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Abstract

Pooling MRI data from multiple datasets requires harmonization to reduce undesired inter-
site variabilities, while preserving effects of biological variables (or covariates). The popular
harmonization approach ComBat uses a mixed effect regression framework that explicitly
accounts for covariate distribution differences across datasets. There is also significant
interest in developing harmonization approaches based on deep neural networks (DNNs),
such as conditional variational autoencoder (cVAE). However, current DNN approaches do
not explicitly account for covariate distribution differences across datasets. Here, we provide
mathematical results, suggesting that not accounting for covariates can lead to suboptimal
harmonization outcomes. We propose two DNN-based harmonization approaches that
explicitly account for covariate distribution differences across datasets: covariate VAE
(coVAE) and DeepResBat. The coVAE approach is a natural extension of cVAE by
concatenating covariates and site information with site- and covariate-invariant latent
representations. DeepResBat adopts a residual framework inspired by ComBat. DeepResBat
first removes the effects of covariates with nonlinear regression trees, followed by
eliminating site differences with cVAE. Finally, covariate effects are added back to the
harmonized residuals. Using three datasets from three different continents with a total of
2787 participants and 10085 anatomical T1 scans, we find that DeepResBat and coVAE
outperformed ComBat, CovBat and cVAE in terms of removing dataset differences, while
enhancing biological effects of interest. However, coVAE hallucinates spurious associations
between anatomical MRI and covariates even when no association exists. Therefore, future
studies proposing DNN-based harmonization approaches should be aware of this false
positive pitfall. Overall, our results suggest that DeepResBat is an effective deep learning

alternative to ComBat.
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1 Introduction

There is growing interest in combining MRI data across multiple sites, such as
ENGIMA (Thompson et al., 2017) and ABCD (Volkow et al., 2018) studies. These so-called
mega-analyses significantly advance neuroimaging research by increasing statistical power
(Bethlehem et al., 2022; Marek et al., 2022), enhancing generalizability (He et al., 2022; Lu
et al., 2022), and detecting subtle effects (Vogel et al., 2021; Tian et al., 2023). When pooling
data across datasets, post-acquisition harmonization is necessary for removing undesirable
variabilities across datasets, while preserving relevant biological information. A major source
of undesirable cross-dataset heterogeneity is scanner differences across datasets (Magnotta et
al., 2012; Chen et al., 2014; Hawco et al., 2018). In addition, the distributions of biological
variables (e.g., demographics and clinical diagnosis) may also vary across datasets. These
biological variables (also referred to as “covariates”) can have a large impact on MRI data
(Hua et al., 2010), whose effects should be preserved after harmonization.

A popular approach for harmonizing MRI data is via mixed effects modeling, such as
ComBat (Fortin et al., 2017, 2018; Yu et al., 2018). ComBat removes additive and
multiplicative site differences while including biological variables as covariates. For
example, to perform a mega-analysis using several Alzheimer’s Disease (AD) dementia
datasets, the ComBat model might be set up with hippocampal volume as the dependent
variable, site as an independent variable, as well as age, sex and clinical diagnosis as
covariates. Additive and multiplicate site effects are removed from the hippocampal volume,
while the residual effects of age, sex and clinical diagnoses are retained. Several ComBat
variants have been proposed to enhance harmonization performance (Garcia-Dias et al.,
2020; Pomponio et al., 2020; Wachinger et al., 2021). However, most ComBat variants
harmonize brain regions separately, limiting their ability to eliminate nonlinear site
differences spanning the brain regions.

Deep neural networks (DNN5s) are promising for eliminating nonlinear site differences
distributed across the brain (Hu et al., 2023). Variational autoencoder (VAE)-based
approaches (Moyer et al., 2020; Russkikh et al., 2020; Zuo et al., 2021; An et al., 2022) use
an encoder to generate site-invariant latent representations from input MRI data. Site
information is then concatenated to the latent representations to reconstruct the MRI data via
a decoder. Generative adversarial networks (Dewey et al., 2019; Zhao et al., 2019; Modanwal
et al., 2020; Bashyam et al., 2021), normalizing flow (Wang et al., 2021; Beizaee et al., 2023)

and federated learning (Dinsdale et al., 2022) have also been explored. However, existing
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DNN approaches typically overlook the inclusion of covariates, which are explicitly
controlled in mixed effects harmonization models (Fortin et al., 2017, 2018; Chen et al.,
2021). Since covariate distribution differences are unavoidable across datasets, neglecting
covariates during harmonization can inadvertently remove relevant biological information,
instead of reducing undesired dataset differences, leading to worse downstream performance.
In Section 2.1, we show how a theoretical machine learning result (Tachet et al., 2020) can be
used to understand this phenomenon.

In this study, we propose two deep learning approaches: covariate VAE (coVAE) and
deep residual batch effects harmonization (DeepResBat), which account for covariate
distribution differences across datasets. coVAE extends conditional VAE (cVAE; Moyer et
al., 2020) by concatenating covariates and site information with site- and covariate-invariant
latent representations. On the other hand, DeepResBat adopts a residual framework inspired
by the classical ComBat approach. DeepResBat first removes the effects of covariates using
nonlinear regression trees, followed by eliminating unwanted site differences from the
residuals with cVAE. Finally, covariate effects are added back to the harmonized residuals.
We found that coVAE hallucinated spurious associations between anatomical MRI and
covariates even when no association existed, suggesting that DNN-based harmonization
approaches can introduce false positives during harmonization. On the other hand,
DeepResBat effectively mitigated this false positive issue.

The contributions of this study are multi-fold. First, we showed theoretically that
ignoring covariate differences across datasets can lead to suboptimal harmonization
outcomes. Second, we introduced a DNN-based harmonization approach DeepResBat that
could account for covariate differences across datasets. DeepResBat outperformed ComBat
(Fortin et al., 2017), CovBat (Chen et al., 2021) and cVAE (Moyer et al., 2020) across
multiple evaluation experiments, including enhancing biological effects of interest, while
removing unwanted dataset differences. Third, we demonstrated for the first time that DNN-
based harmonization approaches could potentially hallucinate relationships between
covariates and MRI measurements even when none existed. Therefore, future studies
proposing DNN-based harmonization approaches should be aware of this false positive
pitfall. Although the current study focused on MRI data, our results are generally applicable
to any field where instrumental harmonization is necessary, e.g., molecular biology (Johnson

et al., 2007) and climate science (Iturbide et al., 2019).
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2 Methods

2.1 Motivation for accounting for covariates during harmonization

Distribution differences in covariates, such as demographics and clinical diagnoses,
across datasets are inevitable. Most deep learning harmonization approaches directly align
distributions of latent representations across datasets without explicitly modeling covariate
differences (Dewey et al., 2019; Zuo et al., 2021; Beizaee et al., 2023; Liu et al., 2023).
Without explicitly accounting for these covariates, the covariates differences can be
misinterpreted as undesirable dataset differences and wrongly removed by the harmonization
algorithms. Here, we will formalize this phenomenon using a theoretical result from the
machine learning literature (Tachet et al., 2020).

More specifically, suppose we have two datasets S and T with target label Y and input
data X. The goal is to predict Y using X. Suppose we have feature extractor g that takes in X
as the input with feature representation Z as the output. The feature representation Z is then
entered into classifier h to predict the target label. Let eg(h o g) and €;(h o g) be the
expectation of classification errors when applying g followed by h to datasets S and T
respectively. Let Y5 and Y be the target label distributions in datasets S and T respectively.
Let Zs and Z; be the distributions of the feature representation in datasets S and T
respectively. Then, Tachet des Combes and colleagues show that the following inequality is

true:

1

es(hog) + er(hog) = 5 (VISWs 1) — V1S I Z1))

where JS(- || -) is the Jensen-Shannon divergence of two distributions. We note that the

2
)

(1)

lowest possible error bound is zero. Therefore, assuming distributional differences between
the target labels of the two datasets (i.e., JS(Ys Il Y7) > 0), then a lower bound of zero can
only be achieved if the same distribution differences exist between the feature representations
of the two datasets, i.e., JS(Zs | Z;) = JS(Ys |l Y7). In other words, dataset-invariant
representations (i.e., JS(Zs | Z;) = 0) lead to suboptimal classification performance (greater
than zero error bound in Eq. (1)) if there exists distributional differences between the target
labels of the two datasets (JS(Ys Il Y7) > 0).

To relate Eq. (1) to harmonization, we can think of g as a harmonization procedure
(instead of a feature extractor), and h as a downstream task to predict covariates Y after
harmonization. Therefore, if the distributions of covariates Y are different across datasets

(i.e., JS(Y5 Il Y7) > 0), blindly matching the distributions of brain imaging measures across
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datasets in the harmonization process (i.e., JS(Zs || Z;) = 0) is suboptimal for the
downstream task, i.e., error bound in Eq. (1) is greater than 0.

For example, suppose we would like to harmonize two datasets with different
distributions of healthy elderly participants and participants with Alzheimer’s disease (AD)
dementia. Then, it is important to account for these distributional differences when
harmonizing the datasets. This is typically not an issue for mixed effects harmonization
approaches (such as ComBat and CovBat) since covariates are typically explicitly included.
However, most deep learning approaches do not account for covariate distribution differences

between datasets, which can potentially result in suboptimal downstream task performance.

