

1 **Vertically inherited microbiota and environment modifying behaviors conceal genetic
2 variation in dung beetle life history**

3 Patrick T. Rohner^{1,2*} & Armin P. Moczek²

4 ¹Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA
5 92093, United States.

6 ²Department of Biology, Indiana University Bloomington, IN 47405, United States.

7

8 *Corresponding author: Patrick T. Rohner, UC San Diego, Department of Ecology, Behavior, and
9 Evolution, 9500 Gilman Dr., La Jolla, CA 92093, United States.; prohner@ucsd.edu.

10

11 **Abstract**

12 Diverse organisms actively manipulate their (sym)biotic and physical environment in ways that feedback
13 on their own development. However, the degree to which these processes affect microevolution remains
14 poorly understood. The gazelle dung beetle both physically modifies its ontogenetic environment and
15 structures its biotic interactions through vertical symbiont transmission. By experimentally eliminating i)
16 physical environmental modifications, and ii) the vertical inheritance of microbes, we assess how
17 environment modifying behavior and microbiome transmission shape heritable variation and evolutionary
18 potential. We found that depriving larvae from symbionts and environment modifying behaviors increased
19 additive genetic variance and heritability for development time but not body size. This suggests that
20 larvae's ability to manipulate their environment has the potential to modify heritable variation and to
21 facilitate the accumulation of cryptic genetic variation. This cryptic variation may become released and
22 selectable when organisms encounter environments that alter the degree to which they can be manipulated.
23 Our findings also suggest that intact microbiomes, which are commonly thought to increase genetic
24 variation of their hosts, may instead reduce and conceal heritable variation. More broadly, our findings
25 highlight that the ability of organisms to actively manipulate their environment may affect the potential of
26 populations to evolve when encountering novel, stressful conditions.

27

28 *Keywords:* Heritability, evolvability, plasticity, host-microbiome interactions, organism-environment
29 interactions, developmental niche construction.

30 **Introduction**

31 Symbiotic microbial communities emerge as a critical factor in the development and evolution of their
32 hosts [1-4]. From a microevolutionary perspective, these interactions are especially significant when
33 symbionts are vertically transmitted from one generation to the next. In these cases, standing genetic
34 variation and responses to selection may not only depend on the host's genetic makeup but also that of its
35 inherited symbionts as well as the interactions between the two. While there is increasing evidence that
36 microbiomes shape host evolution and development [e.g., 5, 6, 7], the effects of symbionts on phenotypic
37 and genetic variation of their host remains poorly understood [8], especially in cases where symbiont
38 communities are complex and where hosts actively manipulate their environment, thereby influencing
39 presence and function of symbionts. Here, we study the effects of microbiomes and the environment
40 modifying behaviors of their hosts on microevolutionary processes.

41 Microbial symbionts can affect heritable variation of their hosts in a variety of ways [8]. For instance,
42 the presence of microbes may increase heritable variation if the microbial communities that are vertically
43 transmitted in different host lineages themselves vary in composition and in the phenotypic effects they
44 have on their respective hosts [9, 10]. In these cases, similarity (or dissimilarity) in host phenotype
45 expression may be a function of shared (or divergent) microbial communities. Microbiomes may thus
46 increase genetic variation in host populations and provide added substrate for selection to act upon.
47 However, if symbionts are faithfully inherited over evolutionary timescales, hosts may evolve to become
48 reliant on their microbiomes [e.g., by outsourcing key processes: 11, 12], or conversely, where symbionts
49 are critical to accessing otherwise recalcitrant resources hosts may evolve inheritance mechanisms that
50 increase symbiont fidelity [e.g., vertical transmission and environmental filtering: 13, 14]. In such cases,
51 microbiomes may evolve to become critical components of normative host development and requirements
52 for robust trait expression [15]. If so, the contributions of microbiomes to host development may increase
53 the host's ability to buffer against deleterious environmental and genetic perturbations [i.e., developmental
54 capacitance: 16]. Likewise, the loss of symbionts may cause environmental stress. Intact host-symbiont
55 relationships may thus also promote the robustness of phenotype expression, potentially shielding
56 (cryptic) genetic variation [17-19] from being exposed to selection. The role of microbiomes in host
57 genetic variation and evolutionary potential may thus be manifold and complex. Here, we use a
58 quantitative genetic approach to assess how the presence (or absence) of microbial communities shapes
59 heritable variation within a host population.

60 Exactly which microbial taxa engage with a given host may also be in part influenced by host
61 behavior and morphology [20]. Many animals have evolved properties that facilitate the assembly,
62 transmission, and maintenance of their symbiont communities, such as the inheritance of intracellular

63 bacteriocytes (e.g., in aphids [21]), the development of specific organs that facilitate the assembly and
64 function of microbial communities (e.g., the development of the light organ in the Hawaiian bobtail squid
65 [22]), or the construction of external environments that benefit microbial communities. For instance,
66 cockroaches and termites engage in behaviors that, on the colony level, ensure sharing of symbionts and
67 reinoculation across molts [23]. Similarly, *Nicrophorus* carrion beetles use various parental care behaviors
68 to ensure that their offspring are predominantly colonized by maternal (rather than environmental) bacteria
69 [24], and fungus gardening ants maintain microbial taxa in cuticle pockets that prevent the invasion of
70 competing fungi [25]. These examples highlight that hosts can, via their development and behavior,
71 influence which microbes they associate with and thus the nature of interactions with them. However, how
72 such environment modifying behaviors shape the effects microbes have on host heritable variation and
73 evolvability is poorly understood. Here we use dung beetles, their environment modifying behaviors, and
74 their vertically inherited complex microbial communities to jointly investigate the roles played by
75 microbiomes and host behaviors in shaping genetic variation in host life history.

76 Onthophagine dung beetles are uniquely suited to study the contribution of microbiomes and
77 environment modifying behaviors of their hosts to microevolutionary processes. Females of many species
78 construct underground chambers filled with processed and compacted cow dung [26]. In each of these
79 ‘brood balls’, females deposit a single egg. During oviposition, mothers place each egg onto a small
80 mount of their own excrement, the so-called “pedestal”, representing a microbial inoculate that is
81 consumed by the larva upon hatching. In so doing, the mothers’ gut microbiome is transmitted vertically
82 to its offspring [27]. These vertically transmitted microbial communities have been shown to be host
83 species- and population-specific [28] and to yield deleterious fitness consequences if withheld [7, 29-31].
84 In addition to the vertical inheritance of gut microbes, larvae also physically modify their brood ball by
85 continuously feeding on its content, excreting back into their brood ball, spreading excreta, and re-eating
86 the increasingly modified composite [7, 27]. As the developing larva continually defecates, works its own
87 excrement into the brood ball, and then re-eats the resulting mixture, the maternally inherited gut
88 microbiome is spread throughout the brood ball, thereby increasing its ability to pre-digest
89 macromolecules outside the larval gut, at least as assayed by *in-vitro* studies [7, 32]. Experimental
90 withholding of these modifications results in prolonged development, smaller size, and reduced secondary
91 sexual trait expression [but see: 33], suggesting that these environmental modification aids in the
92 extraction of nutrients from an otherwise recalcitrant diet and thus feeds back onto larval development
93 [32, 34]. The brood ball can thus be regarded as an extended phenotype [35], or as a product of maternal
94 and larval niche construction [36]. However, whether and how the interactions between maternal
95 microbiota and host behaviour impact standing genetic variation residing within host populations remains
96 unknown.

97 Here, we assess the role of vertically inherited microbiomes and their interactions with environment
98 modifying host behaviors in shaping genetic variation in the dung beetle *Digitonthophagus gazella*.
99 Combining a quantitative genetic breeding design with an experimental elimination of i) physical
100 modifications of the environment and ii) the vertical inheritance of microbial symbionts, we assess how
101 microbial communities and their cultivation by their host shape heritable variation. Our findings suggest
102 that the presence of ontogenetic environmental modifications and vertically inherited symbionts may
103 conceal otherwise cryptic genetic variation and thus impact heritable variation visible to selection. Taken
104 together, our findings emphasize the potential of the interactions between hosts, their microbes, and the
105 environment to shape microevolutionary dynamics.

106

107 **Methods**

108 *General laboratory rearing and experimental manipulations*

109 *Digitonthophagus gazella* (Fabricius, 1787) was collected in March 2021 near Pretoria, South Africa, sent
110 to Indiana University, Bloomington, USA and kept under standard laboratory conditions [e.g., 37, 38]. To
111 obtain laboratory-reared F1 individuals, we repeatedly transferred 4 to 6 wild-caught (F0) females from
112 the laboratory colony into rectangular oviposition containers (27cm × 17cm × 28cm) filled with a
113 sterilized sand-soil mixture and topped off with ca. 800g defrosted cow dung. After 5 days, brood balls
114 were sifted from the soil and kept in plastic containers filled with soil at constant 29°C.

