

1 *In vivo* rescue of arboviruses directly from 2 subgenomic DNA fragments

3 **Authors** : Maxime Cochin, Jean-Sélim Driouich, Grégory Moureau, Géraldine Piorkowski, Xavier
4 de Lamballerie, Antoine Nougairède

5 **Affiliations** : Unité des Virus Émergents, UVE: Aix Marseille Université, IRD 190, INSERM 1207,
6 Marseille, France

7 **Abstract**

8 Reverse genetic systems are mainly used to study RNA viruses and rescue recombinant strains
9 in cell culture. Here, we provide proof-of-concept for direct *in vivo* viral generation using the
10 'Infectious Subgenomic Amplicons' method. So far, this procedure allowed to rescue *in vitro* RNA
11 viruses, by the transfection of several overlapping subgenomic DNA fragments encoding the
12 entire virus genome.

13 We adapted and optimized this technique to generate a pathogenic tick-borne encephalitis virus
14 strain in mice. To define optimal protocol parameters, we injected intramuscularly different
15 amounts of DNA fragments associated, or not, to electroporation. The injection of only 1 μ g of
16 DNA fragments combined with electroporation resulted in an infection rate of 100%. Then, these
17 parameters were applied to rescue another flavivirus and an alphavirus.

18 This method provides a novel and efficient strategy for *in vivo* viral generation, which is typically
19 achieved by injecting infectious clones. Furthermore, as part of the development of DNA-
20 launched live attenuated vaccines, this approach, which also has the advantage of not injecting
21 vector DNA, may simplify the generation of attenuated strains *in vivo*.

22 **Introduction**

23 Development of reverse genetics has greatly facilitated the study of RNA viruses. These tools
24 enable viruses to be recovered and generated by transfecting nucleic acids encoding the entire
25 viral genome into eukaryotic cells.

26 *In vitro*, numerous reverse genetics methods can be used to rescue RNA viruses from DNA, the
27 most commonly used being the infectious clone method [1]. Briefly, it consists of a single circular
28 DNA molecule containing the complete genome of the studied virus, as well as transcriptional
29 regulatory sequences in the case of RNA viruses. The use of this type of construct requires a
30 bacterial amplification step that can be tedious, if not impossible, due to the toxicity of the viral
31 sequences themselves. To overcome this drawback, numerous methods have been developed
32 since the first “bacteria-free” reverse genetic method defined by Gritsun and Gould in 1995 [2,
33 3]. Two of these have recently been developed in our laboratory [4, 5]. The ISA method is based
34 on the division of the RNA virus genome into several overlapping subgenomic DNA fragments,
35 flanked by transcriptional regulatory sequences. Subgenomic fragments recovered by PCR
36 amplification are used to generate several RNA viruses by direct transfection into permissive
37 cells. By using several DNA fragments, these methods make it easy to introduce mutations into
38 the viral sequence, which could simplify the development of attenuated strains, potentially for
39 use in vaccinology [6, 7].

40 *In vivo*, the generation of viruses by the injection of nucleic acids into the cells of living organisms
41 was first studied following the discovery of the infectious power of Tobacco mosaic virus RNA
42 by Gierer and Schramm in 1956 [8]. Subsequently, advances in genetic engineering have enabled
43 the *de novo* generation of viral strains directly in animals from the inoculation of cloned viral
44 genomes within DNA vectors or directly from corresponding RNA transcripts produced *in vitro*
45 [9, 10]. In particular, these techniques have been used to develop live attenuated vaccines (LAV)
46 through the direct injection of DNA [11]. The stability and engineering potential of DNA may
47 make DNA-launched LAV easier to develop and distribute than conventional live attenuated
48 vaccines. Progress in DNA and RNA vaccine approaches has led to the development of numerous
49 tools to improve nucleic acid penetration into targeted cells. For example, chemical reagents
50 such as cationic lipids and polymers are commonly used in the transfection field and physical
51 methods such as electroporation is already employed in clinical trials on DNA vaccines [12-16].

52 In this work, using the tick-borne encephalitis virus (TBEV, Hypr strain) as a model, we provide
53 proof of concept for the direct *in vivo* application of a recently developed reverse genetics
54 method, the ISA method, by rescuing viral particles after injection of subgenomic amplicons in
55 mice. We also enhance the infection efficiency using an electroporation protocol or a simplified
56 reverse genetic system. Finally, we applied this method to rescue another flavivirus, the japanese
57 encephalitis virus (JEV) and an alphavirus, the chikungunya virus (CHIKV).

58 **Methods**

59 **Cells**

60 Baby Hamster Kidney 21 cells (BHK21 ; ATCC-CCL10) were grown at 37 °C with 5% CO₂ in
61 minimal essential medium (Life Technologies) supplemented with 5% heat-inactivated fetal calf
62 serum (FCS; Life Technologies), 1% penicillin/streptomycin (PS, 5000 U.mL⁻¹ and 5000 µg
63 mL⁻¹ respectively; Life Technologies), 1% L-Glutamine (Gln; 200 mmol.l⁻¹ ; Life Technologies)
64 and 1% Tryptose phosphate growth (Trp; Life Technologies).

65 **ISA method**

66 *Reverse genetic systems*

67 The reverse genetics systems based on the ISA method were created from the genomes of the
68 JEV_CNS769_Laos_2009 (KC196115), TBEV Hypr (Ref-SKU: 001V-03676; EVAg) and CHIKV
69 LR2006 OPY1 (EU224268). The complete genome of each virus is flanked by the human
70 cytomegalovirus (pCMV) promoter at the 5' end and by the hepatitis delta ribozyme followed by
71 the simian virus 40 polyadenylation signal (HDR/SV40pA) at the 3' end. For JEV and TBEV, DNA
72 fragments were synthesized *de novo* (Genscript) and amplified by PCR. For CHIKV, DNA
73 fragments were obtained from an infectious clone. The first fragment was directly amplified by
74 PCR from an infectious clone, which had previously been linearized and digested with the
75 restriction enzyme Dpn1 (New England Biolabs). Purification products of the first CHIKV
76 fragment, which contained a small amount of digested infectious clones, were verified to be non-
77 infectious when tested alone *in vitro*. Second and third fragments were first cloned into a
78 bacterial vector ("StrataClone Vector Mix amp/kan", Agilent) before being amplified by PCR, as
79 previously described [5].

80 *Overlapping DNA fragment preparation*

81 Each DNA fragments was amplified by PCR (Platinum™ SuperFi™ PCR Master Mix and Platinum™
82 PCR SuperMix High Fidelity; Invitrogen). PCR reactions were performed according to the
83 supplier's protocol. Briefly, 50µl reactions were conducted with 2µl of DNA template (1ng/µl
84 initial), 2.5µl of forward and reverse primers (10µM initial), 25µl of 2X Mastermix and 18µl of
85 H₂O in a thermocycler with recommended parameters. Details of primer sequences and PCR
86 cycles are available Table S1. DNA fragments were concentrated and purified by steric exclusion
87 using Millipore 2ml 100KDa columns (Amicon). Briefly, PCR products were placed in the
88 columns and diluted in water. DNA fragments were centrifuged at 3500RPM for 30min,
89 resolubilized in water and centrifuged again at 3500RPM for 30min. DNA fragments were
90 recovered by flipping purification columns and finally centrifuged at 1000G for 1min. Size of
91 DNA fragments were verified using 0.8% agarose gel electrophoresis and their quantity were
92 determined using a nanodrop device. DNA fragments are freeze at -20°C and equimolarly pooled
93 before *in vitro* and *in vivo* experiments.

94 *In vitro transfection and viral production*

95 To verify the infective power of the DNA fragments, 96-well plates containing approximately
96 80% confluent BHK21 cells were transfected with the produced DNA fragments. Briefly, 100ng
97 of equimolar mixture of the produced fragments were transfected using the Lipofectamine 3000
98 kit (Invitrogen) following the supplier's recommendations. Viral productions using DNA
99 fragments were performed as previously described and determination of infectious titers was
100 performed as described in the section "Tissue Culture Infectious Dose 50 (TCID50) assay" [5].

101 ***In vivo experiments***

102 Experiments were approved by the local ethical committee (C2EA—14) and the French
103 "Ministère de l'Enseignement supérieur et de la Recherche" (APAFIS#9327 and #38899) and
104 performed in accordance with the French national guidelines and the European legislation
105 covering the use of animals for scientific purposes. All animal experiments were conducted in
106 biosafety level (BSL) 3 laboratory.

107 *Animal experiments*

108 Three weeks old female C57BL6/J mice were provided by Charles River Laboratories (France).
109 Animals were kept in ISOcage P - Bioexclusion System (Techniplast) with unlimited access to
110 water/food and 14 h/10 h light/dark cycle. Animals were weighed and monitored daily to detect

111 the appearance of any clinical signs of illness/suffering. Virus infection, intramuscular injection
112 and electroporation were realized under general anesthesia (Isoflurane) and organs were
113 collected after euthanasia (cervical dislocation realized under anesthesia).

114 *DNA fragments formulation*

115 DNA fragments were formulated in different solutions. NaCl 0.9% was composed of sodium
116 chloride powder and Ultrapure water (Invitrogen). Tyrode's salt solution was realized using
117 Tyrode's salts powder (Sigma) and CaCl₂ (Invitrogen) dissolved in Ultrapure water. Lutrol
118 (Pluronic F-68, Invitrogen) formulation was diluted one day prior inoculation in, NaCl 0.9% or
119 Tyrode salts solution (2X).

