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Abstract

Effective immune-cell responses depend on collective decision-making mediated by diffusible
intercellular signaling proteins called cytokines. Here, we designed a spatio-temporal
modeling framework and a precise finite-element simulation setup, to systematically
investigate the origin and consequences of spatially inhomogeneous cytokine distributions in
lymphoid tissues. We found that such inhomogeneities are critical for effective paracrine
signaling, and they do not arise by diffusion and uptake alone, but rather depend on properties
of the cell population such as an all-or-none behavior of cytokine secreting cells. Furthermore,
we assessed the regulatory properties of negative and positive feedback in combination with
diffusion-limited signaling dynamics, and we derived statistical quantities to characterize the
spatio-temporal signaling landscape in the context of specific tissue architectures. Overall, our
simulations highlight the complex spatiotemporal dynamics imposed by cell-cell signaling with
diffusible ligands, which entails a large potential for fine-tuned biological control especially if

combined with feedback mechanisms.
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Introduction

Interactions between immune cells play a fundamental role in the mammalian defense against
pathogens. Specifically, the fine-tuned decision-making processes in the adaptive immune
response comprise cell-cell communication amongst antigen-presenting cells (APC) and T
and B lymphocytes, employing surface-mediated signaling as well as diffusible ligands called
cytokines'2. Remarkably, different cytokine species may share important parts of the signaling
machinery, including subunits of the high-affinity cytokine receptor as well as downstream
signaling mediators, and still evoke different biological functions and regulatory properties. For
instance, the cytokines Interleukin(IL)-2 and IL-7 share the common gamma-chain of their
receptors, and they both utilize STAT5 as major signaling mediator3. While IL-2 plays an
essential role in the regulation of T cell activation as well as clonal expansion, IL-7 controls
the homeostatic T cell population size. Furthermore, IL-2 signaling causes an increased
expression of the high-affinity IL-2 receptor (IL-2R) on target cells*, while IL-7 signaling causes
down-regulation of IL-7 receptor (IL-7R) expression in T cells®. Due to its promoting effect on
T cells, low-dose IL-2 therapy has been successfully employed in cancer immunotherapy and

for autoimmune diseases, while IL-7 is utilized in the treatment of infectious diseases®°.

In the case of paracrine cytokine signaling, the cytokine sources and sinks are often
separated'®, which may result in a spatially uneven cytokine concentration due to
consequences of diffusive cytokine transport'’. Indeed, previous model simulations have
predicted spatial inhomogeneities in cytokine concentration spanning several orders of
magnitude, within a physiological parameter regime'>'*. Those results have been supported
by experimental findings of notable and tunable inhomogeneities of the cytokine concentration
in secondary lymphoid organs, which regulate the formation of local cytokine micro-
environments'>'8, Nevertheless, the measured fast diffusion coefficients for cytokines such
as IL-2 may counteract the effects of localized cytokine secretion and uptake'”'®, suggesting
a subtle balance of several regulatory mechanisms controlling the spatial distribution and
signaling range of cytokines. In fact, theoretical as well as experimental studies have indicated
that spatial cytokine inhomogeneities can be fine-tuned by properties of the cell
population™1620 pbut the range and effect size of such mechanisms remains unclear.
Furthermore, it is not known how different regulatory mechanisms employed by different
cytokines, such as positive vs. negative feedback on receptor expression in the case of IL-2
and IL-7, specifically modulate their spatio-temporal signaling properties and how that relates
to biological functions.

Next to the emergence and fine-tuned control of spatial cytokine inhomogeneities, a prevailing

question concerns the consequences of cytokine inhomogeneities for paracrine signaling
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efficacy and, in more general terms, for decision-making processes of immune-cell
populations. Intuitively, spatial cytokine inhomogeneities may promote signaling efficacy
especially in the range of low average cytokine concentrations, because locally enriched
concentrations in small microenvironments may act to overcome the threshold for signal
induction at least in those areas. However, immune-cell populations are subject to complex
non-linear dynamics and constraints imposed by the detailed tissue architecture. All those
system properties act together in shaping the spatio-temporal dynamics, and therefore have
to be considered in a quantitative analysis of the spreading and efficacy of paracrine cytokine
signals.

Here, we designed a precise yet flexible mathematical simulation platform based on the finite-
element method, to systematically analyze the interplay of tunable regulatory properties of
paracrine cytokine signal propagation. Our investigation revealed the number of cytokine
secreting cells as the primary driver of inhomogeneities in the cytokine field. Furthermore,
feedback mechanisms involving receptor expression for both IL-2 and IL-7 finely regulate the
activation of cells around a cytokine source, which we quantified in the model simulations by
developing specifically tailored summary statistics. Finally, as the model allows for a variety of
cytokine dynamics and interacting cells, we explored the consequences of specific tissue
architectures on cytokine distribution and signaling. Throughout those multiple levels of
paracrine interaction, we found that the complex diffusion and uptake dynamics generate
properties of signal propagation that are quite different from a well-mixed scenario ignoring
spatial inhomogeneities that is studied in parallel.

Results

Spatially inhomogeneous cytokine concentrations arise generically and can induce
potent and fine-tuned paracrine signals.

Effective paracrine cytokine signaling requires concentrations exceeding a threshold for signal
reception at the target cell?', and therefore is in conflict with the low measured values for the
average concentration of many cytokine species'®?2. Diffusion-limited signaling is a plausible
mechanism for effective paracrine signaling even under conditions of low tissue-level cytokine
concentrations, because locally amplified concentrations in the vicinity of cytokine-secreting
cells may allow to exceed the signaling threshold on the surface of nearby responder cells.
Nevertheless, such a mechanism requires a subtle balance of the rates of cytokine secretion,
cytokine uptake and cytokine diffusion, supplemented by intracellular processes including
signaling cascades and transcriptional regulation. To systematically assess the robustness
and dynamic range of diffusion-limited cytokine signaling in the context of regulatory properties
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of a cell population, we designed a spatio-temporal simulation work-flow based on an accurate
and efficient finite-element solver. Due to the large time-scale separation between diffusion
(seconds), intracellular signaling (minutes) and processes that require transcriptional
regulation (hours), we decided to employ a quasi-stationary state assumption to the reaction-
diffusion problem throughout. Since we are interested in the systematic analysis of local cell-
cell interactions, special consideration was put into a modular, scalable and parallelizable
modeling environment (Figure S1A). For the chosen mesh configuration, computation time
scaled linearly with mesh fidelity and system size (Figure S1B), and the simulation error was
largely set by boundary effects (Figure S1C-E) and therefore decayed rapidly with system

size.

