

Lecanemab Blocks the Effects of the A β /Fibrinogen Complex on Blood Clots and Synapse Toxicity in Organotypic Culture

Pradeep Kumar Singh¹, Elisa Nicoloso Simoes Pires¹, Zu-Lin Chen¹, Daniel Torrente¹, Marissa Calvano¹, Anurag Sharma², Sidney Strickland^{1*}, Erin H. Norris^{1*}

¹Patricia and John Rosenwald Laboratory of Neurobiology and Genetics,
The Rockefeller University, New York, NY, 10065

²Electron Microscopy Resource Center, The Rockefeller University, New York, NY, 10065

Correspondence:

Erin H. Norris (enorris@rockefeller.edu)
Sidney Strickland (strickland@rockefeller.edu)
The Rockefeller University
Patricia and John Rosenwald Laboratory of Neurobiology and Genetics
1230 York Ave
New York, NY 10065

Author Contributions: P.K.S., E.N.S.P., S.S., and E.H.N., designed research; P.K.S., E.N.S.P., Z.L.C., D.T., M.C., and A.S. performed experiments; P.K.S., S.S., and E.H.N., wrote the paper.

Competing Interests: The authors have no competing interests.

Classification: Biological Sciences/Neuroscience; NAS section: Biochemistry

Keywords: Alzheimer's disease, amyloid-beta, fibrinogen, fibrinolysis, lecanemab, ARIA

Abstract

Proteinaceous brain inclusions, neuroinflammation, and vascular dysfunction are common pathologies in Alzheimer's disease (AD). Vascular deficits include a compromised blood-brain barrier, which can lead to extravasation of blood proteins like fibrinogen into the brain. Fibrinogen's interaction with the amyloid-beta (A β) peptide is known to worsen thrombotic and cerebrovascular pathways in AD. Lecanemab, an FDA-approved antibody therapy for AD, shows promising results in facilitating reduction of A β from the brain and slowing cognitive decline. Here we show that lecanemab blocks fibrinogen's binding to A β protofibrils, normalizing A β /fibrinogen-mediated delayed fibrinolysis and clot abnormalities *in vitro* and in human plasma. Additionally, we show that lecanemab dissociates the A β /fibrinogen complex and prevents fibrinogen from exacerbating A β -induced synaptotoxicity in mouse organotypic hippocampal cultures. These findings reveal a possible protective mechanism by which lecanemab may slow disease progression in AD.

Main

Alzheimer's disease (AD) is a neurodegenerative dementia characterized by the accumulation of amyloid-beta (A β) aggregates in the brain parenchyma and in/around blood vessels (cerebral amyloid angiopathy,

CAA)(1, 2). An early feature in AD is the disruption of the blood-brain barrier (BBB), which leads to the extravasation and accumulation of blood proteins within the brain, worsening AD pathology(1, 3, 4).

Fibrinogen, an abundant blood protein and major component of blood clots, can form a complex with A β upon binding to A β 's N-terminus (residues 8-20)(1, 5). A β may contribute to vascular abnormalities in AD by binding to fibrinogen and altering fibrin clot degradation(1). Consistent with this idea, reducing fibrinogen levels, or inhibiting A β /fibrinogen binding in AD mice leads to decreased BBB permeability, reduced neuroinflammation, decreased CAA, and less cognitive decline(6, 7).

The FDA-approved immunotherapy for AD, lecanemab, directed against A β protofibrils, reduces A β burden and slows cognitive decline in AD patients (8). However, little is known regarding its mechanisms-of-action. Lecanemab targets A β 's N-terminus (residues 1-16), overlapping with fibrinogen's binding site on A β (2, 5).

We investigated the interaction between A β 42 and fibrinogen in the absence and presence of lecanemab (Fig 1A-C). Lecanemab blocked A β 42 binding to fibrinogen in a dose-dependent manner, while human IgG had no effect. The A β 42 preparation used was comprised of curvy linear aggregates (small protofibrils) 30-90 nm in length (Fig 1D).