120 *DNA fragment injection and viral infection*

121 Intramuscular injections of DNA fragments equimolar mixture were performed in posterior
122 tibial muscles of mice (2x50µl).

123 For electroporation, mice's right legs were depilated under anesthesia (Isoflurane) one day prior
124 inoculation. On the day of inoculation, 30µl of a hyaluronidase solution (0.4U/µl) diluted in a
125 Tyrode's salts solution was inoculated at 3 or 4 sites of the tibial muscle. Two to three hours
126 later, a 50µl Tyrode salt solution containing the DNA fragments was inoculated into the same
127 muscle. Immediately after DNA inoculation, a first 95 volts wave, composed of three 100ms
128 pulses separated by 1s interval, was applied on skin surface, around the inoculated muscle, and
129 followed by a second wave applied perpendicularly to the first one. Paracetamol was added to
130 the drinking water for 48 hours after electroporation to reduce animal pain at the injection site.
131 Electroporation was performed with the ECM 830 Square Wave electroporation system and
132 genetrodes (5mm, L-Shape), all provided by BTX group.

133 For infections using viral productions, animals were inoculated intraperitoneally with doses of
134 2.10⁵ TCID₅₀ for TBEV and 10⁴ TCID₅₀ for JEV and CHIKV. Viruses were diluted in a NaCl 0.9%
135 solution.

136 For JEV and CHIKV, animals were injected with 1mg of anti-IFNAR antibody (Anti-Mouse IFNAR-
137 1 – Purified *in vivo* GOLD™ Functional Grade; Leinco) the day prior and the day following
138 inoculations with infectious material.

139 A negative control group, named “Mock” was systematically used during animal experiments.
140 These groups were subjected to the same experimental protocol as the experimental groups,
141 except that they were inoculated with a saline solution.

142 *Organ collection*

143 Brain of each animal was collected at the time of sacrifice as well as the liver and the spleen of
144 the animals inoculated with DNA or viral form of CHIKV. These organs were then transferred in
145 a 2ml tube containing 1ml of a solution of HBSS 20% SVF and a 3mm tungsten bead. Organs were
146 crushed using a Tissue Lyser machine (Retsch MM400) at 30 cycles/s for 5min and centrifuged
147 at 6000RPM for 10min. The clarified supernatant was transferred into a 1.5 mL tube and
148 centrifuged at 12000RPM for 10 min. Serum was only collected for animals of electroporation
149 studies.

150 *Quantitative real-time PCR (RT-qPCR)*

151 The presence of virus in organs of sick animals was confirmed by RT-qPCR. Samples were
152 extracted using the QIAamp 96 DNA kit and RNase-Free DNase Set on the automated QIAcube
153 device (both from Qiagen), following the manufacturer’s instructions. Before extraction, 100µl
154 of each sample was inactivated in a S-Block (Qiagen) loaded with VXL lysis buffer containing
155 RNA carrier and proteinase K. As extraction control, all samples were spiked with 10 µL of
156 internal control (bacteriophage MS2) before acid nucleic extraction as previously described [17].

157 Real-time RT-qPCR assays (GoTaq 1-step qRT-PCR, Promega) were performed using standard
158 fast cycling parameters (i.e. 10 min at 50 °C, 2 min at 95 °C, and 40 amplification cycles at 95 °C
159 for 3 sec followed by 30 sec at 60 °C) and mix were composed of 3.8 µl of extracted RNA, 6.2 µl
160 of RT-qPCR mix. RT-qPCR reactions were performed on QuantStudio 12 K Flex Real-Time PCR
161 System (Applied Biosystems) and analyzed with the QuantStudio 12 K Flex Applied Biosystems
162 software v1.2.3. Details of detection system are presented in Table S2.

163 *Virus isolation assay*

164 The absence of infectious virus in samples from healthy animals was verified by virus isolation
165 assay. Briefly, 96-well plates of confluent BHK21 cells were inoculated with a 5-fold dilution of
166 organ clarified supernatants in culture medium (0% FCS; 1% SP; 1% Gln; 1% Trp) for 2h at 37°C
167 and 5% CO2. The inoculum was then replaced with medium containing FCS (2% FCS; 1%PS; 1%
168 Gln; 1% Trp) and incubated 5 days. Two additional blind passages were conducted using the

169 same protocol. The presence of a cytopathic effects (CPE) was checked at the 3rd passage and
170 the cell supernatants were analyzed by RT-qPCR.

171 *Tissue Culture Infectious Dose 50 (TCID50) assay*

172 Infectious viral yields in sick animal organs were assessed by cell culture titration. Infectious
173 titers were determined by inoculating confluent 96-well plates of BHK21 cells with 10-fold serial
174 dilutions of clarified organ supernatants. Each sample was first diluted 100-fold and then serially
175 diluted 10-fold in a 2% FCS medium. After incubation at 37°C and 5% CO₂ for 5 days, the
176 presence of a CPE was observed and infectious titers were estimated as TCID50/ml or TCID50/g
177 according to the method of Reed and Muench.

178 *Next generation sequencing (NGS) of the full-length genome*

179 Brain supernatant extracts were analysed by NGS and viral subpopulations up to 2% were
180 assessed. Viral RNA was retrotranscribed and amplified using the SuperScript™ III One-Step RT-
181 PCR System with the Platinum™ Taq High Fidelity DNA Polymerase Kit and according to the
182 supplier's recommendations. Details of the primers used and the amplification cycle are given in
183 Table S3. The PCR products were then purified using the Monarch® PCR & DNA Cleanup Kit (5
184 µg) according to the supplier's recommendations. Size of PCR products was checked by agarose
185 gel electrophoresis before sent to the laboratory sequencing platform.

186 After Qubit quantification using Qubit® dsDNA HS Assay Kit and Qubit 2.0 fluorometer (Thermo
187 Fisher) amplicons were sonicated (Bioruptor®, Diagenode, Liège, Belgium) into 250pb long
188 fragments. Libraries were built adding to fragmented DNA barcode for sample identification and
189 primers with Ion Plus Fragment Library Kit using AB Library Builder System (Thermo Fisher).
190 To pool equimolarly the barcoded samples, a real time PCR quantification step was performed
191 using Ion Library TaqMan™ Quantitation Kit (Thermo Fisher). Next steps included an emulsion
192 PCR of the pools and loading on 520 chips performed using the automated Ion Chef instrument
193 (Thermo Fisher), followed by sequencing using the S5 Ion torrent technology (Thermo Fisher),
194 following manufacturer's instructions. Consensus sequence was obtained after trimming of
195 reads (reads with quality score <0.99, and length <100pb were removed and the 30 first and 30
196 last nucleotides were removed from the reads) and mapping of the reads on a reference
197 (GenBank strain: U39292) using CLC genomics workbench software v.21.0.5 (Qiagen).
198 Parameters for reference-based assembly consisted of match score = 1, mismatch cost = 2, length
199 fraction = 0.5, similarity fraction = 0.8, insertion cost = 3, and deletion cost = 3. A de novo contig

200 was also produced to ensure that the consensus sequence was not affected by the reference
201 sequence. Quasi species with frequency over 2% were studied.

202 *In vitro replication fitness*

203 96-well plates of confluent BHK21 cells were infected with clarified brain supernatants at an
204 MOI of 0.01. Cells were infected with a 20 μ l inoculum for 2 hours. The inoculum was removed,
205 cells were rinsed with HBSS and then 150 μ l of 2% FCS medium was added to each well.
206 Replication kinetics were performed in triplicates for each sample and for a period of 3 days.
207 Each collection was performed on independent wells. Each day, 100 μ l of culture supernatant
208 was collected and analyzed by RT-qPCR as described in the section "Quantitative real-time RT-
209 PCR (RT-qPCR)". The detection and quantification system used is available in Table S4. RNA
210 quantities were determined using four serial dilutions of an appropriate quantified T7-
211 generated synthetic RNA standards.

212 *Graphical representations and statistical analysis*

213 Graphical representations and statistical analyses were performed with Graphpad Prism 9
214 (Graphpad software) except the calcul of 50% lethal dose (LD50) of DNA fragment that was
215 performed using the AAT bioquest online tool (www.aatbio.com/tools/ld50-calculator).
216 Statistical details for each experiment are described in corresponding Supplementary tables.
217 Survival curves comparison were obtained by Kaplan-Meier analysis and viral RNA yields were
218 analysed using a Two-way ANOVA tukey's multiple comparisons test. P-values lower than 0.05
219 were considered statistically significant. Experimental workflow and reverse genetic systems
220 schemes were created on biorender.com.

221 **Results**

222 **Proof of concept of the *in vivo* ISA method**

223 The efficacy of the *in vivo* application of the ISA method was evaluated by injecting overlapping
224 subgenomic DNA fragments, encoding the full-length genome of TBEV, directly into mice (Figure
225 1). Each subgenomic DNA fragment was *de novo* synthetised and amplified by PCR on a separate
226 plasmid. The full-length DNA genome is flanked by a eukaryotic transcription promoter at the 5'
227 end and by the hepatitis delta ribozyme followed by the simian virus 40 polyadenylation signal
228 (HDR/SV40pA) at the 3' end.

