
 1 

Single-cell morphodynamical trajectories enable 

prediction of gene expression accompanying cell state 

change 

 

Authors: Jeremy Copperman3*, Ian C. Mclean1, Sean M. Gross, Young Hwan Chang1,2, Daniel 

M. Zuckerman1,2*, and Laura M. Heiser1,2* 

 

Affiliations: 

1 Department of Biomedical Engineering, Oregon Health and Science University, Portland OR 

97239, U.S.A. 

2 Knight Cancer Institute, Oregon Health and Science University, Portland OR 97239, U.S.A 

3 Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 

Portland OR 97239, U.S.A. 

* corresponding authors (copperma@ohsu.edu, zuckermd@ohsu.edu, heiserl@ohsu.edu) 

 

Abstract  

Extracellular signals induce changes to molecular programs that modulate multiple cellular 

phenotypes, including proliferation, motility, and differentiation status. The connection between 

dynamically adapting phenotypic states and the molecular programs that define them is not well 

understood. Here we develop data-driven models of single-cell phenotypic responses to 

extracellular stimuli by linking gene transcription levels to <morphodynamics= 3 changes in cell 

morphology and motility observable in time-lapse image data. We adopt a dynamics-first view of 

cell state by grouping single-cell trajectories into states with shared morphodynamic responses. 

The single-cell trajectories enable development of a first-of-its-kind computational approach to 

map live-cell dynamics to snapshot gene transcript levels, which we term MMIST, Molecular and 

Morphodynamics-Integrated Single-cell Trajectories.  The key conceptual advance of MMIST is 

that cell behavior can be quantified based on dynamically defined states and that extracellular 

signals alter the overall distribution of cell states by altering rates of switching between states. We 

find a cell state landscape that is bound by epithelial and mesenchymal endpoints, with distinct 

sequences of epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition 

(MET) intermediates. The analysis yields predictions for gene expression changes consistent with 

curated EMT gene sets and provides a prediction of thousands of RNA transcripts through 
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extracellular signal-induced EMT and MET with near-continuous time resolution. The MMIST 

framework leverages true single-cell dynamical behavior to generate molecular-level omics 

inferences and is broadly applicable to other biological domains, time-lapse imaging approaches 

and molecular snapshot data.  
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Introduction  

Uncovering how cells process microenvironmental signals to activate molecular programs that 

lead to changes in cell state is critical for understanding mechanisms of both normal and disease 

physiology. Cell state is determined by molecular and cellular composition, including genome and 

chromatin structure1,2, proteomic3 and transcript levels4, mitochondrial function5, and metabolic 

activity6. Cell state is intrinsically mutable and is influenced by various extracellular cues including 

adhesion7, mechanical signals8, soluble-ligand signaling9, and vesicle trafficking10. Here we define 

discrete cell states based on quantitative analysis of live-cell image data. 

 

Single-cell omic analyses have provided an unprecedented catalog of cell states across both 

normal and diseased tissues11,12 while spatially-resolved sequencing13 and highly multiplexed 

imaging14316 have revealed insights into their spatial organization; however, all of these 

approaches lack single-cell time-ordered information, limiting the ability to draw mechanistic 

insights. Live cell imaging, on the other hand, readily captures cellular dynamics over timescales 

of seconds to days, but is limited to a small number of molecular read-outs17320. Further, analysis 

of live-cell data typically relies on single timepoint <snapshots= of cell morphology or fluorescently-

labeled reporters21324. To overcome these limitations, we recently developed a morphodynamical 

trajectory embedding method that leverages hidden information from time-ordered live-cell 

trajectories, enabling improved prediction of future behavior as compared to single-snapshot-

based predictions25. 

 

It is increasingly appreciated that mechanistic understanding of both normal and diseased 

biological systems will require consideration of cell state dynamics. Several recent methods 

describe gene expression dynamics by imposing a dynamical model upon static single-cell 

measurements26328, including pseudo-time estimation29,30 and RNA velocity31,32. In contrast to 

these methods, we develop our dynamical model based upon the direct observation of single-cell 

dynamics obtained from live-cell imaging. Following deconvolution methods designed to estimate 

cell type fractions in bulk RNA-seq data, here we adopt a linear decomposition approach to 

identify associations between image and gene expression data33336. The central premise of our 

method is that live-cell imaging and bulk molecular profiling data share commonly identifiable cell 

states. We now extend our morphodynamical analysis25 by defining cell states based on the 

morphological changes of individual cells over time. To apply this definition to live-cell imaging 

data, we obtain quantitative dynamical models of single-cell behavior via morphodynamical 

trajectories. In practice, we resolve a cell state landscape over hundreds of <microstate= centers, 
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where transitions among microstates are described in a discrete-time Markov model 

framework37,38. Our data-driven modeling approach extends other statistical physics transition 

path-based efforts39,40 by characterizing cell state changes quantitatively observed in live-cell 

imaging data, yielding distinct states that can be linked to unique molecular programs observed 

in companion molecular profiling data.  

 

In this work, we study molecular and cellular changes in response to a panel of ligands via paired 

bulk RNA sequencing (RNAseq) and live-cell imaging. We focused on the well-characterized 

human mammary epithelial MCF10A cell line41,42,  a non-transformed cell line that recapitulates 

key features of epithelial biology, including migration43,44  and organoid formation45,46.  It is also 

easily manipulated in a variety of assays including live-cell imaging47,  knock-down42,  and 

chemical perturbation 48, and therefore is commonly used for cell biology studies. Prior studies 

have used MCF10A cells to probe epithelial responses to growth factors and cytokines49 and to 

uncover molecular programs associated with EMT50–56. We explore ligand-induced cell state 

changes in MCF10A cells via Molecular and Morphodynamics-Integrated Single-cell Trajectories 

(MMIST), a novel computational methodology integrating live-cell imaging-observed dynamics 

and gene expression profiling. We focus on cellular response to TGFB as an illustrative example 

and demonstrate the quantitative linkage of EMT-associated live-cell phenotypic responses with 

EMT molecular programs that we validated in an external dataset57. In total, our novel data-driven 

modeling approach captures cell state change along sequences of cell state intermediates via 

live-cell and gene expression phenotypes and enables linkage of imaging and molecular data to 

uncover molecular correlates of distinct morphodynamic cell states.   

