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Abstract

The structural connectome (SC) istightly coupled to the functional connectome (FC) in the
human brain. Most previous related studies have modeed and analyzed SC or FC as isolated
brain networks. However, challenges remain in modeling the interdependent structural-functional
connectome and elucidating its cognitive implications and molecular underpinnings. Here, we
present a multilayer connectome model composed of SC and FC components and further
characterize their interacting topological properties. We found that the interdependent
connectome is topographically heterogeneous, with the transmodal cortex exhibiting greater
modular variability across layers. This spatial topography reflects cortical hierarchy and
evolution and shows high test-retest reliability, reproducibility, and heritability. The
interdependent connectome contributes to high-order cognitive processes and is associated with
multiple neurotransmitter systems and transcriptional signatures of synaptic transmission. Our
results provide insights into the nontrivial interdependencies of SC and FC, highlighting their
cognitive significance and the molecular mechanisms underlying the connectome of
connectomes.
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I ntroduction

The structural connectome (SC) and functional connectome (FC) are two indispensable
components of the human brain connectome. The SC describes structural connectivity maps
representing white matter pathways between regions *, whereas the FC describes functional
synchronization patterns representing temporal associations between regions > . These two
connectomes interact and depend on each other to jointly maintain the functioning of the brain
and further support cognitive processing. Elucidating the complex interplay between the SC and
FC isone of the central challenges in network neuroscience. Previous empirical and
computational modeling studies have consistently reported SC-FC coupling *® or SC constraints
on FC "*°. Despite their importance, these previous studies have mainly modeled and analyzed
SC or FC asisolated brain networks, ignoring the interdependent nature of the two connectomes.

Interdependent network theory ** * provides an important mathematical framework for studying

the connections between different types of networks. In recent years, research has been
conducted to model and analyze the interdependent brain connectome that comprises SC and FC
layers. For instance, several studies have employed integrated SC and FC featuresin the
multilayer connectome to reveal nontrivial properties, such as overabundant network motifs or
subgraphs ***, core hub regions " *°, and core-periphery structures * %, However, whether and
how the SC and FC layers show different connectivity profiles in the interacting connectome are
not yet well understood. To date, only oneinitial study has reported discordant global assortative
mixing property between the SC and FC layers %. However, how the SC and FC layers are
topographically coordinated by different nodes in the interdependent connectome and how such
multilayer coordination contributes to cognitive processes remain to be elucidated. Moreover, the
neurobiological bass of the interdependent structural-functional connectome remains unknown.
It is particularly important to answer these questions to better understand the organizational
principles of interdependence in the unified structural-functional connectome and to elucidate the
underlying biological mechanismsthat govern the connectome.

A fundamental property of brain connectomesis that they exhibit acommunity or modular
architecture that captures segregated and integrated processing > ?*. Previous studies using
isolated network models have shown that the SC and FC have different modular architectures,
i.e., SC modules are anatomically constrained, whereas FC modules are functionally distributed >
28 Currently, the multilayer modular organization of theinteractive structural-functional
connectome, particularly the brain nodes that are responsible for network communication
between layered SC and FC modules, has not been well characterized. Connectome mapping
studies have consistently shown a major primary-to-transmodal axisin the human brain <" %,
with association cortices, including the default mode and frontoparietal regions, primarily
involved in abstract cognition %, Therefore, we reason that the transmodal corticesin the
interdependent connectome play a major coordinated role between the layered SC and FC
modules to promote cognitive diversity.

Previous SC or FC studies suggested that the spatial topography of the primary-to-transmodal

axis aligns with that of neurobiological properties, such as gene expression *°, neurotransmitter

receptor and transporter density *. Studies have shown that gene expression related to synaptic

functionality, including ion channel activity and synaptic functions (such as neurcotransmitter

release), is recapitulated within functional networks™. The late-devel oping heteromodal cortex
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manifests |ess genetic association than the primary cortex ** **. Neurotransmitters influence the
balance between the integration and segregation of brain systems *, and receptor distributions
reflect structural and functional organization *°. Taken together, these previous studies based on
isolated SC or FC networks have suggested potential genetic and molecular underpinnings of the
modular architecture of the brain. Therefore, our second hypothesisisthat the coordinated
patterns of transmodal cortices across layered SC and FC modules are closely related to
neurobiological properties, such as neurotransmitter receptors and transporters and gene
expression profiles.

To address these issues, we investigated the interdependent structural-functional connectome of
the human brain using resting-state functional magnetic resonance imaging (rs-fMRI) and
diffusion MRI (dMRI) data from the Human Connectome Project (HCP) S1200 dataset *'. We
first created a multiplex connectome comprising SC and FC layers and further identified the
modular architectures using a multilayer modularity agorithm * *. Next, we quantified the
variability in the module affiliation of brain nodes between the SC and FC layers using
multilayer modular variability “°. We then investigated whether the spatial topography of
multilayer modular variability reflects the cortical gradient spanning from the primary region to
the transmodal regions and further validated its reliability (using the HCP test-retest dataset),
reproducibility (using the HCP half-split dataset), heritability (using the HCP twin-based dataset),
and cognitive relevance (using the HCP cognitive dataset). Finally, to elucidate the
neurobiological underpinnings of the coupled SC and FC connectomes, we conducted
multivariate analysis to establish associations with neurotransmitter systems * and gene
expression signatures !, respectively.

Results

Construction of an inter dependent structur al-functional connectome using a multilayer
networ k model

To model the interdependent brain connectome, for each individual, we reconstructed SC and FC
connectomes using multimodal neuroimaging data from 1,012 healthy participants from the HCP
S1200 dataset *. Specifically, we defined network nodes based on a surface-based multimodal
parcellation atlas * with 180 cortical areas per hemisphere (Fig. 1a). For network edges, we
considered the Pearson correlation coefficient between the time series of all pairs of nodes for the
FC % and the probabilistic diffusion tractography between nodes for the SC *® (detailed in the

M ethods section). Considering that different ranges and properties of SC and FC connections
could lead to disproportionate contributions to the following multilayer network analysis, we
normalized the FC and SC matrices to a uniform range of 0-1 (Fig. 1b and 1c). We then modeled
the interplay between the SC and FC in amultiplex framework that establishes interlayer
connections based on direct correspondence between identical nodes. This process resulted in a
two-layer interdependent SC-FC network for each individual (Fig. 1d), represented by a supra-
adjacency matrix * where the diagonal blocks represent the intralayer connections and the off-
diagonal blocks correspond to the interlayer connections. The multilayer modularity detection
algorithm 3 was applied to the interdependent structural-functional connectome, yielding a
modular architecture that characterizes intra- and interlayer interactions ssmultaneoudly (Fig. 1€).
To quantify how much the multilayer modular architecture in the interdependent structural-

functional connectome differs between the SC and FC layers, we computed the multilayer
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modular variability of brain nodes based on their module assignments across layers “°. The
greater the multilayer modular variability (e.g., nodeA in Fig. 1€), the greater the differencesin
the module structures to which nodes belong in the SC and FC layers.
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Fig. 1| Framework for the construction and analysis of theinter dependent SC-FC connectome. a, Multimodal
parcellation (MMP1.0) was applied to define cortical areas, which were parcellated into 180 areas per hemisphere .
b, ¢ The FC and SC connectomes for each individual, wherein connectivity between each pair of cortical regions
was obtained using Pearson correlation and probabilistic diffusion tractography, respectively. d, A schematic
representation of the interdependent structural-functional connectome (top panel). The FC and SC form different
layers, and dependency links between FC and SC were established by the multiplex coupling parameter w (w = 1),
in which the corresponding nodes located in different layers were coupled in a one-to-one manner. The multilayer
network can be represented by a supra-adjacency matrix *, where the diagonal blocks represent the intralayer
connections and the off-diagonal blocks correspond to the interlayer connections (bottom panel). e, The multilayer
modularity detection algorithm ® % was used to extract the modular architecture of the interdependent structural-
functional connectome. Here, we exemplified the multilayer connectome as divided into three modules, with
different modules rendered in different colors. The cross-layer module affiliation variability of nodes was evaluated
using the multilayer modular variability (MV) metric “°. The calculation process of this metric isillustrated in detail
in the figure, taking nodes A, B, and C as examples.
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The spatial topography of multilayer modular variability in the inter dependent structural-
functional connectome reflects cortical hierarchy and evolution

