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ABSTRACT

Multiplexed single-cell experiment designs are superior in terms of reduced batch effects,
increased cost-effectiveness, throughput and statistical power. However, current
computational strategies using genetics to demultiplex single-cell (sc) libraries are limited
when applied to single-nuclei (sn) sequencing data (e.g., SnATAC-seq and snMultiome). Here,
we present CellDemux: a computational framework for genetic demultiplexing within and
across data modalities, including single-cell, single-nuclei and paired snMultiome
measurements. CellDemux uses a consensus approach, leveraging modality-specific tools to
robustly identify non-empty oil droplets and singlets, which are subsequently demultiplexed
to donors. Notable, CellDemux demonstrates good performance in demultiplexing
snMultiome data and is generalizable to single modalities, i.e. SnATAC-seq and sc¢/snRNA-
seq libraries. We benchmark CellDemux on 187 genetically multiplexed libraries from 800
samples (scRNA-seq, snATAC-seq, CITE-seq and snMultiome), confidently identifying and
assigning cells to 88% of donors. In paired snMultiome libraries, CellDemux achieves
consistent demultiplexing across data modalities. Moreover, analysis of 38 snATAC libraries
from 149 samples shows that CellDemux retains more genetically demultiplexed nuclei for
downstream analyses compared to existing methods. In summary, CellDemux is a modular
and robust framework that deconvolves donors from genetically multiplexed single-cell and
single-nuclei RNA/ATAC/Multiome libraries.
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INTRODUCTION

Single-cell sequencing has revolutionized biological research and provided biological
insights that would have been indiscernible using bulk-level information: identification of
rare cell types, cell-type specific transcriptional programs and chromatin accessibility in
health and disease, among others'. Droplet-based single-cell and single-nuclei methods are
widely used by researchers to encapsulate cells in oil droplets, which are subsequently
barcoded to associate sequencing reads to cells®™*! to encapsulate cells in oil droplets, which
are subsequently barcoded to associate sequencing reads to cells. Droplet-based methods
include, but are not limited to, single-cell RNA sequencing (scCRNA-seq), single-nuclei RNA
sequencing (snRNA-seq) and single-nuclei assay for transposase-accessible chromatin
sequencing (snATAC-seq), Cellular Indexing of Transcriptomes and Epitopes by Sequencing
(CITE—seq)lz, as well as the more recent single-nuclei Multiome assay (10x Genomics) that
offers paired gene expression and chromatin accessibility data from the same nucleus.

However, single-cell and single-nuclei experiments remain expensive for biological replicates,
whereas biological replicates across different conditions are urgently needed to make
statistically sound and generalizable conclusions. To address this, an alternative strategy is to
multiplex across genetically distinct donors, sequence the composite library and later assign
cellular barcodes to the donor of origin based on genetic information. Genetic
demultiplexing dramatically reduces unwanted technical variation***, experimental expenses,
and enables inclusion of more biological replicates. Increased numbers of biological
replicates or conditions foster more biological diversity and thus generate more
generalizable conclusions, which increases statistical power and thus the chances to detect
more subtle effects.

Tools to demultiplex pooled single-cell libraries have been developed™™" and widely used

by the scientific community®*> 71821 However, currently available genetic demultiplexing
tools are designed for scRNA-seq and fail to extend to snRNA-seq or especially snATAC-seq
and snMultiome libraries. The extension of demultiplexing tools to snATACseq or Multiome
libraries is crucial because of multiple reasons: 1) features between ATAC (peaks) and RNA
(genes) libraries differ, 2) ATAC libraries are inherently sparser compared to RNA libraries and
require separate processing (e.g. read mapping, genetic variant calling) and 3) current
demultiplexing tools do not consider shared barcodes between modalities in snMultiome
libraries, which can be utilized to improve demultiplexing performance. Overall,
methodological developments on demultiplexing tools are needed to accommodate single-
cell and single-nuclei protocols.

