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Abstract

Structural variants (SVs) such as deletions, inversions, duplications, and Transposable Ele-
ment (TE) Insertion Polymorphisms (TIPs) are prevalent in plant genomes and have played an im-
portant role in evolution and domestication, as they constitute a significant source of genomic
and phenotypic variability. Nevertheless, most methods in quantitative genetics focusing on crop
improvement, such as genomic prediction, consider Single Nucleotide Polymorphisms (SNPs) as
the only type of genetic marker. Here, we used rice to investigate whether combining the struc-
tural and nucleotide genome-wide variation can improve prediction ability of traits when com-
pared to using only SNPs. Moreover, we also examine the potential advantage of Deep Learning
(DL) networks over Bayesian Linear models, which have been widely applied in genomic predic-
tion. Specifically, the performance of BayesC and a Bayesian Reproducible Kernel Hilbert space
regressions were compared to two different DL architectures, the Multilayer Perceptron, and the
Convolution Neural Network. We further explore their prediction ability by using various marker
input strategies and found that exploiting structural and nucleotide variation improves prediction
ability on complex traits in rice. Also, DL models outperformed Bayesian models in 75% of the
studied cases. Finally, DL systematically improved prediction ability of binary traits against the
Bayesian models.

Introduction

Rice (Oryza sativa) constitutes a fundamental staple crop, essential to humans for its nu-
tritional and caloric value. World rice production has reached a plateau (FAO, 2023), and following
the conventional breeding techniques, rice yield will soon not meet the high demand caused by
the increasing world population. Therefore, we need to explore new approaches to secure global
nutritional requirements by increasing at the same time the quality and quantity of rice yield.
Genomic Prediction (GP) can help to achieve these goals, accelerating the breeding progress
(Meuwissen et al. 2001). Various studies in plants have shown the effectiveness of GP in increasing
breeding speed (Jighly et al. 2019, Tessema et al. 2020, Xu et al. 2020, Krishnappa et al. 2021). GP
framework has been widely used in rice studies for predicting various quantitative traits, reporting
moderate to high predictive performance (Xu et al. 2021). Complex traits are controlled by nu-
merous loci that are difficult to detect with genetic mapping. GP assumes that quantitative trait
loci (QTL) will be in linkage disequilibrium (LD) with molecular markers. Thus, instead of detecting
all the QTL associated with a trait, an indirect association between marker and trait is exploited.

Conceptually, since the number of genotyped individuals n, is typically smaller than the
number of molecular markers p, GP faces statistical challenges such as large sampling variance
and increased mean-square error. To overcome this limitation, variables must be selected or re-
strictions on the solutions must be applied or sometimes both. The main classes of GP methods
are the genomic relationship-based method such as Genomic Best Linear Unbiased Prediction
(GBLUP, VanRaden, 2008) and the SNP effect-based methods such as the Bayesian family (Meu-
wissen et al. 2001, Habier et al. 2011, Pérez and De Los Campos, 2014) and LASSO (Tibshirani,
2011). Some Bayesian models do not necessarily assume homogeneity across marker effects. They
perform variable selection and shrinkage on the effects simultaneously using priors other than
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Gaussian. BayesC is an example of this category assuming as a prior a normal distribution with
constant variance while a fraction of marker has no effect (Habier et al. 2011). On the other hand,
methods such as GBLUP involve restriction on the square of solutions (L2 norm), with the effect
of the markers assuming to be normally distributed with equal variance.

Deep Learning (DL) networks are a collection of machine learning algorithms that have
exhibited excellent performance in some prediction tasks (Min et al. 2017; Pattanayak 2017). The
DL models are trained in such a way to find complex relationships between data. DL networks
consist of multiple layers and interconnected nodes. Each layer uses as input the output of the
previous layer to optimize the prediction or classification. Numerous DL architectures have been
proposed, such as Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Convolu-
tional Neural Network (CNN, LeCun et al. 2015). DL has been around for decades but only recently
started to be widely implemented because of the easy implementation framework provided by
various online libraries (e.g https://keras.io/, https://pytorch.org/). The performance of the DL
networks depends on the accuracy of hyperparameter choice, which is not an easy task and re-
quires abundant computation resources (Young et al. 2015, Chan et al. 2018). For a review of DL
tools applied to genomic prediction, see (Pérez-Enciso and Zingaretti, 2019).

