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Abstract 

Effective immune-cell responses depend on collective decision-making mediated by diffusible 

intercellular signaling proteins called cytokines. Here, we designed a spatio-temporal 

modeling framework and a precise finite-element simulation setup, to systematically 

investigate the origin and consequences of spatially inhomogeneous cytokine distributions in 

lymphoid tissues. We found that such inhomogeneities are critical for effective paracrine 

signaling, and they do not arise by diffusion and uptake alone, but rather depend on properties 

of the cell population such as an all-or-none behavior of cytokine secreting cells. Furthermore, 

we assessed the regulatory properties of negative and positive feedback in combination with 

diffusion-limited signaling dynamics, and we derived statistical quantities to characterize the 

spatio-temporal signaling landscape in the context of specific tissue architectures. Overall, our 

simulations highlight the complex spatiotemporal dynamics imposed by cell-cell signaling with 

diffusible ligands, which entails a large potential for fine-tuned biological control especially if 

combined with feedback mechanisms.    
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Introduction 

Interactions between immune cells play a fundamental role in the mammalian defense against 

pathogens. Specifically, the fine-tuned decision-making processes in the adaptive immune 

response comprise cell-cell communication amongst antigen-presenting cells (APC) and T 

and B lymphocytes, employing surface-mediated signaling as well as diffusible ligands called 

cytokines1,2. Remarkably, different cytokine species may share important parts of the signaling 

machinery, including subunits of the high-affinity cytokine receptor as well as downstream 

signaling mediators, and still evoke different biological functions and regulatory properties. For 

instance, the cytokines Interleukin(IL)-2 and IL-7 share the common gamma-chain of their 

receptors, and they both utilize STAT5 as major signaling mediator3. While IL-2 plays an 

essential role in the regulation of T cell activation as well as clonal expansion, IL-7 controls 

the homeostatic T cell population size. Furthermore, IL-2 signaling causes an increased 

expression of the high-affinity IL-2 receptor (IL-2R) on target cells4, while IL-7 signaling causes 

down-regulation of IL-7 receptor (IL-7R) expression in T cells5. Due to its promoting effect on 

T cells, low-dose IL-2 therapy has been successfully employed in cancer immunotherapy and 

for autoimmune diseases, while IL-7 is utilized in the treatment of infectious diseases6–9. 

In the case of paracrine cytokine signaling, the cytokine sources and sinks are often 

separated10, which may result in a spatially uneven cytokine concentration due to 

consequences of diffusive cytokine transport11. Indeed, previous model simulations have 

predicted spatial inhomogeneities in cytokine concentration spanning several orders of 

magnitude, within a physiological parameter regime12–14. Those results have been supported 

by experimental findings of notable and tunable inhomogeneities of the cytokine concentration 

in secondary lymphoid organs, which regulate the formation of local cytokine micro-

environments15–18. Nevertheless, the measured fast diffusion coefficients for cytokines such 

as IL-2 may counteract the effects of localized cytokine secretion and uptake17,19, suggesting 

a subtle balance of several regulatory mechanisms controlling the spatial distribution and 

signaling range of cytokines. In fact, theoretical as well as experimental studies have indicated 

that spatial cytokine inhomogeneities can be fine-tuned by properties of the cell 

population13,16,20, but the range and effect size of such mechanisms remains unclear. 

Furthermore, it is not known how different regulatory mechanisms employed by different 

cytokines, such as positive vs. negative feedback on receptor expression in the case of IL-2 

and IL-7, specifically modulate their spatio-temporal signaling properties and how that relates 

to biological functions. 

Next to the emergence and fine-tuned control of spatial cytokine inhomogeneities, a prevailing 

question concerns the consequences of cytokine inhomogeneities for paracrine signaling 
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efficacy and, in more general terms, for decision-making processes of immune-cell 

populations. Intuitively, spatial cytokine inhomogeneities may promote signaling efficacy 

especially in the range of low average cytokine concentrations, because locally enriched 

concentrations in small microenvironments may act to overcome the threshold for signal 

induction at least in those areas. However, immune-cell populations are subject to complex 

non-linear dynamics and constraints imposed by the detailed tissue architecture. All those 

system properties act together in shaping the spatio-temporal dynamics, and therefore have 

to be considered in a quantitative analysis of the spreading and efficacy of paracrine cytokine 

signals. 

Here, we designed a precise yet flexible mathematical simulation platform based on the finite-

element method, to systematically analyze the interplay of tunable regulatory properties of 

paracrine cytokine signal propagation. Our investigation revealed the number of cytokine 

secreting cells as the primary driver of inhomogeneities in the cytokine field. Furthermore, 

feedback mechanisms involving receptor expression for both IL-2 and IL-7 finely regulate the 

activation of cells around a cytokine source, which we quantified in the model simulations by 

developing specifically tailored summary statistics. Finally, as the model allows for a variety of 

cytokine dynamics and interacting cells, we explored the consequences of specific tissue 

architectures on cytokine distribution and signaling. Throughout those multiple levels of 

paracrine interaction, we found that the complex diffusion and uptake dynamics generate 

properties of signal propagation that are quite different from a well-mixed scenario ignoring 

spatial inhomogeneities that is studied in parallel. 

 

Results 

Spatially inhomogeneous cytokine concentrations arise generically and can induce 

potent and fine-tuned paracrine signals. 

Effective paracrine cytokine signaling requires concentrations exceeding a threshold for signal 

reception at the target cell21, and therefore is in conflict with the low measured values for the 

average concentration of many cytokine species13,22. Diffusion-limited signaling is a plausible 

mechanism for effective paracrine signaling even under conditions of low tissue-level cytokine 

concentrations, because locally amplified concentrations in the vicinity of cytokine-secreting 

cells may allow to exceed the signaling threshold on the surface of nearby responder cells. 