In this study, we develop CellDemusx, a novel, user-friendly computational framework to
enable genetic demultiplexing of paired -omics data modalities as well as single-cell and
single-nuclei data. This includes pre-processing (e.g., identification of non-empty droplets),
confident exclusion of doublets using a consensus approach and assignment of cell barcodes
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to the donor of origin either within each modality or across modalities. Of particular note,
CellDemux implements a novel pipeline to demultiplex snATACseq libraries. We show
consistent demultiplexing results and validate the results by comparing ATAC demultiplexing
results to RNA demultiplexing results in snMultiome libraries, taking advantage of the shared
barcodes between the modalities. Overall, we assess the performance and consistency of the
proposed framework on scRNAseq, snATACseq, CITEseq and Multiome libraries (combined 7
independent studies, 187 libraries from 800 samples, ~2M single cells). We show that
CellDemux can consistently demultiplex donors from single-cell sequencing within and
across modalities. Finally, we re-analyze previously published chromatin accessibility data (38
snATAC libraries from three independent studies) to show that this framework outperforms
existing methods, giving more reliable single nuclei and statistical power for computational
analysis. Our research demonstrates a robust and adaptable framework for genetic
demultiplexing that opens the way for more powerful and informative single-cell, single-
nuclei and paired -omics experiments. CellDemux is freely available at: github.com/CiiM-
Bioinformatics-group/CellDemux.

MATERIAL AND METHODS
Overview and implementation of the framework

The framework is implemented in Python (v3.9.6) Snakemake (v7.31.0)””. We chose
Snakemake because of its integration with a wide variety of high-performance clusters and
Jjob management systems without changing the underlying code. We containerized most
tools to ensure reproducibility using Conda environments, which are freely available. On the
user side, input consists of a single excel sheet containing six mandatory entries per library
(name, location of the data, number of donors to demultiplex, reference genotype file, data
type and optional comment).

We have provided reasonable default setting and computational resources for each tool on
Github. Overall, CellDemux finished for most libraries within 24 hours, starting from cell
calling to matching to the reference genotype. We have made this workflow modular,
meaning some steps can be skipped depending on the scenario to alleviate the
computational burden.

Data pre-processing

Pre-processing of the published datasets is described in their respective publications**%. For
the unpublished datasets we used CellRanger (v7.1.0), CellRanger-atac (2.1.0) and
CellRanger-arc (v2.0.2) with default parameters for RNA, ATAC and Multiome libraries
respectively.

Methods to estimate ambient RNA contamination
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Soupx. We used SoupX*! v1.6.2 with default parameters, except forceAccept = T,
soupQuantile = 0.1 and tfidfMin = 0.0 to avoid errors when encountering libraries with high
contamination or where too few markers were found to estimate contamination. SoupX was
only used on RNA libraries, for Multiome / CITEseq libraries we first subsetted the matrix that
was passed to SoupX. Over all 149 RNA libraries, we observed that SoupX estimates of

contamination were highly correlated to Souporcell estimates (Pearson’s r: 0.83, p < 22 x 10°
16
)

Methods to identify non-empty droplets

CellBender. We ran CellBender” within a Singularity container on GPUs to increase its
efficiency. We ran CellBender only on RNA libraries and subsetted Multiome/CITEseq libraries
prior to running CellBender. CellBender was run with arguments: --expected-cells 8000, --
cuda, --cells-posterior-reg-calc 10, --posterior-batch-size 2, --epochs 150. We found that
CellBender is not particularly sensitive to these parameters, and 150 epochs were always
enough to reach convergence.

EmptyDrops. EmptyDrops® (R package DropletUtils v1.18.1) was run on RNA libraries to
estimate non-empty oil droplets. Prior to using EmptyDrops we subsetted CITEseq or
Multiome libraries to only include RNA counts. We used a False Discovery Rate (FDR) of
0.001 for cell calling as recommended by the EmptyDrops authors. Other arguments were
left as default.

For ATAC libraries, we used the CellRanger ATAC cell calling algorithm. We attempted to use
RNA-based tools CellBender and EmptyDrops to ATAC sequencing results, and observed that
both tools identified mostly cell-containing droplets unique to data modalities in Multiome
libraries (Supplemental Figure 1B). Meaning that, while the cell-containing droplets should
be largely overlapping, RNA-based tools were not able to identify the correct droplets in
ATAC. Hence, we continued with the CellRanger ATAC cell calling results.

Methods to identify doublets

Demuxlet. We used the Popscle suite (https://github.com/statgen/popscle) to run Demuxlet.
We used several helper tools for Popscle in pre-processing the genetic data created by the
Aerts lab (at: https://github.com/aertslab/popscle helper tools). Briefly, we filter out from the
genotype reference anything that is not a single nucleotide polymorphism (only_keep_snps
function), filter mutations that do not vary across all samples
(filter_out_mutations_homozygous_reference_in_all_samples,
filter_out_mutations_homozygous_in_all_samples) and calculate the allele frequencies, allele
counts and allele numbers (calculate_AF_AC_AN_values_based_on_genotype_info). This
leaves a set of informative variants with discriminative power between samples. Next, the
bam file is filtered for the appropriate barcodes using popscle_filterbam.sh (popscle). We
produced the pileup using popscle dsc-pileup and subsequently demultiplexed using
popscle demuxlet.
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Vireo. Vireo™ and cellsnp-lite v1.2.3 (htslib version: 1.17) was ran using default parameters
and according to the author’s instructions.