Despite their features, various works have shown a performance of DL in genomic predic-
tion comparable to linear models (Gonzdlez-Recio et al. 2014; Ma et al. 2017; Bellot et al. 2018;
Montesinos-Lépez et al. 2018). Zingaretti et al. (2020) did not find a considerable advantage of DL
over linear models, except when epistasis component was important. Ehret et al. (2015) found
non-relevant differences between a GBLUP and a MLP model. In a wheat study (Ma et al. 2017),
DL performed better than GBLUP when used to predict phenotypes from genotypes. Similarly,
Gianola et al. (2011) found that MLP performed better than a Bayesian linear model in wheat. In
another study in wheat, Pérez-Rodriguez et al. (2012) extensively compared the prediction per-
formance of Radial Basis Function Neural Networks and Bayesian Regularizes Neural Networks
against several linear models and semiparametric models such as Reproducible Kernel Hilbert
Space (RKHS). The authors concluded that the non-linear models, such as DL, demonstrated a
higher prediction ability than the linear models. Evaluating the potential of DL algorithms, Sandhu
et al. (2021) showed higher prediction ability against the linear models in spring wheat. For an
extensive review in GP using DL models see Montesinos-Lépez et al. (2021).

While genomic prediction of quantitative traits has been broadly studied, binary and ordi-
nal traits are of great importance in plant breeding as well. Particularly, in rice, culm morphology
and stay green related traits are important targets for genetic improvement (Kamal et al. 2019,
Chigira et al. 2023, Lee and Masclaux-Daubresse 2021). However, the prediction ability of differ-
ent types of traits depends on the statistical models used. Thus, many studies in Genomic Selec-
tion (GS) focus on improving existing models or develop new ones as it was pointed out by Mon-
tesinos-Ldpez et al. (2019).

Most of the studies in GP rely only on SNPs, disregarding other sources of genomic variation such
as structural variants (SVs). Among the different types of SVs, TIPs account for an important frac-
tion and play a key role in plant evolution, from domestication to adaptation and breeding (Dubin
et al. 2018). Studies in tomato and in rice found that the use of TIPs can lead to the identification
of novel associations not detected by SNPs in genome-wide association studies (Akakpo et al.
2020; Carpentier et al. 2019; Dominguez et al. 2020; Castanera et al. 2021). In a recent study, we
showed that TIPs explain a sizable fraction of the genetic variance in several rice agronomic traits
and significantly improve genomic prediction (Vourlaki et al. (2022). However, TIPs are not the
only type of structural variation in the genome. Other SVs such as deletions, inversions, and
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duplications account for an important fraction of genetic variation and have been key in the do-
mestication and diversification of plant crops (Lye and Purugganan, 2019). SVs have a high poten-
tial to generate large effect mutations when they affect genes or gene regulatory regions. Over
the last few years, several studies have demonstrated the importance of presence-absence varia-
tion and structural variation as a source of gene expression and phenotypic variability in plant
crops including rice, tomato or soybean (Qin et al. 2021, Alonge et al. 2020, Liu et al. 2020).

Here we investigate whether merging all the structural and nucleotide genome-wide vari-
ation can improve phenotypic prediction compared to using only SNPs in rice. Finally, we further
explore the performance of DL in GP by (i) using multiple marker input strategies, (ii) proposing
several approaches to accommodate large scale marker information, and (iii) optimizing network
architectures. We also provide documented python code based in tensorflow 2 (Abadi et al. 2016)
in the following link https://github.com/ivourlaki/Deep-Learning-in-rice-for-prediction.git.

Materials and Methods
Rice accessions and traits

In this study we used a subset of 738 accessions from the 3,000-rice genome project (Li et
al. 2014). Accessions were chosen based on the availability of at least 15x of sequencing depth.
The 738 accessions are representative of the main rice population groups: Aus/Boro (AUS, N=75),
Indica (IND, N=451), Japonica (Jap,N=166), Aromatic (ARO, N=17). An additional group of admixed
varieties (ADM, N=29) consisting of accessions that cannot be assigned to a specific rice group was
also used. SNP-based group assignment from Alexandrov et al. (2015) and Sun et al. (2017) was
used to identify the different subsets of this study. Studied traits are publicly available at IRRI SNP-
Seek database (https://snp-seek.irri.org/). Among continuous traits, grain weight and time to flow-
ering were used, whereas culm diameter (1%t internode) and leaf senescence were selected among
the binary traits available. Some of the ordinal traits were binned to balance the number of ob-
servations per class. Particularly, in leaf senescence values equal to 1 were assigned to class 1
while the rest ones range from 2-9 were recorded as 2 and were assigned to class 2. Finally, time
to flowering was log-transformed.

Markers

We used the filtered SNP dataset in Vourlaki et al. (2022). Specifically, a binary ped file
format with the 3K RG CoreSNPs dataset for all chromosomes was downloaded from the SNP-
Seek database. The original dataset consisted of 404,399 bi-allelic SNPs from 3,034 rice accessions,
including the 738 accessions selected. We filtered out markers with minor allele frequency < 0.01
and missing rate > 1% using plink2 (Purcell et al. 2007; Chang et al. 2015). Also, missing genotypes
were imputed using Beagle 5.2 with default parameters (Browning et al. 2018). After filtering the
final dataset consisted of 228,871 SNPs.
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The TIP dataset described in Castanera et al. (2021) (containing two categories: MITE-DTX and
RLX-RIX) was complemented with non-TE deletions (DEL), duplications (DUP) and inversions (INV)
downloaded from SNP-seek database (3K RG Large Structural Variants release 1.0). We filtered
out SVs events containing multiple overlapping deletions as these complex variants are difficult
to genotype with short reads and are thus less reliable. SVs genotypes were recorded as 0/1 (ab-
sence/presence). All the markers with minor allele frequency < 0.01 were filtered out. Finally, the
dataset used in our analysis consists of 52,120 MITE-DTX, 21,517 RLX-RIX, 74,136 DEL, 25,670 DUP
and 7,527 INV.