115 Newly emerged F1 offspring were kept in single-sex containers for at least 7 days at 26°C.
116 Thereafter, 30 males (sires) were housed together with 3 females (dams) each in separate containers
117 equipped with sterilized soil and defrosted cow dung for at least 4 days (see fig. S1). Females were then
118 individually transferred to oviposition containers (27cm × 8cm × 8cm) filled with a sterilized sand-soil
119 mixture and topped off with 200g defrosted cow dung [see 39] and kept at 29°C. Brood balls were
120 collected after 5 days. We reared the F2 offspring in standardized, artificial brood balls as described
121 previously [40]. In brief, we opened all natural brood balls and transferred eggs individually into separate
122 wells of a standard 12-well tissue culture plate provisioned with 2.9 (± 0.1) grams of previously frozen
123 cow dung. To minimize variation in dung quality and quantity among wells, we thoroughly homogenized
124 a large quantity of cow dung using a hand-held electric cement mixer (Nordstrand, PWT-PM0) prior to the
125 start of the experiment. We only used dung from hay-fed cows, which is less nutritious compared to dung
126 from grass-fed cows [41]. Plates were kept at 29°C and checked for hatching every 24 hours. All F2 were
127 subjected to two fully factorial manipulations of a larva's ability to shape its (sym)biotic and physical
128 ontogenetic environment:

129 *Microbiome manipulation*: To manipulate the vertical transmission of microbial symbionts, half of all
130 eggs were surface-sterilized with 200 μ l of a 1% bleach and 0.1% Triton-X 100 solution, followed by two
131 rinses with deionized water [see 7, 29, 42]. Eggs in the control treatment were rinsed with deionized water
132 only. Eggs were then placed in an artificial, standardized brood ball, either with ('*intact microbiome*
133 *transmission*') or without ('*disrupted microbiome transmission*') the extracted maternal pedestal. The
134 latter was removed from the natural brood ball and transferred into the artificial brood ball using a flame-
135 sterilized spatula [as in e.g., 31]. Note that the bleaching treatment is a standard approach in dung beetles
136 [7, 31] and other taxa (water fleas: [43], tephritid fruit flies: [44]) and there is no evidence for any
137 deleterious effect on embryonic or postembryonic beetle development in dung beetles [7, 31]. Note,
138 however, that although bleach only sterilizes the egg surface and does not come into contact with the
139 beetle embryo, we cannot completely rule out that bleach treatments may have any previously undetected
140 minor effects on postembryonic development besides the disruption of host-symbiont interactions.

141

142 *Manipulation of larval environment modifying behaviour*: The capacity of larvae to manipulate their
143 brood ball was experimentally hampered by relocating individuals into a new artificial brood ball 4, 7, 10,
144 and 13 days after eggs were initially transferred using featherweight forceps [see: 32, 34]. This procedure
145 exposes the developing larva repeatedly to new, unprocessed cow dung and prevents the accumulation of
146 environmental modifications applied to the brood ball ('*impaired brood ball modification*'). Specifically,
147 this procedure prevents larvae from repeatedly feeding on and restructuring dung particles within their
148 brood ball. Relocation into a new brood ball also disrupts their association with the established microbial
149 communities in the previous brood ball. In the control treatment, larvae were allowed to complete their
150 development in their original well. To account for the potential stress induced by repeatedly relocating
151 larvae into new wells, larvae were removed from their brood ball, held with featherweight forceps for
152 approximately 3 seconds, and placed back in their original well 4, 7, 10, and 13 days after eggs were
153 transferred into new plate ('*intact brood ball modification*').

154 Individuals were checked daily to assess juvenile survival and egg-to-adult development time.
155 Individuals were classified as adult on the day they emerged from the pupal cuticle. We also imaged the
156 adult thorax using a Scion camera mounted on a Leica MZ 16 stereomicroscope and measured pronotum
157 width (a suitable estimate for body size, see [45]) using tpsDig2 [46].

158

159 *Statistical analysis*

160 To assess the fixed effects of both experimental manipulations on egg hatching success and juvenile
161 survival, we used generalized linear mixed models with binomial error structure in lme4 [47]. Dam nested
162 within sire as well as the 12-well plate individuals were reared in were added as random effects. We used
163 linear mixed models with the same design to test for sex-specific effects on logarithmized pronotum width
164 and development time. We added sex and all interactions with fixed effects to the model. Because sex can
165 only be determined in late larval development [37] sex could not be included in the models for juvenile
166 survival and hatching success.

167 To test whether our manipulations of the microbiome and larval brood ball modification affected
168 genetic variation and heritabilities individually or in combination, we computed treatment-specific
169 variance components using "animal models" in ASReml-R [48, 49]. 'Animal models' are a type of mixed-
170 effects models that have been widely applied to estimate quantitative genetic parameters because they are
171 based on pedigrees rather than strict breeding designs (e.g., [50-52]). In essence, instead of relying on the
172 variance among genetic groupings (e.g., sires), animal models fit the genetic variance component directly
173 based on a relationship matrix (i.e., a matrix summarizing the pairwise relatedness among all individuals)
174 in a linear model with reduced maximum likelihood (REML) (see [49, 53]). Animal models better
175 accommodate unbalanced data and can use information on multiple generations for the estimation of
176 genetic parameters. We used animal models rather than sire models mainly because they allow to estimate
177 additive variances directly [53]. We estimated separate additive and residual variance components for all
178 treatment combinations simultaneously (i.e., intact microbiome transmission and brood ball modification
179 (control); disrupted microbiome transmission; disrupted brood ball modification; or disrupted microbiome
180 transmission and brood ball modification). Sex, treatment, and their interaction were added as fixed
181 effects. The 12-well plates individuals were reared in were added as a random effect. To test whether
182 partitioning the additive and residual variances among treatments significantly increase model fit, we used
183 Likelihood Ratio Tests (LRTs) to compare the full model to one that did not include treatment-specific
184 additive or residual variances. When the overall model indicated changes in variances across treatment
185 combinations, we also conducted pairwise comparisons between treatment combinations. Variances were
186 left unconstrained in all models. Narrow-sense heritabilities (h^2) were computed by dividing the additive
187 genetic variance by the total phenotypic variance in the respective treatment. Evolvability (I_A , i.e., mean-
188 scaled additive genetic variances [54]) were calculated by dividing the treatment-specific additive genetic
189 variances by the square of the treatment-specific mean trait values.

190

191

192 **Results**

193 *Effect of microbiome transmission and brood ball modifications on phenotypic variation*

194 Our full-sib/half-sib breeding design resulted in 1,228 eggs produced by 67 females mated to a total of 25
195 sires. In total, 932 individuals survived to adulthood. Hatching success was higher when eggs were surface
196 sterilized ($\chi^2_{(1)} = 8.85$, $P = 0.003$). Larval survival was higher when larvae were able to manipulate their
197 brood ball ($\chi^2_{(1)} = 96.60$, $P < .001$) but did not depend on the transmission of maternal microbiomes ($\chi^2_{(1)} =$
198 0.40 , $P = 0.526$; table 1). Larvae that were able to physically modify their brood ball also developed faster
199 ($\chi^2_{(1)} = 206.79$, $P < .001$) and grew to larger adult size ($\chi^2_{(1)} = 240.36$, $P < .001$, table S1). The effect on body
200 size was stronger in males, leading to a decrease of sexual size dimorphism when larvae were prevented
201 from manipulating their environment (sex-by-treatment interaction: $\chi^2_{(1)} = 21.37$, $P < .001$, table S1; fig. 2).
202 Withholding the vertically transmitted microbiome also reduced adult body size ($\chi^2_{(1)} = 55.41$, $P < .001$)
203 and delayed adult emergence ($\chi^2_{(1)} = 42.93$, $P < .001$, table S1). This effect was especially strong in females
204 deprived of maternal microbiota that were unable to modify their brood ball (three-way interaction
205 between sex, microbiome transmission, and brood ball manipulation: $\chi^2_{(1)} = 9.09$, $P = 0.003$, table S1).
206 Microbiome transmission and brood ball modifications thus not only shape phenotype expression but do
207 so in an interdependent and sex-specific manner.

