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ABSTRACT 

Multiplexed single-cell experiment designs are superior in terms of reduced batch effects, 

increased cost-effectiveness, throughput and statistical power. However, current 

computational strategies using genetics to demultiplex single-cell (sc) libraries are limited 

when applied to single-nuclei (sn) sequencing data (e.g., snATAC-seq and snMultiome). Here, 

we present CellDemux: a computational framework for genetic demultiplexing within and 

across data modalities, including single-cell, single-nuclei and paired snMultiome 

measurements. CellDemux uses a consensus approach, leveraging modality-specific tools to 

robustly identify non-empty oil droplets and singlets, which are subsequently demultiplexed 

to donors. Notable, CellDemux demonstrates good performance in demultiplexing 

snMultiome data and is generalizable to single modalities, i.e. snATAC-seq and sc/snRNA-

seq libraries. We benchmark CellDemux on 187 genetically multiplexed libraries from 800 

samples (scRNA-seq, snATAC-seq, CITE-seq and snMultiome), confidently identifying and 

assigning cells to 88% of donors. In paired snMultiome libraries, CellDemux achieves 

consistent demultiplexing across data modalities. Moreover, analysis of 38 snATAC libraries 

from 149 samples shows that CellDemux retains more genetically demultiplexed nuclei for 

downstream analyses compared to existing methods. In summary, CellDemux is a modular 

and robust framework that deconvolves donors from genetically multiplexed single-cell and 

single-nuclei RNA/ATAC/Multiome libraries.  
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INTRODUCTION 

Single-cell sequencing has revolutionized biological research and provided biological 

insights that would have been indiscernible using bulk-level information: identification of 

rare cell types, cell-type specific transcriptional programs and chromatin accessibility in 

health and disease, among others1. Droplet-based single-cell and single-nuclei methods are 

widely used by researchers to encapsulate cells in oil droplets, which are subsequently 

barcoded to associate sequencing reads to cells2–11 to encapsulate cells in oil droplets, which 

are subsequently barcoded to associate sequencing reads to cells. Droplet-based methods 

include, but are not limited to, single-cell RNA sequencing (scRNA-seq), single-nuclei RNA 

sequencing (snRNA-seq) and single-nuclei assay for transposase-accessible chromatin 

sequencing (snATAC-seq), Cellular Indexing of Transcriptomes and Epitopes by Sequencing 

(CITE-seq)12, as well as the more recent single-nuclei Multiome assay (10x Genomics) that 

offers paired gene expression and chromatin accessibility data from the same nucleus.  

 

However, single-cell and single-nuclei experiments remain expensive for biological replicates, 

whereas biological replicates across different conditions are urgently needed to make 

statistically sound and generalizable conclusions. To address this, an alternative strategy is to 

multiplex across genetically distinct donors, sequence the composite library and later assign 

cellular barcodes to the donor of origin based on genetic information. Genetic 

demultiplexing dramatically reduces unwanted technical variation13,14, experimental expenses, 

and enables inclusion of more biological replicates. Increased numbers of biological 

replicates or conditions foster more biological diversity and thus generate more 

generalizable conclusions, which increases statistical power and thus the chances to detect 

more subtle effects.  

  

Tools to demultiplex pooled single-cell libraries have been developed13–17 and widely used 

by the scientific community2,3,5–7,9,18–21. However, currently available genetic demultiplexing 

tools are designed for scRNA-seq and fail to extend to snRNA-seq or especially snATAC-seq 

and snMultiome libraries. The extension of demultiplexing tools to snATACseq or Multiome 

libraries is crucial because of multiple reasons: 1) features between ATAC (peaks) and RNA 

(genes) libraries differ, 2) ATAC libraries are inherently sparser compared to RNA libraries and 

require separate processing (e.g. read mapping, genetic variant calling) and 3) current 

demultiplexing tools do not consider shared barcodes between modalities in snMultiome 

libraries, which can be utilized to improve demultiplexing performance. Overall, 

methodological developments on demultiplexing tools are needed to accommodate single-

cell and single-nuclei protocols. 

 

In this study, we develop CellDemux, a novel, user-friendly computational framework to 

enable genetic demultiplexing of paired -omics data modalities as well as single-cell and 

single-nuclei data. This includes pre-processing (e.g., identification of non-empty droplets), 

confident exclusion of doublets using a consensus approach and assignment of cell barcodes 
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to the donor of origin either within each modality or across modalities. Of particular note, 

CellDemux implements a novel pipeline to demultiplex snATACseq libraries. We show 

consistent demultiplexing results and validate the results by comparing ATAC demultiplexing 

results to RNA demultiplexing results in snMultiome libraries, taking advantage of the shared 

barcodes between the modalities. Overall, we assess the performance and consistency of the 

proposed framework on scRNAseq, snATACseq, CITEseq and Multiome libraries (combined 7 

independent studies, 187 libraries from 800 samples, ~2M single cells). We show that 

CellDemux can consistently demultiplex donors from single-cell sequencing within and 

across modalities. Finally, we re-analyze previously published chromatin accessibility data (38 

snATAC libraries from three independent studies) to show that this framework outperforms 

existing methods, giving more reliable single nuclei and statistical power for computational 

analysis. Our research demonstrates a robust and adaptable framework for genetic 

demultiplexing that opens the way for more powerful and informative single-cell, single-

nuclei and paired -omics experiments. CellDemux is freely available at: github.com/CiiM-

Bioinformatics-group/CellDemux. 