Nevertheless, such a mechanism requires a subtle balance of the rates of cytokine secretion, 

cytokine uptake and cytokine diffusion, supplemented by intracellular processes including 

signaling cascades and transcriptional regulation. To systematically assess the robustness 

and dynamic range of diffusion-limited cytokine signaling in the context of regulatory properties 
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of a cell population, we designed a spatio-temporal simulation work-flow based on an accurate 

and efficient finite-element solver. Due to the large time-scale separation between diffusion 

(seconds), intracellular signaling (minutes) and processes that require transcriptional 

regulation (hours), we decided to employ a quasi-stationary state assumption to the reaction-

diffusion problem throughout. Since we are interested in the systematic analysis of local cell-

cell interactions, special consideration was put into a modular, scalable and parallelizable 

modeling environment (Figure S1A). For the chosen mesh configuration, computation time 

scaled linearly with mesh fidelity and system size (Figure S1B), and the simulation error was 

largely set by boundary effects (Figure S1C-E) and therefore decayed rapidly with system 

size. 

To set the stage, we initially studied direct paracrine signaling activities in an otherwise 

stationary cell population, in terms of the well-studied model system of IL-2 secretion and 

uptake by T helper cells in a scenario with randomly assigned cytokine secreting and 

responder cells (Figure 1A). Model parameters  were determined in line with experimentally 

measured quantities 4,12,13,19,23–25 (Table 1), to foster simulation results in the physiological 

parameter regime. Following previous work16, we accounted for saturation effects regarding 

cytokine binding and uptake by cytokine receptors using a Michaelis-Menten type of equation, 

which we found to be a direct consequence of a mechanistic model formulation 

(Supplementary Text, <Description of uptake dynamics=). In line with experimental data14,25,26, 

we assumed a discrete all-or-none type of IL-2 secretion in cytokine-secreting cells (the impact 

of this assumption is studied in detail below). We additionally considered intracellular signal 

transduction by means of a conceptual model, where the phosphorylation level of the signal 

transducer and activator of transcription (STAT) in responder cells indicates effective 

paracrine signaling. 

Our modeling setup resulted in a high degree of spatial patterning due to cytokine 

concentration gradients between secreting and responding cells, which were also reflected in 

the downstream STAT signal (Figure 1B). As anticipated, our simulations revealed 

appreciable paracrine signaling efficacy due to increased local cytokine concentrations (Figure 

1C and D). Quite remarkably, high paracrine signaling activity (up to 40% pSTAT+ cells) 

occurred in a regime where such signaling was undetectable in an identically parameterized 

ordinary differential equation (ODE) system (Figure 1C and D, <well-mixed=) that arises 

naturally from a fast-diffusion assumption (Supplementary Text, <Deriving the well-mixed 

model=). Moreover, diffusion-limited signaling generated an appreciable dynamic range with 

regard to regulation by the amount of cytokine secreting cells, while the system was limited to 

an all-or-none response in the well-mixed situation. Accordingly, paracrine signaling efficacy 

exhibited a strong correlation with an increase in spatial cytokine inhomogeneity as quantified 
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by the concentration gradient (Figure S2A) or the spatial standard deviation (s.d.) (Figure 1E 

and S2B) of cytokine levels across responder cells. 

To characterize our model system in more detail, we performed a systematic parameter 

sensitivity analysis with respect to standard parameter values (Table 1). That analysis 

revealed strong effects on signaling efficacy and cytokine inhomogeneity by the receptor 

number and the half-saturation constant for cytokine uptake KD in addition to the cytokine 

secretion rate and the fraction of secreting cells (Figure 1F, Figure S2C-D). Interestingly, the 

rates of diffusion and extracellular cytokine decay as well as the cell-to-cell distance have a 

minor effect on signaling efficacy and cytokine inhomogeneity. Hence, signaling amplification 

by diffusion-limited cytokine propagation is a generic mechanism that is robust to subtle 

changes in the spatial configuration of the system, but sensitive to properties that are under 

control of the participating immune-cell populations.  

In line with that, experimental evidence10 and theoretical considerations19 suggest the ratio of 

receptors between secreting and responding cells to be a carefully controlled property that 

determines the mode of cytokine signaling in the range between purely autocrine and purely 

paracrine signaling (Figure 1G). In our simulations, we found that paracrine signaling is limited 

to situations with more than 75% of all cytokine receptors expressed on responder cells and 

a subsequent increase in spatial inhomogeneity (Figure 1G, Figure S2E and F). On the other 

hand, cytokine secreting cells require only a minimal amount of receptor expression to receive 

an appreciable cytokine signal. That discrepancy is in line with the requirement for careful 

control of paracrine inflammatory signals such as IL-2 in order to prevent a potentially lethal 

cytokine storm27,28, and may explain the previously observed29 down-regulation of the pSTAT5 

signaling pathway in cytokine secreting cells. 

Overall, we found that a diffusion-limited mode of cytokine signaling allows for effective 

paracrine signaling in a regime of low average cytokine concentrations, and contrasts with a 

well-mixed scenario in the same parameter regime where paracrine signals remain far below 

thresholds for onset of downstream signaling cascades.  

 

Fractional abundance of cytokine secreting cells as major source of spatial 

inhomogeneity 

Having established the generic occurrence and tunability of diffusion-limited paracrine 

signaling amplification, we sought to investigate the contributions of individual system 

components to cytokine concentration inhomogeneity. In our simulation, a uniform cell 

population, where cytokine secretion and uptake were equally distributed across cells, 
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generated a nearly homogeneous cytokine concentration field, despite localized secretion and 

uptake at the cell surfaces (Figure 2A). Hence, we expected that a tight localization of cytokine 

sources is critical for spatial cytokine inhomogeneities, and we further sought to analyze the 

contributions of a heterogeneous distribution of cytokine receptors and of saturation effects in 

cytokine uptake dynamics on responder cells (Figure 2A). To this end, and to test the impact 

of an all-or-none-behavior of cytokine-secreting cells (that is few cells secreting large amounts 

of cytokine), we designed a simulation setup in which the total amount of secreted cytokine 

molecules and of cytokine receptor expression remain constant under parameter variation.  

We found that increasing the number of secreting cells in that system resulted in a steep decay 

of concentration inhomogeneities, approaching the well-mixed scenario (Figure 2B, left panel). 

The rise in the average cytokine concentration for low amounts of cytokine secreting cells 

(<5%) could be attributed to saturated uptake rates at high local concentrations, as it 

disappeared in the corresponding system with linear uptake rate (Figure S3A), in contrast to 

the increase in spatial inhomogeneity which occurred also under linear uptake.  