229 **(Figure 1)**

230 For this proof of concept, we used the Hypr strain of the TBEV (Figure S1). Groups of 6 mice were
231 inoculated in the posterior tibial muscle with 3 subgenomic DNA fragments, at different doses,
232 formulated in NaCl 0.9% solution. The mice were monitored daily for 21 days for signs of
233 infection. Survival curves were obtained on the basis of suffering criteria. The combined results
234 of two independent experiments are shown in figure 2.

235 **(Figure 2)**

236 Results showed that the *in vivo* ISA method is effective: inoculation of mice with DNA fragments
237 resulted signs of viral infection, in all groups, except the 0.04 μ g dose. At a dose greater than or
238 equal to 1 μ g, more than half the animals were infected. The rate of infection is proportional to
239 the quantity of DNA fragments inoculated (Figure 2). These observations allow us to establish a
240 50% lethal dose (LD50) of 0.67 μ g. The presence of infectious virus in the brains of sick animals
241 was confirmed by cell culture titration (Figure S2). The absence of virus in the brains of surviving
242 animals was confirmed by viral isolation assays at the end of follow-up.

243 In order to optimize the rate of infection in our model, other formulations were tested. The use
244 of solutions of Tyrode's salts or Lutrol 3.5mM, a cationic polymer, did not improve the rate of
245 infection (Figure S3).

246 We previously demonstrated that the fidelity of the PCR polymerase used to produce
247 subgenomic DNA fragments influences the genetic variability of the viral populations rescued *in*
248 *vitro* [18]. To investigate this question *in vivo*, we inoculated mice with 20 μ g of DNA fragments
249 amplified using a high-fidelity polymerase (Taq HiFi, 6 times fidelity of Taq polymerase) or a
250 super high-fidelity polymerase (Taq SuperFi, over 300 times fidelity of taq polymerase). We

251 sequenced the complete genomes of viruses present in the brains of sick mice and did not
252 observe major differences between groups. (Figure S4.A-B). We also evaluated the in vitro
253 replicative fitness of viruses collected from the brain of one animal in each group and did not
254 observe important differences once again. (Figure S4.C). Overall, there are no major differences
255 in genomic and fitness characteristics between viral populations generated using a high-fidelity
256 or super high-fidelity polymerase. For the following experiments, we decided to use the super
257 high-fidelity polymerase.

258 **Optimization of the *in vivo* ISA method: electroporation and reduction in the number
259 of DNA fragments**

260 To improve viral production using the *in vivo* ISA method, we explored two potential
261 optimization strategies: (1) coupling intramuscular injection with an electroporation protocol,
262 and (2) using two overlapping subgenomic DNA fragments (Figure S5).

263 Groups of 6 to 18 mice were inoculated with amounts of DNA fragments ranging from 1 to
264 0.02 μ g. For each experiment, a control group of 6 mice received 1 μ g of DNA fragments
265 intramuscularly. As previously, survival curves were obtained on the basis of suffering criteria
266 and the presence of infectious virus was confirmed in the brains of sick animals, as well as the
267 absence of virus in survivors (Figure S6 and S7). Based on these data, rate of infections (i.e. % of
268 confirmed infected animals) are summarized in Figure 3.

269 **(Figure 3)**

270 With equal amounts of DNA fragments, both electroporation protocol and the use of two DNA
271 fragments resulted in a better rate of infection. Rates of infections were 1.5 to 6.7 times higher
272 by using electroporation. This improvement was significant at all doses when using 3
273 ($p=[0.01;0.0059]$) and 2 ($p=0.0036$) fragments. Rates of infections were 1.5 to 10 times higher
274 when using two DNA fragments instead of three. This improvement was significant at 1 μ g and
275 0.5 μ g doses ($p\le0.0001$) when using IM injection and at 0.1 μ g and 0.02 μ g doses ($p\le0.0325$) by
276 using electroporation.

277 **Application of the *in vivo* ISA method to other viruses**

278 To evaluate the versatility of the *in vivo* ISA method, we used the same approach with two other
279 arboviruses: JEV and CHIKV (Figure S8).

280 One day after receiving anti-IFNAR antibody, groups of 12 animals were inoculated with 1 μ g of
281 DNA fragments by intramuscular route coupled with electroporation and control groups of 6
282 mice were inoculated with a dose of 10^4 TCID₅₀ of JEV or CHIKV produced *in vitro* by the ISA
283 method. Once again, survival curves were obtained in the basis of suffering criteria (Figure 4).

284 **(Figure 4)**

285 Results showed that the *in vivo* ISA method is fully applicable to other arboviruses: inoculation
286 of DNA fragments resulted in signs of infection in all groups. Injection of the JEV strain produced
287 *in vitro* caused infection in all animals, while only one survived in the group inoculated with the
288 CHIKV strain. Brains were recovered from all animals. Spleens and livers were also harvested
289 from CHIKV-infected animals. The presence of virus in organs of sick mice was confirmed by RT-
290 qPCR and quantified by cell titration (Figure S9).

291 **Discussion**

292 The ISA method is a simple procedure for rescuing viruses *in vitro* within days. It involves the
293 direct transfection of susceptible cells with overlapping subgenomic DNA fragments covering a
294 complete viral genome. In this study, we adapted this method to produce the Hypr strain of the
295 TBEV directly *in vivo* and demonstrated its effectiveness. Fragments of subgenomic DNA,
296 identical to those used *in vitro*, were directly inoculated intramuscularly into mice. This method
297 was effective to generate *de novo* infectious viruses in mice with doses ranging from 50 to 0.4 μ g
298 formulated in a 0.9% NaCl solution. We also varied the parameters of this protocol to conclude
299 that the use of an electroporation protocol and a lower number of fragments (2 instead of 3)
300 increased the rate of infection of the animals and achieved 100% efficacy with 1 μ g doses. By
301 combining these most effective parameters, we were able to rescue two flaviviruses and one
302 alphavirus: TBEV, JEV and CHIKV.

303 Numerous RNA and DNA viruses have already been produced *in vivo* following inoculation of
304 nucleic acid into animals. However, it generally involves inoculation of the viral genome as a
305 single molecule, an infectious clone in most cases. To our knowledge, two other studies have
306 reported the inoculation of fragmented genetic material to rescue viruses. In the 90's, Sprengel
307 et al. observed, in a duck model, the generation of infectious duck hepatitis B virus particles,
308 through recombination of DNA fragments [17]. In a more recent work, Willems et al. observed a
309 similar phenomenon with the bovine leukemia virus through inoculation of clones that were

310 individually non-infectious but capable of producing viable viruses when injected
311 simultaneously [19].

312 The main current application of DNA-launched *in vivo* infection is the development of new
313 strategy to deliver LAV. Several studies have shown that DNA coding for live attenuated viral
314 strains of several arboviruses, such as yellow fever virus and venezuelan equine encephalitis
315 virus, can induce a protective immune response in mice [20-32]. Some of these viruses were also
316 generate *in vivo* using an electroporation protocol following intramuscular inoculation of DNA.
317 However, these studies use an infectious clone as genetic material for transfection, which has
318 certain disadvantages for their production within a bacterial vector.

319 The ISA method has the capacity to generate viral strains quickly and easily *in vitro*. The use of
320 several subgenomic DNA fragments makes it possible to introduce mutations into the genome
321 of the virus under study, thus producing attenuated viral strains. We believe that the *in vivo*
322 transposition of this technique, presented in this study, will provide the same advantages. As
323 well as the ability to directly assess the immunogenicity of these attenuated viral strains, making
324 this a new tool for the development of LAV.

325 With the exception of transcriptional regulatory sequences, the genetic material used in the *in*
326 *vivo* ISA method corresponds solely to the complete genome of the virus of interest while
327 genomic sequences from other prokaryotes and eukaryotes were also administrated when using
328 an infectious clone. Indeed, this is part of the current debate on the injection of foreign genetic
329 material into humans. Nevertheless, this particularity does not prevent this method from being
330 carefully evaluated with a view to its safe use in humans.

331 Author contributions

332 MC, XdL and AN designed the paper. MC, GM, JSD and GP performed and analyzed experiments.
333 MC wrote the paper. AN and JSD reviewed the paper. MC, XdL and AN designed and supervised
334 experimental work. All authors have read and approved the submission of the manuscript.

335 Acknowledgements

336 We thank Rayane Amaral and Noémie Courtin (UVE; Marseille) for their technical contribution.
337 This work was supported by the ANRS-MIE (PRI project of the EMERGEN research program) and

338 by European Virus Archive Global (EVA 213 GLOBAL) funded by the European Union's Horizon
339 2020 research and innovation program under grant agreement No. 871029.

340 Conflict of interest

341 The authors have declared that no competing interest exists.

342 Data availability statement

343 Authors can confirm that all other relevant data are included in the paper and/or its
344 Supplementary information files.