Genetic variance inference

To estimate the genetic variance components explained by each marker set, we fitted the
following linear model using RKHS (Gianola et al. 2006):

y=u+Zuy + Zu, + e (1)

where  is the general mean, y is the phenotype vector of size n (the number of accessions), Z is
an identity incidence matrix, u; and u, are random effects of each of the marker groups and e is
the residual. Random effects are assumed to be normally distributed u;~N(0,K;0?),
u,~N (0, K,07), with constant variance K;o# and K,07. Where K;, K, are genomic relationship
matrices (GRM) obtained from the markers used in the corresponding model. We fitted the model
five times using as K; the GRM form SNPs while as K;, GRM was obtained from MITE-DTX, RLX-
RIX, DEL, DUP, INV, separately. The GRM were calculated using AGHMatrix (Amadeu et al. 2016).
Model was implemented in BGLR package (Pérez and de Los Campos 2014) using default priors to
estimate o, 0%.

Genomic Prediction Models
Bayesian Regression Models

Two Bayesian methods were employed in this study: Bayesian RKHS and BayesC. RKHS is
a kernel-based method that uses a ridge regression L2 regularization technique like GBLUP.
BayesC is a variable selection method that estimates the effect of the markers. Both methods
were applied to each trait separately. Particularly, for each method, various models were designed
and applied comparing the predictive performance of using all the markers together versus using
only SNPs. For RKHS, the models are described as follows:

y=u+ Zuy + Zu, + Zuz + Zuy + Zus + Zug + e, (2)

Where uy, Uy, Us, Uy, Us, Ug are random effects u~N (0, Ko?) with K corresponds to a GRM com-
puted using SNPs, MITE-DTX, RLX-RIX, DEL, DUP, INV, respectively. Apart from model (2) where
the different marker types are applied at the same time, other models were studied as well. Par-
ticularly, we were interested in investigating whether one matrix represented by different type of
markers could result in a higher prediction in comparison to model (2) and to use only SNPs. As a
result, the following models were studied:

y=Hu + ZulOk_variants + e (3)

Yy=U+ Zuqorsnpst+ € (4)
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y = ﬂ+ ZuLinked_SNPs + e (5)

Where U1k pariants: Wiok_snps» ULinked snps, are the effects of the 10,000 most associated mark-
ers among the six sets, the 10,000 most associated SNP effects and by using the SNPs linked to
structural variation. LD between SNPs and SVs was calculated using ngsLD software (Fox et al.
2019), and we considered that a SNP was linked to an SV when r2>=0.8.

For BayesC, the complete models were:

Y=0+ X10k parians B T € (6)
y=u+ Xioksnes B + € (7)
y=nu + XLinked_SNPs ﬁ + e (8)

Where X0k variants: X10k_snps» XLinkea_snps are the standardized genotypes for the 10,000 most
associated markers among all marker sets, the 10,000 most associated SNPs and the linked SNPs
respectively. The 10,000 most associated were selected based on a linear regression-based ge-
nome-wide association analysis (GWAS) analysis. A detailed description is given in “Input Strate-
gies” section. Finally, where 3, is the vector of effects for the corresponding matrix.

Using either RKHS or BayesC, phenotypes to be predicted were removed from the dataset
and the model fitted using the remaining phenotypes. Prediction ability was assessed by compu-
ting two different metrics related to the type of trait. We computed the mean squared error (MSE)
between predicted and observed phenotypes for the quantitative traits, whereas binary cross-
entropy was employed for the binary traits. Both models were implemented using BGLR package.
BayesC assumes that a proportion of markers will have zero effect with probability sampled from
a beta distribution, m~Beta(p,, T,). Here we chose p, = 5 and 1o = 0.01. For the case of binary
traits option “response_type=ordinal” was applied in both methods (RKHS, BayesC). Finally, BGLR
was run for 100,000 iterations using default priors for RKHS.