Amulet. We ran Amulet?’ v1.1 using the shell script provided by the authors with default
parameters. The human autosomes and blacklist regions provided to Amulet were also
supplied by the authors and are available on Github (https://github.com/UcarLab/AMULET).

ArchR. ArchR? v1.0.2 was used to estimate doublets in ATAC libraries. We first created Arrow
files using the fragment files for each ATAC library using default parameters. The valid
barcodes we supplied to ArchR were the non-empty droplets as estimated by CellRanger.
Then, we estimated doublet scores per nucleus (addDoubletScores function) using k=10,
knnMethod = UMAP and LSImethod = 1, the default values. Nuclei were removed at the
lenient threshold of DoubletEnrich score > 1.

Souporcell. We ran the Souporcell®® pipeline manually to estimate singlet following the
p p pip y g g

author’s instructions. For different libraries, we map the reads using mappers suited to each
data modality: Minimap2** (arguments: -ax splice -t 15 -G50k -k 21 -w 11 —sr -A2 -B8 -
012,32 -E2,1 -r200 -p.5 -N20 -f1000,5000 -n2 -m20 -s40 -g2000 -2K50m —secondary=no) for
RNA and BWA MEM?? (arguments: -t 15) for ATAC. From these remapped reads, variants
were identified using Freebayes® (see below). Vartrix was used to count the alleles using the
identified variants with default parameters. Finally, cells were clustered using the Souporcell
cell clustering algorithm to identify singlets.

Methods to call variants

We used FreeBayes™ for all results presented. Freebayes was run with arguments: -iXu -C 2 -
g 30 -n 3 -E 1 -m 30 —min-coverage 6 on bam files resulting from RNA-seq and ATAC-seq
alignments. Variant calling was done per chromosome in parallel using freebayes-parallel.

Moreover, we tested a recently published algorithm, Monopogen®, to call variants in single-
cell and single-nuclei sequencing data. Consistent with the original publication, we found
that Monopogen called more variants in ATAC-seq data compared to RNA-seq data.
Compared to FreeBayes, Monopogen identified similar number of variants in RNA-seq data
but higher number of variants per library in ATAC-seq data (Supplementary Figure 4).

Both variant callers are included in CellDemux and can be interchangeably used.
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Cell clustering

Having identified a confident set of singlets for each ATAC and RNA library, we manually ran
Souporcell again manually to finally cluster cells/nuclei. We filter the mapped reads (RNA:
Minimap2®?, ATAC: BWA MEM™) for the appropriate barcodes and run Freebayes® using the
same parameters specified above. Vartrix and Souporcell’s cell clustering algorithm were re-
run using default parameters to identify the final cell clusters. Of note, we do not consider
the ambient RNA estimations from this Souporcell output since the input sequence data was
filtered and will therefore skew estimations.

Matching cell clusters to donors

To assign the cell clusters to donors, we match the genotypes of the cell clusters to reference
genotypes. First, we identify a set of variants that are present in both genotypes based on
chromosome, chromosomal position, alternate allele and reference allele. Both genotype
files are filtered for this set of variants. Following, we systematically compare the genotypes
for this set of variants. Because we cannot distinguish between the paternal and maternal
alleles, we collapse the genotypes to the count of alternate alleles per variant in both the
inferred and reference genotypes. We sum the count of alternate alleles over these variants
for every combination between cell clusters and donors. To statistically identify outliers (e.g.,
a donor that matches more variants to a cell cluster compared to other donors), we use
Grubbs' test®®. We test only the donor with the highest number of variants per cluster.
Unadjusted p-values < 0.05 were considered significant outliers and therefore indicated
matching of a cell cluster to a donor. We manually checked whether the assigned donor
agreed with the single-cell experimental design.

Prior to matching the cell cluster genotypes to the reference genotype, we recommend
imputing the reference genotypes to maximize the number of variants to consider. We
observed that imputing the reference genotypes dramatically increased the number of
matching variants for all donors and more confidently showed the matching donor in that
library.