The interaction between A β 42 and fibrinogen leads to an abnormal clot structure that is resistant to plasmin-induced fibrinolysis(1). Since lecanemab blocked the A β 42/fibrinogen interaction, we analyzed the effect of lecanemab on A β 42/fibrinogen-mediated impaired fibrinolysis in a purified protein system. As reported, A β 42 protofibrils delayed plasmin-induced fibrinolysis. However, lecanemab blocked this effect of A β 42, whereas human IgG did not (Fig 1E&F).

A β 42 aggregates also alter fibrin clot turbidity, an indicator of altered fibrin assembly (7). Lecanemab, but not human IgG, rescued the defect in fibrin assembly caused by A β 42 protofibrils (Fig 1E&G). We also analyzed clot morphology using scanning electron microscopy (SEM). As previously reported, A β 42 disrupts normal clot morphology, causing thinning of the fibrin bundles, abnormal clustering, and entangled clumps (Fig 1H-J). However, in the presence of A β 42 protofibrils and lecanemab, these structural clot abnormalities were significantly corrected (Fig 1H-J). Human IgG control had no effect on A β 42-induced clot abnormalities (Fig 1H-J).

To determine if lecanemab inhibits the A β 42/fibrinogen complex *ex vivo*, we incubated biotinylated A β 42 protofibrils (B-A β 42) with buffer, lecanemab, or human IgG and added them to normal human plasma (NHP). Immunoprecipitation was performed to pull down A β 42 and any bound proteins. Fibrinogen immunoprecipitated with A β 42 (Fig 2A&B). However, in the presence of lecanemab, A β 42 did not pull-down fibrinogen, indicating that lecanemab blocked A β 42/fibrinogen complex formation in NHP (Fig 2A&B). Also, consistent with the *in vitro* results (Fig 1E-J), lecanemab significantly corrected A β 42-induced clot abnormalities in human plasma (Fig 2C-H).

Synapse loss in AD is associated with memory impairment(4, 9). For example, the reduction of presynaptic protein synaptophysin (SYP) and post-synaptic density protein-95 (PSD-95) in the hippocampus corresponds to cognitive deficits in AD(10, 11). Extravasated fibrinogen can contribute to synaptic dysfunction(1, 3, 4, 12). Therefore, we explored if lecanemab could alter fibrinogen's effect on A β 42-mediated synaptotoxicity by examining the levels of SYP and PSD-95 in mouse organotypic hippocampal culture (OHC). Treatment of OHCs with a mixture of A β 42 protofibrils and fibrinogen reduced SYP and PSD-

95 (Fig 2I-K). Lecanemab, but not human IgG, inhibited A β 42/fibrinogen-mediated synaptic changes (Fig 2I-K).

Lecanemab also dissociated preformed A β 42/fibrinogen complexes in human plasma (Fig 2L&M). Moreover, lecanemab mitigated synaptotoxicity induced by preformed A β 42/fibrinogen complexes in mouse OHCs (Fig 2N-P). Therefore, the ability of lecanemab to block A β /fibrinogen complex formation or dissociate the complex may be a component of its beneficial effects.

Amyloid-related imaging abnormalities (ARIA), a side effect of A β immunotherapy, are common in CAA(2, 13). Blocking the A β /fibrinogen interaction reduces CAA pathology and improves memory in AD mice(6). Our results show that lecanemab also targets the A β /fibrinogen complex. Although in some AD patients lecanemab treatment induces serious ARIA, it causes less ARIA than other anti-A β antibodies(2, 8, 14). Future studies are necessary to understand the connection between the A β /fibrinogen complex, lecanemab, and ARIA.