Multilayer Perceptron

One of the most popular DL architectures is the Multilayer Perceptron (MLP). MLP is a fully
connected feedforward artificial neural network which transforms any input dimension to the de-
sired dimension. All the neurons are connected to every neuron in the previous layer and then
connected to every neuron in the next layer. Each neuron receives the initial inputs multiplied by
a corresponding weight coefficient. Then the sum of all inputs multiplied by weight plus a bias, is
passed to an activation function which introduces the non-linearity to the network transforming
the inputs accordingly. We can represent the output of each hidden layer as (note the transposes):

Z, = f(xw&DT 4 p(-1T) (9)

Where Z;is the output of the | layer, b~ DT is the bias vector of the first layer, X is a single matrix

of all training examples so that we could compute all the prediction using a single matrix multipli-
cation, W{~DT s the weight matrix and f is a nonlinear activation function. The model is trained
successively, that is, the output of neurons from the previous layer will be the input for the next
layer. Figure 1 shows the basic workflow of MLP network.
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Figure 1: Multilayer perceptron (MLP) representation with markers (A) and PCs (B) as input layers; bottom
center shows the basic workflow of a perceptron or else neuron (C).

Convolutional Neural Networks

Convolutional neural networks (CNNs) can utilize spatial relationships between nearby var-
iables (e.g., pixels) of the input matrix. This architecture can accommodate situation where input
variables are distributed along a space and are associated with each other such as linkage dise-
quilibrium between nearby markers (Pérez-Enciso and Zingaretti, 2019). A CNN has hidden layers
which typically consist of convolutional layers, pooling layers, flatten layers and fully connected
dense layers. In each convolutional layer, CNN automatically performs a convolution that is a lin-
ear operation performed along the input of predefined width and strides by applying kernels or
filters. The weights used are the same for all marker windows. The filter moves along windows of
same sizes consist of markers performing a multiplication operation (dot product) until the entire
matrix is traversed. The output of the convolutional function can be described as an integral
transformation (Widder, 1954), as follows:

s() = (f  k)(£) = z k(& — ) f(x) (10)

where k represents the kernel, convolution is the transformation of f into s(t). The operation is
performed over an infinite number of copies f resulting in the weighted sum shifting over the
kernel. An activation function is applied after each convolution to produce the output layer. After
nonlinearity has been applied to the feature map produced by the first layer, a pooling layer usu-
ally follows, aiming to reduce the dimensionality and smoothen the representation (Figure 2). The
benefit of using CNN is their ability to develop an internal representation of a two-dimensional
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matrix extracting the most important features. CNN leverages the fact that nearby input variables
are more strongly related than the distant ones.

Genotype matrix Hidden layer Flatten layer Dense layer  Output layer
‘\ with dropout

‘ (Trait
/ ,"f‘ ,j
Convolution Max pooling Flattering Fully connected network

Kernel:3x3x1 2x2 (MLP)

Figure 2: Convolutional Neural Network (CNN) representation used in study.
Cross-validation and Independent Prediction

Here we evaluate the prediction accuracy by following two challenging validation scenar-
ios relevant for breeding programs: prediction of individuals from two different population groups
and prediction of randomly selected individuals from the rest ones. For the first strategy, we pre-
dicted performance of the admixed (ADM, N=29) and aromatic (ARO, N=17) groups using the rest
accessions (IND, JAP and AUS/Boro). Since accessions to be predicted are not phylogenetically
close to the accessions in the training set, it would be expected a low prediction ability from the
models for this scenario.

In the second strategy, prediction accuracy was evaluated by implementing a 10-fold
cross-validation (CV) where training population consisted of 90% of the data and testing set in-
cluded 10% of the remaining data. Analysis was performed in each of the ten training sets sepa-
rately assuming ten different validation scenarios. Since accessions are randomly selected and not
based on their population group, samples in the training set might be related to the predicted
ones. Note that, in the case of DL application, training population was further split in a validation
dataset which included 20% of the training data set (Figure 3).

Train Validation Test

) ) )
| | | \

Figure 3: A visualization of how the three data sets, training, validation, and test are divided.

Validation data set is used during the training process of our network to provide an unbi-
ased evaluation of a model fit on the training dataset while tuning model hyperparameters. It is
important to mention that the model “sees” the data and use it for an evaluation of the process
but never “learn from these”. After the model was trained, we retrieved the best
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hyperparameters and performed prediction using the test dataset. The test dataset provides the
gold standard used to make an unbiased final evaluation of the model. It is used only once a model
is completely trained using the train and validation sets.

Marker Input strategies

We used different marker input strategies aiming to enhance network flexibility and thus im-
prove prediction ability. Four strategies were designed as follows:

1. Most associated markers: In the first input strategy, we merged the structural and nucleotide
genomic-wide variation to test whether prediction accuracy can be improved. However, using
the whole six genotype matrices (SNPs, MITE-DTX, RLX-RIX, DEL, DUP, INV) would add a high
complexity in our network that might cause an overfitting. Studies have shown that using a
subset of markers can result in equivalent prediction ability to using all the data sets (Mduller
et al. 2017, Bellot et al. 2018, Vourlaki et al. 2022). Thus, from the total of 409,892 molecular
markers we selected the 10,000 most associated to the traits of interest. Specifically, we per-
formed a genome wide association study (GWAS) fitting a linear model (single-marker regres-
sion analyses) to find associations between each of the six-marker set and each of the four
traits (4x6). For each fitted model, a p-value corresponding to each marker was collected.
From the collection of the p-values the 10,000 most associated was selected. GWAS was per-
formed only to the training sets. Since we followed two different cross-validation strategies
the process was repeated for each of those, that is for the across population training set, for
the ten partitions training sets and for each trait. This strategy (hereafter referred to as “COM-
BINED_VARIANTS”) was applied to DL and Bayesian linear models. Additionally, we selected
the 10,000 most associated SNPs (hereafter referred as “SNPs”) to perform the same analysis
and compare directly to the COMBINED_VARIANTS strategy.