 

Results 

 

Experimental data to facilitate multimodal integration of morphodynamical and gene 

expression measurements of cell state change 

Our method is designed to infer molecular programs associated with distinct cell states by linking 

morphodynamic measurements acquired in live-cell imaging data to companion snapshot 

molecular data. We analyze a recently published LINCS MCF10A ligand perturbation dataset49 

which consists of paired live-cell imaging and bulk transcriptomic measurements of MCF10A cells 

after treatment with 6 ligands, including Epidermal Growth Factor (EGF), Transforming Growth 

Factor Beta (TGFB), and Oncostatin M (OSM). We also leverage live-cell image data and 
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transcriptomic measurements of MCF10A cells genetically engineered to express a nuclear and 

a cell cycle reporter58 and exposed to combinations of the ligands above.  

 

Our data analysis pipeline, illustrated in Figure 1, leverages companion live-cell image stacks 

and gene expression measured in bulk RNAseq as input, and utilizes statistical physics 

approaches to yield maps of cell states and their and transition sequences59,60. Here we outline 

the major steps. (a) First, we analyze the live-cell image data to identify cell nuclei by training a 

virtual nuclear reporter 61 on paired phase contrast and nuclear reporter images, then virtually 

stain nuclei in the entire dataset (Supplementary Figure 1). We <featurize= individual cells to 

quantify cell shape and texture and also perform local environment featurization using Voronoi 

boundaries based on the nuclear centers. We track individual cells across images with Bayesian 

belief propagation62 and compute motility as cell displacement between frames (Supplementary 

Data Table 1 and Supplementary Figure 2). (b) Cell features are analyzed over trajectory 

snippets (all possible cell sub-trajectories of a particular length in a sliding window manner) 

utilizing our morphodynamical trajectory embedding methodology25. (c) Morphodynamical 

trajectories are used to build a data-driven dynamical model of cell states. (d) Cell states observed 

in the image data are mapped to gene transcript levels using linear decomposition. The outputs 

of our approach are temporal sequences of morphodynamical cell state changes and their 

associated gene expression levels. 
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Single-cell trajectories define morphodynamical cell states 

Our goal is to group cells into states with shared dynamical progression4i.e., those that cluster 

together based on a similar time progression of shape, texture, and motility features. The 

morphodynamical trajectory space is a time-concatenation of image-based features25 in which we 

place hundreds of <microstate= centers via clustering. We then count transitions among 

microstates to build a data-driven transition matrix Markov model of cell state progression37,38. 

Next, microstates are grouped into coarser <macrostates= using a spectral clustering 

Figure 1: MMIST approach to link live-cell imaging to molecular read-outs. 

a) Live-cell imaging of MCF10A cells after treatment with a panel of microenvironmental ligands. 

Nuclei are identified using a convolutional neural network, and single-cells are featurized and 

tracked through time. b) Single-cell features are concatenated along single-cell trajectories to 

construct the morphodynamical trajectory embedding. c) Dynamical models learn cell states and 

cell state change sequences in the morphodynamical landscape. d) Cell state populations are used 

as a linear decomposition of bulk gene expression measurements to predict the gene expression 

programs underlying cell state change. 
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procedure63,64. We refer to these macrostates as morphodynamic states, or simply states. The 

eigenfunctions of the dynamical model represent dynamical motifs, which we visualize using 

UMAP65 dimensionality reduction to facilitate interpretation of cell states (Figure 2a). Ligand 

treatments induce unique cell state changes and transition flows as compared to negative control 

(PBS) (Figure 2b). The complete set of ligand-dependent cell state populations are shown in 

Supplementary Figure 4c, and population distributions and transition flows are shown in 

Supplementary Figure 5.  

 

The derived states largely resolve differences in morphodynamical properties such as the cell-

cell contact fraction, local alignment of cell-cell motility, motility speed, and cell-cycle phase 

(Figure 2c-j). Cell states 5 and 10 represent two distinct morphodynamic states bracketing the 

morphodynamical cell state space. State 5 is characterized by mesenchymal-associated features 

such as lower local alignment of cell motility, more extended cytoskeletal features, greater cell 

spreading, and an extended G1 cell cycle duration (Figure 2j); this state population increases 

under TGFB containing treatments. In contrast, state 10 is characterized by many epithelial-

associated features, including increased multicellular clustering and collective motility which are 

increased after treatments that include OSM; these represent an altered epithelial phenotype that 

maintains epithelial-associated characteristics.49 Between these two states, we observe 

intermediate states with short cell cycle duration (Figure 2f,j), increased motility (Figure 2e,i) and 

the fewest cell-cell contacts (Figure 2c,g). Under EGF treatment, which is typically added to 

MCF10A cell culture medium41, cells transition between these intermediate states (Figure 2b). 

Thus, based upon morphodynamical features, the derived cell state space matches the well-

described biological framework of epithelial and mesenchymal cell states66, including extended 

G1 duration in the mesenchymal state67370.   
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Figure 2: Data-driven models define morphodynamical cell states and state transition 
dynamics. 

a.) Dynamical embedding landscape from 200 microstates (dots) constructed from 

morphodynamical trajectories (trajectory snippet length = 10H), and average flows (gray arrows), 

colored and labeled by cell state groupings, i.e., numbered cell <states.=  Also shown, below, are 
images from first and last frames of representative trajectory snippets (10H trajectory length) from 

each state with nuclear segmentations (red contours) and associated Voronoi segmentation (yellow 

contours). b.) Cell state flow (at t=24H) by ligand treatment. c.-f.) Cell morphology, motility, and 

cell cycle features by morphodynamical cell state.  Panels (g) and (h) show violin-plot distributions 

of single-cell values, (i) shows average behavior with uncertainty based on single-cell variation, 

and (j) shows modeled cell-cycle phase durations averaged over single-cell behavior. 
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Morphodynamic trajectories reveal transcriptional dynamics via state mapping across 

modalities 

Motivated by the observation that the morphodynamic cell states recapitulate aspects of EMT, we 

next sought to identify the underlying molecular programs associated with cell state transitions. 

