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Abstract

Unraveling the mysteries of how humans effortlessly grasp speech amidst diverse
environmental challenges has long intrigued researchers in systems and cogni-
tive neuroscience. This study delves into the neural intricacies underpinning
robust speech comprehension, giving a computational mechanistic proof for the
hypothesis proposing a pivotal role for rhythmic, predictive top-down contex-
tualization facilitated by the delta rhythm in achieving time-invariant speech
processing. We propose a Brain-Rhythm-Based Inference (BRyBI) model that
integrates three key rhythmic processes — theta-gamma interactions for pars-
ing phoneme sequences, dynamic delta rhythm for inferred prosodic-phrase
context, and resilient speech representations. Demonstrating mechanistic proof-
of-principle, BRyBI replicates human behavioral experiments, showcasing its
ability to handle pitch variations, time-warped speech, interruptions, and silences
in non-comprehensible contexts. Intriguingly, the model aligns with human exper-
iments, revealing optimal silence time scales in the theta- and delta-frequency
ranges. Comparative analysis with deep neural network language models high-
lights distinctive performance patterns, emphasizing the unique capabilities of
our rhythmic framework. In essence, our study sheds light on the neural underpin-
nings of speech processing, emphasizing the role of rhythmic brain mechanisms
in structured temporal signal processing — an insight that challenges prevailing
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artificial intelligence paradigms and hints at potential advancements in compact
and robust computing architectures.

Keywords: rhythms, predictive coding, speech recognition, inference model, invariant
speech processing, auditory cortex

1 Introduction

Speech processing, with its inherent complexities and multidimensional nature, con-
tinues to be a focal point of cognitive neuroscience. Humans possess an extraordinary
ability to comprehend speech across a wide spectrum of voices, ranging from young
children to elderly individuals, from speakers of different languages to regional dialects,
and even across diverse socio-cultural backgrounds. Moreover, speech comprehen-
sion remains robust despite variations in speech rates, encompassing both rapid and
leisurely speech patterns.

However, the invariance of speech processing extends beyond robustness to different
voices spoken in noisy conditions. In multiple studies, speech comprehension was found
to be largely impervious to manipulations of speech structure, including interruptions
and segmentations. In experiments with interrupted speech [1], silent intervals masked
the speech at different time frequencies, i.e. the speech signal was interrupted by
silences. As a result, some elements of the speech were simply missing, the results
of the experiment showed that when the frequency of the interruptions were greater
than 1 Hz (1000 ms of signal, 1000 ms of silence) speech recognition recovers to nearly
control levels.

In another set of studies silent intervals of different durations (up to 500 ms) were
inserted into the speech. Here the segmented signal contained all the parts of the
original speech and no information was deleted [2]. In these experiments, subjects’
performance showed characteristic U-shaped curves, with the worst performance when
the silence durations were 100 ms whatever the silence-to-speech rate. In another
manipulation, speech was compressed by different factors. Subjects in these tasks
showed robust success in recognising speech as long as the compression factor was
less than 2. Speech comprehension dropped catastrophically when compression factors
were above 2 [3, 4]. Intriguingly, when this temporally squeezed and incomprehensible
speech was split into chunks interspersed with silences, recognition recovered [5]. Here,
the performance errors showed a characteristic U-shape with the fewest errors when the
overall natural duration of speech was restored by the silent insertions. These results
underline the importance of aligning the temporal scales of speech with endogenous
scales set by multiple brain rhythms in reconstructing meaning from the acoustic
speech flow. Understanding the mechanisms that enable humans to navigate through
this large parameter space presents an intriguing challenge and arguably, a litmus test
for the potential neural mechanisms underlying speech recognition processes. Notably,
how could we explain why speech comprehension is recovered by adding silences that
do not carry any information?


https://doi.org/10.1101/2024.01.17.575994
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.17.575994; this version posted January 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