2. Linked SNPs: Using causal variants associated to the specific traits can result to prediction
accuracy almost 1 (Pérez-Enciso et al. 2015), and structural variants are often causative of trait
variability. Nevertheless, SNPs are easier to genotype in populations than SVs (ie, by genotyp-
ing chips). We reasoned that SNPs in LD with SVs could be used as SV replacement and would
be easier to use in further experimental or breeding programs. Hence, we used ngdLD to de-
tect SNPs in LD with SVs (r2 >= 0.8) and used them for prediction. The software was applied
to each trait and cross-validation scenario using only the training set. Then, for each case the
unique pairs of SNPs-SVs with LD >= 0.8 were selected. The type, position and chromosome of
the variants meeting the criteria were collected in a list and is provided in the github reposi-
tory. The linked SNPs sets were used as marker sets across all the analysis. The selected ab-
breviation for this input strategy was “LINKED_SNPS”. The average number of linked SNPs
across the analyses was ~ 12,000.

3. PCs single matrix: In the third strategy, we exploited the advantages of principal components
analysis (PCA) by incorporating it to neural networks. Studies have shown that using principal
components in DL framework can be particularly advantageous (Seuret et al. 2017). In our
study, PCs were computed based on eigenvectors for each of the obtained GRM. We run the
analysis by feeding the network with a single matrix merging the PCs computed by the six
GRMs introducing them as a single layer (Figure 1 (B)). Also, a separate analysis was performed
for SNPs and linked SNPs testing whether this strategy will enhance the performance of the
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model. The selected abbreviation for this input strategy was “COMBINED_VARIANTS” with
method applied MLP_PCs.

Multiple Inputs: Here, we tested whether multiple input strategy could improve the prediction
of traits. Particularly, we used the six PCs sets (computed by the GRM of each marker set) as
six inputs feeding to the network in different input layers simultaneously. Other works have
shown that a multiple input strategy can reduce overfitting and computational cost while at
the same time exploits mixed data improving prediction (Livieris et al. 2020, Xiong et al. 2021).
Thus, the network accepted six different input layers which independently forwards in six dif-
ferent hidden dense layers. Next the six layers are merged by a concatenate layer (Figure 4).
In order to compare directly this DL strategy against Bayesian Linear models, RKHS was per-
formed with model eq. 2 using all the GRM as inputs at the same time. The selected abbrevi-
ation for this input strategy was “MULTIPLE INPUTS”.

Input Layer 1 InputLayer 2 Input Layer 3 Input Layer 4 Input Layer 5 Input Layer 6

A R R (R R

Concatenate Layer

Hidden Dense Layer

Figure 4: Representation of Multiple inputs strategy employed in the present study.

Optimization of Hyperparameters

CNNs, MLP, BayesC and RKHS were implemented using the COMBINED_VARIANTS
(SNPs+SVs), as well as SNPs and LINKED_SNPs as inputs separately. Additionally, MLP network was
employed for using the six PCs as a single input matrix, as six different input layers and for PCs
produced by GRM of SNPs. All the models were applied separately to each trait and to eleven
cross-validation scenarios (10-fold and ARO/ADM across-population prediction). Table 1 shows

the different models implemented in our analysis.
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Table 1: Summary of the analyses performed.

MLP, CNN, BayesC, RKHS, MLP PCs RKHS, MLP PCs
Trait Com-blned SNPs Linked SNPs Multiple Inputs

variants
Culm diameter X X X X X
Leaf senescence X X X X X
Grain weight X X X X X
Time to flowering X X X X X

For each of the different runs, hyperparameter tuning was performed obtaining the best hyperpa-
rameters and then retrained the model with the hyperparameters obtained by the search. Here
Keras Tuner (O’Malley et al. 2019) library was used to pick the optimal set. Hyperparameters are
the variables that control the training process and the topology of our model. When the model is
built for hyperparameter tuning, the search space is also defined in addition to the model archi-
tecture. Then a tuner must be selected to determine which hyperparameter combinations should
be tested. In our analysis we used the Hyperband tuner. The Hyperband tuning algorithm uses
adaptive resource allocation and early stopping to quickly converge on a high-performing model.
The algorithm trains a large number of configurations for a few epochs and carries forward only
the top-performing half of models to the next round (Li et al. 2018) evaluating the performance
by computing the MSE (for quantitative traits) and binary cross-entropy (for binary traits) were
computed on a held-out validation set. The best model is the one that minimizes errors. After the
hyperparameter search was finished, we evaluated the model on the test data and performed
prediction computing the pre-mentioned evaluation metrics of interest on the test data set. Figure
5 displays the suggested scheme.