Our findings suggest that further investigations into lecanemab's mechanisms-of-action are necessary in AD mouse models and AD patients. Studies include assessing lecanemab's efficacy in dissociating and method of clearing A β /fibrinogen complexes *in vivo* and understanding its mechanism in mitigating A β /fibrinogen-induced synaptotoxicity. Moreover, given the neurodegenerative impact of extravasated fibrin(ogen) into the brain parenchyma independent of A β (1, 3, 4), exploring a combinatorial therapeutic strategy using lecanemab alongside a fibrin-specific antibody or another relevant target could be a promising treatment plan to improve upon the current AD immunotherapies (12).

Materials and Methods

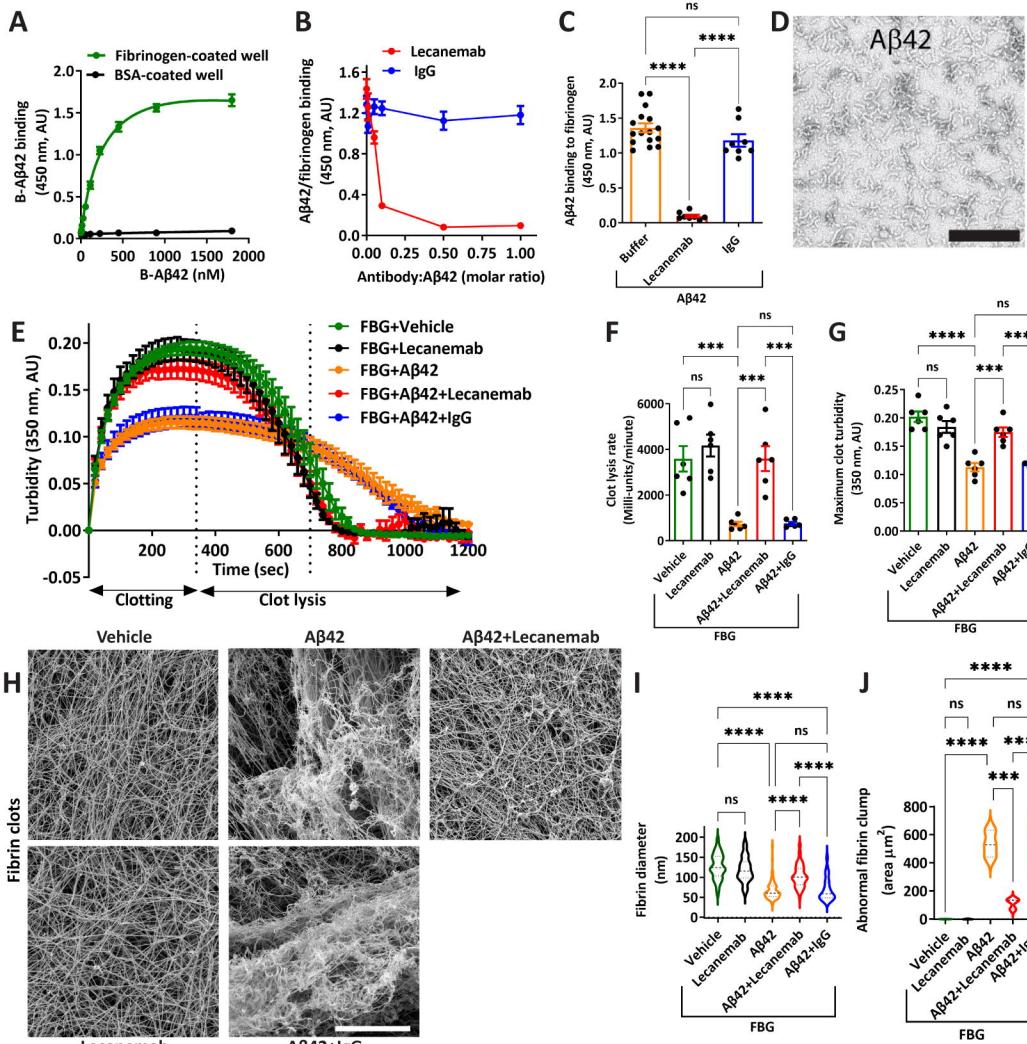
Details of reagents and methods (A β 42 preparation, binding, immunoprecipitation, *in vitro* and *ex vivo* clotting and fibrinolysis, EM, and mouse OHCs) are included in the supporting information.