To set the stage, we initially studied direct paracrine signaling activities in an otherwise
stationary cell population, in terms of the well-studied model system of IL-2 secretion and
uptake by T helper cells in a scenario with randomly assigned cytokine secreting and
responder cells (Figure 1A). Model parameters were determined in line with experimentally
measured quantities +'2131923-25 (Tgble 1), to foster simulation results in the physiological
parameter regime. Following previous work'é, we accounted for saturation effects regarding
cytokine binding and uptake by cytokine receptors using a Michaelis-Menten type of equation,
which we found to be a direct consequence of a mechanistic model formulation
(Supplementary Text, “Description of uptake dynamics”). In line with experimental data'425-26,
we assumed a discrete all-or-none type of IL-2 secretion in cytokine-secreting cells (the impact
of this assumption is studied in detail below). We additionally considered intracellular signal
transduction by means of a conceptual model, where the phosphorylation level of the signal
transducer and activator of transcription (STAT) in responder cells indicates effective

paracrine signaling.

Our modeling setup resulted in a high degree of spatial patterning due to cytokine
concentration gradients between secreting and responding cells, which were also reflected in
the downstream STAT signal (Figure 1B). As anticipated, our simulations revealed
appreciable paracrine signaling efficacy due to increased local cytokine concentrations (Figure
1C and D). Quite remarkably, high paracrine signaling activity (up to 40% pSTAT+ cells)
occurred in a regime where such signaling was undetectable in an identically parameterized
ordinary differential equation (ODE) system (Figure 1C and D, “well-mixed”) that arises
naturally from a fast-diffusion assumption (Supplementary Text, “Deriving the well-mixed
model”). Moreover, diffusion-limited signaling generated an appreciable dynamic range with
regard to regulation by the amount of cytokine secreting cells, while the system was limited to
an all-or-none response in the well-mixed situation. Accordingly, paracrine signaling efficacy
exhibited a strong correlation with an increase in spatial cytokine inhomogeneity as quantified
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by the concentration gradient (Figure S2A) or the spatial standard deviation (s.d.) (Figure 1E
and S2B) of cytokine levels across responder cells.

To characterize our model system in more detail, we performed a systematic parameter
sensitivity analysis with respect to standard parameter values (Table 1). That analysis
revealed strong effects on signaling efficacy and cytokine inhomogeneity by the receptor
number and the half-saturation constant for cytokine uptake Kp in addition to the cytokine
secretion rate and the fraction of secreting cells (Figure 1F, Figure S2C-D). Interestingly, the
rates of diffusion and extracellular cytokine decay as well as the cell-to-cell distance have a
minor effect on signaling efficacy and cytokine inhomogeneity. Hence, signaling amplification
by diffusion-limited cytokine propagation is a generic mechanism that is robust to subtle
changes in the spatial configuration of the system, but sensitive to properties that are under
control of the participating immune-cell populations.

In line with that, experimental evidence'® and theoretical considerations'® suggest the ratio of
receptors between secreting and responding cells to be a carefully controlled property that
determines the mode of cytokine signaling in the range between purely autocrine and purely
paracrine signaling (Figure 1G). In our simulations, we found that paracrine signaling is limited
to situations with more than 75% of all cytokine receptors expressed on responder cells and
a subsequent increase in spatial inhomogeneity (Figure 1G, Figure S2E and F). On the other
hand, cytokine secreting cells require only a minimal amount of receptor expression to receive
an appreciable cytokine signal. That discrepancy is in line with the requirement for careful
control of paracrine inflammatory signals such as IL-2 in order to prevent a potentially lethal
cytokine storm?”:2 and may explain the previously observed?® down-regulation of the pSTAT5
signaling pathway in cytokine secreting cells.

Overall, we found that a diffusion-limited mode of cytokine signaling allows for effective
paracrine signaling in a regime of low average cytokine concentrations, and contrasts with a
well-mixed scenario in the same parameter regime where paracrine signals remain far below

thresholds for onset of downstream signaling cascades.

Fractional abundance of cytokine secreting cells as major source of spatial
inhomogeneity

Having established the generic occurrence and tunability of diffusion-limited paracrine
signaling amplification, we sought to investigate the contributions of individual system
components to cytokine concentration inhomogeneity. In our simulation, a uniform cell

population, where cytokine secretion and uptake were equally distributed across cells,
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generated a nearly homogeneous cytokine concentration field, despite localized secretion and
uptake at the cell surfaces (Figure 2A). Hence, we expected that a tight localization of cytokine
sources is critical for spatial cytokine inhomogeneities, and we further sought to analyze the
contributions of a heterogeneous distribution of cytokine receptors and of saturation effects in
cytokine uptake dynamics on responder cells (Figure 2A). To this end, and to test the impact
of an all-or-none-behavior of cytokine-secreting cells (that is few cells secreting large amounts
of cytokine), we designed a simulation setup in which the total amount of secreted cytokine
molecules and of cytokine receptor expression remain constant under parameter variation.
We found that increasing the number of secreting cells in that system resulted in a steep decay
of concentration inhomogeneities, approaching the well-mixed scenario (Figure 2B, left panel).
The rise in the average cytokine concentration for low amounts of cytokine secreting cells
(<5%) could be attributed to saturated uptake rates at high local concentrations, as it
disappeared in the corresponding system with linear uptake rate (Figure S3A), in contrast to
the increase in spatial inhomogeneity which occurred also under linear uptake.