To account for cell-to-cell heterogeneity in cytokine receptor expression4,24,30, we considered 

expression values following a log-normal distribution at varying coefficients of variation, while 

keeping average expression levels constant (Figure 2A, middle panel). As anticipated, high 

levels of receptor heterogeneity induced cytokine inhomogeneities in the RD-system, but not 

in the well-mixed scenario (Figure 2B, middle panel). Interestingly, in the RD-system, the 

average cytokine concentration also showed a substantial increase with receptor 

heterogeneity, although the total amounts of cytokine secretion and uptake were kept constant 

so that cytokine concentrations remained unchanged in the well-mixed scenario. That 

seemingly paradoxical effect is independent of uptake-rate saturation (Figure S3B). It can be 

intuitively explained by a lower chance for high uptake capacities in the vicinity of cytokine 

secreting cells, which we could analytically reconcile by the help of a previously established13 

approximate solution to the reaction-diffusion problem (Supplementary Text and Figure S3C).  

Finally, we considered the effects of varying the saturation constant in our system. Of note, 

substantial differences regarding average cytokine concentration values between linear and 

saturated uptake functions occurred only in parameter ranges with very high secretion rates 

(Figure S3D), which are reached at low fractions of cytokine-secreting cells (cf. caption to 

Figure 2B). In line with that, increased values of the saturation constant KD induced only 

moderately higher values of the spatial inhomogeneity, and a nearly proportional change in 

concentration (Figure 2B, right panel), in both the RD and the well-mixed system. Across all 

three parameter values under study, we found that any increase in inhomogeneity was 

accompanied by a similar rise in activation (Figure 2C, Figure S3E and F). While that 

increased signaling activity can partially be attributed to the increased average cytokine 
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concentration in all three cases, the change in cytokine concentration values is lowest and the 

increase in spatial inhomogeneity is the highest in the case of a decrease in the fraction of 

cytokine secreting cells.  

Hence, we conclude that the highly localized mode of cytokine secretion in a situation with a 

small number of highly active secreting cells is the main driver of cytokine inhomogeneities, in 

turn increasing localized paracrine signaling efficacy. 

 

Dynamic feedback on receptor expression modulates spatial cytokine gradients 

In addition to the mere exchange of paracrine signals studied so far, immune-cell populations 

have been found to exhibit feedback regulation directly on the level of cell-cell communication, 

in terms of cytokine receptor expression levels depending on the local cytokine 

environment5,31–33. Therefore, we proceeded to study the impact of such feedback 

mechanisms on the cytokine concentration field. Since modulation of receptor expression 

levels requires transcriptional regulation, considering such processes introduces a new time-

scale on the order of hours to the system, giving rise to an intertwined combination of a quasi-

stationary reaction-diffusion problem and a comparatively slow, dynamic modulation of cellular 

properties. In immune-cell compartments such as the lymph node, experiments have shown 

that several lymphocyte populations show high degrees of random and directed cell motility, 

in many cases achieving cell speeds on the same time-scale (hours). However, upon effective 

antigen stimulation, T cells remain bound to an antigen-presenting cell via the immunological 

synapse until they reach their full activation status by means of additional cytokine 

signaling34,35. That gives rise to an immobilized population of antigen-exposed responder cells, 

which is the focus of our study.  

Positive and negative feedback on cytokine receptor expression are widespread properties of 

immune-cell populations, for which we designed a generic and reusable mathematical 

formulation using our established response-time modeling framework36,37 (Figure S4A). Here, 

we focused on two well-established examples, which are the IL-2/IL-2R system for positive 

feedback and the IL-7/IL-7R system for negative feedback (Figure 3A). In both cases, naive T 

helper cells act as responder cells.In the case of IL-2, cytokine secreting cells correspond to 

fully activated T cells under high antigen stimulation7, and in the contrasting scenario of IL-7 

signaling, stromal cells take the role of secreting cells5,38.  

In the IL-2 scenario, upon initializing cytokine secretion, the system quickly reached a transient 

state of high systemic cytokine concentration accompanied by increased STAT5 signaling 

activity and a subsequent increase in IL-2 receptor expression (Figure 3B and Figure S4B-D 
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left panels), in agreement with experimental data30. To analyze the effects of negative 

feedback by means of the homeostatic IL-7 signal in comparison to positive feedback, we 

considered a thought experiment where the system is initially deprived of cytokine (Figure 3B 

and S4B-D, right panels). Upon initializing cytokine secretion, responding cells decreased 

receptor levels due to negative feedback, resulting in increased levels of cytokine 

concentration and STAT5 signaling. In the corresponding well-mixed simulations (Figure 3B 

and Figure S4C), cytokine concentrations remained below threshold for signal induction in 

both the IL-2 and the IL-7 scenarios. 

Next, we sought to analyze the properties of positive and negative feedback in more detail. 

Generally, the population of responding cells can be categorized into two groups: (i) cells 

capable of maintaining a high level of STAT5 signaling activity, and (ii) cells which are unable 

to receive sufficient signal after an initial transient (Figure S4E-G). The emerging bimodal 

distribution for positive feedback is not present in well-mixed scenarios and shows a strong 

dependence on the feedback fold change (Figure 3C, left panel). On the other hand, negative 

feedback induced a more gradual response for both the well-mixed and RD-system, with the 

RD-system yielding a higher fraction of cells exhibiting stable STAT5 signaling activity (Figure 

3C, right panel). Next to those differences regarding STAT5 distributions, also the time to 

activation shows marked differences between positive and negative feedback regulation 

(Figure 3D), with negative feedback showing a much slower response time that is subject to 

modulation by feedback fold change. Quite interestingly, strong positive feedback induced a 

decay and strong negative feedback induced an increase in measures of spatial cytokine 

inhomogeneity (Figure 3E and S4H-I), due to opposed effects on signal localization. This 

change in signal localization results in a similar change in cytokine signaling efficacy (Figure 

3F), which is in line with the notion of the IL-7 receptor as an 8altruistic9 signaling mediator39, 

as IL-7 uptake is stopped upon signal reception, so that cells further away from the cytokine-

secreting cell are able to receive cytokine molecules.  