 

MATERIAL AND METHODS 

Overview and implementation of the framework 

The framework is implemented in Python (v3.9.6) Snakemake (v7.31.0)22. We chose 

Snakemake because of its integration with a wide variety of high-performance clusters and 

job management systems without changing the underlying code. We containerized most 

tools to ensure reproducibility using Conda environments, which are freely available. On the 

user side, input consists of a single excel sheet containing six mandatory entries per library 

(name, location of the data, number of donors to demultiplex, reference genotype file, data 

type and optional comment).  

 

We have provided reasonable default setting and computational resources for each tool on 

Github. Overall, CellDemux finished for most libraries within 24 hours, starting from cell 

calling to matching to the reference genotype. We have made this workflow modular, 

meaning some steps can be skipped depending on the scenario to alleviate the 

computational burden.  

 

Data pre-processing 

Pre-processing of the published datasets is described in their respective publications2,4,21. For 

the unpublished datasets we used CellRanger (v7.1.0), CellRanger-atac (2.1.0) and 

CellRanger-arc (v2.0.2) with default parameters for RNA, ATAC and Multiome libraries 

respectively. 

 

Methods to estimate ambient RNA contamination 
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Soupx. We used SoupX31 v1.6.2 with default parameters, except forceAccept = T, 

soupQuantile = 0.1 and tfidfMin = 0.0 to avoid errors when encountering libraries with high 

contamination or where too few markers were found to estimate contamination. SoupX was 

only used on RNA libraries, for Multiome / CITEseq libraries we first subsetted the matrix that 

was passed to SoupX. Over all 149 RNA libraries, we observed that SoupX estimates of 

contamination were highly correlated to Souporcell estimates (Pearson’s r: 0.83, p < 2.2 x 10-

16) 

 

Methods to identify non-empty droplets 

CellBender. We ran CellBender24 within a Singularity container on GPUs to increase its 

efficiency. We ran CellBender only on RNA libraries and subsetted Multiome/CITEseq libraries 

prior to running CellBender. CellBender was run with arguments: --expected-cells 8000, --

cuda, --cells-posterior-reg-calc 10, --posterior-batch-size 2, --epochs 150. We found that 

CellBender is not particularly sensitive to these parameters, and 150 epochs were always 

enough to reach convergence.  

EmptyDrops. EmptyDrops23 (R package DropletUtils v1.18.1) was run on RNA libraries to 

estimate non-empty oil droplets. Prior to using EmptyDrops we subsetted CITEseq or 

Multiome libraries to only include RNA counts. We used a False Discovery Rate (FDR) of 

0.001 for cell calling as recommended by the EmptyDrops authors. Other arguments were 

left as default. 

 

For ATAC libraries, we used the CellRanger ATAC cell calling algorithm. We attempted to use 

RNA-based tools CellBender and EmptyDrops to ATAC sequencing results, and observed that 

both tools identified mostly cell-containing droplets unique to data modalities in Multiome 

libraries (Supplemental Figure 1B). Meaning that, while the cell-containing droplets should 

be largely overlapping, RNA-based tools were not able to identify the correct droplets in 

ATAC. Hence, we continued with the CellRanger ATAC cell calling results. 

 

Methods to identify doublets 

Demuxlet. We used the Popscle suite (https://github.com/statgen/popscle) to run Demuxlet. 

We used several helper tools for Popscle in pre-processing the genetic data created by the 

Aerts lab (at: https://github.com/aertslab/popscle_helper_tools). Briefly, we filter out from the 

genotype reference anything that is not a single nucleotide polymorphism (only_keep_snps 

function), filter mutations that do not vary across all samples 

(filter_out_mutations_homozygous_reference_in_all_samples,          

filter_out_mutations_homozygous_in_all_samples) and calculate the allele frequencies, allele 

counts and allele numbers (calculate_AF_AC_AN_values_based_on_genotype_info). This 

leaves a set of informative variants with discriminative power between samples. Next, the 

bam file is filtered for the appropriate barcodes using popscle_filterbam.sh (popscle). We 

produced the pileup using popscle dsc-pileup and subsequently demultiplexed using 

popscle demuxlet. 
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Vireo. Vireo15 and cellsnp-lite v1.2.3 (htslib version: 1.17) was ran using default parameters 

and according to the author’s instructions. 