2.2 Datasets and preprocessing

In this study, we proposed DNN models for harmonizing T1 anatomical MRI data.
We will test the models using data from separate research initiatives: the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Jack et al., 2008; Jack et al., 2010), the Australian Imaging,
Biomarkers and Lifestyle (AIBL) study (Ellis et al., 2009, 2010) and the Singapore Memory
Ageing and Cognition Centre (MACC) Harmonization cohort (Hilal et al., 2015; Chong et
al., 2017; Hilal et al., 2020). All data collection and analysis procedures were approved by the
respective Institutional Review Boards (IRBs), including the National University of
Singapore IRB for the analysis presented in this paper. All three datasets encompass a range
of modalities collected at multiple timepoints, such as MRI scans, cognition assessments, and
clinical diagnoses.

We utilized ADNI1 and ADNI2/Go data from ADNI (Jack et al., 2008; Jack et al.,
2010). For ADNII, the MRI scans were collected from 1.5 and 3T scanners from different
vendors (more details in Table S1). For ADNI2/Go, the MRI scans were acquired on 3T
scanners. A total of 1,735 participants underwent at least one T1 MRI scan, resulting in 7,955
scans scanned at multiple timepoints. 68 cortical and 40 subcortical regions of interest (ROI)
were defined based on FreeSurfer (Fischl et al., 2002; Desikan et al., 2006). The volumes of
the cortical and subcortical ROIs were provided by ADNI using multiple preprocessing steps
(http://adni.loni.usc.edu/methods/mri-tool/mri-pre-processing/), followed by the FreeSurfer
version 4.3 (ADNI1) and 5.1 (ADNI2/Go) recon-all pipelines, yielding a total of 108
volumetric measures.

In the case of AIBL (Ellis et al., 2009, 2010), the MRI scans were collected from
1.5T and 3T Siemens (Avanto, Tim Trio, and Verio) scanners (see Table S2 for more

information). There were 495 participants with at least one T1 MRI scan, resulting in 933
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MRI scans across multiple timepoints. The FreeSurfer 6.0 recon-all pipeline was employed to
extract the volumes from 108 cortical and subcortical ROIs.

In the case of MACC (Hilal et al., 2015; Chong et al., 2017; Hilal et al., 2020), the
MRI scans were collected from a Siemens 3T Tim Trio scanner. There were 557 participants
with at least one T1 MRI scan. There were 1197 MRI scans across the different timepoints of
the 557 participants. Similar to AIBL, we utilized the FreeSurfer 6.0 recon-all pipeline to

extract the volumes of 108 cortical and subcortical ROIs.

2.3  Workflow

To compare different harmonization approaches, we harmonized brain ROI volumes
between ADNI and AIBL, as well as ADNI and MACC. Figure 1 illustrates the workflow in
this study using AIBL as an example. The procedure was the same for harmonizing ADNI
and MACC.

Following our previous study (An et al., 2022), the Hungarian matching algorithm
(Kuhn, 1955) was first applied to match a subset of participants with similar age, sex,
MMSE, and clinical diagnosis distribution between ADNI and AIBL datasets (Figure 1A).
The distributions before and after matching are shown in Figure S1. When matching the
ADNI and AIBL datasets, we obtained 257 matched participant pairs. When matching the
ADNI and MACC datasets, 277 matched participant pairs were obtained. Notably, not all
time points had corresponding MMSE and clinical diagnosis information. Therefore, care
was taken to ensure that all timepoints in the matched participants had both MMSE and
clinical diagnosis. We ensured that each participant’s scans were all categorized as either
“matched” or “unmatched” without splitting the participant’s scans across categories. The
quality of the matching procedure was assessed through statistical tests, whose p values are
reported in Tables S3 to S9. All p values were greater than 0.05.

The resulting unmatched participants were used to train and tune various
harmonization approaches (Figure 1B). After model fitting, the trained harmonization models
were applied to harmonize matched and unmatched participants. Three evaluation
experiments were performed (Figure 1C). First, as a common evaluation practice (Hu et al.,
2023), a machine learning model was trained to investigate whether harmonization could
effectively reduce dataset differences by predicting which dataset a participant came from
(more details in Section 2.8). Second, we evaluated whether harmonization led to stronger
associations between harmonized ROI volumes with the covariates of interest (more details in

Section 2.9). Finally, an exhaustive false-positive permutation test was carried out, involving
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240,000 GPU hours and 360,000 CPU hours. This test aimed to assess whether deep

harmonization models might introduce spurious associations (i.e., false positives) between

anatomical MRI and randomly permuted covariates when no association exists (more details

in Section 2.10). In evaluations where training was necessary (dataset prediction and false

positive experiments), unmatched participants were used as the training and validation sets

for the evaluation experiments, while the matched participants were used as the test set.
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Figure 1. Workflow of study. We illustrate the workflow using ADNI and AIBL. The same
procedure was applied to ADNI and MACC. (A) ADNI and AIBL participants were matched
based on age, sex, mini mental-state examination (MMSE) and clinical diagnosis. The
unmatched participants were used for training and tuning harmonization and evaluation
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models. The matched participants served as the test set for harmonization evaluation. (B)
Left: Train harmonization models with unmatched participants. Right: Apply trained
harmonization models on both unmatched and matched participants. (C) Three sets of
evaluation experiments were tested on matched harmonized participants: dataset prediction
experiment, association analysis and false positive experiment. In evaluations where training
was necessary (dataset prediction and false positive experiments), unmatched participants
were used as the training and validation sets for the evaluation experiments, while the
matched participants were used as the test set.

2.4 Training, validation and test procedure

As described in section 2.3, the test set for evaluation (Figure 1C) consisted of
matched participants. On the other hand, the unmatched participants were utilized for training
both harmonization (Figure 1B) and evaluation models (e.g., dataset prediction and false
positive experiments in Figure 1C).

In the case of mixed effects models (ComBat and CovBat), there is no
hyperparameter, so the data of all unmatched participants were used to fit the models. On the
other hand, for the deep harmonization models, we have to tune the hyperparameters.
Therefore, we divided the unmatched participants into 10 distinct groups. Notably, all
timepoints belonging to a participant were assigned to a single group, thus avoiding any
splitting of timepoints of a participant across different groups. For the training and tuning of
the deep harmonization models on unmatched participants, a 9-1 train-validation split was
employed, with 9 groups used for training and one group used as the validation set for
hyperparameter tuning. This process was repeated 10 times, with each group serving as the
validation set once. Subsequently, in the harmonization step (Figure 1B), we obtained 10 sets
of trained harmonization models. These models were then applied to the unharmonized data,
resulting in the generation of 10 harmonized data sets from both unmatched and matched
participants.

In the subsequent evaluation step (Figure 1C), the harmonized data of the unmatched
participants were used to train and tune the evaluation models for dataset prediction (Section
2.8) and false positive analysis (Section 2.10), following the same 9-1 train-validation split
previously described. The harmonized data of the matched participants were designated as
the test set to evaluate the harmonization performance. In the case of association analysis
(Section 2.9), no evaluation model needed to be trained, so we directly applied general linear
models (GLMs) and multivariate analysis of variance (MANOVA) to the harmonized data of

the matched participants to obtain association results.
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2.5 Baseline harmonization models
Here, we considered ComBat (Johnson et al., 2007), CovBat (Chen et al., 2021), and
cVAE (Moyer et al., 2020) as baseline models.

2.5.1 ComBat

ComBat is a mixed effects model that controls for additive and multiplicative site
effects (Johnson et al., 2007). Here we utilized the R implementation of the algorithm
(https://github.com/Jfortin1/ComBatHarmonization). The ComBat model is as follows:

Xijy = @y + Y1 By + Vi + Si€ij (2)

where i is the site index, j is the participant index, and v indexes the brain ROI volumes. x;;,,
is the volume of the v-th brain ROI of participant j from site i. y;,, is the additive site effect.
8;» is the multiplicative site effect. €;,, is the residual error term following a normal
distribution with zero mean and variance 82. Y; ; 18 the vector of covariates of participant
j from site i. In this study, we chose age, sex, MMSE, and clinical diagnosis as covariates.

The ComBat parameters «,,, 5,,, ¥i, and §;;,, were estimated for each brain region
using the unharmonized ROI volumes of all unmatched participants (Figure 1B). The
estimated parameters can then be applied to map a new participant i from site j to

intermediate space with brain regional volume x;j,, and covariates Y;;.

A~ T A ~
Xijv — av_yijﬁv_yiv ~ 5
Xyt = < + @, + YjjB, 3)
6iv
where " indicates that the parameter was estimated from the unmatched unharmonized ROI

volumes from ADNI and AIBL. A separate ComBat model was fitted for harmonizing ADNI

and MACC brain regional volumes.