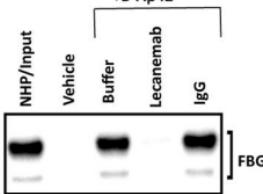
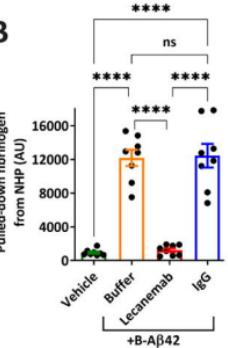
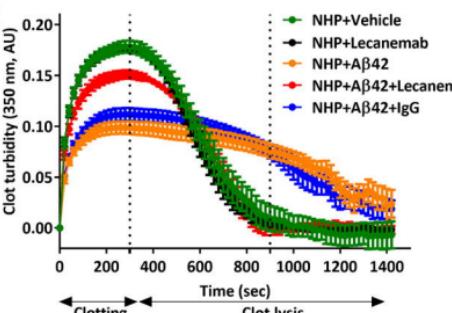
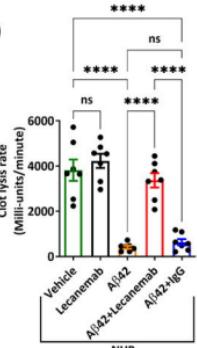
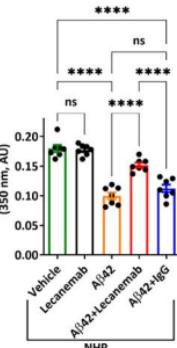
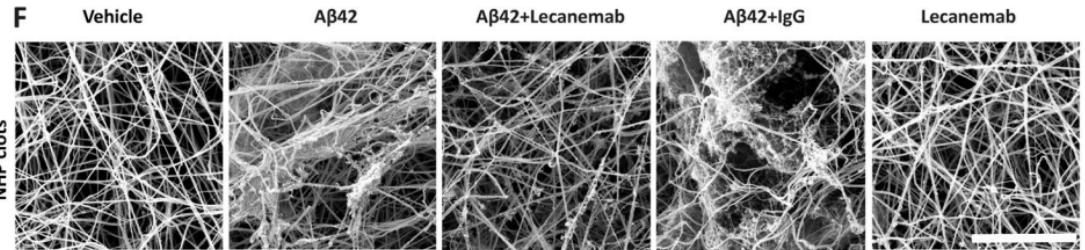
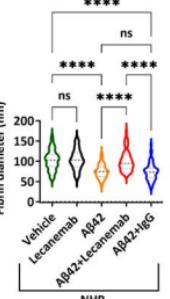
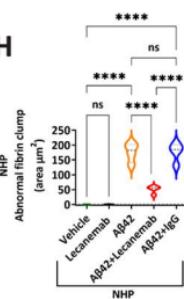
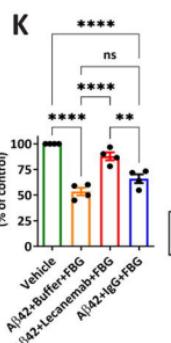
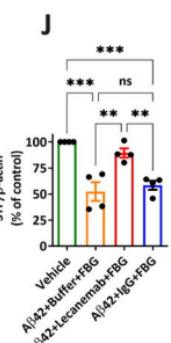
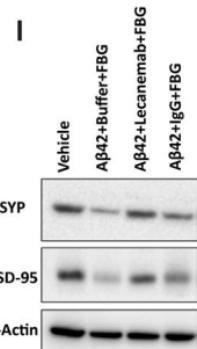
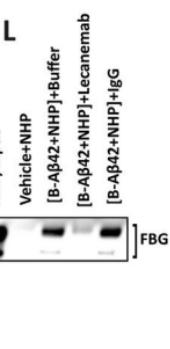
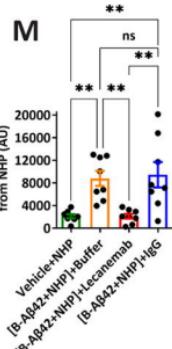
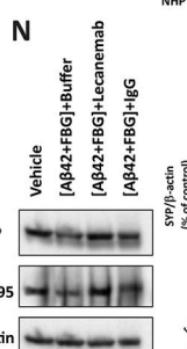
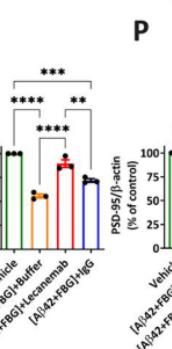
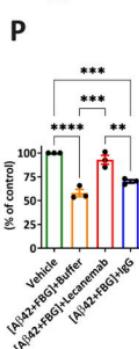
Acknowledgements