To account for cell-to-cell heterogeneity in cytokine receptor expression*?*%, we considered
expression values following a log-normal distribution at varying coefficients of variation, while
keeping average expression levels constant (Figure 2A, middle panel). As anticipated, high
levels of receptor heterogeneity induced cytokine inhomogeneities in the RD-system, but not
in the well-mixed scenario (Figure 2B, middle panel). Interestingly, in the RD-system, the
average cytokine concentration also showed a substantial increase with receptor
heterogeneity, although the total amounts of cytokine secretion and uptake were kept constant
so that cytokine concentrations remained unchanged in the well-mixed scenario. That
seemingly paradoxical effect is independent of uptake-rate saturation (Figure S3B). It can be
intuitively explained by a lower chance for high uptake capacities in the vicinity of cytokine
secreting cells, which we could analytically reconcile by the help of a previously established'®
approximate solution to the reaction-diffusion problem (Supplementary Text and Figure S3C).

Finally, we considered the effects of varying the saturation constant in our system. Of note,
substantial differences regarding average cytokine concentration values between linear and
saturated uptake functions occurred only in parameter ranges with very high secretion rates
(Figure S3D), which are reached at low fractions of cytokine-secreting cells (cf. caption to
Figure 2B). In line with that, increased values of the saturation constant Kp induced only
moderately higher values of the spatial inhomogeneity, and a nearly proportional change in
concentration (Figure 2B, right panel), in both the RD and the well-mixed system. Across all
three parameter values under study, we found that any increase in inhomogeneity was
accompanied by a similar rise in activation (Figure 2C, Figure S3E and F). While that
increased signaling activity can partially be attributed to the increased average cytokine
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concentration in all three cases, the change in cytokine concentration values is lowest and the
increase in spatial inhomogeneity is the highest in the case of a decrease in the fraction of
cytokine secreting cells.

Hence, we conclude that the highly localized mode of cytokine secretion in a situation with a
small number of highly active secreting cells is the main driver of cytokine inhomogeneities, in
turn increasing localized paracrine signaling efficacy.

Dynamic feedback on receptor expression modulates spatial cytokine gradients

In addition to the mere exchange of paracrine signals studied so far, immune-cell populations
have been found to exhibit feedback regulation directly on the level of cell-cell communication,
in terms of cytokine receptor expression levels depending on the local cytokine
environment®>3'-3, Therefore, we proceeded to study the impact of such feedback
mechanisms on the cytokine concentration field. Since modulation of receptor expression
levels requires transcriptional regulation, considering such processes introduces a new time-
scale on the order of hours to the system, giving rise to an intertwined combination of a quasi-
stationary reaction-diffusion problem and a comparatively slow, dynamic modulation of cellular
properties. In immune-cell compartments such as the lymph node, experiments have shown
that several lymphocyte populations show high degrees of random and directed cell matility,
in many cases achieving cell speeds on the same time-scale (hours). However, upon effective
antigen stimulation, T cells remain bound to an antigen-presenting cell via the immunological
synapse until they reach their full activation status by means of additional cytokine
signaling®*3%. That gives rise to an immobilized population of antigen-exposed responder cells,
which is the focus of our study.

Positive and negative feedback on cytokine receptor expression are widespread properties of
immune-cell populations, for which we designed a generic and reusable mathematical
formulation using our established response-time modeling framework33” (Figure S4A). Here,
we focused on two well-established examples, which are the IL-2/IL-2R system for positive
feedback and the IL-7/IL-7R system for negative feedback (Figure 3A). In both cases, naive T
helper cells act as responder cells.In the case of IL-2, cytokine secreting cells correspond to
fully activated T cells under high antigen stimulation’, and in the contrasting scenario of IL-7

signaling, stromal cells take the role of secreting cells®2.

In the IL-2 scenario, upon initializing cytokine secretion, the system quickly reached a transient
state of high systemic cytokine concentration accompanied by increased STATS signaling
activity and a subsequent increase in IL-2 receptor expression (Figure 3B and Figure S4B-D
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left panels), in agreement with experimental data®. To analyze the effects of negative
feedback by means of the homeostatic IL-7 signal in comparison to positive feedback, we
considered a thought experiment where the system is initially deprived of cytokine (Figure 3B
and S4B-D, right panels). Upon initializing cytokine secretion, responding cells decreased
receptor levels due to negative feedback, resulting in increased levels of cytokine
concentration and STAT5 signaling. In the corresponding well-mixed simulations (Figure 3B
and Figure S4C), cytokine concentrations remained below threshold for signal induction in
both the IL-2 and the IL-7 scenarios.

Next, we sought to analyze the properties of positive and negative feedback in more detail.
Generally, the population of responding cells can be categorized into two groups: (i) cells
capable of maintaining a high level of STATS signaling activity, and (ii) cells which are unable
to receive sufficient signal after an initial transient (Figure S4E-G). The emerging bimodal
distribution for positive feedback is not present in well-mixed scenarios and shows a strong
dependence on the feedback fold change (Figure 3C, left panel). On the other hand, negative
feedback induced a more gradual response for both the well-mixed and RD-system, with the
RD-system yielding a higher fraction of cells exhibiting stable STAT5 signaling activity (Figure
3C, right panel). Next to those differences regarding STAT5 distributions, also the time to
activation shows marked differences between positive and negative feedback regulation
(Figure 3D), with negative feedback showing a much slower response time that is subject to
modulation by feedback fold change. Quite interestingly, strong positive feedback induced a
decay and strong negative feedback induced an increase in measures of spatial cytokine
inhomogeneity (Figure 3E and S4H-I), due to opposed effects on signal localization. This
change in signal localization results in a similar change in cytokine signaling efficacy (Figure
3F), which is in line with the notion of the IL-7 receptor as an ‘altruistic’ signaling mediator®®,
as IL-7 uptake is stopped upon signal reception, so that cells further away from the cytokine-

secreting cell are able to receive cytokine molecules.