Retrain
Hyperband Model Best Model

tests random Training

Obtain best the Evaluation
hyperparamet model

(X_test, y_test)

configuratio (X_train,y_tr
ns ain)

ers with best
hyperpar
amters

Figure 5: Figure depicts the basic scheme performing from hyperband tuner to determine the best config-
uration towards to the final evaluation of the model.

DL performance is controlled by various parameters and thus the optimization of the hy-
perparameters is not a trivial step. Here, we designed the tuner search space based on the avail-
able literature (Sandhu et al. 2021, Zingaretti et al. 2020). The hyperparameters chosen to be op-
timized were: activation function (Relu, Tanh, Linear), number of neurons for the first layer in MLP
and number of filters in CNN (16,38,64,128), number of hidden dense layers for MLP (0,1,2,3)
while for CNN (1,2,3), number of neurons of hidden layers (2,4,8,16), numbers of optimizers
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(Adam, RMSprop, SGD), dropout rate (0,0.05,0.1,0.15,0.2,0.25,0.3), L1 and L2 regularizers with
optimized weight decay parameter (0.001, 0.01, 0.1). For the output layer we used one unit with
linear as activation function for the quantitative traits whereas sigmoid was used for the binary
traits as it is suggested (Montesions-Lépez et al. 2022) For the hyperparameter optimization, 80%
of training set was used and the remaining 20% validation data set was applied for inner testing.
Training a DL network that can generalize well new data set is a challenging issue. A model with
too little capacity cannot learn from the data, a problem known as underfitting, whereas a model
with a large capacity can learn and fit too well to the training dataset results in overfitting. For
avoiding and reducing the effects of these two phenomena there are techniques that can be ad-
justed to a DL network.

Here we used two regularization techniques such as L1 and L2 with a weight decay param-
eter. These techniques penalize the weight values of the network making values tend to zero and
negative equal to 0 and avoid a parsimonious model. L1 adds “squared absolute value of magni-
tude” of coefficient as penalty term to the loss function while L2 adds “squared magnitude” of
coefficient as penalty term to the loss function. We added L1 and L2 regularizers in the hidden
layers. Additional to the regularization, dropout and early stopping were applied to reduce the
effect of overfitting and underfitting on our models. A dropout layer was applied before the out-
put layer. Our analysis was implemented using Tensor Flow 2.8.0 library with Keras 2.8.0 interface
and Keras Tuner 1.1.2.

RESULTS
Phenotypic Structure and Genetic Inference

We used PCA to determine the underlying structure of our data and the direction of the
maximum variation when projected in a lower dimension space. Figure 6 shows the projections
of variables of each trait onto the principal components. The length of the arrow is proportional
to trait contribution, whereas the angle between arrows shows whether traits are correlated
(pointed out in the same direction) or not. An analysis in two principal components showed that
the first component depends on grain weight, which contributes the most to the total phenotypic
variation. The main contributors to the second component in descending sequence are Time to
flowering, Culm Diameter and Leaf Senescence.
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Figure 6: PCA loadings of each trait for the two first standardized principal components. The different col-
ors indicate the percentage of contribution to the PCAs displayed as “contrib”.

Genetic variance estimates were obtained for each trait (Figure 7). Particularly, we esti-
mated the genetic variance explained by each SV marker set in comparison to SNPs in order to
understand the relative importance of each set to determine the observed phenotype. Figure 7
shows that structural variants explain a significant fraction of genetic variance, larger than that
explained by SNPs in the two binary traits, Culm diameter and Leaf Senescence. Among the dif-
ferent types of SVs, TE-related variants (MITE-DTX and RLX-RIX) explained more genetic variance
than non-TE variants. Among the latter, deletions explained more variance than duplications and
inversions.
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Figure 7: Means of posterior distributions of genetic variances explained by each marker set. Blue bars
represent SNPs and yellow bars are the different kinds of SVs.