This work was supported by NIH grant NS106668, Samuel Newhouse Foundation, John A. Herrmann, Zina Stern Fellowship, Mr. and Mrs. Pamela and Bill Michaelcheck, and May and Samuel Rudin Family Foundation.

Figure legends

Figure 1. Lecanemab restores A β 42 protofibril-induced delayed fibrinolysis and clot abnormalities by inhibiting the A β 42/fibrinogen interaction *in vitro*. **(A)** Biotinylated A β 42 protofibrils (B-A β 42) bind to fibrinogen-coated wells. **(B)** Lecanemab dose-dependently blocked the binding of B-A β 42 to fibrinogen, while human IgG control (IgG) had no effect. **(C)** Quantification of **B** (at equimolar ratio). **A-C:** Data from 3 independent experiments, n=8-16/group. **(D)** Transmission electron micrograph of A β 42 protofibrils. Scale bar, 200 nm. **(E)** Turbidity assay shows clotting and clot lysis phases. Lecanemab, but not control IgG, corrected the A β 42-induced delayed fibrinolysis. **(F)** Quantification of clot lysis rate in **E** (slopes between vertical dotted lines). **(G)** Quantification of maximum clot turbidity in **E**. **E-G:** Data from 6 independent experiments, n=6/group. **(H)** Representative scanning electron micrographs of fibrin clots from purified fibrinogen with different treatments. Scale bar, 10 μ m. **(I, J)** Quantification of fibrin diameter and total area of abnormal fibrin clumps/clusters in clot images. Data from three independent experiments. Vehicle


constitutes PBS+DMSO. Comparisons among multiple groups were performed using one-way ANOVA followed by Newman-Keuls multiple comparison test. Data are presented as mean \pm SEM. ****p<0.0001, ***p<0.001; ns, not significant.

