208

209 *Effect of microbiome transmission and brood ball modifications on variance components and heritability*

210 Models including separate additive and residual variances in development time for each of the four
211 treatment combinations fitted the data better than models with no treatment-specific variances (LRT: $\chi^2_{(6)} =$
212 170.9 , $P < .001$, fig. 3, 4), or models that included treatment-specific residual variances only (LRT: $\chi^2_{(3)} =$
213 26.24 , $P < .001$). Pairwise comparisons of variance components across treatments further revealed that
214 preventing larvae from physically modifying their brood ball greatly increased the additive as well as the
215 residual variance in development time and led to an increase in narrow-sense heritability from 0.31 ± 0.13
216 to 0.54 ± 0.18 (fig. 3, 4, table 1). Preventing larvae from receiving a microbial inoculate caused a modest
217 increase in the additive genetic variance but decreased the residual variance, leading to an increase in
218 heritability to 0.54 ± 0.16 . Simultaneously removing brood ball modifications as well as microbiome
219 transmission also led to an increase in the additive and residual variances, and an increase in heritability
220 ($h^2 = 0.40 \pm 0.17$). Evolvability in the control treatment was low ($I_A = 0.0018$) but increased considerably
221 when limiting larvae's ability to shape their biotic ($I_A = 0.0032$), physical ($I_A = 0.0088$), or both
222 components of the environment simultaneously ($I_A = 0.0043$; see table 1).

223 Body size also showed significant levels of genetic variation ($h^2 = 0.64 \pm 0.11$, $I_A = 0.0016 \pm 0.0004$, $P < .001$). However, in contrast to development time, there was no evidence for treatment-specific additive

225 or residual variances (all $P > .900$). Using animal models with binomial error structure, we did not find
226 significant levels of additive genetic variation for juvenile survival and egg hatching success (all $P > .900$).

227

228

229 **Discussion**

230 Using an experimental manipulation of microbiome transmission and dung beetle larvae's ability to
231 physically modify their brood ball, we empirically assessed the role of symbionts and environment
232 modifying behaviors in shaping phenotypic and heritable variation. Experimentally eliminating
233 microbiome transmission and brood ball modification generally led to an increase in additive genetic
234 variance in development time (figs. 3 and 4). This caused an increase in the evolutionary potential as
235 quantified by heritability (the proportion of the total variance that is additive) and evolvability (expected
236 proportional change under a unit strength of selection [54]). This is consistent with the hypothesis that
237 host-symbiont associations and environment modifying behaviors reduce environmental stress and
238 promote developmental stability and the accumulation of cryptic genetic variation. Because development
239 time is a major life history trait often involved in local adaptation [e.g., in the related dung beetle
240 *Onthophagus taurus*, 39], brood ball modifications and host-symbiont relationships may thus have the
241 potential to influence a population's ability to respond to selection, especially when encountering novel
242 environments. However, these effects were only found for development time while heritable variation in
243 body size was independent of a larva's ability to manipulate its environment. Taken together, our data
244 suggest that the interactions between developing larvae and their ontogenetic environments have the
245 potential to contribute to microevolutionary dynamics in one of two traits found to exhibit heritable
246 variation.

247

248 *Microbiome transmission and brood ball modifications reduce phenotypic and additive genetic variation*

249 Many organisms actively modify the (sym)biotic and physical environment they experience [36, 55].
250 Because environments serve as major developmental regulators [56, 57], modifications made to the
251 ontogenetic environment can feed back onto an individual's own development and shape developmental
252 outputs. Environmental modifications thus indirectly shape genotype-phenotype maps, especially of those
253 phenotypes that show plastic responses to the modified environmental variable [1]. Because additive
254 genetic variance is environment-dependent [e.g., 58, 59], the presence of symbionts or environment
255 modifying behaviors can also affect heritability and evolvability and, therefore, a population's potential to
256 respond to selection [60, 61]. By depriving larvae from their maternal microbiome and their ability to

257 manipulate their brood ball, we found an increase in phenotypic variance. These effects were stronger
258 when a larva's ability to physically manipulate its environment was impeded compared to the removal of
259 maternally transmitted symbionts. These findings contrast with other studies where microbiomes
260 increased host trait variation [8], but are consistent with the idea that the ability to structure their
261 environment increases organisms' robustness against environmental perturbations. Intriguingly, we also
262 found a disproportionate increase in the amount of additive genetic variance relative to the total treatment-
263 specific phenotypic variance (i.e., h^2) in all three treatment combinations in which larvae were either
264 deprived of their symbionts and/or had their ontogenetic environmental modifications disrupted. This is
265 consistent with the hypothesis that symbiont inheritance and host behaviors, when intact, not only buffer
266 against environmental but also genetic perturbations, thereby enabling the accumulation of cryptic genetic
267 variation. When organisms' capacity to compensate for stressful environmental conditions becomes
268 limited, this previously cryptic variation can be exposed and become visible to selection [18]. This
269 suggests that, if disturbed, environment modifying behaviors and host-symbiont interactions may act as
270 evolutionary capacitors through the release of previously cryptic genetic variation [15].

271 Although we eliminated microbiomes and larval behavior experimentally, natural conditions may
272 also limit or compromise larvae's ability to modify their physical and microbial environment to their
273 advantage. For example, natural and human-mediated range expansions of both dung beetles and dung
274 producers are common [26]. During colonization, adult dung beetles may thus encounter and utilize novel
275 dung types less accessible to their resident microbiome, as for instance in *Onthophagus australis*, a dung
276 beetle native to Australia which switched from marsupial to cow dung upon introduction of cattle to the
277 continent [62]. Even stronger effects may be expected for the large number of dung beetle species that are
278 primarily associated with life stock. For instance, the widespread treatment of cows with antibiotics not
279 only changes the microbial composition of cow dung but also disturbs the microbiome of beetles that feed
280 on contaminated dung [63]. These agricultural practices may hence reduce dung beetles' abilities to shape
281 their biotic environment and, in the process, release previously accumulated cryptic genetic variation.
282 Similarly, agricultural management practices that change soil or dung composition may impact the extent
283 to which larvae are able to physically manipulate their ontogenetic environment: for instance, compared to
284 grass-fed cows, hay-fed cows produce dung that contains a much greater fraction of coarse fibers. Hay
285 dung resides longer within the larval gut, larvae feeding on it require more time to complete development,
286 and emerge as smaller adults [41]. Nutritional and physical differences between dung types may thus
287 influence the effectiveness of larval brood ball modification behavior.

288 Taken together, we found that symbionts and environment modifying behaviors may shield genetic
289 variation from manifesting on the phenotypic level and thus remain cryptic. However, while we found an
290 effect of our manipulations on the heritability of development time, we did not find similar effects on

291 body size, suggesting that effects on genetic variation are trait specific. We also found no effect on
292 variance in juvenile survival and hatching success, yet, we did not find evidence for heritable variation in
293 these two traits to begin with which may be due to limited power when estimating variance components in
294 binary response variables. Further research will be necessary to test whether the trait differences between
295 development time and adult size are driven by selection for genetic or developmental integration between
296 environment modifying traits and recipient traits [64, 65]. Similarly, the effect of our manipulations on the
297 microbial community inside the larval gut and the brood ball requires further scrutiny. For instance, the
298 increase of residual variation when microbiomes are withheld could be caused by random colonization of
299 larvae with environmental microbes. Future research using sequencing of microbiota and their function
300 will be required to better understand how the removal of maternal microbial inocula shape offspring
301 microbiomes.

302

303 *Genetic variation for the dependence on symbionts and environment modifying behaviors*

304 Previous work indicated differences among species or populations in the effects of brood ball modification
305 and the vertical transmission of microbiomes on dung beetle performance [7, 30, 32]. Here, find that
306 genetic variances differ between treatments, implying that there is genetic variance for responses to the
307 elimination of microbiomes and brood ball modifications (fig. 4; genetic cross-environmental correlations
308 shown in fig. S2). The phenotypic similarity between relatives in a population could thus be explained, in
309 part, by heritable variation for how developing organisms interact with their microbiome or how larvae
310 manipulate their ontogenetic environment. Host-symbiont interactions and environment modifying
311 behaviors may thus indirectly respond to selection and evolve.

312 While we found heritable variation in the response to the withholding of maternal microbiomes and
313 brood ball modifications, the causes of this variation remain unclear. Genotypes may, for instance, vary in
314 the effectiveness of their behaviors to physically manipulate ontogenetic environments. Yet, there may
315 also be heritable differences in the susceptibility of developing larvae to the environmental conditions
316 generated by the absence of these modifications. Similarly, it is unclear why genotypes differ in their
317 response to the removal of vertically transmitted microbes. Adult mothers differ at least in part in the
318 taxonomic composition of their microbiome as do their offspring [27], raising the possibility that
319 (epistatic) interactions between beetle hosts and the presence of microbial symbionts may shape heritable
320 variation within host populations. However, microbial communities are complex and their patterns of
321 vertical transmission and effect on host fitness are still poorly understood. While the presence of
322 microbiomes clearly enhances host development [7], recent findings suggest that not all vertically-
323 transmitted microbial members are necessarily beneficial [30]. Our finding that eggs with intact

324 microbiomes had a lower hatching success compared to sterilized eggs may also indicate the presence of
325 harmful microbiota that affect early host development, suggesting that microbiome-mediated effects on
326 host fitness are complex. The precise mechanism mediating heritable differences in the response to the
327 removal of environmental manipulations thus remains elusive and requires further investigation.

