predicted are not phylogenetically 

close to the accessions in the training set, it would be expected a low prediction ability from the 

models for this scenario.  

In the second strategy, prediction accuracy was evaluated by implementing a 10-fold 

cross-validation (CV) where training population consisted of 90% of the data and testing set in-

cluded 10% of the remaining data. Analysis was performed in each of the ten training sets sepa-

rately assuming ten different validation scenarios. Since accessions are randomly selected and not 

based on their population group, samples in the training set might be related to the predicted 

ones. Note that, in the case of DL application, training population was further split in a validation 

dataset which included 20% of the training data set (Figure 3).  

 
Figure 3: A visualization of how the three data sets, training, validation, and test are divided.  

Validation data set is used during the training process of our network to provide an unbi-

ased evaluation of a model fit on the training dataset while tuning model hyperparameters. It is 

important to mention that the model <sees= the data and use it for an evaluation of the process 

but never <learn from these=. After the model was trained, we retrieved the best 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.18.576088doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.576088
http://creativecommons.org/licenses/by/4.0/


 

9 

hyperparameters and performed prediction using the test dataset. The test dataset provides the 

gold standard used to make an unbiased final evaluation of the model. It is used only once a model 

is completely trained using the train and validation sets. 

Marker Input strategies 

We used different marker input strategies aiming to enhance network flexibility and thus im-

prove prediction ability. Four strategies were designed as follows: 

 

1. Most associated markers: In the first input strategy, we merged the structural and nucleotide 

genomic-wide variation to test whether prediction accuracy can be improved. However, using 

the whole six genotype matrices (SNPs, MITE-DTX, RLX-RIX, DEL, DUP, INV) would add a high 

complexity in our network that might cause an overfitting. Studies have shown that using a 

subset of markers can result in equivalent prediction ability to using all the data sets (Müller 

et al. 2017, Bellot et al. 2018, Vourlaki et al. 2022). Thus, from the total of 409,892 molecular 

markers we selected the 10,000 most associated to the traits of interest. Specifically, we per-

formed a genome wide association study (GWAS) fitting a linear model (single-marker regres-

sion analyses) to find associations between each of the six-marker set and each of the four 

traits (4x6). For each fitted model, a p-value corresponding to each marker was collected. 

From the collection of the p-values the 10,000 most associated was selected. GWAS was per-

formed only to the training sets. Since we followed two different cross-validation strategies 

the process was repeated for each of those, that is for the across population training set, for 

the ten partitions training sets and for each trait. This strategy (hereafter referred to as <COM-

BINED_VARIANTS=) was applied to DL and Bayesian linear models. Additionally, we selected 

the 10,000 most associated SNPs (hereafter referred as <SNPs=) to perform the same analysis 

and compare directly to the COMBINED_VARIANTS strategy.  

2.  Linked SNPs: Using causal variants associated to the specific traits can result to prediction 

accuracy almost 1 (Pérez-Enciso et al. 2015), and structural variants are often causative of trait 

variability. Nevertheless, SNPs are easier to genotype in populations than SVs (ie, by genotyp-

ing chips). We reasoned that SNPs in LD with SVs could be used as SV replacement and would 

be easier to use in further experimental or breeding programs. Hence, we used ngdLD to de-

tect SNPs in LD with SVs (r2 >= 0.8) and used them for prediction.  The software was applied 

to each trait and cross-validation scenario using only the training set. Then, for each case the 

unique pairs of SNPs-SVs with LD >= 0.8 were selected. The type, position and chromosome of 

the variants meeting the criteria were collected in a list and is provided in the github reposi-

tory. The linked SNPs sets were used as marker sets across all the analysis. The selected ab-

breviation for this input strategy was <LINKED_SNPS=. The average number of linked SNPs 

across the analyses was ~ 12,000. 

 

3. PCs single matrix: In the third strategy, we exploited the advantages of principal components 

analysis (PCA) by incorporating it to neural networks. Studies have shown that using principal 

components in DL framework can be particularly advantageous (Seuret et al. 2017). In our 

study, PCs were computed based on eigenvectors for each of the obtained GRM. We run the 

analysis by feeding the network with a single matrix merging the PCs computed by the six 

GRMs introducing them as a single layer (Figure 1 (B)). Also, a separate analysis was performed 

for SNPs and linked SNPs testing whether this strategy will enhance the performance of the 
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model. The selected abbreviation for this input strategy was <COMBINED_VARIANTS= with 

method applied MLP_PCs. 

