

1 **Title:** Psilocybin biphasically modulates cortical and behavioral activity in mice

2

3 **Authors:** Adam T. Brockett^{1,2,3} and Nikolas A. Francis^{2,4,5,6,*}

4

5 **Author Affiliations:**

6 ¹Department of Psychology, University of Maryland, College Park, MD, 20742

7 ²Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD,
8 20742

9 ³Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824

10 ⁴Department of Biology, University of Maryland, College Park, MD, 20742

11 ⁵Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College
12 Park, MD, 20742

13 ⁶Brain and Behavior Institute, University of Maryland, College Park, MD, 20742

14 * indicates corresponding author

15

16 **Twitter:** Adam Brockett (@adam_brockett), Nikolas Francis (@sanacerebri)

17

18 **Lead Contact:** Correspondence should be sent to Dr. Nikolas A. Francis (cortex@umd.edu)

19

20 **Keywords:** psilocybin, auditory cortex, psychedelics, brain, behavior

21

22 **SUMMARY**

23 Psilocybin is a serotonergic psychedelic believed to have therapeutic potential for
24 neuropsychiatric conditions. Despite well-documented prevalence of perceptual alterations,
25 hallucinations, and synesthesia associated with psychedelic experiences, little is known about
26 how psilocybin affects sensory cortex or alters the activity of neurons in awake animals. To
27 investigate, we conducted 2-photon imaging experiments in auditory cortex of awake mice and
28 video analysis of mouse behavior, both at baseline and during psilocybin treatment. We found
29 biphasic effects of psilocybin on behavioral and cortical activity. A 2 mg/kg dose of psilocybin
30 initially increased behavioral activity and neural responses to sound. 30 minutes post-dose, mice
31 became behaviorally hypoactive and cortical responses to sound decreased, while neural
32 response variance and noise correlations increased. In contrast, neuronal selectivity for auditory
33 stimuli remained stable during psilocybin treatment. Our results suggest that psilocybin
34 modulates the role of intrinsic versus stimulus-driven activity in sensory cortex, while preserving
35 fundamental sensory processing.

36 **INTRODUCTION**

37 Psilocybin is a psychoactive prodrug long known to induce atypical changes in conscious
38 experience including altered perception, cognition, and mood. The therapeutic potential of
39 psilocybin, and other serotonergic psychedelics, has been studied off and on for well over fifty
40 years¹⁻⁴. Recently, clinical interest in psilocybin has increased following several small clinical
41 trials showing that 1-3 treatments with psilocybin can produce lasting reductions in the severity
42 of depressive symptoms⁵⁻¹⁰. Despite these promising results, few studies have investigated the
43 cellular and physiological mechanisms by which psilocybin produces these profound changes in
44 brain state.

45 Clarifying how psilocybin affects cortical neurophysiology is essential for psilocybin's
46 continued emergence as a safe and viable treatment option. A recent study in mice found that
47 psilocybin increased neuronal spiking in anterior cingulate cortex (ACC), while modulating
48 synchrony in local field potentials¹¹. Functional magnetic resonance imaging (fMRI) studies in
49 humans and rats have shown that psilocybin alters brain-wide activity and synchronization^{10,12,13},
50 and that altered perceptions associated with psilocybin can be suppressed via blockage of the
51 5-HT2a receptor^{14,15}. However, it remains unclear how psilocybin's effects on cortical activity
52 produce the perceptual alterations, hallucinations, and synesthesia that may occur during
53 psychedelic experiences^{14,16}.

54 Here, we used 2-photon (2P) Ca^{2+} imaging¹⁷ of neural activity in awake mice to study how
55 psilocybin affects sensory processing in primary auditory cortex (A1) layer 2/3 (L2/3). We also
56 used video analysis of free-roaming mouse behavior to track head-twitch responses (HTRs) and
57 overall movement around a cage. We show that psilocybin biphasically modulates both cortical
58 and behavioral states, while preserving neural selectivity for auditory stimuli. Importantly, our
59 results suggest that increased auditory response variance and functional connectivity in A1 L2/3
60 during psilocybin treatment may reflect perceptual alterations or pseudo-hallucinations.

61

62 **RESULTS**

63 **Psilocybin has a biphasic effect on auditory cortex**

64 Since auditory cortex is critical for auditory perception and is thought to play a role in auditory
65 hallucination¹⁸, we sought to clarify the effects of psilocybin on the auditory responsiveness of
66 individual neurons in A1 L2/3 using 2P imaging (see STAR Methods). Importantly, all
67 experiments were done on awake mice.

68 Figure 1a illustrates the timeline of our imaging experiments. For each mouse, we began
69 with a pre-injection imaging session (Pre). We then waited an hour before an intraperitoneal (IP)
70 injection of either a 2 mg/kg dose of psilocybin (N=6 mice, N=8 experiments, dissolved in 0.1 ml
71 saline) or the 0.1 ml saline vehicle alone (N=3 mice, N=6 experiments). The 2 mg/kg dose was
72 chosen to approximate doses used in human clinical trials⁵⁻¹⁰. Psilocybin was provided by the
73 NIDA Drug Supply Program.

74 The injected mouse was placed back under the microscope for post-injection imaging
75 (Phase 1), which typically began within 5 minutes after injection. With the injected mouse still
76 under the microscope, we then performed a final imaging session (Phase 2), which typically
77 began within 30 minutes after injection. Each imaging session occurred in a different 2P field of
78 view and lasted approximately 20 minutes while we presented 70 dB SPL, 0.5 s pure-tones at
79 10 frequencies (2-45 kHz) from a free-field speaker. Each frequency was repeated 20 times in
80 randomized order. Stimuli were presented at randomized inter-trial intervals of 6, 7, or 8 s.

81 Figure 1b shows heatmaps of the populations of auditory-responsive neurons that were
82 recorded for each experimental condition. Each row of each heatmap shows an individual
83 neuron's average activity during a trial of the experiment. Most neurons began each trial in a
84 quiescent state for 2 seconds, followed by a sudden rise in activity after stimulus presentation.
85 As expected, auditory responses were similar across Pre, Phase 1, and Phase 2 sessions for
86 mice injected with saline (figure 1c, top panel; figure 2a). In contrast, psilocybin induced a
87 biphasic modulation of neural responses to sound (figure 1c, bottom panel; figure 2a,b).
88 Immediately after injection during psilocybin Phase 1, neurons in A1 L2/3 became hyper-
89 responsive to sound, relative to the psilocybin Pre session (figure 2a; p=0.006). In contrast, 30
90 minutes post-injection during psilocybin Phase 2, the average neural response amplitude
91 decreased relative to psilocybin Phase 1 (figure 2a; p=0.015).

92 To determine if psilocybin changes how often neurons in auditory cortex respond to
93 sound, we measured neural response reliability (figure 2b). For a given neuron, response
94 reliability is the percentage of trials in which the activity immediately following an auditory
95 stimulus exceeds the activity during the 2 s of silence preceding the stimulus. Thus, a 50%
96 response reliability would describe a neuron that had an auditory response for 10/20 trials. We
97 found that response reliability tended to increase during saline treatment (Pre vs Phase 1:
98 p<0.001; Pre vs Phase 2: p<0.001), but was similar for Phases 1 and 2 (p>0.05). It may be that
99 stress related to IP injection *per se*, or simply repeating the stimulus set many times across

100 phases, enhances response reliability. During psilocybin treatment, response reliability
101 increased during Phase 1 (Pre vs Phase 1: $p < 0.001$), similar to saline treatment. However, unlike
102 saline, response reliability then decreased back to baseline levels during psilocybin Phase 2
103 (figure 2b; Pre vs Phase 2: $p > 0.05$; Phase 1 vs Phase 2: $p < 0.001$). In other words, auditory
104 responses became slightly less reliable during psilocybin Phase 2. Thus, psilocybin has a
105 biphasic effect on both the likelihood that a neuron will respond to sound and the size of the
106 neuron's response to sound.