For each individual, we identified multilayer connectome modules and computed multilayer
modular variability in the interdependent structural-functional connectome (Fig. 2aand 2b). The
group-level multilayer modular variability showed substantial spatial heterogeneity across the
cortex, with greater variability predominantly in the lateral prefrontal and parietal regions, dorsal
medial prefrontal cortex and lateral temporal regions and less variability in the sensorimotor,
visual, and ventral medial prefrontal cortex (Fig. 2c, left panel). Furthermore, we investigated
whether the spatial pattern of multilayer modular variability represents cortical hierarchical
organization. First, we stratified the 360 cortical regionsinto four hierarchiesillustrating a
transition from primary sensory regions to the transmodal cortex *°. The heteromodal system
(spin test P value (Psin) < 0.001) exhibited significantly greater multilayer modular variability
than did the null models, while the primary (Psin = 0.0003) and unimodal (Pspin < 0.001) systems
exhibited significantly less multilayer modular variability (Fig. 2c, right panel). Second, we
found that the topographic organization of multilayer modular variability significantly correlated
with awell-established macroscal e connectome gradient architecture from unimodal to
transmodal *® (Pearson’sr (358) = 0.56, Pg,n < 0.0001, confidence interval (Cl)[1=[0.48, 0.62],
two-tailed; Fig. 2d). Given that greater multilayer modular variability was observed in the
association regions that are thought to be phylogenetically late-evolving regions, we
hypothesized that there would be a potential evolutionary root for the interaction of the
structural-functional connectome. By correlating with the cortical evolutionary expansion ¢, we
found that highly conserved sensory areas exhibited relatively less SC-FC modular variability,
while highly expanded transmodal areas exhibited greater SC-FC modular variability (Pearson’s
r (178) = 0.51, Psin< 0.001, CI =[0.39, 0.61], two-tailed; Fig. 2€). Taken together, these results
suggested that the modular topography of the multilayer structural-functional connectomeis
regionally heterogeneous, reflecting primary-to-transmodal organization and a cortical
evolutionary mechanism.

Reliability, reproducibility, and heritability of multilayer modular variability in the
inter dependent structural-functional connectome

Having demonstrated that multilayer modular variability in the interdependent structural-
functional connectome has a specific topographic distribution across the cortical hierarchy, we
next examined whether this distribution is test-retest reliable, reproducible and heritable.

First, we used the HCP Test-Retest dataset to evaluate test-retest reliability. This dataset included
42 participants (aged 30.4 + 3.33 years, 30 females) who underwent a second MRI scanning
session scheduled between 0.5 and 11 months after thelr first session. Specifically, we calculated
the Pearson correlation coefficient of multilayer modular variability between the same
individualsin different sessions and between different individuals. We found that the
intraindividual spatial similarity of multilayer modular variability (Pearson’sr: 0.69 + 0.123) was
significantly greater (nonparametric permutation test P value (Pperm) < 0.0001) than the
interindividual similarity (Pearson’sr: 0.48 + 0.065; Fig. 3a). Furthermore, for each brain node,
we performed the intraclass correlation (ICC) *° analysis to estimate its test-retest reliability of
the multilayer modular variability in the interdependent structural-functional connectome. The
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Fig. 2| The spatial topography of multilayer modular variability in the coupled structural-functional
connectomereflects the cortical gradient and evolutionary expansion. a, The multilayer modular structure of the
interdependent structural-functional connectome for a representative participant, in which the elements of the matrix
represent the modules to which the nodes were assigned in the FC and SC layers (left panel). The partitions of the
FC and SC are projected onto the brain cortex, and based on this, the cross-layer module affiliation of each node is
tracked to obtain the spatial distribution of the participant’s multilayer modular variahility (right panel). b,
Multilayer modular variability at the individual level. ¢, The spatial topography of group-level multilayer modular
variability (left panel), in which the heteromodal system (Pg;i, < 0.001) exhibited significantly greater multilayer
modular variability than did the null models, while the primary (Pg,n = 0.0003) and unimodal (Pg,in < 0.001) systems
exhibited significantly less multilayer modular variability (right panel). Nodewise multilayer modular variability
values were averaged according to their hierarchical systems. The mean multilayer modular variability of the
system-specific is expressed as a z score relative to the null model (spin test 10,000 repetitions), in which positive
(negative) z values indicate larger (less) multilayer modular variability than expected by chance. The statistically
significant and nonsignificant systems are shown in color and gray, respectively. The multilayer modular variability
was significantly (spin test 10,000 repetitions) associated with the functional connectivity gradient (Pearson’s r (358)
= 0.56, Pg;n < 0.0001, confidenceinterval (Cl)[71=11[0.48, 0.62], two-tailed) (d) and evolutionary expansion of
cortical surface area (Pearson’sr (178) = 0.51, Pg,n< 0.001, Cl =[0.39, 0.61], two-tailed) (e). The gray shaded
envelopesin the scatter plots indicate the 95% ClI, the upper left corners of the scatter plots show the histograms of r
values obtained from the null model, and the vertical red dotted lines denote the empirical r values. To better
visualize the scatter plots, the raw values (including those for the cortical gradient, cortical expansion and multilayer
modular variability) were scaled using a rank-based inverse Gaussian transformation *’. The brain maps were
generated using the BrainNet Viewer package “® on the inflated cortical 32K surface *. Pri, primary cortex; Uni,
unimodal cortex; Hete, heteromodal cortex; Para, paralimbic cortex. *** P < 0.001.
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highest test-retest reliability wasin the dorsolateral prefrontal and inferior parietal cortex (ICC >
0.6) (Fig. 3b, left pandl). Compared to those of the other systems, the ICC of the heteromodal
system was significantly greater than those of the null model (Pgin < 0.001), while the ICC of the
paralimbic system was significantly lower than the level expected by chance (Pspin = 0.0039) (Fig.
3b, middle panel). The spatial distribution of the ICC map showed a significant correlation with
that of the multilayer SC-FC modular variability map (Pearson’s r (358) = 0.23, Pgin < 0.0003,

Cl =[0.13, 0.32], two-tailed; Fig. 3b, right pandl).

Second, we validated the reproducibility of multilayer SC-FC modular variability. Specifically,
we randomly (n = 1,000 repetitions) divided the 1,012 participants in the HCP S1200 dataset into
two cohorts (subgroup 1 and subgroup 2). We found that the group-level multilayer modular
variability was highly correlated in the interdependent structural-functional connectomes of the
two subgroups (Pearson’sr = 0.994-0.999, p < 0.0001; Fig. 3c shows the results of one of the
1,000 repetitions), suggesting high reproducibility.

Finally, using twin and family data from the HCP S1200 dataset, which consists of 268
monozygotic (MZ) twins, 140 dizygotic (DZ) twins, 107 singletons, and 494 nontwins, we
examined whether the interindividual similarity of multilayer modular variability differed
between unrelated and genetically related individuals. We used Pearson correlation to measure
the similarity of multilayer modular topography across participants. We found that the similarity
varied for MZ twins (Pearson’sr: 0.26 + 0.204), DZ twins (Pearson’sr: 0.10 + 0.217), and
siblings (Pearson’sr: 0.10 £+ 0.196), with significantly greater similarity among MZ twins than
among DZ twins (Pperm < 0.0001) and siblings (Pperm < 0.0001) (Fig. 3d, left panel). We further
performed a twin-based heritability analysis to examine the heritability of the multilayer network
modulesin the interacting structural-functional connectome. We found that genetic factors
exerted aregionally variable influence on the multilayer modular variability, with higher
heritability observed in the somatosensory, lateral temporal, medial prefrontal, and parietal
regions and lower heritability in the lateral frontal and parietal regions and visual cortices (Fig.
3d, middle pandl). Similarly, we found that the heritability was not uniform across the four
hierarchical systems, with the primary system being significantly more heritable relative to the
null models (Psin = 0.016, Fig. 3d, right panel). Taken together, our results indicated that the
degree of spatial variability of multilayer module organization across the layered SC and FC is
heritable.
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Fig. 3| Multilayer modular variability isreliable, reproducible, and heritable. a, The intraindividual similarity
of multilayer modular variability is greater than the interindividual similarity (Ppem < 0.0001, nonparametric
permutation test 10,000 repetitions). b, The spatial pattern of the intraclass correlation (ICC) of multilayer modular
variability (left panel), in which the heteromodal system exhibits a greater | CC (Pg;in < 0.001) while the paralimbic
system exhibits alower |CC (Pgin = 0.0039) than null models (spin test 10,000 repetitions; middle panel), is shown.
The ICC of multilayer modular variability was correlated with multilayer modular variability (Pearson’sr (358) =
0.23, P4jn < 0.0003, confidence interval (Cl) =[0.13, 0.32], two-tailed, spin test 10,000 repetitions; right panel). The
gray shaded envelope in the scatter plot indicates the 95% Cl, the upper left corner of the scatter plot shows the
histogram of r values obtained from the null model, and the vertical red dotted line denotes the empirical r value. To
better visualize the scatter plot, the values of the raw variables were scaled using a rank-based inverse Gaussian
transformation *’. ¢, One of the random splits of the 1000 iterations using a half-split strategy suggested that the
group-level multilayer modular variability patterns were highly similar (Pearson’sr > 0.99, p < 0.0001). d, The
similarity of multilayer modular variability between MZ pairs was greater (nonparametric permutation test, 10,000
repetitions) than that between DZ (Pyerm < 0.0001) and sibling (Pperm < 0.0001) pairs (left panel). By estimating the
regional heritability of multilayer modular variability (middlie panel), the primary system was highly heritable (Pgin
= 0.016, spin test 10,000 repetitions; right panel). The bounds of the boxplotsin a and d represent the 1st (25%) and
3rd (75%) quartiles, the centerline represents the median, and the whiskers represent the minima and maxima of the
distribution. The violin plotsin a and d show the distribution of Pearson’sr values in the different groups indicated
on the x axis. The bar plotsin b and d show that the nodewise | CC (heritahility) values were averaged according to
their hierarchical systems. The mean ICC (heritability) of the system is expressed as a z score relative to the null
model, in which positive (negative) z values indicate that the ICC (heritability) is greater (Iess) than expected by
chance. Pri, primary cortex; Uni, unimodal cortex; Hete, heteromodal cortex; Para, paralimbic cortex; MZ,
monozygotic; DZ, dizygotic; SIB, sibling. * P< 0.05, ** P< 0.01, *** P< 0.001.
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Multilayer modular variability in the inter dependent SC-FC connectome is associated with
high-order cognitive processes