In conclusion, we found the introduction of dynamic feedback to be a crucial control
mechanism in shaping not only the distribution and timing of tissue responses but also the
spatial cytokine gradients and signaling efficacy.

Regulatory properties of the cytokine signaling niche

To understand the intertwined regulation of paracrine signaling via spatial inhomogeneities
and feedback regulation in more detail, we shifted our focus to the immediate neighborhood
of each secreting cell, which has previously been referred to as signaling niche'. Based on
the results on feedback-driven spatial inhomogeneity (cf. Figure 3E), we hypothesized that
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positive feedback restricts the signaling range and negative feedback amplifies the signaling
range, thus potentially enabling effective signaling towards a larger group of responder cells.

To identify the signaling niche of an individual cytokine secreting cell, we utilized density-based
spatial clustering of applications with noise (DBSCAN) and defined a signaling niche as a
cluster that contains at least one cytokine secreting cell and at least one activated cell (Figure
4A and B). Hence, the maximum possible number of niches equals the number of secreting
cells (black line in Figure 4B), and since one cytokine-secreting cell is insufficient for effective
paracrine signaling in the physiological parameter regime, the realized number of niches in
the system typically falls far below that maximal number. Notably, we found that positive
feedback leads to increased signaling activity inside a niche, and negative feedback to a
higher fraction of activated cells outside the niche (Figure 4C), in line with our hypothesis on
the signaling range.

To proceed to a more direct quantitative analysis, we defined the ‘niche score’ as the ratio
between the number of niches and the number of secreting cells, and the ‘niche effect’ as the
ratio between the average pSTATS signal inside and outside of the niche (Figure 4D-E and
S5A). A high niche score indicates well-separated niches, and a high niche effect indicates
that the signal is primarily located within the niche compared to outside, in other words, it
accounts for the leakiness of the cytokine niche. Furthermore, our definition of the signaling
niche allowed to quantify the signaling range as average distance between cytokine-secreting
cells and maximal-distance responder cells within a niche (Figure 4E). The niche score and
niche effect in conjunction with the signaling range (Figure 4F) revealed that positive feedback
enhances niche separation (high niche score) and induces a highly localized signal within
each niche (high niche effect with low signaling range), while negative feedback causes niches
to merge (low niche score) and increases cytokine leakiness (low niche effect and high

signaling range).

Those system properties further depend on the number of secreting cells, with small numbers
limiting the effect of both positive and negative feedback, since only few responder cells are
activated (Figure 4G and S5B), and high numbers additionally dampening the effect of
negative feedback (Figure 4H and S5C). That latter effect can be attributed to larger niches
requiring longer signaling ranges, reflecting the previously detected (cf. Figure 3D) increase

in activation time under negative feedback.

Overall, our detailed quantitative analysis of the signaling niche revealed that local receptor
expression feedback is able to influence not only signaling efficacy but also signaling range
and niche separation, facilitating an adaptive response to variable stimulus intensities.
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The local tissue architecture provides an additional regulatory layer for spatiotemporal
cytokine signals

Thus far, to systematically investigate the spatiotemporal dynamics, cells were placed
randomly on a cubic grid in all simulations shown. To analyze the effect of additional
constraints imposed by the local tissue architecture, we also designed a grid-free simulation
setup allowing to induce clustering of specific cell types in a tightly controlled manner, by
variation of the clustering strength @. That clustering strength correlates well with the silhouette
and Calinski-Harabasz scores, which are established metrics for clustering quality (Figure
S5D). Such clustering of specific cell types is a wide-spread property of immune-cell
populations and can be mediated by chemokine signals or also physical barriers, such as
imposed by stromal cells in the lymph node*®4.

Here, we initially considered a situation where IL-2 secreting T cells accumulate in the vicinity
of a specific antigen-presenting cells presenting their cognate antigen (Figure 5A). As
expected, such co-localization of cytokine-secreting cells imposes a substantial increase in
paracrine signaling efficacy in our simulations, since locally enriched cytokine concentrations
levels allow to overcome the activation threshold in nearby cells. For low-to-moderate numbers
of cytokine-secreting cells, quantitative analysis confirmed that effect in terms of the number
of activated cells, the niche score defined above (Figure 5B) and the signaling range, despite
an overall reduction of IL-2 concentration levels (Figure S5E). Quite interestingly, at very high
numbers of cytokine-secreting cells, co-localization can also have the opposite effect and
induces a reduction in the number of activated cells (Figure 5B, inset), which can be explained
by the isolating effect of nearby responding cells preventing long-range paracrine signaling.
To provide immune tolerance and reduce the risk of immune-responses to self-antigen,
paracrine IL-2 signaling is mitigated by regulatory T (Treg) cells that express large numbers
of high-affinity IL-2 receptor and can act as strong cytokine sinks'®'942 In particular, it has
been suggested that Treg cells can effectively take up IL-2, because they are stimulated by
cognate antigen presented by the same antigen-presenting cell as the corresponding effector
T cells and thus are co-localized in the same spatial signaling niche'®43 (Figure 5C, left panel).
Indeed, we found that the inhibitory effect of Treg cells is rather limited if they are placed
randomly, that is =0 (Figure 5C-D). At least a partial co-localization of Treg cells with
cytokine-secreting cells seems required for effective reduction of cytokine signal and signaling
range (Figure S5F), and can induce almost complete signal inhibition already at a fraction of
only 4% Treg cells in our simulations.