107

108 **Psilocybin increases neuronal response variability and functional connectivity in** 109 **auditory cortex**

110 It is important to note that during psilocybin Phase 2, while the average neural response
111 amplitude decreased, neural response *variance increased* (see shading in figure 1c, bottom
112 panel; see error bars in the right-most bar graph in figure 2a). This means that the amplitude of
113 responses to sound spanned a wider range during psilocybin treatment. To investigate whether
114 the increased response variance was patterned, we computed trial-to-trial correlations of
115 response variance between pairs of neurons¹⁹⁻²¹, i.e., 'noise correlations'. An increase in noise
116 correlation indicates an increase in functional connectivity between pairs of neurons¹⁹⁻²¹.

117 We measured noise correlations during Pre, Phase 1, and Phase 2 time periods for both
118 saline and psilocybin treatments (figure 2c). We found that noise correlations tended to remain
119 constant during Pre, Phase 1, and Phase 2 of saline treatments (left panel, figure 2c; $p > 0.05$).
120 In contrast, noise correlations significantly increased during psilocybin Phase 2, compared to
121 Pre (right panel, figure 2c; $p = 0.043$) (figure 2c). This increase in noise correlation, i.e., the
122 increase in correlated response variance between pairs of neurons, indicates that psilocybin
123 increased functional connectivity in A1 during the same period when mice transitioned into a
124 more hypoactive behavioral state. Importantly, noise correlations are unbiased by stimulus-
125 driven neural responses. Thus, our results suggest that psilocybin enhances the role of intrinsic
126 brain influences on sensory processing in A1 L2/3.

127

128 **Psilocybin does not change frequency tuning in auditory cortex**

129 So far, we have shown that psilocybin biphasically alters neuronal responses to sound in A1
130 L2/3. However, some aspects of auditory responsiveness in A1, such as pure-tone frequency
131 selectivity, i.e., 'frequency tuning', are inherited from a frequency-specific labelled-line that

132 originates in the cochlea, rises through the brainstem, and reaches the cortex via the medial
133 geniculate body of the thalamus. Thus, neuronal frequency tuning curves (FTCs) might be
134 expected to withstand the response amplitude changes induced by psilocybin. To examine this,
135 we measured the FTC of each imaged neuron, and then grouped neurons by 'Best Frequency'
136 (BF), i.e., the frequency corresponding to the FTC peak. We then peak-normalized each
137 neuron's FTC and averaged the FTCs for each BF. This produced 10 FTCs per experimental
138 condition (figure 3a). We found that FTCs were well-tuned, i.e., selective for the BF, and were
139 similarly shaped across all experimental conditions. We quantified changes in FTC shape by
140 measuring the size of off-BF responses relative to BF (figure 3b). We found that the off-BF
141 response magnitudes remained stable throughout experiments. Thus, psilocybin did not change
142 frequency tuning in A1 L2/3.

143

144 **Psilocybin has a biphasic effect on mouse behavior**

145 Having established a biphasic time-course for psilocybin's effect on auditory cortex, we
146 hypothesized that a similar biphasic modulation of behavior may occur. To quantify psilocybin's
147 effects on the behavior of mice, we built a custom arena for video tracking of mouse movement
148 (see STAR Methods). The arena consisted of a large black acrylic box that contained a smaller
149 clear acrylic box in the center of the arena. Videos were taken at 150 frames per second (fps)
150 and analyzed at 30 fps (see supplementary videos S1 and S2). Experiments began with
151 habituation, by placing the mouse in the small clear box for an hour, before administering an IP
152 injection of either psilocybin (2 mg/kg in 0.1 ml saline) (n=5 mice) or 0.1 ml saline vehicle (n=5
153 mice) (figure 4a). Immediately after injection, the mouse was placed back in the clear box,
154 covered with a clear lid, and then videoed for an additional 40 minutes (figure 4b).

155 Previous research on the behavioral effects of psilocybin measured HTRs as a dose-
156 dependent indicator of psychedelic drug effects^{22,23}. Here, we successfully replicated previous
157 findings of the HTR time-course by manually labeling video for each occurrence of a HTR, after
158 both psilocybin (n=1 mouse) and saline injections (n=1 mouse; figure 4c, supplemental videos
159 S1 and S2). Consistent with previous work²², we found that the rate of head-twitches was greater
160 for psilocybin than saline, increased quickly after psilocybin injection, and then declined within
161 10 minutes.

162 During behavioral labelling, we noticed that once HTRs declined, mice injected with
163 psilocybin became very still within the clear box. Thus, we decided to compare overall behavioral

164 movement across each video for mice injected with psilocybin versus saline (figure 4d,
165 supplemental video S2; see STAR Methods for details). Figure 4d shows the movement traces
166 for both saline and psilocybin injected mice. The data show clear time-dependent differences
167 between the movements of psilocybin versus saline mice, which we tested for significance as a
168 function of time using bootstrap t-tests in a 5-minute sliding window (50% overlap).

169 We identified a biphasic behavioral effect of psilocybin that mirrored its effect on cortical
170 responses to sound, with no significant difference compared to saline only in the 7.5-10 minute
171 post-injection range. Figure 4e shows the mouse movement distributions for each phase of
172 behavioral changes. In Phase 1 (0-10 minutes), the mice injected with psilocybin became
173 hyperactive, relative to mice injected with saline. This period contains the rise in HTRs (figure
174 4c). In Phase 2 (10-40 minutes post-injection), psilocybin mice became hypoactive relative to
175 controls. We separately analyzed differences in the 7.5-10 minutes transition period between
176 phases 1 and 2 and found that while the median effect resembled phase 2, the variance of
177 differences spanned the range of both phase 2 and early phase 1. Thus, 10 minutes marks an
178 approximate time-point in which the effects of psilocybin on behavior switch from more stimulant
179 to more sedative in nature.

180 To gain further insight into the effects of psilocybin on mouse behavior, we also quantified
181 cage exploration using frame differences as described above, while preserving spatial
182 information. Figure 4f shows spatial movement for psilocybin versus controls in behavioral
183 phases 1 and 2. The results show a similar pattern as described above, where saline mice
184 continued to explore the cage throughout the experiment, whereas psilocybin mice ceased
185 exploration 10 minutes post-injection. Together, the time-courses of HTRs, the magnitude of
186 behavioral movements, and the scope of cage exploration describe a similar biphasic time-
187 course of behavior following psilocybin treatment: a transient period of hyperactivity followed by
188 the sudden transition into a longer period of hypoactivity. This time-course mirrors our findings
189 on the effects of psilocybin in auditory cortex.

190

191 **DISCUSSION**

192 Our results show how individual neurons in sensory cortex of awake mice are biphasically
193 modulated by psilocybin, the prodrug found in mushrooms of the genus *Psilocybe*, which have
194 been ingested by humans for thousands of years and show promising therapeutic potential for
195 neuropsychiatric conditions. However, our understanding of the cellular effects of psilocybin in

196 the brain, and serotonergic psychedelics more generally, is limited. Here, we show that shortly
197 after treating mice with a 2 mg/kg dose of psilocybin, there is an increase in locomotion and
198 neural responsiveness to sound. However, 30-minutes later this initial increase in behavioral
199 and neural responsiveness sharply diminishes. Both behavioral and neural measures suggest
200 that mice become less sensitive to external sensory cues, shown here as diminished HTRs,
201 decreased locomotor exploration, and a suppression of average neural responsiveness to
202 sound. Interestingly, while the average neural response to sound decreased, noise correlations
203 increased, suggesting that local functional connectivity in A1 L2/3 increased during the
204 behaviorally quiescent psychedelic effects.