RESULTS
A comprehensive and user-friendly framework to enable genetic demultiplexing

We developed CellDemux, a user-friendly and comprehensive computational framework to
enable assignment of cells to genetically different donors from single-cell, single-nuclei and
paired -omics libraries with mixed donors (Figure 1). The framework, implemented in the
workflow management system Snakemake”, supports a wide range of data for genetic
demultiplexing, including scRNA-seq, snATAC-seq, CITE-seq and paired snMultiome data.
Starting from raw sequencing data, CellDemux identifies cell-associated droplets by
discarding droplets contaminated by ambient RNA. Contamination of cell-free ambient
MRNA molecules is a challenge in single-cell experiment, mainly because the real expression
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profile is masked which confounds further downstream analyses. Particularly in the case of
genetic demultiplexing, ambient RNA interferes with the estimation of genotypes from
single-cell data as a particular genotype may be contaminated with false-positive reads
derived from ambient RNA. Therefore, CellDemux implements two methods (EmptyDrops
and CellBender) to confidently separate empty vs non-empty droplets. Next, cell barcodes
containing a single cell or nucleus are identified using a consensus approach of
computational tools specifically designed for each data modality. This is important because
heterogenic doublets, those including cells from different donors, interfere with the
genotypic estimations in that cell/nucleus as the sequenced reads harbor different alleles for
a genetic variant. Therefore, CellDemux utilizes different doublet callers to identify and
remove the cell barcodes that likely contain more than one cell/nucleus in order to retain a
set of high-confidence singlets. Finally, we cluster these singlets on genotypic information
and match the inferred and reference genotypes, assigning barcodes to donors across data
modalities. We compare demultiplexing results across modalities to show the consistency of
cell clustering and donor assignments between modalities.

We benchmark CellDemux on 187 multiplexed libraries of single-cell and single-nucleus
sequencing data from 7 studies, covering 800 samples from 238 genetically different donors
and approximately 2M single cells (both published***! and unpublished data, Supplemental
Table 1). Data from these studies include scRNA-seq (66 libraries), CITE-seq (4 libraries),
SnATAC-seq (38 libraries) and paired RNA+ATAC snMultiome (79 libraries).

Confident identification of non-empty oil droplets within and across modalities

Identification of high-quality cells/nuclei is crucial in genetic demultiplexing to identify the
donors mixed in a sequencing library. The first computational step in droplet-based single-
cell sequencing is identifying the oil droplets that likely contain cells. By comparing the
output of different cell calling tools across modalities we aim to assess their consistency and
identify high-quality cell-associated droplets.

For 149 RNA libraries (either scRNA or the RNA part of a snMultiome/CITE-seq library),
CellDemux implements two widely employed tools to estimate non-empty droplets:
EmptyDrops®, used by CellRanger (10X Genomics), estimates deviations from the ambient
RNA pool to identify empty droplets, while CellBender* is a deep generative model that
learns the background noise profile. EmptyDrops overestimated the number of non-empty
droplets (up to ~80K non-empty droplets per library) especially in pools with higher
estimated ambient RNA contamination (Figure 2B, Supplemental Figure 1A). Overall, there
was moderate overlap in the identified non-empty droplets between EmptyDrops and
Cellbender (47.5% consistency, Figure 2A). Results from both tools diverged more as the
estimated ambient RNA contamination increased (Figure 2C). To identify non-empty droplets
in 119 snATAC libraries (either snATAC or the ATAC part of a snMultiome library), we used
the ATAC cell calling algorithm from CellRanger. Finally, we applied CellDemux to
snMultiome libraries with shared barcodes between RNA and ATAC to assess the consistency
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between RNA/ATAC non-empty droplets. Non-empty RNA droplets called by CellBender
overlapped significantly more with the ATAC non-empty droplets compared to EmptyDrops
(Wilcoxon ranked-sum test, p = 0.011) (Figure 2D).

Overall, these results suggest substantial variabilities in the identification of non-empty
droplets dependent on data quality. CellDemux implements different cell calling methods
suited to each data modality, and therefore provides high-quality non-empty droplets per
library. We consider for further analysis a set of confidently called non-empty droplets (RNA
libraries: CellBender U EmptyDrops, ATAC libraries: CellRanger).

Removal of doublets within and across modalities

To further ensure high quality of the sequencing data prior to demultiplexing, CellDemux
employs a consensus approach using well-established doublet calling tools suited for each
modality to identify and remove doublets in single-cell and single-nuclei data. Specifically,
CellDemux implements : Vireo™, Demuxlet™, Souporcell*, DoubletFinder®, Scrublet®® for RNA
libraries, and Amulet”” and ArchR* for ATAC libraries. We compared the outcome of these
tools within and across modalities to identify a confident set of singlets for further
demultiplexing.