We propose that a compelling explanation could be constructed by leveraging a
prominent hypothesis asserting that the hierarchical rhythmic structure inherent in
meaningful speech significantly contributes to robust and temporally invariant com-
prehension [6-9]. In fact, the hierarchical configuration of natural language, that in
turn constrains the structure of speech, appears to be pivotal for the efficiency of
human speech processing [10-14]. The hierarchical organization of speech spans all
linguistic levels, from the phonetic structure of words to the highest tiers of communi-
cation [15]. Phonemes coalesce into syllables and words, while the syntactic hierarchy
orchestrates the assembly of words into phrases, further evolving into sentences. This
line of reasoning prompts a fundamental inquiry: What neural mechanisms underpin
the harnessing of the hierarchical nature of speech for achieving effective processing,
encompassing tasks such as parsing and comprehension?

Brain rhythms emerge as a compelling candidate for the neural mechanisms capital-
izing on the intrinsic hierarchical rhythmic organization of speech [16-19]. Substantial
empirical evidence supports the notion that rhythmic brain activity maintains a hier-
archical structure during the processing of speech, and this hierarchy aligns with
the inherent structure of speech itself [20-22]. It is thus plausible to posit that the
rhythmic structure of speech interacts with the scaffold of endogenous brain rhythms,
thereby establishing temporal processing windows. These windows, in turn, facilitate
the real-time processing and comprehension of incoming auditory signals [19, 23].

A natural mechanism facilitating temporal windowing involves the entrainment or
synchronization of neural activity with a rhythmic stimulus, such as speech. In the pri-
mary auditory cortex, for instance, the theta rhythm is acknowledged to be entrained
by the speech envelope, thereby encoding syllabic information [23, 24]. Concurrently,
oscillations in the gamma range embedded within a theta-cycle have been demon-
strated to encode phonemes [25, 26], giving rise to a theta-gamma code for syllables
[17, 27]. Previous investigations have proposed that the theta-gamma code orchestrates
a bottom-up information flow, commencing from sounds captured by the cochlea and
converging in the primary auditory cortex [5, 28, 29|. This rhythmic windowing, char-
acterized by theta-gamma dynamics, may confer robustness to speech parsing in noisy
and compressed speech scenarios [5], with comprehension recovery contingent on the
reinstatement of the natural syllabic rate based on feedforward gamma-coding [29, 30].

However, this conceptual model falls short in elucidating how such recovery aligns
with human performance in experiments involving perturbed speech comprehension
under interruptions and segmentation [1, 2]. We propose that a comprehensive expla-
nation needs to to take into account the influence of top-down factors like semantics
and context [31-33].

Hence, as a key conceptual proposition in this paper, we suggest that a top-down
predictive information flow modulated by rhythm can mitigate? the deterioration of
speech signals and improve processing reliability in acoustically challenging environ-
ments [34-39]. More specifically we hypothesize that the information from multiple
syllables is predictively combined into a semantic contextual representation (e.g. a
word or a prosodic phrase) via a process indelibly intertwined with the delta rhythm
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[40]. Nevertheless, the computational mechanisms governing the formation of such pre-
dictive representations and how this process distinctly contributes to speech processing
in the brain remain open questions.

The delta rhythm, being the slowest rhythm observed in the auditory cortex during
speech processing, is experimentally observed in various aspects. Studies suggest that
the functions of the delta rhythm include tracking of prosody [41-45], chunking of
words and phrases [46, 47|, error resolution [48, 49|, multiscale integration [40, 50]
and top-down modulation of speech processing [35, 51, 52]. Existing models primarily
employ the delta rhythm as a mechanism for chunking words and phrases [53, 54],
overlooking testing its hypothesized role in top-down contextual influence.