 

Amulet. We ran Amulet27 v1.1 using the shell script provided by the authors with default 

parameters. The human autosomes and blacklist regions provided to Amulet were also 

supplied by the authors and are available on Github (https://github.com/UcarLab/AMULET).  

 

ArchR. ArchR28 v1.0.2 was used to estimate doublets in ATAC libraries. We first created Arrow 

files using the fragment files for each ATAC library using default parameters. The valid 

barcodes we supplied to ArchR were the non-empty droplets as estimated by CellRanger. 

Then, we estimated doublet scores per nucleus (addDoubletScores function) using k=10, 

knnMethod = UMAP and LSImethod = 1, the default values. Nuclei were removed at the 

lenient threshold of DoubletEnrich score > 1. 

 

Souporcell. We ran the Souporcell13 pipeline manually to estimate singlet following the 

author’s instructions. For different libraries, we map the reads using mappers suited to each 

data modality: Minimap232 (arguments: -ax splice -t 15 -G50k -k 21 -w 11 –sr -A2 -B8 -

O12,32 -E2,1 -r200 -p.5 -N20 -f1000,5000 -n2 -m20 -s40 -g2000 -2K50m –secondary=no) for 

RNA and BWA MEM33 (arguments: -t 15) for ATAC. From these remapped reads, variants 

were identified using Freebayes34 (see below). Vartrix was used to count the alleles using the 

identified variants with default parameters. Finally, cells were clustered using the Souporcell 

cell clustering algorithm to identify singlets. 

 

Methods to call variants 

We used FreeBayes34 for all results presented. Freebayes was run with arguments: -iXu -C 2 -

q 30 -n 3 -E 1 -m 30 –min-coverage 6 on bam files resulting from RNA-seq and ATAC-seq 

alignments. Variant calling was done per chromosome in parallel using freebayes-parallel.  

 

Moreover, we tested a recently published algorithm, Monopogen35, to call variants in single-

cell and single-nuclei sequencing data. Consistent with the original publication, we found 

that Monopogen called more variants in ATAC-seq data compared to RNA-seq data. 

Compared to FreeBayes, Monopogen identified similar number of variants in RNA-seq data 

but higher number of variants per library in ATAC-seq data (Supplementary Figure 4).  

 

Both variant callers are included in CellDemux and can be interchangeably used. 
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Cell clustering 

Having identified a confident set of singlets for each ATAC and RNA library, we manually ran 

Souporcell again manually to finally cluster cells/nuclei. We filter the mapped reads (RNA: 

Minimap232, ATAC: BWA MEM33) for the appropriate barcodes and run Freebayes34 using the 

same parameters specified above. Vartrix and Souporcell’s cell clustering algorithm were re-

run using default parameters to identify the final cell clusters. Of note, we do not consider 

the ambient RNA estimations from this Souporcell output since the input sequence data was 

filtered and will therefore skew estimations.  

 

Matching cell clusters to donors 

To assign the cell clusters to donors, we match the genotypes of the cell clusters to reference 

genotypes. First, we identify a set of variants that are present in both genotypes based on 

chromosome, chromosomal position, alternate allele and reference allele. Both genotype 

files are filtered for this set of variants. Following, we systematically compare the genotypes 

for this set of variants. Because we cannot distinguish between the paternal and maternal 

alleles, we collapse the genotypes to the count of alternate alleles per variant in both the 

inferred and reference genotypes. We sum the count of alternate alleles over these variants 

for every combination between cell clusters and donors. To statistically identify outliers (e.g., 

a donor that matches more variants to a cell cluster compared to other donors), we use 

Grubbs’ test36. We test only the donor with the highest number of variants per cluster. 

Unadjusted p-values < 0.05 were considered significant outliers and therefore indicated 

matching of a cell cluster to a donor. We manually checked whether the assigned donor 

agreed with the single-cell experimental design.  

 

Prior to matching the cell cluster genotypes to the reference genotype, we recommend 

imputing the reference genotypes to maximize the number of variants to consider. We 

observed that imputing the reference genotypes dramatically increased the number of 

matching variants for all donors and more confidently showed the matching donor in that 

library. 

 

RESULTS 

A comprehensive and user-friendly framework to enable genetic demultiplexing  

We developed CellDemux, a user-friendly and comprehensive computational framework to 

enable assignment of cells to genetically different donors from single-cell, single-nuclei and 

paired -omics libraries with mixed donors (Figure 1). The framework, implemented in the 

workflow management system Snakemake22, supports a wide range of data for genetic 

demultiplexing, including scRNA-seq, snATAC-seq, CITE-seq and paired snMultiome data.  

