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Abstract 

The structural connectome (SC) is tightly coupled to the functional connectome (FC) in the 
human brain. Most previous related studies have modeled and analyzed SC or FC as isolated 
brain networks. However, challenges remain in modeling the interdependent structural-functional 
connectome and elucidating its cognitive implications and molecular underpinnings. Here, we 
present a multilayer connectome model composed of SC and FC components and further 
characterize their interacting topological properties. We found that the interdependent 
connectome is topographically heterogeneous, with the transmodal cortex exhibiting greater 
modular variability across layers. This spatial topography reflects cortical hierarchy and 
evolution and shows high test-retest reliability, reproducibility, and heritability. The 
interdependent connectome contributes to high-order cognitive processes and is associated with 
multiple neurotransmitter systems and transcriptional signatures of synaptic transmission. Our 
results provide insights into the nontrivial interdependencies of SC and FC, highlighting their 
cognitive significance and the molecular mechanisms underlying the connectome of 
connectomes. 
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Introduction 

The structural connectome (SC) and functional connectome (FC) are two indispensable 
components of the human brain connectome. The SC describes structural connectivity maps 
representing white matter pathways between regions 1, whereas the FC describes functional 
synchronization patterns representing temporal associations between regions 2, 3. These two 
connectomes interact and depend on each other to jointly maintain the functioning of the brain 
and further support cognitive processing. Elucidating the complex interplay between the SC and 
FC is one of the central challenges in network neuroscience. Previous empirical and 
computational modeling studies have consistently reported SC-FC coupling 4-6 or SC constraints 
on FC 7-10. Despite their importance, these previous studies have mainly modeled and analyzed 
SC or FC as isolated brain networks, ignoring the interdependent nature of the two connectomes. 

Interdependent network theory 11, 12 provides an important mathematical framework for studying 
the connections between different types of networks. In recent years, research has been 
conducted to model and analyze the interdependent brain connectome that comprises SC and FC 
layers. For instance, several studies have employed integrated SC and FC features in the 
multilayer connectome to reveal nontrivial properties, such as overabundant network motifs or 
subgraphs 13-16, core hub regions 17-19, and core-periphery structures 20, 21. However, whether and 
how the SC and FC layers show different connectivity profiles in the interacting connectome are 
not yet well understood. To date, only one initial study has reported discordant global assortative 
mixing property between the SC and FC layers 22. However, how the SC and FC layers are 
topographically coordinated by different nodes in the interdependent connectome and how such 
multilayer coordination contributes to cognitive processes remain to be elucidated. Moreover, the 
neurobiological basis of the interdependent structural-functional connectome remains unknown. 
It is particularly important to answer these questions to better understand the organizational 
principles of interdependence in the unified structural-functional connectome and to elucidate the 
underlying biological mechanisms that govern the connectome. 

A fundamental property of brain connectomes is that they exhibit a community or modular 
architecture that captures segregated and integrated processing 23, 24. Previous studies using 
isolated network models have shown that the SC and FC have different modular architectures, 
i.e., SC modules are anatomically constrained, whereas FC modules are functionally distributed 5, 

25, 26. Currently, the multilayer modular organization of the interactive structural-functional 
connectome, particularly the brain nodes that are responsible for network communication 
between layered SC and FC modules, has not been well characterized. Connectome mapping 
studies have consistently shown a major primary-to-transmodal axis in the human brain 27, 28, 
with association cortices, including the default mode and frontoparietal regions, primarily 
involved in abstract cognition 29. Therefore, we reason that the transmodal cortices in the 
interdependent connectome play a major coordinated role between the layered SC and FC 
modules to promote cognitive diversity. 

Previous SC or FC studies suggested that the spatial topography of the primary-to-transmodal 
axis aligns with that of neurobiological properties, such as gene expression 30, neurotransmitter 
receptor and transporter density 31. Studies have shown that gene expression related to synaptic 
functionality, including ion channel activity and synaptic functions (such as neurotransmitter 
release), is recapitulated within functional networks32. The late-developing heteromodal cortex 
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manifests less genetic association than the primary cortex 33, 34. Neurotransmitters influence the 
balance between the integration and segregation of brain systems 35, and receptor distributions 
reflect structural and functional organization 36. Taken together, these previous studies based on 
isolated SC or FC networks have suggested potential genetic and molecular underpinnings of the 
modular architecture of the brain. Therefore, our second hypothesis is that the coordinated 
patterns of transmodal cortices across layered SC and FC modules are closely related to 
neurobiological properties, such as neurotransmitter receptors and transporters and gene 
expression profiles. 

To address these issues, we investigated the interdependent structural-functional connectome of 
the human brain using resting-state functional magnetic resonance imaging (rs-fMRI) and 
diffusion MRI (dMRI) data from the Human Connectome Project (HCP) S1200 dataset 37. We 
first created a multiplex connectome comprising SC and FC layers and further identified the 
modular architectures using a multilayer modularity algorithm 38, 39. Next, we quantified the 
variability in the module affiliation of brain nodes between the SC and FC layers using 
multilayer modular variability 40. We then investigated whether the spatial topography of 
multilayer modular variability reflects the cortical gradient spanning from the primary region to 
the transmodal regions and further validated its reliability (using the HCP test-retest dataset), 
reproducibility (using the HCP half-split dataset), heritability (using the HCP twin-based dataset), 
and cognitive relevance (using the HCP cognitive dataset). Finally, to elucidate the 
neurobiological underpinnings of the coupled SC and FC connectomes, we conducted 
multivariate analysis to establish associations with neurotransmitter systems 36 and gene 
expression signatures 41, respectively. 

Results 

Construction of an interdependent structural-functional connectome using a multilayer 
network model 

To model the interdependent brain connectome, for each individual, we reconstructed SC and FC 
connectomes using multimodal neuroimaging data from 1,012 healthy participants from the HCP 
S1200 dataset 37. Specifically, we defined network nodes based on a surface-based multimodal 
parcellation atlas 42 with 180 cortical areas per hemisphere (Fig. 1a). For network edges, we 
considered the Pearson correlation coefficient between the time series of all pairs of nodes for the 
FC 26 and the probabilistic diffusion tractography between nodes for the SC 43 (detailed in the 
Methods section). Considering that different ranges and properties of SC and FC connections 
could lead to disproportionate contributions to the following multilayer network analysis, we 
normalized the FC and SC matrices to a uniform range of 0-1 (Fig. 1b and 1c). We then modeled 
the interplay between the SC and FC in a multiplex framework that establishes interlayer 
connections based on direct correspondence between identical nodes. This process resulted in a 
two-layer interdependent SC-FC network for each individual (Fig. 1d), represented by a supra-
adjacency matrix 44 where the diagonal blocks represent the intralayer connections and the off-
diagonal blocks correspond to the interlayer connections. The multilayer modularity detection 
algorithm 38, 39 was applied to the interdependent structural-functional connectome, yielding a 
modular architecture that characterizes intra- and interlayer interactions simultaneously (Fig. 1e). 
To quantify how much the multilayer modular architecture in the interdependent structural-
functional connectome differs between the SC and FC layers, we computed the multilayer 
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modular variability of brain nodes based on their module assignments across layers 40. The 
greater the multilayer modular variability (e.g., node A in Fig. 1e), the greater the differences in 
the module structures to which nodes belong in the SC and FC layers. 

 

 

Fig. 1 | Framework for the construction and analysis of the interdependent SC-FC connectome. a, Multimodal 
parcellation (MMP1.0) was applied to define cortical areas, which were parcellated into 180 areas per hemisphere 42. 
b, c  The FC and SC connectomes for each individual, wherein connectivity between each pair of cortical regions 
was obtained using Pearson correlation and probabilistic diffusion tractography, respectively. d, A schematic 
representation of the interdependent structural-functional connectome (top panel). The FC and SC form different 
layers, and dependency links between FC and SC were established by the multiplex coupling parameter � (� = 1), 
in which the corresponding nodes located in different layers were coupled in a one-to-one manner. The multilayer 
network can be represented by a supra-adjacency matrix 44, where the diagonal blocks represent the intralayer 
connections and the off-diagonal blocks correspond to the interlayer connections (bottom panel). e, The multilayer 
modularity detection algorithm 38, 39 was used to extract the modular architecture of the interdependent structural-
functional connectome. Here, we exemplified the multilayer connectome as divided into three modules, with 
different modules rendered in different colors. The cross-layer module affiliation variability of nodes was evaluated 
using the multilayer modular variability (MV) metric 40. The calculation process of this metric is illustrated in detail 
in the figure, taking nodes A, B, and C as examples. 
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The spatial topography of multilayer modular variability in the interdependent structural-
functional connectome reflects cortical hierarchy and evolution 