205 Few studies have examined the response properties of individual neurons within the
206 context of psilocybin treatment. Recently, it was shown that a 2 mg/kg dose of psilocybin in mice
207 increased spiking and decreased the power of low frequency oscillations in the ACC, a frontal
208 brain area important for cognitive control¹¹. The decreased power was interpreted as a
209 desynchronization of local neural activity. These findings are partially corroborated by a
210 combined fMRI-immunofluorescence study in rats, which reported that a 2 mg/kg dose of
211 psilocybin increased bold oxygen level dependent responding and functional connectivity in
212 numerous frontal, parietal, and temporal lobe areas, as well as the striatum¹³. While neither study
213 probed A1 directly, nor examined sensory processing in general, the reported psilocybin-induced
214 modulation of local cortical synchrony mimics the changes we find here in A1.

215 Our examination of the response properties of neurons in A1 revealed a clear biphasic
216 change in activity that preceded the increase in functional connectivity. This switch from a
217 stimulus-driven state to a more intrinsically-driven state may reflect a change in the relative levels
218 of top-down vs bottom-up control of A1. Recent work has shown that the orbitofrontal cortex
219 (OFC) and ACC modulate auditory processing in A1²⁴⁻²⁷. Thus, our observed changes in A1
220 might arise due to concurrent effects of psilocybin on activity and synchrony in frontal regions
221 like OFC and ACC and may contribute to auditory alteration or pseudo-hallucination. It is
222 important to note that the fundamental auditory property of frequency tuning remained stable
223 despite the other dynamic effects of psilocybin, which speaks to the limits in which hearing can
224 be altered during a psychedelic experience. Future work should investigate differential
225 influences of bottom-up vs top-down control of sensory cortex during serotonergic psychedelic
226 treatment.

227 In summary, our findings speak to the role of psilocybin in modulating the neural basis of
228 sensory perception. While psilocybin shows great promise as a therapeutic adjuvant, it remains
229 unclear how psilocybin produces its therapeutic effects. Our findings outline how psilocybin
230 affects the activity of individual neurons in an awake mammal, paving the way for *in vivo*
231 investigation of psychedelic effects on cortical micro-circuits.

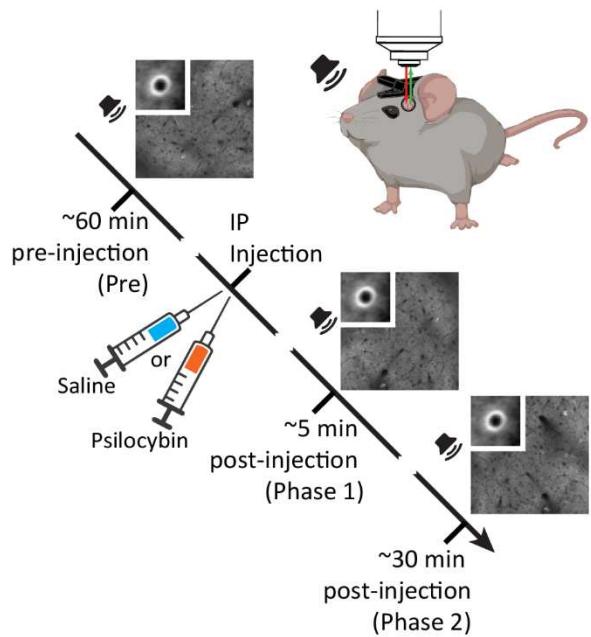
232

233 **Acknowledgements:** This research was funded by the University of Maryland (UMD) Individual
234 Grand Challenges Award (GC30) awarded to ATB, and a UMD Brain and Behavior Institute seed
235 grant awarded to NAF. The authors thank Franshesca Orellana Castellanos, Jonathan Dinh,
236 Gabrielle Stephens, and Sofia Leusch for labeling behavioral videos. The authors would like to
237 thank the NIH NIDA Drug Supply Program for providing the psilocybin used in these experiments.

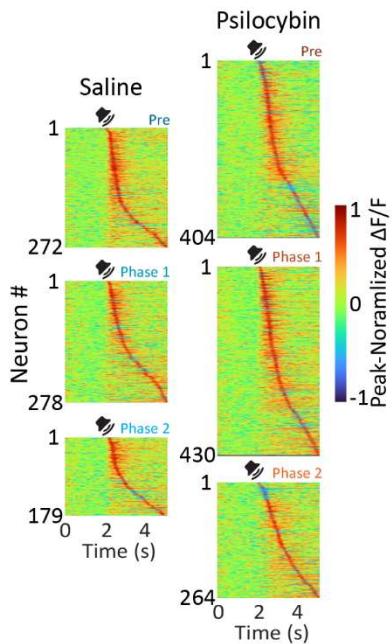
238

239 **Author Contributions:** ATB and NAF designed the experiments. NAF designed experimental
240 software and hardware, performed experiments, and analyzed the data. ATB and NAF wrote the
241 manuscript.

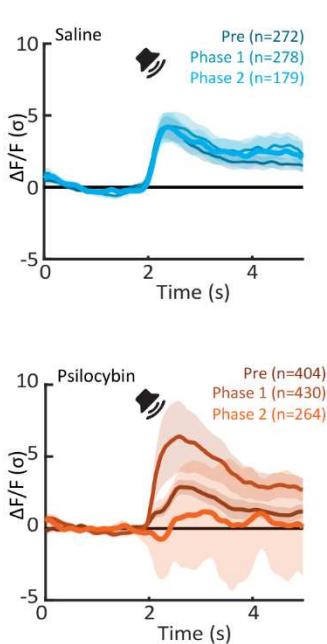
242


243 **Declaration of Interests:** The authors declare no competing interests.