In conclusion, we found the introduction of dynamic feedback to be a crucial control 

mechanism in shaping not only the distribution and timing of tissue responses but also the 

spatial cytokine gradients and signaling efficacy. 

 

Regulatory properties of the cytokine signaling niche 

To understand the intertwined regulation of paracrine signaling via spatial inhomogeneities 

and feedback regulation in more detail, we shifted our focus to the immediate neighborhood 

of each secreting cell, which has previously been referred to as signaling niche16. Based on 

the results on feedback-driven spatial inhomogeneity (cf. Figure 3E), we hypothesized that 
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positive feedback restricts the signaling range and negative feedback amplifies the signaling 

range, thus potentially enabling effective signaling towards a larger group of responder cells. 

To identify the signaling niche of an individual cytokine secreting cell, we utilized density-based 

spatial clustering of applications with noise (DBSCAN) and defined a signaling niche as a 

cluster that contains at least one cytokine secreting cell and at least one activated cell (Figure 

4A and B). Hence, the maximum possible number of niches equals the number of secreting 

cells (black line in Figure 4B), and since one cytokine-secreting cell is insufficient for effective 

paracrine signaling in the physiological parameter regime, the realized number of niches in 

the system typically falls far below that maximal number. Notably, we found that positive 

feedback leads to increased signaling activity inside a niche, and negative feedback to a 

higher fraction of activated cells outside the niche (Figure 4C), in line with our hypothesis on 

the signaling range. 

To proceed to a more direct quantitative analysis, we defined the 8niche score9 as the ratio 

between the number of niches and the number of secreting cells, and the 8niche effect9 as the 

ratio between the average pSTAT5 signal inside and outside of the niche (Figure 4D-E and 

S5A). A high niche score indicates well-separated niches, and a high niche effect indicates 

that the signal is primarily located within the niche compared to outside, in other words, it 

accounts for the leakiness of the cytokine niche. Furthermore, our definition of the signaling 

niche allowed to quantify the signaling range as average distance between cytokine-secreting 

cells and maximal-distance responder cells within a niche (Figure 4E). The niche score and 

niche effect in conjunction with the signaling range (Figure 4F) revealed that positive feedback 

enhances niche separation (high niche score) and induces a highly localized signal within 

each niche (high niche effect with low signaling range), while negative feedback causes niches 

to merge (low niche score) and increases cytokine leakiness (low niche effect and high 

signaling range).  

Those system properties further depend on the number of secreting cells, with small numbers 

limiting the effect of both positive and negative feedback, since only few responder cells are 

activated (Figure 4G and S5B), and high numbers additionally dampening the effect of 

negative feedback (Figure 4H and S5C). That latter effect can be attributed to larger niches 

requiring longer signaling ranges, reflecting the previously detected (cf. Figure 3D) increase 

in activation time under negative feedback.   

Overall, our detailed quantitative analysis of the signaling niche revealed that local receptor 

expression feedback is able to influence not only signaling efficacy but also signaling range 

and niche separation, facilitating an adaptive response to variable stimulus intensities. 
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The local tissue architecture provides an additional regulatory layer for spatiotemporal 

cytokine signals  

Thus far, to systematically investigate the spatiotemporal dynamics, cells were placed 

randomly on a cubic grid in all simulations shown. To analyze the effect of additional 

constraints imposed by the local tissue architecture, we also designed a grid-free simulation 

setup allowing to induce clustering of specific cell types in a tightly controlled manner, by 

variation of the clustering strength φ. That clustering strength correlates well with the silhouette 

and Calinski-Harabasz scores, which are established metrics for clustering quality (Figure 

S5D). Such clustering of specific cell types is a wide-spread property of immune-cell 

populations and can be mediated by chemokine signals or also physical barriers, such as 

imposed by stromal cells in the lymph node40,41.  

Here, we initially considered a situation where IL-2 secreting T cells accumulate in the vicinity 

of a specific antigen-presenting cells presenting their cognate antigen (Figure 5A). As 

expected, such co-localization of cytokine-secreting cells imposes a substantial increase in 

paracrine signaling efficacy in our simulations, since locally enriched cytokine concentrations 

levels allow to overcome the activation threshold in nearby cells. For low-to-moderate numbers 

of cytokine-secreting cells, quantitative analysis confirmed that effect in terms of the number 

of activated cells, the niche score defined above (Figure 5B) and the signaling range, despite 

an overall reduction of IL-2 concentration levels (Figure S5E). Quite interestingly, at very high 

numbers of cytokine-secreting cells, co-localization can also have the opposite effect and 

induces a reduction in the number of activated cells (Figure 5B, inset), which can be explained 

by the isolating effect of nearby responding cells preventing long-range paracrine signaling. 

To provide immune tolerance and reduce the risk of immune-responses to self-antigen, 

paracrine IL-2 signaling is mitigated by regulatory T (Treg) cells that express large numbers 

of high-affinity IL-2 receptor and can act as strong cytokine sinks15,19,42. In particular, it has 

been suggested that Treg cells can effectively take up IL-2, because they are stimulated by 

cognate antigen presented by the same antigen-presenting cell as the corresponding effector 

T cells and thus are co-localized in the same spatial signaling niche18,43 (Figure 5C, left panel). 

Indeed, we found that the inhibitory effect of Treg cells is rather limited if they are placed 

randomly, that is φ=0 (Figure 5C-D). At least a partial co-localization of Treg cells with 

cytokine-secreting cells seems required for effective reduction of cytokine signal and signaling 

range (Figure S5F), and can induce almost complete signal inhibition already at a fraction of 

only 4% Treg cells in our simulations.  

While IL-2 signaling in the local environment created by antigen-presenting cells facilitates fast 

and unambiguous decision-making on T cell activation, it has been argued that IL-7, a cytokine 
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essential for T cell survival, should be distributed more widely within the system39. Our results 

on the spatio-temporal effects of negative feedback (cf. Figure 4E) supported that claim, as 

we observed an increase in paracrine signaling efficacy and spatial range. To investigate that 

phenomenon in a more specific scenario, we introduced co-localization of IL-7 secreting cells 

analogous to the IL-2 case (Figure 5E). As anticipated, we found that increased clustering of 

cytokine-secreting cells not only improved signaling efficacy (Figure 5E-F), but also caused 

an increase in cytokine concentration levels and signaling range (Figure S5G).  