4. Multiple Inputs: Here, we tested whether multiple input strategy could improve the prediction 

of traits. Particularly, we used the six PCs sets (computed by the GRM of each marker set) as 

six inputs feeding to the network in different input layers simultaneously. Other works have 

shown that a multiple input strategy can reduce overfitting and computational cost while at 

the same time exploits mixed data improving prediction (Livieris et al. 2020, Xiong et al. 2021).  

Thus, the network accepted six different input layers which independently forwards in six dif-

ferent hidden dense layers. Next the six layers are merged by a concatenate layer (Figure 4). 

In order to compare directly this DL strategy against Bayesian Linear models, RKHS was per-

formed with model eq. 2 using all the GRM as inputs at the same time. The selected abbrevi-

ation for this input strategy was <MULTIPLE INPUTS=. 

 

 
Figure 4: Representation of Multiple inputs strategy employed in the present study.  

Optimization of Hyperparameters  

CNNs, MLP, BayesC and RKHS were implemented using the COMBINED_VARIANTS 

(SNPs+SVs), as well as SNPs and LINKED_SNPs as inputs separately. Additionally, MLP network was 

employed for using the six PCs as a single input matrix, as six different input layers and for PCs 

produced by GRM of SNPs. All the models were applied separately to each trait and to eleven 

cross-validation scenarios (10-fold and  ARO/ADM across-population prediction). Table 1 shows 

the different models implemented in our analysis.  
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Table 1: Summary of the analyses performed. 

 

 

 

For each of the different runs, hyperparameter tuning was performed obtaining the best hyperpa-

rameters and then retrained the model with the hyperparameters obtained by the search. Here 

Keras Tuner (O9Malley et al. 2019) library was used to pick the optimal set. Hyperparameters are 

the variables that control the training process and the topology of our model. When the model is 

built for hyperparameter tuning, the search space is also defined in addition to the model archi-

tecture. Then a tuner must be selected to determine which hyperparameter combinations should 

be tested. In our analysis we used the Hyperband tuner. The Hyperband tuning algorithm uses 

adaptive resource allocation and early stopping to quickly converge on a high-performing model. 

The algorithm trains a large number of configurations for a few epochs and carries forward only 

the top-performing half of models to the next round (Li et al. 2018) evaluating the performance 

by computing the MSE (for quantitative traits) and binary cross-entropy (for binary traits) were 

computed on a held-out validation set. The best model is the one that minimizes errors.  After the 

hyperparameter search was finished, we evaluated the model on the test data and performed 

prediction computing the pre-mentioned evaluation metrics of interest on the test data set. Figure 

5 displays the suggested scheme. 

  

Figure 5: Figure depicts the basic scheme performing from hyperband tuner to determine the best config-

uration towards to the final evaluation of the model.   

DL performance is controlled by various parameters and thus the optimization of the hy-

perparameters is not a trivial step. Here, we designed the tuner search space based on the avail-

able literature (Sandhu et al. 2021, Zingaretti et al. 2020). The hyperparameters chosen to be op-

timized were: activation function (Relu, Tanh, Linear), number of neurons for the first layer in MLP 

and number of filters in CNN (16,38,64,128), number of hidden dense layers for MLP (0,1,2,3) 

while for CNN (1,2,3), number of neurons of hidden layers (2,4,8,16), numbers of optimizers 

Trait
Combined 

variants
SNPs Linked SNPs

Culm diameter x x x x x

Grain weight x x x x x

Time to flowering x x x x x

  MLP, CNN, BayesC, RKHS, MLP PCs

xx x

RKHS, MLP PCs

Multiple Inputs

Leaf senescence x x

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.18.576088doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.576088
http://creativecommons.org/licenses/by/4.0/


 

12 

(Adam, RMSprop, SGD), dropout rate (0,0.05,0.1,0.15,0.2,0.25,0.3), L1 and L2 regularizers with 

optimized weight decay parameter (0.001, 0.01, 0.1). For the output layer we used one unit with 

linear as activation function for the quantitative traits whereas sigmoid was used for the binary 

traits as it is suggested (Montesions-López et al. 2022) For the hyperparameter optimization ,  80% 

of training set was used and the remaining 20% validation data set was applied for inner testing.  