For each individual, we identified multilayer connectome modules and computed multilayer 
modular variability in the interdependent structural-functional connectome (Fig. 2a and 2b). The 
group-level multilayer modular variability showed substantial spatial heterogeneity across the 
cortex, with greater variability predominantly in the lateral prefrontal and parietal regions, dorsal 
medial prefrontal cortex and lateral temporal regions and less variability in the sensorimotor, 
visual, and ventral medial prefrontal cortex (Fig. 2c, left panel). Furthermore, we investigated 
whether the spatial pattern of multilayer modular variability represents cortical hierarchical 
organization. First, we stratified the 360 cortical regions into four hierarchies illustrating a 
transition from primary sensory regions to the transmodal cortex 45. The heteromodal system 
(spin test P value (Pspin) < 0.001) exhibited significantly greater multilayer modular variability 
than did the null models, while the primary (Pspin = 0.0003) and unimodal (Pspin < 0.001) systems 
exhibited significantly less multilayer modular variability (Fig. 2c, right panel). Second, we 
found that the topographic organization of multilayer modular variability significantly correlated 
with a well-established macroscale connectome gradient architecture from unimodal to 
transmodal 28 (Pearson’s r (358) = 0.56, Pspin < 0.0001, confidence interval (CI)�=�[0.48, 0.62], 
two-tailed; Fig. 2d). Given that greater multilayer modular variability was observed in the 
association regions that are thought to be phylogenetically late-evolving regions, we 
hypothesized that there would be a potential evolutionary root for the interaction of the 
structural-functional connectome. By correlating with the cortical evolutionary expansion 46, we 
found that highly conserved sensory areas exhibited relatively less SC-FC modular variability, 
while highly expanded transmodal areas exhibited greater SC-FC modular variability (Pearson’s 
r (178) = 0.51, Pspin < 0.001, CI = [0.39, 0.61], two-tailed; Fig. 2e). Taken together, these results 
suggested that the modular topography of the multilayer structural-functional connectome is 
regionally heterogeneous, reflecting primary-to-transmodal organization and a cortical 
evolutionary mechanism. 

Reliability, reproducibility, and heritability of multilayer modular variability in the 
interdependent structural-functional connectome 

Having demonstrated that multilayer modular variability in the interdependent structural-
functional connectome has a specific topographic distribution across the cortical hierarchy, we 
next examined whether this distribution is test-retest reliable, reproducible and heritable. 

First, we used the HCP Test-Retest dataset to evaluate test-retest reliability. This dataset included 
42 participants (aged 30.4 ± 3.33 years, 30 females) who underwent a second MRI scanning 
session scheduled between 0.5 and 11 months after their first session. Specifically, we calculated 
the Pearson correlation coefficient of multilayer modular variability between the same 
individuals in different sessions and between different individuals. We found that the 
intraindividual spatial similarity of multilayer modular variability (Pearson’s r: 0.69 ± 0.123) was 
significantly greater (nonparametric permutation test P value (Pperm) < 0.0001) than the 
interindividual similarity (Pearson’s r: 0.48 ± 0.065; Fig. 3a). Furthermore, for each brain node, 
we performed the intraclass correlation (ICC) 49 analysis to estimate its test-retest reliability of 
the multilayer modular variability in the interdependent structural-functional connectome. The  
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Fig. 2 | The spatial topography of multilayer modular variability in the coupled structural-functional 
connectome reflects the cortical gradient and evolutionary expansion. a, The multilayer modular structure of the 
interdependent structural-functional connectome for a representative participant, in which the elements of the matrix 
represent the modules to which the nodes were assigned in the FC and SC layers (left panel). The partitions of the 
FC and SC are projected onto the brain cortex, and based on this, the cross-layer module affiliation of each node is 
tracked to obtain the spatial distribution of the participant’s multilayer modular variability (right panel). b, 
Multilayer modular variability at the individual level. c, The spatial topography of group-level multilayer modular 
variability (left panel), in which the heteromodal system (Pspin < 0.001) exhibited significantly greater multilayer 
modular variability than did the null models, while the primary (Pspin = 0.0003) and unimodal (Pspin < 0.001) systems 
exhibited significantly less multilayer modular variability (right panel). Nodewise multilayer modular variability 
values were averaged according to their hierarchical systems. The mean multilayer modular variability of the 
system-specific is expressed as a z score relative to the null model (spin test 10,000 repetitions), in which positive 
(negative) z values indicate larger (less) multilayer modular variability than expected by chance. The statistically 
significant and nonsignificant systems are shown in color and gray, respectively. The multilayer modular variability 
was significantly (spin test 10,000 repetitions) associated with the functional connectivity gradient (Pearson’s r (358) 
= 0.56, Pspin < 0.0001, confidence interval (CI)�=�[0.48, 0.62], two-tailed) (d) and evolutionary expansion of 
cortical surface area (Pearson’s r (178) = 0.51, Pspin < 0.001, CI = [0.39, 0.61], two-tailed) (e). The gray shaded 
envelopes in the scatter plots indicate the 95% CI, the upper left corners of the scatter plots show the histograms of r 
values obtained from the null model, and the vertical red dotted lines denote the empirical r values. To better 
visualize the scatter plots, the raw values (including those for the cortical gradient, cortical expansion and multilayer 
modular variability) were scaled using a rank-based inverse Gaussian transformation 47. The brain maps were 
generated using the BrainNet Viewer package 48 on the inflated cortical 32K surface 42. Pri, primary cortex; Uni, 
unimodal cortex; Hete, heteromodal cortex; Para, paralimbic cortex. *** P < 0.001. 
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highest test-retest reliability was in the dorsolateral prefrontal and inferior parietal cortex (ICC > 
0.6) (Fig. 3b, left panel). Compared to those of the other systems, the ICC of the heteromodal 
system was significantly greater than those of the null model (Pspin < 0.001), while the ICC of the 
paralimbic system was significantly lower than the level expected by chance (Pspin = 0.0039) (Fig. 
3b, middle panel). The spatial distribution of the ICC map showed a significant correlation with 
that of the multilayer SC-FC modular variability map (Pearson’s r (358) = 0.23, Pspin < 0.0003, 
CI = [0.13, 0.32], two-tailed; Fig. 3b, right panel). 

Second, we validated the reproducibility of multilayer SC-FC modular variability. Specifically, 
we randomly (n = 1,000 repetitions) divided the 1,012 participants in the HCP S1200 dataset into 
two cohorts (subgroup 1 and subgroup 2). We found that the group-level multilayer modular 
variability was highly correlated in the interdependent structural-functional connectomes of the 
two subgroups (Pearson’s r = 0.994-0.999, p < 0.0001; Fig. 3c shows the results of one of the 
1,000 repetitions), suggesting high reproducibility.  

Finally, using twin and family data from the HCP S1200 dataset, which consists of 268 
monozygotic (MZ) twins, 140 dizygotic (DZ) twins, 107 singletons, and 494 nontwins, we 
examined whether the interindividual similarity of multilayer modular variability differed 
between unrelated and genetically related individuals. We used Pearson correlation to measure 
the similarity of multilayer modular topography across participants. We found that the similarity 
varied for MZ twins (Pearson’s r: 0.26 ± 0.204), DZ twins (Pearson’s r: 0.10 ± 0.217), and 
siblings (Pearson’s r: 0.10 ± 0.196), with significantly greater similarity among MZ twins than 
among DZ twins (Pperm < 0.0001) and siblings (Pperm < 0.0001) (Fig. 3d, left panel). We further 
performed a twin-based heritability analysis to examine the heritability of the multilayer network 
modules in the interacting structural-functional connectome. We found that genetic factors 
exerted a regionally variable influence on the multilayer modular variability, with higher 
heritability observed in the somatosensory, lateral temporal, medial prefrontal, and parietal 
regions and lower heritability in the lateral frontal and parietal regions and visual cortices (Fig. 
3d, middle panel). Similarly, we found that the heritability was not uniform across the four 
hierarchical systems, with the primary system being significantly more heritable relative to the 
null models (Pspin = 0.016, Fig. 3d, right panel). Taken together, our results indicated that the 
degree of spatial variability of multilayer module organization across the layered SC and FC is 
heritable. 
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Fig. 3 | Multilayer modular variability is reliable, reproducible, and heritable. a, The intraindividual similarity 
of multilayer modular variability is greater than the interindividual similarity (Pperm < 0.0001, nonparametric 
permutation test 10,000 repetitions). b, The spatial pattern of the intraclass correlation (ICC) of multilayer modular 
variability (left panel), in which the heteromodal system exhibits a greater ICC (Pspin < 0.001) while the paralimbic 
system exhibits a lower ICC (Pspin = 0.0039) than null models (spin test 10,000 repetitions; middle panel), is shown. 
The ICC of multilayer modular variability was correlated with multilayer modular variability (Pearson’s r (358) = 
0.23, Pspin < 0.0003, confidence interval (CI) = [0.13, 0.32], two-tailed, spin test 10,000 repetitions; right panel). The 
gray shaded envelope in the scatter plot indicates the 95% CI, the upper left corner of the scatter plot shows the 
histogram of r values obtained from the null model, and the vertical red dotted line denotes the empirical r value. To 
better visualize the scatter plot, the values of the raw variables were scaled using a rank-based inverse Gaussian 
transformation 47. c, One of the random splits of the 1000 iterations using a half-split strategy suggested that the 
group-level multilayer modular variability patterns were highly similar (Pearson’s r > 0.99, p < 0.0001). d, The 
similarity of multilayer modular variability between MZ pairs was greater (nonparametric permutation test, 10,000 
repetitions) than that between DZ (Pperm < 0.0001) and sibling (Pperm < 0.0001) pairs (left panel). By estimating the 
regional heritability of multilayer modular variability (middle panel), the primary system was highly heritable (Pspin 
= 0.016, spin test 10,000 repetitions; right panel). The bounds of the boxplots in a and d represent the 1st (25%) and 
3rd (75%) quartiles, the centerline represents the median, and the whiskers represent the minima and maxima of the 
distribution. The violin plots in a and d show the distribution of Pearson’s r values in the different groups indicated 
on the x axis. The bar plots in b and d show that the nodewise ICC (heritability) values were averaged according to 
their hierarchical systems. The mean ICC (heritability) of the system is expressed as a z score relative to the null 
model, in which positive (negative) z values indicate that the ICC (heritability) is greater (less) than expected by 
chance. Pri, primary cortex; Uni, unimodal cortex; Hete, heteromodal cortex; Para, paralimbic cortex; MZ, 
monozygotic; DZ, dizygotic; SIB, sibling. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Multilayer modular variability in the interdependent SC-FC connectome is associated with 
high-order cognitive processes   