Starting from raw sequencing data, CellDemux identifies cell-associated droplets by 

discarding droplets contaminated by ambient RNA. Contamination of cell-free ambient 

mRNA molecules is a challenge in single-cell experiment, mainly because the real expression 
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profile is masked which confounds further downstream analyses. Particularly in the case of 

genetic demultiplexing, ambient RNA interferes with the estimation of genotypes from 

single-cell data as a particular genotype may be contaminated with false-positive reads 

derived from ambient RNA. Therefore, CellDemux implements two methods (EmptyDrops 

and CellBender) to confidently separate empty vs non-empty droplets. Next, cell barcodes 

containing a single cell or nucleus are identified using a consensus approach of 

computational tools specifically designed for each data modality. This is important because 

heterogenic doublets, those including cells from different donors, interfere with the 

genotypic estimations in that cell/nucleus as the sequenced reads harbor different alleles for 

a genetic variant. Therefore, CellDemux utilizes different doublet callers to identify and 

remove the cell barcodes that likely contain more than one cell/nucleus in order to retain a 

set of high-confidence singlets. Finally, we cluster these singlets on genotypic information13 

and match the inferred and reference genotypes, assigning barcodes to donors across data 

modalities. We compare demultiplexing results across modalities to show the consistency of 

cell clustering and donor assignments between modalities. 

 

We benchmark CellDemux on 187 multiplexed libraries of single-cell and single-nucleus 

sequencing data from 7 studies, covering 800 samples from 238 genetically different donors 

and approximately 2M single cells (both published2,4,21 and unpublished data, Supplemental 

Table 1). Data from these studies include scRNA-seq (66 libraries), CITE-seq (4 libraries), 

snATAC-seq (38 libraries) and paired RNA+ATAC snMultiome (79 libraries).  

 

Confident identification of non-empty oil droplets within and across modalities 

Identification of high-quality cells/nuclei is crucial in genetic demultiplexing to identify the 

donors mixed in a sequencing library.  The first computational step in droplet-based single-

cell sequencing is identifying the oil droplets that likely contain cells. By comparing the 

output of different cell calling tools across modalities we aim to assess their consistency and 

identify high-quality cell-associated droplets.  

 

For 149 RNA libraries (either scRNA or the RNA part of a snMultiome/CITE-seq library), 

CellDemux implements two widely employed tools to estimate non-empty droplets: 

EmptyDrops23, used by CellRanger (10X Genomics), estimates deviations from the ambient 

RNA pool to identify empty droplets, while CellBender24 is a deep generative model that 

learns the background noise profile. EmptyDrops overestimated the number of non-empty 

droplets (up to ~80K non-empty droplets per library) especially in pools with higher 

estimated ambient RNA contamination (Figure 2B, Supplemental Figure 1A). Overall, there 

was moderate overlap in the identified non-empty droplets between EmptyDrops and 

Cellbender (47.5% consistency, Figure 2A). Results from both tools diverged more as the 

estimated ambient RNA contamination increased (Figure 2C). To identify non-empty droplets 

in 119 snATAC libraries (either snATAC or the ATAC part of a snMultiome library), we used 

the ATAC cell calling algorithm from CellRanger. Finally, we applied CellDemux to 

snMultiome libraries with shared barcodes between RNA and ATAC to assess the consistency 
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between RNA/ATAC non-empty droplets. Non-empty RNA droplets called by CellBender 

overlapped significantly more with the ATAC non-empty droplets compared to EmptyDrops 

(Wilcoxon ranked-sum test, p = 0.011) (Figure 2D).  

 

Overall, these results suggest substantial variabilities in the identification of non-empty 

droplets dependent on data quality. CellDemux implements different cell calling methods 

suited to each data modality, and therefore provides high-quality non-empty droplets per 

library. We consider for further analysis a set of confidently called non-empty droplets (RNA 

libraries: CellBender ⋃ EmptyDrops, ATAC libraries: CellRanger). 

 

Removal of doublets within and across modalities 

To further ensure high quality of the sequencing data prior to demultiplexing, CellDemux 

employs a consensus approach using well-established doublet calling tools suited for each 

modality to identify and remove doublets in single-cell and single-nuclei data. Specifically, 

CellDemux implements : Vireo15, Demuxlet14, Souporcell13, DoubletFinder25, Scrublet26 for RNA 

libraries, and Amulet27 and ArchR28 for ATAC libraries. We compared the outcome of these 

tools within and across modalities to identify a confident set of singlets for further 

demultiplexing. 

 

For 70 RNA/CITE-seq libraries, there was notable variation in terms of the total number of 

singlets, with a maximum 1.7-fold-difference (260K single cells) across tools, and the extent 

of overlapping singlets between the different methods (Figure 3A). In ATAC libraries, Amulet 

identified ~110K singlets more on the same datasets compared to ArchR’s doublet calling 

method. The large majority of singlets identified by ArchR were shared with Amulet (Figure 

3B). These variable results may come from varying statistical power to detect doublets, and 

underlines that a consensus approach is necessary when identifying doublets. Relying solely 

on the performance of a single tool will likely lead to both false positive and false negative 

doublet calls. 