Hence, we found that the spatial composition of cell types with specific properties can provide 

another layer of control over the range and efficacy of paracrine cytokine signaling, acting 

together with the amount of cytokine secreting cells, the distribution of cytokine receptor 

expression and cytokine-induced feedback regulation. 

 

Discussion 

Cell-cell communication using diffusible ligands is a widespread mechanism to exchange 

information in multi-cellular organisms, and is particularly important in the collective decision-

making processes of the mammalian immune system. Compared to intracellular processes, 

the larger spatial domain of such cell-cell interaction dynamics increases the potential for 

inhomogeneous distributions and non-intuitive spatial patterning44,45 of signaling mediators. 

Nevertheless, the high diffusivity (~10 µm2/s) of small proteins such as cytokines suggests 

that concentration inhomogeneities may disappear very rapidly on the relevant time- and 

length scales, that is cell-cell distances in lymph nodes (<5 µm) and times for signal integration 

and cell-differentiation (minutes to hours). By systematic analysis of physiological scenarios 

of cytokine signaling using an efficient finite-element simulation setup, we found that spatial 

cytokine inhomogeneities do not arise by diffusion processes per se. Rather, additional factors 

are required, such as a sparse occurrence and all-or-none behaviour of cytokine secreting 

cells or heavily skewed distributions of cytokine receptors across cells. Thus, concentration 

inhomogeneities are essentially a property that is under control of the cell population.  

Our mathematical formulation combines a description of signal processing on the cellular level 

with a biophysical description of cytokine diffusion. The signaling range of cytokine-secreting 

cells is diffusion-limited, since cytokine uptake requires diffusion of the cytokine through 

extracellular space, in addition to binding to its high-affinity receptor46,47. The importance of 

this diffusion limit becomes apparent when considering the diminished signaling efficacy in our 

well-mixed model implementation. In the reaction-diffusion model, considering non-linear 

uptake dynamics on the surface of responding cells, we found that both the fraction of 

secreting cells and heterogeneity in receptor expression were able to generate cytokine 
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concentration inhomogeneities. Previous studies have indicated values between 1% and 20% 

for the fraction of cytokine-secreting cells14,25 and a coefficient of variation for the receptor 

distribution that is close to 14,24. Under those conditions, our results suggest a higher 

contribution of the fraction of cytokine-secreting secreting cells to spatial inhomogeneities 

within the physiological parameter range.  

Another important factor shaping cytokine signaling dynamics is feedback regulation of 

receptor expression on responding cells, which has been reported not only for IL-2 and IL-7 

as the key interest of this study, but also for other cytokines including IL-4, IL-21, TGF-³ and 

IFN-´5,31–33,48–50. It is known that positive feedback can induce an all-or-none type of response 

to a signal, while negative feedback leads to more gradual and homogeneous dynamics and 

can have an effect on the time-scale of the response to an input  signal51,52. In line with that 

and with previous studies12, we found that spatial cytokine gradients can induce significant 

bifurcations in activation patterns of the naive T cell in the presence of positive feedback 

mediated by the cytokine IL-2. Interestingly, that model behavior does not occur in a parallel 

well-mixed scenario, highlighting the requirement of spatial cytokine distributions for paracrine 

stimulation even in the presence of positive feedback. Considering IL-7 as a cytokine 

promoting negative feedback on receptor expression, we observed an increase in signaling 

range that propagates with time, resembling a signaling wave that spreads through the cell 

population. That phenomenon is well in-line with the notion of IL-7 responder cells as 8altruistic9 
39, since they provide access to IL-7 to nearby cells by downregulating their receptors.  

To quantify the localization and effectiveness of cytokine signaling within the 

microenvironment around cytokine-secreting cells, we propose the niche score and niche 

effect as summary statistics that may also serve for comparison with multi-color histology data 

in future research. The niche score offers an understanding of how well separated niches are, 

while the niche effect quantifies how effectively cytokine signal is localized within each niche. 

Utilizing these spatial statistics, we found that the up-regulation of receptors in the IL-2 

scenario results in a localization of activation and signal within a niche. We identified the 

opposite behavior in the case of IL-7 signaling, where downregulation of receptors delocalizes 

the signal, thus inducing a more homogeneous cytokine concentration field. Consequently, 

paracrine signaling efficacy depends more on the total amount of cytokine molecules in the 

system rather than its location, which is in line with the biological function of IL-7 as a survival 

signal controlling the size of a cell population in homeostasis. 

Finally, we asked how the local tissue architecture in terms of already established clustering 

and co-localization of specific cell types would modulate signaling efficacy and spatial cytokine 

patterning. Our model simulations revealed that the spatial clustering of cytokine-secreting 
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cells can substantially increase signaling efficacy, as cytokine secretion by multiple cells in a 

signaling niche combines to act on responder cells. Moreover, we found that co-localization of 

cytokine-secreting cells and cells with a high capacity of cytokine uptake, such as described 

for Treg cells in the context of IL-2 signaling18, is a highly efficient mechanism to control the 

effectivity of paracrine signals and thus modulate the degree of immune tolerance.  

Overall, we found that the spatial relationships and individual properties of cytokine-secreting 

cells and cells expressing high-affinity cytokine receptor species can critically regulate the 

efficacy of cell-communication. Future research may combine our approach with quantitative 

models on germinal-center dynamics53–55 and multiplexed histology data56–58 characterizing 

tissue organization in lymphoid organs and the tumor micro-environment, paving the way to a 

unified, quantitative understanding of spatio-temporal decision-making in immune-cell 

populations. 
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Methods 

Software, simulations and statistics  

All simulations are carried out using the finite-element solver FEniCS59 with P1 elements, a 

generalized minimal residual methods (GMRES) solver and algebraic multi grid (AMG) 

preconditioner. The solution accuracy is controlled by the Krylov solver tolerance for linear 

and the Newton solver tolerance for the non-linear boundary conditions. For a description of 

the weak formulation of the models used therein, refer to the Supplementary Text. Standard 

parameter values are listed in Table 1.The extracellular space was discretized as a uniform 

tetrahedral mesh using Gmsh60, the mesh fidelity was chosen to yield a mesh with 

approximately 100,000 degrees of freedom in a cube of 240 µm edge length. To minimize 

boundary effects the outermost layer of cells is disregarded in our analysis. 