345 References

- 346 1. Aubry, F., et al., *Flavivirus reverse genetic systems, construction techniques and applications: a*
347 *historical perspective*. Antiviral Res, 2015. **114**: p. 67-85.
- 348 2. Gritsun, T.S. and E.A. Gould, *Infectious transcripts of tick-borne encephalitis virus, generated in days*
349 *by RT-PCR*. Virology, 1995. **214**(2): p. 611-8.
- 350 3. Lindenbach, B.D., *Reinventing positive-strand RNA virus reverse genetics*. Adv Virus Res, 2022. **112**: p.
351 1-29.
- 352 4. Aubry, F., et al., *Single-stranded positive-sense RNA viruses generated in days using infectious*
353 *subgenomic amplicons*. J Gen Virol, 2014. **95**(Pt 11): p. 2462-2467.
- 354 5. Driouich, J.S., et al., *SuPReMe: a rapid reverse genetics method to generate clonal populations of*
355 *recombinant RNA viruses*. Emerg Microbes Infect, 2018. **7**(1): p. 40.
- 356 6. Klitting, R., et al., *Exploratory re-encoding of yellow fever virus genome: new insights for the design of*
357 *live-attenuated viruses*. Virus Evol, 2018. **4**(2): p. vey021.
- 358 7. de Fabritius, L., et al., *Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding*
359 *to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days*. PLoS One, 2016. **11**(8): p.
360 e0159564.
- 361 8. Gierer, A. and G. Schramm, *Infectivity of ribonucleic acid from tobacco mosaic virus*. Nature, 1956.
362 **177**(4511): p. 702-3.
- 363 9. Will, H., et al., *Cloned HBV DNA causes hepatitis in chimpanzees*. Nature, 1982. **299**(5885): p. 740-2.
- 364 10. Emerson, S.U., et al., *cDNA clone of hepatitis A virus encoding a virulent virus: induction of viral*
365 *hepatitis by direct nucleic acid transfection of marmosets*. J Virol, 1992. **66**(11): p. 6649-54.
- 366 11. Pushko, P., et al., *DNA-launched live-attenuated vaccines for biodefense applications*. Expert Rev
367 Vaccines, 2016. **15**(9): p. 1223-34.
- 368 12. Gigante, A., et al., *Non-viral transfection vectors: are hybrid materials the way forward?*
369 Medchemcomm, 2019. **10**(10): p. 1692-1718.
- 370 13. Atianand, M.K. and K.A. Fitzgerald, *Molecular basis of DNA recognition in the immune system*. J
371 Immunol, 2013. **190**(5): p. 1911-8.

372 14. Hannaman, D., et al., *A Phase 1 clinical trial of a DNA vaccine for Venezuelan equine encephalitis*
373 *delivered by intramuscular or intradermal electroporation*. Vaccine, 2016. **34**(31): p. 3607-12.

374 15. Vasan, S., et al., *In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine*
375 *candidate in healthy volunteers*. PLoS One, 2011. **6**(5): p. e19252.

376 16. Villemajane, J. and L.M. Mir, *Physical methods of nucleic acid transfer: general concepts and*
377 *applications*. Br J Pharmacol, 2009. **157**(2): p. 207-19.

378 17. Ninove, L., et al., *RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a*
379 *comprehensive study of more than 45,000 routine PCR tests*. PLoS One, 2011. **6**(2): p. e16142.

380 18. Driouch, J.S., et al., *Reverse Genetics of RNA Viruses: ISA-Based Approach to Control Viral Population*
381 *Diversity without Modifying Virus Phenotype*. Viruses, 2019. **11**(7).

382 19. Willems, L., et al., *In vivo infection of sheep by bovine leukemia virus mutants*. J Virol, 1993. **67**(7): p.
383 4078-85.

384 20. Tretyakova, I., et al., *Novel vaccine against Venezuelan equine encephalitis combines advantages of*
385 *DNA immunization and a live attenuated vaccine*. Vaccine, 2013. **31**(7): p. 1019-25.

386 21. Tretyakova, I., et al., *Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-*
387 *specific immune response in mice*. Virology, 2014. **468-470**: p. 28-35.

388 22. Tretyakova, I., et al., *DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and*
389 *elicits protective immune response in mice*. J Infect Dis, 2014. **209**(12): p. 1882-90.

390 23. Nickols, B., et al., *Plasmid DNA launches live-attenuated Japanese encephalitis virus and elicits virus-*
391 *neutralizing antibodies in BALB/c mice*. Virology, 2017. **512**: p. 66-73.

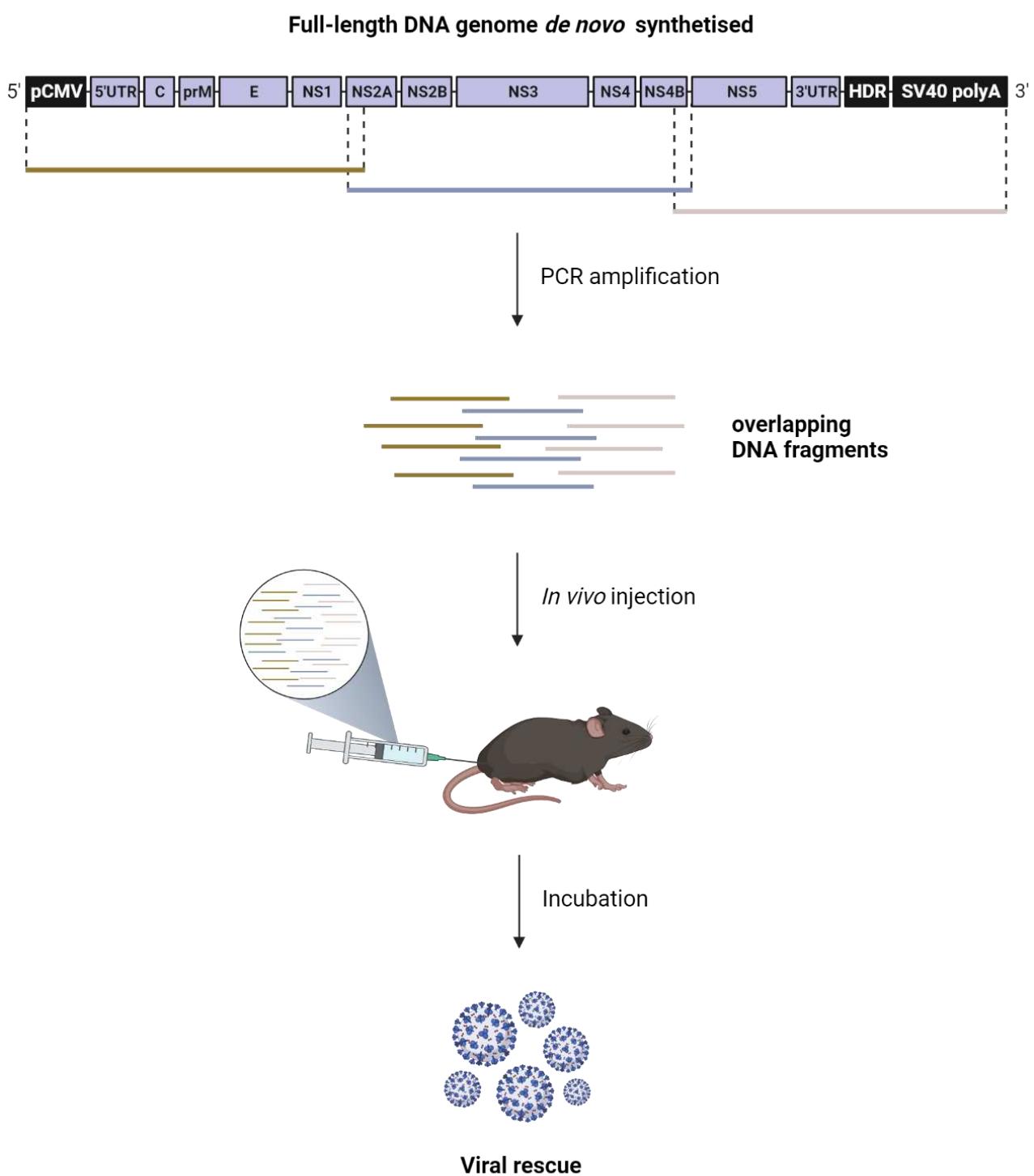
392 24. Tretyakova, I., et al., *Novel DNA-launched Venezuelan equine encephalitis virus vaccine with*
393 *rearranged genome*. Vaccine, 2019. **37**(25): p. 3317-3325.

394 25. Jiang, X., et al., *Molecular and immunological characterization of a DNA-launched yellow fever virus*
395 *17D infectious clone*. J Gen Virol, 2015. **96**(Pt 4): p. 804-814.

396 26. Zou, J., et al., *A single-dose plasmid-launched live-attenuated Zika vaccine induces protective*
397 *immunity*. EBioMedicine, 2018. **36**: p. 92-102.

398 27. Chin, W.X., et al., *A single-dose live attenuated chimeric vaccine candidate against Zika virus*. NPJ
399 *Vaccines*, 2021. **6**(1): p. 20.

400 28. Avila-Perez, G., et al., *In vivo rescue of recombinant Zika virus from an infectious cDNA clone and its*
401 *implications in vaccine development*. Sci Rep, 2020. **10**(1): p. 512.


402 29. Kum, D.B., et al., *Limited evolution of the yellow fever virus 17d in a mouse infection model*. Emerg
403 *Microbes Infect*, 2019. **8**(1): p. 1734-1746.