We first examined whether the multilayer modular variability in the interdependent structural-
functional connectome was spatially associated with neurocognitive flexibility quantified by the
number of cognitive components proposed by Yeo et al *°. For each brain node, we calculated its
neurocognitive flexibility by averaging the number of cognitive components of all voxels within
that node (Fig. 4a). We found a significant correlation between multilayer modular variability
and neurocognitive flexibility (Pearson’s r (358) = 0.27, Pgin = 0.004, Cl =[0.17, 0.36], two-
tailed; Fig. 4b). Based on the number of cognitive components involved, we categorized all brain
nodes into four types: low flexibility (0 < number of components < 1), moderate flexibility (1 <
number of components < 2), good flexibility (2 < number of components < 3) and high flexibility
(number of components > 3). We found that the high-flexibility nodes exhibited high multilayer
modular variability relative to the other types of nodes (Kruskal-Wallis test, Bonferroni
correction, p < 0.001; Fig. 4c). These results suggested that brain nodes with higher multilayer
modular variability tended to participate in multiple cognitive components and contributed to
higher cognitive flexibility.

Next, we sought to investigate whether the multilayer modular variability in the interdependent
structural-functional connectome is related to individual’s cognitive function. We applied
multivariate partial least squares (PLS) analysis to separately estimate the extent to which the
multilayer modular variability in the primary and transmodal cortices was related to cognitive
performance. Specifically, wefirst stratified the cerebral cortex into the low-order area
(consisting of primary and unimodal regions, 176 regionsin total) and high-order transmodal
area (consisting of heteromodal and paralimbic regions, 184 regionsin total). PLS analysis
revealed that there was no significant relationship between multilayer modular variability in the
low-order cortex and cognitive performance. In contrast, for the transmodal cortex, the first
latent variable (LV 1) significantly (Pperm< 0.0008) captured 46% of the covariance between
multilayer modular variability and cognition (Fig. 4d). Under the LV 1, the multilayer modular
variability score was significantly correlated with the cognition score (Pearson’sr (1010) = 0.24,
Poerm=0.001, CI =[0.19, 0.30], two-tailed; Fig. 4€). This correlation was determined by the brain
regions and cognitive terms that contribute most to the latent variable. Therefore, we computed
the loadings to determine the degree of contribution of each variable to the latent component and
assessed the reliability of the brain region and cognitive term loadings through bootstrapping
resampling (1,000 repetitions). For multilayer modular variability, regions with large positive
loadings were located mainly in the inferior parietal cortex, temporal-parietal-occipital junction,
and anterior cingulate cortex, whereas regions with large negative loadings were located mainly
in the medial prefrontal, posterior cingulate, and lateral temporal cortices (Fig. 4g). Interestingly,
we found that almost all the cognitive terms had positive loadings with terms belonging to self-
regulation, cognition total composite, and cognition crystallized composite cognitive processes
showing the largest loadings (Fig. 4f). These results demonstrated that greater multilayer
modular variability in brain regions with positive loadings was associated with better high-level
cognitive performance.
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Fig. 4 | Associations between multilayer modular variability and high-order cognitive function. a, The
neurocognitive flexibility of cortical regions is characterized by the number of cognitive components they engagein
b, Multilayer modular variability was significantly correlated with neurocognitive flexibility (Pearson’sr (358) =
0.27, Pgin = 0.004, confidence interval (Cl) =[0.17, 0.36], two-tailed, spin test 10,000 repetitions). ¢, Nodes were
categorized into four types, namely, low flexibility (0 < number of components < 1), moderate flexibility (1 <
number of components < 2), good flexibility (2 < number of components < 3), and high flexibility (number of
components> 3) nodes. The results of Kruskal-Wallis test indicated that nodes with high flexibility exhibited
significantly greater multilayer modular variability (Bonferroni correction, p < 0.001). d, Thefirst latent variable
(LV1) can significantly account for 46% of the covariance between multilayer modular variability and cognition
(Pperm < 0.0008, nonparametric permutation test 10,000 repetitions). e, For LV 1, the multilayer modular variability
score and cognition score were significantly correlated (Pearson’sr (1010) = 0.24, Pyem = 0.001, CI =[0.19, 0.30],
two-tailed). f and g show the loadings of cognition terms and brain regions with significant contributions
(bootstrapping resampling 1,000 repetitions). The cognitive processes depicted by these cognition terms are shown
in the right panel with different colors. For detailed cognitive processes and cognitive loadings, see Supplementary
Table 1. The gray shaded envelopes in the scatter plots indicate the 95% Cl, the upper left corners of the scatter plots
show the histograms of r values obtained from the null model, and the vertical red dotted lines denote the empirical r
values. To better visualize the scatter plots, the raw variable values were scaled using a rank-based inverse Gaussian
transformation *’. *** p < 0.001.

11


https://doi.org/10.1101/2024.01.21.576523
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.21.576523; this version posted January 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

The multilayer modular organization of the interdependent structural-functional
connectome is predicted by neurotransmitter receptorsand transporters

A previous study has shown that the spatial topography of neurotransmitter systems reflects the
organizational architecture of brain networks *. Here, we sought to investigate whether the
multilayer modular organization in the interdependent SC-FC network is associated with
neurotransmitter receptors and transporters. To do this, we obtained cortical distribution data of
19 neurotransmitter receptors and transporters from nine neurotransmitter systems provided by
Hansen et al *. Then, we calculated the average density of each cortical region in the Glasser360
atlas for each of the 19 receptors and transporters. We found that 4 out of the 19 receptor and
transporter dengty distributions were significantly positively correlated with multilayer modular
variability (Benjamini—Hochberg false discovery rate (FDR) correction, q < 0.05), namely, MOR
(Pearson’s r (358) = 0.38, Pgin < 0.0001, CI = [0.28, 0.46], two-tailed), CB1 (Pearson’s r (358) =
0.29, Pgin < 0.0002, Cl =[0.20, 0.38], two-tailed), 5-HT, (Pearson’sr (358) = 0.20, Pgin =
0.0087, Cl =[0.10, 0.30], two-tailed) and a, 3, (Pearson’sr (358) = 0.20, Ps;in = 0.0042, Cl =
[0.10, 0.30], two-tailed) receptors (Fig. 5a and 5b). We further sought to explore the extent to
which multilayer modular variability can be explained by receptor and transporter data. Using
the multivariate elastic net regression model (4 = 0.011; Fig. 5¢), we found that the spatial
pattern of multilayer modular variability could be significantly predicted by the density
distributions of neurotransmitter receptors and transporters (Pearson’s r (358) = 0.59, Pgjin <
0.0001, CI =[0.52, 0.66], two-tailed; Fig. 5d). Moreover, 11 out of the 19 receptors and
transporters significantly contributed to the prediction model (Fig. 5€); the highest contributions
were from the MOR, 5-HT,, and a, 8, receptors. Together, our results highlighted the tight link
between the interdependent structural-functional connectome and multiple neurotransmitter
systems.