244

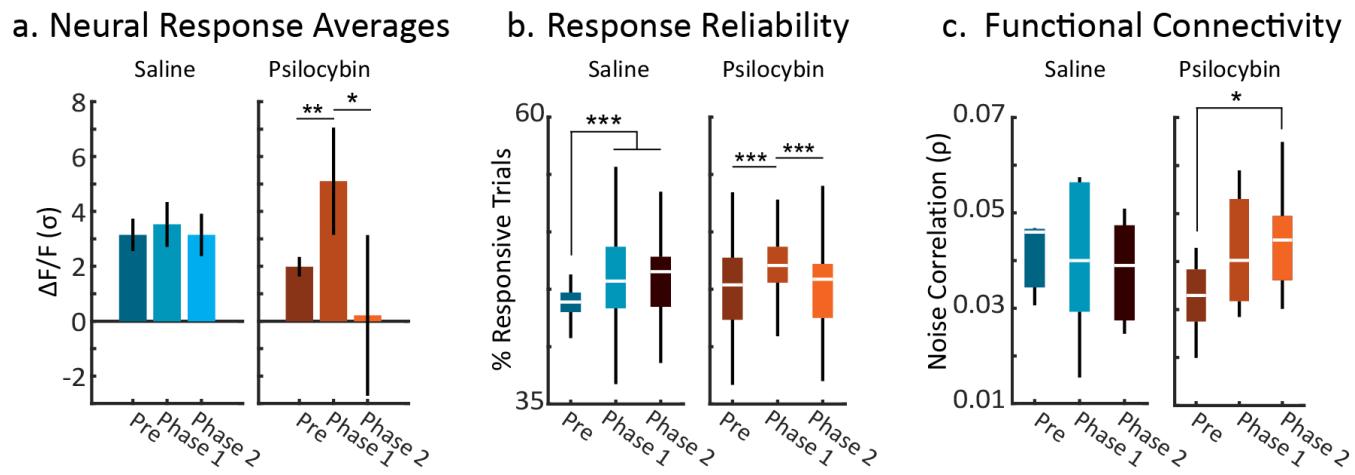

245

MAIN TEXT FIGURES


a. 2-photon Imaging in Auditory Cortex During Psilocybin or Saline Treatment

b. Neural Population Responses

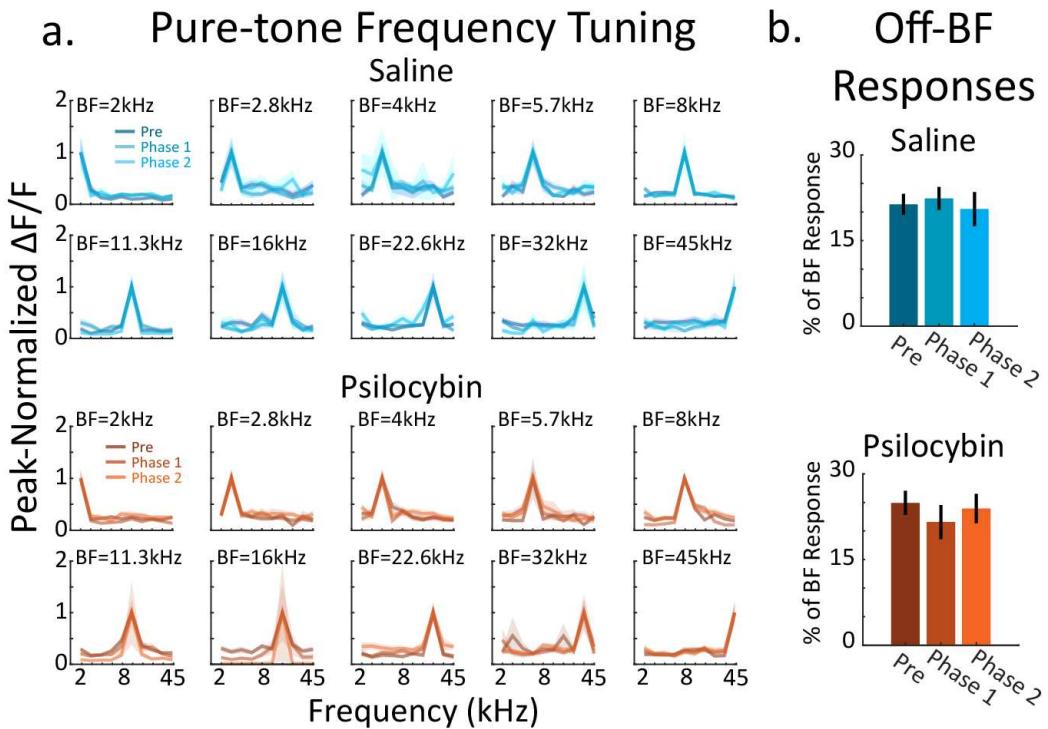
c. Population Average Fluorescence Traces



246

247 **Figure 1. Psilocybin biphasically modulates neural responses to sound in primary**
248 **auditory cortex (A1) layer 2/3 (L2/3) of awake mice. a. Experimental paradigm.** Mice were
249 imaged pre-injection (Pre), then given an intraperitoneal (IP) injection with either 2 mg/kg
250 psilocybin or 0.1 ml saline, then two post-injection imaging sessions occurred (Phase 1 and
251 Phase 2, respectively). Color-coding here for psilocybin (orange) vs saline (cyan) is used for all
252 remaining panels. Randomized pure-tones were presented during imaging. **b. Imaged Neural**
253 **Population.** The auditory responses of the imaged population from each experimental phase
254 and condition are shown as heatmaps. Hot and cool colors show peak-normalized fluorescence
255 ($\Delta F/F$) for each imaged neuron. **c. Population-averaged auditory responses in A1 L2/3.** The
256 darkest, lighter, and lightest colored lines show responses during Pre, Phase 1 and Phase 2
257 sessions, respectively. Shading shows 2 standard errors of the mean (SEM).