The process relies on having both morphodynamical observations and molecular measurements 

for an identical set of experimental treatments to enable linkage of RNA transcript levels to the 

morphodynamical states delineated above. The primary assumption 3 which can be considered 

a hypothesis being tested 3 is that an observed morphodynamical state corresponds to the same 

RNA levels regardless of the ligand treatment. Consider the example of linking RNA levels to two 

distinct states (motile and non-motile), where the cell state frequencies are modulated by ligand 

treatment. If ligand A induces an increase in the motile cell state population as compared to B 

and also higher RNA levels for gene X, then we infer that motility is linked to expression of gene 

X. This qualitative idea can be made exact in a simple linear algebra framework by decomposing 

each measured average transcript level as a linear sum over morphodynamical state populations 

(Supplementary Figure 4c) and gene expression profiles.  

 

We first validate the linear population matching approach by assessing its capability to predict 

withheld gene expression levels in ligand combination conditions. The method requires at least 

as many paired live-cell imaging and RNAseq measurements as states, so we performed a 

separate clustering into 10 morphodynamical cell states, allowing us to withhold the OSM+EGF, 

EGF+TGFB, and the triple combination OSM+EGF+TGFB RNAseq data from the training set 

used to extract morphodynamical cell state gene expression profiles. The morphodynamical cell 

state populations from the live-cell imaging in the withheld test set treatments, combined with 

morphodynamical cell state decomposed gene expression levels from the training set, enable a 

prediction of the RNAseq in the test set (Figure 3a). The predictive capability of the model is 

maximized at a trajectory length of 10 hours, where these predictions yield a Pearson correlation 

>0.7 to the test set gene expression and high significance compared to a null model with random 

state populations (p-value<0.001, upper-tailed test, Figure 3b); correlation coefficients and true 

positive rates to predict up/down regulation for different trajectory lengths are in Supplementary 

Data Table 2. Performance exceeding the random null model demonstrates that the defined 

states exhibit treatment-independent association with the inferred expression levels. These 
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findings provide support for the validity of our approach to link morphodynamical states observed 

in image data to companion molecular measurements. 

 

 

MMIST identifies ligand-induced EMT and MET morphodynamical cell state change 

sequences 

We next focused on epithelial-mesenchymal morphological features as an illustrative use case of 

MMIST. Analysis of the morphodynamical cell states revealed features associated with canonical 

epithelial and mesenchymal states, including changes in cell-cell motility alignment and cell 

clustering (Figure 2c-j). These findings are consistent with the observation that 

microenvironmental signals can strongly modulate differentiation state of MCF10A cells4for 

example to form epithelial-differentiated multicellular acinar structures in 3D cultures71 or to 

promote a mesenchymal phenotype under TGFB treatment52,53,56,57. We used our framework to 

examine the relationship between these states and the influence of microenvironmental signals 

in mediating transitions between them, which builds on prior studies of epithelial-mesenchymal 

transition (EMT) and mesenchymal-epithelial transition (MET)26,40,52,57. To study EMT in our 

framework, we assigned state 1 as the most highly populated state at the initial trajectory time 

window (10 hours), while state 5 was assigned as mesenchymal due to its morphological features 

and enrichment in the TGFB condition. We set the most highly populated state at the initial time 

window as the initial state to facilitate identification of the most common ligand-induced state 

Figure 3: Morphodynamical cell states predict ligand combination gene expression. 

a.) Validation of model gene expression predictions: measured and model-reconstructed gene 

expression at 24hrs for every experimental condition, including training set (light gray) and test set 

conditions, b.) Correlation between measured and model-predicted gene expression (red diamonds), 

and null estimates using random state populations (gray violin plots).   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.576248doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.576248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

transitions ending in the mesenchymal-like state 5. For MET, we assign state 8 as the final state 

because it is enriched over time in the control EGF treatment as cells reach confluence 

(Supplementary Figure 6). 

 

We observe robust but distinct state transition sequences for the EMT and MET transitions, 

consistent with a highly driven nonequilibrium system72,73. For EMT the dominant sequence of 

states is (1,2,3,4,5) but for MET, the primary sequence is (5,6,7,8), shown in Figure 4a,b. 

Transitions back to state 1 are common in most treatments (Figure 2b and Supplementary 

Figure 5). The dominant sequences of state changes are robust across ligand treatments, though 

the probability of specific state-to-state transitions varies. For instance, OSM treatment drives 

most cells towards dense and collectively migrating epithelial-like clusters (state 10), but for the 

rare cells which do reach state 5 from state 1, the dominant sequence of states remains the same 

(Supplementary Figure 7). 

 

MMIST revealed unique expression patterns associated with each morphodynamical cell state 

(Figure 4c). We performed gene set enrichment over the Hallmark gene sets74 on the derived 

morphodynamical state gene expression profiles. The morphodynamical state-decomposed gene 

expression along the EMT state change sequence shows a transition from a proliferative program 

enriched for Hallmark Myc Targets V1 and V2, E2F targets, and G2-M transition, to a 

mesenchymal program enriched for IL4/JAK/STAT3, TNFA via NFKB, Angiogenesis, and 

Epithelial to Mesenchymal Transition (Figure 4d). This switch from a proliferative program to a 

mesenchymal gene expression program augments our observation that cell-cycle phase 

durations co-varied with mesenchymal-like features observed in the live-cell data (Figure 2j). 
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Figure 4: Morphodynamical cell states predict ligand combination gene expression. 

a.-b.) Cell state change pathways (black arrows; thickness proportional to probability flux carried by 

each state-to-state transition) based on cell states from Figure 2a, and cell state change commitment 

probability (blue to red) in EGF (reference positive control) condition. Also shown are representative 

single-cell trajectory (dark blue to turquoise arrows, 30min timestep) and cell images (1 hr between 

images). c.) Differential gene expression in each morphodynamical cell state (top 8000 most variable 

genes), with magenta and green labels corresponding to assignment to Hallmark gene sets labeled in 

d., and transcription factors labeled on y-axis. d.) Hallmark gene set enrichment over EMT/MET 

associated cell states. 
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Near-continuous gene expression time evolution prediction during TGFB-driven EMT 

MMIST yields near-continuous evolution of morphodynamical cell state populations by counting 

transitions between microstates extracted from single-cell trajectories. For example, EGF+TGFB 

leads to an increase in mesenchymal-like states 4, 5, and 6, whereas these states are decreased 

after EGF-only treatment (Figure 5a). A key component of MMIST is to model cell state evolution 

with a Markov model. We assessed this aspect of the model by comparing inferred and modeled 

state populations as a function of time after EGF+TGFB treatment. The model largely reproduces 

the morphodynamical state population trends observed in the live-cell imaging experiment, 

supporting the validity of our Markov assumptions (Figure 5b). 