For 70 RNA/CITE-seq libraries, there was notable variation in terms of the total number of
singlets, with a maximum 1.7-fold-difference (260K single cells) across tools, and the extent
of overlapping singlets between the different methods (Figure 3A). In ATAC libraries, Amulet
identified ~110K singlets more on the same datasets compared to ArchR's doublet calling
method. The large majority of singlets identified by ArchR were shared with Amulet (Figure
3B). These variable results may come from varying statistical power to detect doublets, and
underlines that a consensus approach is necessary when identifying doublets. Relying solely
on the performance of a single tool will likely lead to both false positive and false negative
doublet calls.

We again took advantage of the shared barcodes between RNA and ATAC in snMultiome
libraries to assess the performance of CellDemux based on the concordance of doublet
predictions across modalities. Overall, a large subset of singlets was independently identified
across modalities and different doublet calling tools, suggesting that these are high-
confidence singlets (Figure 3C). Remaining sets of singlets varied considerably and were
classified as singlets in only one modality or by a subset of doublet callers. For example,
snRNA-seq singlets were more concordant with Amulet singlets compared to ArchR across
all doublet calling tools, but we did not observe differences in proportional overlap between
each of the RNA doublet callers (Figure 3D).
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We noticed that singlets identified in RNA libraries by Demuxlet/Vireo were also identified by
Scrublet, Souporcell and/or DoubletFinder, which identified an additional 322K singlets (Figure
3E). Similar for ATAC libraries, >98% of the singlets identified by ArchR were also identified
by Amulet, who identified up to 116K single nuclei extra (Figure 3F). Furthermore, assessing
the paired snMultiome libraries shows that these singlets are largely shared across modalities
and identified by several independent methods (Supplementary Figure 2C).

Based on these cross-modal validation results, we therefore consider for further genetic
demultiplexing a broad set of singlets (RNA: Souporcell U Scrublet U DoubletFinder, ATAC:
Amulet, Multiome: Souporcell U Scrublet U DoubletFinder U Amulet). We propose a broad set
of singlets to not exclude potential real singlets (i.e. false positive doublets), who will be
filtered out later based on genotypic information.

Assignment of single cells and nuclei to donors in genetically multiplexed libraries
across modalities

Having established a confident set of singlets per library by identifying non-empty droplets
(Figure 2) and singlets (Figure 3), we cluster cells based on genetic variation and use
reference genotypic information to assign cellular clusters to donors. We chose the
Souporcell™ model to cluster cells because of its flexibility (quality control, processing,
mapping and variant identification can be tailored to data modalities as we have
demonstrated here) and previously demonstrated superior demultiplexing results on single-
cell RNA sequencing data™. Per cluster, we call variants and systematically compare the
inferred and reference genotypes to count the matching number of variants per cluster and
donor (Methods). Finally, we manually verified that the demultiplexed donors were included
in that library.

Application of CellDemux to 187 genetically multiplexed libraries from seven independent
studies shows that we significantly match 92% of cell clusters to donors in 70 RNA/CITE-seq
libraries (Supplemental Figure 3A), 95% in 38 ATAC libraries (Supplemental Figure 3B) and
84%/93% (RNA/ATAC) in 79 paired RNA+ATAC snMultiome libraries (Figure 4A). We
observed few libraries (ATAC: 1, RNA: 1, Multiome: 2) with inconclusive results, where 1)
multiple cell clusters matched to the same donor, suggesting poor cell clustering or samples
with poor viability, or 2) two samples matched almost equal number of variants to cell
clusters, suggesting a possible sample swap in the genotyping or poor clustering of cells.
Overall, the number of nuclei recovered and assigned to donors was consistent between
RNA and ATAC in the snMultiome libraries. Donors that were not demultiplexed from the
single-cell data were often not demultiplexed in multiple modalities, suggesting poor sample
quality rather than demultiplexing artifacts. Aside from these factors, there remain libraries
where not all donors were identified or lesser number of cells were assigned to donors. This
is possibly due to the fact that these libraries were characterized by higher estimated
ambient RNA contamination, lower mapping quality of the sequenced reads and lower
number of SNPs identified in the single-cell data (Figure 4A).
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Comparing across modalities in the paired snMultiome libraries showed that cell clustering
and matching cells to donors was consistent between RNA and ATAC, where on average 84%
of barcodes were assigned to the same donors in both modalities (Figure 4B). This shows
that CellDemux is able to consistently deconvolve donors in multiplexed libraries across
modalities. We further assessed the confounding factors that could influence the consistency
between modalities, and found that libraries with lower agreement between RNA and ATAC
were more contaminated with ambient RNA, suggesting lower quality of that specific library
(Pearson’s r. -0.88, p < 2.2e-16) (Figure 4C).