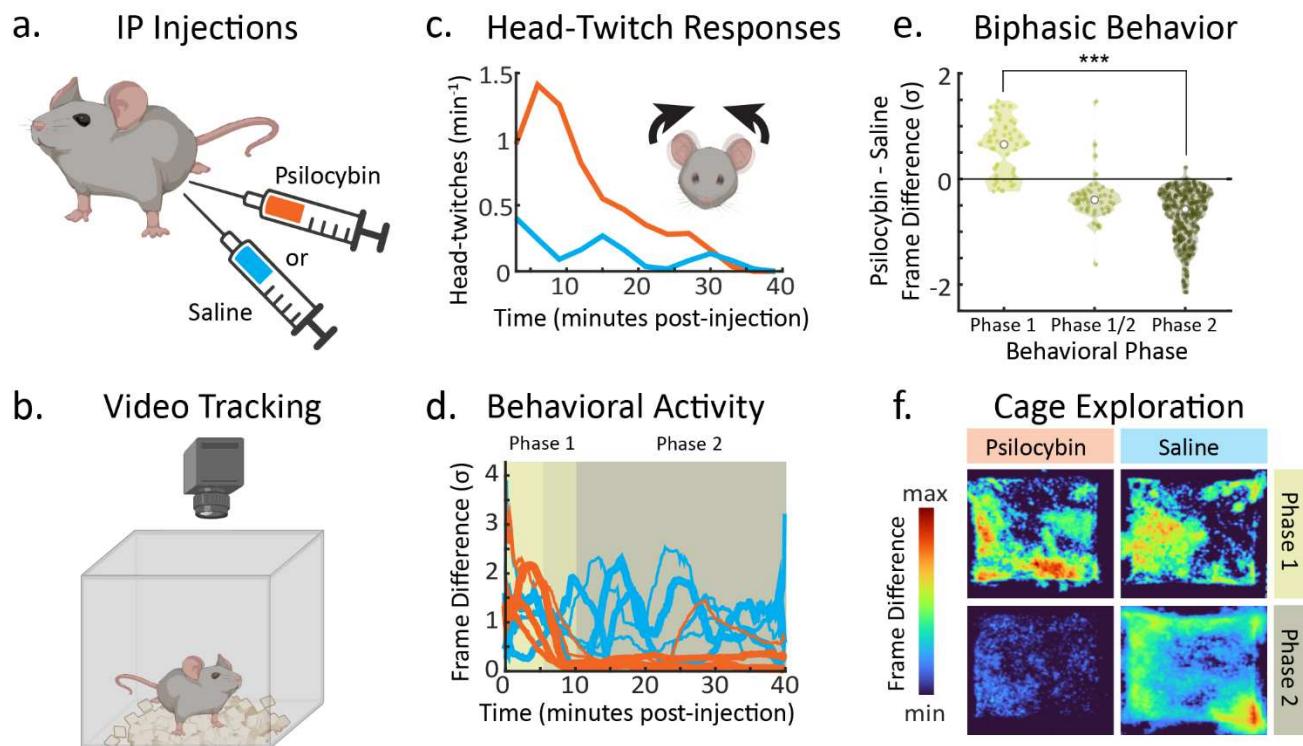
258


259

260

261 **Figure 2. Psilocybin modulates neuronal response variability, reliability, and functional**
262 **connectivity in A1 L2/3. a. Time-averaged neural responses.** Activity during the 1 s following
263 stimulus presentation was averaged for each neuron. The mean population response for each
264 condition is shown with 2 SEMs. The stars indicate significant differences in the Psilocybin
265 condition (Pre vs Phase 1: $p=0.006$; Phase 2 vs Phase 1: $p=0.015$). **b. Response Reliability.**
266 Neuronal response reliability was quantified as the percent of pure-tone responsive trials for
267 each condition. Stars indicate significant differences (Saline: Pre vs Phase 1 and Phase 2,
268 $p<0.001$; Psilocybin: Pre vs Phase 1, $p<0.001$; Phase 1 vs Phase 2, $p<0.001$). **c. Functional**
269 **connectivity.** Noise correlations were computed for pairs of neurons in each 2-photon field of
270 view. Each panel in figures 2b and 2c show a box plot for the data in each condition. The boxes
271 show interquartile ranges, white lines show median values, and whiskers show the range of the
272 distribution. The star in figure 2c indicates a significant Pre vs Phase 2 difference in noise
273 correlations ($p=0.045$).

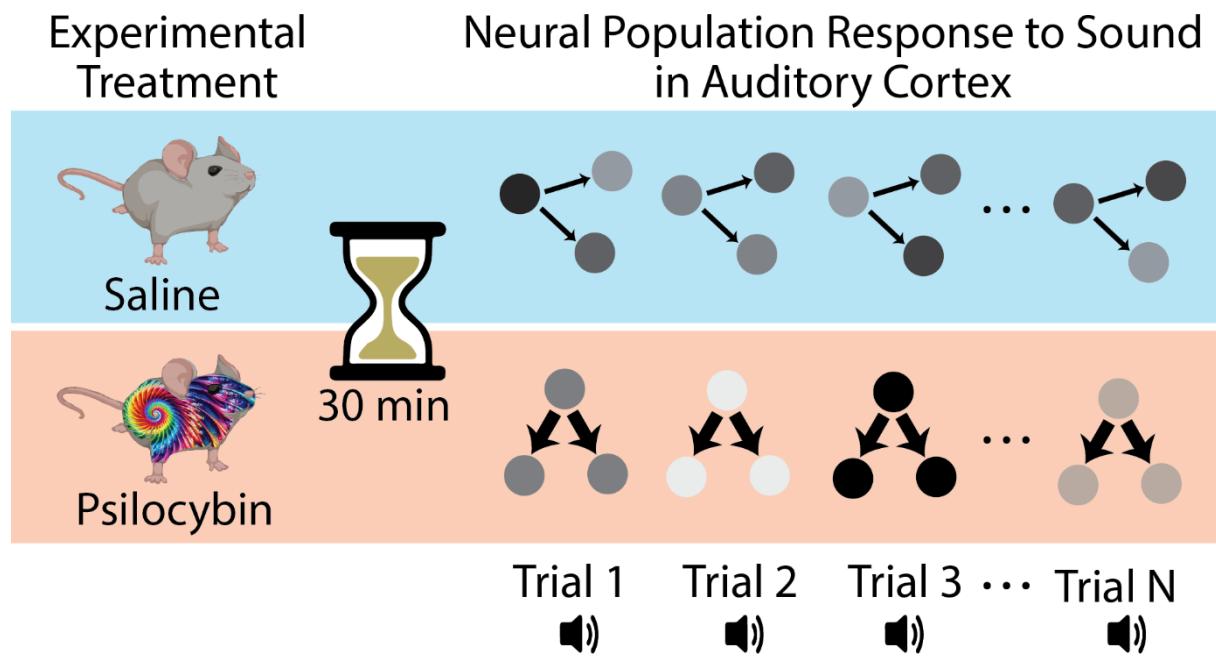
274



275

276 **Figure 3. Psilocybin does not change frequency tuning in A1 L2/3. a.** Frequency tuning
277 curves (FTCs) were computed for each imaged neuron by finding the average response to each
278 of the 10 pure-tone frequencies (2-45 kHz) presented at 70 dB SPL. The best frequency (BF),
279 i.e., the frequency with the biggest response, was found for each neuron, and then FTCs from
280 neurons with the same BF were averaged. The FTCs from each condition are shown in panel a.
281 Each panel contains three overlapping FTCs. Shading shows 1 SEM. **b. Average neural
282 responses to off-BF frequencies.** No change in FTC selectivity was found across conditions.
283 FTC selectivity was quantified as the average response to pure-tones at frequencies other than
284 the BF of a given neuron. Responses are reported as the percent of the response at BF.

285


286

287

288 **Figure 4. Psilocybin increases head-twitch responses and biphasically modulates overall**
289 **mouse movement. a. Experimental preparation.** Mice were given an IP injection of either
290 saline (cyan) or 2 mg/kg psilocybin (orange). The color-coding used here for experiments with
291 psilocybin vs saline is also used in panels c, d, and f. **b. Injected mice were placed inside a video**
292 **recording cage and their behavior was recorded for 40 minutes at 150 frames per second (fps).**
293 **c. Time-course of head-twitch responses.** Head-twitches were manually scored in 2 mice
294 (n=1 psilocybin; n=1 saline). **d. Time-course of overall mouse movement.** The magnitude of
295 mouse movement was quantified on a frame-by-frame basis and plotted for each treatment
296 (psilocybin: n=5; saline: n=5). **e. Biphasic behavioral effects of psilocybin.** Frame-wise
297 differences from panel d are shown as violin plots for phase 1 and 2, color coded as in panel d.
298 The white dots show median values for each distribution. The stars show that the means of
299 Phase 1a and 2 were significantly different (p<0.001). **f. Cage exploration.** The magnitude of
300 mouse movement across space in the cage was averaged across frames for each mouse.
301 Examples for psilocybin (left) and saline (right) injected mice are shown here. Movement was
302 averaged in a time-window corresponding to psilocybin effect phase 1 (0-10 minutes post-
303 injection) and phase 2 (10-40 minutes post-injection). Hot and cool colors indicate regions with
304 a high and low magnitude movement, respectively.

305

306

307 **Graphical Abstract. Summary of psilocybin's effect on auditory cortical responses to**
308 **sound in mice.** 30 minutes after injecting the inert vehicle saline, typical auditory responses
309 occur within a relatively narrow range of possible amplitudes, i.e., each neuron's response
310 variance is weakly correlated with a neighboring neuron's response variance. In contrast, 30
311 minutes after injecting 2 mg/kg of psilocybin, population response variance becomes more
312 correlated between individual neurons, and the range of response amplitudes increases. These
313 findings suggest that psilocybin modulates the role of intrinsic versus stimulus-driven neural
314 activity in sensory perception, which may serve as a basis for auditory hallucination at the level
315 of neuronal micro-circuits.

316

317 **STAR METHODS**

318

319 **RESOURCE AVAILABILITY**

320 ***Lead contact***

321 Further information and requests for resources should be directed to and will be fulfilled by the
322 lead contact, Dr. Nikolas Francis (cortex@umd.edu)

323

324 ***Material Availability***

325 This study did not generate new unique reagents.

326

327 ***Data and code availability***

328 Imaging data have been deposited in the Digital Repository at the University of Maryland and
329 are publicly available as of the date of publication. DOIs are listed in the key resources table.