Figure 2. Lecanemab blocks A β 42 protofibril-induced clot abnormalities and delays fibrinolysis in normal human plasma (NHP) and A β 42/fibrinogen-mediated synaptotoxicity in mouse organotypic hippocampal culture (OHC). **(A)** Biotinylated A β protofibrils (B-A β 42) immunoprecipitated fibrinogen from NHP but did not in the presence of lecanemab. Control IgG had no effect. **(B)** Quantification of A. Data from 3 independent experiments; n=8/group. **(C)** Clotting and fibrinolysis in NHP using turbidity assay. Lecanemab restored the A β 42-induced delayed fibrinolysis in NHP. **(D)** Quantification of clot lysis rate in C (slopes between vertical dotted lines). **(E)** Quantification of maximum clot turbidity in C. **C-E:** Data from 7 experiments, n=7/group. **(F)** Representative scanning electron micrographs of clots formed from NHP with different treatments. Scale bar, 5 μ m. **(G, H)** Analyses of scanning electron micrographs showing quantifications of fibrin diameter and total area of abnormal fibrin clumps/clusters. Data from 3 independent experiments. **(I)** Western blotting shows A β 42+fibrinogen treatment reduced SYP and PSD-95 levels in OHC. However, in the presence of lecanemab, but not control IgG, the A β 42/fibrinogen-mediated reduction in PSD-95 and SYP was minimized. **(J, K)** Quantification of SYP and PSD-95. Data from 4 experiments. Changes in synaptic markers were not due to cell death as determined by propidium iodide staining. **(L)** B-A β 42 was added to NHP and incubated for one hour to form complexes with fibrinogen as shown in A. Lecanemab, buffer, or control IgG was then added. Western blot analysis of immunoprecipitation shows that lecanemab dissociated A β 42/fibrinogen complexes. **(M)** Quantification of L. Data is from 3 independent experiments. **(N)** Western blotting shows preformed [A β 42+fibrinogen] complex treatment reduced SYP and PSD-95 levels in OHC. However, treatment of preformed [A β 42+fibrinogen] complex with lecanemab mitigated its synaptotoxicity. **(O, P)** Quantification of SYP and PSD-95. Data from 3 independent experiments. Vehicle constitutes PBS+DMSO. Comparisons among multiple groups were performed using one-way ANOVA followed by Newman-Keuls multiple comparison test. Data are presented as mean \pm SEM. ****p<0.0001, ***p<0.001, **p<0.01; ns, not significant).

References

1. S. Strickland, Blood will out: vascular contributions to Alzheimer's disease. *J Clin Invest* **128**, 556-563 (2018).
2. E. Karan, B. De Strooper, The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. *Nat Rev Drug Discov* **21**, 306-318 (2022).
3. J. K. Ryu, J. G. McLarnon, A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer's disease brain. *J Cell Mol Med* **13**, 2911-2925 (2009).
4. M. Merlini *et al.*, Fibrinogen Induces Microglia-Mediated Spine Elimination and Cognitive Impairment in an Alzheimer's Disease Model. *Neuron* **101**, 1099-1108 e1096 (2019).
5. D. Zamolodchikov *et al.*, Biochemical and structural analysis of the interaction between beta-amyloid and fibrinogen. *Blood* **128**, 1144-1151 (2016).
6. H. J. Ahn *et al.*, A novel Abeta-fibrinogen interaction inhibitor rescues altered thrombosis and cognitive decline in Alzheimer's disease mice. *J Exp Med* **211**, 1049-1062 (2014).
7. M. Cortes-Canteli *et al.*, Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer's disease. *Neuron* **66**, 695-709 (2010).
8. C. H. van Dyck *et al.*, Lecanemab in Early Alzheimer's Disease. *N Engl J Med* **388**, 9-21 (2023).
9. S. Hong *et al.*, Complement and microglia mediate early synapse loss in Alzheimer mouse models. *Science* **352**, 712-716 (2016).

10. C. I. Sze *et al.*, Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. *J Neuropathol Exp Neurol* **56**, 933-944 (1997).
11. R. Sultana, W. A. Banks, D. A. Butterfield, Decreased levels of PSD95 and two associated proteins and increased levels of BCI2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of Abeta, and neurodegeneration in a prodromal stage of Alzheimer's disease. *J Neurosci Res* **88**, 469-477 (2010).
12. J. K. Ryu *et al.*, Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. *Nat Immunol* **19**, 1212-1223 (2018).
13. L. Sveikata, A. Charidimou, A. Viswanathan, Vessels Sing Their ARIAs: The Role of Vascular Amyloid in the Age of Aducanumab. *Stroke* **53**, 298-302 (2022).
14. M. Thambisetty, R. Howard, Lecanemab and APOE Genotyping in Clinical Practice-Navigating Uncharted Terrain. *JAMA Neurol* **80**, 431-432 (2023).

A**B****C****D****E****F****G****H****I****L****M****N****O****P**