 

We again took advantage of the shared barcodes between RNA and ATAC in snMultiome 

libraries to assess the performance of CellDemux based on the concordance of doublet 

predictions across modalities. Overall, a large subset of singlets was independently identified 

across modalities and different doublet calling tools, suggesting that these are high-

confidence singlets (Figure 3C). Remaining sets of singlets varied considerably and were 

classified as singlets in only one modality or by a subset of doublet callers. For example, 

snRNA-seq singlets were more concordant with Amulet singlets compared to ArchR across 

all doublet calling tools, but we did not observe differences in proportional overlap between 

each of the RNA doublet callers (Figure 3D).  
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We noticed that singlets identified in RNA libraries by Demuxlet/Vireo were also identified by 

Scrublet, Souporcell and/or DoubletFinder, which identified an additional 322K singlets (Figure 

3E). Similar for ATAC libraries, >98% of the singlets identified by ArchR were also identified 

by Amulet, who identified up to 116K single nuclei extra (Figure 3F). Furthermore, assessing 

the paired snMultiome libraries shows that these singlets are largely shared across modalities 

and identified by several independent methods (Supplementary Figure 2C).  

 

Based on these cross-modal validation results, we therefore consider for further genetic 

demultiplexing a broad set of singlets (RNA: Souporcell ⋃ Scrublet ⋃ DoubletFinder, ATAC: 

Amulet, Multiome: Souporcell ⋃ Scrublet ⋃ DoubletFinder ⋃ Amulet). We propose a broad set 

of singlets to not exclude potential real singlets (i.e. false positive doublets), who will be 

filtered out later based on genotypic information.  

 

Assignment of single cells and nuclei to donors in genetically multiplexed libraries 

across modalities 

Having established a confident set of singlets per library by identifying non-empty droplets 

(Figure 2) and singlets (Figure 3), we cluster cells based on genetic variation and use 

reference genotypic information to assign cellular clusters to donors. We chose the 

Souporcell13 model to cluster cells because of its flexibility (quality control, processing, 

mapping and variant identification can be tailored to data modalities as we have 

demonstrated here) and previously demonstrated superior demultiplexing results on single-

cell RNA sequencing data13. Per cluster, we call variants and systematically compare the 

inferred and reference genotypes to count the matching number of variants per cluster and 

donor (Methods). Finally, we manually verified that the demultiplexed donors were included 

in that library. 

 

Application of CellDemux to 187 genetically multiplexed libraries from seven independent 

studies shows that we significantly match 92% of cell clusters to donors in 70 RNA/CITE-seq 

libraries (Supplemental Figure 3A), 95% in 38 ATAC libraries (Supplemental Figure 3B) and 

84%/93% (RNA/ATAC) in 79 paired RNA+ATAC snMultiome libraries (Figure 4A). We 

observed few libraries (ATAC: 1, RNA: 1, Multiome: 2) with inconclusive results, where 1) 

multiple cell clusters matched to the same donor, suggesting poor cell clustering or samples 

with poor viability, or 2) two samples matched almost equal number of variants to cell 

clusters, suggesting a possible sample swap in the genotyping or poor clustering of cells. 

Overall, the number of nuclei recovered and assigned to donors was consistent between 

RNA and ATAC in the snMultiome libraries. Donors that were not demultiplexed from the 

single-cell data were often not demultiplexed in multiple modalities, suggesting poor sample 

quality rather than demultiplexing artifacts. Aside from these factors, there remain libraries 

where not all donors were identified or lesser number of cells were assigned to donors. This 

is possibly due to the fact that these libraries were characterized by higher estimated 

ambient RNA contamination, lower mapping quality of the sequenced reads and lower 

number of SNPs identified in the single-cell data (Figure 4A).  
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Comparing across modalities in the paired snMultiome libraries showed that cell clustering 

and matching cells to donors was consistent between RNA and ATAC, where on average 84% 

of barcodes were assigned to the same donors in both modalities (Figure 4B). This shows 

that CellDemux is able to consistently deconvolve donors in multiplexed libraries across 

modalities. We further assessed the confounding factors that could influence the consistency 

between modalities, and found that libraries with lower agreement between RNA and ATAC 

were more contaminated with ambient RNA, suggesting lower quality of that specific library 

(Pearson’s r: -0.88, p < 2.2e-16) (Figure 4C). 

 

Assignment of barcodes to donors in RNA libraries was consistent with results obtained from 

Vireo and Demuxlet (Supplementary Figure 2A), but CellDemux, using the Souporcell model, 

was able to assign more cells to donors compared to either tool (Supplementary Figure 2B).  