328

329 *Sex-specific interactions between different components of environmental modifications*

330 In addition to treatment effects on genetic variation, we also found previously undocumented interactions
331 between brood ball modifications, the presence of vertically transmitted microbiota, and the sex of the
332 developing beetle larva. These interactions were especially pronounced in the prolongation of
333 development time in females that could neither benefit from vertically-transmitted microbiota or brood
334 ball modifications. Similarly, preventing larvae from conditioning their brood ball reduced sex differences
335 in adult size. Genetic or environmental changes in the interactions between larvae and their ontogenetic
336 environment may thus affect sexual dimorphism, a major aspect of phenotypic variation in this species
337 [45]. Such non-additive effects of microbiome and larval environment modifying behavior are consistent
338 with the hypothesis that the two interact. For instance, while the microbial community inside a brood ball
339 is likely shaped by the presence of vertically transmitted microbiomes, the extent to which this same
340 microbial community is then able to colonize and modify the brood ball may in turn be determined by the
341 activities and physical modifications made by a larva [32, 34]. Similarly, as larval developmental
342 trajectories diverge as a function of sex (e.g., due to costly ovarian differentiation in female but not male
343 larvae; [66]), changes in environmental conditions experienced by larvae may fuel sex-specific responses
344 to experimental or natural alterations of environmental conditions. Given that males and females of
345 diverse insects commonly differ in growth responses to environmental conditions [67, 68], sex-differences
346 in the response to the presence (or absence) of microbiomes or modified ontogenetic environments, as
347 documented here, may thus be similarly widespread.

348

349 *Conclusions*

350 Using an experimental reduction of two distinct routes through which developing dung beetles shape their
351 ontogenetic environment, we demonstrate the potential of host-symbiont interactions and environment
352 modifying behaviors in shaping additive variation, heritability, and evolvability for some life history traits
353 but not others. Furthermore, we found heritable variation for the response to the elimination of
354 environmental modifications. Although the mechanisms underpinning these patterns remain elusive, our
355 findings underscore the potential of environment modifying behaviors in shaping heritable variation in

356 populations. This suggests that rather than merely reacting to environmental conditions, organisms may
357 evolve to shape their immediate environments in ways that in turn may feed back to impact their own
358 microevolutionary trajectories. Taken together, these data call for further investigation into the
359 mechanisms by which developing organisms shape their ontogenetic environment, and the conditions
360 under which these interactions may shape microevolutionary outcomes [56, 61, 69].

361

362 **Acknowledgements**

363 We thank Christian Descholdt for collecting beetles in South Africa, Anna Macagno for support with
364 beetle husbandry, and Erik Postma, Michael Wade, and Wolf Blanckenhorn for advice on the statistical
365 analysis. We would also like to thank the Associate Editor and two anonymous Reviewers for their
366 constructive and helpful comments.

367

368 **Funding**

369 This work was supported by a postdoc fellowship by the Swiss National Science Foundation
370 (P400PB_199257 to P.T.R.). Additional support was provided by National Science Foundation (grant nos.
371 IOS 1256689 and 1901680 awarded to A.P.M.) as well as grant 61369 from the John Templeton
372 Foundation. The opinions, interpretations, conclusions, and recommendations are those of the authors and
373 are not necessarily endorsed by the National Science Foundation, or the John Templeton Foundation. The
374 authors declare no conflicts of interest.

375

376 **Author Contributions**

377 P.T.R. and A.P.M. conceived and designed the study; P.T.R. collected all data and performed all analyses;
378 P.T.R. and A.P.M. drafted the initial version of the manuscript and contributed to later versions of the
379 manuscript.

380

381 **Data Availability**

382 All data underlying this study will be made publicly available on Dryad.

383

384 **Conflict of interest**

385 The Authors declare no conflict of interest.

386

387

388 **References**

389 [1] Gilbert, S.F., Bosch, T.C. & Ledon-Rettig, C. 2015 Eco-Evo-Devo: developmental symbiosis and
390 developmental plasticity as evolutionary agents. *Nat Rev Genet* **16**, 611-622. (doi:10.1038/nrg3982).

391 [2] McFall-Ngai, M., Hadfield, M.G., Bosch, T.C., Carey, H.V., Domazet-Loso, T., Douglas, A.E.,
392 Dubilier, N., Eberl, G., Fukami, T., Gilbert, S.F., et al. 2013 Animals in a bacterial world, a new
393 imperative for the life sciences. *Proc Natl Acad Sci U S A* **110**, 3229-3236.
394 (doi:10.1073/pnas.1218525110).

395 [3] Grieneisen, L., Muehlbauer, A.L. & Blekhman, R. 2020 Microbial control of host gene regulation and
396 the evolution of host-microbiome interactions in primates. *Philos T R Soc B* **375**, 20190598.
397 (doi:10.1098/rstb.2019.0598).

398 [4] Douglas, A.E. 2014 Symbiosis as a general principle in eukaryotic evolution. *Cold Spring Harb
399 Perspect Biol* **6**, a016113. (doi:10.1101/csfperspect.a016113).

400 [5] Khasanova, A., Edwards, J., Bonnette, J., Singer, E., Haque, T. & Juenger, T.E. 2023 Quantitative
401 genetic-by-soil microbiome interactions in a perennial grass affect functional traits. *P Roy Soc B-Biol
402 Sci* **290**, 20221350. (doi:10.1098/rspb.2022.1350).

403 [6] Gould, A.L., Zhang, V., Lamberti, L., Jones, E.W., Obadia, B., Korasidis, N., Gavryushkin, A.,
404 Carlson, J.M., Beerenwinkel, N. & Ludington, W.B. 2018 Microbiome interactions shape host
405 fitness. *Proc Natl Acad Sci U S A* **115**, E11951-E11960. (doi:10.1073/pnas.1809349115).

406 [7] Schwab, D.B., Riggs, H.E., Newton, I.L. & Moczek, A.P. 2016 Developmental and Ecological
407 Benefits of the Maternally Transmitted Microbiota in a Dung Beetle. *Am Nat* **188**, 679-692.
408 (doi:10.1086/688926).

409 [8] Henry, L.P., Bruijning, M., Forsberg, S.K.G. & Ayroles, J.F. 2021 The microbiome extends host
410 evolutionary potential. *Nat Commun* **12**, 5141. (doi:10.1038/s41467-021-25315-x).

411 [9] Tsuchida, T., Koga, R., Horikawa, M., Tsunoda, T., Maoka, T., Matsumoto, S., Simon, J.C. &
412 Fukatsu, T. 2010 Symbiotic bacterium modifies aphid body color. *Science* **330**, 1102-1104.
413 (doi:10.1126/science.1195463).

414 [10] Moran, N.A. & Yun, Y. 2015 Experimental replacement of an obligate insect symbiont. *Proc Natl
415 Acad Sci U S A* **112**, 2093-2096. (doi:10.1073/pnas.1420037112).

416 [11] Duplais, C., Sarou-Kanian, V., Massiot, D., Hassan, A., Perrone, B., Estevez, Y., Wertz, J.T.,
417 Martineau, E., Farjon, J., Giraudeau, P., et al. 2021 Gut bacteria are essential for normal cuticle
418 development in herbivorous turtle ants. *Nat Commun* **12**, 676. (doi:10.1038/s41467-021-21065-y).

419 [12] Wilson, A.C., Ashton, P.D., Calevro, F., Charles, H., Colella, S., Febvay, G., Jander, G., Kushlan,
420 P.F., Macdonald, S.J., Schwartz, J.F., et al. 2010 Genomic insight into the amino acid relations of the
421 pea aphid, *Acyrtosiphon pisum*, with its symbiotic bacterium *Buchnera aphidicola*. *Insect Mol Biol*
422 **19**, 249-258. (doi:10.1111/j.1365-2583.2009.00942.x).

423 [13] Hu, Y., D'Amelio, C.L., Béchade, B., Cabuslay, C.S., Lukasik, P., Sanders, J.G., Price, S., Fanwick,
424 E., Powell, S., Moreau, C.S., et al. 2023 Partner fidelity and environmental filtering preserve stage-
425 specific turtle ant gut symbioses for over 40 million years. *Ecological Monographs* **93**, e1560.
426 (doi:10.1002/ecm.1560).