We first examined whether the multilayer modular variability in the interdependent structural-
functional connectome was spatially associated with neurocognitive flexibility quantified by the 
number of cognitive components proposed by Yeo et al 50. For each brain node, we calculated its 
neurocognitive flexibility by averaging the number of cognitive components of all voxels within 
that node (Fig. 4a). We found a significant correlation between multilayer modular variability 
and neurocognitive flexibility (Pearson’s r (358) = 0.27, Pspin = 0.004, CI = [0.17, 0.36], two-
tailed; Fig. 4b). Based on the number of cognitive components involved, we categorized all brain 
nodes into four types: low flexibility (0 f number of components < 1), moderate flexibility (1 f 
number of components < 2), good flexibility (2 f number of components < 3) and high flexibility 
(number of components g 3). We found that the high-flexibility nodes exhibited high multilayer 
modular variability relative to the other types of nodes (Kruskal-Wallis test, Bonferroni 
correction, p < 0.001; Fig. 4c). These results suggested that brain nodes with higher multilayer 
modular variability tended to participate in multiple cognitive components and contributed to 
higher cognitive flexibility. 

Next, we sought to investigate whether the multilayer modular variability in the interdependent 
structural-functional connectome is related to individual’s cognitive function. We applied 
multivariate partial least squares (PLS) analysis to separately estimate the extent to which the 
multilayer modular variability in the primary and transmodal cortices was related to cognitive 
performance. Specifically, we first stratified the cerebral cortex into the low-order area 
(consisting of primary and unimodal regions, 176 regions in total) and high-order transmodal 
area (consisting of heteromodal and paralimbic regions, 184 regions in total). PLS analysis 
revealed that there was no significant relationship between multilayer modular variability in the 
low-order cortex and cognitive performance. In contrast, for the transmodal cortex, the first 
latent variable (LV1) significantly (Pperm < 0.0008) captured 46% of the covariance between 
multilayer modular variability and cognition (Fig. 4d). Under the LV1, the multilayer modular 
variability score was significantly correlated with the cognition score (Pearson’s r (1010) = 0.24, 
Pperm = 0.001, CI = [0.19, 0.30], two-tailed; Fig. 4e). This correlation was determined by the brain 
regions and cognitive terms that contribute most to the latent variable. Therefore, we computed 
the loadings to determine the degree of contribution of each variable to the latent component and 
assessed the reliability of the brain region and cognitive term loadings through bootstrapping 
resampling (1,000 repetitions). For multilayer modular variability, regions with large positive 
loadings were located mainly in the inferior parietal cortex, temporal-parietal-occipital junction, 
and anterior cingulate cortex, whereas regions with large negative loadings were located mainly 
in the medial prefrontal, posterior cingulate, and lateral temporal cortices (Fig. 4g). Interestingly, 
we found that almost all the cognitive terms had positive loadings with terms belonging to self-
regulation, cognition total composite, and cognition crystallized composite cognitive processes 
showing the largest loadings (Fig. 4f). These results demonstrated that greater multilayer 
modular variability in brain regions with positive loadings was associated with better high-level 
cognitive performance. 
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Fig. 4 | Associations between multilayer modular variability and high-order cognitive function. a, The 
neurocognitive flexibility of cortical regions is characterized by the number of cognitive components they engage in 
50. b, Multilayer modular variability was significantly correlated with neurocognitive flexibility (Pearson’s r (358) = 
0.27, Pspin = 0.004, confidence interval (CI) = [0.17, 0.36], two-tailed, spin test 10,000 repetitions). c, Nodes were 
categorized into four types, namely, low flexibility (0 f number of components < 1), moderate flexibility (1 f 
number of components < 2), good flexibility (2 f number of components < 3), and high flexibility (number of 
components g 3) nodes. The results of Kruskal-Wallis test indicated that nodes with high flexibility exhibited 
significantly greater multilayer modular variability (Bonferroni correction, p < 0.001). d, The first latent variable 
(LV1) can significantly account for 46% of the covariance between multilayer modular variability and cognition 
(Pperm < 0.0008, nonparametric permutation test 10,000 repetitions). e, For LV1, the multilayer modular variability 
score and cognition score were significantly correlated (Pearson’s r (1010) = 0.24, Pperm = 0.001, CI = [0.19, 0.30], 
two-tailed). f and g show the loadings of cognition terms and brain regions with significant contributions 
(bootstrapping resampling 1,000 repetitions). The cognitive processes depicted by these cognition terms are shown 
in the right panel with different colors. For detailed cognitive processes and cognitive loadings, see Supplementary 
Table 1. The gray shaded envelopes in the scatter plots indicate the 95% CI, the upper left corners of the scatter plots 
show the histograms of r values obtained from the null model, and the vertical red dotted lines denote the empirical r 
values. To better visualize the scatter plots, the raw variable values were scaled using a rank-based inverse Gaussian 
transformation 47. *** p < 0.001. 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.21.576523doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.21.576523
http://creativecommons.org/licenses/by-nd/4.0/


12 
 
 

The multilayer modular organization of the interdependent structural-functional 
connectome is predicted by neurotransmitter receptors and transporters 

A previous study has shown that the spatial topography of neurotransmitter systems reflects the 
organizational architecture of brain networks 36. Here, we sought to investigate whether the 
multilayer modular organization in the interdependent SC-FC network is associated with 
neurotransmitter receptors and transporters. To do this, we obtained cortical distribution data of 
19 neurotransmitter receptors and transporters from nine neurotransmitter systems provided by 
Hansen et al 36. Then, we calculated the average density of each cortical region in the Glasser360 
atlas for each of the 19 receptors and transporters. We found that 4 out of the 19 receptor and 
transporter density distributions were significantly positively correlated with multilayer modular 
variability (Benjamini–Hochberg false discovery rate (FDR) correction, q < 0.05), namely, MOR 
(Pearson’s r (358) = 0.38, Pspin < 0.0001, CI = [0.28, 0.46], two-tailed), CB1 (Pearson’s r (358) = 
0.29, Pspin < 0.0002, CI = [0.20, 0.38], two-tailed), 5-HT4 (Pearson’s r (358) = 0.20, Pspin = 
0.0087, CI = [0.10, 0.30], two-tailed) and ���� (Pearson’s r (358) = 0.20, Pspin = 0.0042, CI = 
[0.10, 0.30], two-tailed) receptors (Fig. 5a and 5b). We further sought to explore the extent to 
which multilayer modular variability can be explained by receptor and transporter data. Using 
the multivariate elastic net regression model (� = 0.011; Fig. 5c), we found that the spatial 
pattern of multilayer modular variability could be significantly predicted by the density 
distributions of neurotransmitter receptors and transporters (Pearson’s r (358) = 0.59, Pspin < 
0.0001, CI = [0.52, 0.66], two-tailed; Fig. 5d). Moreover, 11 out of the 19 receptors and 
transporters significantly contributed to the prediction model (Fig. 5e); the highest contributions 
were from the MOR, 5-HT4, and ���� receptors. Together, our results highlighted the tight link 
between the interdependent structural-functional connectome and multiple neurotransmitter 
systems.  