2.5.2 CovBat

CovBat is a mixed effect harmonization model built on top of ComBat to remove site
effects in mean, variance, and covariance (Chen et al., 2021). We utilized the authors’ R
implementation of the algorithm (https://github.com/andy1764/CovBat_Harmonization).
There are four main steps in CovBat harmonization. First, ComBat (Section 2.5.1) is applied
to the volume of each brain region. to obtain ComBat adjusted residuals:

— &, —YIB — 79
eC_omBat _ Xijv ay Yl] .Bv Yiv
jv - S

: (4)

iv
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For participant i of site j, the ComBat-adjusted residuals of all regional volume can be

concatenated into a column vector ecjomB at These vectors can in turn be concatenated across

all participants of all sites into the matrix E¢°™P% where the number of columns is equal to
the total number of participants and the number of rows is equal to the number of brain
regional volume.

Second, principal component analysis (PCA) is applied to E€°™P%¢ to obtain q

principal component (PC) scores and PCs, where q is the rank of the matrix E¢ombat,
Therefore, we can write e;>™?% as
ComBat 1 iy
ej = Zk_lfijk¢k' (5)

where & is the k-th PC score of participant i of site j, and @y is k-th PC.
Third, each of the top K PC scores were harmonized using a second round of
ComBat, thus yielding &; jk- K was selected to explain the 95% percentage of variance. The

remaining PC scores were not harmonized. Finally, the harmonized brain ROI volumes are

projected to intermediate space after model fitting:

TR WIR T S ()

XS%VBM — elCJ?]vBat + O.’ + YTﬁv: (7)
Consistent with ComBat, we chose age, sex, MMSE, and clinical diagnosis as covariates.
CovBat was fitted using all unmatched participants.

For a new participant, elcj?,mB 2t was computed using the ComBat parameters estimated

from the unmatched participants. The eC"mB at

of the new participant was then projected onto
the principal components (obtained from the unmatched particiapnts) to obtain principal

component scores &; . The top K scores were then harmonized using the second round of
ComBat parameters estimated from the unmatched participants to obtain &; jk- Finally,
Equations (6) and (7) were applied to obtain the harmonized ROI volumes of the new
participant.

Similar to ComBat, two separate CovBat models were fitted: one for harmonizing
ADNI and AIBL brain regional volumes, and one for harmonizing ADNI and MACC brain

regional volumes.
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2.5.3 c¢VAE

Moyer et al. (2020) introduced the conditional variational autoencoder (cVAE) model
for harmonizing diffusion MRI data. In this paper, we applied the cVAE model to harmonize
brain ROI volumes. Figure 2A shows the architecture of the cVAE model. The input brain
volumes x (x denotes brain volumes of all regions: x4, X5 ... Xy, ... X19g) Were processed
through an encoder deep neural network (DNN) to obtain the latent representation z. The
one-hot site vector s was concatenated with the latent representation z and then fed into the
decoder DNN, producing the reconstructed brain volumes X. To encourage the independence
of the learned representation z from the site s, the cost function incorporated the mutual
information (z, s). The resulting loss function could be expressed as follows:

Levag = Lyecon + @Lprior — YLaay + Al (2, 5), (8)
where L,..on Was the mean square error (MSE) between x and X, thus encouraging similarity
between the harmonized X and unharmonized volumes x. Additionally, Moyer et al.
introduced the term L4, which was the soft-max cross-entropy loss of an adversarial
discriminator aiming to differentiate x and X, thereby further promoting their similarity.
Finally, L, ;o was the KL divergence term between representation z and a multivariate
Gaussian distribution with zero mean and identity covariance matrix (Sohn et al., 2015) to
promote regularity and control over the latent space. This prior term will encourage the
distributions of latent representations to be aligned across datasets, which can be problematic
if there exists covariate differences between datasets (Section 2.1).

The decoder and encoder components of the model were implemented as fully
connected feedforward neural networks, where each layer was connected to the subsequent
layer. Consistent with Moyer et al., the tanh activation function (Maas et al., 2013) was
employed. During training, the variable s represented the true site information associated
with the input brain volumes x. After training, by setting s to zero, the input x could be
mapped to an intermediate space. Training of the model was performed using the data from
90% of the unmatched participants and hyperparameters were tuned using the data from 10%
of the unmatched participants as validation set (Section 2.4).

Hyperparameter tuning in the validation set involved optimizing a weighted sum of
the reconstruction loss (MSE between x and X) and the accuracy of participant-level dataset
prediction: 2 MSE + Dataset Prediction Accuracy. The reconstruction loss (MSE) was
halved to ensure comparability with the dataset prediction accuracy. Dataset prediction

accuracy was determined by training an XGBoost classifier on the training set and evaluating
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it on the validation set. To identify the best set of hyperparameters, the HORD algorithm
(Eriksson et al., 2020; Regis & Shoemaker, 2013; Ilievski et al., 2017) was employed using
the validation set (Table 1). The trained deep neural network (DNN) was then utilized for

subsequent analyses after 1000 epochs of training.

A. cVAE model structure B. coVAE model structure

/ Discriminato>\ / Discriminato>\

—F | —F | E—

X H Decoder b'e X H Decoder ¢
S} S|
C. DeepResBat model structure
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Figure 2. Model structure for cVAE, coVAE, and DeepResBat. (A) Model structure for the
cVAE model. Encoder, decoder, and discriminator were all fully connected feedforward DNNSs.
s was the site we wanted to map the brain volumes to. (B) Model structure for the coVAE
model. Site s and covariates y were input into the decoder to preserve covariates effects.
Therefore, the main difference between cVAE and coVAE is the inclusion of covariates y. (C)
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Model structure for the DeepResBat model. The covariates effect estimator was an ensemble
of XGBoost and linear models. Once the effects of covariates were removed (subtraction sign),
the residual harmonizer was a ¢cVAE model taking covariates-free residuals as input. The
covariates effects were then added back to the cVAE output, yielding a final set of harmonized
ROI volumes.

Hyperparameter Search Range
Initial learning rate le-2 — le-1
Learning rate step 10 - 999

Dropout rate 0-0.5
a 0.01-1
4 0.01-10
A 0.01-1
Nodes for each layer 32-512
Number of layers 2-4
Node for z 32-512

Table 1. Hyperparameters search ranges for cVAE on the validation set. We note that a
learning rate decay strategy was utilized. After K training epochs (where K = learning rate
step), the learning rate was reduced by a factor of 10.

2.6 coVAE

As highlighted in Section 2.1, accounting for covariates is essential for effective
harmonization. Therefore, we extended the cVAE model to incorporate covariates as input,
resulting in the covariate-VAE (coVAE) model, as shown in Figure 2B. More specifically,
we concatenated site s and covariates Y to obtain [s,Y]. The loss function was the same as
cVAE (Eq. (8)) except that the mutual information loss term in Eq. (8) was modified to
become I(z, [s,Y]):

Leovag = Lrecon t @Lprior — YLgay + A(z,[s,Y]). 9)

Therefore, instead of minimizing the mutual information between z and s, we minimize the
mutual information between z and [s, Y]. For the reconstruction, we concatenated latent
representation z with site s and covariates Y as input to the decoder network.

Recall that the Ly, term was the KL divergence term between representation z and
a multivariate Gaussian distribution with zero mean and identity covariance matrix. This
prior term therefore implicitly encouraged the alignment of the latent representations z
between datasets. In the case of cVAE, the latent representation z would contain covariate

information. Therefore, cVAE would force the alignment of latent representations z even if
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the covariate distributions were different across datasets, which would be suboptimal (see
Section 2.1). By contrast, because coVAE seek to minimize mutual information between z
and [s, Y], so the latent representation z would theoretically not contain covariate
information. In this scenario, aligning the covariate-free and site-free latent representation z
would make sense.

Consistent with ComBat (Section 2.5.1) and CovBat (Section 2.5.2), we chose age,
sex, MMSE, and clinical diagnosis as covariates. The categorical covariates sex and clinical
diagnosis were one-hot encoded for coVAE. Training of coVAE was performed using the
data from 90% of the unmatched participants and hyperparameters were tuned using the data
from 10% of the unmatched participants as validation set (Section 2.4). We used the HORD
algorithm to search within the hyper-parameter ranges specified in Table 1 based on the
validation set. Brain ROI volumes were mapped to intermediate space for subsequent
analyses after 1000 training epochs.

Although coVAE appeared to be an intuitive straightforward extension of cVAE, as
will be shown in the false positive analysis (Section 3.3), coVAE suffered from significant
false positive rates. Therefore, in the next section, we proposed a second harmonization

approach that could account for covariate distribution differences across datasets.

2.7 DeepResBat
Figure 2C illustrates our proposed DeepResBat approach. To motivate DeepResBat,
we can write ComBat’s Eq. (2) into a more general form:
xijp = fo(Yi;) + g, (D), (10)
where i is the site index, j is the participant index, and v indexes the brain ROI volumes. x;,

is the v-th brain volume of participant j from site i. ¥;; are the covariates of participant j from

site i. In ComBat, f; is linear with f,(Y; j) = a, + Y} B,, while g,(0) = vi, + Si€ijy
accounts for both additive and multiplicative site effects.