The ODE model was solved using a SciPy ODE solver. All parameter values are listed in Table 

1. The standard deviation (SD) was computed using the surface concentration of all cells in 

one configuration. The gradient was computed through the average norm of the cytokine field 

gradient. The Spearman rank-order correlation coefficient (rs) was computed using SciPy. To 

quantify the bimodality of a distribution we calculated the relative separation using Ashman9s 

D61. The signaling range was determined using the distances of responding cells to their 

closest secreting cell inside all niches and calculating the 0.05th largest percentile. 

Mathematical Models  

Core-model of spatially resolved cytokine dynamics. Let Ω be the extracellular space, Θ the outer boundary of that space and �i, � = 1,& ,�cells, denote the cell-surfaces. In all 

simulations, for each cytokine considered, we assumed the cytokine concentration ý(�), � ∈¬ to be in quasi-steady-state, and we imposed no-flux conditions at the outer boundary, that 

is 
�ý�ÿ⃗ =  0 on Θ. Further, assuming homogeneous cytokine secretion and uptake on each cell-

surface with area ��, the interaction between a cell and the extracellular cytokine concentration 

is realized through generalized Robin boundary conditions (cf. Ref.12,13): 0 = ÿ�ý 2 �ý  in  ¬ 

(1) �ý���⃗⃗  ⃗ = 
���iÿ 2 «i(ý)�iÿ  on �i 

Here, D is the diffusion coefficient, � is a homogeneous decay rate and � is the three-

dimensional Laplace operator. For the sake of simplicity, we assume a uniform cell-size �i: =�cell throughout. Furthermore, we take the secretion rate �� and the surface concentration as 
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average values across the cell-surface for each cell, that is ý� ∶= 1����� ∫ ýΓi þý. Hence, the 

uptake rate takes the form «i(ý�) = �endo�� ÿ(ý�) (2) 

where �� denotes the number of receptors expressed on the cell-surface. In the case of linear 

cytokine uptake, the uptake function takes the form ÿ(ý�) = ýon ýoff ý�, where �on is the cytokine-

receptor association rate12,13. A more realistic description of cytokine uptake takes into account 

that the uptake capacity of a cell is limited not only by the amount of receptors expressed on 

the surface, but also by the intracellular machinery for cytokine degradation and 8recycling9 of 

cytokine receptors12,62,63. That results in an uptake function of the form ÿ(ý�) = ý��D+ý�, where �D is the half-saturation constant for cytokine uptake. We found that this form of the uptake 

function can be justified by a mechanistic, Michaelis-Menten type description of cytokine-

binding to its receptor (Supplementary Text, <Description of uptake dynamics=). Further, 

assuming �endo = �off, we retrieve the canonical form of the linear uptake function «i(ý�) =�on�� ý�. In the case of non-secretory responder cells, we set �� = 0 and �� = �ÿÿĀā  in Equation 

1, whereas we take �� = �Āÿý and �� = �Āÿý  for cytokine-secreting cells. The latter ones 

express lower numbers of cytokine receptors and thus exhibit a reduced uptake rate «i(ý�) 
(cf. Table 1). Moreover, we account for receptor heterogeneity on responding cells (Figure 2) 

by sampling �� from a log-normal distribution with mean �ÿÿĀā. 

As a primary output of our model simulations, we assess cellular activation in terms of the 

fraction of phosphorylated STAT5, which we take as  

pSTAT5(ý, �) =  ý3EC50(�)3 + ý3. (3) 

A cell is considered activated if its pSTAT5 level reaches values pSTAT5(ý�, ��) ≥ 0.5. In line 

with experimental data24, we account for a dependency of the EC50 value on the level of 

receptor expression through EC50(�) = �max ý� + �min ��ý� + �� , where Āmax, Āmin, � and � are 

parameters determined through fitting of experimental data24. Model parameters (Table 1) 

could in many cases be assigned to or derived from published experiments. 

Receptor feedback kinetics. In order to analyze the delayed receptor feedback introduced 

in Figure 3, we considered a time-dependent change in receptors, leading to a time-dependent 

cytokine distribution. That is, our quasi-stationary diffusion problem, Equation 1, is generalized 

to a series of such problems, via «i(ý�) = «i(ý�(þ), ��(þ)) in Equation 2, given by a system of 

ODE for receptor expression in each cell:   
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þ��þþ  =  Ā�(ý� , ��) (4) 

Specifically, we chose a receptor feedback function 

Ā�(ý�, ��) =  �base�mþ + ���base pSTAT5(ý�, ��)þ�mþ  +  pSTAT5(ý�, ��)þ  2  ��� (5) 

that depends on the cellular pSTAT5 level, the minimal receptor production rate �base, the half 

saturation value for activation �m and the receptor decay rate �. The feedback fold change �� 
depends on the cell type, here we take �� = 1 for cytokine-secreting cells, ��  ϵ (1, 100] for 

positive and �� ϵ [0.01, 1) for negative feedback on responding cells. For visualization, to allow 

for a unified x-axis, the fold change for negative feedback was inverted. To account for delayed 

regulation of receptor expression on the responding cell � caused by intracellular processes 

such as signal transduction and gene expression, we supplemented Equation 4 by equations 

for auxiliary states (8linear chain trick9, cf. Figure S4A), as previously described37:  0 = ÿ�ý 2 �ý  in  ¬ 

(6) 

�ý���⃗⃗  ⃗ = 
���iÿ 2 «�(ý�,  ��)�iÿ  on �i 

þ��(∗)þþ = Ā� (ý�, ��(∗)) 