Transcriptomic profiles are associated with multilayer modular architecture in the 
interdependent structural-functional connectome 

Gene expression regulates the coordinated activity of neuronal populations and further shapes 
complex cognitive processes 51. Using regional microarray expression data from the Allen 
Human Brain Atlas (AHBA) dataset (n = 6, donor brains) 41, we investigated whether the 
multilayer module configuration in the interdependent structural-functional connectome was 
associated with gene expression profiles. PLS regression analysis revealed that the first PLS 
(PLS1) component, which explained 21.25% of the variance in multilayer SC-FC modular 
variability (Pspin = 0.02; Fig. 6a), exhibited a significant positive correlation between multilayer 
modular variability and regional gene expression (Pearson’s r (130) = 0.46, Pspin = 0.02, CI = 
[0.31, 0.59], two-tailed; Fig. 6b). The PLS1 component represented a gene expression profile 
with high expression mainly in the lateral frontal and parietal cortices but low expression in the 
sensorimotor and visual cortices. We then performed Gene Ontology (GO) enrichment analysis 
on genes associated with the transcriptome features of the PLS1 component. We found that genes 
ranked by weight from most positive to most negative were enriched in biological processes 
related to chemical synaptic transmission (FDR-corrected, q < 0.05; Fig. 6c, middle panel; 
Supplementary Table 2) and cellular components related to synapse part, plasma membrane, 
neuron part, transport vesicle, and secretory vesicle (FDR-corrected, all q < 0.05; Fig. 6c, right 
panel; Supplementary Table 2). No significant enrichment was observed for molecular function. 
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We also performed GO enrichment analysis on the inverse ranking of genes. The significant 
enrichment terms are shown in Supplementary Table 3. Collectively, these results revealed a 
potential molecular basis for the multilayer module organization in the interacting structural and 
functional connectome. 

 

 

 
 

Fig. 5 | Associations between the spatial topography of multilayer modular variability and neurotransmitter 
receptor and transporter distributions. a, The density distributions of 4 out of 19 receptors and transporters were 
significantly correlated with multilayer modular variability after Benjamini–Hochberg false discovery rate (FDR) 
correction (Pspin < 0.05, spin test 10,000 repetitions). The spatial distributions and correlations of these receptors are 
shown in (b) (MOR: Pearson’s r (358) = 0.38, Pspin < 0.0001, confidence interval (CI) = [0.28, 0.46], two-tailed; CB1: 
Pearson’s r (358) = 0.29, Pspin < 0.0002, CI = [0.20, 0.38], two-tailed; 5-HT4: Pearson’s r (358) = 0.20, Pspin = 0.0087, 
CI = [0.10, 0.30], two-tailed; ����: Pearson’s r (358) = 0.20, Pspin = 0.0042, CI = [0.10, 0.30], two-tailed). c, The 10-
fold cross-validated elastic net regression was performed with different � values (100 values from 10-5 to 102). The 
vertical black dotted line denotes the optimal � values (� = 0.011) with the minimum mean square error (MSE = 
0.043). d, The observed and predicted multilayer modular variabilities are significantly correlated (Pearson’s r (358) 
= 0.59, Pspin < 0.0001, CI = [0.52, 0.66], two-tailed, spin test 10,000 repetitions). The gray shaded envelopes in the 
scatter plots indicate the 95% CI, the upper left corners of the scatter plots show the histogram of r values obtained 
from the null model, and the vertical red dotted lines denote the empirical r values. Elastic net regression provided a 
sparse output, in which 11 receptors and transporters significantly contributed to the prediction model, and the 
regression coefficient (�) of each receptor/transporter is shown in (e). For better visualization, the raw values 
(including receptor density and multilayer modular variability) were scaled using a rank-based inverse Gaussian 
transformation 47. 
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Fig. 6 | Association between the spatial topography of multilayer modular variability and gene expression 
profiles. a, PLS regression analysis results suggested that the first principal component (PLS1) of the gene 
expression matrix significantly captured 21.25% of the variance in multilayer modular variability (Pspin = 0.02, spin 
test 10,000 repetitions). b, The PLS1 scores and multilayer modular variability were significantly correlated 
(Pearson’s r (130) = 0.46, Pspin = 0.02, confidence interval (CI) = [0.31, 0.59], two-tailed, spin test 10,000 
repetitions). The gray shaded envelope in the scatter plot indicates the 95% CI, the upper left corner of the scatter 
plot shows the histogram of r values obtained from the null model, and the vertical red dotted line denotes the 
empirical r value. To better visualize the scatter plot, the raw variable values were scaled using a rank-based inverse 
Gaussian transformation 47. c, The listed genes were ranked in descending order according to weight, which 
represents the contribution of each gene to the PLS1 component (left panel). Gene Ontology enrichment analysis of 
this gene list revealed that the genes were significantly (FDR-corrected, all q < 0.05) enriched in biological 
processes related to chemical synaptic transmission (middle panel) and cellular components related to synapse part, 
the plasma membrane, neuron part, transport vesicle and secretory vesicle (right panel). 

 

Sensitivity and robustness analysis 

Head motion has long been thought to have profound effects on brain imaging data 52, 53. To 
validate the effect of head motion, we excluded participants with high head motion and then 
repeated our main analyses. Briefly, we measured each participant’s head motion indices by 
calculating the mean and mean absolute deviation of the frame-to-frame displacements from both 
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the fMRI and dMRI scanning sessions and then excluded participants whose head motion indices 
exceeded 1.5 times the interquartile range of the corresponding index distribution 10. 
Consequently, we completely excluded 95 out of 1,012 participants in the HCP S1200 dataset 
and 5 out of 42 participants in the HCP Test-Retest dataset. We then performed validation 
analysis with the remaining participants. We observed that the multilayer modular variability 
pattern in the interdependent structural-functional connectome after removing the participants 
with high-level motion was highly similar to our main results (Pearson’s r > 0.99, p < 0.0001; 
Supplementary Fig. 1). We then validated the reliability, reproducibility, and heritability of 
multilayer modular variability and found consistent results (Supplementary Fig. 2). The results of 
association analyses with cognitive data (Supplementary Fig. 3), neurotransmitter receptor and 
transporter data (Supplementary Fig. 4), and gene expression profiles (Supplementary Fig. 5) 
were also highly consistent with our main findings. All these validations suggested that our main 
findings are robust and are not affected by head motion. 

Next, to evaluate the threshold effects on the multilayer modular properties in the interdependent 
structural-functional connectome, we applied different connection thresholds to the FC matrices. 
We observed that the spatial patterns of multilayer modular variability were highly reliable 
across different thresholds (both Pearson’s rs > 0.99, p < 0.0001) (Supplementary Fig. 6 and 7). 

Discussion 

Using multimodal neuroimaging data and a multilayer network model, we constructed the 
interdependent structural-functional connectome and identified a multilayer modular architecture. 
We showed that the spatial topography of module variability across the SC and FC layers follows 
a primary-to-transmodal axis and that this pattern is test-retest reliable, reproducible, and 
heritable. We further showed that greater multilayer modular variability in the transmodal cortex 
contributes to greater cognitive diversity and abstract cognitive processes. Finally, the multilayer 
modular variability in the interdependent structural-functional connectome is closely associated 
with neurotransmitter receptor and transporter density and gene expression profiles, suggesting 
the neurobiological underpinnings of connectome. 

Previous studies have reported heterogeneous correspondence between the SC and FC across the 
cortex, with high correspondence in the primary cortex and low correspondence in the 
association cortex 4-8, 54-57. Our results extended these findings by highlighting the 
interdependencies between the SC and FC in a multiplex framework. In the interdependent 
structural-functional connectome, the spatial variability pattern of module organization across 
layers aligns with a primary-to-transmodal axis. Previous studies have demonstrated that various 
brain properties, such as functional connectivity 28, gene expression 30, cognition 58, and 
receptors 31, follow this core organizational axis of the cerebral cortex 27. We have shown that the 
transmodal cortex has a markedly divergent correspondence between the layered SC and FC 
modules, which may be due to the fact that these areas are not bound by structural constraints. 
Rapid expansion of the cortical mantle leads to local microcircuitry reorganization, effectively 
freeing the associative cortex from the strong constraints imposed by early activity cascades 6, 34. 
Thus, weaker structural constraints in the transmodal cortex allow for a more flexible modular 
architecture 59, 60. Notably heterogeneous communication preferences across the cortex, with 
unimodal regions communicating primarily at local scales and multimodal regions 
communicating primarily at global scales 61, provide another possible explanation for the 
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observed divergence of the SC and FC. The primary sensory cortex is involved mainly in unitary 
neural circuitry and supports simple sensory functions, whereas the transmodal cortex mainly 
receives and integrates information from multiple sensory modalities and other heteromodal 
regions, resulting in more spatially distributed connection patterns to support global 
communication and integration between functional systems. Thus, the high variability of the 
multilayered module organization in the transmodal cortex supports the involvement of more 
extensive modules, which could enhance the functional diversity of these regions and provide a 
network foundation for integrative information processing. 