330

331 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

332 All procedures were approved by the University of Maryland Institutional Animal Care and Use
333 Committee. Psilocybin was procured from the National institute on Drug Abuse drug supply
334 program. We used N=19 mice, which were F1 offspring of CBA/CaJ mice (The Jackson
335 Laboratory; stock #000654) crossed with transgenic C57BL/6J-
336 Tg(Thy1GCaMP6s)GP4.3Dkim/J mice^{17,28,29} (The Jackson Laboratory; stock #024275), 1.5-7
337 months old. We used the F1 generation of the crossed mice because they have healthy hearing
338 at least 1 year into adulthood²⁸. Mice were housed under a reversed 12 h-light/12 h-dark light
339 cycle.

340

341 **METHOD DETAILS**

342 ***Video analysis of mouse behavior***

343 We studied mouse behavior using a custom-built video tracking arena. The arena consisted of
344 a large black acrylic box with an open top, that contained a smaller clear acrylic box in the center
345 of the arena. White LED arrays were attached to inside walls of the black box to illuminate the
346 small clear box. Bedding was placed inside the clear box, and a pco.Panda 4.2 CMOS camera

347 was mounted above, with only the extent of clear box kept in-frame. Videos were taken at 150
348 frames per second (fps) and analyzed at 30 fps (see supplementary videos S1 and S2). We
349 quantified mouse movement in each video, V , by first creating a new video, V' , from sequential
350 frame differences in V , i.e., $V'(f) = V(f+1) - V(f)$, where f indexes each frame. We then created a
351 1-dimensional frame difference trace, D , by summing over all pixels for each frame in V' . We
352 extracted the envelope of D , using its low-passed Hilbert transform magnitude, to produce the
353 mouse's movement trace, M , spanning each 40-minute video.

354 Behavioral experiments began with habituation, by placing the mouse in the small clear
355 box for an hour, before being administered an intraperitoneal (IP) injection of either psilocybin
356 (2 mg/kg in 0.1 ml saline) ($n=5$ mice) or a 0.1 ml saline vehicle ($n=5$ mice) (figure 4a).
357 Immediately after injection, the mouse was placed back in the clear box, covered with a clear
358 lid, and then videoed for an additional 40 minutes (figure 4b). The 2 mg/kg dose was chosen to
359 approximate the dose use in human clinical trials⁵⁻¹⁰.

360

361 ***Stimulus design and presentation***

362 During imaging experiments, we presented awake mice with 70 dB SPL pure-tones from an ES1
363 free-field speaker (Tucker-Davis Technologies) connected to an ED1 amplifier (Tucker-Davis
364 Technologies). The speaker was calibrated to give a flat frequency response in the 1 - 80 kHz
365 range. Stimuli were synthesized in Matlab software (Mathworks) and output from a National
366 instruments board (NI-6211, 200 kHz sampling rate) to the ED1 amplifier. Each pure-tone was
367 500 ms in duration, with 5 ms and 495 ms raised-cosine attack and decay ramps, respectively.
368 The frequency of each pure-tone was randomly selected from 10 equiprobable values (2-45 kHz,
369 2 tones per octave). Each frequency was repeated 20 times per experiment, with inter-stimulus
370 intervals randomized according at 6, 7, or 8 s. The full stimulus set was presented within
371 approximately 20 minutes.

372

373 ***Chronic window implantation***

374 Mice were given an IP injection of dexamethasone (5mg/kg) at least 1 hour prior to surgery to
375 prevent inflammation and edema. Mice were deeply anesthetized using isoflurane (5% induction,
376 0.5-2% for maintenance) and given a subcutaneous injection of cefazolin (500mg/kg). Internal
377 body temperature was maintained at 37.5 C using a feedback-controlled heating blanket. Scalp
378 fur was trimmed using scissors and any remaining fur was removed using Nair. The scalp was

379 disinfected with alternating swabs of 70% ethanol and betadine. A patch of skin over the
380 temporal bone was removed and the underlying bone cleared of connective tissue using a
381 scalpel. The temporal muscle was detached from the skull, and the skull was cleaned and dried.
382 A thin layer of cyanoacrylate glue (VetBond) was applied to the exposed skull surface and a 3D
383 printed stainless steel head-plate was affixed to the midline of the skull. Dental cement (C&B
384 Metabond) was used to cover the entire head-plate. A circular craniotomy (3 mm diameter) was
385 made over the auditory cortex where the chronic imaging window was implanted. The window
386 was either of a stack of two 3 mm diameter coverslips or a 3.2 mm diameter, 1 mm thick uncoated
387 sapphire window (Edmund Optics), glued with optical adhesive (Norland 61) to a 5 mm diameter
388 coverslip. The space between the glass and the skull was sealed with a silicone elastomer (Kwik-
389 Sil). The edges of the glass and the skull were then sealed with dental cement. Finally, the entire
390 implant except for the imaging window was coated with black dental cement created by mixing
391 methyl methacrylate with iron oxide powder to reduce optical reflections. Meloxicam (0.5mg/kg)
392 was given subcutaneously as a post-operative analgesic.

393

394 ***Widefield imaging***

395 To localize primary auditory cortex (A1) via rostro-caudal tonotopic gradients, we performed
396 widefield imaging experiments prior to 2-photon imaging. Awake mice were placed into a 3D-
397 printed plastic tube and head-restraint system. Blue excitation light was shone by an LED (470
398 nm) through an excitation filter (470 nm) and directed into the cranial window. Emitted
399 fluorescence (F) from neurons in Thy1-GCaMP6s mice was collected through a 4x objective
400 (Thorlabs), passed through a longpass filter (cutoff: 505 nm), followed by a bandpass emission
401 filter (531 nm) attached to a CMOS camera. Images were acquired using ThorCam software
402 (Thorlabs).

403 After acquiring an image of the cortical surface, the focal plane was advanced to
404 approximately 750 μ m below the surface for imaging neural activity. To visualize tonotopy, pure-
405 tones were presented from a free field speaker, as described above. Widefield images were
406 acquired at a 5 Hz rate and 512x512 pixels. Using Matlab software, image sequences for each
407 tone frequency were averaged and background illumination was reduced using a homomorphic
408 contrast filter. For each pixel, $\Delta F/F$ traces were calculated by finding the average F taken from
409 the silent baseline period before a pure-tone presentation, subtracting that value from
410 subsequent time-points until 3s after the pure-tone, then dividing all time-points by the baseline

411 F. To visualize auditory responses, we kept traces with $\Delta F/F$ within 90% of the maximum
412 response in the pixel-wise grand-average of $\Delta F/F$ (i.e., $\Delta F/F_{90}$). Pixel-wise tonotopic frequencies
413 were taken as the median frequency of the set of tones corresponding to the $\Delta F/F_{90}$ traces.

414

415 **2-photon imaging**

416 After localizing A1 using widefield imaging, recording sites were selected for 2-photon (2P)
417 imaging in A1 layer 2/3 (L2/3) for each mouse. Our 2P recording sites were chosen at a different
418 region in A1 for each 2P imaging session. Figure 1a illustrates the timeline of our imaging
419 experiments. For each mouse, we began with a pre-injection imaging session (Pre). We then
420 waited an hour before injecting either 2 mg/kg psilocybin (N=6 mice, N=8 experiments) or 0.1 ml
421 saline (N=3 mice, N=6 experiments). The injected mouse was then immediately placed back
422 under the microscope for post-injection imaging (Phase 1), which began within 5 minutes after
423 the injection. With the injected mouse still under the microscope, we then performed a final
424 imaging session (Phase 2).