To improve on ComBat, DeepResBat utilized nonlinear functions for f and g. There
are three stages for DeepResBat (Figure 2C). We first estimated the covariate effects f using
a nonlinear regression approach (Section 2.7.1). The covariate-free residuals from the first
stage (x — f) were then harmonized using a generic deep learning approach, instantiated as

cVAE in the current study (Section 2.7.2). The covariate effects from the first stage were then

added back to the harmonized brain volumes from the second stage (Section 2.7.3).
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Consistent with ComBat, we chose age, sex, MMSE, and clinical diagnosis as
covariates. Training of DeepResBat was performed using the data from 90% of the
unmatched participants and hyperparameters were tuned using the data from 10% of the
unmatched participants as validation set (Section 2.4). We used the HORD algorithm to
search within the hyper-parameter ranges specified in Table 1 based on the validation set.
Brain ROI volumes were mapped to intermediate space for subsequent analyses after 1000

training epochs.

2.7.1 Covariates effects estimation

To estimate covariate effects, we first regressed out the linear effects of site for each
brain ROI volume by fitting the following model,

Xijp = Uy + Viy + €ijp, (11)
where x; v is the v-th brain ROI volume for participant i of site j, a,, is the intercept term, y;,,
is the additive sites effect, and €;,, is the residual error term. The residual brain ROI volume
X,j» without linear site effects is obtained by X;j, = X;j, — Vip-

Before removing covariate effects, we first checked whether each covariate is actually
related to any ROI brain volume in order to avoid the false positive issues exhibited by
coVAE (Section 2.6). This check is performed in two stages. First, for each covariate, an
XGBoost model (T. Chen & Guestrin, 2016) was trained to predict the covariate using all
residual brain ROI volumes X obtained from the previous step (Eq. (11)). XGBoost was
chosen due to its efficacy with unstructured or tabular data (Grinsztajn et al., 2022; Shwartz-
Ziv & Armon, 2022) and its simplicity, allowing for fast training. For each covariate, the
XGBoost model was trained using the training set (90% of unmatched participants) and
hyperparameters were tuned using the validation set (10% of unmatched participants). We
randomly sampled 50% of participants from the validation set and computed the correlation
between the prediction and ground truth covariate. Pearson’s correlation and Spearman’s
correlation were used for continuous and discrete covariates respectively. This sampling
procedure was repeated 100 times. If the p values of the correlations were less than 0.05 for
more than 95% of the repetitions, then we retained the covariate for the next stage.

In the second stage, for each brain volume X,,, an XGBoost model was trained to
predict the brain volume using all survived covariates ¥. Once again, the training used the
training set (90% of unmatched participants) and hyperparameters were tuned using the

validation set (10% of unmatched participants). To ensure, we were not overfitting the
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covariate estimator, we again sampled 50% of participants from the validation set and
computed the correlation between the prediction and ground truth covariate. Pearson’s
correlation was used for evaluating brain ROI volumes’ predictions. This sampling procedure
was repeated 100 times. If the p values of the correlations were less than 0.05 for more than
95% of the repetitions, we retained the XGBoost model. If not, we fitted a linear model
instead.

Therefore, regardless of whether we ended up using a linear model or XGBoost, we
obtained the covariates effect estimator ﬁ,(?) for each brain region v. The estimated
covariates effects could then be subtracted from the original brain ROI volume, yielding
covariate-free residuals:

1 =%, — f,(Y), (12)
The residuals 7, were presumably free from covariate effects, but retained unwanted
variations from each dataset, which could be removed with a generic deep learning based

harmonization approach in the next stage (Section 2.7.2).

2.7.2 Covariate-free residuals harmonization

In the second stage of DeepResBat, the covariate-free residuals r;, were jointly fed
into a deep learning based harmonization model g (-) for further harmonization. In the current
study, we chose the cVAE model, although any deep learning harmonization model could be
used. Similar to the cVAE baseline (Section 2.5.3), the cVAE was trained using the training
set (90% of unmatched participants) and hyperparameters (Table 1) were tuned using the
validation set (10% of unmatched participants) with the HORD algorithm.

Following training, the covariates-free residuals were mapped to an intermediate
space:

f=g(), (13)

where r was the covariate-free residuals and # was the harmonized residual brain volumes.

2.7.3 DeepResBat harmonization
The final harmonized brain ROI volumes were then obtained by adding the estimated
covariates effect from stage 1 and harmonized residual from stage 2 for each brain ROI

volume:

%, =7+ f,(Y), (14)

17


https://doi.org/10.1101/2024.01.18.574145
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.18.574145; this version posted January 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

where 7, was the harmonized residuals (Section 2.7.2) and f,,(?) was the estimated covariate

effects (2.7.1).

2.8 Dataset prediction model

As an evaluation metric, we employed XGBoost to predict the source dataset of the
harmonized brain volumes (Figure 1C). The inputs to the XGBoost model were the brain
volumes normalized by each participant's total intracranial volume (ICV). Due to the 10-fold
cross-validation procedure described in Section 2.4, recall that the unmatched participants
were divided into 10 groups of training and validation sets. Therefore, in the case of cVAE,
coVAE and DeepResBat, there were 10 harmonization models and 10 sets of harmonized
data for each participant. In the case of ComBat and CovBat, the models were fitted on all
unmatched participants, so there was only one set of harmonized data for each participant.

For each group of training and validation sets, an XGBoost classifier was trained
using the training set and a grid search was conducted on the validation set to identify the
optimal hyperparameters. To evaluate performance, the 10 XGBoost classifiers were used to
predict the source dataset of the harmonized MRI volumes of the matched participants.

The prediction accuracy was calculated by averaging the results across all time points
of each participant and the 10 classifiers before further averaging across participants. To
evaluate the harmonization quality between ADNI and AIBL, this evaluation procedure was
applied to the ADNI and AIBL participants. The same procedure was applied to evaluate the
harmonization quality between ADNI and MACC datasets. Lower prediction accuracies
indicated that greater dataset differences were removed, suggesting better harmonization

quality.

2.9 Association analysis

Lower dataset prediction accuracies (Section 2.8) indicate greater dataset differences
were removed, but the removed dataset differences might contain important biological
information, which should not be removed. Therefore, association analysis was also
conducted to evaluate the ability of preserving relevant biological information (Figure 1C)
during harmonization. The variables of interest included age, sex, clinical diagnosis, and
MMSE. Univariate and multivariate association analyses were performed on matched
participants using unharmonized or harmonized regional brain volumes from different

approaches. As mentioned in previous sections, brain ROI volumes were harmonized by
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mapping to intermediate space. For the association analysis, we used the Python package
statsmodels.

We again reminded the reader that in the case of cVAE, coVAE and DeepResBat,
there were 10 harmonization models and 10 sets of harmonized data for each participant.
Therefore, the 10 sets of harmonized data were averaged for each matched participant before
the association analysis was performed. In the case of ComBat and CovBat, there was only

one set of harmonized data for each matched participant, so no averaging was necessary.

2.9.1 Univariate association analysis

Of the 108 brain regions, 87 regions are grey matter ROIs. We analyzed the
associations between the 87 grey matter ROI volumes and covariates with GLM. Grey matter
volumes are well-studied biomarkers correlated to age, sex, cognition, and AD dementia
(Hutton et al., 2009; Hua et al., 2010; Blessed et al., 2018; van de Mortel et al., 2021).

For each grey matter brain ROI volume and each harmonization approach, GLM
models were fitted to evaluate the association between brain ROI volume and covariates. We
fitted GLM separately for clinical diagnosis and MMSE to avoid cofounding. The GLM
formulas were as follows:

X, ~Age + Sex + MCI + AD + ICV, (15)
and
X, ~Age + Sex + MMSE + ICV, (16)
where X,, was the v-th harmonized brain ROI volume, ICV was the estimated total

intracranial volume. Z statistics for GLM's betas were utilized as evaluation metrics.

2.9.2 Multivariate association analysis
Multivariate analysis of variance (MANOVA) was applied to evaluate the

multivariate association between 87 grey matter ROIs and covariates. As in Section 2.9.1, we
conducted MANOV A separately for clinical diagnosis and MMSE. The fitted models were as
follows:

X ~Age + Sex + MCI + AD + ICV, (17)
and

X ~Age + Sex + MMSE + ICV, (18)

where X referred to all harmonized grey matter brain ROI volumes and ICV was the

estimated total intracranial volume.
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2.10 False positive analysis

To evaluate whether the harmonization approaches will hallucinate associations
between covariates and harmonized ROI volumes when none exists, we performed a
permutation analysis to evaluate false positive rates. For example, if we permuted age across
participants, then the resulting harmonized brain ROI volumes should not associate with the
permuted age.

More specifically, when harmonizing ADNI and MACC, for each permutation, we
randomly shuffled four covariates (age, sex, MMSE, and clinical diagnosis) together across
(1) unmatched participants in the training set, (2) unmatched participants in the validation set
and (3) matched participants. Harmonization models were then trained to harmonize brain
ROI volumes based on the randomly shuffled covariates. As stated in Section 2.4, unmatched
participants were used for training and tuning the harmonization models, and GLMs were
performed in the matched harmonized participants.