þ��,þþþ = �(��,þ21 2 ��,þ) ,  l = 2, & M, ��,1 = ��(∗),  ��: = ��,ý 

Well-mixed model. In the well-mixed case, i.e. assuming infinitely fast diffusion, the 

homogeneous extracellular cytokine distribution is described by an ODE. Namely, by 

neglecting the cell volumes, the core PDE model (Equation 1) converges for ÿ → ∞ to an ODE 

in terms of the system-wide quantities �āĀā: = �Āÿý�Āÿý, where �Āÿý denotes the number of 

secreting cells, and �āĀā(ý) ≔ �endo�āĀāÿ(ý) with �āĀā ≔ �Āÿý�Āÿý + �ÿÿĀā�ÿÿĀā, considered at 

steady-state (Supplementary Text, <Deriving the well-mixed model=)64: 0 =   �āĀā 2  �āĀā(ý̅) 2 �ý̅. (7) 

As in the core PDE model, we have ÿ(ý) = ýon ýoff ý for linear uptake and ÿ(ý) = ý�D+ý for saturated 

uptake. Parameters were chosen identically to the core model and are listed in Table 1. 

Furthermore, the steady-state solution ý̅ of the well-mixed ODE is the average of the cytokine 

distribution ý described by the core PDE64, i.e. ý̅ = 1|Ω|∫ ý(�)þ�Ω . That allows for a direct 

comparison to the core model in terms of analytical expression of values for the average 

cytokine concentration (Supplementary Text).  
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Analogous to the core PDE model, we introduced delayed receptor feedback in the well-mixed 

model by a time-dependent uptake function �āĀā(ý) = �āĀā(ý(þ), �āĀā(þ)) and receptor 

expression dynamics 
þ����þā = Ā(ý, �āĀā).  

Random cell positioning. To achieve an efficient 3-dimensional random cell positioning (cf. 

Figure 5), we utilize Bridson sampling, a Poisson disk sampling approach65. The average cell-

cell distance and the amount of sampling steps are chosen to yield the same average cell 

density as in the grid approach employed in all other simulations (Figure 1-4). 

Quantifying spatial patterns. The surface concentration average refers to the average 

concentration over the surface of all responding cells in the system, the surface concentration 

s.d. refers to the standard deviation of the concentration of all responding cells. The gradient 

refers to the sum of the cytokine gradient in the extracellular space. To calculate the niche 

score and niche effect in Figure 4 it is necessary to calculate which pSTAT5+ cells are being 

activated by which secreting cell. This is achieved by running the DBSCAN algorithm with all 

pSTAT5+ and secreting cells spatial coordinates as input and the average cell-cell distance, 

typically 20 µm, as the maximum distance between two samples. This algorithm assigns each 

cell to a cluster, which is a group of cells, based on the spatial density of cells. Any resulting 

clusters not containing at least one pSTAT5+ and one secreting cell were disregarded, which 

only happens in edge cases since activation is localized around secreting cells. 

Clustering formalism. In order to achieve the clustering of secreting cells around APC in 

Figure 5 we developed an algorithm that generates clusters of cell types around a set of user-

defined points in space called clustering points. Each cell type is represented by a fraction and 

a clustering strength, which determines how clustered the cells of each type will be around the 

clustering points. The algorithm uses a kernel density estimation (KDE) to assess the 

probability of each possible cell position being part of a cluster. It then samples cell positions 

based on these probabilities to assign each position a cell type.  
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Figure captions 

Figure 1: Spatial inhomogeneities induce stable paracrine signaling activity 

(A) Model scheme. Cytokines are released by the secreting cells, and are subject to diffusion 

in the extracellular space and to binding to receptors on Thn cells. This binding and complex 

building is then translated into the phosphorylated STAT signal. (B) Typical model simulation 

using standard parameters (Table 1) and 5% secreting cells. Shown are the cytokine 

concentration field (left, see also legend in panel A) and the cytokine concentration and 

resulting pSTAT5 levels on responder cells (right). c-c-d: cell-to-cell distances. Maximum 

distance: 50% of average-distance between secreting cells. (C-D) Average cytokine 

concentration on the cell-surface across responding cells and percentage of pSTAT+ cells for 

varying fractions of cytokine secreting cells,  in the RD-system and corresponding well-mixed 

scenario, as indicated. Cells with pSTAT > 0.5 are considered pSTAT+. (E) Correlation 

between the fraction of pSTAT+ cells and the average surface concentration as shown in 

panels C and D,  with spatial inhomogeneity measured by the standard deviation of the cell-

surface concentration across responder cells (spatial s.d.). Each dot represents a single 

simulation run. rs: Spearman9s rank correlation coefficient. (F) Sensitivity analysis with respect 

to the fraction of pSTAT+ cells and the spatial s.d.  (see panels C-E).  The x-axis indicates the 

parameter varied by a factor (fold-change) as indicated, all other parameters remain constant 

(cf. Table 1).  (G) Scan from pure autocrine (all receptors on secreting cells) to pure paracrine 

(all receptors on responder cells) signaling as indicated by the cartoon. Shown is the 

percentage of pSTAT+ cells for responding cells (red), secreting cells (gold) or both (black). 

Lines with shaded regions (panels B and C) and errorbars (D and F) indicate averages and 

standard error of the mean (SEM) across 20 runs of the model simulation. 

Figure 2: Systematic analysis reveals major drivers of cytokine inhomogeneity 

(A-B) Analysis of cytokine inhomogeneity with respect to the fraction of cytokine secreting 

cells, receptor heterogeneity and saturation constant as indicated. In contrast to the analysis 

in Figure 1, simulations are designed in such a way that the total number of secreted cytokine 

molecules and the total number of cytokine receptors in the system are conserved through all 

simulations, see text for details. Shown is (A) a visualization and (B) a systematic scan for the 

parameter under study with respect to the spatial s.d. and spatial average (cf. Figure 1C), all 

other parameters are kept at standard values (Table 1).  Vertical arrows indicate standard 

parameter values.  (C) Sensitivity analysis of the parameters under study with respect to 

spatial s.d., gradient and fraction of pSTAT+ cells, analogous to Figure 1F.  Lines with shaded 

regions (panel B) and arrow (C) indicate average and standard error of the mean (SEM) across 

20 runs. 
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Figure 3: Feedback on receptor expression generates complex spatio-temporal 

dynamics.  