Transcriptomic profiles are associated with multilayer modular architecturein the
inter dependent structural-functional connectome

Gene expression regulates the coordinated activity of neuronal populations and further shapes
complex cognitive processes **. Using regional microarray expression data from the Allen
Human Brain Atlas (AHBA) dataset (n = 6, donor brains) **, we investigated whether the
multilayer module configuration in the interdependent structural-functional connectome was
associated with gene expression profiles. PLS regression analysis revealed that the first PLS
(PLS1) component, which explained 21.25% of the variance in multilayer SC-FC modular
variability (Psin = 0.02; Fig. 68), exhibited a significant positive correlation between multilayer
modular variability and regional gene expression (Pearson’sr (130) = 0.46, Pgin = 0.02, Cl =
[0.31, 0.59], two-tailed; Fig. 6b). The PLS1 component represented a gene expression profile
with high expression mainly in the lateral frontal and parietal cortices but low expression in the
sensorimotor and visual cortices. We then performed Gene Ontology (GO) enrichment analysis
on genes associated with the transcriptome features of the PLS1 component. We found that genes
ranked by weight from most positive to most negative were enriched in biological processes
related to chemical synaptic transmission (FDR-corrected, g < 0.05; Fig. 6¢, middle pand;
Supplementary Table 2) and cellular components related to synapse part, plasma membrane,
neuron part, transport vesicle, and secretory vesicle (FDR-corrected, all g < 0.05; Fig. 6¢, right
panel; Supplementary Table 2). No significant enrichment was observed for molecular function.
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We also performed GO enrichment analysis on the inverse ranking of genes. The significant
enrichment terms are shown in Supplementary Table 3. Collectively, these resultsrevealed a
potential molecular basis for the multilayer module organization in the interacting structural and

functional connectome.
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Fig. 5| Associations between the spatial topography of multilayer modular variability and neurotransmitter
receptor and transporter distributions. a, The density distributions of 4 out of 19 receptors and transporters were
significantly correlated with multilayer modular variability after Benjamini-Hochberg false discovery rate (FDR)
correction (Pgin < 0.05, spin test 10,000 repetitions). The spatial distributions and correlations of these receptors are
shown in (b) (MOR: Pearson’sr (358) = 0.38, Pgi, < 0.0001, confidence interval (Cl) = [0.28, 0.46], two-tailed; CB;:
Pearson’sr (358) = 0.29, Py, < 0.0002, Cl =[0.20, 0.38], two-tailed; 5-HT,: Pearson’sr (358) = 0.20, Py, = 0.0087,
Cl =[0.10, 0.30], two-tailed; a,f,: Pearson’sr (358) = 0.20, Pg;, = 0.0042, CI =[0.10, 0.30], two-tailed). c, The 10-
fold cross-validated elastic net regression was performed with different 1 values (100 values from 10° to 10%). The
vertical black dotted line denotes the optimal A values (4 = 0.011) with the minimum mean square error (MSE =
0.043). d, The observed and predicted multilayer modular variabilities are significantly correlated (Pearson’sr (358)
= 0.59, Pg;in < 0.0001, CI =[0.52, 0.66], two-tailed, spin test 10,000 repetitions). The gray shaded envelopesin the
scatter plots indicate the 95% Cl, the upper Ieft corners of the scatter plots show the histogram of r values obtained
from the null model, and the vertical red dotted lines denote the empirical r values. Elastic net regression provided a
sparse output, in which 11 receptors and transporters significantly contributed to the prediction model, and the
regression coefficient (8) of each receptor/transporter is shown in (€). For better visualization, the raw values
(including receptor density and multilayer modular variability) were scaled using a rank-based inverse Gaussian

transformation #’.
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Fig. 6 | Association between the spatial topography of multilayer modular variability and gene expression
profiles. a, PLSregression analysis results suggested that the first principal component (PLS1) of the gene
expression matrix significantly captured 21.25% of the variance in multilayer modular variability (Psin = 0.02, spin
test 10,000 repetitions). b, The PLSL1 scores and multilayer modular variability were significantly correlated
(Pearson’sr (130) = 0.46, Pg,i, = 0.02, confidence interval (Cl) =[0.31, 0.59], two-tailed, spin test 10,000
repetitions). The gray shaded envelope in the scatter plot indicates the 95% Cl, the upper left corner of the scatter
plot shows the histogram of r values obtained from the null model, and the vertical red dotted line denotes the
empirical r value. To better visualize the scatter plot, the raw variable values were scaled using a rank-based inverse
Gaussian transformation #’. ¢, The listed genes were ranked in descending order according to weight, which
represents the contribution of each gene to the PLS1 component (Ieft panel). Gene Ontology enrichment analysis of
this gene list revealed that the genes were significantly (FDR-corrected, all g < 0.05) enriched in biological
processes related to chemical synaptic transmission (middle panel) and cellular components related to synapse part,
the plasma membrane, neuron part, transport vesicle and secretory vesicle (right panel).

Senditivity and robustness analysis

Head motion has long been thought to have profound effects on brain imaging data °* >. To
validate the effect of head motion, we excluded participants with high head motion and then
repeated our main analyses. Briefly, we measured each participant’s head motion indices by

calculating the mean and mean absolute deviation of the frame-to-frame displacements from both
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the fMRI and dMRI scanning sessions and then excluded participants whose head motion indices
exceeded 1.5 times the interquartile range of the corresponding index distribution *°.
Consequently, we completely excluded 95 out of 1,012 participants in the HCP S1200 dataset
and 5 out of 42 participants in the HCP Test-Retest dataset. We then performed validation
analysis with the remaining participants. We observed that the multilayer modular variability
pattern in the interdependent structural-functional connectome after removing the participants
with high-level motion was highly similar to our main results (Pearson’sr > 0.99, p < 0.0001;
Supplementary Fig. 1). We then validated the reliability, reproducibility, and heritability of
multilayer modular variability and found cons stent results (Supplementary Fig. 2). The results of
association analyses with cognitive data (Supplementary Fig. 3), neurotransmitter receptor and
transporter data (Supplementary Fig. 4), and gene expression profiles (Supplementary Fig. 5)
were also highly consistent with our main findings. All these validations suggested that our main
findings are robust and are not affected by head motion.

Next, to evaluate the threshold effects on the multilayer modular properties in the interdependent
structural-functional connectome, we applied different connection thresholds to the FC matrices.
We observed that the spatial patterns of multilayer modular variability were highly reliable
across different thresholds (both Pearson’srs > 0.99, p < 0.0001) (Supplementary Fig. 6 and 7).

Discussion

Using multimodal neuroimaging data and a multilayer network model, we constructed the
interdependent structural-functional connectome and identified a multilayer modular architecture.
We showed that the spatial topography of module variability across the SC and FC layers follows
a primary-to-transmodal axis and that this pattern istest-retest reliable, reproducible, and
heritable. We further showed that greater multilayer modular variability in the transmodal cortex
contributes to greater cognitive diversity and abstract cognitive processes. Finally, the multilayer
modular variability in the interdependent structural-functional connectomeis closely associated
with neurotransmitter receptor and transporter density and gene expression profiles, suggesting
the neurobiological underpinnings of connectome.

Previous studies have reported heterogeneous correspondence between the SC and FC across the
cortex, with high correspondence in the primary cortex and low correspondence in the
association cortex “®>*>"_ Our results extended these findings by highlighting the
interdependencies between the SC and FC in amultiplex framework. In the interdependent
structural-functional connectome, the spatial variability pattern of module organization across
layers aligns with a primary-to-transmodal axis. Previous studies have demonstrated that various
brain properties, such as functional connectivity %, gene expression *°, cognition *, and
receptors >, follow this core organizational axis of the cerebral cortex . We have shown that the
transmodal cortex has a markedly divergent correspondence between the layered SC and FC
modules, which may be due to the fact that these areas are not bound by structural constraints.
Rapid expansion of the cortical mantle leads to local microcircuitry reorganization, effectively
freeing the associative cortex from the strong constraints imposed by early activity cascades © .
Thus, weaker structural constraints in the transmodal cortex allow for a more flexible modular
architecture ** . Notably heterogeneous communication preferences across the cortex, with
unimodal regions communicating primarily at local scales and multimodal regions
communicating primarily at global scales ®*, provide another possible explanation for the
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observed divergence of the SC and FC. The primary sensory cortex isinvolved mainly in unitary
neural circuitry and supports simple sensory functions, whereas the transmodal cortex mainly
receives and integrates information from multiple sensory modalities and other heteromodal
regions, resulting in more spatially distributed connection patterns to support global
communication and integration between functional systems. Thus, the high variability of the
multilayered module organization in the transmodal cortex supports the involvement of more
extensive modules, which could enhance the functional diversity of these regions and provide a
network foundation for integrative information processing.