To illustrate the integration of rhythm-based bottom-up signals with top-down
contextual influences, forming resilient and consistent speech representations and pro-
cessing, we propose the Brain-Rhythm-Based Inference model (BRyBI). BRyBI mech-
anistically incorporates diverse brain-rhythm data and accommodates time-invariant
speech recognition. In this model, hierarchically organized interacting rhythms actively
sustain the flow of both top-down and bottom-up information during the infer-
ence process: theta-gamma interactions delineate and parse the phoneme/syllable
sequences, while the delta rhythm dynamically generates the inferred word/prosodic-
phrase context. We demonstrate how these processes facilitate speech recognition
even in complex conditions. Additionally, we elucidate the mechanisms underlying the
remarkable recovery of comprehension of perturbed speech when specific time-scales
of the spoken rhythm are re-established. Our contention is that rhythmic predictive
top-down contextualization plays a pivotal role in explaining time-invariant speech
processing. Furthermore, our model predicts the restoration of comprehension in com-
pressed speech through the re-chunking of words and phrases, emphasizing the critical
dependence on top-down delta-dependent processes.

2 Results

2.1 Conceptual structure of the rhythm-based bayesian
inference computation for speech processing

Our proposed model is fundamentally rooted in the predictive coding framework,
wherein prior information or beliefs are encoded within an internal model of the envi-
ronment, often referred to as a generative model (GM) [55, 56]. This internal model
actively influences perception [57]. The GM generates predictions of sensory signals,
and these predictions, or beliefs, are subsequently compared with the actual incoming
peripheral signals. The resultant comparison yields prediction errors that traverse the
model hierarchy to update the internal states within the GM. Multiple studies have
demonstrated that the predictive coding framework provides a plausible paradigm for
audio perception [58]. Firstly, it facilitates the establishment of a hierarchical struc-
ture that emphasizes linguistic organization and the hierarchy of speech processing
[14, 59]. Secondly, states in a predictive model are dynamic, reflecting the nature
of brain processes. Thirdly, predictive coding integrates both top-down predictions
and bottom-up mismatch errors. Lastly, it enables real-time speech parsing. Recent
advances in predictive coding models have demonstrated a balanced implementation
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of linguistic aspects and the mechanistic plausibility of biophysical algorithms for
speech processing [29, 60-62]. Consequently, we have implemented the BRyBI model
as a predictive coding model, wherein bottom-up and top-down rhythm-based pro-
cesses are structured along a theta-based code for syllable parsing (bottom-up) and a
delta-based top-down predictive code for phrase parsing and comprehension.

We conceive the rhythm-governed Bayesian inference in BRyBI to be architected
as a two-level GM model . The bottom and top levels of the BRyBI parallel speech pro-
cessing are in the primary auditory cortex (pAC) and the associative auditory cortex
(aAC), respectively (Fig. 1). At the top level, the delta rhythm provides the temporal
scaffold for semantic context formation, while coupled theta and gamma rhythms at
the bottom level encode the acoustic signal of speech, depending on the context. The
context represents the prosodic phrases and sets predictions for the sequence of the
constituent syllables and phonemes.
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Fig. 1 The BRyBI model incorporates predictive Bayesian inference for rhythm-based dynamical
speech formation. (A) A conceptual illustration of the general BRyBI structure. The hierarchy com-
prises the level of the primary auditory cortex (pAC) and that of associative auditory cortices (aAC).
At the aAC level, the delta rhythm governs semantic context formation as an expected word or
prosodic phrase and passes it to pAC level, where coupled theta-gamma rhythms encode the acous-
tic signal conditioned by the context. The pAC level combines information from both top-down and
bottom-up flows, creating a theta-code of speech. The theta-gamma code is transformed into a spec-
trogram that is compared with the input signal from the midbrain. The prediction error is passed
bottom-up and used to infer the next prediction. Blue arrows represent the top-down flow in a gen-
erative model, and red arrows represent the bottom-up error flow. (B) Implementation scheme of
the BRyBI GM. Hidden states are represented as dynamical variables (gray background), and causal
states are their nonlinear transformation. The top level implements a context phrase and delta rhythm,
which, after nonlinear transformation, provide a window for prosodic context formation. Information
about context is then passed to pAC level and used for theta-gamma rhythm and syllable dynam-
ics. At this level, phonemes, syllables, and modulation signals (rhythm of speech, analogue of speech
envelope) are used to generate a spectrogram, which, together with the speech rhythm, is compared
with the input signal. The generative model supports top-down information flow (black arrows), while
the inference provides bottom-up error passing (red dashed arrows) through the hierarchy.
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The delta rhythm provides the temporal scaffold for contextual information in the
BRyBI model. In general, the role of the delta rhythm in speech processing is not well
established. Current research points to the delta rhythm being entrained by the speech
envelope [41-45]. Entrainment is considered a mechanism for word and phrase parsing
[46, 47]. However, the delta rhythm can also endogenously arise from a theta-syllable
string, thus being involved in a “chunking” process that creates word-level chunks from
syllables units [18]. The delta rhythm is observed at a higher hierarchical level and can
correlate with error resolution [48, 49|, top-down information passing [35, 37, 51, 52]
and multiscale integration [40, 50, 63]. Based on these proposals, we posit that the
context of words and prosodic phrases is influenced by top-down mechanisms regulated
by the delta rhythm [43, 53]. Implicitly, the BRyBI model implements delta rhythm
for temporal segmentation and context formation.