The interdependent connectome-cognitive association analysis results validated our hypothesis 
that the transmodal cortex plays a coordinating role between the interactive SC and FC networks, 
thereby promoting cognitive diversity. We found that higher-order cognitive functions were 
significantly correlated with multilayer modular variability in the transmodal cortex but not in 
the low-order cortex. This raised the possibility that the SC-FC correspondence in the high-order 
cortex provides a network-level basis for meeting the high cognitive demands of the human brain. 
Our result was consistent with previous findings that the transmodal cortex possesses circuit 
properties essential for human cognition and supports high-level cognitive processes 34, 62, 63. 
Interestingly, negative loadings were observed in some transmodal regions, most notably the 
medial prefrontal cortex and posterior cingulate cortex. This implied that lower multilayer 
modular variability in these regions is associated with better cognitive performance. Recent 
research has yielded similar results: the medial prefrontal cortex and posterior cingulate cortex 
showed strong SC-FC coupling, and SC-FC coupling of the posterior cingulate cortex is 
associated with executive function performance 4. A plausible hypothesis arising from these 
observations is that the tight coupling of the SC and FC enables these regions to maintain a 
relatively consistent module configuration in SC and FC, thereby supporting cognitive demands. 
The tight module correspondence in these regions provides efficient communication for other 
areas that are highly interconnected within the transmodal cortex, thereby promoting better 
cognitive performance. 

The similarity of the overall multilayer modular topography between MZ pairs was greater than 
that between DZ and sibling pairs, suggesting that multilayer modular variability is under genetic 
control. Our analysis revealed substantial regional heterogeneity in the heritability of multilayer 
modular organization. The lateral frontal and inferior parietal regions with higher multilayer 
modular variability demonstrated relatively relaxed genetic control. As important components of 
the distributed association cortex, the parietal and frontal cortices undergo protracted maturation 
processes during human development and are therefore exposed to environmental factors more 
than sensory regions 34. The relatively low heritability of multilayer modular variability observed 
in these regions could be due to their greater sensitivity to environmental influences. Taken 
together, our findings demonstrated the extent to which the module relationship between the 
interactive SC and FC connectome is influenced by genetics. 

Recent studies have shown that neuromodulatory systems play an essential role in understanding 
how the fixed human anatomical connectome can give rise to rich brain functions, in which 
neuromodulatory systems can dynamically modulate the brain connectome to enable rich 
behaviors 35, 64-67. Neurotransmitters are important components of the brain’s molecular 
organization and extensively influence synaptic transmission within neural circuits 68. Previous 
studies have shown that receptor distributions reflect the organization of brain connectomes 36 
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and that neurotransmitters coordinate dynamic interactions between modules 35. Here, we further 
demonstrated that the multilayered modular organization of the interdependent structural-
functional connectome is also associated with the distributions of multiple receptors, such as 
MOR, CB1, 5-HT4, ���� and 5-HT1B, and is modulated by multiple neurotransmitters, such as 
opioid, cannabinoid, serotonin and acetylcholine. Previous work has shown that neurotransmitter 
receptor density distribution forms a natural axis in the human cerebral cortex, extending from 
sensory to association areas, with association areas having more receptor expression and greater 
synapse density 36, 69. This may provide the anatomical basis for neurons in areas of high 
multilayer modular variability to integrate information. These neurotransmitters associated with 
multilayer modular variability are also thought to support many cognitive functions. 
Acetylcholine is often implicated in attention control 70-72. Enhancing or impairing cholinergic 
activity can preferentially affect the maintenance of selective attention 73. Serotonin (5-
hydroxytryptamine, 5-HT) is widely distributed throughout the brain and is involved mainly in 
learning and memory processes 74. Among its receptor families, the 5-HT1B receptor is located 
predominantly at axon terminals and facilitates learning when cognitive demands are high. In 
addition, acetylcholine and serotonin are essential for maintaining synapses in the hippocampus 
and thus play important roles in the acquisition of spatial memory 75, 76. Opioids 77 and 
cannabinoids 78 are also involved in a wide range of cognitive activities. Taken together, these 
findings revealed a prominent link between receptor distribution and the multilayer modular 
architecture of the interdependent structural-functional connectome. 

In addition to receptor density, gene expression provides critical neurobiological insight into the 
function and structure of the brain 30, 79. Building on previous reports linking gene expression to 
modular architecture 32, we mapped gene expression patterns to the multilayer module 
organization in the interdependent structural-functional connectome. We identified a significant 
association between gene transcription and multilayer module topography and found that genes 
associated with multilayer module variability are mainly responsible for the biological processes 
of chemical synaptic transmission. Synaptic transmission is important for supporting the 
propagation of signals between neurons, and this process is highly dependent on neurotransmitter 
systems. The presynaptic neuron releases neurotransmitters into the extracellular space via 
exocytosis of vesicles, and these neurotransmitter molecules are subsequently transported 
through chemical synapses and bind to appropriate receptors postsynapse 80. Thus, this process 
modifies the neural states of postsynaptic neurons and ultimately results in network-wide 
communication. Our study showed that genes involved in signal propagation have higher 
expression levels mainly in regions with higher multilayer modular variability, which has 
implications for the higher communication demands in these regions. 

Several methodological issues need to be mentioned. First, we used a common type of multilayer 
network in which the SC and FC were connected only via interlayer edges between a given node 
and its counterparts in other layers to reflect internetwork interactions. The cross-modality 
couplings between different brain regions were not considered, as there is no generally accepted 
approach for such an analysis. Therefore, future studies should develop a new strategy to 
characterize multilayer networks consisting of more complex interlayer connections. Second, we 
used dMRI-based tractography algorithms to generate representations of white matter tracts in 
the human brain. However, there are inherent limitations in inferring a reliable SC from fiber 
tractography approaches 81, 82, such as the potential to underestimate long-range connections in 
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the whole-brain network 83 and the possibility of missing some short fiber bundles 81. Therefore, 
methodological innovations to reduce tractography biases and improve the reliability of SC-FC 
estimation are needed in future studies. Third, the gene expression maps used in our study were 
derived from the Allen Institute for Brain Science; therefore, our current findings are based on a 
small sample of postmortem brains. In the future, the availability of more comprehensive 
microarray gene expression datasets will be essential. Finally, our study focused on multilayered 
modular reconfiguration across the SC and FC layers in healthy participants. Future studies could 
further investigate whether and how the interactive structural-functional connectome changes 
with disease, in particular identifying the nodes responsible for communication between these 
two networks and whether these nodes undergo role changes in patients with brain disorders. It 
would also be interesting to investigate the age-related changes in the interdependent relationship 
between the SC and FC. 

Methods 

Participants and data acquisition 

The multimodal neuroimaging data (structural MRI, dMRI, and rs-fMRI data) were obtained 
from the publicly available S1200 dataset released by the HCP 37. The HCP S1200 dataset 
included 1,012 healthy young adult participants (aged 28.73 ± 3.71 years, 543 females) with 
complete minimally preprocessed imaging data for all modalities. For each participant, there 
were four rs-fMRI scans (the data were collected over two days; individuals were scanned twice 
a day (left-to-right and right-to-left phase encoding directions)) and one complete dMRI scan. All 
functional and diffusion imaging data were preprocessed using HCP minimal preprocessing 
pipelines 84. The HCP obtained informed consent from all participants. The scanning protocol 
was approved by the Institutional Review Board of Washington University in St. Louis, MO, 
USA (IRB #20120436). 

Structural, functional, and diffusion MRI data were acquired on a 3T Siemens Skyra scanner at 
Washington University. Specifically, for each run of four rs-fMRI scans for each participant, the 
rs-fMRI data were obtained by using multiband gradient-echo-planar imaging with the following 
sequence parameters: repetition time (TR) = 720 ms, echo time (TE) = 33.1 ms, flip angle = 52°, 
bandwidth = 2290 Hz/pixel, field of view = 208 × 180 mm2, matrix = 104 × 90; 72 slices, voxel 
size = 2 × 2 × 2 mm3, multiband factor = 8, and 1200 volumes. Diffusion data from each 
participant were acquired by using a Stejskal-Tanner diffusion-encoding scheme with the 
following sequence parameters: 1.25 mm isotropic, 18 b0 acquisitions, 270 diffusion-encoding 
directions with three shells of b = 1000, 2000, and 3000 s/mm2, 90 directions for each shell, 2 × 
2 × 2 mm isotropic voxels, TR = 5520 ms, and TE = 9.58 ms. T1-weighted image data were 
acquired using a 3D-magnetization-prepared rapid acquisition with gradient echo (MPRAGE) 
sequence (0.7 mm isotropic voxels, matrix = 320 × 320; TR = 2400 ms, TE = 2.14 ms, 256 slices, 
and flip angle = 8°). T2-weighted data were acquired using a 3D T2-sampling perfection with 
application-optimized contrasts using a flip angle evolution (SPACE) sequence with identical 
geometry (TR = 3200 ms and TE = 565 ms). 