The interdependent connectome-cognitive association analysis results validated our hypothesis
that the transmodal cortex plays a coordinating role between the interactive SC and FC networks,
thereby promoting cognitive diversity. We found that higher-order cognitive functions were
significantly correlated with multilayer modular variability in the transmodal cortex but not in
the low-order cortex. Thisraised the possibility that the SC-FC correspondence in the high-order
cortex provides a network-level basis for meeting the high cognitive demands of the human brain.
Our result was consistent with previous findings that the transmodal cortex possesses circulit
properties essential for human cognition and supports high-level cognitive processes ** % ©,
Interestingly, negative loadings were observed in some transmodal regions, most notably the
medial prefrontal cortex and posterior cingulate cortex. Thisimplied that lower multilayer
modular variability in these regions is associated with better cognitive performance. Recent
research hasyielded similar results: the medial prefrontal cortex and posterior cingulate cortex
showed strong SC-FC coupling, and SC-FC coupling of the posterior cingulate cortex is
associated with executive function performance . A plausible hypothesis arising from these
observationsisthat the tight coupling of the SC and FC enables these regions to maintain a
relatively consistent module configuration in SC and FC, thereby supporting cognitive demands.
The tight module correspondence in these regions provides efficient communication for other
areas that are highly interconnected within the transmodal cortex, thereby promoting better
cognitive performance.

The similarity of the overall multilayer modular topography between MZ pairs was greater than
that between DZ and sibling pairs, suggesting that multilayer modular variability is under genetic
control. Our analysis revealed substantial regional heterogeneity in the heritability of multilayer
modular organization. The lateral frontal and inferior parietal regions with higher multilayer
modular variability demonstrated relatively relaxed genetic control. As important components of
the distributed association cortex, the parietal and frontal cortices undergo protracted maturation
processes during human devel opment and are therefore exposed to environmental factors more
than sensory regions *. The relatively low heritability of multilayer modular variability observed
in these regions could be due to their greater sensitivity to environmental influences. Taken
together, our findings demonstrated the extent to which the module relationship between the
interactive SC and FC connectome isinfluenced by genetics.

Recent studies have shown that neuromodulatory systems play an essential role in understanding
how the fixed human anatomical connectome can give riseto rich brain functions, in which
neuromodulatory systems can dynamically modulate the brain connectome to enable rich
behaviors * %%’ Neurotransmitters are important components of the brain’s molecular
organization and extensively influence synaptic transmission within neural circuits ®®. Previous

studies have shown that receptor distributions reflect the organization of brain connectomes *
16


https://doi.org/10.1101/2024.01.21.576523
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.21.576523; this version posted January 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

and that neurotransmitters coordinate dynamic interactions between modules *. Here, we further
demonstrated that the multilayered modular organization of the interdependent structural-
functional connectome is also associated with the distributions of multiple receptors, such as
MOR, CB3, 5-HT,, a,f, and 5-HT1g, and is modulated by multiple neurotransmitters, such as
opioid, cannabinoid, serotonin and acetylcholine. Previous work has shown that neurotransmitter
receptor density distribution forms a natural axisin the human cerebral cortex, extending from
sensory to association areas, with association areas having more receptor expression and greater
synapse density ** ®. This may provide the anatomical basis for neuronsin areas of high
multilayer modular variability to integrate information. These neurotransmitters associated with
multilayer modular variability are also thought to support many cognitive functions.
Acetylcholineis often implicated in attention control ">*2. Enhancing or impairing cholinergic
activity can preferentially affect the maintenance of selective attention 3. Serotonin (5-
hydroxytryptamine, 5-HT) iswidely distributed throughout the brain and isinvolved mainly in
learning and memory processes ““. Among its receptor families, the 5-HT 15 receptor is located
predominantly at axon terminals and facilitates learning when cognitive demands are high. In
addition, acetylcholine and serotonin are essential for maintaining synapses in the hippocampus
and thus play important roles in the acquisition of spatial memory ™ ™. Opioids ”” and
cannabinoids "® are also involved in awide range of cognitive activities. Taken together, these
findings revealed a prominent link between receptor distribution and the multilayer modular
architecture of the interdependent structural-functional connectome.

In addition to receptor density, gene expression provides critical neurobiological insight into the
function and structure of the brain ** ™. Building on previous reports linking gene expression to
modular architecture *, we mapped gene expression patterns to the multilayer module
organization in the interdependent structural-functional connectome. We identified a significant
association between gene transcription and multilayer module topography and found that genes
associated with multilayer module variability are mainly responsible for the biological processes
of chemical synaptic transmission. Synaptic transmission isimportant for supporting the
propagation of signals between neurons, and this process is highly dependent on neurotransmitter
systems. The presynaptic neuron releases neurotransmitters into the extracellular space via
exocytosis of vesicles, and these neurotransmitter molecules are subsequently transported
through chemical synapses and bind to appropriate receptors postsynapse ®. Thus, this process
modifies the neural states of postsynaptic neurons and ultimately results in network-wide
communication. Our study showed that genes involved in signal propagation have higher
expression levels mainly in regions with higher multilayer modular variability, which has
implications for the higher communication demandsin these regions.

Several methodological issues need to be mentioned. First, we used a common type of multilayer
network in which the SC and FC were connected only via interlayer edges between a given node
and its counterparts in other layers to reflect internetwork interactions. The cross-modality
couplings between different brain regions were not considered, as there is no generally accepted
approach for such an analysis. Therefore, future studies should develop a new strategy to
characterize multilayer networks consisting of more complex interlayer connections. Second, we
used dMRI-based tractography algorithms to generate representations of white matter tractsin
the human brain. However, there are inherent limitationsin inferring areliable SC from fiber
tractography approaches " #, such as the potential to underestimate long-range connectionsin
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the whole-brain network # and the possibility of missing some short fiber bundles ®. Therefore,
methodological innovations to reduce tractography biases and improve the reliability of SC-FC
estimation are needed in future studies. Third, the gene expression maps used in our study were
derived from the Allen Institute for Brain Science; therefore, our current findings are based on a
small sample of postmortem brains. In the future, the availability of more comprehensive
microarray gene expression datasets will be essential. Finally, our study focused on multilayered
modular reconfiguration across the SC and FC layersin healthy participants. Future studies could
further investigate whether and how the interactive structural-functional connectome changes
with disease, in particular identifying the nodes responsible for communication between these
two networks and whether these nodes undergo role changes in patients with brain disorders. It
would also be interesting to investigate the age-related changes in the interdependent relationship
between the SC and FC.

M ethods

Participants and data acquisition

The multimodal neuroimaging data (structural MRI, dMRI, and rs-fMRI data) were obtained
from the publicly available S1200 dataset released by the HCP %', The HCP S1200 dataset
included 1,012 healthy young adult participants (aged 28.73 + 3.71 years, 543 females) with
complete minimally preprocessed imaging data for all modalities. For each participant, there
were four rs-fMRI scans (the data were collected over two days; individuals were scanned twice
aday (left-to-right and right-to-left phase encoding directions)) and one complete dMRI scan. All
functional and diffusion imaging data were preprocessed using HCP minimal preprocessing
pipelines 3. The HCP obtained informed consent from all participants. The scanning protocol
was approved by the Institutional Review Board of Washington University in St. Louis, MO,
USA (IRB #20120436).

Structural, functional, and diffuson MRI data were acquired on a 3T Siemens Skyra scanner at
Washington University. Specifically, for each run of four rs-fMRI scans for each participant, the
rs-fMRI data were obtained by using multiband gradient-echo-planar imaging with the following
sequence parameters: repetition time (TR) = 720 ms, echo time (TE) = 33.1 ms, flip angle = 52°,
bandwidth = 2290 Hz/pixel, field of view = 208 x 180 mm?, matrix = 104 x 90; 72 slices, voxe
size= 2 x 2 x 2 mm°, multiband factor = 8, and 1200 volumes. Diffusion data from each
participant were acquired by using a Stejskal-Tanner diffusion-encoding scheme with the
following sequence parameters. 1.25 mm isotropic, 18 b0 acquisitions, 270 diffusion-encoding
directions with three shells of b = 1000, 2000, and 3000 Ymm?, 90 directions for each shell, 2 x
2 x 2 mm isotropic voxels, TR = 5520 ms, and TE = 9.58 ms. T1-weighted image data were
acquired using a 3D-magneti zation-prepared rapid acquisition with gradient echo (MPRAGE)
sequence (0.7 mm isotropic voxels, matrix = 320 x 320; TR = 2400 ms, TE = 2.14 ms, 256 dlices,
and flip angle = 8°). T2-weighted data were acquired using a 3D T2-sampling perfection with
application-optimized contrasts using a flip angle evolution (SPACE) sequence with identical
geometry (TR = 3200 ms and TE = 565 ms).