Assignment of barcodes to donors in RNA libraries was consistent with results obtained from
Vireo and Demusxlet (Supplementary Figure 2A), but CellDemux, using the Souporcell model,
was able to assign more cells to donors compared to either tool (Supplementary Figure 2B).

CellDemux outperforms existing methods on snATAC-seq data

One of the unique features of CellDemux as a demultiplexing tool is its applicability to
different modalities of single-cell and single-nuclei data. Single-cell RNA demultiplexing
tools are widely used™*>* but do not extend to snATAC-seq data. To show that CellDemux
outperforms existing methods on snATAC-seq data, we compare results to three snATAC-seq
datasets previously generated, analyzed (standard Souporcell pipeling, the best that was
available at time of publishing) and published by our lab>**'. Overall, these three studies
encompass 32 snATAC-seq libraries that are multiplexed across genetically distinct donors
(163 samples).

CellDemux is able to demultiplex more samples from snATAC-seq data compared to existing
tools. We compared the number of samples that were significantly demultiplexed for three
independent studies where samples from 3-6 donors were pooled for snATAC-seq.
CellDemux identified and assigned cells to almost all samples per library across all three
studies, i.e., study 1: 20/22 (91%) samples, study 2: 75/80 (94%) samples and study 3: 47/47
(100%) of samples demultiplexed. This is in contrast to the previously published results
based on the standard Souporcell pipeline that identified fewer samples in two out of the
three studies (study 1: 16/22 (73%), study 2: 49/80 (61%) and study 3: 47/47 (100%) samples
multiplexed) (Figure 5A). This could be due to lower sequence mapping quality, lower
number of SNPs identified and subsequent poorer clustering of cells using the standard
Souporcell pipeline on snATAC-seq data, compared to the improved snATAC-seq-specific
pipeline used by CellDemux.

CellDemux outperforms existing tools in accurately identifying high-quality nuclei from
snATAC-seq data. We compared the number of single nuclei that are retained for
downstream analyses between CellDemux and the previously used standard Souporcell
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pipeline (Figure 5B). CellDemux identified more singlets in two out of the three studies (study
1: 3599 (8.6%) single nuclei, study 2: 7031 (10%) single nuclei more assigned to donors). In
contrast to studies 1 and 2, CellDemux assigned fewer nuclei to donors in study 3 compared
to previously published results. A more in-depth assessment of the demultiplexed single
nuclei showed that Souporcell previously overestimated the number of singlets (~30.000
singlets in a single library). These singlets were low-quality as defined by the number of
unique fragments and the TSS enrichment per nuclei, and are later filtered out in
downstream analyses. It is likely that there are more low-quality singlets among the
demultiplexed singlets by Souporcell that we do not filter out based on only TSS enrichment
and the number of unique fragments.

In summary, we showed here that CellDemux enables genetic demultiplexing of single-nuclei
chromatin accessibility data. By leveraging methods specific to ATAC-seq, CellDemux
substantially improved demultiplexing results compared to existing methods, both in terms
of nuclei retention and accurately demultiplexed donors.

DISCUSSION

In this study, we presented the CellDemux framework that enables confident demultiplexing
of single cells and nuclei to genetically different donors across data modalities. CellDemusx is
implemented in the workflow management system Snakemake to facilitate integration with

high-performance clusters and job management systems. Furthermore, each module is self-
contained to ensure maximal reproducibility.

We have evaluated CellDemux across a wide range of genetically multiplexed libraries
including scRNA-seq, CITE-seq, snATAC-seq and paired RNA+ATAC snMultiome data. These
libraries comprised a set of challenging scenarios (e.g., high ambient RNA contamination,
variability in sequencing quality, varying number of donors, different data modalities) and
therefore present robust test cases. We showed that CellDemux consistently demultiplexes
donors from genetically multiplexed single-cell and single-nuclei sequencing. Assessments of
paired snMultiome libraries showed that CellDemux assigns highly concordant sets of
barcodes to donors across modalities. Finally, re-analysis of previously demultiplexed ATAC
libraries showed that CellDemux confidently demultiplexes donors and recovered more high-
quality nuclei that would have otherwise been discarded.