Training a DL network that can generalize well new data set is a challenging issue. A model with 

too little capacity cannot learn from the data, a problem known as underfitting, whereas a model 

with a large capacity can learn and fit too well to the training dataset results in overfitting. For 

avoiding and reducing the effects of these two phenomena there are techniques that can be ad-

justed to a DL network.  

Here we used two regularization techniques such as L1 and L2 with a weight decay param-

eter. These techniques penalize the weight values of the network making values tend to zero and 

negative equal to 0 and avoid a parsimonious model. L1 adds <squared absolute value of magni-

tude= of coefficient as penalty term to the loss function while L2 adds <squared magnitude= of 

coefficient as penalty term to the loss function. We added L1 and L2 regularizers in the hidden 

layers. Additional to the regularization, dropout and early stopping were applied to reduce the 

effect of overfitting and underfitting on our models. A dropout layer was applied before the out-

put layer. Our analysis was implemented using Tensor Flow 2.8.0 library with Keras 2.8.0 interface 

and Keras Tuner 1.1.2. 

RESULTS 

Phenotypic Structure and Genetic Inference 

We used PCA to determine the underlying structure of our data and the direction of the 

maximum variation when projected in a lower dimension space. Figure 6 shows the projections 

of variables of each trait onto the principal components.  The length of the arrow is proportional 

to trait contribution, whereas the angle between arrows shows whether traits are correlated 

(pointed out in the same direction) or not. An analysis in two principal components showed that 

the first component depends on grain weight, which contributes the most to the total phenotypic 

variation. The main contributors to the second component in descending sequence are Time to 

flowering, Culm Diameter and Leaf Senescence.  
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Figure 6: PCA loadings of each trait for the two first standardized principal components. The different col-

ors indicate the percentage of contribution to the PCAs displayed as <contrib=.  

 

Genetic variance estimates were obtained for each trait (Figure 7). Particularly, we esti-

mated the genetic variance explained by each SV marker set in comparison to SNPs in order to 

understand the relative importance of each set to determine the observed phenotype. Figure 7 

shows that structural variants explain a significant fraction of genetic variance, larger than that 

explained by SNPs in the two binary traits, Culm diameter and Leaf Senescence. Among the dif-

ferent types of SVs, TE-related variants (MITE-DTX and RLX-RIX) explained more genetic variance 

than non-TE variants.  Among the latter, deletions explained more variance than duplications and 

inversions.  
 

 

Figure 7: Means of posterior distributions of genetic variances explained by each marker set. Blue bars 

represent SNPs and yellow bars are the different kinds of SVs. 

 

Comparison of Model performances 

The prediction ability of DL implementations was compared to those of Bayesian regres-

sion using RKHS and BayesC for each trait and under eleven cross validation sets. Particularly, we 

assessed prediction by following two different validation strategies, prediction using ten randomly 

selected training sets produced by a 10-fold cross validation strategy and prediction across popu-

lations. All the models were applied separately to each of the eleven validation scenarios (see 

Materials and Methods). Figure 8 shows the performance of each of the models under the 10-fold 

cross validation. We used binary-cross entropy as evaluation metric for binary traits and MSE for 

quantitative traits. Other metrics can also be applied (e.g Pearson9s correlation for quantitative 

traits, accuracy for binary traits) however here we measure the prediction ability in terms of loss 

of the model as previously reported (Montesinos-López et al. 2023). The highest prediction ability 

(minimum loss) for culm diameter was obtained using CNN and linked SNPs (loss = 0.58). For leaf 

senescence the best prediction value was reported using MLP with PCs computed by the 
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combined variants (Loss = 0.576). For the case of quantitative traits, Bayesian Regression models 

showed higher prediction accuracy values than those of DL models. Particularly, grain weight and 

time to flowering was better predicted under RKHS model using multiple inputs (Loss = 0.72 and 

0.33, respectively).  

 

 

Figure 8: Performance of each of the model-input combinations under the 10-fold cross validation strategy 

and four predicted phenotypes. Each model was applied separately to each of the ten partitions. Points 

represent the evaluation metric for each partition whereas the boxplot shows the distribution of the nu-

merical values displaying the data quartiles. The value that appears in bold is the average value of each 

model. The y-axis shows the loss metric values which for binary traits is the binary-cross entropy and for 

quantitative traits the MSE.  
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Figure 9: Performance of each of the model-input combinations under the across population strategy. 

Points represent the evaluation metric. The y-axis shows the loss metric values which for binary traits is 

the binary-cross entropy and for quantitative traits the MSE.  