We expect the association between the randomly permuted covariates and harmonized
brain ROI volumes to not exist. Therefore, we ran GLMs to validate our assumption via
association analysis. The GLMs were run for each harmonized brain ROI volume with
randomly shuffled covariates on matched participants. We considered 87 grey matter ROIs
(see Section 2.9.1) to run the GLM. A diagnosis GLM (X, ~ Age + Sex + MCI + AD +
ICV) and a cognition GLM (%, ~ Age + Sex + MMSE + ICV) were fitted separately. Then
for each permutation and each harmonized brain ROI volume, we obtained p values from the
GLM corresponding to each covariate.

This permutation procedure was repeated 1000 times. For each brain ROI volume
harmonized by each harmonization model, we calculate the percentage of nominally
significant p values below 0.05 across the 1000 p values from the 1000 permutations. The
expected percentage across all grey matter ROIs is 5%, with a confidence interval (CI) of
3.65% to 6.35% based on the normal approximation of the Binomial 95% CI (Eklund et al.,
2016). Percentage higher than 6.35% indicated that there were false positives. The same
procedure was repeated for ADNI and AIBL datasets.

2.11 Deep neural network implementation

The DNNs developed in this paper were implemented using PyTorch (Paszke et al.,
2017) and executed on NVIDIA RTX 3090 GPUs with CUDA 11.0. The DNNs were
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optimized using the Adam optimizer (Kingma & Ba, 2017) with the default settings provided
by PyTorch.

2.12 Statistical tests

To assess distribution differences in age and MMSE between matched participants of
AIBL and ADNI (as well as MACC and ADNI), two-sided two-sample t-tests were
employed. For sex and clinical diagnoses, chi-squared tests were utilized to examine any
significant distinctions.

In the case of dataset prediction, the prediction performance was averaged over all
time points of each participant and then across the 10 sets of models, resulting in a single
prediction performance value for each participant. Therefore, this process yielded a vector of
prediction performance for each dataset and harmonization approach, with each element
corresponding to a particular participant. To compare the dataset prediction performance
between the two harmonization approaches, a permutation test with 10,000 permutations was
conducted. Each permutation involved randomly exchanging the entries between the
performance vectors of the two approaches. A more detailed illustration of this permutation
procedure can be found in Figure S2.

Multiple comparisons were corrected with a false discovery rate (FDR) of q < 0.05.

2.13 Data and code availability

Code for the various harmonization algorithms can be found here (GITHUB_ LINK).
Two co-authors (CZ and PC) reviewed the code before merging it into the GitHub repository
to reduce the chance of coding errors.

The ADNI and the AIBL datasets can be accessed via the Image & Data Archive
(https://ida.loni.usc.edu/). The MACC dataset can be obtained via a data-transfer agreement
with the MACC (http://www.macc.sg/).
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3 Results

3.1 DNN models removed more dataset differences than classical mixed effect models

Dataset prediction accuracies of matched participants are shown in Figure 3. Lower
prediction accuracies indicated that greater dataset differences were removed, suggesting
better harmonization quality.

Figure 3A shows the dataset prediction performance for matched ADNI and AIBL
participants. Without harmonization, an XGBoost classifier achieved 100% accuracy in
identifying which dataset a participant's data came from. After applying mixed effect
harmonization approaches (ComBat and CovBat), the prediction accuracy significantly
dropped to 0.695 + 0.376 (mean =+ std) for ComBat, and 0.670 £ 0.383 for CovBat, indicating
a substantial reduction in dataset differences. Deep learning approaches showed improved
dataset difference removal, with performance of 0.595 + 0.381 for cVAE and 0.592 + 0.368
for coVAE. Our proposed DeepResBat achieved an accuracy of 0.594 + 0.375, which was not
statistically different from the deep learning baselines (Table 2). Notably, all deep learning
approaches exhibited significantly lower dataset prediction accuracies than mixed effect
approaches, demonstrating the potential of deep learning for data harmonization. However,
the dataset prediction accuracies of all deep learning approaches remained better than chance
(p = 1e-4), indicating residual dataset differences.

Similar outcomes were observed for matched ADNI and MACC participants (Figure
3B). Without harmonization, the XGBoost classifier accurately predicted source datasets with
100% accuracy. Mixed effect approaches, including ComBat and CovBat, reduced dataset
differences to some extent, yielding accuracies of 0.752 = 0.361 for ComBat and 0.740 +
0.370 for CovBat. All deep learning approaches (cVAE: 0.603 + 0.391, coVAE: 0.558 +
0.418, DeepResBat: 0.608 + 0.381) exhibited more effective removal of dataset differences
than mixed effect approaches (Table 3). Our proposed DeepResBat achieved similar accuracy
to cVAE with no statistical difference, but performed worse than coVAE, indicating room for
improvement. However, coVAE introduced significant false positives (as will be shown in
Section 3.3) and is therefore not an acceptable approach. Finally, the dataset prediction
accuracies of all deep learning approaches remained better than chance (p = 1e-4), indicating

the presence of residual dataset differences.
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Figure 3. Dataset prediction accuracies. (A) Left: Dataset prediction accuracies for
matched ADNI and AIBL participants. Right: p values of differences between different
approaches. "*" indicates statistical significance after surviving FDR correction (q < 0.05).
"n.s." indicates not significant. (B) Same as (A) but for matched ADNI and MACC
participants. All p values are reported in Tables 2 and 3.

Dataset Prediction Accuracies

p values

(mean + std)

Unharm | ComBat | CovBat | cVAE | coVAE |DeepResBat
Unharmonized (1.000 + 0.020) le-4 le-4 le-4 le-4 le-4
ComBat (0.695 +0.376) 8e-4 le-4 le-4 le-4
CovBat (0.670 + 0.383) le-4 le-4 le-4
cVAE (0.595 + 0.381) 0.5945 | 0.8931
coVAE (0.592 + 0.368) 0.8303

DeepResBat (0.594 £ 0.375)

Table 2. Dataset prediction accuracies with p values of differences between different
approaches for matched ADNI and AIBL participants. Statistically significant p values after
FDR (q < 0.05) corrections are bolded.
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Dataset Prediction Accuracies p values
(mean + std) Unharm | ComBat | CovBat | cVAE | coVAE |DeepResBat
Unharmonized (1.000 + 1e-16) le-4 le-4 le-4 le-4 le-4
ComBat (0.752 £ 0.361) 0.0095 | 1le-4 le-4 le-4
CovBat (0.740 = 0.370) le-4 le-4 le-4
cVAE (0.603 £ 0.391) le-4 0.7258
coVAE (0.558 + 0.418) 2e-4
DeepResBat (0.608 £ 0.381)

Table 3. Dataset prediction accuracies with p values of differences between different
approaches for matched ADNI and MACC participants. Statistically significant p values after
FDR (q < 0.05) corrections are bolded.

3.2 DeepResBat enhanced associations between harmonized brain volumes and

covariates

Lower dataset prediction accuracies (Section 3.1) indicate greater dataset differences

were removed, but the removed dataset differences might contain important biological
information, which should not be removed. To evaluate whether relevant biological
information is retained in the harmonization process, we performed univariate GLM and
multivariate MANOVA analyses to evaluate the associations between harmonized volumes
and covariates. Stronger associations between harmonized volumes and covariates suggest

better enhancement of biological information after harmonization.

3.2.1 DeepResBat outperformed baselines for univariate analysis

Figures 4 and 5 show the results of the univariate GLM association analysis involving
clinical diagnosis (Eq. (15)) in the ADNI-AIBL and ADNI-MACC matched participants
respectively. Each dot in the plots represented a different brain region, so there are 87 dots in
total. For age, MCI and AD dementia, more negative z values indicated greater atrophy due
to aging and AD progression. Conversely, a lower MMSE indicates worse cognition, so more
positive z values indicated greater atrophy related to worse cognition. For sex, the absolute z
statistics were compared because there was no a priori expectation of positive or negative
values, so a larger magnitude indicating a larger effect size. Therefore, in Figures 4 and 5, red

indicates better performance by DeepResBat, while blue indicates worse performance.
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Figure 4. Comparison of z statistics from GLM involving clinical diagnosis for
DeepResBat and baselines on matched ADNI and AIBL participants. Each row compares
DeepResBat and one baseline approach: no harmonization (row 1), ComBat (row 2), CovBat
(row 3), cVAE (row 4) and coVAE (row 5). Each column represents one covariate: age (column
1), sex (column 2), MCI (column 3) and AD dementia (column 4). Each subplot compares z
statistics of DeepResBat against another baseline for a given covariate across 87 grey matter
ROIs. Each dot represents one grey matter ROI. Red dots indicate better performance by
DeepResBat. Blue dots indicate worse performance by DeepResBat.
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Figure 5. Comparison of z statistics from GLM involving clinical diagnosis for
DeepResBat and baselines on matched ADNI and MACC participants. Each row compares
DeepResBat and one baseline approach: no harmonization (row 1), ComBat (row 2), CovBat
(row 3), cVAE (row 4) and coVAE (row 5). Each column represents one covariate: age (column
1), sex (column 2), MCI (column 3) and AD dementia (column 4). Each subplot compares z
statistics of DeepResBat against another baseline for a given covariate across 87 grey matter
ROIs. Each dot represents one grey matter ROI. Red dots indicate better performance by
DeepResBat. Blue dots indicate worse performance by DeepResBat.