427 [14] Kaltenpoth, M., Roeser-Mueller, K., Koehler, S., Peterson, A., Nechitaylo, T.Y., Stubblefield, J.W.,
428 Herzner, G., Seger, J. & Strohm, E. 2014 Partner choice and fidelity stabilize coevolution in a
429 Cretaceous-age defensive symbiosis. *Proc Natl Acad Sci U S A* **111**, 6359-6364.
430 (doi:10.1073/pnas.1400457111).

431 [15] Ma, D., Bou-Sleiman, M., Joncour, P., Indelicato, C.E., Frochaux, M., Braman, V., Litovchenko, M.,
432 Storelli, G., Deplancke, B. & Leulier, F. 2019 Commensal Gut Bacteria Buffer the Impact of Host
433 Genetic Variants on *Drosophila* Developmental Traits under Nutritional Stress. *iScience* **19**, 436-447.
434 (doi:10.1016/j.isci.2019.07.048).

435 [16] Moczek, A.P. 2007 Developmental capacitance, genetic accommodation, and adaptive evolution.
436 *Evol Dev* **9**, 299-305. (doi:10.1111/j.1525-142X.2007.00162.x).

437 [17] Ledon-Rettig, C.C., Pfennig, D.W. & Crespi, E.J. 2010 Diet and hormonal manipulation reveal
438 cryptic genetic variation: implications for the evolution of novel feeding strategies. *Proc Roy Soc B-Biol
439 Sci* **277**, 3569-3578. (doi:10.1098/rspb.2010.0877).

440 [18] Paaby, A.B. & Rockman, M.V. 2014 Cryptic genetic variation: evolution's hidden substrate. *Nat Rev
441 Genet* **15**, 247-258. (doi:10.1038/nrg3688).

442 [19] Rutherford, S.L. & Lindquist, S. 1998 Hsp90 as a capacitor for morphological evolution. *Nature* **396**,
443 336-342. (doi:10.1038/24550).

444 [20] Rosenberg, E. & Zilber-Rosenberg, I. 2021 Reconstitution and Transmission of Gut Microbiomes and
445 Their Genes between Generations. *Microorganisms* **10**, 70. (doi:10.3390/microorganisms10010070).

446 [21] Baumann, P., Baumann, L., Lai, C.Y., Rouhbakhsh, D., Moran, N.A. & Clark, M.A. 1995 Genetics,
447 physiology, and evolutionary relationships of the genus *Buchnera*: intracellular symbionts of aphids.
448 *Annu Rev Microbiol* **49**, 55-94. (doi:10.1146/annurev.mi.49.100195.000415).

449 [22] Nyholm, S.V. & McFall-Ngai, M.J. 2021 A lasting symbiosis: how the Hawaiian bobtail squid finds
450 and keeps its bioluminescent bacterial partner. *Nat Rev Microbiol* **19**, 666-679. (doi:10.1038/s41579-
451 021-00567-y).

452 [23] Nalepa, C.A. 1990 Early Development of Nymphs and Establishment of Hindgut Symbiosis in
453 Cryptocercus-Punctulatus (Dictyoptera, Cryptocercidae). *Annals of the Entomological Society of
454 America* **83**, 786-789. (doi:DOI 10.1093/aesa/83.4.786).

455 [24] Wang, Y. & Rozen, D.E. 2017 Gut Microbiota Colonization and Transmission in the Burying Beetle
456 *Nicrophorus vespilloides* throughout Development. *Appl Environ Microbiol* **83**, e03250-03216.
457 (doi:10.1128/AEM.03250-16).

458 [25] Santos, A.V., Dillon, R.J., Dillon, V.M., Reynolds, S.E. & Samuels, R.I. 2004 Ocurrence of the
459 antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens
460 rubropilosa. *FEMS Microbiol Lett* **239**, 319-323. (doi:10.1016/j.femsle.2004.09.005).

461 [26] Hanski, I. & Cambefort, Y. 1991 *Dung Beetle Ecology*. Princeton, Princeton University Press.

462 [27] Estes, A.M., Hearn, D.J., Snell-Rood, E.C., Feindler, M., Feeser, K., Abebe, T., Dunning Hotopp,
463 J.C. & Moczek, A.P. 2013 Brood ball-mediated transmission of microbiome members in the dung
464 beetle, *Onthophagus taurus* (Coleoptera: Scarabaeidae). *PLoS One* **8**, e79061.
465 (doi:10.1371/journal.pone.0079061).

466 [28] Parker, E.S., Newton, I.L.G. & Moczek, A.P. 2020 (My Microbiome) Would Walk 10,000 miles:
467 Maintenance and Turnover of Microbial Communities in Introduced Dung Beetles. *Microb Ecol* **80**,
468 435-446. (doi:10.1007/s00248-020-01514-9).

469 [29] Parker, E.S., Dury, G.J. & Moczek, A.P. 2019 Transgenerational developmental effects of species-
470 specific, maternally transmitted microbiota in dung beetles. *Ecol Entomol* **44**, 274-282.
471 (doi:10.1111/een.12703).

472 [30] Parker, E.S. & Moczek, A.P. 2020 Don't stand so close to me: Microbiota-facilitated enemy release
473 dynamics in introduced *Onthophagus taurus* dung beetles. *Ecol Evol* **10**, 13640-13648.
474 (doi:10.1002/ece3.6836).

475 [31] Parker, E.S., Moczek, A.P. & Macagno, A.L.M. 2021 Reciprocal microbiome transplants
476 differentially rescue fitness in two syntopic dung beetle sister species (Scarabaeidae). *Ecol Entomol*
477 **46**, 946-954. (doi:10.1111/een.13031).

478 [32] Schwab, D.B., Casasa, S. & Moczek, A.P. 2017 Evidence of developmental niche construction in
479 dung beetles: effects on growth, scaling and reproductive success. *Ecol Lett* **20**, 1353-1363.
480 (doi:10.1111/ele.12830).

481 [33] Rohner, P.T. & Moczek, A.P. 2023 Vertically inherited microbiota and environment-modifying
482 behaviors indirectly shape the exaggeration of secondary sexual traits in the gazelle dung beetle. *Ecol
483 Evol* **13**, e10666. (doi:10.1002/ece3.10666).

484 [34] Dury, G.J., Moczek, A.P. & Schwab, D.B. 2020 Maternal and larval niche construction interact to
485 shape development, survival, and population divergence in the dung beetle *Onthophagus taurus*. *Evol
486 Dev* **22**, 358-369. (doi:10.1111/ede.12348).

487 [35] Dawkins, R. 1982 *The Extended Phenotype: The Long Reach of the Gene*, Oxford University Press.

488 [36] Odling-Smee, F.J., Laland, K.N. & Feldman, M.W. 2003 *Niche Construction: The Neglected Process
489 in Evolution*, Princeton University Press.

490 [37] Moczek, A.P. & Nijhout, H.F. 2002 A Method for Sexing Final Instar Larvae of the Genus
491 *Onthophagus* Latreille (Coleoptera: Scarabaeidae). *The Coleopterists Bulletin* **56**, 279-284.

492 [38] Macagno, A.L.M., Edgerton, T.J. & Moczek, A.P. 2021 Incipient hybrid inferiority between recently
493 introduced, diverging dung beetle populations. *Biol J Linn Soc* **132**, 931-944.
494 (doi:10.1093/biolinmean/blaa228).

495 [39] Rohner, P.T. & Moczek, A.P. 2020 Rapid differentiation of plasticity in life history and morphology
496 during invasive range expansion and concurrent local adaptation in the horned beetle *Onthophagus
497 taurus*. *Evolution* **74**, 2059-2072. (doi:10.1111/evo.14045).

498 [40] Shafiei, M., Moczek, A.P. & Nijhout, H.F. 2001 Food availability controls the onset of
499 metamorphosis in the dung beetle (Coleoptera:Scarabaeidae). *Physiol Entomol* **26**, 173-180. (doi:DOI
500 10.1046/j.1365-3032.2001.00231.x).

501 [41] Rohner, P.T. & Moczek, A.P. 2021 Evolutionary and plastic variation in larval growth and digestion
502 reveal the complex underpinnings of size and age at maturation in dung beetles. *Ecol Evol* **11**, 15098-
503 15110. (doi:10.1002/ece3.8192).

504 [42] Macagno, A.L.M. & Moczek, A.P. 2022 Between-partner concordance of vertically transmitted gut
505 microbiota diminishes reproductive output in the dung beetle *Onthophagus taurus*. *Physiol Entomol
506* **48**, 14-23. (doi:10.1111/phen.12398).

507 [43] Sison-Mangus, M.P., Mushegian, A.A. & Ebert, D. 2015 Water fleas require microbiota for survival,
508 growth and reproduction. *ISME J* **9**, 59-67. (doi:10.1038/ismej.2014.116).