In the independent prediction, phenotypes of all ADM and ARO accessions were predicted given 

the rest of the accessions. Figure 9 shows the prediction ability for across population strategy 

under eleven different models. Here, DL models outperformed Bayesian ones in all the traits. Par-

ticularly, culm diameter and leaf senescence were better predicted under the MLP_PCs model and 

<Combined_VARIANTS= marker strategy as in 10-partitions. However, grain weight and time to 

flowering showed the lowest loss values under CNN with SNPs (Loss = 0.96) and MLP with com-

bined variants (Loss = 0.44) respectively. In general, time to flowering was better predicted com-

pared to the rest traits in both cross-validation strategies. On average, prediction across popula-

tions was less accurate for the quantitative traits than in 10-fold scenarios as it was expected 

because of the more distantly related raining and test data sets.  

Impact of marker selection on genomic prediction 

Our results showed that phenotypic traits such as leaf senescence and time to flowering were 

better predicted using combined variants or multiple inputs. Also, using SNPs linked to SVs 
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exhibited an efficient prediction ability especially for culm diameter under both validation strate-

gies. We observed that incorporating structural variation in a genomic prediction framework ei-

ther combining with SNPs or generating the linked SNPs to these variants resulted in an improved 

prediction performance in near 90% of the studied cases against using only SNPs (Table 6).  

 

Table 6: Minimum prediction loss and corresponding model with input strategy. 

 Validation Strategy 

Traits 10-folds partitions  ARO/ADM accessions 

Culm diameter 0.580 (CNN, Linked SNPs) 0.571 (CNN, Linked SNPs) 

Leaf senescence 0.576 (MLP_PCs, Combined vari-

ants) 

0.473 (MLP_PCs, Combined vari-

ants) 

Grain weight 0.717 (RKHS, Multiple inputs) 0.963 (CNN SNPs) 

Time to flowering 0.327 (RKHS, Multiple Inputs) 0.444 (MLP, Combined variants) 

 

Discussion 

In this study we investigated whether combining structural and nucleotide genome-wide 

variation for genomic prediction can improve prediction ability for important agronomic traits in 

rice. Previous studies on plants have shown the association between structural variants and phe-

notypic traits ({mieEko et al. 2014, Shang et al. 2022, Zhou et al. 2022), and some have been 

demonstrated to be  the causal variants for a diversity of phenotypes across major traits in plants 

(Sutton et al. 2007, Cook et al. 2012). In example, late or early flowering on wheat depends on the 

increased copy number of Vrn-A1 and Ppd-B1 genes respectively (Würschum et al. 2015). In addi-

tion, plant height in wheat is associated with a specific tandem duplication (Li et al. 2012).  The 

strong regulatory potential of SVs could be an explanation for the high performance of SVs in the 

prediction of phenotypic traits. However, the incorporation of SVs in breeding programs demands 

their genotyping to be automatized. This can be a complex task, as SVs are highly diverse and 

commercial SV genotyping assays do not exist. Our results show that linked SNPs can be effectively 

used to indirectly incorporate SVs in genomic prediction. We propose that SNPs linked to know 

SV variants (ie, resulting from recent pangenome studies) constitute a promising marker resource 

to be used for future genomic prediction analyses.  

A second objective addressed is the evaluation of the performance of DL and Bayesian 

methods to predict agronomically important traits in rice. Culm diameter, leaf senescence and 

time to flowering are correlated (Figure 6), whereas grain weight is uncorrelated to them. Traits 

such as time to flowering and grain weight are polygenic, controlled by many QTLs of large effects 

(Begum et al. 2015, Xu et al. 2015, Chen et al. 2021). Studies in culm diameter have shown that it 

is controlled by at least twelve QTLs associated with lodging resistance in dry direct-seeded rice 

(Yadav et al. 2017).  In addition, delayed leaf senescence or stay-green is associated to forty-six 

QTLs that made up the genetic basis of this important trait in rice (Jiang et al. 2004).  Genomic 

prediction of traits such as time to flowering was quite accurate with the loss metric reported 

being the lowest values across all the study (average MSE value equal to 0.33, Table 6). For leaf 

senescence the GP ability was lower than that in time to flowering yet accurate. It is worth men-

tioning that, in the ARO/ADM validation strategy the prediction ability of leaf senescence and time 

to flowering was improved by DL against the best values of Bayesian models by 24% and 21% 

respectively (Figure 9). Since the genetic relatedness of the accessions used for training increases 
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prediction accuracy,  it is interesting that DL models outperform the Bayesian ones in both binary 

traits for genetically distant-lines. (Table 6).  