In the case of matched ADNI-AIBL participants, DeepResBat yielded stronger
associations between brain volumes and all covariates with respect to no harmonization
(Figure 4 row 1), ComBat (Figure 4 row 2), CovBat (Figure 4 row 3) and cVAE (Figure 4
row 4). When compared to coVAE, DeepResBat yielded weaker absolute z statistics for sex,
similar z statistics for MCI and AD, and better z statistics for age. However, coVAE
introduced false positives (as will be shown in Section 3.3) and is therefore not an acceptable
approach. In the case of matched ADNI-MACC participants, DeepResBat yielded stronger
associations between brain volumes and all covariates with respect to no harmonization

(Figure 4 row 1) and all other baseline approaches (Figure 4 rows 2 to 5).
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Similar conclusions were obtained for the univariate GLM association analyses

involving MMSE (Eq. (16)) in the ADNI-AIBL (Figure S3) and ADNI-MACC (Figure S4)

matched participants.

3.2.2 DeepResBat outperformed baselines for multivariate analysis

Figure 6 shows the results of the multivariate MANOVA association analysis involving
clinical diagnosis (Eq. (17)) in the ADNI-AIBL and ADNI-MACC matched participants. The
negative logarithm of p values was employed as the metric, where a larger negative logarithm

of p values indicates a stronger association. Therefore, a higher bar in Figure 6 indicates

better performance.

A. Diagnosis MANOVA (ADNI-AIBL) B. Diagnosis MANOVA (ADNI-MACC)
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Figure 6. Significance bar plot by MANOVA involving clinical diagnosis. A larger negative
of log p value indicates a stronger association, and thus better performance. (A) Bar plot for
matched ADNI and AIBL participants. (B) Bar plot for matched ADNI and MACC participants.
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In the case of matched ADNI-AIBL participants (left panel in Figure 6), DeepResBat
yielded stronger associations between brain volumes and all covariates with respect to no
harmonization, ComBat, CovBat and cVAE. When compared to coVAE, DeepResBat
yielded weaker p values for sex, but stronger p values for age, MCI and AD. However,
coVAE introduced false positives (as will be shown in Section 3.3) and is therefore not an
acceptable approach. In the case of matched ADNI-MACC participants (right panel in Figure
6), DeepResBat yielded stronger associations between brain volumes and all covariates with
respect to no harmonization and all other baseline harmonization approaches.

Interestingly, coVAE demonstrated inconsistent behavior for association with sex
across different cohorts. In the ADNI-AIBL analyses, coVAE harmonized ROIs exhibited a
strong association with sex (Figure 6A). By contrast, in the ADNI-MACC analyses, the

association with sex was notably weak (Figure 6B). Conversely, DeepResBat displayed more
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stable performance across cohorts. The inconsistency of coVAE was also present in the
univariate GLM analyses (Figures 4 and 5).

Similar conclusions were obtained for the multivariate MANOVA association
analyses involving MMSE (Eq. (18)) in the ADNI-AIBL and ADNI-MACC matched
participants (Figure S5).

3.3 CoVAE, but not DeepResBat, exhibited spurious associations between permuted

covariates and harmonized brain volumes

The harmonization models were retrained after permuting all four covariates: age,

sex, diagnosis and MMSE (Section 2.10). The GLM association analyses (Section 2.9.1)
were then rerun. Figure 7 illustrates the percentage of nominally significant p values (i.e., p <
0.05) across 87 grey matter ROIs from 1000 permutations. More specifically, for each
harmonized brain ROI volume, we calculated the percentage of nominally significant p
values (i.e., p < 0.05) across 1000 p values corresponding to the 1000 permutations. The
expected percentage of nominally significant p values across all grey matter ROIs should be
5%, with a 95% confidence interval (CI) of 3.65% to 6.35% based on the normal
approximation of the Binomial 95% CI (Eklund et al., 2016).

A. Diagnosis GLM (ADNI-AIBL) B. Diagnosis GLM (ADNI-MACC)
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Figure 7. Percentage of nominally significant p values (i.e., p < 0.05) from GLM with
clinical diagnosis after 1000 permutations of covariates. More specifically, each data point
in the violin plot represents a brain ROI volume. Percentage is calculated based on the number
of permutations in which p value of corresponding covariate was nominally significant (i.e., p
< 0.05) divided by 1000 permutations. Percentage (vertical axis) is shown on a log scale. The
black solid line is the expected percentage (which is 0.05), while the grey dashed lines indicated
95% confidence intervals. (A) GLM analysis involving clinical diagnosis for matched ADNI
and AIBL participants. (B) GLM analysis involving clinical diagnosis for matched ADNI and
MACC participants.
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In both ADNI-AIBL (Figure 7A) and ADNI-MACC (Figure 7B), not performing any
harmonization yielded 5% nominally significant p values. ComBat, CovBat and DeepResBat
also did not suffer from any spurious associations. However, coVAE yielded an inflated false
positive rate in both ADNI-AIBL and ADNI-MACC, since the percentages of nominally
significant p values were much greater than 5% for all covariates (Figure 7).

To provide a different visualization of the results, Figure 8 shows the frequency
distribution of p values for coVAE and DeepResBat in matched ADNI and AIBL
participants. Each line in Figure 8 corresponded to a single brain ROI. The p values were
divided into bins with a width of 0.05. Therefore, in the ideal scenario, the distribution of p
values should follow a uniform distribution at a height of 0.05. For coVAE (Figure 8A) the
frequency of p values within the 0-0.05 bin greatly exceeded 5% for all covariates. For
DeepResBat (Figure 8B), there was a uniform distribution of p values for sex and AD.
However, the distribution of p values for age and MCI were more conservative with less than
5% of p values in the 0-0.05 bin. Similar results were obtained for matched ADNI and
MACC participants (Figure 9). For coVAE (Figure 9A) the frequency of p values within the
0-0.05 bin greatly exceeded 5% for all covariates. For DeepResBat (Figure 9B), the
distributions of p values were uniform for all covariates. Visualization of p values
distributions for no harmonization, ComBat and CovBat can be found in Figures S6 to S11.

Similar conclusions were obtained for the GLM involving MMSE (Figures S12 to
S14). Furthermore, instead of permuting all four covariates, we also considered permuting

only clinical diagnosis (Figure S15) or MMSE (Figure S16), yielding similar conclusions.
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Figure 8. Frequency of p values of coVAE and DeepResBat for matched ADNI and AIBL
participants by GLM involving clinical diagnosis based on 1000 permutations. Each line
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the
ideal scenario, the distributions of p values should follow a uniform distribution with a height
of 0.05. (A) Frequency of p values for coVAE. (B) Frequency of p values for DeepResBat.
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Figure 9. Frequency of p values of coVAE and DeepResBat for matched ADNI and
MACC participants by GLM involving clinical diagnosis based on 1000 permutations.
Each line corresponds to a single brain ROI. P values were binned in intervals of 0.05.
Therefore, in the ideal scenario, the distributions of p values should follow a uniform
distribution with a height of 0.05. (A) Frequency of p values for coVAE. (B) Frequency of p
values for DeepResBat.
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4 Discussion

Current deep learning approaches for harmonization do not explicitly account for
covariate distribution differences across datasets. As discussed in Section 2.1, ignoring
covariates can lead to theoretically worse harmonization outcomes. We then proposed two
DNN-based harmonization approaches, coVAE and DeepResBat, which explicitly accounted
for covariate distribution differences across datasets. We demonstrated that DeepResBat
outperformed mixed effects and deep learning baselines across three evaluation experiments
involving three large-scale MRI datasets.

More specifically, without any harmonization, XGBoost was able to predict almost
perfectly which dataset a participant’s MRI volumes came from (Figure 3). After
harmonization with mixed effects models (ComBat and CovBat), dataset classification
accuracies dropped significantly, suggesting that ComBat and CovBat were able to remove
some dataset differences. DNN-based harmonization approaches further reduced the
classification accuracies, suggesting even greater removal of dataset differences.

However, the removed dataset differences might contain important biological
information, which should not be removed. Therefore, in the second experiment, we
evaluated the strength of associations between the harmonized brain volumes and covariates
(age, sex, MMSE and clinical diagnosis). Across both univariate GLM and multivariate
MANOVA (Figures 4 to 6), we found that coVAE and DeepResBat yielded stronger
associations between brain volumes and covariates. This suggests that coVAE and
DeepResBat were retaining important biological information while removing undesirable
dataset differences. Interestingly, DeepResBat was also more sensitive than coVAE, except
for the association between brain volumes and sex in the matched ADNI and AIBL
participants. Finally, cVAE exhibited weaker associations than ComBat, CovBat and even no
harmonization (Figure 6), suggesting that cVAE was removing significant biological
information in addition to unwanted dataset differences, thus providing empirical support for
the theoretical discussion in Section 2.1.