 

Our computational framework enables a prediction of gene transcript levels at the same near-

continuous time intervals as those measured in the live-cell image data. Conceptually, we do this 

by leveraging the observation that each morphodynamical state is associated with a gene 

expression profile and then predict the bulk gene expression over time by computing a weighted 

sum of the states observed in each treatment condition (Figure 5c). Under EGF+TGFB, our 

model predicts a continuous shift in multiple gene programs, including decreases in proliferation-

associated programs and increases in mesenchymal-associated programs (Figure 5d). MMIST 

can also be used to predict future, unmeasured shifts in cell state populations. For example, the 

model predicts large shifts in state populations between 0-48H, which we observed 

experimentally; however, it also predicts continued subtle shifts in state populations beyond the 

48H duration of the experiment (Figure 5e). We next assessed the ability of our model to predict 

unseen changes in gene expression programs. Here, we trained our model with RNAseq data 

collected at 24H post-treatment, then used it to predict gene expression profiles at 48H based on 

the predicted morphodynamical state populations shown in Figure 5e. We assessed our 

predictions by computing the correlation between experimentally measured and predicted 

expression profiles, after normalizing to t=0H. The correlation between predicted t=48H gene 

expression profile and the withheld t=48H RNAseq data is ~0.5 (Figure 5f and Supplementary 

Figure 4). In contrast, t=24H and t=48H experimentally measured RNAseq profiles show 

correlations of ~0.25, indicating that MMIST predictions can capture molecular programs 

associated with morphodynamic state change.  

 

The transcriptional programs associated with TGFB-driven EMT have been previously 

investigated in MCF10A cells, and datasets generated through these efforts provide a useful tool 

for independent validation of our model52,53,56. To evaluate the EMT-associated signature 
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extracted via our morphodynamical analysis, we compare our results to a recently published, 

independent, time-resolved gene expression dataset of MCF10A cells treated with EGF+TGFB 

then harvested for molecular profiling at multiple timepoints including 24, 48, 72 and 96 hours 

post-treatment, (<PAMAF= data)57; this dataset lacked companion live-cell image data. We first 

assess the biological significance of the model-assigned morphodynamic states based on gene 

expression levels, finding positive correlation between PAMAF measurements and mesenchymal 

morphodynamical cell states 4 and 5 after EGF+TGFB treatment (Figure 5g). Consistent with 

this, epithelial states 6,7, and 8 are among the least correlated. Together, these findings provide 

support for the robustness of MMIST to identify meaningful biological signals that can be validated 

in independent data sets. 
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Discussion and Conclusion 

Single-cell sequencing and spatial omics methods have provided detailed molecular profiling of 

cellular heterogeneity in single time-point snapshots13. However, there are no methods yet that 

yield time-resolved molecular profiles with a similar level of detail. RNA velocity and other 

algorithmic methods attempt to infer dynamics from fixed measurements26331, but they lack a 

Figure 5: Morphodynamical model predicts EGF+TGFB-induced EMT gene expression time 
evolution 

a) Morphodynamical states, which are numbered 1-12 and color-coded (mesenchymal: green, 

epithelial: purple).  Color labels for the states are consistent throughout figure. b) State probability 

time evolution, measured (grey dots) and model-derived (black lines). c) Prediction of gene 

expression over time at 30-minute intervals using morphodynamical state prediction and live-cell 

imaging measured state probabilities, showing the top 8000 most variable genes (top) and d) 

summarized to Hallmark gene sets (bottom). e) Model-predicted state probability time evolution 

over 96 hours, trained from live-cell imaging over 48 hours.  f) Correlation between measured and 

model-predicted gene expression at t=48H (red diamond) based on training data from t=24H, 

relative to null models with random state probabilities (gray distribution). Also shown: correlation 

between t=24H and t=48H gene expression (black X). g) Correlation between predicted 

morphodynamical state gene signatures and PAMAF measurements out to 4 days.  
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direct mapping to observed single-cell dynamics. Here we have presented a step in the direction 

of linking live-cell dynamics to deep molecular profiling, capturing sequences of morphodynamical 

cell state changes mapped to comprehensive gene expression profiles. Our approach provides a 

direct map from live-cell derived single-cell dynamics to gene expression for a small number of 

morphodynamical cell states defined through assessment of perturbation responses.  

 

We utilized a paradigm of cell behavior in which individual cells transition between different 

morphodynamic states with treatment-specific dynamics and state frequencies. Thus, we employ 

a trajectory space that is common to all observed experimental treatments, where ligand 

perturbation alters the rates of cell state changes. This report demonstrates the value of this 

paradigm, as it enables mapping of complex, spatiotemporal phenotypes to gene transcript levels. 

One limitation of the present model is that it is restricted to the range of behaviors observed for 

the particular cell type (MCF10A) under the treatments examined and does not represent a 

comprehensive assessment of all possible cell states. Thus, the derived (coarse-grained) 

dynamical models are incomplete. As live-cell information increases, for instance via the 

incorporation of multiplexed live-cell reporters and deep-learning based image featurization75378, 

integration with fixed single-cell and spatial omics profiling at endpoint may require a separation 

of shared information across cell populations from unique information to each single-cell79.  

 

From a physical theoretical point of view, the transition <mechanism= of a dynamical process is 

defined via the set of trajectories connecting two states of interest59,80382, for instance epithelial 

and mesenchymal cell states. The single-cell trajectory set that connects these basins contains 

the set of intermediate transition states39. Here, we have captured sequences of EMT and MET 

intermediates, consistent with the emerging view of epithelial and mesenchymal states as a 

continuum11,26. It is an open question of whether characterization of transition intermediates will 

yield insight into cell state control, which could inform the control of EMT-driven processes during 

development or disease progression, such as tumor invasion83,84. Future studies could extend our 

findings by employing inhibitor or gene knockout approaches to functionally assess EMT transition 

intermediates predicted to be critical for cell state control. 

 

Cell state biomarkers can predict sensitivity to targeted drugs85,86, and are expressed in a spatially 

organized manner in both healthy and diseased tissues87,88. Morphodynamical cell state 

definitions can expand upon known biomarker-based cell states, providing a prediction of the 

dynamical responses to biological manipulation. We expect that the linking of morphodynamics 
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to gene expression changes, in spatial context, will lead to a deeper understanding and control of 

cell state change in complex tissue and tissue-like environments. 