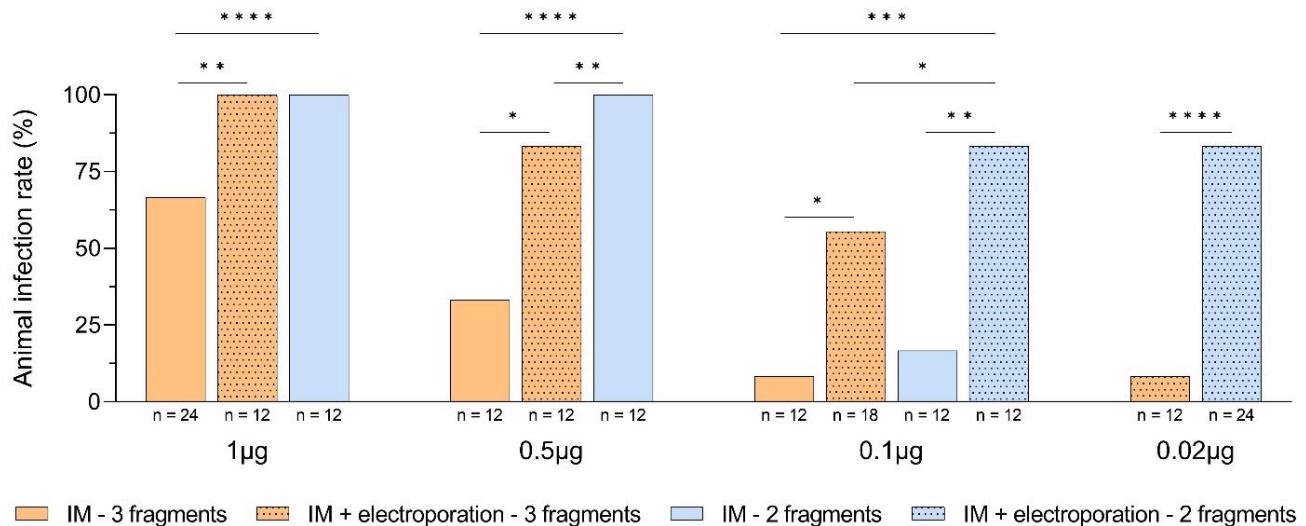
404 30. Yamshchikov, V., et al., *Development of a human live attenuated West Nile infectious DNA vaccine:*
405 *Identification of a minimal mutation set conferring the attenuation level acceptable for a human*
406 *vaccine*. Virology, 2017. **500**: p. 122-129.

407 31. Yamshchikov, V., M. Manuakhova, and E. Rodriguez, *Development of a human live attenuated West*
408 *Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine*
409 *design*. Virology, 2016. **487**: p. 198-206.

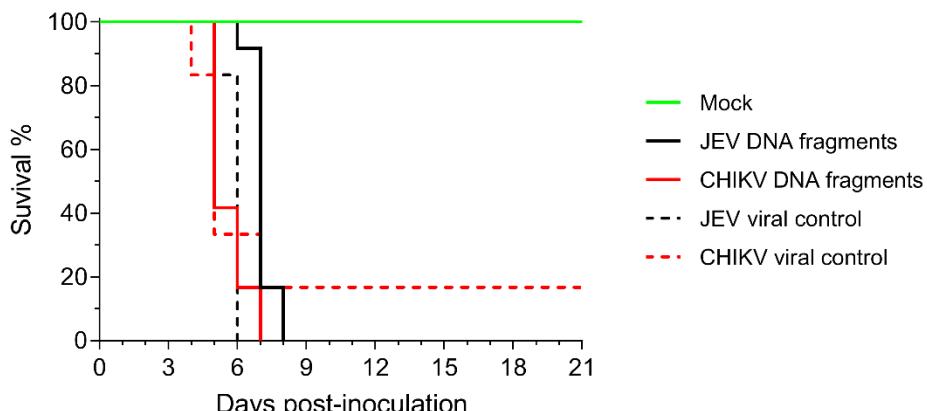
410 32. Hall, R.A., et al., *DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice*
411 *against the New York strain of West Nile virus*. Proc Natl Acad Sci U S A, 2003. **100**(18): p. 10460-4.

413 **Figures**

414

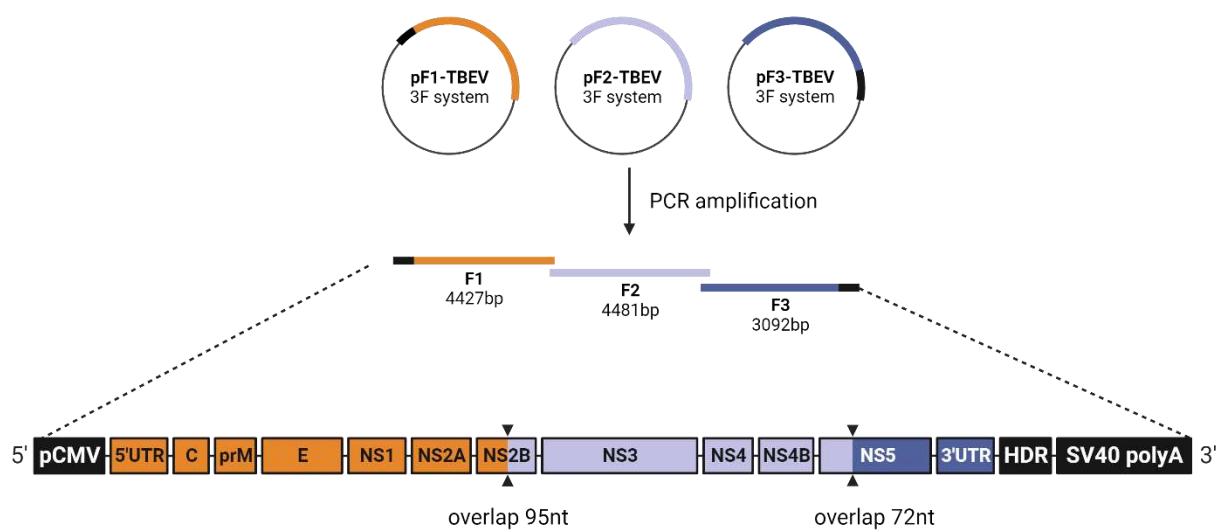

415 **Figure 1: *In vivo* ISA method:** The subgenomic DNA fragments amplified are equimolarly
416 pooled and directly injected into animals. After an incubation period, animals show signs of
417 viral infection that coincide with virus detection.

418

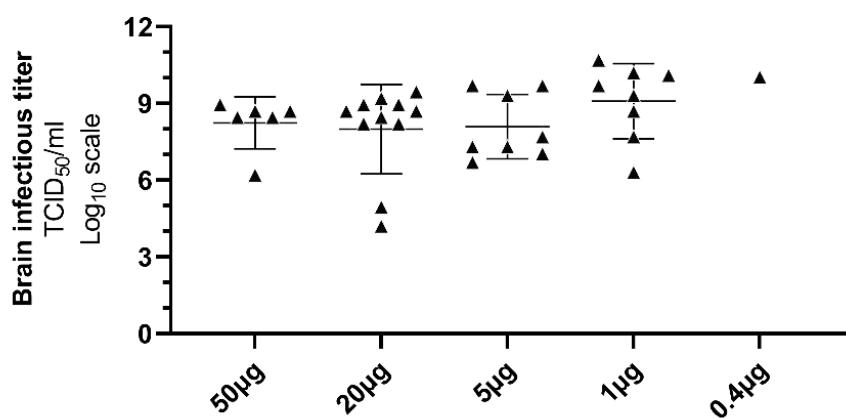

419 **Fig 2: Survival curves after the inoculation of TBEV DNA fragments *in vivo*.** Survival data
420 are presented as Kaplan-Meier curves. Survival curves represent results from six different doses
421 of DNA fragments formulated in NaCl 0.9%: 50, 0.4 and 0.04 µg (n=6 animals) and 20, 5 and 1 µg
422 (n=2x6 animals). Statistical analysis are presented in Table S5. Related infectious titers in brains
423 for these groups are presented in figure S2.