Data preprocessing

T1-weighted and T2-weighted images were processed using the minimal structural preprocessing
pipeline , which included brain tissue segmentation, cortical surface reconstruction, and
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individual surface mapping to thefs LR _32K standard space. All functional MRI data, including
gradient distortion correction, head motion correction, echo-planar imaging distortion correction,
registration to the Montreal Neurological Institute (MNI) space, and intensity normalization,
were preprocessed. The volume time series of cortical gray matter were then projected onto the
standard 32K_fs_LR mesh. A 2-mm full-width at half-maximum (FWHM) Gaussian kernel was
used for spatial smoothing. The ICA-FIX procedure was used to remove additional noise. The
confounding covariates white matter, cerebrospinal fluid, global signals, and the 12 head motion
parameters were further regressed from the time course of each voxel. Finally, bandpass filtering
(0.01-0.1 Hz) was performed to reduce the influence of low-frequency drifts and high-frequency
physiological noise. The above procedures were carried out using SPM 12
(https://www.fil.ion.ucl.ac.uk/spm/) and GRETNA ®. The diffusion images were normalized to
the mean b0 image, with echo planar imaging (EPI) distortion correction, eddy-current distortion
correction, head motion correction, gradient nonlinearity distortion correction, linear registration
to native structural space using a 6 degrees of freedom (DOF) boundary-based registration, and
data masking with the final brain mask to reduce thefile size.

Constructing inter dependent structural and functional connectome

(i) Functional connectome (FC). Based on the preprocessed rs-fMRI data, we constructed the FC
of each run for each participant. Specifically, we used a multimodal brain atlas (HCP-MMPL1.0)
to parcellate the cortical surfaceinto 360 areas *2. The time series of all vertices within each node
were averaged to generate the mean time series of each node. Pairwise Pearson correlations were
then calculated between the mean time series of all nodes to generate functional connectivity
edges. As aresult, we obtained a Pearson correlation matrix of size 360 x 360 for each run for
each participant. To reduce signal noise bias, the weak connections (Pearson’sr < 0.1) of each
correlation matrix were set to zero. We also validated different weak connection thresholds of the
FC matrices (Supplementary Figs. 6 and 7). Finally, Fisher’s r-to-z transformation was applied to
each FC matrix. For each participant, the FC matrices of all four rs-fMRI scans were averaged to
generate the mean FC matrix.

(it) Sructural connectome (SC). Structural connectivity was estimated for participants using
probabilistic tractography. The analysis procedures were implemented in the FSL % and the
PANDA Toolkit . Specifically, for a given seed region, probabilistic tractography was
performed by sampling 5,000 streamline fibers for each voxel within that region. According to
the number of streamlines between the source and target regions, the connectivity probability
between these two regions was calculated as the number of streamlines passing through the
target region divided by the total number of streamlines sampled from the seed region. Notably,
the long-range connections may be underestimated due to the fact that the number of streamlines
decreases with distance from the seed mask. Therefore, distance correction was then applied to
obtain connectivity weights between regions; these weights were defined as the expected length
of the paths times the number of streamlines ® . Using the above procedure, we obtained the
connectivity weights for all pairs of brain nodes, resulting in an SC matrix of size 360 x 360 for
each participant.

(iii) Interdependent structural | Ifunctional connectome. Using the multilayer network theory * 2

% we modeled the interdependencies between the SC and FC. Specifically, the SC and FC
connectomes were considered separate layers of an interdependent network. The different layers
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shared the same set of nodes, with the number of nodes in each layer equal to 360. We then
established internetwork dependencies by multiplex coupling, in which the corresponding nodes
located in different layers were coupled in a one-to-one manner, generating a two-layer
interdependent structural-functional connectome for each participant, which can be represented
by a supra-adjacency matrix ** M with the following form:

et DJec

where 4; isthe adjacency matrix of layer £;(i = 1,2).1 isthe N x N (N = 360) identity matrix.

Inherent discrepancies in weight scales between different modalities can lead to biasesin
multilayer network analysis . In the present study, the SC matrix had significantly larger
weights than did the FC matrix. This discrepancy posed the risk that the SC layer would
disproportionately influence the multilayer modularity detection algorithm, potentially biasing
the resulting modules to predominantly reflect SC features. To ensure balanced contributions
from each layer, we normalized the weights of both the SC and FC matrices to a uniform range
of 0-1.

| dentifying multilayer connectome modules

Modularity is an important organization principle for brain connectomes ** %!, The existence of
modules allows the brain to achieve effective information communication at low wiring costs *.
In the context of a multilayer network, we used a generalized Louvain-like locally greedy
algorithm (https://github.com/GenL ouvain/GenLouvain) to obtain the multilayer modular
architecture by simultaneously considering all the information within and between layers ** %,
The main idea of this GenLouvain community detection algorithm is to optimize the multilayer
modularity quality function Q to identify the module membership of each node in the network.
The modularity quality function of the interdependent structural-functional connectome was
calculated as follows:

1 ki k:
Q = —Z [<ALJS — Vs ;jrl_ is) 637. + 61']'ijle 6(9is’gjr) #(2)

where u represents the total connectivity strength of the entire network. Nodes are represented by
i and j. Layers are represented by sand r. 4;;, isthe element of the correlation matrix and
represents the connectivity strength between nodei and nodej in layer s. k;; and k;; arethe
degrees of nodei and node| in layer s, respectively. m. represents the total connectivity strength
of layer s. Theresult of k;sk;;/2m, reflects the expected connection probability between nodei
and nodej in layer s. g;; indicates the module in which node i belongsin layer s. g;, indicates
the module in which node j belongsin layer r. The function §(g;s, g;,-) IS used to determine
whether the modules of nodei and node j are the same. 6(x,y) equals 1if x =y and equals 0
otherwise. The interlayer coupling parameter w reflects interlayer dependence. A higher w
indicates a stronger interaction between layers, and vice versa. The topological resolution of each
layer is represented by the parameter y. A larger value of y indicates a larger number of modules.
Sincethereis currently no uniform standard for the choice of parametersy and w, we used the
default value of y = w = 1, aswas donein previous studies ***°. We also calculated multilayer
modularity using different interlayer coupling parameters with w (w =[0.5, 0.75, 1, 1.25, 1.5])
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(Supplementary Fig. 8).

By optimizing the modularity quality function (2) with a Louvain-like locally greedy heuristic
algorithm *, we obtained the multilayer modular structure of the interdependent structural-
functional connectome. However, since this algorithm is heuristic in nature and due to the near
degeneracy of the optimization landscape of the multilayer modularity quality function, the
results of multilayer modularity detection may be dlightly different each time the algorithmisrun
62.96.97 Therefore, to address the issue of degeneracy, we repeated the Louvain-like locally
greedy algorithm 100 times for each participant to optimize the modularity index Q. Based on
the results of each run, we calculated the corresponding multilayer network measurements and
finally averaged the results of the 100 runs for each participant.

Tracking multilayer modular variability

The multilayer modularity detection agorithm * ** was used to extract the modular architecture

of the interdependent structural-functional connectome, generating module assignments for both
the SC and FC layers. To investigate the correspondence of module organi zation between
interdependent SC and FC layers, we tracked the modules of each node across layers. Each node
was identified with community labels, which may be consistent or inconsistent across different
layers. Therefore, we evaluated the cross-layer module affiliation variability of nodes using the
multilayer modular variability (MV) metric °. For agiven nodei in the network, the multilayer
modular variability of that node was calculated as follows:

|M;(r) n My(s)]?
KAGIRLACH I

where r and s represent layer labels and M; (1) and M; (s) represent the labels of the modulesin
which nodei belongsin layersr and s, respectively. |M;(r)| denotes the number of nodes
included in module M; (7). |M;(r) N M;(s)| indicates the number of overlapping nodes between
modules M; (r) and M;(s). The multilayer modular variability reflects the degree of spatial
variability in the module organization across the SC and FC layers. A node with high (low)
multilayer modular variability has alarge (small) difference in module organization across the
SC and FC layers.

MV(r,s)=1-

r # s#(3)

Reliability and reproducibility analysis of multilayer modular variability

(i) Reliability analysis. We used the HCP Test-Retest dataset to quantitatively assess whether the
multilayered modular variability pattern in the interdependent structural-functional connectome
was reliable within participants across repeated sessions and variable between participants. The
HCP Test-Retest dataset included 42 participants (aged 30.4 £ 3.33 years, 30 females) who
underwent a second MRI scan (second session: S2) between 0.5 and 11 months after the first
scan (first session: S1). The data acquisition, data preprocessing, and connectome construction
methods used for the HCP Test-Retest dataset were consistent with those used for the HCP
S1200 dataset. For a given participant, we separately constructed the interdependent structural-
functional connectome and calculated the multilayer modular variability of that participant for
two sessions (i.e., S1 and S2). We then calculated the Pearson correlation coefficient for each
participant’s multilayer modular variability obtained between S1 and S2, which was considered
an indicator of within-participant smilarity. In addition, we assessed between-participant
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similarity by calculating the mean Pearson correlation between each participant’s multilayer
modular variability in S1 and that of al the other participantsin S2. To determine whether there
was a significant difference between these within-participant and between-participant similarities,
we performed a nonparametric permutation test, randomizing participant identities over 10,000
repetitions. We recal culated the similarities and generated null distributions for the differencesin
similarity. The statistical significance of the observed difference in similarity was then assessed
by comparison with this null model.