425 Our experiments used a scanning microscope (Bergamo II series, Thorlabs) coupled to
426 a pulsed femtosecond 2-photon laser with dispersion precompensation (Coherent Chameleon
427 Discovery NX TPC). The microscope was controlled by ThorImage software. The laser was
428 tuned to $\lambda = 940$ nm to excite GCaMP6s. Fluorescence signals were collected through a 16x 0.8
429 NA microscope objective (Nikon). Emitted photons were directed through a 525 nm (green)
430 bandpass filter onto a GaAsP photomultiplier tube. The field of view was 411 x 411 μm . Imaging
431 frames of 512x512 pixels (0.8 μm per pixel) were acquired at 30 Hz by bidirectional scanning of
432 an 8 kHz resonant scanner. Laser power was set to approximately 70 mW, measured at the
433 objective. During experiments, the objective's focal plane was lowered into L2/3 (~ 100 μm below
434 the surface) before imaging neuronal responses to pure-tones.

435 After 2P experiments, all images were processed using Matlab. Image motion was
436 corrected using the TurboReg plug-in for MIJI (i.e., FIJI for Matlab). The example 2P fields of
437 view in figure 2a show the averages of registered images for GCaMP6s images across a
438 session. To extract neuronal fluorescence traces, the centers of cell bodies were manually
439 selected, and then a ring-like region of interest (ROI) was cropped around the cell center.
440 Overlapping ROI pixels (due to neighboring neurons) were excluded from analysis. For each
441 labeled neuron, a raw fluorescence signal over time was extracted from somatic ROIs. Pixels
442 within the ROI were averaged to create individual neuron fluorescence traces, $c(t)$, for each trial

443 of the experiment. Neuropil fluorescence was estimated for each cellular ROI using an additional
444 ring-shaped ROI, which began 3 pixels from the somatic ROI. Pixels from the new ROI were
445 averaged to obtain neuropil fluorescence traces, $N(t)$, for the same time-period as the individual
446 neuron fluorescence traces. Pixels from regions with overlapping neuropil and cellular ROIs
447 were removed from neuropil ROIs. Neuropil-corrected cellular fluorescence was calculated as
448 $c(t) = c(t) - 0.7 N(t)$. Only cells with positive values obtained from averaging $c(t)$ across time were
449 kept for analysis, since negative values may indicate neuropil contamination. $\Delta F/F$ was
450 calculated from $c(t)$, for each neuron, by finding the average F taken from the silent baseline
451 period before a pure-tone presentation, subtracting that value from subsequent time-points until
452 3s after the pure-tone, then dividing all time-points by the baseline F . $\Delta F/F$ was normalized by
453 the standard deviation of response amplitude (σ) for each neuron, yielding the quantity, $\Delta F/F$
454 (σ). Noise correlations were calculated as the correlation coefficient between mean-subtracted
455 neural responses to tones, for each pair of neurons in an experiment.

456

457 ***Quantification and statistical analysis***

458 All statistical comparisons were performed using a non-parametric bootstrap t-test with 10000
459 iterations. All mean values are reported with standard errors of the mean (SEMs).

460

461 **References**

462 1. Nichols, D.E. (2016). Psychedelics. *Pharmacol Rev* 68, 264-355. 10.1124/pr.115.011478.

463 2. Nichols, D.E. (2020). Psilocybin: from ancient magic to modern medicine. *J Antibiot (Tokyo)* 73, 679-686. 10.1038/s41429-020-0311-8.

464 3. Vollenweider, F.X., and Preller, K.H. (2020). Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. *Nat Rev Neurosci* 21, 611-624. 10.1038/s41583-020-0367-2.

465 4. McClure-Begley, T.D., and Roth, B.L. (2022). The promises and perils of psychedelic pharmacology for psychiatry. *Nat Rev Drug Discov* 21, 463-473. 10.1038/s41573-022-00421-7.

466 5. Carhart-Harris, R.L., Bolstridge, M., Rucker, J., Day, C.M., Erritzoe, D., Kaelen, M., Bloomfield, M., Rickard, J.A., Forbes, B., Feilding, A., et al. (2016). Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. *Lancet Psychiatry* 3, 619-627. 10.1016/S2215-0366(16)30065-7.

467 6. Carhart-Harris, R., Giribaldi, B., Watts, R., Baker-Jones, M., Murphy-Beiner, A., Murphy, R., Martell, J., Blemings, A., Erritzoe, D., and Nutt, D.J. (2021). Trial of Psilocybin versus Escitalopram for Depression. *N Engl J Med* 384, 1402-1411. 10.1056/NEJMoa2032994.

468 7. Griffiths, R.R., Johnson, M.W., Carducci, M.A., Umbricht, A., Richards, W.A., Richards, B.D., Cosimano, M.P., and Klinedinst, M.A. (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. *J Psychopharmacol* 30, 1181-1197. 10.1177/0269881116675513.

469 8. Ross, S., Bossis, A., Guss, J., Agin-Liebes, G., Malone, T., Cohen, B., Mennenga, S.E., Belser, A., Kalliontzis, K., Babb, J., et al. (2016). Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. *J Psychopharmacol* 30, 1165-1180. 10.1177/0269881116675512.

470 9. Davis, A.K., Barrett, F.S., May, D.G., Cosimano, M.P., Sepeda, N.D., Johnson, M.W., Finan, P.H., and Griffiths, R.R. (2021). Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. *JAMA Psychiatry* 78, 481-489. 10.1001/jamapsychiatry.2020.3285.

471 10. Doss, M.K., Povazan, M., Rosenberg, M.D., Sepeda, N.D., Davis, A.K., Finan, P.H., Smith, G.S., Pekar, J.J., Barker, P.B., Griffiths, R.R., and Barrett, F.S. (2021). Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. *Transl Psychiatry* 11, 574. 10.1038/s41398-021-01706-y.

472 11. Golden, C.T., and Chadderton, P. (2022). Psilocybin reduces low frequency oscillatory power and neuronal phase-locking in the anterior cingulate cortex of awake rodents. *Sci Rep* 12, 12702. 10.1038/s41598-022-16325-w.

473 12. Barrett, F.S., Krimmel, S.R., Griffiths, R.R., Seminowicz, D.A., and Mathur, B.N. (2020). Psilocybin acutely alters the functional connectivity of the claustrum with brain networks that support perception, memory, and attention. *Neuroimage* 218, 116980. 10.1016/j.neuroimage.2020.116980.

474 13. Liu, J., Wang, Y., Xia, K., Wu, J., Zheng, D., Cai, A., Yan, H., and Su, R. (2023). Acute psilocybin increased cortical activities in rats. *Front Neurosci* 17, 1168911. 10.3389/fnins.2023.1168911.

475 14. Vollenweider, F.X., Vollenweider-Scherpenhuyzen, M.F., Babler, A., Vogel, H., and Hell, D. (1998). Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. *Neuroreport* 9, 3897-3902. 10.1097/00001756-199812010-00024.

476 15. Kometer, M., Schmidt, A., Bachmann, R., Studerus, E., Seifritz, E., and Vollenweider, F.X. (2012). Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. *Biol Psychiatry* 72, 898-906. 10.1016/j.biopsych.2012.04.005.

477 16. Dittrich, A. (1998). The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. *Pharmacopsychiatry* 31 Suppl 2, 80-84. 10.1055/s-2007-979351.

508 17. Francis, N.A., Mukherjee, S., Kocillari, L., Panzeri, S., Babadi, B., and Kanold, P.O. (2022). Sequential
509 transmission of task-relevant information in cortical neuronal networks. *Cell Rep* 39, 110878.
510 10.1016/j.celrep.2022.110878.