We incorporate a theta-gamma code for syllables in our BRyBI model in accordance
with numerous experiments [23, 24, 64—67|, where the theta rhythm was shown to be
entrained by the speech envelope and thus synchronized with syllables, and the gamma
rhythm that is coupled with theta rhythm, encodes phonemes. In the BRyBI model,
the theta rhythm is also entrained by a rhythm of syllables and performs temporal
segmentation of the continuous signal into the syllables. The coupled gamma rhythm
is involved in phoneme coding (see Methods: Bottom Level). A similar realization of
these mechanisms, where the coupling of theta and gamma rhythms improved speech
processing, was proposed [29].

The syllable formation dynamics are rhythmically controlled by theta rhythm
(Fig. 2D) in an interactive activation process [68, 69]. Decoded from the spectrogram,
phonemes activate the corresponding elements in the network that represent syllables
at the bottom level. At the same time, the top level of the processing hierarchy creates
a pattern of possible and probable syllable sequence transitions for the current word
or phrase. Let us consider an illustrative example, recognizing the sentence “This was
easy for us”. This sentence can be seen to consist of two phrases: “This was easy” and
“for us” (Fig. 2A, Fig. 2D). The first set of phonemes activates the syllable “d1s”. For
the next two syllables, the system has zero uncertainty (100% of confidence), and the
context dictates the activation of the syllables “woz” and then “zi” even if the signal
of phonemes is distorted or isn’t received. For the next syllable, uncertainty is 50%
(in this example, there are two ways: to activate a syllable “zi” again or to finish the
phrase with a pause denoted by “#”), so here the system reconstructs the spectrogram
more carefully. The theta rhythm is synchronized with a speech envelope more pre-
cisely for the bigger uncertainty (Fig. 2C). And finally, the system receives the next
phoneme, “z”, and can follow a certain context of the phrase “this was easy" with 100%
confidence. This example of reconstruction is simplified as much as possible in order
to demonstrate the mechanism behind it.