Furthermore, we used the intraclass correlation (ICC) * to examine the test-retest reliability of
the multilayer modular variability in each brain region across repeated sessions. Specifically, for
agiven brain region, the multilayer modular variability of that region can be combined into a
meatrix M, where the element M;; represents the multilayer modular variability from jth
measurement session of the i-th participant. A one-way analysis of variance was then performed
on this matrix to obtain the within-participant mean square error (MS,,) and the between-
participant mean square error (MS;). The ICC of the given region can be calculated as follows:
MS, — MS,,

fec= MS, + (k — 1)MS,, #)
where k isthe number of repeated sessions for each participant. High ICC values reflect low
within-participant variance relative to between-participant variance. According to previous study
% the ICC values can be divided into four common intervals: poor (< 0.4), moderate (0.4~0.6),
good (0.6~0.75), and excellent (> 0.75).

(i1) Reproducibility analysis. To investigate whether the multilayer modular topography in the
interdependent structural-functional connectome is reproducible, we employed a half-split
strategy to randomly (n = 1,000 repetitions) divide the 1,012 participants into two subgroups. For
each random half-split result, we used the chi-square test and two-samplet test to ensure that the
two subgroups were matched for sex and age, respectively. Next, we calculated the group-level
multilayer modular variability pattern of each subgroup and further evaluated the Pearson
correlation between these patterns to estimate the reproducibility of the multilayer modular
variability. Fig. 3c shows the results of one of the 1,000 random divisions (subgroup 1: 506
participants, aged 28.70 + 3.66 years, 272 females; subgroup 2: 506 participants, aged 28.76 +
3.77 years, 271 females).

Heritability analysis

To investigate whether the multilayer modular topography in the interdependent structural-
functional connectome isinfluenced by genetic factors, we conducted a smilarity analysis of
multilayer modular variability. Based on the twin and family datain the HCP S1200 dataset (n =
1,012 participants), we determined the zygosity of the participants using genotyping data when
available and self-reports otherwise. Three participants were excluded due to abnormal family
data. Thefinal sample consisted of 1,009 participants from 449 families, including 268 MZ twins,
140 DZ twins, 107 singletons, and 494 nontwins. We compared whether the interindividual
similarity in multilayer modular variability differed among MZ twins, DZ twins, and nontwins.
Briefly, we calculated the smilarity (Pearson’sr) in overall multilayer modular variability
between pairs of participants, assessing the extent to which the multilayer modular organization
of two participants became more similar as their proportion of shared genetic material increased,
where ryz was the correlation between MZ twins, rpz was the correlation between DZ twins, and
22
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INontwin Was the correlation between nontwins. We then used a nonparametric permutation test
(10,000 repetitions) to estimate whether there were differences in the ryz, roz and rnontwin data.

For each permutation test, participant identities were randomly shuffled, and the ryz, roz and
INontwin Values were recomputed, generating the null distribution of the mean difference of ryz-rpz,
I'pz-ontwin @Nd Mmz-Tnontwin. The statistical significance of the mean difference was calculated by
comparing the observed value with the null model.

To further investigate the extent to which genetic factors underlie the spatial layout of multilayer
modular organization in the interacting structural-functional connectome, we applied the
accelerated permutation inference for the ACE model (APACE) method *
(https://github.com/nicholst/APACE) to estimate the heritability of multilayer modular variability.
The ACE model of heritability analysis relies on the assumption that phenotypic variability
within a population can be explained by additive genetic (A), common environmental (C) and
unique environmental (E) factors. The APACE model mainly relies on linear regression with
sguared differences to estimate phenotypic heritability and the likelihood ratio test to infer
heritability. Heritability represents the proportion of phenotypic variation attributable to genetic
variation . Narrow-sense heritability (h2) was calculated as follows:

2

W= —— A u(s)
ol + 02 + of

where 62, o and o7 arethe variance of A, C and E, respectively.
Multilayer connectome-cognition association analysis using partial least squaresregresson

We used PL S regression analysis (https://github.com/danizoeller/myPLS) to explore how the
gpatial distribution of multilayer modular variability in the interdependent structural-functional
connectome corresponds to cognitive processes. Using all the cognitive data provided by the
HCP S1200 dataset, we performed PLS analysis to decompose the relationships between
multilayer modular variability (dataset X: 1,012 participants X n brain regions) and cognition
(dataset Y: 1,012 participants X 52 cognition terms) into orthogonal sets of |atent variables with
maximum covariance ‘. These |atent variables were linear combinations of the original data
from the two datasets and consisted of singular vectors and singular values. Specifically, datasets
X and'Y were z scored column by column, and the covariance matrix R was subsequently
calculated:

R =YTX#(6)
Next, singular value decomposition (SVD) was performed on R:
R =USVT#(7)

where U and V are the left and right singular vectors, respectively, and Sis a diagonal matrix of
singular values. Theith latent variable is composed of theith left and right singular vectors and
theith singular value. The ith singular value represents the covariance between X and Y that is
captured by the corresponding ith latent variable. According to the singular value, we estimated
the amount of covariance explained by each latent variable, which is the ratio of the square of the
ith singular value to the sum of the squares of all singular values. The left and right singular
vectors represent the cognitive weights and multilayer modular variability weights, respectively,
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which reflect the extent to which each cognitive term and brain region contribute to the latent
variable. By projecting the original data onto the weights of the singular vectors, we obtained the
cognitive scores and multilayer modular variability scores. Pearson correlation analysis between
cognitive scores and multilayer modular variability scores was conducted to characterize the
relationship between multilayer modular variability and cognition under the given latent variable.
Furthermore, we correlated each original variable with its PLS analysis-derived score pattern to
compute the cognitive loadings and multilayer modular variability loadings, which reflect the
shared variance between the original variables and their corresponding score pattern and further
reveal the degree of contribution of the cognition terms and brain regions to the corresponding
latent variable.

To assess the statistical significance of each PLS latent variable, we performed a nonparametric
permutation test by randomly shuffling the rows (participant identities) of matrix Y 10,000 times.
For each permutation test, we recalculated the covariance matrix R and performed SVD.
Consequently, we obtained the null distribution of the singular values and the PLS score patterns.
By comparing the empirical values with their null distributions, we estimated the statistical
significance of each latent variable. In addition, the reliability of the loadings of the variable was
assessed using bootstrapping resampling (1,000 repetitions). We conducted a bootstrapping
analysis by randomly resampling participants. Using the resampled data matrices X and Y, we
performed SVD again and recalculated the loadings of the variables. According to the 95% Cls
of the variable loadings, we selected the brain regions and cognitive terms that made significant
contributions to the latent variable.

Multilayer connectome-transmitter association analysis using elastic net regression

Building on previous work showing that brain modules are closely associated with
neurotransmitter systems > %, we investigated whether the multilayered module organization in
the interdependent structural-functional connectome is also supported by the underlying
molecular mechanisms involved. Following a previous study * that provided cortical distribution
data of 19 neurotransmitter receptors and transporters from nine neurotransmitter systems, we
calculated the average density of each cortical region in the Glasser360 atlas for each of the 19
receptors and transporters, resulting in a density matrix of size 360 x 19. We then used a
multivariate elastic net regression model to predict multilayer modular variability from the
receptor and transporter density distributions. As it is a data-driven regression approach,
multivariate elastic net regression can be used to solve the multicollinearity problem between
independent variables and can be used for feature selection by automatically removing variables
that are deemed unrelated to the dependent variable, resulting in a sparse output. Therefore, this
method was well suited for receptor and transporter data where variables are highly correlated
with each other (Supplementary Fig. 9), and some variables may be less important for fitting
multilayer modular variability. As the numerical scales of the receptor and transporter data and
the multilayer modular variability data differed, all variables were normalized prior to regression
analysis. For a given variables (360 brain regions x 1), the normalization process was as follows:
s — mean(s)

5= max(s) — min(s) #(®)
Furthermore, multivariate elastic net regression was used to fit multilayer modular variability.
This approach is based on the loss function of the model by adding a penalty term consisting of
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L1 regularization (LASSO regression) ‘* and L2 regularization (Ridge regression) . L1

regularization is used to penalize the sum of the absolute values of the mode parameters,
excluding features with smaller contributions to the target variable, thus achieving feature
selection. L2 regularization is used to penalize the sum of squares of the model parameters to
achieve weight decay (i.e., nonsparse fvalues), which helpsto prevent multicollinearity
problems and reduce the model’s overreliance on certain features. The objective function of the
multivariate elastic net regression *** is as follows:

n

P 2 P

A A 1

Bo B = argming,s| <yi ~Bo— ﬁ,-xi,) +2) [sa-wg?+alg]| |#o)
=1 =1

i=1

where n and p represent the number of samples (n = 360) and features (p = 19), respectively. X
and y, respectively, represent the normalized receptor and transporter data and the normalized
multilayer modular variability data. B, is the intercept, and g; isthe regression coefficient of the
jth feature. a representsthe mixed ratioof L1 (¢ = 1) and L2 (a = 0) regularization. To
combine the advantages of Ridge regression, which can address multicollinearity, and LASSO
regression, which can be used to perform feature selection, we set the a valueto 0.5 **. The
regularization coefficient A is used to control theintensity of the penalty and to determine the
sparsity of the model output. An optimal A value can be selected through a cross-validation
model. Specifically, we divided the range from 107 to 10° into 100 equal parts, and these 100
values were considered a selectable range of parameters, denoted as A. For each A value,
multivariate elastic net regression analysis was conducted, and 10-kold cross-validation was used
to evaluate mode performance. Finally, the A value with the lowest mean square error was
selected as the optimal parameter.