511 18. Dierks, T., Linden, D.E., Jandl, M., Formisano, E., Goebel, R., Lanfermann, H., and Singer, W. (1999).
512 Activation of Heschl's gyrus during auditory hallucinations. *Neuron* 22, 615-621. 10.1016/s0896-
513 6273(00)80715-1.

514 19. Rothschild, G., Nelken, I., and Mizrahi, A. (2010). Functional organization and population dynamics in the
515 mouse primary auditory cortex. *Nat Neurosci* 13, 353-360. 10.1038/nn.2484.

516 20. Averbeck, B.B., Latham, P.E., and Pouget, A. (2006). Neural correlations, population coding and
517 computation. *Nat Rev Neurosci* 7, 358-366. 10.1038/nrn1888.

518 21. Francis, N.A., Winkowski, D.E., Sheikhattar, A., Armengol, K., Babadi, B., and Kanold, P.O. (2018). Small
519 Networks Encode Decision-Making in Primary Auditory Cortex. *Neuron* 97, 885-897 e886.
520 10.1016/j.neuron.2018.01.019.

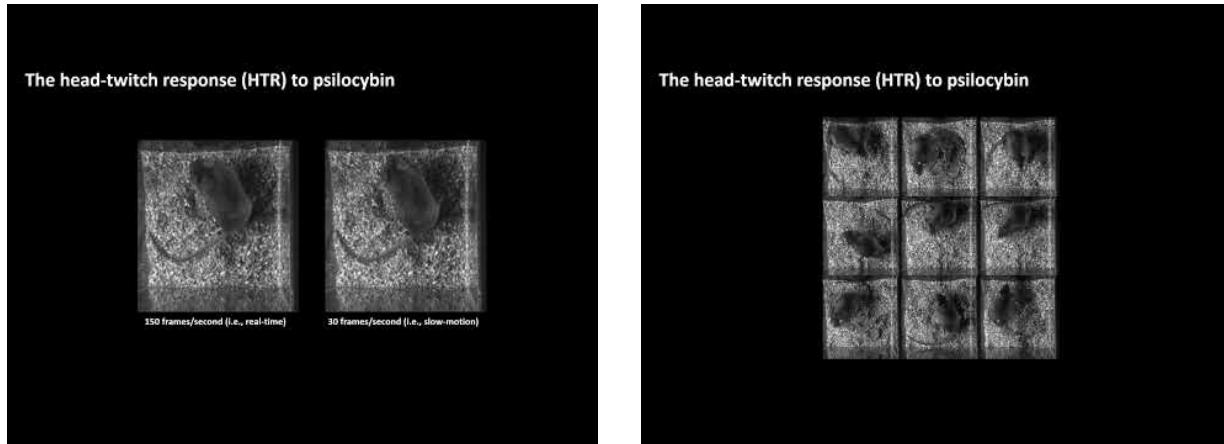
521 22. Shao, L.X., Liao, C., Gregg, I., Davoudian, P.A., Savalia, N.K., Delagarza, K., and Kwan, A.C. (2021).
522 Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex *in vivo*. *Neuron* 109,
523 2535-2544 e2534. 10.1016/j.neuron.2021.06.008.

524 23. Jefferson, S.J., Gregg, I., Dibbs, M., Liao, C., Wu, H., Davoudian, P.A., Woodburn, S.C., Wehrle, P.H.,
525 Sprouse, J.S., Sherwood, A.M., et al. (2023). 5-MeO-DMT modifies innate behaviors and promotes
526 structural neural plasticity in mice. *Neuropsychopharmacology* 48, 1257-1266. 10.1038/s41386-023-
527 01572-w.

528 24. Mittelstadt, J.K., and Kanold, P.O. (2023). Orbitofrontal cortex conveys stimulus and task information to
529 the auditory cortex. *Curr Biol* 33, 4160-4173 e4164. 10.1016/j.cub.2023.08.059.

530 25. Ying, R., Hamlette, L., Nikoobakht, L., Balaji, R., Miko, N., and Caras, M.L. (2023). Organization of
531 orbitofrontal-auditory pathways in the Mongolian gerbil. *J Comp Neurol* 531, 1459-1481.
532 10.1002/cne.25525.

533 26. Winkowski, D.E., Nagode, D.A., Donaldson, K.J., Yin, P., Shamma, S.A., Fritz, J.B., and Kanold, P.O. (2018).
534 Orbitofrontal Cortex Neurons Respond to Sound and Activate Primary Auditory Cortex Neurons. *Cereb
535 Cortex* 28, 868-879. 10.1093/cercor/bhw409.

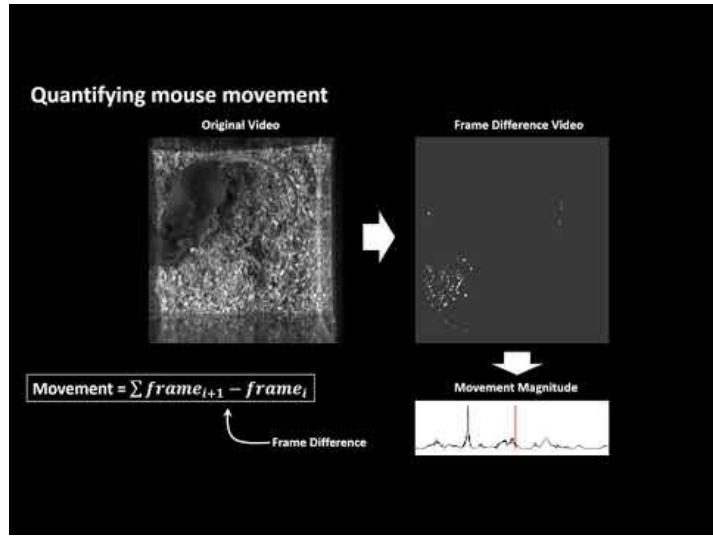

536 27. Sun, W., Tang, P., Liang, Y., Li, J., Feng, J., Zhang, N., Lu, D., He, J., and Chen, X. (2022). The anterior
537 cingulate cortex directly enhances auditory cortical responses in air-puffing-facilitated flight behavior.
538 *Cell Rep* 38, 110506. 10.1016/j.celrep.2022.110506.

539 28. Frisina, R.D., Singh, A., Bak, M., Bozorg, S., Seth, R., and Zhu, X. (2011). F1 (CBAxC57) mice show superior
540 hearing in old age relative to their parental strains: hybrid vigor or a new animal model for "golden
541 ears"? *Neurobiol Aging* 32, 1716-1724. 10.1016/j.neurobiolaging.2009.09.009.

542 29. Dana, H., Chen, T.W., Hu, A., Shields, B.C., Guo, C., Looger, L.L., Kim, D.S., and Svoboda, K. (2014). Thy1-
543 GCaMP6 transgenic mice for neuronal population imaging *in vivo*. *PLoS One* 9, e108697.
544 10.1371/journal.pone.0108697.

545
546

547 **SUPPLEMENTAL MATERIALS**



548

549 **Supplementary Video S1 (click the image to access video). Real-time and slow-motion**
550 **video of head-twitch responses (HTRs).** Mice were videoed from above in a clear acrylic box
551 with bedding. Videos were made at 150 frames per second. To better visualize fast mouse
552 movement, videos were analyzed at 30 frames per second to facilitate manual labeling of HTRs.
553 HTRs were reliably observed and labeled after psilocybin injection.

554

555

556

557 **Supplementary Video S2 (click the image to access video). Computation of behavioral**
558 **movement.** A frame differencing algorithm was used to quantify mouse movement around the
559 cage (see STAR Methods). The video shows how pixel brightness in the frame difference video
560 indicates mouse movement.

561

562

563