Genetically multiplexed single-cell and single-nuclei libraries comprise several types of
doublets: homotypic and heterotypic based on cell type, as well as homogenic and
heterogenic based on genotype. Different doublet callers have varying detection power for
each class of doublets. For example, Souporcell™ was developed for genetically multiplexed
libraries and explicitly models the allelic fractions between clusters to identify heterogenic
doublets. Homogenic doublets could be missed using this approach but can be identified by
other tools such as Scrublet”® or DoubletFinder”. The idea of using multiple bioinformatic
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tools to identify doublets in droplet-based single-cell sequencing has been suggested before
and was shown to improve consistency and results®**°. However, previous research remained
limited to single-cell RNA sequencing® and hashtag-based demultiplexing methods®® and
did not include other library types such as ATAC-seq or snMultiome. We considered in this
work a broad set of singlets per library by considering multiple modality-specific tools.
Consequently, our results become less dependent on the outcome of a single tool and
therefore more robust.

While there is a plethora of doublet-calling tools for single-cell or single-nuclei RNA tools,
such tools lack for snATAC libraries. Amulet leverages the expected read count distributions
to identify doublets, while ArchR simulates doublets and compares the open chromatin
profile of simulated doublets to other barcodes. Amulet has the advantage of capturing both
heterotypic and homotypic doublets®’, while simulation-based methods may miss homotypic
doublets. It remains unclear to what extent the different ATAC-based methods are able to
capture different types of doublets, and future research should investigate this more in

depth using simulated datasets with known ground truths. Such work informs on the
specificity and sensitivity of different doublet callers and further guides doublet identification.

In the current study we have assessed several data modalities, including single-cell and
single-nucleus RNA/ATAC/CITE as well as snMultiome data and shown that CellDemux can
consistently deconvolve donors. While not tested, we anticipate that CellDemux can be
extended to deconvolve non-human samples, on the condition that there is sufficient
genetic diversity to cluster cells. Moreover, we have tested CellDemux on pools containing 3-
6 human donors, but we expect that CellDemux is equally applicable to libraries with more
multiplexed donors. However, the number of singlets captured in droplet-based single-cell
data is limited (~10.000 expected recovered cells in 10X V3 scRNA-seq assays, 8% doublet
rate). Multiplexing across too many donors will limit the number of nuclei assigned to each
donor and therefore limit the number of informative variants identified in the data. Using
CellDemux, we found that we were able to confidently identify donors starting from several
hundred cells/nuclei onward, sequenced at 25.000 (RNA) and 20.000 (ATAC) read pairs per
cell/nucleus.

The ultimate aim of demultiplexing is the assignment of cells to donors. Other
demultiplexing methods have provided ways to match cell clusters between different
libraries with shared samples, but this does not reveal the identity of the donor**>,
Furthermore, Vireo identifies a minimal set of discriminatory variants to assign cells to
individuals based on quantitative polymerase chain reaction (qPCR), but this approach does
not scale well to large cohorts because of time-intensive and laborious experimental work.
CellDemux requires single-cell sequencing and reference genotyping data. We opted to
compare the inferred genotypes to reference, array-based genotypes because of the
relatively low costs and experimental burden. Furthermore, the genetic sequence can be re-
used in other analyses (genome-wide association studies, expression quantitative-trait loci
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mapping, etc.). Scripts to compare the genotypes and assign the donor identity to cells are
freely available at github.com/CiiM-Bioinformatics-group/CellDemux.
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The CellDemux framework is freely available on Github at: https://github.com/CiiM-Bioinformatics-
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an MIT open-source license.
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Study Data Libraries D.ata Donors Samples Reference Comments Reference
available?
300BCG scRNAseq 32 Yes 39 156 EGAS00001006990 Li et al., 2023. Cell Reports
Postcovid scRNAseq 8 Yes 29 40 EGAS00001005529 Liu et al., 2022. Frontiers in Immunology
snATACseq 8 Yes 39 EGAS00001005529 Liu et al., 2022. Frontiers in Immunology
LongCovid Multiome 55 Yes 21 203 -
IBD Multiome 20 Yes 20 80 -
Covid50MHH scRNAseq 16 Yes 41 82 EGAS00001006559 Genotype available at: Zhang et al., 2023. Cell Genomics
snATACseq 16 Yes 39 80 EGAS00001006560 EGAZ00001823187 Zhang et al., 2023. Cell Genomics
PML scATACseq 2 Yes 6
CITE 4 Y 15
seq es 10 _
Multiome 4 Yes 15
scRNAseq 4 Yes 12
MMR scATACseq 12 Yes 39 48 EGAS00001006787 Roring et al., 2022. BioRxiv
scRNAseq 6 Yes 24 EGAS00001006787 Roring et al., 2022. BioRxiv
Total 187 238 800