 

Characterization of the transition mechanism via live-cell image-based trajectories, such as we 

have presented, is not a mechanistic explanation at the molecular level. Time-ordered single-cell 

trajectories of the quantity of molecular species, such as gene transcripts, imply but do not prove 

causality. We speculate that utilizing molecularly detailed single-cell trajectory data to constrain 

mechanistic models could provide prediction of causal molecular relationships that could be 

experimentally validated. Our data-driven approach, as presented, does not yield a prediction for 

unmeasured perturbations, for instance response to different ligands or drugs. We speculate that 

mechanistic models89392, trained using the type of detailed trajectory data at the molecular level 

we have presented here, may enable prediction of cell behavior in unseen contexts. 

 

Live-cell phenotypic response to ligand perturbation is well-described by our single-cell 

morphodynamical trajectory-based data-driven modeling approach and enabled a mapping 

between live-cell phenotype and time-dependent gene expression changes. Our models yielded 

a validated prediction of near-continuous gene expression levels during ligand-driven EMT/MET 

in MCF10A cell culture. MMIST can be applied generally to characterize cell state changes in 

fundamental biology and, potentially, in various disease settings. 

 

Methods 

MCF10A Cell Culture MCF10A cells were cultured in growth media composed of DMEM/F12 

(Invitrogen #11330-032), 5% horse serum (Sigma #H1138), 20 ng/ml EGF (R&D Systems #236-

EG), 10 µg/ml insulin (Sigma #I9278), 100 ng/ml cholera toxin (Sigma #C8052), 0.5 µg/ml 

hydrocortisone (Sigma #H-4001), and 1% Pen/Strep (Invitrogen #15070-063). For all ligand 

response experiments, cells were seeded in growth media in collagen-coated well plates and 

allowed to attach for 6-hours. Cells were then washed with PBS, and growth media was replaced 

with growth-factor free media lacking EGF and insulin. After an 18-hour incubation, cells were 

treated with ligands in fresh growth-factor free media. Seven different ligand conditions were 

tested at concentrations previously determined to elicit maximal cell responses49 (EGF 10 ng/ml 

(R&D Systems #236-EG), OSM 10 ng/ml (R&D Systems #8475-OM), TGFB 10 ng/ml (R&D 

Systems #240-B), EGF 10 ng/ml + OSM 10 ng/ml, TGFB 10 ng/ml + EGF 10 ng/ml, OSM 10 

ng/ml + TGFB 10 ng/ml, TGFB 10 ng/ml + EGF 10 ng/ml + OSM 10 ng/ml). Wild type MCF10A 

cells were a generous gift from the Gordon B. Mills lab, and were used for all RNA-seq 
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experiments. For live-cell imaging experiments, parental WT MCF10A cells were genetically 

modified as described below.  

 

Live-cell imaging To assess cell-cycle responses to ligand treatments, MCF10A cells were 

genetically modified to stably express the HDHB cell-cycle reporter58 and a red nuclear reporter. 

The methodology used to generate the reporter cell line has been described previously93. 

Reporter cells treated with ligand were imaged every 15 minutes for 48 hours with an Incucyte 

S3 microscope (1020x1280, 1.49 ��/pixel). Three channels were collected -- phase contrast, red 

(nuclear) and green (cell-cycle) -- for four fields of view per well. The initial frame coincided with 

the addition of the ligands and fresh imaging media. A previously published dataset of live-cell 

imaging results (imaged every 30 minutes for 48 hours) was also analyzed in this study, specified 

here by appending a 1 to the treatment condition (e.g. EGF1)49. All matching ligand treatments 

utilized identical ligand sources and concentrations in both datasets. This additional dataset was 

generated from WT MCF10A cells dosed with a broad panel of single ligand treatments, using 

similar cell culture and imaging techniques. Further experimental protocols from this study can be 

found in detail at the publicly available Synapse database49.  

 

RNAseq Detailed description of sample preparation, processing, and alignment can be found in 

Gross et al49. For each ligand treatment, we performed a differential expression analysis from 

time zero controls on the RNAseq gene-level summaries with the R package DESeq2 (1.24.0), 

with shrunken log2 fold change estimates calculated using the apeglm method. We applied a 

minimum expression filter such that log2(TPM)>0.5 in at least 3 measurements over treatments 

and replicates (with TPM transcripts per million),  yielding 13,516 genes with measured differential 

expression from control used in our analysis. 

 

Image preprocessing Foreground (cells) and background pixel classification was performed 

using manually trained random forest classifiers using the ilastik software94. Images were z-

normalized (mean subtracted and normalized by standard deviation). In cell images, absolute 

values of these z-normalized pixel values are shown (white to black). Image stacks were 

registered translationally using the pystackreg implementation of subpixel registration95. 

 

Nuclear segmentation A convolutional neural network was trained to predict the nuclear reporter 

intensity from the matched phase contrast images for imaging data of WT MCF10A cells with no 

nuclear reporter. In the EGF, OSM, and TGFB conditions, 4 image stacks (12 total) were used to 
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train the FNET 3D reporter prediction CNN from the Allen Cell Science Institute61, with time as 

the third dimension rather than z-dimension. This trained CNN was then used to predict nuclear 

reporter channel from the bright-field image over all image stacks in datasets. See Supplementary 

Figure 1 for representative nuclear reporter prediction and comparison to ground truth. Nuclear 

segmentations were generated by performing a local thresholding of the image within 51 pixel-

sized windows at 1 standard deviation of intensity. Segmentations were filtered for a minimum 

size of 25 pixels and a maximum size of 900 pixels, see Supplementary Table 1 for segmentation 

performance. To capture features including the local environment around a single nucleus, the 

image was partitioned into Voronoi cells around each nuclear center, with background classified 

pixels removed. Image preprocessing and segmentation scripts can be found on the github 

repository, see data and code availability.  