While IL-2 signaling in the local environment created by antigen-presenting cells facilitates fast
and unambiguous decision-making on T cell activation, it has been argued that IL-7, a cytokine
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essential for T cell survival, should be distributed more widely within the system?. Our results
on the spatio-temporal effects of negative feedback (cf. Figure 4E) supported that claim, as
we observed an increase in paracrine signaling efficacy and spatial range. To investigate that
phenomenon in a more specific scenario, we introduced co-localization of IL-7 secreting cells
analogous to the IL-2 case (Figure 5E). As anticipated, we found that increased clustering of
cytokine-secreting cells not only improved signaling efficacy (Figure 5E-F), but also caused
an increase in cytokine concentration levels and signaling range (Figure S5G).

Hence, we found that the spatial composition of cell types with specific properties can provide
another layer of control over the range and efficacy of paracrine cytokine signaling, acting
together with the amount of cytokine secreting cells, the distribution of cytokine receptor
expression and cytokine-induced feedback regulation.

Discussion

Cell-cell communication using diffusible ligands is a widespread mechanism to exchange
information in multi-cellular organisms, and is particularly important in the collective decision-
making processes of the mammalian immune system. Compared to intracellular processes,
the larger spatial domain of such cell-cell interaction dynamics increases the potential for
inhomogeneous distributions and non-intuitive spatial patterning*4#® of signaling mediators.
Nevertheless, the high diffusivity (~10 um?/s) of small proteins such as cytokines suggests
that concentration inhomogeneities may disappear very rapidly on the relevant time- and
length scales, that is cell-cell distances in lymph nodes (<5 pm) and times for signal integration
and cell-differentiation (minutes to hours). By systematic analysis of physiological scenarios
of cytokine signaling using an efficient finite-element simulation setup, we found that spatial
cytokine inhomogeneities do not arise by diffusion processes per se. Rather, additional factors
are required, such as a sparse occurrence and all-or-none behaviour of cytokine secreting
cells or heavily skewed distributions of cytokine receptors across cells. Thus, concentration
inhomogeneities are essentially a property that is under control of the cell population.

Our mathematical formulation combines a description of signal processing on the cellular level
with a biophysical description of cytokine diffusion. The signaling range of cytokine-secreting
cells is diffusion-limited, since cytokine uptake requires diffusion of the cytokine through
extracellular space, in addition to binding to its high-affinity receptor*®4’. The importance of
this diffusion limit becomes apparent when considering the diminished signaling efficacy in our
well-mixed model implementation. In the reaction-diffusion model, considering non-linear
uptake dynamics on the surface of responding cells, we found that both the fraction of
secreting cells and heterogeneity in receptor expression were able to generate cytokine
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concentration inhomogeneities. Previous studies have indicated values between 1% and 20%
for the fraction of cytokine-secreting cells'2?° and a coefficient of variation for the receptor
distribution that is close to 14?*. Under those conditions, our results suggest a higher
contribution of the fraction of cytokine-secreting secreting cells to spatial inhomogeneities
within the physiological parameter range.

Another important factor shaping cytokine signaling dynamics is feedback regulation of
receptor expression on responding cells, which has been reported not only for IL-2 and IL-7
as the key interest of this study, but also for other cytokines including IL-4, IL-21, TGF-B and
IFN-y®31-3348-50 |t js known that positive feedback can induce an all-or-none type of response
to a signal, while negative feedback leads to more gradual and homogeneous dynamics and
can have an effect on the time-scale of the response to an input signal®'-%2. In line with that
and with previous studies'?, we found that spatial cytokine gradients can induce significant
bifurcations in activation patterns of the naive T cell in the presence of positive feedback
mediated by the cytokine IL-2. Interestingly, that model behavior does not occur in a parallel
well-mixed scenario, highlighting the requirement of spatial cytokine distributions for paracrine
stimulation even in the presence of positive feedback. Considering IL-7 as a cytokine
promoting negative feedback on receptor expression, we observed an increase in signaling
range that propagates with time, resembling a signaling wave that spreads through the cell
population. That phenomenon is well in-line with the notion of IL-7 responder cells as ‘altruistic’

39 since they provide access to IL-7 to nearby cells by downregulating their receptors.

To quantify the localization and effectiveness of cytokine signaling within the
microenvironment around cytokine-secreting cells, we propose the niche score and niche
effect as summary statistics that may also serve for comparison with multi-color histology data
in future research. The niche score offers an understanding of how well separated niches are,
while the niche effect quantifies how effectively cytokine signal is localized within each niche.
Utilizing these spatial statistics, we found that the up-regulation of receptors in the IL-2
scenario results in a localization of activation and signal within a niche. We identified the
opposite behavior in the case of IL-7 signaling, where downregulation of receptors delocalizes
the signal, thus inducing a more homogeneous cytokine concentration field. Consequently,
paracrine signaling efficacy depends more on the total amount of cytokine molecules in the
system rather than its location, which is in line with the biological function of IL-7 as a survival

signal controlling the size of a cell population in homeostasis.

Finally, we asked how the local tissue architecture in terms of already established clustering
and co-localization of specific cell types would modulate signaling efficacy and spatial cytokine
patterning. Our model simulations revealed that the spatial clustering of cytokine-secreting
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cells can substantially increase signaling efficacy, as cytokine secretion by multiple cells in a
signaling niche combines to act on responder cells. Moreover, we found that co-localization of
cytokine-secreting cells and cells with a high capacity of cytokine uptake, such as described
for Treg cells in the context of IL-2 signaling™®, is a highly efficient mechanism to control the
effectivity of paracrine signals and thus modulate the degree of immune tolerance.