Data preprocessing 

T1-weighted and T2-weighted images were processed using the minimal structural preprocessing 
pipeline 84, which included brain tissue segmentation, cortical surface reconstruction, and 
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individual surface mapping to the fs_LR_32K standard space. All functional MRI data, including 
gradient distortion correction, head motion correction, echo-planar imaging distortion correction, 
registration to the Montreal Neurological Institute (MNI) space, and intensity normalization, 
were preprocessed. The volume time series of cortical gray matter were then projected onto the 
standard 32K_fs_LR mesh. A 2-mm full-width at half-maximum (FWHM) Gaussian kernel was 
used for spatial smoothing. The ICA-FIX procedure was used to remove additional noise. The 
confounding covariates white matter, cerebrospinal fluid, global signals, and the 12 head motion 
parameters were further regressed from the time course of each voxel. Finally, bandpass filtering 
(0.01–0.1 Hz) was performed to reduce the influence of low-frequency drifts and high-frequency 
physiological noise. The above procedures were carried out using SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/) and GRETNA 85. The diffusion images were normalized to 
the mean b0 image, with echo planar imaging (EPI) distortion correction, eddy-current distortion 
correction, head motion correction, gradient nonlinearity distortion correction, linear registration 
to native structural space using a 6 degrees of freedom (DOF) boundary-based registration, and 
data masking with the final brain mask to reduce the file size. 

Constructing interdependent structural and functional connectome 

(i) Functional connectome (FC). Based on the preprocessed rs-fMRI data, we constructed the FC 
of each run for each participant. Specifically, we used a multimodal brain atlas (HCP-MMP1.0) 
to parcellate the cortical surface into 360 areas 42. The time series of all vertices within each node 
were averaged to generate the mean time series of each node. Pairwise Pearson correlations were 
then calculated between the mean time series of all nodes to generate functional connectivity 
edges. As a result, we obtained a Pearson correlation matrix of size 360 � 360 for each run for 
each participant. To reduce signal noise bias, the weak connections (Pearson’s r < 0.1) of each 
correlation matrix were set to zero. We also validated different weak connection thresholds of the 
FC matrices (Supplementary Figs. 6 and 7). Finally, Fisher’s r-to-z transformation was applied to 
each FC matrix. For each participant, the FC matrices of all four rs-fMRI scans were averaged to 
generate the mean FC matrix. 

(ii) Structural connectome (SC). Structural connectivity was estimated for participants using 
probabilistic tractography. The analysis procedures were implemented in the FSL 86 and the 
PANDA Toolkit 87. Specifically, for a given seed region, probabilistic tractography was 
performed by sampling 5,000 streamline fibers for each voxel within that region. According to 
the number of streamlines between the source and target regions, the connectivity probability 
between these two regions was calculated as the number of streamlines passing through the 
target region divided by the total number of streamlines sampled from the seed region. Notably, 
the long-range connections may be underestimated due to the fact that the number of streamlines 
decreases with distance from the seed mask. Therefore, distance correction was then applied to 
obtain connectivity weights between regions; these weights were defined as the expected length 
of the paths times the number of streamlines 87, 88. Using the above procedure, we obtained the 
connectivity weights for all pairs of brain nodes, resulting in an SC matrix of size 360 � 360 for 
each participant. 

(iii) Interdependent structural�functional connectome. Using the multilayer network theory 11, 12, 

89, we modeled the interdependencies between the SC and FC. Specifically, the SC and FC 
connectomes were considered separate layers of an interdependent network. The different layers 
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shared the same set of nodes, with the number of nodes in each layer equal to 360. We then 
established internetwork dependencies by multiplex coupling, in which the corresponding nodes 
located in different layers were coupled in a one-to-one manner, generating a two-layer 
interdependent structural-functional connectome for each participant, which can be represented 
by a supra-adjacency matrix 44 � with the following form: 

� � ���

	    	
��

� #
1�  

where ��  is the adjacency matrix of layer ℓ�
� � 1, 2�. 	 is the � � � 
� � 360� identity matrix. 

Inherent discrepancies in weight scales between different modalities can lead to biases in 
multilayer network analysis 90. In the present study, the SC matrix had significantly larger 
weights than did the FC matrix. This discrepancy posed the risk that the SC layer would 
disproportionately influence the multilayer modularity detection algorithm, potentially biasing 
the resulting modules to predominantly reflect SC features. To ensure balanced contributions 
from each layer, we normalized the weights of both the SC and FC matrices to a uniform range 
of 0-1. 

Identifying multilayer connectome modules 

Modularity is an important organization principle for brain connectomes 24, 26, 91. The existence of 
modules allows the brain to achieve effective information communication at low wiring costs 92. 
In the context of a multilayer network, we used a generalized Louvain-like locally greedy 
algorithm (https://github.com/GenLouvain/GenLouvain) to obtain the multilayer modular 
architecture by simultaneously considering all the information within and between layers 38, 39. 
The main idea of this GenLouvain community detection algorithm is to optimize the multilayer 
modularity quality function Q to identify the module membership of each node in the network. 
The modularity quality function of the interdependent structural-functional connectome was 
calculated as follows: 

� � 12� � ��	��� 
 �� ������2
�

� ��� � �������� ����� , ����
����

#�2�  

where � represents the total connectivity strength of the entire network. Nodes are represented by 
i and j. Layers are represented by s and r. ����  is the element of the correlation matrix and 
represents the connectivity strength between node i and node j in layer s. ��� and ��� are the 
degrees of node i and node j in layer s, respectively. �� represents the total connectivity strength 
of layer s. The result of ������/2�� reflects the expected connection probability between node i 
and node j in layer s. ��� indicates the module in which node i belongs in layer s. ��� indicates 
the module in which node j belongs in layer r. The function �
���, ���� is used to determine 
whether the modules of node i and node j are the same. �
�, �� equals 1 if x = y and equals 0 
otherwise. The interlayer coupling parameter   reflects interlayer dependence. A higher   
indicates a stronger interaction between layers, and vice versa. The topological resolution of each 
layer is represented by the parameter !. A larger value of ! indicates a larger number of modules. 
Since there is currently no uniform standard for the choice of parameters ! and  , we used the 
default value of ! �  � 1, as was done in previous studies 93-95. We also calculated multilayer 
modularity using different interlayer coupling parameters with   (  = [0.5, 0.75, 1, 1.25, 1.5]) 
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(Supplementary Fig. 8). 

By optimizing the modularity quality function (2) with a Louvain-like locally greedy heuristic 
algorithm 39, we obtained the multilayer modular structure of the interdependent structural-
functional connectome. However, since this algorithm is heuristic in nature and due to the near 
degeneracy of the optimization landscape of the multilayer modularity quality function, the 
results of multilayer modularity detection may be slightly different each time the algorithm is run 
62, 96, 97. Therefore, to address the issue of degeneracy, we repeated the Louvain-like locally 
greedy algorithm 100 times for each participant to optimize the modularity index Q. Based on 
the results of each run, we calculated the corresponding multilayer network measurements and 
finally averaged the results of the 100 runs for each participant. 

Tracking multilayer modular variability 

The multilayer modularity detection algorithm 38, 39 was used to extract the modular architecture 
of the interdependent structural-functional connectome, generating module assignments for both 
the SC and FC layers. To investigate the correspondence of module organization between 
interdependent SC and FC layers, we tracked the modules of each node across layers. Each node 
was identified with community labels, which may be consistent or inconsistent across different 
layers. Therefore, we evaluated the cross-layer module affiliation variability of nodes using the 
multilayer modular variability (MV) metric 40. For a given node i in the network, the multilayer 
modular variability of that node was calculated as follows: 

�����, �� � 1 
 |����� � �����|�|�����| · |�����|   , � " �#�3�  

where r and s represent layer labels and "�
#� and "�
$� represent the labels of the modules in 
which node i belongs in layers r and s, respectively. |"�
#�| denotes the number of nodes 
included in module "�
#�. |"�
#� & "�
$�| indicates the number of overlapping nodes between 
modules "�
#� and "�
$�. The multilayer modular variability reflects the degree of spatial 
variability in the module organization across the SC and FC layers. A node with high (low) 
multilayer modular variability has a large (small) difference in module organization across the 
SC and FC layers. 

Reliability and reproducibility analysis of multilayer modular variability 

(i) Reliability analysis. We used the HCP Test-Retest dataset to quantitatively assess whether the 
multilayered modular variability pattern in the interdependent structural-functional connectome 
was reliable within participants across repeated sessions and variable between participants. The 
HCP Test-Retest dataset included 42 participants (aged 30.4 ± 3.33 years, 30 females) who 
underwent a second MRI scan (second session: S2) between 0.5 and 11 months after the first 
scan (first session: S1). The data acquisition, data preprocessing, and connectome construction 
methods used for the HCP Test-Retest dataset were consistent with those used for the HCP 
S1200 dataset. For a given participant, we separately constructed the interdependent structural-
functional connectome and calculated the multilayer modular variability of that participant for 
two sessions (i.e., S1 and S2). We then calculated the Pearson correlation coefficient for each 
participant’s multilayer modular variability obtained between S1 and S2, which was considered 
an indicator of within-participant similarity. In addition, we assessed between-participant 
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similarity by calculating the mean Pearson correlation between each participant’s multilayer 
modular variability in S1 and that of all the other participants in S2. To determine whether there 
was a significant difference between these within-participant and between-participant similarities, 
we performed a nonparametric permutation test, randomizing participant identities over 10,000 
repetitions. We recalculated the similarities and generated null distributions for the differences in 
similarity. The statistical significance of the observed difference in similarity was then assessed 
by comparison with this null model. 