 

Cell featurization Single-cell featurization was performed on the Voronoi-partitioning of the 

image by nuclear center. Cell features are described in detail in Copperman et al.25 and repeated 

here for convenience. Morphology features were obtained as follows: segmented cells were 

extracted, and mask-centered into zero-padded equal sized arrays larger than the linear 

dimension of the biggest cell (in each treatment). Principal components of each cell were aligned, 

and then single-cell features were calculated. Zernike moments (49 features) and Haralick texture 

features (13 features) were calculated in the Mahotas96 image analysis package. The sum 

average Haralick texture feature was discarded due to normalization concerns. Rotation-invariant 

shape features (15 features) were calculated as the absolute value of the Fourier transform of the 

distance to the boundary as a function of the radial angle around cell center97, with the set of 

shape features normalized to 1. The cell environment was featurized in a related fashion.  First, 

an indicator function was assigned to the cell boundary with value 0 if the boundary was in contact 

with the background mask, and value 1 if in contact with the cell foreground mask. The absolute 

value of the Fourier transform of this indicator as a function of radial angle around cell-center then 

featurized the local cell environment (15 features), with the sum of cell environment features 

normalized to 1. Note the first component of the cell environment features is practically the fraction 

of the cell boundary in cell-cell contact. The high-dimensional cell feature space was 

dimensionally reduced using principal component analysis (PCA), retaining the largest 11 eigen-

components of the feature covariance matrix (spanning all treatments and image stacks) which 

captured >99% of the variability. 
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Motility features Cell motility was characterized in a single-cell manner, referenced both to the 

image frame and relative to neighboring cells. Single-cell displacement ∆�⃗⃗ ⃗⃗   between tracked 

frames was z-normalized, and cells which could not be tracked backward for a frame had 

unrecorded displacements and were not used in our analysis. The local motility alignment of a 

single-cell to the local neighborhood of contacting cells (sharing a Voronoi boundary) was 

measured by extracting the cosine of the angle between the single-cell and direct neighbors via �̂1 ∙ �̂2 with �̂ = ∆�⃗⃗ ⃗⃗  /|∆�⃗⃗ ⃗⃗  |. Local contact inhibition of locomotion was measured via the higher-order 

vector formed by (�̂1 2 �̂2) ∙ ÿ̂12 with ÿ 12 the separation vector between cells98. Neighborhood 

averages were taken via the Voronoi partition, averaged over neighbors and weighted by the 

relative length of the boundary to each neighbor, see Supplementary Figure 3. 

 

Batch normalization Single-cell featurization can depend in subtle ways upon the imaging 

treatment and sample batch. To normalize these effects we utilized a batch normalization 

procedure at the single-cell feature level. For each morphology feature, we utilized a histogram 

matching procedure between negative control (PBS) treatments. We then fit a linear model to the 

histogram-matched distributions, and applied this linear model between sample batches, see 

Supplementary Figure 8.  

 

Cell tracking To follow single-cells through time to extract the set of single-cell trajectories for 

morphodynamical trajectory embedding, we utilized a Bayesian likelihood-based approach 

implemented in the btrack software package62 using default parameters. This Bayesian approach 

was applied for each frame over a 12 frame window, and then successful tracks over each pair 

of successive frames were extracted. See Supplementary Table 1 for manual validation of 

tracking performance. 

 

Morphodynamical trajectory embedding To maximize the single-cell information, we extended 

single-timepoint morphology and motility features over single-cell trajectories using a delay-

embedding approach, described in Copperman et al.25 In brief, single-cell features including 

motility features, but excluding cell-cycle features, were concatenated along the trajectory length 

to form morphodynamical feature trajectories. We tested multiple trajectory lengths and selected 

a trajectory length of 10 hours where the best prediction of withheld treatment combination 

RNAseq was obtained, see Supplementary Table 2. We utilized a dynamical embedding 

approach described below to cluster trajectories and visualize this space, and did not perform any 
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further dimensionality reduction upon the trajectory concatenated morphological feature PCAs 

and motility feature trajectories prior to dynamical model building. 

 

Data-driven dynamical Markov state model To capture dynamical properties within the 

morphodynamical space, we constructed a transition matrix Markov model within the trajectory 

embedding space. The embedded space was binned into <microbins= using k-means clustering 

with � = 200 clusters. Results using 50, 100, 200, and 400 clusters are qualitatively similar. In 

this discrete space, a transition matrix � between bins was estimated from the set of transition 

counts �ÿĀ from microbin i to j as �ÿĀ = �ÿĀ/�ÿ with �ÿ = ∑ �ÿĀĀ . This accounting was agnostic to cell 

birth and death processes, yet we observe our model well reproduces morphodynamical state 

evolution, see Figure 5b.  

 

Dynamical features To evaluate live-cell behavior via characterization of shared dynamics, we 

have applied a dynamical featurization approach via the data-driven transition matrix model. 

Using a transition matrix model constructed from all possible single-cell trajectory steps in the in 

the microbinned trajectory feature space, we construct the Hermitian extension � = 12 [(� + �′) +�(� 2 �′)] with �′ the transpose of the transition matrix �, this approach numerically stabilizes the 

eigendecomposition and provides all real eigenvalues for unambiguous ordering of 

eigencomponents99. We retain 15 dominant eigencomponents (see Supplementary Figure 10), 

and concatenate real and imaginary parts of eigenvectors to construct a 30-dimensional 

characterization of each microbin center. To visualize the dynamical trajectory space, we apply 

UMAP dimensionality reduction of the microstate eigenvector components to 2 components. 

Average flows in the UMAP space are calculated via calculating microstate dependent average 

displacements via the transition matrix < �ÿ >= ∑ (�ÿ 2 �Ā)�ÿĀĀ  and averaging over 10 nearest 

microstate neighbors for smoothness.  We note that UMAP flows were used only for visualization, 

not featurization. 

 

Morphodynamical cell states As a tool for reducing complexity and extracting biological 

meaning in the morphodynamical embedding space, we defined a set of macrostates by 

clustering together microbins using dynamical similarity. We utilize the eigencomponents of � 

(Hermitian extension of the transition matrix �, see Dynamical Embedding) and perform k-means 

in the kinetic motifs. We utilize a lower cutoff of 0.015 for the total fraction of cell trajectories 

assigned to each state; if a microstate has too few trajectories assigned, then it is combined with 
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its nearest neighbor by Euclidean distance in the space of dynamical motifs. k-means clusters are 

increased until the requested number of states with minimum fraction assignment is obtained. We 

then evaluated the capability of the derived macrostates to describe the state-change dynamics 

by evaluating the sum of timescales captured in the microstate transition matrix model, related to 

the VAMP score100. We observe a rapid increase in score increasing to 10 states and continued 

increase beyond 15 states, see Supplementary Figure 9.  Note that the macrostates, like the 

features themselves, were not designed or optimized for the task of predicting RNA levels. 