Overall, we found that the spatial relationships and individual properties of cytokine-secreting
cells and cells expressing high-affinity cytokine receptor species can critically regulate the
efficacy of cell-communication. Future research may combine our approach with quantitative
models on germinal-center dynamics®*-°% and multiplexed histology data®¢-%® characterizing
tissue organization in lymphoid organs and the tumor micro-environment, paving the way to a
unified, quantitative understanding of spatio-temporal decision-making in immune-cell

populations.
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Methods
Software, simulations and statistics

All simulations are carried out using the finite-element solver FEniCS®* with P1 elements, a
generalized minimal residual methods (GMRES) solver and algebraic multi grid (AMG)
preconditioner. The solution accuracy is controlled by the Krylov solver tolerance for linear
and the Newton solver tolerance for the non-linear boundary conditions. For a description of
the weak formulation of the models used therein, refer to the Supplementary Text. Standard
parameter values are listed in Table 1.The extracellular space was discretized as a uniform
tetrahedral mesh using Gmsh®, the mesh fidelity was chosen to yield a mesh with
approximately 100,000 degrees of freedom in a cube of 240 um edge length. To minimize
boundary effects the outermost layer of cells is disregarded in our analysis.

The ODE model was solved using a SciPy ODE solver. All parameter values are listed in Table
1. The standard deviation (SD) was computed using the surface concentration of all cells in
one configuration. The gradient was computed through the average norm of the cytokine field
gradient. The Spearman rank-order correlation coefficient (rs) was computed using SciPy. To
quantify the bimodality of a distribution we calculated the relative separation using Ashman’s
D8'. The signaling range was determined using the distances of responding cells to their
closest secreting cell inside all niches and calculating the 0.05" largest percentile.

Mathematical Models

Core-model of spatially resolved cytokine dynamics. Let Q be the extracellular space,
0 the outer boundary of that space and I3, i = 1, ..., N5, denote the cell-surfaces. In all
simulations, for each cytokine considered, we assumed the cytokine concentration c(x), x €
Q to be in quasi-steady-state, and we imposed no-flux conditions at the outer boundary, that

is % = 0on 0. Further, assuming homogeneous cytokine secretion and uptake on each cell-

surface with area 4;, the interaction between a cell and the extracellular cytokine concentration

is realized through generalized Robin boundary conditions (cf. Ref.1213):
0= DAc—nc in Q

ok a W@ M
on, AD AD !

Here, D is the diffusion coefficient, n is a homogeneous decay rate and 4 is the three-
dimensional Laplace operator. For the sake of simplicity, we assume a uniform cell-size 4;: =

Acen throughout. Furthermore, we take the secretion rate g; and the surface concentration as
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. 1
average values across the cell-surface for each cell, that is ¢; := A—fr_ cds. Hence, the

cell 1

uptake rate takes the form

Wi(c;) = kendoRi f(c) (2)
where R; denotes the number of receptors expressed on the cell-surface. In the case of linear

cytokine uptake, the uptake function takes the form f(c;) = :"—;‘fcl-, where k,, is the cytokine-

receptor association rate'>3, A more realistic description of cytokine uptake takes into account
that the uptake capacity of a cell is limited not only by the amount of receptors expressed on

the surface, but also by the intracellular machinery for cytokine degradation and ‘recycling’ of

‘% where
KD+Ci

cytokine receptors'26263, That results in an uptake function of the form f(¢;) =

Kp is the half-saturation constant for cytokine uptake. We found that this form of the uptake
function can be justified by a mechanistic, Michaelis-Menten type description of cytokine-
binding to its receptor (Supplementary Text, “Description of uptake dynamics”). Further,
assuming kenao = kofr, We retrieve the canonical form of the linear uptake function ¥;(c;) =
konR; c;. Inthe case of non-secretory responder cells, we set g; = 0 and R; = R, in Equation
1, whereas we take q; = qs.c and R; = R, for cytokine-secreting cells. The latter ones
express lower numbers of cytokine receptors and thus exhibit a reduced uptake rate ¥;(c;)
(cf. Table 1). Moreover, we account for receptor heterogeneity on responding cells (Figure 2)

by sampling R; from a log-normal distribution with mean R,..,.

As a primary output of our model simulations, we assess cellular activation in terms of the
fraction of phosphorylated STAT5, which we take as

c? (3)

TAT5(¢,R) = ———
PSTATS(e,R) = weeg Ry 1 o3

A cell is considered activated if its pSTATS level reaches values pSTAT5(c;, R;) = 0.5. In line
with experimental data®*, we account for a dependency of the EC50 value on the level of

max kN + Emin RN
kN + RN

receptor expression through ECSO(R)=E , where Epax Emin k and N are

parameters determined through fitting of experimental data®*. Model parameters (Table 1)

could in many cases be assigned to or derived from published experiments.

Receptor feedback kinetics. In order to analyze the delayed receptor feedback introduced
in Figure 3, we considered a time-dependent change in receptors, leading to a time-dependent
cytokine distribution. That is, our quasi-stationary diffusion problem, Equation 1, is generalized
to a series of such problems, via ¥;(c;) = ¥;(c;(t), R;(t)) in Equation 2, given by a system of
ODE for receptor expression in each cell:
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dR; (4)

o - gi(ci, Ry)

Specifically, we chose a receptor feedback function

kbaseKIII\{ +Vikbase pSTATS(Ci'Ri)N — VR (5)
KN + pSTAT5(c;, R)VN l

i (Ci' RL) =

that depends on the cellular pSTATS level, the minimal receptor production rate ky,s., the half
saturation value for activation K,,, and the receptor decay rate v. The feedback fold change y;
depends on the cell type, here we take y; = 1 for cytokine-secreting cells, y; € (1,100] for
positive and y; € [0.01, 1) for negative feedback on responding cells. For visualization, to allow
for a unified x-axis, the fold change for negative feedback was inverted. To account for delayed
regulation of receptor expression on the responding cell i caused by intracellular processes
such as signal transduction and gene expression, we supplemented Equation 4 by equations
for auxiliary states (‘linear chain trick’, cf. Figure S4A), as previously described®’:

0= DAc—nc in Q

dc _ qi  Wile, Ry) o

on. . AD Ap On
. (6)
dr® )
a = 7 (c0R(”)
dxil

— = A(xi,l—l - xl-,l) , = 2, ... M, Xi1 = Rl(*)’ Ri: =Xim

Well-mixed model. In the well-mixed case, i.e. assuming infinitely fast diffusion, the
homogeneous extracellular cytokine distribution is described by an ODE. Namely, by
neglecting the cell volumes, the core PDE model (Equation 1) converges for D — « to an ODE
in terms of the system-wide quantities g;o:: = GsecNsec; Where Ng,.. denotes the number of
secreting cells, and W;,:(¢) = kendoRtotf (€) With Reot := NsecRsec + NyespRresp, CONsidered at

steady-state (Supplementary Text, “Deriving the well-mixed model”)8:

0 = qrtor — Peor(€) —nC. (7)
As in the core PDE model, we have f(c) = ::)’—;‘fc for linear uptake and f(c) = ﬁfor saturated
uptake. Parameters were chosen identically to the core model and are listed in Table 1.

Furthermore, the steady-state solution ¢ of the well-mixed ODE is the average of the cytokine

_ 1

distribution ¢ described by the core PDE®, i.e. ¢ = al

Jo, cCGx)dx. That allows for a direct

comparison to the core model in terms of analytical expression of values for the average

cytokine concentration (Supplementary Text).
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Analogous to the core PDE model, we introduced delayed receptor feedback in the well-mixed
model by a time-dependent uptake function ¥,:(c) = ¥;o:(c(t), Reo:(t)) and receptor

. . dR
expression dynamics ﬁ = g(¢, Rior)-

Random cell positioning. To achieve an efficient 3-dimensional random cell positioning (cf.
Figure 5), we utilize Bridson sampling, a Poisson disk sampling approach®. The average cell-
cell distance and the amount of sampling steps are chosen to yield the same average cell
density as in the grid approach employed in all other simulations (Figure 1-4).

Quantifying spatial patterns. The surface concentration average refers to the average
concentration over the surface of all responding cells in the system, the surface concentration
s.d. refers to the standard deviation of the concentration of all responding cells. The gradient
refers to the sum of the cytokine gradient in the extracellular space. To calculate the niche
score and niche effect in Figure 4 it is necessary to calculate which pSTAT5* cells are being
activated by which secreting cell. This is achieved by running the DBSCAN algorithm with all
pSTATS* and secreting cells spatial coordinates as input and the average cell-cell distance,
typically 20 um, as the maximum distance between two samples. This algorithm assigns each
cell to a cluster, which is a group of cells, based on the spatial density of cells. Any resulting
clusters not containing at least one pSTAT5* and one secreting cell were disregarded, which
only happens in edge cases since activation is localized around secreting cells.

Clustering formalism. In order to achieve the clustering of secreting cells around APC in
Figure 5 we developed an algorithm that generates clusters of cell types around a set of user-
defined points in space called clustering points. Each cell type is represented by a fraction and
a clustering strength, which determines how clustered the cells of each type will be around the
clustering points. The algorithm uses a kernel density estimation (KDE) to assess the
probability of each possible cell position being part of a cluster. It then samples cell positions
based on these probabilities to assign each position a cell type.
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Figure captions
Figure 1: Spatial inhomogeneities induce stable paracrine signaling activity

(A) Model scheme. Cytokines are released by the secreting cells, and are subject to diffusion
in the extracellular space and to binding to receptors on Thn cells. This binding and complex
building is then translated into the phosphorylated STAT signal. (B) Typical model simulation
using standard parameters (Table 1) and 5% secreting cells. Shown are the cytokine
concentration field (left, see also legend in panel A) and the cytokine concentration and
resulting pSTATS5 levels on responder cells (right). c-c-d: cell-to-cell distances. Maximum
distance: 50% of average-distance between secreting cells. (C-D) Average cytokine
concentration on the cell-surface across responding cells and percentage of pSTAT+ cells for
varying fractions of cytokine secreting cells, in the RD-system and corresponding well-mixed
scenario, as indicated. Cells with pSTAT > 0.5 are considered pSTAT+. (E) Correlation
between the fraction of pSTAT+ cells and the average surface concentration as shown in
panels C and D, with spatial inhomogeneity measured by the standard deviation of the cell-
surface concentration across responder cells (spatial s.d.). Each dot represents a single
simulation run. rs: Spearman’s rank correlation coefficient. (F) Sensitivity analysis with respect
to the fraction of pSTAT+ cells and the spatial s.d. (see panels C-E). The x-axis indicates the
parameter varied by a factor (fold-change) as indicated, all other parameters remain constant
(cf. Table 1). (G) Scan from pure autocrine (all receptors on secreting cells) to pure paracrine
(all receptors on responder cells) signaling as indicated by the cartoon. Shown is the
percentage of pSTAT+ cells for responding cells (red), secreting cells (gold) or both (black).
Lines with shaded regions (panels B and C) and errorbars (D and F) indicate averages and
standard error of the mean (SEM) across 20 runs of the model simulation.

Figure 2: Systematic analysis reveals major drivers of cytokine inhomogeneity

(A-B) Analysis of cytokine inhomogeneity with respect to the fraction of cytokine secreting
cells, receptor heterogeneity and saturation constant as indicated. In contrast to the analysis
in Figure 1, simulations are designed in such a way that the total number of secreted cytokine
molecules and the total number of cytokine receptors in the system are conserved through all
simulations, see text for details. Shown is (A) a visualization and (B) a systematic scan for the
parameter under study with respect to the spatial s.d. and spatial average (cf. Figure 1C), all
other parameters are kept at standard values (Table 1). Vertical arrows indicate standard
parameter values. (C) Sensitivity analysis of the parameters under study with respect to
spatial s.d., gradient and fraction of pSTAT+ cells, analogous to Figure 1F. Lines with shaded
regions (panel B) and arrow (C) indicate average and standard error of the mean (SEM) across
20 runs.
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Figure 3: Feedback on receptor expression generates complex spatio-temporal

dynamics.