424

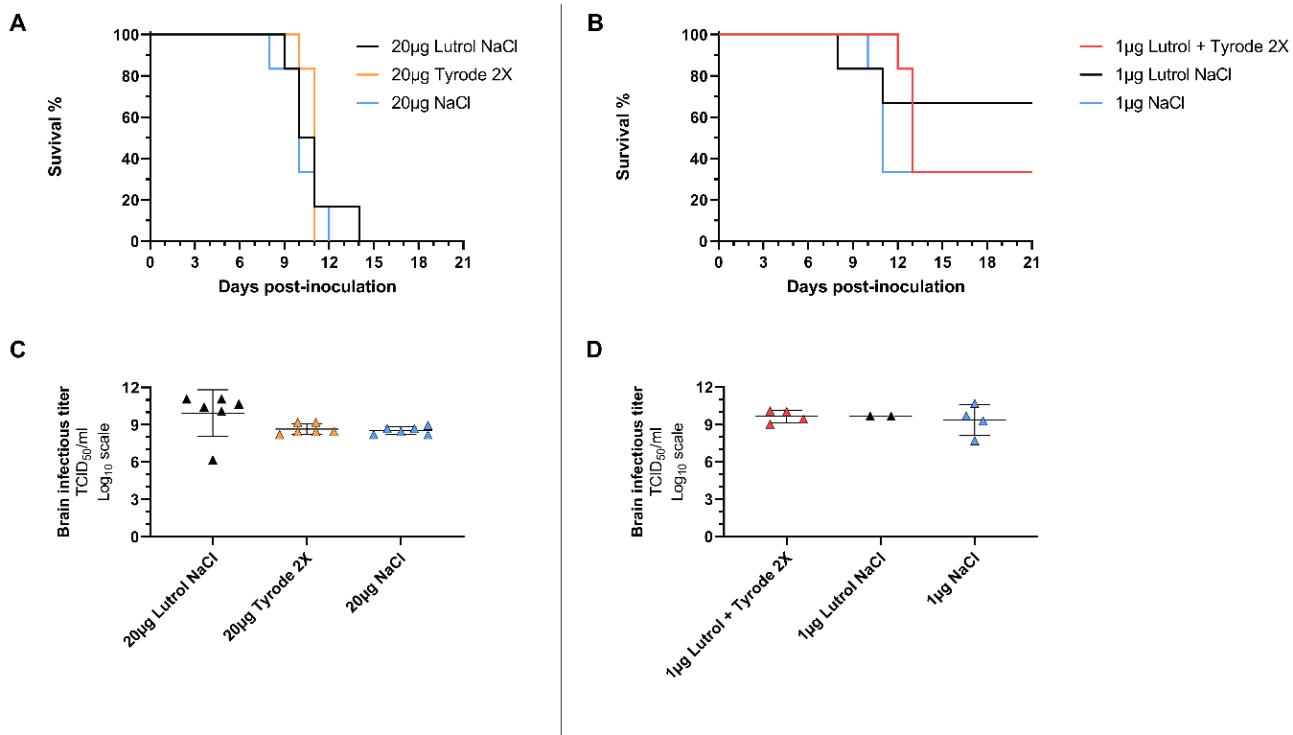
425


426 **Figure 3: Rate of infections after optimization of the *in vivo* ISA method.** Each bar represents
427 the rate of infection (i.e. % of confirmed sick animals) for each conditions explored. Number of
428 mice (n) in each condition is show below the X-axis. This figure shows data presented in Figure
429 S7 and Table S6. Statistical analysis were performed on survival curves in Figure S7 and
430 presented in Table S7. ****, ***, ** and * symbols indicated a significant difference with a p-value
431 ≤ 0.0001 and ranging between 0.0001–0.001, 0.001–0.01, and 0.01–0.05, respectively.

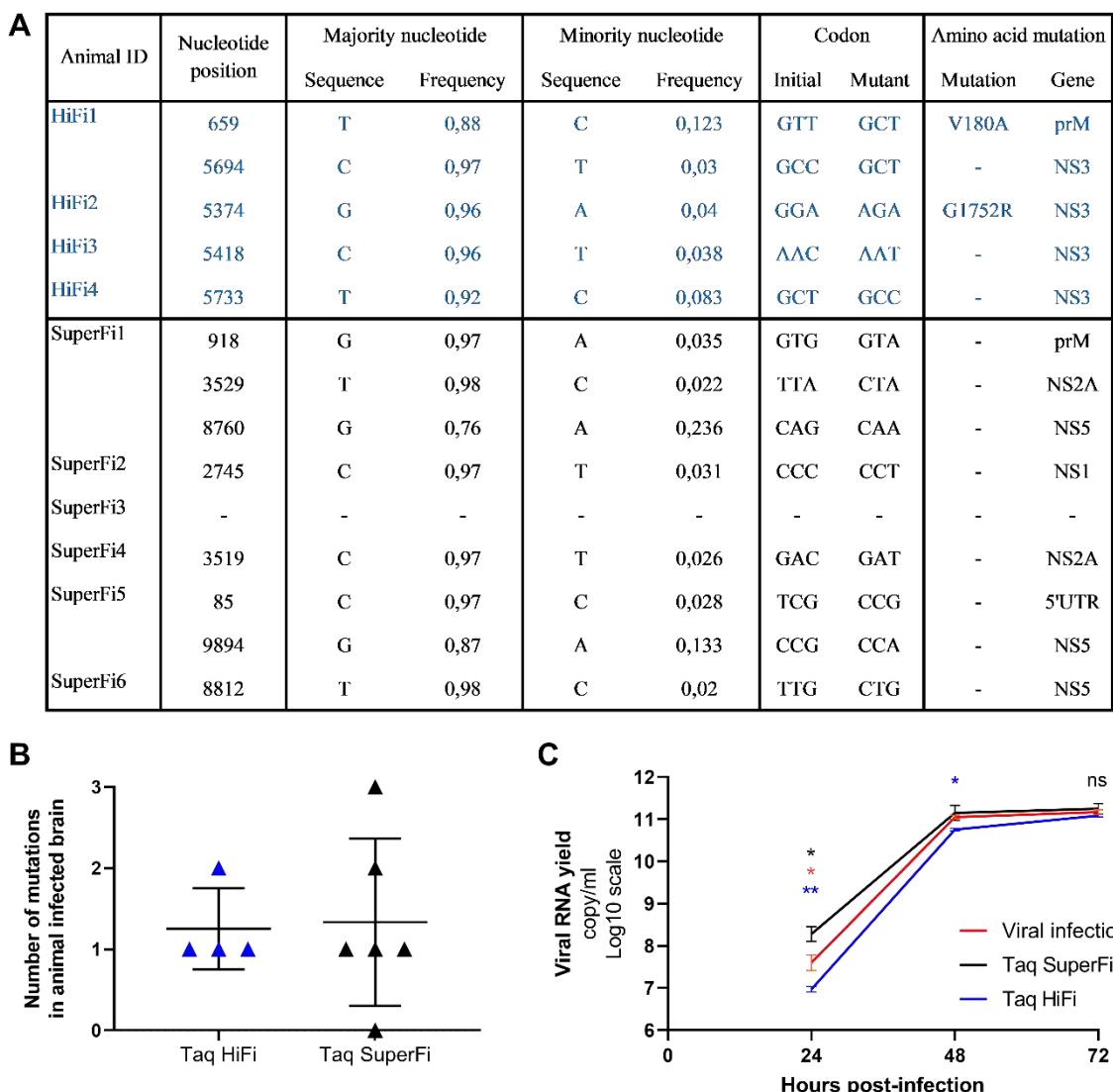
432


433 **Fig 4: Survival curves for JEV and CHIKV infected animals.** Survival curves of animals infected
434 by the inoculation of viral particles produced *in vitro* by the ISA method (dotted lane; n=12) or
435 by the *in vivo* ISA method (lane; n=6).

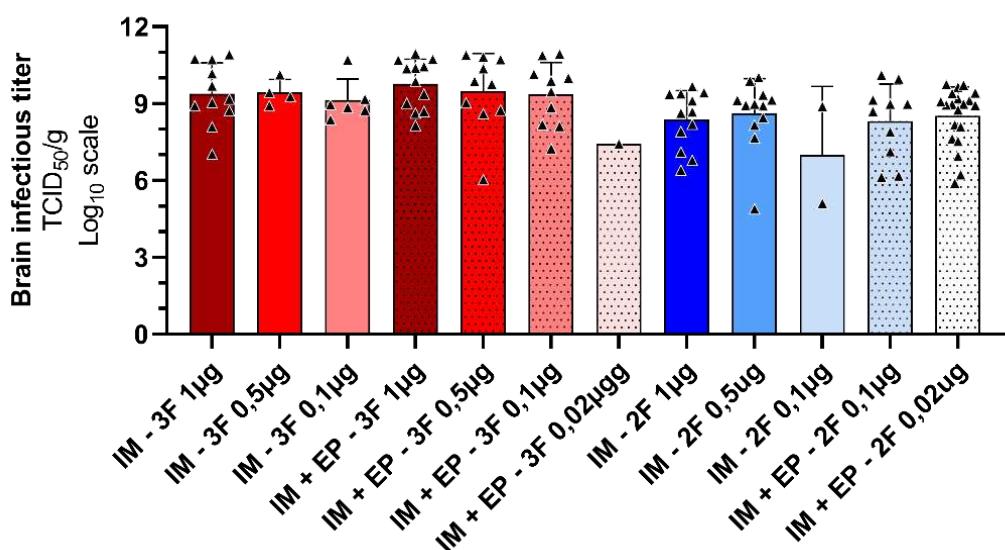
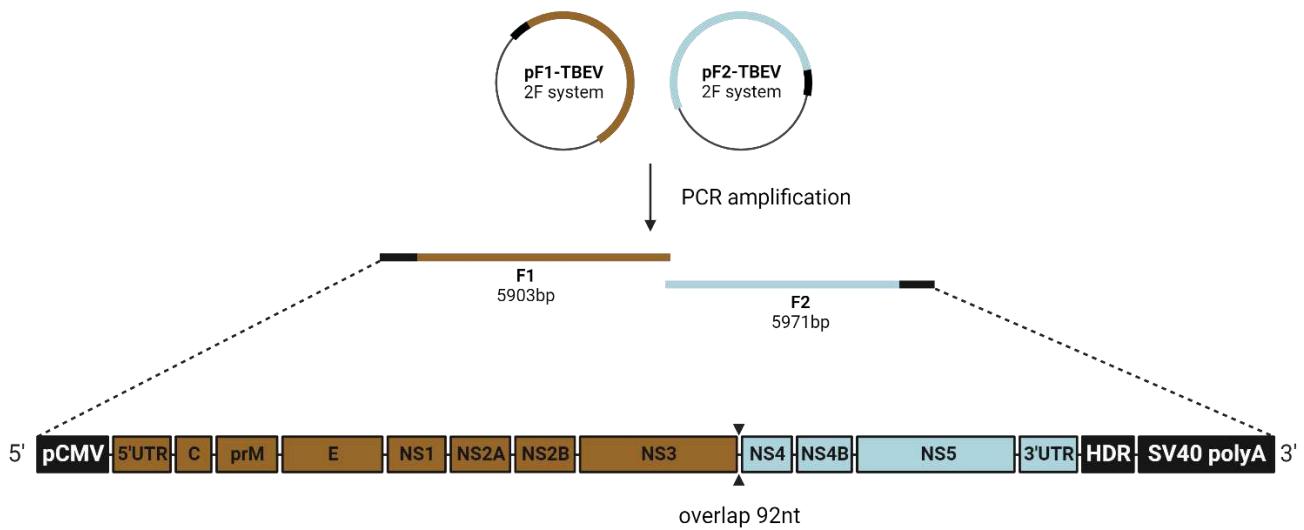
436 **Supplementary information**