509 [44] Estes, A.M., Hearn, D.J., Bronstein, J.L. & Pierson, E.A. 2009 The olive fly endosymbiont,
510 "Candidatus *Erwinia dacicola*," switches from an intracellular existence to an extracellular existence
511 during host insect development. *Appl Environ Microbiol* **75**, 7097-7106. (doi:10.1128/AEM.00778-
512 09).

513 [45] Rohner, P.T. 2021 A role for sex-determination genes in life history evolution? Doublesex mediates
514 sexual size dimorphism in the gazelle dung beetle. *J Evol Biol* **34**, 1326-1332.
515 (doi:10.1111/jeb.13877).

516 [46] Rohlf, F.J. 2009 TpsDig. (2.14 ed, Department of Ecology and Evolution, State University of New
517 York.

518 [47] Bates, D., Mächler, M., Bolker, B. & Walker, S. 2015 Fitting Linear Mixed-Effects Models Using
519 lme4. *2015* **67**, 48. (doi:10.18637/jss.v067.i01).

520 [48] Butler, D. 2021 asreml: Fits the Linear Mixed Model. R package version 4.1.0.154. . (

521 [49] Kruuk, L.E. 2004 Estimating genetic parameters in natural populations using the "animal model".
522 *Philos T R Soc B* **359**, 873-890. (doi:10.1098/rstb.2003.1437).

523 [50] Kruuk, L.E., Clutton-Brock, T.H., Slate, J., Pemberton, J.M., Brotherstone, S. & Guinness, F.E. 2000
524 Heritability of fitness in a wild mammal population. *Proc Natl Acad Sci U S A* **97**, 698-703.
525 (doi:10.1073/pnas.97.2.698).

526 [51] Charmantier, A., Buoro, M., Gimenez, O. & Weimerskirch, H. 2011 Heritability of short-scale natal
527 dispersal in a large-scale foraging bird, the wandering albatross. *J Evol Biol* **24**, 1487-1496.
528 (doi:10.1111/j.1420-9101.2011.02281.x).

529 [52] Bonnet, T., Wandeler, P., Camenisch, G. & Postma, E. 2017 Bigger Is Fitter? Quantitative Genetic
530 Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild
531 Rodent Population. *PLoS Biol* **15**, e1002592. (doi:10.1371/journal.pbio.1002592).

532 [53] Wilson, A.J., Reale, D., Clements, M.N., Morrissey, M.M., Postma, E., Walling, C.A., Kruuk, L.E. &
533 Nussey, D.H. 2010 An ecologist's guide to the animal model. *J Anim Ecol* **79**, 13-26.
534 (doi:10.1111/j.1365-2656.2009.01639.x).

535 [54] Hansen, T.F., Pélabon, C. & Houle, D. 2011 Heritability is not Evolvability. *Evolutionary Biology* **38**,
536 258-277. (doi:10.1007/s11692-011-9127-6).

537 [55] Stotz, K. 2017 Why developmental niche construction is not selective niche construction: and why it
538 matters. *Interface Focus* **7**, 20160157. (doi:10.1098/rsfs.2016.0157).

539 [56] Sultan, S.E. 2015 *Organism and Environment: Ecological Development, Niche Construction, and*
540 *Adaption*, Oxford University Press.

541 [57] Pfennig, D.W. 2021 *Phenotypic Plasticity & Evolution: Causes, Consequences, Controversies*, CRC
542 Press.

543 [58] Holloway, G.J., Povey, S.R. & Sibly, R.M. 1990 The Effect of New Environment on Adapted
544 Genetic Architecture. *Heredity* **64**, 323-330. (doi:DOI 10.1038/hdy.1990.40).

545 [59] Blanckenhorn, W.U. & Heyland, A. 2005 The quantitative genetics of two life history trade-offs in
546 the yellow dung fly in abundant and limited food environments. *Evol Ecol* **18**, 385-402.
547 (doi:10.1007/s10682-004-2680-z).

548 [60] Walsh, B. & Lynch, M. 2018 *Evolution and Selection of Quantitative Traits*, OUP Oxford.

549 [61] Gonzalez-Forero, M. 2023 How development affects evolution. *Evolution* **77**, 562-579.
550 (doi:10.1093/evolut/qpac003).

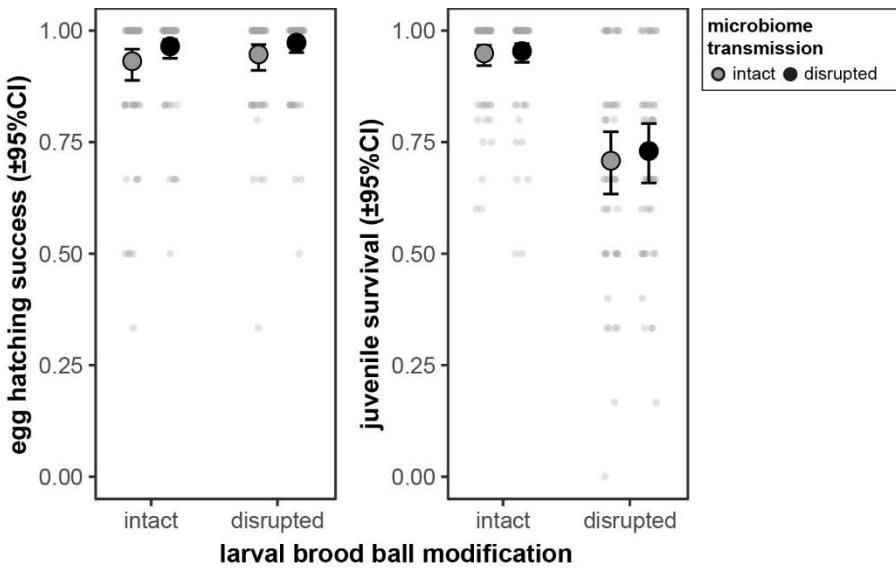
551 [62] Tyndale-Biscoe, M. 1990 *Common dung beetles in pastures of south-eastern Australia*, CSIRO
552 Australia, Division of Entomology.

553 [63] Hammer, T.J., Fierer, N., Hardwick, B., Simojoki, A., Slade, E., Taponen, J., Viljanen, H. & Roslin,
554 T. 2016 Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and
555 dung beetles. *P Roy Soc B-Biol Sci* **283**, 20160150. (doi:10.1098/rspb.2016.0150).

556 [64] Watson, R.A., Wagner, G.P., Pavlicev, M., Weinreich, D.M. & Mills, R. 2014 The evolution of
557 phenotypic correlations and "developmental memory". *Evolution* **68**, 1124-1138.
558 (doi:10.1111/evo.12337).

559 [65] Pavlicev, M., Cheverud, J.M. & Wagner, G.P. 2011 Evolution of adaptive phenotypic variation
560 patterns by direct selection for evolvability. *P Roy Soc B-Biol Sci* **278**, 1903-1912.
561 (doi:10.1098/rspb.2010.2113).

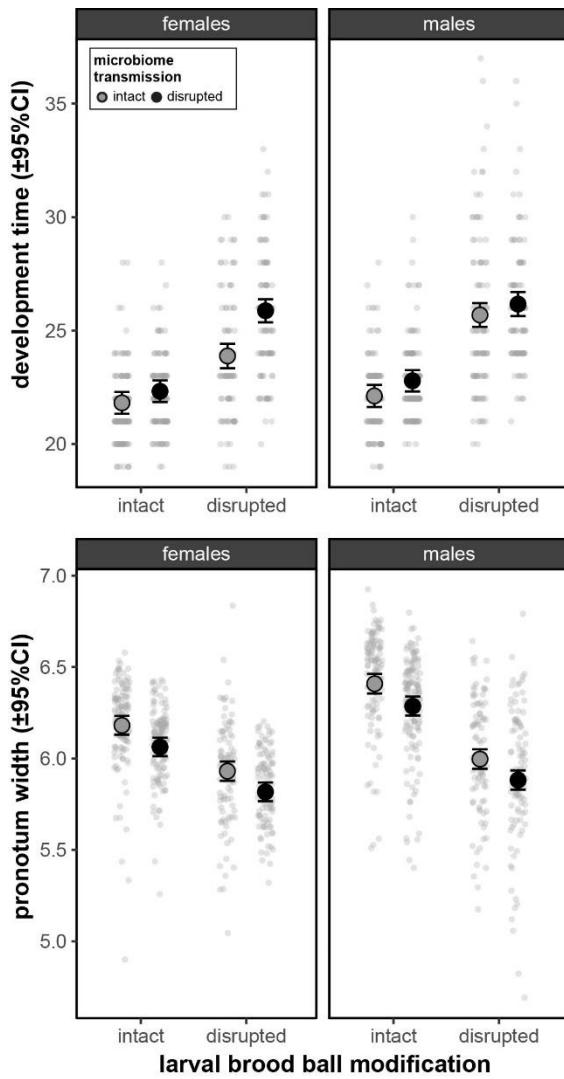
562 [66] Macagno, A.L., Beckers, O.M. & Moczek, A.P. 2015 Differentiation of ovarian development and the
563 evolution of fecundity in rapidly diverging exotic beetle populations. *J Exp Zool A Ecol Genet
564 Physiol* **323**, 679-688. (doi:10.1002/jez.1959).