(A) Model scheme for positive and negative feedback on cytokine receptor expression. The
pSTAT signal downstream of paracrine cytokine signaling induces either an increase (positive
feedback, “IL-2”) or a reduction (negative feedback, “IL-7”) of receptor expression. (B) Kinetic
simulation of the model illustrated in panel A, see text for details. Shown are the cytokine
concentration field at three different time points (top), and the paracrine signaling efficacy
measured by fraction of pSTAT5+ cells at varying feedback fold change y (bottom). (C)
Analysis of bimodality in cytokine receptor expression for positive and negative feedback.
Shown are histograms of the pSTATS5 signal across cells (top), and the resulting bimodality as
measured by Ashman’s D (bottom), at the last time point. Grey bars represent cells falling
below a threshold value of 0.5 for pSTAT5, and dashed lines indicate a threshold value of 2
for Ashman’s D indicating significant bimodality. (D) Time until cells that are pSTAT5+ at
steady-state (cf. panel C) reach the threshold value of 0.5 for the first time. (E) Analysis of
spatial cytokine inhomogeneity with respect to receptor feedback. Shown are cytokine
concentration fields (left) and corresponding values of the spatial s.d. in dependence of the
feedback fold change y (right), for positive and negative feedback as indicated. Vertical arrows
indicate standard parameter values. (F) Correlation between the fraction of pSTAT* cells and
the spatial s.d. depending on feedback fold change. Each dot represents a single run. rs is the
computed spearman’s rank correlation coefficient. Lines with shaded regions (panels C and

E) represent average and SEM across 20 runs of a simulation.

Figure 4: Niche score and niche effect characterize spatial patterning of paracrine

cytokine signals.

(A) Schematic illustrating the definition of a cytokine signaling niche: upon clustering of cells
by theirpSTATS values, a niche is defined as a cluster that contains at least one secreting cell
and one pSTAT5+ cell. (B) Number of niches (cf. panel A) in dependence of the number of
cytokine secreting cells. Black line: theoretical maximum (every Tsec cell forms a separate
niche). Black arrow: standard parameter (cf. Table 1). (C) Average pSTATS values of cells
inside and outside of a cytokine signaling niche. (D) Visualization of the quantities niche score
and niche effect. For visualization purposes 15% secreting cells were used. The niche score
is defined as the number of niches divided by the number of secreting cells in the system, the
niche effect as the fraction of pSTAT5+ cells within the niche divided by outside of the niche.
See also Figure S5A. (E) Correlation between niche score and niche effect for positive and
negative feedbackThe black line shows a linear fit of all data points. The arrow head was
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added to indicate the direction of increased feedback. rs is the computed spearman’s rank
correlation coefficient. (F) Signaling range in dependence of feedback fold change. (G-H)
Niche score, effect and signaling range for varying fractions of cytokine secreting cells. The
bar color indicates feedback fold-change, low as y = 2 and high as y = 100, cf. panels C andF.
Lines with shaded regions (panels B, C, F) and errorbars (F and G) indicate average and SEM

across 20 runs of the simulation.

Figure 5: Spatio-temporal cytokine dynamics in the context of an established tissue
architecture.

(A) Schematic (left panel) and typical simulations (right panel) of a scenario with IL-2 secreting
T cells (Tsec) in the vicinity of an antigen presenting cell (APC), surrounded by responder T
cells. @: clustering strength of Tsec cells. Shown are two-dimensional snapshots for the purpose
of visualization, the analysis below is performed on full 3D-simulations. (B) Analysis of the
fraction of pSTAT5+ cells (left) and the niche effect (right) in dependence of the clustering
strength ¢ for the scenario visualized in panel (A). Lines with shaded regions indicate average
and SEM across 20 runs of each simulation. (C-D) Regulatory T cells (Treg) expressing high
numbers of IL-2R are co-localized with Tsec cells in the vicinity of an antigen-presenting cell.
See panels (A-B) above for details. (E-F) Fibroblastic reticular cells (FRC) secrete IL-7, which

is taken up by naive T helper cells.
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Table 1: Standard parameter values

Parameter Value Unit Description Source
Neets 1000 Amount of cells in the system

dc 20 um Shortest distance between cell centers

e 10 um Cell radius

D 10 um2/s Diffusion coefficient 19
I 107'2-10° M Cytokine concentration range 4
fsec Fraction of secreting cells

fresp Fraction of responding cells

Kon 3.1 *107 1/(M*s) Cytokine-receptor association rate 23
n 2.8*10° 1/s Cytokine decay rate 12
o 1 Receptor heterogeneity 4
Saturation parameters

Kot 2.3*10* molecules/s Receptor disassociation rate 23
Kendo 4.6*10* molecules/s IL-2*R complex internalization rate 23
Kb 7.423*10%2 M Concentration of half saturation
Receptor feedback

Kpase 1*10°% molecules/s Minimum receptor production rate

v 0.042 molecules/s Receptor decay rate 13
Km 0.5 pSTATS5 value of half feedback

Y 0.01-100 Feedback fold change 4
pSTAT signaling

Kecso 860 Molecules Receptors of half EC50 response 24
Emax 125*10"2 M Maximum EC50 concentration

Emin 0 M Minimum EC50 concentration

NEecso 0.55-15 EC50 hill exponent

Npstats 3 PSTATS hill exponent 24
IL-2

Qsec 10 molecules/(cell * s) Secreting cells IL-2 secretion rate 25
Rsec 100 molecules/cell Secretor cells receptor count 4
Rresp 1500 molecules/cell Responder cells receptor count 4,24
IL-7

Osec 100 molecules/(cell * s) Secreting cells IL-7 secretion rate

Rsec 0 molecules/cell Secretor cells receptor count

Rresp 5*10° molecules/cell Responder cells receptor count
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Brunner et al. Figure 5
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