 

Cell-state change pathways To extract the sequences of morphodynamical cell states under 

EMT/MET, we adopted a transition path approach to calculate commitors and state change 

sequences utilizing our data-driven Markov model59. Transition matrices were constructed 

between morphodynamical cell states (macrostates), and flux analysis was carried out using the 

PyEMMA analysis package60; all pathways carrying flux between sets of initial and final states 

were evaluated to find dominant state change sequences. Committor probabilities (for reaching 

the final state before returning to the initial state) were highly dependent upon culture treatment, 

but cell state change sequences were quite robust to culture treatment, see Supplementary Figure 

7.   

 

Cell-cycle reporter analysis and dynamical modeling To capture cell-cycle dynamics from the 

HDHB reporter images, we adopted a similar data-driven modeling approach as we took in 

defining the morphodynamical cell states. Reporter levels in the nuclear and cytoplasmic 

compartments were extracted, and the ratio of these reporter levels was used as a self-

normalizing readout of cell-cycle state, where exclusion of HDHB from the nucleus is known to 

correlate with G2 cell-cycle state, with maximal nuclear correlation occurring abruptly at mitosis 

and decreasing gradually from G1 to S, and with minimal nuclear signal at G293. To divide reporter 

ratio values into cell-cycle stages, we utilized our Markov state modeling and dynamical 

embedding procedure, first building a microbin model with 50 bins evenly spaced throughout the 

range of reporter ratio values, then dividing these into 4 macrostates via k-means clustering in 

dynamical motifs, see Supplementary Figure 10. We then calculated mean first passage times 

using PyEMMA between cell-cycle stages as a readout of cell-cycle stage lifetimes in each of the 

morphodynamical cell states. 

 

Bulk RNAseq reconstruction To capture the biological drivers of morphodynamical cell state 

changes, we mapped our morphodynamical cell states to RNAseq-based gene expression 
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profiles. We adopted a linear decomposition approach. If cells in treatment A are subdivided into 

a set of states Ā with known state populations ��ý such that ∑ ��ý = 1� , and the state and treatment 

dependent gene levels are known, a bulk measurement of the �th gene can be reconstructed 

exactly as < �ÿý >= ∑ ��ý�ÿ�,ý� . We approximate this exact expression by making the assumption 

that all cells in state Ā under each treatment have identical gene expression, i.e., that �ÿ�,ý = �ÿ� 
regardless of A, for every Ā. The utility of this approximation can be evaluated via our results, and 

is equivalent to letting the states form a non-negative matrix factorization of the bulk expression. 

Under this assumption, we have a linear system of equations connecting state populations and 

state gene expression levels {< �ÿý >= ∑ ��ý�ÿ�,� < �ÿþ >= ∑ ��þ�ÿ�,� & . }, one equation for each 

treatment A,B,C,… based on treatment-specific cell state populations ��ý, ��þ, & directly measured 

via live-cell imaging and morphodynamical analysis, and with paired bulk RNAseq measurements < �ÿý >. If there are as many measurements as states, this linear equation can be inverted for the 

gene expression profiles in each state, �ÿ�. If there are less states than treatments and the solution 

is over-determined, we obtain the solution over all possible combinations of treatments and 

average over the results. In practice, true solution of the linear system would yield negative gene 

levels, so we do a least squares minimization with the constraint of positive gene levels. We use 

fold-changes rather than absolute gene levels to preserve the batch and replicate normalization, 

this normalization does not affect the system of equations as it enters on both sides of the equality. 

To validate our state decomposition of measured bulk RNAseq pipeline, we split our data into 

training sets and validation sets. State gene expression levels are trained from the training set 

gene levels only, and gene expression for withheld test set conditions are then predicted via the 

measured morphodynamical cell state populations. Null model predictions are constructed from 

random state populations combined with previously estimated state-specific gene levels (from 

true populations) as a measure of how unique the measured state populations are at predicting 

the test set gene expression. 

 

Gene set enrichment To interpret morphodynamical cell state gene expression profiles, we 

performed gene set enrichment analysis via the pyGSEA package101. We utilized the preranked 

algorithm, sorting genes via the predicted gene expression levels in each morphodynamical cell 

state. We ran gene set enrichment using the Hallmark gene sets74, which broadly capture well-

studied biological processes and cell signaling activity. 
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Supplementary Data Tables and Figures 

 

Supplementary Figure 1: Virtual nuclear staining and nuclear center-based segmentation 

a) Paired nuclear reporter (red) and z-normalized phase contrast (+ red - blue) training data input, 

and reconstructed nuclear reporter output b) Nuclear reporter prediction from out of sample phase 

contrast images (OSM condition). c) Examples of nuclear segmentations (red) and associated 

Voronoi boundaries (yellow) overlaid upon phase contrast images (z-normalized absolute 

value,gray) 
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Supplementary Data Table 1. Segmentation and tracking manual validation. 100 cells per 

treatment were randomly selected, and evaluated by eye to qualitatively assess segmentation and 

tracking accuracy. Fraction segmented was estimated by the image area covered by segmented 

masks divided by the area selected as being occupied by cells from the ilastik random forest pixel 

classifier. Segmentation performance from dataset 1 (e.g. EGF1, HGF1) is decreased because for 

these data the cells did not express a nuclear reporter, and the nucleus was detected via the virtual 

staining approach only. Tracking performance is decreased as well, due to the decreased 

segmentation performance and increased time between frames (30 minutes as compared to 15 

minutes).  
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ligand PBS1 EGF1 HGF1 OSM1 IFNG+