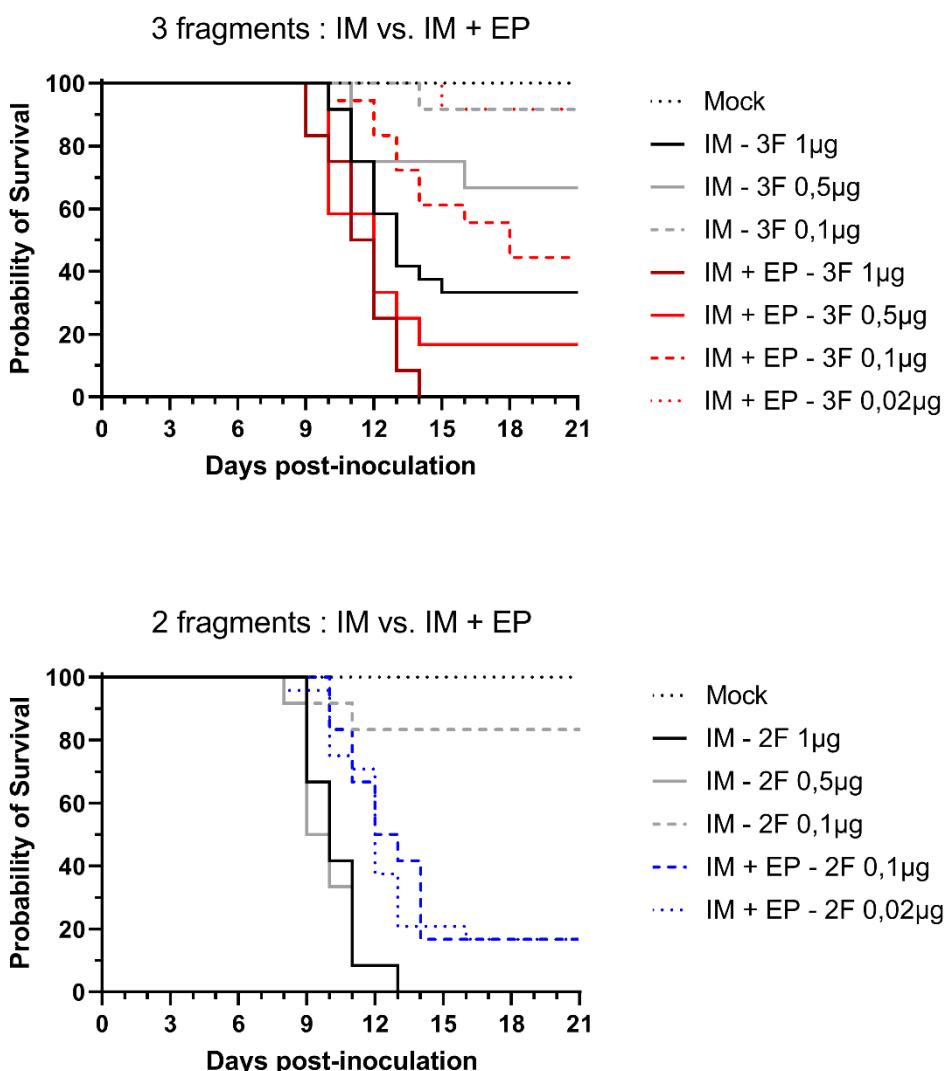

437

438 **Figure S1: Three-fragmented reverse genetic system used to generate the Hypr strain of**
439 **TBEV. DNA fragments were *de novo* synthetised and cloned into plasmid (Genscript).**


440

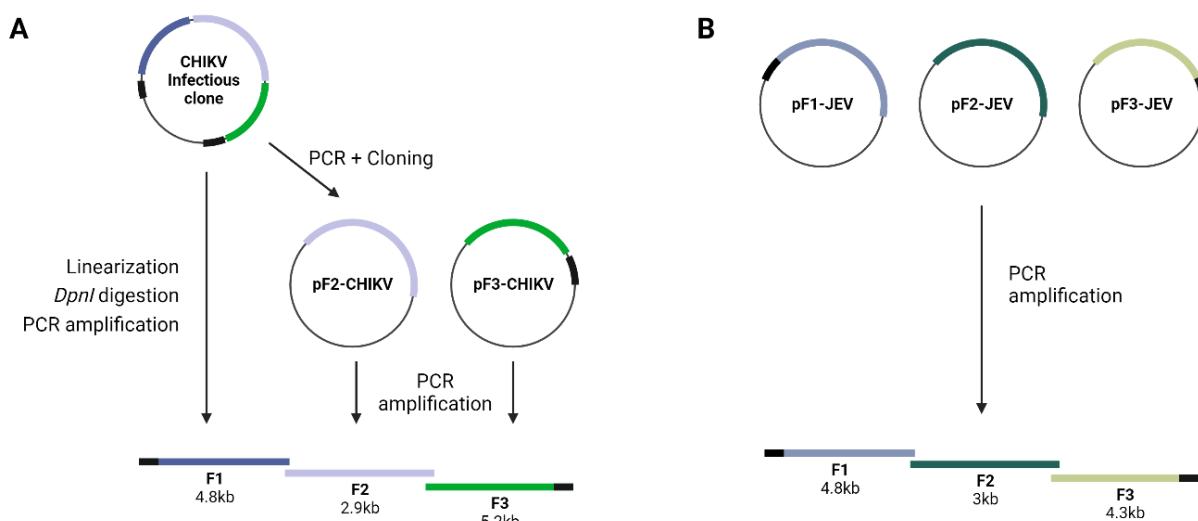
441 **Figure S2: Brain infectious titers of infected animals presented in figure 1.**



442

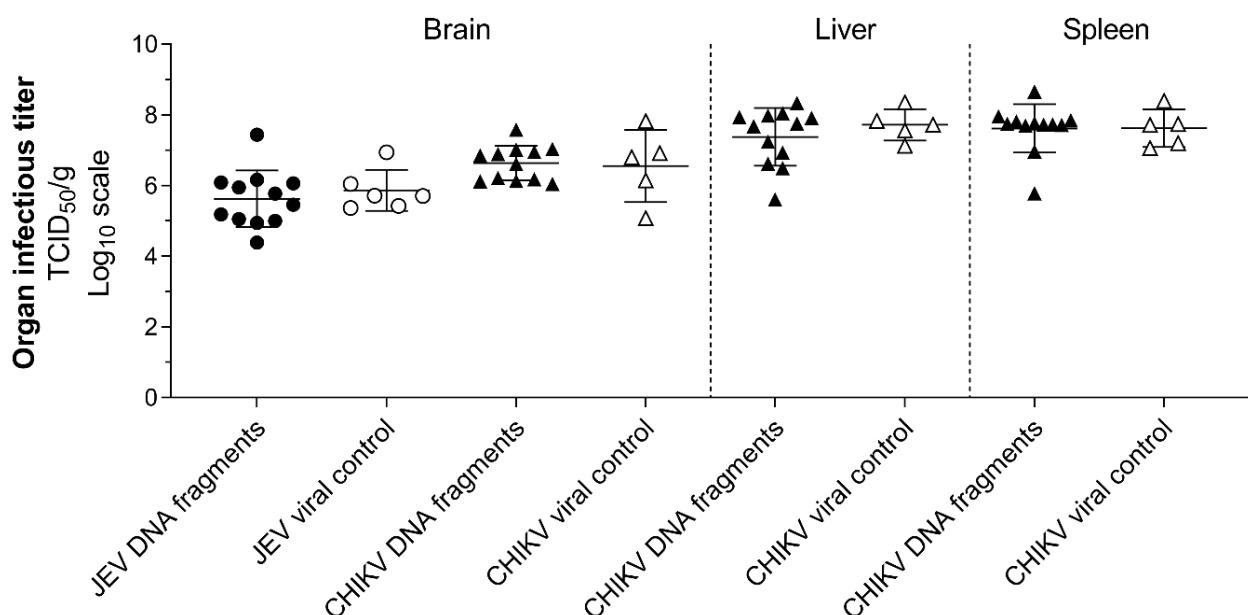

443 **Figure S3: Assessment of different formulations to improve viral rescue.** Figure presents
444 data obtained from 2 experiments with groups of 6 mice (n=6): survival curves (A-B) and
445 infectious titers in brain of infected animal (C-D).