Furthermore, we used the intraclass correlation (ICC) 49 to examine the test-retest reliability of 
the multilayer modular variability in each brain region across repeated sessions. Specifically, for 
a given brain region, the multilayer modular variability of that region can be combined into a 
matrix M, where the element Mij represents the multilayer modular variability from jth 
measurement session of the i-th participant. A one-way analysis of variance was then performed 
on this matrix to obtain the within-participant mean square error 
"'�� and the between-
participant mean square error 
"'	�. The ICC of the given region can be calculated as follows: 

$%% � �&� 
 �&��&� � �� 
 1��&� #�4�  

where k is the number of repeated sessions for each participant. High ICC values reflect low 
within-participant variance relative to between-participant variance. According to previous study 
98, the ICC values can be divided into four common intervals: poor (< 0.4), moderate (0.4~0.6), 
good (0.6~0.75), and excellent (> 0.75). 

(ii) Reproducibility analysis. To investigate whether the multilayer modular topography in the 
interdependent structural-functional connectome is reproducible, we employed a half-split 
strategy to randomly (n = 1,000 repetitions) divide the 1,012 participants into two subgroups. For 
each random half-split result, we used the chi-square test and two-sample t test to ensure that the 
two subgroups were matched for sex and age, respectively. Next, we calculated the group-level 
multilayer modular variability pattern of each subgroup and further evaluated the Pearson 
correlation between these patterns to estimate the reproducibility of the multilayer modular 
variability. Fig. 3c shows the results of one of the 1,000 random divisions (subgroup 1: 506 
participants, aged 28.70 ± 3.66 years, 272 females; subgroup 2: 506 participants, aged 28.76 ± 
3.77 years, 271 females). 

Heritability analysis 

To investigate whether the multilayer modular topography in the interdependent structural-
functional connectome is influenced by genetic factors, we conducted a similarity analysis of 
multilayer modular variability. Based on the twin and family data in the HCP S1200 dataset (n = 
1,012 participants), we determined the zygosity of the participants using genotyping data when 
available and self-reports otherwise. Three participants were excluded due to abnormal family 
data. The final sample consisted of 1,009 participants from 449 families, including 268 MZ twins, 
140 DZ twins, 107 singletons, and 494 nontwins. We compared whether the interindividual 
similarity in multilayer modular variability differed among MZ twins, DZ twins, and nontwins. 
Briefly, we calculated the similarity (Pearson’s r) in overall multilayer modular variability 
between pairs of participants, assessing the extent to which the multilayer modular organization 
of two participants became more similar as their proportion of shared genetic material increased, 
where rMZ was the correlation between MZ twins, rDZ was the correlation between DZ twins, and 
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rnontwin was the correlation between nontwins. We then used a nonparametric permutation test 
(10,000 repetitions) to estimate whether there were differences in the rMZ, rDZ and rnontwin data. 
For each permutation test, participant identities were randomly shuffled, and the rMZ, rDZ and 
rnontwin values were recomputed, generating the null distribution of the mean difference of rMZ-rDZ, 
rDZ-rnontwin and rMZ-rnontwin. The statistical significance of the mean difference was calculated by 
comparing the observed value with the null model. 

To further investigate the extent to which genetic factors underlie the spatial layout of multilayer 
modular organization in the interacting structural-functional connectome, we applied the 
accelerated permutation inference for the ACE model (APACE) method 99 
(https://github.com/nicholst/APACE) to estimate the heritability of multilayer modular variability. 
The ACE model of heritability analysis relies on the assumption that phenotypic variability 
within a population can be explained by additive genetic (A), common environmental (C) and 
unique environmental (E) factors. The APACE model mainly relies on linear regression with 
squared differences to estimate phenotypic heritability and the likelihood ratio test to infer 
heritability. Heritability represents the proportion of phenotypic variation attributable to genetic 
variation 100. Narrow-sense heritability ((�) was calculated as follows: 

(� � )��)�� � )	� � )
� #�5�  

 
where )
�, )�� and )�� are the variance of A, C and E, respectively. 

Multilayer connectome-cognition association analysis using partial least squares regression 

We used PLS regression analysis (https://github.com/danizoeller/myPLS) to explore how the 
spatial distribution of multilayer modular variability in the interdependent structural-functional 
connectome corresponds to cognitive processes. Using all the cognitive data provided by the 
HCP S1200 dataset, we performed PLS analysis to decompose the relationships between 
multilayer modular variability (dataset X: 1,012 participants � n brain regions) and cognition 
(dataset Y: 1,012 participants � 52 cognition terms) into orthogonal sets of latent variables with 
maximum covariance 101. These latent variables were linear combinations of the original data 
from the two datasets and consisted of singular vectors and singular values. Specifically, datasets 
X and Y were z scored column by column, and the covariance matrix R was subsequently 
calculated: + � ,�-#�6�  

Next, singular value decomposition (SVD) was performed on R: + � /&��#�7�  

where U and V are the left and right singular vectors, respectively, and S is a diagonal matrix of 
singular values. The ith latent variable is composed of the ith left and right singular vectors and 
the ith singular value. The ith singular value represents the covariance between X and Y that is 
captured by the corresponding ith latent variable. According to the singular value, we estimated 
the amount of covariance explained by each latent variable, which is the ratio of the square of the 
ith singular value to the sum of the squares of all singular values. The left and right singular 
vectors represent the cognitive weights and multilayer modular variability weights, respectively, 
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which reflect the extent to which each cognitive term and brain region contribute to the latent 
variable. By projecting the original data onto the weights of the singular vectors, we obtained the 
cognitive scores and multilayer modular variability scores. Pearson correlation analysis between 
cognitive scores and multilayer modular variability scores was conducted to characterize the 
relationship between multilayer modular variability and cognition under the given latent variable. 
Furthermore, we correlated each original variable with its PLS analysis-derived score pattern to 
compute the cognitive loadings and multilayer modular variability loadings, which reflect the 
shared variance between the original variables and their corresponding score pattern and further 
reveal the degree of contribution of the cognition terms and brain regions to the corresponding 
latent variable. 

To assess the statistical significance of each PLS latent variable, we performed a nonparametric 
permutation test by randomly shuffling the rows (participant identities) of matrix Y 10,000 times. 
For each permutation test, we recalculated the covariance matrix R and performed SVD. 
Consequently, we obtained the null distribution of the singular values and the PLS score patterns. 
By comparing the empirical values with their null distributions, we estimated the statistical 
significance of each latent variable. In addition, the reliability of the loadings of the variable was 
assessed using bootstrapping resampling (1,000 repetitions). We conducted a bootstrapping 
analysis by randomly resampling participants. Using the resampled data matrices X and Y, we 
performed SVD again and recalculated the loadings of the variables. According to the 95% CIs 
of the variable loadings, we selected the brain regions and cognitive terms that made significant 
contributions to the latent variable. 

Multilayer connectome-transmitter association analysis using elastic net regression 

Building on previous work showing that brain modules are closely associated with 
neurotransmitter systems 35, 36, we investigated whether the multilayered module organization in 
the interdependent structural-functional connectome is also supported by the underlying 
molecular mechanisms involved. Following a previous study 36 that provided cortical distribution 
data of 19 neurotransmitter receptors and transporters from nine neurotransmitter systems, we 
calculated the average density of each cortical region in the Glasser360 atlas for each of the 19 
receptors and transporters, resulting in a density matrix of size 360 � 19. We then used a 
multivariate elastic net regression model to predict multilayer modular variability from the 
receptor and transporter density distributions. As it is a data-driven regression approach, 
multivariate elastic net regression can be used to solve the multicollinearity problem between 
independent variables and can be used for feature selection by automatically removing variables 
that are deemed unrelated to the dependent variable, resulting in a sparse output. Therefore, this 
method was well suited for receptor and transporter data where variables are highly correlated 
with each other (Supplementary Fig. 9), and some variables may be less important for fitting 
multilayer modular variability. As the numerical scales of the receptor and transporter data and 
the multilayer modular variability data differed, all variables were normalized prior to regression 
analysis. For a given variable s (360 brain regions � 1), the normalization process was as follows: 

�1 � � 
 
234���max��� 
 min��� #�8�  

Furthermore, multivariate elastic net regression was used to fit multilayer modular variability. 
This approach is based on the loss function of the model by adding a penalty term consisting of 
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L1 regularization (LASSO regression) 102 and L2 regularization (Ridge regression) 103. L1 
regularization is used to penalize the sum of the absolute values of the model parameters, 
excluding features with smaller contributions to the target variable, thus achieving feature 
selection. L2 regularization is used to penalize the sum of squares of the model parameters to 
achieve weight decay (i.e., nonsparse �values), which helps to prevent multicollinearity 
problems and reduce the model’s overreliance on certain features. The objective function of the 
multivariate elastic net regression 104 is as follows: 

;<�, ;< � 3��
=4
�,

>� ?@� 
 ;� 
 � ;�-��

�

���

A� � B � C12 �1 
 D�;�� � DE;�EF�

���

�

���

G #�9�  

where n and p represent the number of samples (n = 360) and features (p = 19), respectively. X 
and y, respectively, represent the normalized receptor and transporter data and the normalized 
multilayer modular variability data. �
 is the intercept, and �� is the regression coefficient of the 
jth feature. � represents the mixed ratio of L1 (� � 1) and L2 (� � 0) regularization. To 
combine the advantages of Ridge regression, which can address multicollinearity, and LASSO 
regression, which can be used to perform feature selection, we set the � value to 0.5 104. The 
regularization coefficient � is used to control the intensity of the penalty and to determine the 
sparsity of the model output. An optimal � value can be selected through a cross-validation 
model. Specifically, we divided the range from 10-5 to 102 into 100 equal parts, and these 100 
values were considered a selectable range of parameters, denoted as �. For each � value, 
multivariate elastic net regression analysis was conducted, and 10-kold cross-validation was used 
to evaluate model performance. Finally, the � value with the lowest mean square error was 
selected as the optimal parameter. 