565 [67] Teder, T. & Tammaru, T. 2005 Sexual size dimorphism within species increases with body size in
566 insects. *Oikos* **108**, 321-334. (doi:DOI 10.1111/j.0030-1299.2005.13609.x).

567 [68] Rohner, P.T., Teder, T., Esperk, T., Lüpold, S. & Blanckenhorn, W.U. 2018 The evolution of male-
568 biased sexual size dimorphism is associated with increased body size plasticity in males. *Funct Ecol*
569 **32**, 581-591. (doi:10.1111/1365-2435.13004).

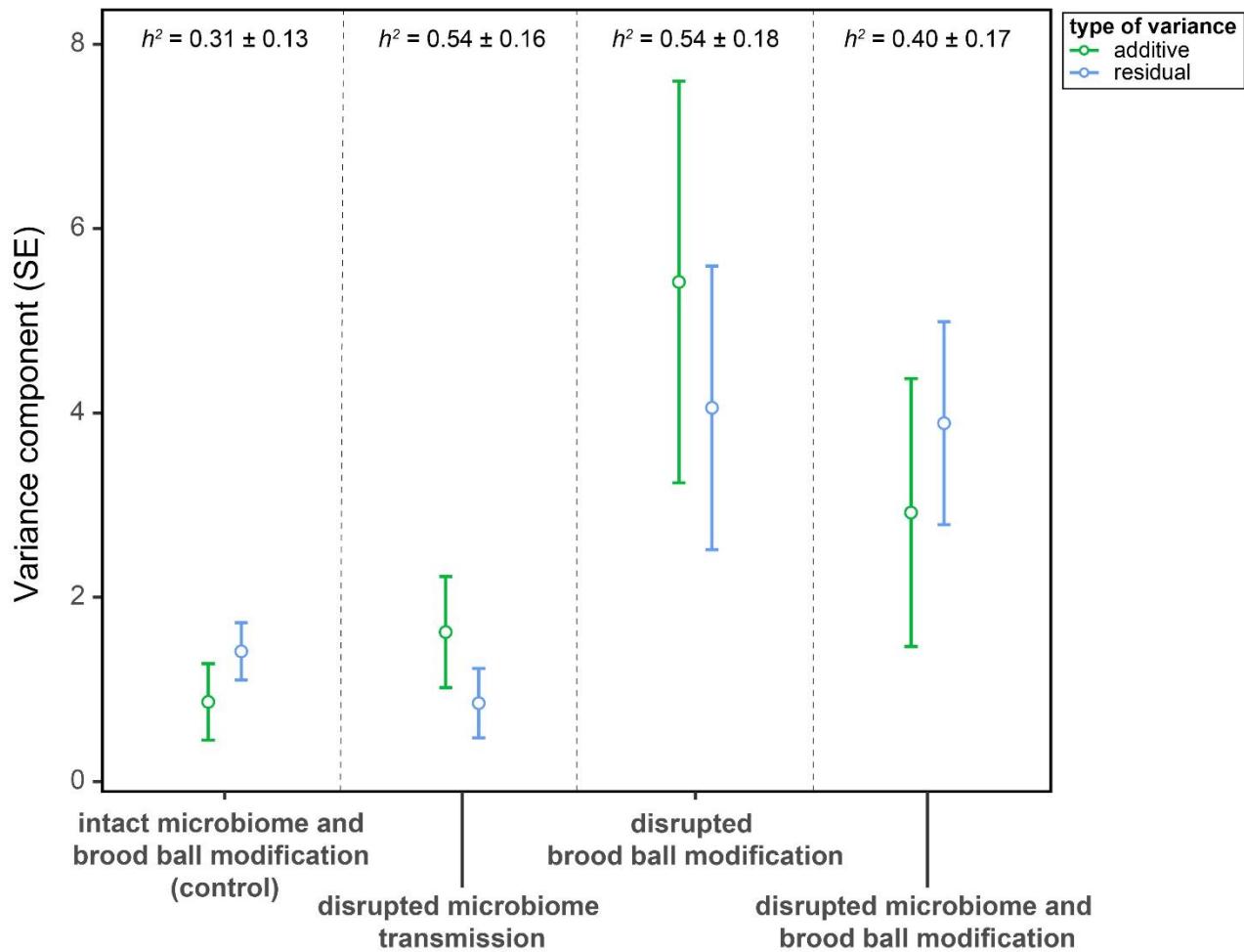
570 [69] Fogarty, L. & Wade, M.J. 2022 Niche construction in quantitative traits: heritability and response to
571 selection. *P Roy Soc B-Biol Sci* **289**, 20220401. (doi:10.1098/rspb.2022.0401).

572

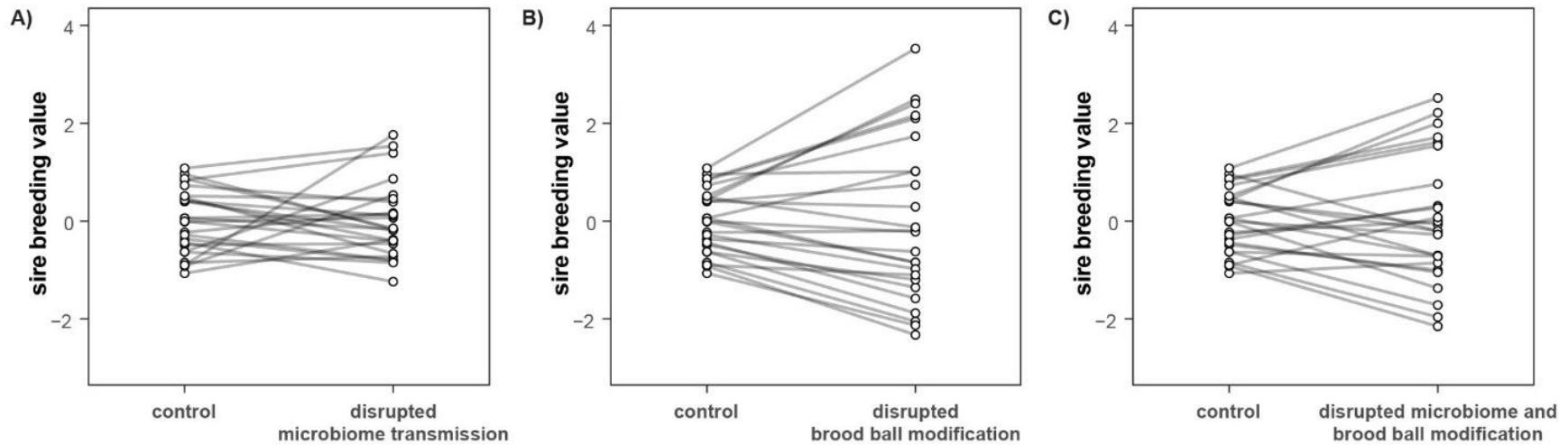

573 **Figures and Tables**

574

575 Figure 1: Estimated marginal means and corresponding 95% confidence limits for egg hatching success
576 and juvenile survival as a function of the presence of maternal microbiota and larval brood ball
577 modifications. Individual data points represent treatment-specific full-sib family means.