Increasing the prediction accuracies of traits in rice breeding is challenging but at the same 

time of high importance, taking into consideration the increasing environmental constraints that 

limit world production. New methods attempt to improve prediction of agronomic traits promis-

ing lower computational cost and better results. DL is a state-of-the-art method applied in many 

different fields, and many recent studies have started to compare DL with standard linear models 

for genomic prediction (González-Recio et al. 2014; Ma et al. 2017; Bellot et al. 2018; Montesinos-

López et al. 2018, Zingaretti et al. 2020, Sandhu et al. 2021, Montesinos-López et al. 2019, Mon-

tesinos-López et al. 2023).  Here, we studied the performance of DL models for predicting complex 

traits in rice comparing them to Bayesian regression methods under different input strategies and 

scenarios.  Overall, our results showed that DL can increase prediction accuracy compared to 

Bayesian methods in 75% of the implementations. Across DL architectures, MLP and CNN were 

the optimal choices in the same number of cases depending on the trait and training population. 

This observation shows that there is not a clear winner, as evidenced by contrasting findings in 

the literature, where MLP outperforms CNN according to (Sandhu et al. 2021), whereas (Bellot et 

al. 2018, Zingaretti et al 2020) report the opposite trend. For the case of Bayesian regression mod-

els, RKHS clearly outperformed BayesC.  

Another critical and challenging issue in DL models is the optimization of hyperparameters, 

mainly due to the high computational cost. The tuning of the hyperparameters for each trait de-

pends on the genetic basis and architecture of the trait. As we show in Supplementary Tables 1-

4, different combinations of hyperparameters were selected for the various traits as the predic-

tion ability is highly associated with the interaction of these factors (Bellot et al. 2018, Montesinos-

Lopez et al. 2018).  We observed that Tanh was the most useful activation function in quantitative 

traits being selecting in 75% of the cases (6/8) whereas in binary traits, Relu function was the 

optimal choice in 63% of the cases (5/8). Moreover, Adam optimizer was the most frequently 

chosen in binary traits during the hypertuning with 63%. Nevertheless, RMSprop was the optimal 

option with percentage of 50% in quantitative traits. DL models can capture interactions of large 

orders because of the presence of hidden layers (Goodfellow et al. 2016, LeCun et al. 2015). How-

ever, RKHS models are also able to capture complex interaction patterns. This ability of both meth-

ods can be reflected in our results demonstrating that both can capture complex interactions.  

The third aim of this work is to study the impact of various input strategies on the predic-

tion results. It is commonly believed that GP requires a large marker set to be used for an efficient 

prediction. However, our current results and some of related works (Vourlaki et al. 2022, Bellot et 

a al. 2018) support that GP models can be effective even with a smaller dataset of markers. How-

ever, the optimal marker size can be related to the studied trait (Sandhu et al. 2021). We also 

observed that the best input strategy is affected by the chosen phenotypic trait and the training 

set in some cases (Table 6). Note that MLP models using PCs as input strategy proved beneficial 

in 66.7% of the cases with MLP as best model. In any case, the different input strategies that we 

followed indicated that the accommodation of subsets of the markers in GP framework can be 

equal or even more informative than using the whole marker sets (compared to our results in 

Vourlaki et al. 2022). 

Finally, we would like to mention the challenges and limitations of DL models.  Firstly, DL 

models do not provide clear insights into the genetic architecture of the traits, nor do they give 

information about the effects of specific markers in the studied traits. Different hyperparameters 

act on different parts of the data, making it hard to interpret the biological significance and 
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importance of each marker in the model (Bellot et al. 2018, Cuevas et al. 2019).  Also, the high 

computational cost of training models is a significant drawback, especially when multiple hyperpa-

rameters must be optimized for each trait separately (Gulli and Pal et al. 2017).  The outperfor-

mance of DL over linear models is not always the case. The prediction ability depends on the stud-

ied traits and can be influenced by many factors. There is not a single algorithm that performs 

better in all species and traits (Perez-Enciso and Zingaretti, 2019) since its performance depends 

on various factors. Nevertheless, even though the advantage of DL networks against linear meth-

ods has not been established yet, their incorporation into plant breeding can be important to 

improve genetic merit for complex traits.  
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