To test whether the real R2 of the model was significantly greater than that obtained by chance, 
we performed a spin test 10,000 times, generating 10,000 null distribution maps of multilayer 
modular variability. For each surrogate multilayer modular variability map, we conducted 
multivariate elastic net regression governed by the optimal regularization parameter � from the 
empirical model to predict multilayer modular variability, resulting in a null distribution of 
model R2 to test the statistical significance of the empirically observed model R2. 

Multilayer connectome-transcriptome association analysis using partial least-squares 
regression 

(i) AHBA gene expression dataset. To investigate the associations between spatial configurations 
of the multilayer module structure in the interdependent structural-functional connectome and 
transcriptional profiles, we used the microarray data of six human postmortem donors (aged 42.5 
± 13.38 years, 1 female) provided by the AHBA website (http://human.brain-map.org/) 41 to 
estimate gene expression in the brain. A total of 3,702 spatially distinct tissue samples were 
obtained from the six donors, and 58,692 probes were obtained for each sample. Since sample 
data from the right hemisphere were available for only two donors, we analyzed the tissue 
samples from the left hemisphere only. 

(ii) Preprocessing of gene expression data. Following the AHBA processing pipeline 
(https://github.com/BMHLab/AHBAprocessing) 105, we preprocessed the microarray-based gene 
expression data collected from human brain tissue samples from six adult donors. Specifically, 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.21.576523doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.21.576523
http://creativecommons.org/licenses/by-nd/4.0/


26 
 
 

the probe-to-gene annotations were updated using the data provided by Arnatkevičiūtė et al 105. 
We then removed the probes whose signal-to-noise ratio did not exceed the background noise by 
using intensity-based filtering with a threshold of 0.5. Considering the difference between probes 
that measure the expression of the same gene, we selected the probes that exhibited the strongest 
correlation with the RNA-seq data. Next, using the MNI coordinates of each tissue sample, we 
assigned each sample to the region nearest to the Glasser360 brain parcellation with a distance 
threshold of 2 mm. Tissue samples more than 2 mm away from any region of the 360-
parcellation were excluded. To account for interindividual variability in gene expression, we 
applied the scaled robust sigmoid normalization method to the left cortex data to eliminate this 
donor-specific variability. The normalization procedures were first performed by applying cross-
gene normalization in a given sample. Then, cross-sample normalization was performed for each 
gene. Finally, all samples from six donors were averaged for a given region, resulting in a group-
level gene expression matrix of size n (132 brain regions) � g (10,027 genes). 

(iii) Association between multilayer modular variability and transcriptional signatures. We 
assessed the relationship between multilayer modular variability and gene expression using 
multivariate PLS regression. The gene expression matrix (132 brain regions � 10,027 genes) and 
multilayer modular variability (132 brain regions � 1) were considered predictor variables and 
response variables, respectively. The PLS regression method was used to attempt to find the PLS 
components that are linear combinations of the original gene expression that can maximize the 
prediction of the response variables. We calculated the R2 of the model fitting, which reflects the 
amount of variance in multilayer modular variability explained by each PLS component. In 
addition, the Pearson correlation was conducted to estimate the spatial correlation between the 
PLS scores and the multilayer modular variability map. To assess whether the empirical R2 and 
Pearson’s r values were significantly greater than those obtained by chance, spatial 
autocorrelation correction (spin test) was performed, generating 10,000 null distribution maps of 
the multilayer modular variability. For each permutation, the real predictor variables and the 
surrogate response variable were assessed by PLS regression analysis, and we recalculated the R2 
of each PLS component, generating a null distribution of variance explained. Similarly, a null 
distribution of correlation coefficients (r) between the PLS score and multilayer modular 
variability under each PLS component can be obtained. The P value (i.e., Pspin) was calculated as 
the proportion by which the values (i.e., R2 or Pearson’s r) of the null models were greater than 
the empirically observed values. 

(iv) GO enrichment analysis. To explore the enriched GO terms associated with genes identified 
by PLS analysis, we performed GO enrichment analysis by using the online tool GOrilla 
(http://cbl-gorilla.cs.technion.ac.il/) 106. First, for each significant PLS component, we calculated 
the contribution weights of the genes and assessed the reliability of the weights by bootstrapping 
resampling (1,000 repetitions). For each resampling, the rows of the gene expression matrix were 
randomly selected to generate the new bootstrapped gene expression matrix, which was used 
when PLS analysis was performed again. This process was repeated 1,000 times to obtain a 
sampling distribution of gene weights, and we further estimated the standard errors of these 
weights. We then computed the bootstrap ratio 107 of the genes by dividing the empirical weights 
by their standard errors, with large bootstrap ratios representing the genes with large and reliable 
contributions. Thus, we generated a gene list for each PLS component to represent the 
contribution of the genes. Furthermore, we ranked the gene list in both descending and ascending 
order and subjected these ranked gene lists to the GOrilla software tool to search for enriched 
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GO terms for each PLS component. The significant enrichment terms were identified by 
applying the FDR-corrected q < 0.05. With respect to the advanced parameter settings of the 
GOrilla platform, we selected the “P value threshold 10-4” and unchecked the “Run GOrilla in 
fast mode” option 108, 109. Finally, we used the Reduce Visualize Gene Ontology (REVIGO, 
http://revigo.irb.hr/) tool to summarize these significant GO terms by removing redundant GO 
terms. 

Spatial autocorrelation-preserving permutation tests 

The spatial autocorrelation-preserving permutation test, which applies random rotations to 
spherical representations of the cortical surface, is also known as the spin test 110. Briefly, we 
mapped the spatial distribution of multilayer modular variability in the interdependent structural-
functional connectome onto the cortical surface, and multilayer modular variability value was 
obtained for each vertex. The spin test was applied to generate 10,000 rotational permutations of 
multilayer modular variability. For a given node, the surrogate multilayer modular variability 
value was assigned as the mean value of the vertexes within that node. As a result, surrogate 
brain maps of multilayer modular variability were generated to assess the statistical significance 
of the spatial correspondence between multilayer modular variability and cortical gradient, 
cortical expansion, ICC, neurocognitive flexibility, neurotransmitter receptor and transporter 
density distributions, and gene expression. 

In addition, the spin test was used to assess whether the mean multilayer modular variability, 
ICC and heritability of each hierarchical system were determined by the cortical partitions or by 
spatial autocorrelation. Briefly, we performed the spin test (10,000 repetitions) to permute the 
positions of the systems under the premise of preserving spatial autocorrelation, and then the 
mean multilayer modular variability, ICC and heritability value for each system were 
recomputed. These mean values were further expressed as z scores relative to the null model, 
with positive/negative z values representing real values greater/smaller than those expected by 
chance. The P value (i.e., Pspin) of the spin test was calculated as the proportion by which the 
values of the null models are greater in magnitude than the empirical observations. 
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Reporting summary 

Further information on research design is available in the Nature Research Reporting Summary 
linked to this article. 

Data availability 

The HCP dataset, including structural MRI, functional MRI, and diffusion-weighted MRI, is 
available in the HCP ConnectomeDB (https://db.humanconnectome.org/). The neurocognitive 
flexibility data is publicly available at 
https://surfer.nmr.mgh.harvard.edu/fswiki/BrainmapOntology_Yeo2015. The neurotransmitter 
receptor and transport density distribution data are publicly available at 
https://github.com/netneurolab/hansen_receptors. The AHBA dataset is publicly available at 
https://human.brain-map.org/static/download. Intermediate data supporting the results are 
available at https://github.com/wangxyue/Topographic-cognitive-neurobiological-profiling-of-
interdependent-SC-FC. 

Code availability 

All analysis code is available at https://github.com/wangxyue/Topographic-cognitive-
neurobiological-profiling-of-interdependent-SC-FC. 
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