578

579

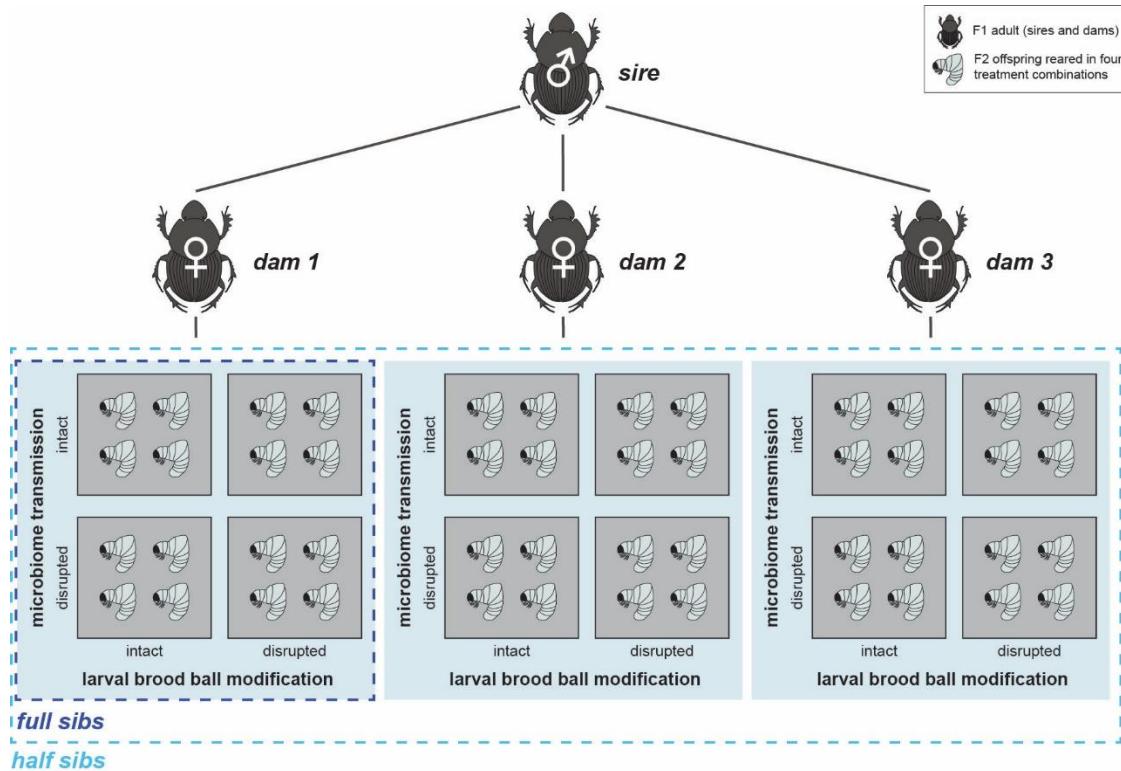

580 Figure 2: Estimated marginal means and corresponding 95% confidence limits for development time and
581 body size as a function of the presence of maternal microbiota and larval brood ball modifications. Data
582 points represent individual measurements (total n = 932 individuals).

583

584

585 Figure 3: Additive and residual variance components for development time for each treatment
586 combination derived from animal models (total n = 932 individuals). Heritabilities were calculated by
587 dividing the additive variance by the total phenotypic variance (including the variance attributable to the
588 12-well plate individuals were reared in, see table 1).

591 Figure 4: Genetic breeding values (genetic merit) for development time of 25 sires across control and manipulated environments. Lines indicate the
 592 change in genetic values of each sire when microbiomes and/or brood ball modifications are disrupted. The large variation in the slope of these reaction
 593 norms indicates that genotypes differ in their response to the experimental manipulation. Breeding values represent best linear unbiased predictions
 594 (BLUPs) and were extracted from an animal model including all individuals ($n = 932$ offspring).

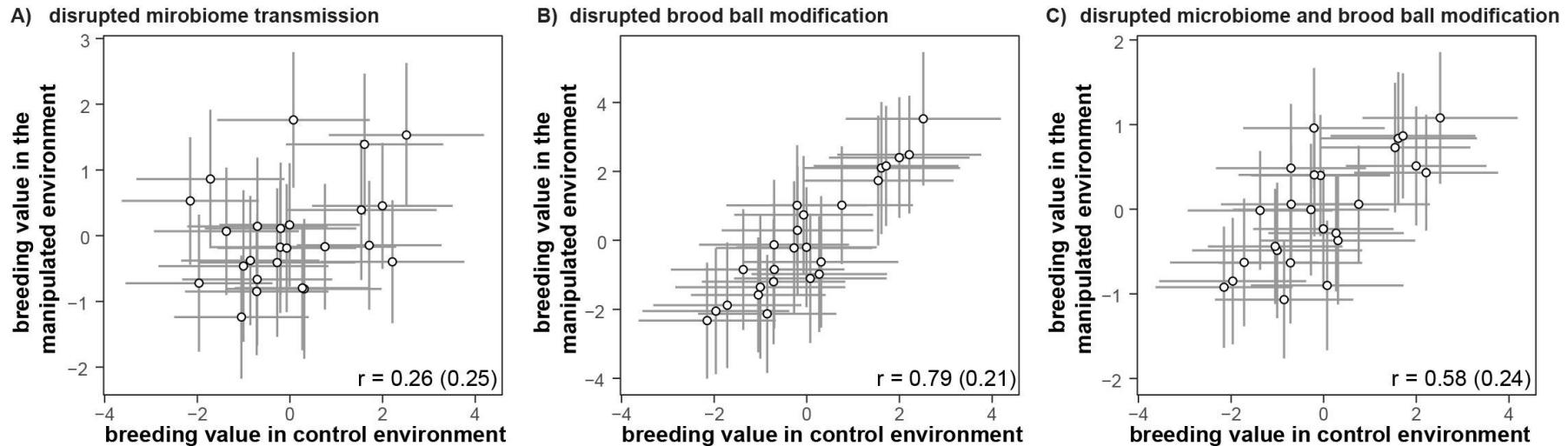

595 Table 1: Variance components, heritabilities, trait means, and evolvability (\pm SE) for development time for
596 the four treatment combinations. Variances were computed using an animal model simultaneously
597 estimating additive and residual variances for each treatment combination. Heritability was calculated by
598 dividing the treatment-specific additive genetic variance by the treatment-specific total phenotypic
599 variance. Evolvability was computed by dividing additive genetic variance by the square of the trait mean.

	intact microbiome and brood ball modification (control)	disrupted microbiome transmission	disrupted brood ball modification	disrupted microbiome and brood ball modification
Additive genetic variance	0.86 (0.42)	1.62 (0.60)	5.42 (2.18)	2.92 (1.45)
Variance among plates	0.55 (0.17)	0.55 (0.17)	0.55 (0.17)	0.55 (0.17)
Residual variance	1.41 (0.31)	0.85 (0.38)	4.06 (1.54)	3.89 (1.10)
Total phenotypic variance	2.83 (0.28)	3.02 (0.33)	10.02 (1.17)	7.36 (0.80)
Narrow-sense heritability	0.31 (0.13)	0.54 (0.16)	0.54 (0.18)	0.40 (0.17)
Mean trait value	21.96 (0.39)	22.55 (0.39)	24.82 (0.53)	25.92 (0.33)
Evolvability	0.0018 (0.0009)	0.0032 (0.0012)	0.0088 (0.0035)	0.0043 (0.0022)

600

601 **Supplementary material**

602



603

604 Figure S1: To generate offspring with varying levels of relatedness for the estimation of additive genetic
605 variances, we reared 30 half-sib families. In each half-sib family, we mated one male (sire) to three
606 females (dams). This design generates full siblings as well as half siblings. Although the initial design
607 included 30 males and 90 females (3 females per male), only 67 females (distributed over 25 half-sib
608 families) reproduced. In total, 1,228 eggs were produced. The offspring of each female (dam) was evenly
609 split across a fully factorial combination of a manipulation of microbiome transmission (intact vs.
610 disrupted) and larval brood ball modification (intact vs. disrupted).

611

612

613

614 Figure S2: Correlation between a sire's genetic value (plus SE) in the control treatment and the breeding values in treatments where microbiome
 615 transmission and/or brood ball manipulations were disrupted (same values as shown in figure 4). Genetic correlations smaller than one indicate that
 616 sires differ in the degree to which their genetic values are affected by the experimental manipulation. Breeding values (BLUPs), genetic correlations,
 617 and corresponding standard errors were extracted from an animal model including all individuals ($n = 932$ offspring). Genetic correlations across
 618 treatments were estimated using the 'corgh' variance structure (which allows to directly estimate and test genetic correlations in ASReml [48]).
 619 Residual variances were allowed to vary among treatments.

620

621 Table S1: Analysis of Deviance Tables (Type II Wald Chi-square tests) for development time, pronotum
622 width, juvenile survival, and hatching success. Juvenile survival and hatching success were fitted using
623 generalized linear mixed models with a binomial error distribution. Because sex can only be determined in
624 late larval development, sex could not be included in the models for juvenile survival and hatching
625 success.

	development time			pronotum width			juvenile survival			hatching success		
	X^2	Df	P	X^2	Df	P	X^2	Df	P	X^2	Df	P
sex	22.54	1	<.001	89.99	1	<.001						
brood ball modification	206.8	1	<.001	240.4	1	<.001	96.6	1	<.001	1.38	1	0.24
microbiome transmission	42.93	1	<.001	55.41	1	<.001	0.4	1	0.526	8.85	1	0.003
sex × brood ball modification	5.18	1	0.023	21.37	1	<.001						
sex × microbiome transmission	3.98	1	0.046									
brood ball modification×												
microbiome transmission	5.91	1	0.015									
sex × brood ball modification×												
microbiome transmission	9.09	1	0.003									

626