446

447 **Figure S4: Viral rescue *in vivo* using different polymerase for DNA fragments**
448 **amplification.** Data represent mutational analysis by next-generation sequencing (A, B) and *in*
449 *vitro* replication fitness (D). *In vitro* replication fitness was conducted in triplicates on one animal
450 sample per condition. As a control, we also tested the replication fitness of a viral population
451 recovered from a clarified brain supernatant intraperitoneally infected with the Hypr strain of
452 TBEV (2.10^5 TCID₅₀). Statistical analysis of replication fitness assay is detailed in Table S8. ** and
453 * symbols indicate a p-value ranging between 0.001–0.01, and 0.01–0.05, respectively. Blue
454 digits correspond to comparison between “Taq SuperFi” and “Taq HiFi” values. Red digits
455 correspond to comparison between “Taq SuperFi” and “Viral infection” values. Black digits
456 correspond to comparison between “Taq HiFi” and “Viral infection” values.



464


465 **Figure S7: Survival curves used to present results in figure 3.** (IM = intramuscular; EP =
466 Electroporation; 3F = three-fragmented; 2F = two-fragmented). Graphs shows data pooled
467 from independent experiments. Statistical analyse are detailed in Table S7.

468

469

470 **Figure S8: Three-fragmented reverse genetic systems used to generate CHIKV and JEV.**
471 CHIKV (A) and JEV (B) reverse genetic systems.

472

473 **Figure S9: Infectious titers measured in organs of JEV and CHIKV infected animals.**

474 **Table S1: Primer pair sequences (A-D) and PCR cycle (E) to generate DNA fragments**
 475 **from reverse genetic systems.**

A.	TBEV 3-fragmented	Forward	Reverse
	1st Fragment	GAATAAGGGCGACACGGAAATGT	CGAGAACGACGATGCCTCCCC
	2nd Fragment	CGGAATAGTGGCATTGTTGTGGT	AGTTCCAACCCAGGCTTGTACC
	3rd Fragment	GTGTCAGGGCATACACCATTGGT	ACATCACATCGACAATTGCC
B.	TBEV 2-fragmented	Forward	Reverse
	1st Fragment	TGCGCAGCCCGGGTCAATATTGG	GGGAGGTTGGGTCGACTCTCTCCG
	2nd Fragment	CCCGGGCTATACGGAAATGGCCTAAAGA	CCGGGCTGCGCAATTACAAATAAGC
C.	JEV 3-fragmented	Forward	Reverse
	1st Fragment	GAATAAGGGCGACACGGAAATGT	GAAGAACATGATTCTGTAAGTGTCCAG
	2nd Fragment	CGTTGCCATGCCAATCTTAGCG	GGTCTTGCCTCCACCAA
	3rd Fragment	CAAATGAGTATGGAATGCTGGAAAA	TACTGGAACGTTGTGAGGGTAAAC
D.	CHIKV 3-fragmented	Forward	Reverse
	1st Fragment	CACCCAAGTGTCTCAGCATCT	CTGCTGGGTGACCTGTCCTA
	2nd Fragment	TGAGATGTTTCTATTCAACTT	AACAATGTGTTGACGAACAGAGTTAG
	3rd Fragment	CTCCCTGCTGGACTTGATAGAGG	TACTGGAACGTTGTGAGGGTAAAC
E.	98°C	30"	
	98°C	10"	
	62°C	10"	
	72°C	2'30"	
	72°C	5'	x40 cycles

476 **Table S2: Viral detection systems (A) and cycle (B) for viral detection.**

A.	Forward primer	Reverse Primer	Probe
TBEV Envelope	TGAGGGAGCGCGAAACTG	ATGAGGAGCCCCAAATTCAA	FAM-AATAACGCAGAAAGATTG-MGB
JEV Capsid	ACCCCGCGTATTCCCACTA	GCCGTCCAACAAGCTCATTAC	FAM-TGGGAGTGAAGAGGG-MGB
CHIKV Helicase	TGACCGCCATTGTGTCATCGTTG	ACATCACATCGACAATTGCC	FAM-CTGGAGACCTCGTGTAAACGTGCTTCA
		C	G-QSY
B.	50°C 10' 95°C 2' 95°C 3" 60°C 30"	x40 cycles	

477

478

479 **Table S3: Primer pair sequences (A) and RT-PCR cycle (B) for next generation
480 sequencing.**

A.	Forward	Reverse	B.	55°C	30'
1st pair	GCATTAGCAGCGGTTGGTTGA	CAGTGGGGTCAAACCTGTCCAC	94°C	2'	
2nd pair	TCGAGATGCCATGTGGAGAAG	ACATCACATCGACAATTGCC	94°C	15"	
3rd pair	TACTCAAAGAAATGGAGCGCGC	CCAACCCAGGCTTGTACCATC	62°C	30"	
4th pair	GCTGGCCTATTATGCGGCATC	GTGGCTCAGGGAGAACAGAAC	68°C	3'30"	
			68°C	5'	x40 cycles

481 **Table S4: Quantification system used to quantify viral RNA yields for in vitro kinetic
482 assay.**

Forward primer	Reverse primer	Probe	Quantified amplicon sequence
TggAYTTYAgACAggAAYCA ACACA	TCCAgAgACTYTg RTCD gTgTg	CCCATCACTCCWgTg TCAC	TAATACGACTCACTATAGGAgACATGA ggatcaccatgtGGACGAACAGATGAATA CATATACTCTGGACAGTGTGATGATGAT GAATTATAGCGGCCGTTATTATGCAAT GGAAAGAGGCGCACATGAggatcaccat gtTGGATTTCAGACAGGAACCAACACAT GAGTGTGACACAGGAGTGTGATGGGAGCA TTATAGCGGCCGCTTATTACAATCCACAC AGATCAAAGTCTCTGGAACATGAggatcac ccatgtGTCGGATTGGTGGCTCCATCTG GCTCCCTGTCCACCTTCCAGCAGATGTG GATCAGCAAGCAGGAGTATGAGTCG caataactagcataacccctgggcctaaacgggtcttgagg ggtttttgctga

483 **Table S5: Statistical analysis (Log-rank test) of survival curves from groups presented in
484 figure 1.**

P-value	50µg	20µg	5µg	1µg	0.4µg
50µg					
20µg	0.8099				
5µg	0.5008	0.2519			
1µg	0.0543	0.0199	0.3833		
0.4µg	0.009	0.0038	0.0475	0.0777	
0.04µg	0.0011	0.0006	0.0129	0.0171	0.3173

485 **Table S6: Survival data of animal experiments illustrated in figure 3 and figure S7.**

TBEV reverse genetic systems	3-Fragmented							2-Fragmented				
Inoculation pathway	IM			IM + EP				IM			IM + EP	
Dose (µg)	1	0,5	0,1	1	0,5	0,1	0,02	1	0,5	0,1	0,1	0,02
Number of animals (n)	24	12	12	12	12	18	12	12	12	12	12	24
Infection rate (%)	66,67	33,33	8,33	100	83,33	55,56	8,33	100	100	16,67	83,33	83,33
Death or sacrifice days (mean ± SD)	12 ± 1.39	11 ± 2.50	14	11.5 ± 1.56	11 ± 1.49	13.5 ± 2.62	15	10 ± 1.22	9.5 ± 1.38	10 ± 1.41	12 ± 1.60	12 ± 1.69

486

487 **Table S7: Statistical analysis (Log-rank test) of survival curves illustrated in figure S7**
488 and presented in figure 2.

P-value	IM 3F 1µg	IM 3F 0.5µg	IM 3F 0.1µg	EP + IM 3F 1µg	EP + IM 3F 0.5µg	EP + IM 3F 0.1µg	EP + IM 3F 0.02ug	IM 2F 1ug	IM 2F 0.5ug	IM 2F 0.1µg	EP + IM 2F 0.1µg
IM 3F 0.5µg	0,0804										
IM 3F 0.1µg	0,0014	0,1351									
EP + IM 3F 1µg	0,0059										
EP + IM 3F 0.5µg	0,142	0,01		0,3015							
EP + IM 3F 0.1µg	0,2131	0,344	0,0108	≤0,0001	0,0136						
EP + IM 3F 0.02ug	0,0013	0,1351	0,9755	≤0,0001	≤0,0001	0,0106					
IM 2F 1ug	≤0,0001			0,0506	0,0158						
IM 2F 0.5ug	≤0,0001	≤0,0001		0,0278	0,0069	≤0,0001		0,5841			
IM 2F 0.1µg	0,0145	0,4208	0,5118	≤0,0001	0,0028	0,0683	0,5118	≤0,0001	≤0,0001		
EP + IM 2F 0.1µg	0,3677	0,0156	0,0001	0,0718	0,5824	0,0325	≤0,0001	0,0017	0,0009	0,0036	
EP + IM 2F 0.02ug	0,1489	0,008	≤0,0001	0,1174	0,7955	0,0069	≤0,0001	0,0008	0,0003	0,001	0,7279

489 **Table S8: Statistical analysis (Two-way ANOVA, tukey's multiple comparisons test) of in**
490 **vitro replication fitness in figure S4.**

Comparison	Mean Diff,	P-value	Digits
H24			
Viral infection vs. Taq SuperFi	-0,6833	0,0217	*
Viral infection vs. Taq HiFi	0,6267	0,0352	*
Taq SuperFi vs. Taq HiFi	1,31	0,005	**
H48			
Viral infection vs. Taq SuperFi	-0,1	0,675	ns
Viral infection vs. Taq HiFi	0,2933	0,0025	**
Taq SuperFi vs. Taq HiFi	0,3933	0,1086	ns
H72			
Viral infection vs. Taq SuperFi	-0,08333	0,5782	ns
Viral infection vs. Taq HiFi	0,08333	0,1997	ns
Taq SuperFi vs. Taq HiFi	0,1667	0,2276	ns