 

CellDemux outperforms existing methods on snATAC-seq data 

One of the unique features of CellDemux as a demultiplexing tool is its applicability to 

different modalities of single-cell and single-nuclei data. Single-cell RNA demultiplexing 

tools are widely used13–15,29 but do not extend to snATAC-seq data. To show that CellDemux 

outperforms existing methods on snATAC-seq data, we compare results to three snATAC-seq 

datasets previously generated, analyzed (standard Souporcell pipeline, the best that was 

available at time of publishing) and published by our lab2,4,21. Overall, these three studies 

encompass 32 snATAC-seq libraries that are multiplexed across genetically distinct donors 

(163 samples). 

 

CellDemux is able to demultiplex more samples from snATAC-seq data compared to existing 

tools. We compared the number of samples that were significantly demultiplexed for three 

independent studies where samples from 3-6 donors were pooled for snATAC-seq. 

CellDemux identified and assigned cells to almost all samples per library across all three 

studies, i.e., study 1: 20/22 (91%) samples, study 2: 75/80 (94%) samples and study 3: 47/47 

(100%) of samples demultiplexed. This is in contrast to the previously published results 

based on the standard Souporcell pipeline that identified fewer samples in two out of the 

three studies (study 1: 16/22 (73%), study 2: 49/80 (61%) and study 3: 47/47 (100%) samples 

multiplexed) (Figure 5A). This could be due to lower sequence mapping quality, lower 

number of SNPs identified and subsequent poorer clustering of cells using the standard 

Souporcell pipeline on snATAC-seq data, compared to the improved snATAC-seq-specific 

pipeline used by CellDemux. 

 

CellDemux outperforms existing tools in accurately identifying high-quality nuclei from 

snATAC-seq data. We compared the number of single nuclei that are retained for 

downstream analyses between CellDemux and the previously used standard Souporcell 
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pipeline (Figure 5B). CellDemux identified more singlets in two out of the three studies (study 

1: 3599 (8.6%) single nuclei, study 2: 7031 (10%) single nuclei more assigned to donors). In 

contrast to studies 1 and 2, CellDemux assigned fewer nuclei to donors in study 3 compared 

to previously published results. A more in-depth assessment of the demultiplexed single 

nuclei showed that Souporcell previously overestimated the number of singlets (~30.000 

singlets in a single library). These singlets were low-quality as defined by the number of 

unique fragments and the TSS enrichment per nuclei, and are later filtered out in 

downstream analyses. It is likely that there are more low-quality singlets among the 

demultiplexed singlets by Souporcell that we do not filter out based on only TSS enrichment 

and the number of unique fragments.  

 

In summary, we showed here that CellDemux enables genetic demultiplexing of single-nuclei 

chromatin accessibility data. By leveraging methods specific to ATAC-seq, CellDemux 

substantially improved demultiplexing results compared to existing methods, both in terms 

of nuclei retention and accurately demultiplexed donors.  

 

DISCUSSION 

In this study, we presented the CellDemux framework that enables confident demultiplexing 

of single cells and nuclei to genetically different donors across data modalities. CellDemux is 

implemented in the workflow management system Snakemake to facilitate integration with 

high-performance clusters and job management systems. Furthermore, each module is self-

contained to ensure maximal reproducibility. 

 

We have evaluated CellDemux across a wide range of genetically multiplexed libraries 

including scRNA-seq, CITE-seq, snATAC-seq and paired RNA+ATAC snMultiome data. These 

libraries comprised a set of challenging scenarios (e.g., high ambient RNA contamination, 

variability in sequencing quality, varying number of donors, different data modalities) and 

therefore present robust test cases. We showed that CellDemux consistently demultiplexes 

donors from genetically multiplexed single-cell and single-nuclei sequencing. Assessments of 

paired snMultiome libraries showed that CellDemux assigns highly concordant sets of 

barcodes to donors across modalities. Finally, re-analysis of previously demultiplexed ATAC 

libraries showed that CellDemux confidently demultiplexes donors and recovered more high-

quality nuclei that would have otherwise been discarded. 

  

Genetically multiplexed single-cell and single-nuclei libraries comprise several types of 

doublets: homotypic and heterotypic based on cell type, as well as homogenic and 

heterogenic based on genotype. Different doublet callers have varying detection power for 

each class of doublets. For example, Souporcell13 was developed for genetically multiplexed 

libraries and explicitly models the allelic fractions between clusters to identify heterogenic 

doublets. Homogenic doublets could be missed using this approach but can be identified by 

other tools such as Scrublet26 or DoubletFinder25. The idea of using multiple bioinformatic 
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tools to identify doublets in droplet-based single-cell sequencing has been suggested before 

and was shown to improve consistency and results29,30. However, previous research remained 

limited to single-cell RNA sequencing29 and hashtag-based demultiplexing methods30 and 

did not include other library types such as ATAC-seq or snMultiome. We considered in this 

work a broad set of singlets per library by considering multiple modality-specific tools. 