To drive the model, we use both the spectrogram and syllable/prosodic envelopes
(high-pass and low-pass envelopes, respectively) as inputs to the bottom level. The
original dataset is a preprocessed TIMIT dataset [70]. Using the matlab code [29], we
extracted the 6-channel spectra from the sentences ass described in Section Methods:
Dataset.
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Once the model constructs a candidate speech signal, the DEM algorithm is used
to infer and optimize the beliefs in the generative model [57]. Beliefs here are the
states of all variables in GM, including candidates for current context (phrases and
words), syllables, phonemes, and the phase of delta and theta rhythms (see details in
Methods). During inference, the trajectories in the GM are reconstructed, and inferred
phrases and syllables are compared to ground truth phrases and syllables (Fig. 2A).
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Fig. 2 General performance of the BryBI model for natural speech (A) An example of speech recog-
nition by the model for the test sentence: “this was easy for us”. This sentence consists of two prosodic
phrases: “this was easy” and “for us”. The top panel represents dynamics for phrase probabilities.
During online speech recognition, BRyBlaccumulates evidence for the current phrase and infers prob-
ability for each phrase at the top level. Similar accumulation happens at the bottom level for syllable
probabilities (middle panel). The green background represents correctly recognized phrases and sylla-
bles. The red background indicates errors. Line colors correspond to phrases and syllables (signed on
x-axes). The bottom panel shows the corresponding spectrogram. (B) The fraction of errors in words
and syllables depends on uncertainty (represented as numbers of increasing intervals; see Supplemen-
tary for details). As uncertainty grows, speech recognition errors increase, though growth is bounded
at an uncertainty unit value of 6 due to the theta rhythm locking mechanism. (C) Rhythm decoupling
depends on uncertainty. With increased uncertainty, stronger theta coupling with the speech envelope
enables reliable phoneme decoding, facilitating speech recognition in unpredictable/noisy conditions.
At low certainty levels, the context aids predictions (delta-speech coupling relatively pronounced),
but theta rhythm locking is not needed. (D) An example of a syllable network that is implemented
at the bottom level of BRyBI. Each node represents a syllable, and connections represent possible
transitions between syllables. Weights on connections represent confidence in the transition. The sign
“#” is a pause that separates words and phrases. (E) Surprise as ERP in BRyBI. In cases of incorrect
choice of phrase with high confidence (low uncertainty), a prediction error is passed bottom up and
causes a change in the chosen phrase. The deviation from the chosen trajectory of dynamic variables
occurs at aAC level due to noise addition. The noise amplitude correlates with the deviation and,
thus, correlates with an error in the chosen semantic context.
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2.2 Rhythm-regulated generative Bayesian inference model
(BRyBI) recovers speech despite temporal and content
perturbations

Speech recognition by the BRyBI model demonstrates good accuracy (15% word
errors for 100 sentences) for natural speech input (see Fig. 2A for an example). The
top-down process plays a crucial role in shaping the selection of subsequent sylla-
bles and phonemes in the model. When context is poorly established, predicting
the next syllable becomes challenging, requiring increased sensitivity in theta-syllable
synchronization [49, 71]. Such interplay between rhythms is possible through the pre-
dictive coding framework. Figures 2B and 2C demonstrate the model’s performance
in speech recognition and rhythm entrainment, depending on the uncertainty of the
next phoneme. For higher uncertainty, the theta rhythm follows a syllabic rhythm pre-
cisely, enabling robust speech perception. As the uncertainty of the future phoneme
increases, the speech recognition error increases (Fig. 2B). Figure 2B shows that the
growth of the error is slowed down in the middle when the uncertainty unit has a
value of 6. It is caused by the theta rhythm locking mechanism. When the uncertainty
of the next phoneme is small, context is easily formed and used for predictions. In
this case, theta rhythm locking is not effective according to the energy minimization
hypothesis [34, 50] (Fig. 2C). As the uncertainty increases, phonemes from the spec-
trogram need to be decoded more reliably, and the theta coupling with the speech
envelope becomes stronger. This enables speech recognition even in conditions of great
uncertainty. An erroneous context prediction leads to a mismatch between the percep-
tion and the prediction processes. To rectify the error and select a new context in the
model, information about the mismatch is relayed back up the hierarchy. The error is
detected as a surprise at the top level (Fig. 2E), and this increases noise amplitude at
the top level in order to drive explorative context switching. This increase in activity
at the top of the model hierarchy is considered to be similar to error-related potentials
in associative auditory cortical activity [34, 48].