Table 1. Overview of included datasets in this study.
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Figure 1. Study design. (A) Schematic overview of the study workflow and aims. Genetically
varying individuals are mixed and sequenced (scRNA-seq, snRNA-seq, snATAC-seq,
snMultiome, CITE-seq) and later demultiplexed to assign cells back to the donor of origin.
Droplets that contain only ambient RNA are removed, as are droplets that likely contain
multiple cells. High-quality singlets are subsequently used for further demultiplexing. (B)
Overview of CellDemux, a computational framework to confidently assign cell barcodes from
genetically multiplexed single-cell or single-nuclei experiments to their respective donor. (C)
Data used in the current study includes 189 genetically multiplexed libraries, covering
scRNAseq, snATACseq, CITEseq and snMultiome libraries.
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Figure 2. Identification of non-empty droplets across data modalities. (A) Overlapping in
non-empty barcodes between CellBender and EmptyDrops across 149 RNA libraries (either
RNA or as part of a Multiome experiment). (B) For each of the 149 RNA libraries, the number
of non-empty droplets estimated by CellBender and EmptyDrops (bottom), the estimated
ambient RNA contamination (middle) and the overlap between CellBender/EmptyDrops (top).
Libraries shaded in red indicate the CellBender failed to converge and did not identify any
cells. No further analyses were performed on these 5 libraries (far left side) (C) Correlation
between the estimated ambient RNA contamination per library and the overlap between
CellBender/EmptyDrops estimations of non-empty droplets. Each dot represents one of 149
RNA libraries. (D) Overlap between RNA and ATAC barcodes across 79 Multiome libraries.
RNA barcodes were identified either by EmptyDrops or CellBender, ATAC barcodes were
identified using CellRanger’s standard cell calling pipeline. Center line in each boxplot is the
median, bounds are the 25th and 75th percentiles (interquartile range).
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Figure 3. Confident identification of singlets across data modalities using a consensus
approach. UpSet plots depicting doublet calls in each data modality across 70 RNA libraries
(either scRNA-seq or part of CITE-seq/snMultiome libraries) (A), 40 ATAC libraries (either
snATAC-seq or part of snMultiome libraries) (B) and 79 RNA+ATAC snMultiome libraries (C).
The top bars indicate the total number of singlets in this intersection, the side bar plots
indicate the total number of singlets identified per tool. (D) Barplot showing the
concordance between RNA and ATAC for each of the doublet calling tools, as the proportion
of identified singlet barcodes by RNA that are also singlets in ATAC by either of the tools. (E)
Overlap between singlets identified by Souporcell/Scrublet/DoubletFinder versus
Vireo/Demuxlet. (F) Venn diagram showing the overlap between identified singlets by
Amulet or ArchR.
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Figure 4. Assigning cell barcodes to donors in multiplexed libraries. (A) Composite heatmap
showing demultiplexing results across 79 RNA+ATAC snMultiome libraries. Each row
represents a paired RNA (left) and ATAC (right) snMultiome library, where the heatmap
shows whether a cluster of cells was significantly matched to a donor based on genotypic
information (green) or not (yellow). Furthermore, we annotate each library with the estimated
ambient RNA contamination (RNA only), transcription start site enrichment (ATAC only) as
well as the fraction of reads that are > MAPQ 30 and the number of variants identified in the
sequencing data by FreeBayes. Barplot on the right shows the number of nuclei assigned to
each donor in that library. We highlight one library and show how the genetic matching
assigns donors to clusters (Methods), and how barcodes overlap between donors across
modalities. (B) Fraction of barcodes that are consistently assigned to the same donor in RNA
and ATAC independently. Each dot represents one of 79 Multiome libraries, bars indicate
means. (C) Dot plot showing the correlation between the estimated ambient RNA
contamination and the fraction overlapping reads between RNA and ATAC (e.g., fraction of

reads assigned to the same donor, independently across two modalities).
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Figure 5. Re-analysis of previously published data shows that CellDemux outperforms
existing methods. (A) Proportion of donors recovered (pie charts) and number of singlets
assigned to donors per study, for CellDemux and the previously published using the
standard Souporcell pipeline on the same snATACseq libraries for three independent studies.
We considered only high-quality singlets. Low-quality singlets that are filtered out in
downstream steps are colored gray (TSS enrichment < 4, or unique number of fragments per
cell < 1000) (B) Dot plot showing the number of unique fragments per nucleus versus the
transcription start site enrichment (TSS) for each of the three studies (rows), colored for
density. We considered singlets assigned to donors based on CellDemux or using the
previously published standard Souporcell pipeline results. Cells that are low quality (TSS
enrichment < 4 or number of unique fragments per cell < 1000, red lines) are colored gray.
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