To test whether the real R? of the model was significantly greater than that obtained by chance,
we performed a spin test 10,000 times, generating 10,000 null distribution maps of multilayer
modular variability. For each surrogate multilayer modular variability map, we conducted
multivariate elastic net regression governed by the optimal regularization parameter A from the
empirical model to predict multilayer modular variability, resulting in anull distribution of
model R? to test the statistical significance of the empirically observed model R?.

Multilayer connectome-transcriptome association analysis using partial least-squares
regression

(i) AHBA gene expression dataset. To investigate the associ ations between spatial configurations
of the multilayer module structure in the interdependent structural-functional connectome and
transcriptional profiles, we used the microarray data of six human postmortem donors (aged 42.5
+ 13.38 years, 1 female) provided by the AHBA website (http://human.brain-map.org/) ** to
estimate gene expression in the brain. A total of 3,702 spatially distinct tissue samples were
obtained from the six donors, and 58,692 probes were obtained for each sample. Since sample
data from the right hemisphere were available for only two donors, we analyzed the tissue
samples from the left hemisphere only.

(i) Preprocessing of gene expression data. Following the AHBA processing pipeline
(https://github.com/BMHLab/AHBAprocessing) ®, we preprocessed the microarray-based gene
expression data collected from human brain tissue samples from six adult donors. Specifically,

25


https://doi.org/10.1101/2024.01.21.576523
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.21.576523; this version posted January 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

the probe-to-gene annotations were updated using the data provided by Arnatkeviciite et al *®.
We then removed the probes whose signal-to-noise ratio did not exceed the background noise by
using intensity-based filtering with a threshold of 0.5. Considering the difference between probes
that measure the expression of the same gene, we selected the probes that exhibited the strongest
correlation with the RNA-seq data. Next, using the MNI coordinates of each tissue sample, we
assigned each sample to the region nearest to the Glasser360 brain parcellation with adistance
threshold of 2 mm. Tissue samples more than 2 mm away from any region of the 360-
parcellation were excluded. To account for interindividual variability in gene expression, we
applied the scaled robust sigmoid normalization method to the left cortex data to eiminate this
donor-specific variability. The normalization procedures were first performed by applying cross-
gene normalization in a given sample. Then, cross-sample normalization was performed for each
gene. Finally, all samples from six donors were averaged for a given region, resulting in a group-
level gene expression matrix of size n (132 brain regions) x g (10,027 genes).

(i11) Association between multilayer modular variability and transcriptional signatures. We
assessed the relationship between multilayer modular variability and gene expression using
multivariate PLS regression. The gene expression matrix (132 brain regions x 10,027 genes) and
multilayer modular variability (132 brain regions x 1) were considered predictor variables and
response variables, respectively. The PLS regression method was used to attempt to find the PLS
components that are linear combinations of the original gene expression that can maximize the
prediction of the response variables. We calculated the R? of the model fitting, which reflects the
amount of variance in multilayer modular variability explained by each PLS component. In
addition, the Pearson correlation was conducted to estimate the spatial correlation between the
PLS scores and the multilayer modular variability map. To assess whether the empirical R? and
Pearson’s r values were significantly greater than those obtained by chance, spatial
autocorrelation correction (spin test) was performed, generating 10,000 null distribution maps of
the multilayer modular variability. For each permutation, the real predictor variables and the
surrogate response variable were assessed by PLS regression analysis, and we recalculated the R?
of each PLS component, generating a null distribution of variance explained. Similarly, anull
distribution of correlation coefficients (r) between the PLS score and multilayer modular
variability under each PLS component can be obtained. The P value (i.e., Psin) was calculated as
the proportion by which the values (i.e., R? or Pearson’sr) of the null models were greater than
the empirically observed values.

(iv) GO enrichment analysis. To explore the enriched GO terms associated with genes identified
by PLS analysis, we performed GO enrichment analysis by using the online tool GOrilla
(http://cbl-gorilla.cs.technion.ac.il/) *®. First, for each significant PLS component, we calcul ated
the contribution weights of the genes and assessed the reliability of the weights by bootstrapping
resampling (1,000 repetitions). For each resampling, the rows of the gene expression matrix were
randomly selected to generate the new bootstrapped gene expression matrix, which was used
when PLS analysis was performed again. This process was repeated 1,000 times to obtain a
sampling distribution of gene weights, and we further estimated the standard errors of these
weights. We then computed the bootstrap ratio **’ of the genes by dividing the empirical weights
by their standard errors, with large bootstrap ratios representing the genes with large and reliable
contributions. Thus, we generated a gene list for each PLS component to represent the
contribution of the genes. Furthermore, we ranked the gene list in both descending and ascending
order and subjected these ranked gene lists to the GOrilla software tool to search for enriched
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GO terms for each PLS component. The significant enrichment terms were identified by
applying the FDR-corrected g < 0.05. With respect to the advanced parameter settings of the
GOrilla platform, we selected the “P value threshold 10" and unchecked the “Run GOrillain
fast mode” option '*'®. Finally, we used the Reduce Visualize Gene Ontology (REVIGO,
http://revigo.irb.hr/) tool to summarize these significant GO terms by removing redundant GO
terms.

Spatial autocorrelation-preserving per mutation tests

The spatial autocorrelation-preserving permutation test, which applies random rotations to
spherical representations of the cortical surface, is aso known as the spin test "°. Briefly, we
mapped the spatial distribution of multilayer modular variability in the interdependent structural-
functional connectome onto the cortical surface, and multilayer modular variability value was
obtained for each vertex. The spin test was applied to generate 10,000 rotational permutations of
multilayer modular variability. For a given node, the surrogate multilayer modular variability
value was assigned as the mean value of the vertexes within that node. As aresult, surrogate
brain maps of multilayer modular variability were generated to assess the statistical significance
of the spatial correspondence between multilayer modular variability and cortical gradient,
cortical expansion, ICC, neurocognitive flexibility, neurotransmitter receptor and transporter
density distributions, and gene expression.

In addition, the spin test was used to assess whether the mean multilayer modular variability,
ICC and heritability of each hierarchical system were determined by the cortical partitions or by
spatial autocorrelation. Briefly, we performed the spin test (10,000 repetitions) to permute the
positions of the systems under the premise of preserving spatial autocorrelation, and then the
mean multilayer modular variability, ICC and heritability value for each system were
recomputed. These mean values were further expressed as z scores relative to the null mode,
with positive/negative z values representing real values greater/smaller than those expected by
chance. The Pvalue (i.e., Psin) Of the spin test was calculated as the proportion by which the
values of the null models are greater in magnitude than the empirical observations.

27


https://doi.org/10.1101/2024.01.21.576523
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.21.576523; this version posted January 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary
linked to this article.

Data availability

The HCP dataset, including structural MRI, functional MRI, and diffusion-weighted MRI, is
available in the HCP ConnectomeDB (https.//db.humanconnectome.org/). The neurocognitive
flexibility datais publicly available at
https://surfer.nmr.mgh.harvard.edu/fswiki/BrainmapOntology Yeo2015. The neurotransmitter
receptor and transport density distribution data are publicly available at
https://github.com/netneurolab/hansen_receptors. The AHBA dataset is publicly available at
https://human.brain-map.org/static/download. Intermediate data supporting the results are
available at https://github.com/wangxyue/ Topographi c-cognitive-neurobiol ogi cal-profiling-of -
interdependent-SC-FC.

Code availability

All analysis code is available at https://github.com/wangxyue/ Topographic-cognitive-
neurobiologi cal -profiling-of-interdependent-SC-FC.
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