Consequently, our results become less dependent on the outcome of a single tool and 

therefore more robust.  

 

While there is a plethora of doublet-calling tools for single-cell or single-nuclei RNA tools, 

such tools lack for snATAC libraries. Amulet leverages the expected read count distributions 

to identify doublets, while ArchR simulates doublets and compares the open chromatin 

profile of simulated doublets to other barcodes. Amulet has the advantage of capturing both 

heterotypic and homotypic doublets27, while simulation-based methods may miss homotypic 

doublets. It remains unclear to what extent the different ATAC-based methods are able to 

capture different types of doublets, and future research should investigate this more in 

depth using simulated datasets with known ground truths. Such work informs on the 

specificity and sensitivity of different doublet callers and further guides doublet identification. 

 

In the current study we have assessed several data modalities, including single-cell and 

single-nucleus RNA/ATAC/CITE as well as snMultiome data and shown that CellDemux can 

consistently deconvolve donors. While not tested, we anticipate that CellDemux can be 

extended to deconvolve non-human samples, on the condition that there is sufficient 

genetic diversity to cluster cells. Moreover, we have tested CellDemux on pools containing 3-

6 human donors, but we expect that CellDemux is equally applicable to libraries with more 

multiplexed donors. However, the number of singlets captured in droplet-based single-cell 

data is limited (~10.000 expected recovered cells in 10X V3 scRNA-seq assays, 8% doublet 

rate). Multiplexing across too many donors will limit the number of nuclei assigned to each 

donor and therefore limit the number of informative variants identified in the data. Using 

CellDemux, we found that we were able to confidently identify donors starting from several 

hundred cells/nuclei onward, sequenced at 25.000 (RNA) and 20.000 (ATAC) read pairs per 

cell/nucleus. 

 

The ultimate aim of demultiplexing is the assignment of cells to donors. Other 

demultiplexing methods have provided ways to match cell clusters between different 

libraries with shared samples, but this does not reveal the identity of the donor13,15. 

Furthermore, Vireo identifies a minimal set of discriminatory variants to assign cells to 

individuals based on quantitative polymerase chain reaction (qPCR), but this approach does 

not scale well to large cohorts because of time-intensive and laborious experimental work. 

CellDemux requires single-cell sequencing and reference genotyping data. We opted to 

compare the inferred genotypes to reference, array-based genotypes because of the 

relatively low costs and experimental burden. Furthermore, the genetic sequence can be re-

used in other analyses (genome-wide association studies, expression quantitative-trait loci 
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mapping, etc.). Scripts to compare the genotypes and assign the donor identity to cells are 

freely available at github.com/CiiM-Bioinformatics-group/CellDemux. 

 

DATA AVAILABILITY 

Single-cell and single-nuclei sequencing data that was previously published is hosted at the European 

Genome-Phenome Archive (EGA, https://ega-archive.org) (Table 1). Unpublished data will be made 

available at the time of publication.  

The CellDemux framework is freely available on Github at: https://github.com/CiiM-Bioinformatics-

group/CellDemux.git (archived at Zenodo: https://zenodo.org/doi/10.5281/zenodo.10496113) under 

an MIT open-source license. 
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Study Data Libraries 
Data 

available? 
Donors Samples Reference Comments Reference 

300BCG scRNAseq 32 Yes 39 156 EGAS00001006990 Li et al., 2023. Cell Reports 

Postcovid scRNAseq 8 Yes 
29 

40 EGAS00001005529 Liu et al., 2022. Frontiers in Immunology 

snATACseq 8 Yes 39 EGAS00001005529 Liu et al., 2022. Frontiers in Immunology 

LongCovid Multiome 55 Yes 21 203 - 

IBD Multiome 20 Yes 20 80 - 

Covid50MHH scRNAseq 16 Yes 41 82 EGAS00001006559 Genotype available at: 

EGAZ00001823187 

Zhang et al., 2023. Cell Genomics 

snATACseq 16 Yes 39 80 EGAS00001006560 Zhang et al., 2023. Cell Genomics 

PML 
scATACseq 2 Yes 

10 

6 

- 

 

 CITEseq 4 Yes 15 

- 

 

 Multiome 4 Yes 15 

- 

 

 scRNAseq 4 Yes 12 

- 

 

MMR scATACseq 12 Yes 
39 

48 EGAS00001006787 Röring et al., 2022. BioRxiv 

scRNAseq 6 Yes 24 EGAS00001006787 Röring et al., 2022. BioRxiv 

Total 187 238 800 

 

Table 1. Overview of included datasets in this study.
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Figure 1. Study design. (A) Schematic overview of the study workflow and aims. Genetically 

varying individuals are mixed and sequenced (scRNA-seq, snRNA-seq, snATAC-seq, 

snMultiome, CITE-seq) and later demultiplexed to assign cells back to the donor of origin. 