Given the flexible nature of DNNs, we were concerned that explicitly accounting for
covariates could lead to spurious associations between harmonized brain volumes and
covariates when no association existed. Our permutation test (Figures 7 to 9) supported our
concerns in the case of coVAE. Although coVAE provided a natural (and in our opinion,

elegant) extension of cVAE, we found significant false positive rates for coVAE. On the
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other hand, DeepResBat was able to exhibit an expected amount of false positives, consistent
with less flexible mixed effects models (ComBat and CovBat).

Together, the three evaluation experiments suggest that DeepResBat is an effective
deep learning alternative to ComBat. DeepResBat consisted of three steps: (1) regressed out
the effects of covariates from the brain volumes, (2) followed by harmonizing the residuals,
(3) and then adding the effects of covariates back to the harmonized residuals. Future
research could investigate whether these three steps can be combined into a single
optimization procedure by minimizing fitting Eq. (10) directly. However, we note that fitting
Eq. (10) directly might lead to overfitting, yielding false positive issues, similar to coVAE.

While our current implementation of DeepResBat utilized XGBoost to estimate
covariate effects, other nonlinear regression approaches can be used. Furthermore, instead of
using cVAE in the harmonization step, cVAE can be replaced with other harmonization
approaches, such as generative adversarial networks (Bashyam et al., 2021). One advantage
of cVAE is that the approach readily works for more than two datasets by extending the one-
hot encoding of sites. Therefore, although our experiments only harmonized pairs of datasets,
DeepResBat can be readily applied to jointly harmonize three or more datasets.

A drawback of DeepResBat is that our current implementation operates on summary
measures (e.g., volumes or thickness), rather than at the image level (Zuo et al., 2021;
Cackowski et al., 2023). Therefore, the harmonization procedure needs to be repeated for
different summary measures (e.g., using a different brain parcellation). However, this
disadvantage also means that DeepResBat can be applied to harmonize not just imaging data,
but also any tabular data (e.g., micro-array data), suggesting the broad applicability of

DeepResBat to any field where instrumental harmonization is necessary.
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5 Conclusion

In this study, we demonstrate the importance of incorporating covariates during
harmonization. We propose two deep learning models, coVAE and DeepResBat, that account
for covariate distribution differences across datasets. coVAE extends cVAE by concatenating
covariates and site information with latent representations, while DeepResBat adopts a
residual framework inspired by the classical ComBat framework. We found that coVAE
introduces spurious associations between anatomical MRI and unrelated covariates, while
DeepResBat effectively mitigates this false positive issue. Furthermore, DeepResBat
outperformed ComBat, CovBat and cVAE in terms of removing dataset differences, while

retaining biological effects of interest.
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Supplementary Material

Vendor Scanner Model Field Strength Number of scans
Discovery 3T 595
Genesis Signa 3T 273
Signa Excite 15T 838
GE 3T 30
Signa HDx 15T 464
3T 42
) 1.5T 212
Signa HDxt 3T 405
. 1.5T 67
Achieva AT 431
Gemini 3T 32
Gyroscan Intera 1.5T 12
Gyroscan NT 1.5T 2
Philips Ingenia 3T 84
Ingenuity 3T 18
Intera 1.5T 319
3T 216
. 1.5T 6
Intera Achieva AT 1
Allegra 3T 48
Avanto 1.5T 385
Biograph 3T 12
Espree 1.5T 22
NUMARIS/4 1.5T 2
Prisma 3T 2
Prisma fit 3T 3
Siemens Skyra 3T 274
Sonata 1.5T 371
SonataVision 1.5T 25
Symphony 1.5T 547
SymphonyTim 1.5T 88
Trio 3T 107
TrioTim 3T 1371
Verio 3T 601

Table S1. Scanner information for 7955 scans in ADNI dataset.

Vendor Scanner Model Field Strength Number of scans
Avanto 1.5T 241
Siemens TrioTim 3T 558
Verio 3T 134

Table S2. Scanner information for 933 scans in AIBL dataset.
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Timepoint ADNI value AIBL value P value
1 71.0£5.5 70.8+5.3 0.96
2 72.5%5.5 72.6+5.5 0.98
AGE
3 74.245.5 73.94+5.6 0.93
4 75.74£5.5 75.6%5.5 0.99
1 29.3+0.9 29.2+0.9 1.00
2 29.5+0.5 29.5+0.5 1.00
MMSE
3 29.7+0.5 29.7+0.5 1.00
4 29.5+0.8 29.5+0.8 1.00
1 100%-0%-0% 100%-0%-0% 1.00
2 100%-0%-0% 100%-0%-0% 1.00
AD diagnosis
3 100%-0%-0% 100%-0%-0% 1.00
4 100%-0%-0% 100%-0%-0% 1.00
Sex - 50% 50% 1.00

Table S3. ADNI-AIBL matching results for participants having 4 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.

Timepoint ADNI value AIBL value P value
1 73.3£3.3 73.1£3.3 0.96
AGE 2 74.84£3.3 75.243.3 0.94
3 76.3+£3.3 76.1+£3.3 0.97
1 29.0+0.0 20.0+0.0 1.00
MMSE 2 30.0+0.0 30.0+0.0 1.00
3 30.0+0.0 30.0+0.0 1.00
1 100%-0%-0% 100%-0%-0% 1.00
AD diagnosis 2 100%-0%-0% 100%-0%-0% 1.00
3 100%-0%-0% 100%-0%-0% 1.00
Sex - 50% 50% 1.00

Table S4. ADNI-AIBL matching results for participants having 3 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.
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Timepoint ADNI value AIBL value P value
1 74.449.8 74.5+9.8 0.99
AGE
2 76.1£9.8 76.1+£9.9 0.99
1 27.9+2.8 27.9+2.8 1.00
MMSE
2 27.8+2.8 27.8+2.8 1.00
1 57%-43%-0% 57%-43%-0% 1.00
AD diagnosis
2 57%-43%-0% 57%-43%-0% 1.00
Sex - 88% 88% 1.00

Table S5. ADNI-AIBL matching results for participants having 2 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.

Timepoint ADNI value AIBL value P value
AGE 1 74.845.9 74.8+5.9 1.00
MMSE 1 27.3+3.9 27.3£3.9 0.98
AD diagnosis 1 68%-19%-13%  68%-19%-13% 1.00
Sex - 43% 43% 1.00

Table S6. ADNI-AIBL matching results for participants having 1 time point (scan). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.
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Timepoint ADNI value MACC value P value
1 71.5+6.8 72.3+6.7 0.67
AGE 2 73.5+6.8 73.8+£6.8 0.91
3 75.9+6.9 75.5+6.6 0.81
1 26.9+£3.7 27.0£3.5 0.94
MMSE 2 26.1+4.5 26.1+4.5 0.98
3 24.94+6.3 25.246.3 0.87
1 39%-46%-15%  36%-54%-10% 0.72
AD diagnosis 2 43%-36%-21%  46%-36%-18% 0.88
3 43%-36%-21%  46%-32%-22% 0.91
Sex - 57% 57% 1.00

Table S7. ADNI-MACC matching results for participants having 3 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.

Timepoint ADNI value MACC value P value
1 73.6+5.7 73.9+5.6 0.78
AGE
2 75.8+5.6 75.5£5.6 0.71
1 24.7+4.9 24.8+4.6 0.86
MMSE
2 23.4+6.9 23.5+6.6 0.91
1 35%-38%-27%  35%-40%-25% 0.80
AD diagnosis
2 37%-30%-33%  37%-35%-28% 0.49
Sex - 51% 58% 0.20

Table S8. ADNI-MACC matching results for participants having 2 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test
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Timepoint ADNI value MACC value P value
AGE 1 75.7+6.7 75.7+6.7 0.97
MMSE 1 21.0£5.9 21.0+£5.9 0.94
AD diagnosis 1 14%-34%-52%  14%-38%-48% 0.64
Sex - 52% 56% 0.34

Table S9. ADNI-MACC matching results for participants having 1 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.


https://doi.org/10.1101/2024.01.18.574145
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.18.574145; this version posted January 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

100 30

AD
=]
==

90 25

Female

20
80

Age
MMSE
=
w
Sex
Diagnosis
MCI
L]

70 10

i
r

60
0
50
\ S \ S \ S \ Qo
O\ (2 ) (2 ) (2 O e!
O(\Q‘(\ \y\’o‘(’ O{\Q‘° \'\a’&d\ 0{\Q\° \‘\axc 0{\%‘“ V‘@\C“
(B)
35
100
2 Dﬁ_l :[I
<<
90 25 Q :l.l
©
€
20 &
80 u
B e
o i x OU_ :I.I
g‘ § 15 g %Z
70 =
10
60
5 =N
=
50 0
N\ - N\ N\ o) AN A
) O @ oY @ @
otS® \1\3‘6“” ot8® \,@v&“e ot8® “\axf-“e otS® @axc“e

Figure S1. Age, MMSE, sex and clinical diagnosis distributions before and after
matching. (A) Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and
AIBL (red). Differences in the attributes between ADNI and AIBL were not significant after
matching. (B) Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and
MACC (yellow). Differences in the attributes between ADNI and MACC were not
significant after matching. P values showing the quality of the matching procedure are found
in Tables S3 to S9.