Comparison of Model performances

The prediction ability of DL implementations was compared to those of Bayesian regres-
sion using RKHS and BayesC for each trait and under eleven cross validation sets. Particularly, we
assessed prediction by following two different validation strategies, prediction using ten randomly
selected training sets produced by a 10-fold cross validation strategy and prediction across popu-
lations. All the models were applied separately to each of the eleven validation scenarios (see
Materials and Methods). Figure 8 shows the performance of each of the models under the 10-fold
cross validation. We used binary-cross entropy as evaluation metric for binary traits and MSE for
guantitative traits. Other metrics can also be applied (e.g Pearson’s correlation for quantitative
traits, accuracy for binary traits) however here we measure the prediction ability in terms of loss
of the model as previously reported (Montesinos-Lépez et al. 2023). The highest prediction ability
(minimum loss) for culm diameter was obtained using CNN and linked SNPs (loss = 0.58). For leaf
senescence the best prediction value was reported using MLP with PCs computed by the
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combined variants (Loss = 0.576). For the case of quantitative traits, Bayesian Regression models
showed higher prediction accuracy values than those of DL models. Particularly, grain weight and
time to flowering was better predicted under RKHS model using multiple inputs (Loss = 0.72 and
0.33, respectively).
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Figure 8: Performance of each of the model-input combinations under the 10-fold cross validation strategy
and four predicted phenotypes. Each model was applied separately to each of the ten partitions. Points
represent the evaluation metric for each partition whereas the boxplot shows the distribution of the nu-
merical values displaying the data quartiles. The value that appears in bold is the average value of each
model. The y-axis shows the loss metric values which for binary traits is the binary-cross entropy and for
guantitative traits the MSE.
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Figure 9: Performance of each of the model-input combinations under the across population strategy.
Points represent the evaluation metric. The y-axis shows the loss metric values which for binary traits is
the binary-cross entropy and for quantitative traits the MSE.

In the independent prediction, phenotypes of all ADM and ARO accessions were predicted given
the rest of the accessions. Figure 9 shows the prediction ability for across population strategy
under eleven different models. Here, DL models outperformed Bayesian ones in all the traits. Par-
ticularly, culm diameter and leaf senescence were better predicted under the MLP_PCs model and
“Combined_VARIANTS” marker strategy as in 10-partitions. However, grain weight and time to
flowering showed the lowest loss values under CNN with SNPs (Loss = 0.96) and MLP with com-
bined variants (Loss = 0.44) respectively. In general, time to flowering was better predicted com-
pared to the rest traits in both cross-validation strategies. On average, prediction across popula-
tions was less accurate for the quantitative traits than in 10-fold scenarios as it was expected
because of the more distantly related raining and test data sets.

Impact of marker selection on genomic prediction

Our results showed that phenotypic traits such as leaf senescence and time to flowering were
better predicted using combined variants or multiple inputs. Also, using SNPs linked to SVs
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exhibited an efficient prediction ability especially for culm diameter under both validation strate-
gies. We observed that incorporating structural variation in a genomic prediction framework ei-
ther combining with SNPs or generating the linked SNPs to these variants resulted in an improved
prediction performance in near 90% of the studied cases against using only SNPs (Table 6).

Table 6: Minimum prediction loss and corresponding model with input strategy.
Validation Strategy

Traits 10-folds partitions ARO/ADM accessions
Culm diameter 0.580 (CNN, Linked SNPs) 0.571 (CNN, Linked SNPs)
Leaf senescence 0.576 (MLP_PCs, Combined vari- 0.473 (MLP_PCs, Combined vari-
ants) ants)
Grain weight 0.717 (RKHS, Multiple inputs) 0.963 (CNN SNPs)
Time to flowering 0.327 (RKHS, Multiple Inputs) 0.444 (MLP, Combined variants)
Discussion

In this study we investigated whether combining structural and nucleotide genome-wide
variation for genomic prediction can improve prediction ability for important agronomic traits in
rice. Previous studies on plants have shown the association between structural variants and phe-
notypic traits (Zmieriko et al. 2014, Shang et al. 2022, Zhou et al. 2022), and some have been
demonstrated to be the causal variants for a diversity of phenotypes across major traits in plants
(Sutton et al. 2007, Cook et al. 2012). In example, late or early flowering on wheat depends on the
increased copy number of Vrn-Al and Ppd-B1 genes respectively (Wiirschum et al. 2015). In addi-
tion, plant height in wheat is associated with a specific tandem duplication (Li et al. 2012). The
strong regulatory potential of SVs could be an explanation for the high performance of SVs in the
prediction of phenotypic traits. However, the incorporation of SVs in breeding programs demands
their genotyping to be automatized. This can be a complex task, as SVs are highly diverse and
commercial SV genotyping assays do not exist. Our results show that linked SNPs can be effectively
used to indirectly incorporate SVs in genomic prediction. We propose that SNPs linked to know
SV variants (ie, resulting from recent pangenome studies) constitute a promising marker resource
to be used for future genomic prediction analyses.