(A) Model scheme for positive and negative feedback on cytokine receptor expression. The 

pSTAT signal downstream of paracrine cytokine signaling induces either an increase (positive 

feedback, <IL-2=) or a reduction (negative feedback, <IL-7=) of receptor expression. (B) Kinetic 

simulation of the model illustrated in panel A, see text for details. Shown are the cytokine 

concentration field at three different time points (top), and the paracrine signaling efficacy 

measured by fraction of pSTAT5+ cells at varying feedback fold change ɣ (bottom). (C) 

Analysis of bimodality in cytokine receptor expression for positive and negative feedback. 

Shown are histograms of the pSTAT5 signal across cells (top), and the resulting bimodality as 

measured by Ashman9s D (bottom), at the last time point. Grey bars represent cells falling 

below a threshold value of 0.5 for pSTAT5, and dashed lines indicate a threshold value of 2 

for Ashman9s D indicating significant bimodality. (D) Time until cells that are pSTAT5+ at 

steady-state (cf. panel C) reach the threshold value of 0.5 for the first time.  (E) Analysis of 

spatial cytokine inhomogeneity with respect to receptor feedback. Shown are cytokine 

concentration fields (left) and corresponding values of the spatial s.d. in dependence of the 

feedback fold change ɣ (right), for positive and negative feedback as indicated. Vertical arrows 

indicate standard parameter values. (F) Correlation between the fraction of pSTAT+ cells and 

the spatial s.d. depending on feedback fold change. Each dot represents a single run. rs is the 

computed spearman9s rank correlation coefficient. Lines with shaded regions (panels C and 

E) represent average and SEM across 20 runs of a simulation. 

Figure 4: Niche score and niche effect characterize spatial patterning of paracrine 

cytokine signals. 

(A) Schematic illustrating the definition of a cytokine  signaling niche: upon clustering of cells 

by theirpSTAT5 values, a niche  is defined as a cluster that contains at least one secreting cell 

and one pSTAT5+ cell. (B) Number of niches (cf. panel A) in dependence of the number of 

cytokine secreting cells. Black line:  theoretical maximum (every Tsec cell forms a separate 

niche).  Black arrow: standard parameter (cf. Table 1). (C) Average pSTAT5 values of cells 

inside and outside  of a cytokine signaling niche. (D) Visualization of the quantities niche score 

and niche effect. For visualization purposes 15% secreting cells were used. The niche score 

is defined as the number of niches divided by the number of secreting cells in the system, the 

niche effect as the fraction of pSTAT5+ cells within the niche divided by outside of the niche. 

See also Figure S5A. (E) Correlation between niche score and niche effect for positive and 

negative feedbackThe black line shows a linear fit of all data points. The arrow head was 
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added to indicate the direction of increased feedback. rs is the computed spearman9s rank 

correlation coefficient. (F) Signaling range in dependence of feedback fold change. (G-H) 

Niche score, effect and signaling range for varying fractions of cytokine secreting cells. The 

bar color indicates feedback fold-change, low as ɣ = 2 and high as ɣ = 100, cf. panels C andF. 

Lines with shaded regions (panels B, C, F) and errorbars (F and G) indicate average and SEM 

across 20 runs of the simulation. 

Figure 5: Spatio-temporal cytokine dynamics in the context of an established tissue 

architecture. 

(A) Schematic (left panel) and typical simulations (right panel) of a scenario with IL-2 secreting 

T cells (Tsec) in the vicinity of an antigen presenting cell (APC), surrounded by responder T 

cells. φ: clustering strength of Tsec cells. Shown are two-dimensional snapshots for the purpose 

of visualization, the analysis below is performed on full 3D-simulations. (B) Analysis of the 

fraction of pSTAT5+ cells (left) and the niche effect (right) in dependence of the clustering 

strength φ for the scenario visualized in panel (A). Lines with shaded regions indicate average 

and SEM across 20 runs of each simulation. (C-D) Regulatory T cells (Treg) expressing high 

numbers of IL-2R are co-localized with Tsec cells in the vicinity of an antigen-presenting cell. 

See panels (A-B) above for details. (E-F) Fibroblastic reticular cells (FRC) secrete IL-7, which 

is taken up by naive T helper cells.  
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Table 1: Standard parameter values 

Parameter Value Unit Description Source 

Ncells 1000  Amount of cells in the system  
dc 20 µm Shortest distance between cell centers  
rc 10 µm Cell radius  
D 10 µm²/s Diffusion coefficient 19 
I 10-12 - 10-9 M Cytokine concentration range 4 
fsec   Fraction of secreting cells  
fresp   Fraction of responding cells  
kon 3.1 * 107 1/(M * s) Cytokine-receptor association rate 23 
η 2.8 * 10-5 1/s Cytokine decay rate 12 
σ 1  Receptor heterogeneity 4 
Saturation parameters    
koff 2.3 * 10-4 molecules/s Receptor disassociation rate 23 
kendo 4.6 * 10-4 molecules/s IL-2*R complex internalization rate 23 
KD 7.423 * 10-12 M Concentration of half saturation  
Receptor feedback    
kbase 1 * 10-3 molecules/s Minimum receptor production rate  
ν 0.042 molecules/s Receptor decay rate 13 
Km 0.5  pSTAT5 value of half feedback  � 0.01 - 100  Feedback fold change 4 

pSTAT signaling    

KEC50 860 Molecules Receptors of half EC50 response 24 
Emax 125 * 10-12 M Maximum EC50 concentration 4 
Emin 0 M Minimum EC50 concentration 4 
NEC50 0.55 – 1.5  EC50 hill exponent 4 
NpSTAT5 3  pSTAT5 hill exponent 24 
IL-2     
qsec 10 molecules/(cell * s) Secreting cells IL-2 secretion rate 25 
Rsec 100 molecules/cell Secretor cells receptor count 4 
Rresp 1500 molecules/cell Responder cells receptor count 4,24 
IL-7     
qsec 100 molecules/(cell * s) Secreting cells IL-7 secretion rate  
Rsec 0 molecules/cell Secretor cells receptor count  
Rresp 5 * 105 molecules/cell Responder cells receptor count  
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