https://doi.org/10.1101/2024.01.18.574145
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.18.574145; this version posted January 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

/~ Example for conducting permutation test N\

* Goal: compare site prediction accuracies of and after
harmonization
* The comparison uses /] matched participants
* k represents model trained using k., cross-validation split
« Each participant may have multiple visits, which are colored dots in A1 and B1
« Each dot represents the site prediction accuracy using corresponding visit as input to
XGBoost
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* Randomly swap entries of two
vectors & compute absolute of the
mean difference
Repeat N Times
* M = #times absolute mean
difference between swapped
vectors is larger than absolute
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Figure S2. Illustration of permutation test for comparing site prediction accuracies of
ComBat and DeepResBat. (A1) For a given model, we averaged the site prediction
accuracies within each participant for ComBat. (B1) Same as A1 but for DeepResBat. (A2)
Averaging the site prediction accuracies across the 10 models within each participant. (Bl &
B2) Same as A1 and A2 but for DeepResBat. (C) Permute 10,000 times to obtain p value.
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Figure S3. Comparison of z statistics from GLM involving MMSE for DeepResBat and
baselines on matched ADNI and AIBL participants. Each row compares DeepResBat and
one baseline approach: no harmonization (row 1), ComBat (row 2), CovBat (row 3), cVAE
(row 4) and coVAE (row 5). Each column represents one covariate: age (column 1), sex
(column 2), and MMSE (column 3). Each subplot compares z statistics of DeepResBat against
another baseline for a given covariate across 87 grey matter ROIs. Each dot represents one grey
matter ROI. Red dots indicate better performance by DeepResBat. Blue dots indicate worse
performance by DeepResBat.
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Figure S4. Comparison of z statistics from GLM involving MMSE for DeepResBat and
baselines on matched ADNI and MACC participants. Each row compares DeepResBat and
one baseline approach: no harmonization (row 1), ComBat (row 2), CovBat (row 3), cVAE
(row 4) and coVAE (row 5). Each column represents one covariate: age (column 1), sex
(column 2), and MMSE (column 3). Each subplot compares z statistics of DeepResBat against
another baseline for a given covariate across 87 grey matter ROIs. Each dot represents one grey
matter ROI. Red dots indicate better performance by DeepResBat. Blue dots indicate worse

performance by DeepResBat.
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Figure SS. Significance bar plot by MANOVA involving MMSE. A larger negative of log
p value indicates a stronger association, and thus better performance. (A) Bar plot for matched
ADNI and AIBL participants. (B) Bar plot for matched ADNI and MACC participants.
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Figure S6. Frequency of p values of unharmonized data for matched ADNI and AIBL
participants by GLMs involving clinical diagnosis and MMSE based on 1000
permutations. Each line corresponds to a single brain ROI. P values were binned in intervals
of 0.05. Therefore, in the ideal scenario, the distributions of p values should follow a uniform
distribution with a height of 0.05. (A) Frequency of p values by GLMs involving clinical
diagnosis. (B) Frequency of p values by GLMs involving MMSE.
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Figure S7. Frequency of p values of unharmonized data for matched ADNI and MACC
participants by GLMs involving clinical diagnosis and MMSE based on 1000
permutations. Each line corresponds to a single brain ROI. P values were binned in intervals
of 0.05. Therefore, in the ideal scenario, the distributions of p values should follow a uniform
distribution with a height of 0.05. (A) Frequency of p values by GLMs involving clinical
diagnosis. (B) Frequency of p values by GLMs involving MMSE.

11


https://doi.org/10.1101/2024.01.18.574145
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.18.574145; this version posted January 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

A. B.
o .09 ComBat (Age, Diagnosis GLM) o .09 ComBat (Age, Cognition GLM)
S 051 4 % S 051 =
3 >
o (o8
(&) (9]
i .01 i .01
o .091 ComBat (Sex, Diagnosis GLM) o .091 ComBat (Sex, Cognition GLM)
(@] (@]
9 9
S 05T 7 ol S 05T T S -
3 >3
O o
(3] ()
i .01 i .01
0 .091 ComBat (MCI, Diagnosis GLM) o .091 ComBat (MMSE, Cognition GLM)
(@] (@]
& 051 e L 5 05148 BE
> =
(on (on
[} ()
i .01 i .01
w w {p] wn Y]

o .09 ComBat (AD, Diagnosis GLM) Q N < © @
S P value intervals
)
5 o e -
=]
O
[}
i .01

wn Yo Yo Y] n

(=} N < © oo}

P value intervals

Figure S8. Frequency of p values of ComBat for matched ADNI and AIBL participants
by GLMs involving clinical diagnosis and MMSE based on 1000 permutations. Each line
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the
ideal scenario, the distributions of p values should follow a uniform distribution with a height
of 0.05. (A) Frequency of p values by GLMs involving clinical diagnosis. (B) Frequency of p
values by GLMs involving MMSE.
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Figure S9. Frequency of p values of ComBat for matched ADNI and MACC participants
by GLMs involving clinical diagnosis and MMSE based on 1000 permutations. Each line
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the
ideal scenario, the distributions of p values should follow a uniform distribution with a height
of 0.05. (A) Frequency of p values by GLMs involving clinical diagnosis. (B) Frequency of p

values by GLMs involving MMSE.
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Figure S10. Frequency of p values of CovBat for matched ADNI and AIBL participants
by GLMs involving clinical diagnosis and MMSE based on 1000 permutations. Each line
corresponds to a single brain ROIL. P values were binned in intervals of 0.05. Therefore, in the
ideal scenario, the distributions of p values should follow a uniform distribution with a height
of 0.05. (A) Frequency of p values by GLMs involving clinical diagnosis. (B) Frequency of p

values by GLMs involving MMSE.
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Figure S11. Frequency of p values of CovBat for matched ADNI and MACC participants
by GLMs involving clinical diagnosis and MMSE based on 1000 permutations. Each line
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the
ideal scenario, the distributions of p values should follow a uniform distribution with a height
of 0.05. (A) Frequency of p values by GLMs involving clinical diagnosis. (B) Frequency of p
values by GLMs involving MMSE.

15


https://doi.org/10.1101/2024.01.18.574145
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.18.574145; this version posted January 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.
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Figure S12. Percentage of nominally significant p values (i.e., p < 0.05) from GLM with
MMSE after 1000 permutations of covariates. More specifically, each data point in the
violin plot represents a brain ROI volume. Percentage is calculated based on the number of
permutations in which p value of corresponding covariate was nominally significant (i.e., p <
0.05) divided by 1000 permutations. Percentage (vertical axis) is shown on a log scale. The
black solid line is the expected percentage (which is 0.05), while the grey dashed lines indicated
95% confidence intervals. (A) GLM analysis involving MMSE for matched ADNI and AIBL
participants. (B) GLM analysis involving MMSE for matched ADNI and MACC participants.
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Figure S13. Frequency of p values of coOVAE and DeepResBat for matched ADNI and
AIBL participants by GLM involving MMSE based on 1000 permutations. Each line
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the
ideal scenario, the distributions of p values should follow a uniform distribution with a height
of 0.05. (A) Frequency of p values for coVAE. (B) Frequency of p values for DeepResBat.
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Figure S14. Frequency of p values of coVAE and DeepResBat for matched ADNI and
MACC participants by GLM involving MMSE based on 1000 permutations. Each line
corresponds to a single brain ROI. P values were binned in intervals of 0.05. Therefore, in the
ideal scenario, the distributions of p values should follow a uniform distribution with a height
of 0.05. (A) Frequency of p values for coVAE. (B) Frequency of p values for DeepResBat.
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Figure S15. Percentage of nominally significant p values (i.e., p < 0.05) from GLM with
clinical diagnosis after 1000 permutations of clinical diagnosis only. More specifically,
each data point in the violin plot represents a brain ROI volume. Percentage is calculated based
on the number of permutations in which p value of corresponding covariate was nominally
significant (i.e., p < 0.05) divided by 1000 permutations. Percentage (vertical axis) is shown
on a log scale. The black solid line is the expected percentage (which is 0.05), while the grey
dashed lines indicated 95% confidence intervals. (A) GLM analysis involving clinical
diagnosis for matched ADNI and AIBL participants. (B) GLM analysis involving clinical
diagnosis for matched ADNI and MACC participants.

A. Only permute MMSE (ADNI-AIBL) B. Only permute MMSE (ADNI-MACC)
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Figure S16. Percentage of nominally significant p values (i.e., p < 0.05) from GLM with
MMSE after 1000 permutations of MMSE only. More specifically, each data point in the
violin plot represents a brain ROI volume. Percentage is calculated based on the number of
permutations in which p value of corresponding covariate was nominally significant (i.e., p <
0.05) divided by 1000 permutations. Percentage (vertical axis) is shown on a log scale. The
black solid line is the expected percentage (which is 0.05), while the grey dashed lines indicated
95% confidence intervals. (A) GLM analysis involving MMSE for matched ADNI and AIBL
participants. (B) GLM analysis involving MMSE for matched ADNI and MACC participants.
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