A second objective addressed is the evaluation of the performance of DL and Bayesian
methods to predict agronomically important traits in rice. Culm diameter, leaf senescence and
time to flowering are correlated (Figure 6), whereas grain weight is uncorrelated to them. Traits
such as time to flowering and grain weight are polygenic, controlled by many QTLs of large effects
(Begum et al. 2015, Xu et al. 2015, Chen et al. 2021). Studies in culm diameter have shown that it
is controlled by at least twelve QTLs associated with lodging resistance in dry direct-seeded rice
(Yadav et al. 2017). In addition, delayed leaf senescence or stay-green is associated to forty-six
QTLs that made up the genetic basis of this important trait in rice (Jiang et al. 2004). Genomic
prediction of traits such as time to flowering was quite accurate with the loss metric reported
being the lowest values across all the study (average MSE value equal to 0.33, Table 6). For leaf
senescence the GP ability was lower than that in time to flowering yet accurate. It is worth men-
tioning that, in the ARO/ADM validation strategy the prediction ability of leaf senescence and time
to flowering was improved by DL against the best values of Bayesian models by 24% and 21%
respectively (Figure 9). Since the genetic relatedness of the accessions used for training increases
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prediction accuracy, it is interesting that DL models outperform the Bayesian ones in both binary
traits for genetically distant-lines. (Table 6).

Increasing the prediction accuracies of traits in rice breeding is challenging but at the same
time of high importance, taking into consideration the increasing environmental constraints that
limit world production. New methods attempt to improve prediction of agronomic traits promis-
ing lower computational cost and better results. DL is a state-of-the-art method applied in many
different fields, and many recent studies have started to compare DL with standard linear models
for genomic prediction (Gonzdlez-Recio et al. 2014; Ma et al. 2017; Bellot et al. 2018; Montesinos-
Lopez et al. 2018, Zingaretti et al. 2020, Sandhu et al. 2021, Montesinos-Lépez et al. 2019, Mon-
tesinos-Lépez et al. 2023). Here, we studied the performance of DL models for predicting complex
traits in rice comparing them to Bayesian regression methods under different input strategies and
scenarios. Overall, our results showed that DL can increase prediction accuracy compared to
Bayesian methods in 75% of the implementations. Across DL architectures, MLP and CNN were
the optimal choices in the same number of cases depending on the trait and training population.
This observation shows that there is not a clear winner, as evidenced by contrasting findings in
the literature, where MLP outperforms CNN according to (Sandhu et al. 2021), whereas (Bellot et
al. 2018, Zingaretti et al 2020) report the opposite trend. For the case of Bayesian regression mod-
els, RKHS clearly outperformed BayesC.

Another critical and challenging issue in DL models is the optimization of hyperparameters,
mainly due to the high computational cost. The tuning of the hyperparameters for each trait de-
pends on the genetic basis and architecture of the trait. As we show in Supplementary Tables 1-
4, different combinations of hyperparameters were selected for the various traits as the predic-
tion ability is highly associated with the interaction of these factors (Bellot et al. 2018, Montesinos-
Lopez et al. 2018). We observed that Tanh was the most useful activation function in quantitative
traits being selecting in 75% of the cases (6/8) whereas in binary traits, Relu function was the
optimal choice in 63% of the cases (5/8). Moreover, Adam optimizer was the most frequently
chosen in binary traits during the hypertuning with 63%. Nevertheless, RMSprop was the optimal
option with percentage of 50% in quantitative traits. DL models can capture interactions of large
orders because of the presence of hidden layers (Goodfellow et al. 2016, LeCun et al. 2015). How-
ever, RKHS models are also able to capture complexinteraction patterns. This ability of both meth-
ods can be reflected in our results demonstrating that both can capture complex interactions.

The third aim of this work is to study the impact of various input strategies on the predic-
tion results. It is commonly believed that GP requires a large marker set to be used for an efficient
prediction. However, our current results and some of related works (Vourlaki et al. 2022, Bellot et
a al. 2018) support that GP models can be effective even with a smaller dataset of markers. How-
ever, the optimal marker size can be related to the studied trait (Sandhu et al. 2021). We also
observed that the best input strategy is affected by the chosen phenotypic trait and the training
set in some cases (Table 6). Note that MLP models using PCs as input strategy proved beneficial
in 66.7% of the cases with MLP as best model. In any case, the different input strategies that we
followed indicated that the accommodation of subsets of the markers in GP framework can be
equal or even more informative than using the whole marker sets (compared to our results in
Vourlaki et al. 2022).

Finally, we would like to mention the challenges and limitations of DL models. Firstly, DL
models do not provide clear insights into the genetic architecture of the traits, nor do they give
information about the effects of specific markers in the studied traits. Different hyperparameters
act on different parts of the data, making it hard to interpret the biological significance and
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importance of each marker in the model (Bellot et al. 2018, Cuevas et al. 2019). Also, the high
computational cost of training models is a significant drawback, especially when multiple hyperpa-
rameters must be optimized for each trait separately (Gulli and Pal et al. 2017). The outperfor-
mance of DL over linear models is not always the case. The prediction ability depends on the stud-
ied traits and can be influenced by many factors. There is not a single algorithm that performs
better in all species and traits (Perez-Enciso and Zingaretti, 2019) since its performance depends
on various factors. Nevertheless, even though the advantage of DL networks against linear meth-
ods has not been established yet, their incorporation into plant breeding can be important to
improve genetic merit for complex traits.
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