Droplets that contain only ambient RNA are removed, as are droplets that likely contain 

multiple cells. High-quality singlets are subsequently used for further demultiplexing. (B) 

Overview of CellDemux, a computational framework to confidently assign cell barcodes from 

genetically multiplexed single-cell or single-nuclei experiments to their respective donor. (C) 

Data used in the current study includes 189 genetically multiplexed libraries, covering 

scRNAseq, snATACseq, CITEseq and snMultiome libraries. 
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Figure 2. Identification of non-empty droplets across data modalities. (A) Overlapping in 

non-empty barcodes between CellBender and EmptyDrops across 149 RNA libraries (either 

RNA or as part of a Multiome experiment). (B) For each of the 149 RNA libraries, the number 

of non-empty droplets estimated by CellBender and EmptyDrops (bottom), the estimated 

ambient RNA contamination (middle) and the overlap between CellBender/EmptyDrops (top). 

Libraries shaded in red indicate the CellBender failed to converge and did not identify any 

cells. No further analyses were performed on these 5 libraries (far left side) (C) Correlation 

between the estimated ambient RNA contamination per library and the overlap between 

CellBender/EmptyDrops estimations of non-empty droplets. Each dot represents one of 149 

RNA libraries. (D) Overlap between RNA and ATAC barcodes across 79 Multiome libraries. 

RNA barcodes were identified either by EmptyDrops or CellBender, ATAC barcodes were 

identified using CellRanger’s standard cell calling pipeline. Center line in each boxplot is the 

median, bounds are the 25th and 75th percentiles (interquartile range). 
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Figure 3. Confident identification of singlets across data modalities using a consensus 

approach. UpSet plots depicting doublet calls in each data modality across 70 RNA libraries 

(either scRNA-seq or part of CITE-seq/snMultiome libraries) (A), 40 ATAC libraries (either 

snATAC-seq or part of snMultiome libraries) (B) and 79 RNA+ATAC snMultiome libraries (C). 

The top bars indicate the total number of singlets in this intersection, the side bar plots 

indicate the total number of singlets identified per tool. (D) Barplot showing the 

concordance between RNA and ATAC for each of the doublet calling tools, as the proportion 

of identified singlet barcodes by RNA that are also singlets in ATAC by either of the tools. (E) 

Overlap between singlets identified by Souporcell/Scrublet/DoubletFinder versus 

Vireo/Demuxlet.  (F) Venn diagram showing the overlap between identified singlets by 

Amulet or ArchR. 
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Figure 4. Assigning cell barcodes to donors in multiplexed libraries. (A) Composite heatmap 

showing demultiplexing results across 79 RNA+ATAC snMultiome libraries. Each row 

represents a paired RNA (left) and ATAC (right) snMultiome library, where the heatmap 

shows whether a cluster of cells was significantly matched to a donor based on genotypic 

information (green) or not (yellow). Furthermore, we annotate each library with the estimated 

ambient RNA contamination (RNA only), transcription start site enrichment (ATAC only) as 

well as the fraction of reads that are > MAPQ 30 and the number of variants identified in the 

sequencing data by FreeBayes. Barplot on the right shows the number of nuclei assigned to 

each donor in that library. We highlight one library and show how the genetic matching 

assigns donors to clusters (Methods), and how barcodes overlap between donors across 

modalities. (B) Fraction of barcodes that are consistently assigned to the same donor in RNA 

and ATAC independently. Each dot represents one of 79 Multiome libraries, bars indicate 

means. (C) Dot plot showing the correlation between the estimated ambient RNA 

contamination and the fraction overlapping reads between RNA and ATAC (e.g., fraction of 

reads assigned to the same donor, independently across two modalities).  
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Figure 5. Re-analysis of previously published data shows that CellDemux outperforms 

existing methods. (A) Proportion of donors recovered (pie charts) and number of singlets 

assigned to donors per study, for CellDemux and the previously published using the 

standard Souporcell pipeline on the same snATACseq libraries for three independent studies. 

We considered only high-quality singlets. Low-quality singlets that are filtered out in 

downstream steps are colored gray (TSS enrichment < 4, or unique number of fragments per 

cell < 1000) (B) Dot plot showing the number of unique fragments per nucleus versus the 

transcription start site enrichment (TSS) for each of the three studies (rows), colored for 

density. We considered singlets assigned to donors based on CellDemux or using the 

previously published standard Souporcell pipeline results. Cells that are low quality (TSS 

enrichment < 4 or number of unique fragments per cell < 1000, red lines) are colored gray. 
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