EGF1 

BMP2+

EGF1 

EGF+ 

TGFB1 

counts/manual 79% 94% 74% 90% 99% 102% 113% 

% good seg 80% 62% 74% 86% 68% 78% 75% 

% bad seg 11% 25% 11% 4% 24% 16% 9% 

%ambiguous seg 9% 10% 14% 10% 8% 6% 16% 

% tracked 78% 52% 78% 69% 55% 66% 49% 

% good tracks 94% 94% 99% 88% 91% 95% 96% 

% bad tracks 4% 6% 1% 7% 5% 5% 4% 

%ambiguous 

tracks 

2% 0% 0% 5% 4% 0% 0% 

 

ligand PBS EGF OSM TGFB TGFB 

+EGF 

OSM 

+EGF 

TGFB 

+OSM 

TGFB 

+OSM 

+EGF 

count/manual 99% 99% 98% 96% 99% 98% 96%   99% 

% good seg 92% 97% 97% 95% 96% 96% 95%   95% 

% bad seg 1% 1% 1% 1% 2% 2% 0%   1% 

%ambiguous 

seg 

7% 2% 2% 4% 2% 2% 5%   4% 

% tracked 97% 91% 93% 92% 95% 93% 88%   90% 

% good tracks 100% 100% 98% 100% 99% 99% 100%   100% 

% bad tracks 0% 0% 2% 0% 0% 0% 0%   0% 

%ambiguous 

tracks 

0% 0% 0% 0% 1% 1% 0%   0% 
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Supplementary Figure 2. Segmentation and tracking manual validation examples 

Examples of good, bad, and ambiguous qualitative validation categories for segmentation and 

tracking. Absolute value of z-normalized phase contrast in gray, nuclear segmentation in red. 
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Supplementary Data Table 2. Test set gene expression validation with trajectory length. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 
 
 
 

test  
treatment 

traj 
length 
(hrs) 

pred. 
to 
exp. 
corr 

diff. 
from 
null � 2 �null 

upreg 

true 

pos. 

rate 

downreg 

true pos. 

rate 

OSM+EGF 0 .26 -0.38 .51 .80 

EGF+TGFB 0 .76 0.09 .63 .89 

OSM+EGF+TGFB 0 .77 0.04 .77 .95 

OSM+EGF 1 .51 0.02 .55 .99 

EGF+TGFB 1 .76 0.22 .68 .93 

OSM+EGF+TGFB 1 .75 0.14 .77 .93 

OSM+EGF 4 .50 -0.22 .51 .98 

EGF+TGFB 4 .74 0.05 .68 .80 

OSM+EGF+TGFB 4 .73 -0.04 .77 .96 

OSM+EGF 8 .55 -0.15 .52 .99 

EGF+TGFB 8 .69 0 .68 .87 

OSM+EGF+TGFB 8 .66 -0.08 .77 .94 

OSM+EGF 10 .70 0.21 .72 .81 

EGF+TGFB 10 .81 0.27 .72 .84 

OSM+EGF+TGFB 10 .77 0.12 .85 .81 

OSM+EGF 12 .71 0.2 .70 .77 

EGF+TGFB 12 .74 0.14 .69 .85 

OSM+EGF+TGFB 12 .64 0.01 .80 .80 

OSM+EGF 16 .66 -0.03 .65 .92 

EGF+TGFB 16 .79 0.15 .70 .85 

OSM+EGF+TGFB 16 .79 0.09 .80 .88 
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Supplementary Figure 3: Single-cell and neighborhood motility feature 

Single-cell featurization of motility for the labeled cell in the upper right (nuclei in color and 

Voronoi segmentation in yellow) taken as the magnitude of the displacement from previous frame. 

The single-cell motility in the context of its local neighborhood taken as the neighbor-weighted 

average of the 3 boundary cells (upper right, lower left, lower right). 
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Supplementary Figure 4: Bulk RNAseq decomposition and time dependence 

a) PCA1/2 projection of the RNAseq differential expression, showing sorting by ligand treatment and 

timepoint. b) Correlation between training set reconstruction and real experimental differential 

expression. c) Morphodynamical state populations at t=24, 48 hrs d) Test set prediction of RNAseq at 

48 hours using t=24 hrs trained morphodynamical state gene expression profiles and measured live-

cell state populations at t=48hrs.  
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Supplementary Figure 5: Ligand-dependent populations and cell state flows 

Cumulative populations in the UMAP embedding space (blue to red), and state-state 

transition flows at t=24hrs, in each ligand treatment. 
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Supplementary Figure 6: EMT/MET initial and final state probabilities 

Live-cell imaging inferred initial and final EMT/MET state populations as a function of time. 

EMT initial state 1 depopulates over time (rightmost plots), while EMT final state 5 increases 

over time in EGF+TGFB (lower middle), while MET final state 8 increases over time in EGF 

conditions (upper right). 
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Supplementary 
Figure 7: EMT/MET 
morphodynamical 
cell state change 
sequences by 
ligand treatment 

Possible EMT cell 

state change 

sequences (initial 

state 1, final state 5) 

left, and MET cell 

state change 

sequences (initial 

state 5, final state 8) 

on the right (black 

arrows, thickness 

proportional to 

transition flux), with 

final state 

commitment 

probability (blue to 

red) calculated from 

the 200 k-means state 

centers and averaged 

over the UMAP 

surface. 
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Supplementary Figure 8: Feature batch normalization 

Scatterplots of the first two PCA components for imaging experiments 1 (black) and 2 

(red), in overlapping treatments, analyzed in this work. Each dot is a cell before (left) 

and after (right) applying our batch normalization procedure. 
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Supplementary Figure 9: Dynamical clustering of morphodynamical trajectories 

(a) Eigenvalues of the Hermitian extension � = 12 [(� + �′) + �(� 2 �′)]  with � the transition 

matrix. (b) 2D UMAP of the eigenvectors of � (each point is a microstate of the transition 

matrix) colored by absolute value and Euler angle of the complex value. (c) State clustering 

dynamical information quantified by the sum of the timescales from the eigenvalues of �. 

The sum of timescales increases rapidly towards 15 states and begins to saturate. (d) K-

means clustering into 14 states. 
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Supplementary Figure 10: Dynamical clustering of cell-cycle states 

(a) Eigenvalues of the Hermitian extension � = 12 [(� + �′) + �(� 2 �′)]  with � the transition matrix 

from dividing log2 of the cell-cycle reporter levels into 51 microstates. (b) Eigenvectors of � (each 

point is a microstate of the transition matrix) colored by Euler angle of the complex value. (c) State 

clustering dynamical information quantified by the sum of the timescales from the eigenvalues of �. 

The sum of timescales increases rapidly towards 4 states and begins to saturate. (d) K-means 

clustering into 4 states. 
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