BRyBI is largely invariant to the speaker’s voice characteristics, e.g., due to speaker
gender or dialect (Fig. 3A,B). The model performance follows observed data in recog-
nition scores with speech rates [3, 4]; we see a relative robustness to speech rate until a
critical compression ratio, beyond which performance degrades linearly (Fig. 3C). Per-
formance is hypothesized to drop because accelerating speech faster than twice leads
to a critical reduction in the length of the processing windows for syllables [4, 5] (see
Table S1 for syllable and phrase duration statistics). Under this hypothesis, syllables
that alternate faster than the theta rhythm cannot be parsed. This hypothesis has
been tested by examining the limitations of human speech perception of interrupted
as well as compressed and rechunked speech [1, 2, 5]. We thus set out to expose our
model to such modulated speech signals to examine how rhythm-modulation of the
generative inference process may account for the limitations of human perception.

First, we stimulated the model with speech that is interrupted by silent deletions.
We find that the BRyBI model successfully accounts for the behavior in tasks with
interrupted speech [1]. Here, normal-speed speech was cut in by a silent interval of
various durations, during which speech information was lost (Fig. 3D, left). As in the
experiments, the BRyBI showed a drop in the articulation score in performance at
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Fig. 3 BRyBI performance for invariant speech parsing. Invariant performance in conditions of
different speaker genders (A), dialects DR1-DR8 in the TIMIT dataset (B), and speech rates from
1 to 3 (C). When the speech rate is below 2, intelligibility remains consistently high, aligning with
an average syllable frequency of less than 10 Hz and an average phrase frequency of less than 4 Hz
(Tab. S1). However, a compression ratio exceeding 2 results in syllables and phrases extending beyond
the limits of theta and delta rhythms, respectively. (D) Signal processing for the experiment with
interrupted speech is a convolution of the original signal with a rectangular signal. Signal processing
for temporally segmented speech includes silence insertion of different duration. On the right plots
there are different silence-to-speech rates for fixed duration of speech intervals. (E) Experiment with
interrupted speech. Different lines correspond to different speech-to-silence rates. A drop in the score
at the 1 Hz interruption is indicative of prolonged information loss. A peak between 10 and 100
Hz represents the optimal interruption rate for context to recover missed information. Conversely, a
decline at interruption frequencies exceeding 100 Hz is linked to impaired phoneme decoding from a
distorted spectrogram. (F, G) Experiment with temporally segmented speech. (F) Isolated context
units, represented by speech segments separated by long silent intervals, yield relatively high speech
understanding. The score decreases as silent intervals shorten. We tested various silence-to-speech
rates: 0.4, 1.0, and 1.8. BRyBI struggled most at a rate of 1.8. (G) BRyBI generates a cross-shaped
plot for speech comprehension, dependent on speech and silent interval durations. Silent intervals
at 200 msec, while varying speech intervals result in a decline in intelligibility (blue line). Similarly,
fixing speech-interval duration at 63 msec and increasing silent-interval duration leads to decreased
intelligibility (orange line).

the interruption frequency of 1 Hz that is caused by a long information loss inter-
val (Fig. 3E, Fig. S3A). We also saw peaks in performance between 10 and 100 Hz,
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which is the optimal interruption rate where context can recover missed information
(Fig. 3E, Fig. S3B). Finally, the drop at the interruption frequency higher than 100
Hz is provoked by an impairment of phoneme decoding from a distorted spectrogram
(Fig. 3E, Fig. S3C).

We then examined how the BRyBI model would perform under speech that was
temporally segmented. Here, speech was not interrupted by silent gaps, but interspaced
by added silent segments (Fig. 3D, right). Thus, there was no loss of information but
a change in the timing of chunks’ presentation. The model exhibits a behavior coher-
ent with the human behavior with such temporally segmented speech [2]| (Fig. 3F,G).
Speech segments separated by long silent intervals can be considered isolated con-
text units (a plateau for long chunks in Fig. 3F, Fig. S4A), resulting in a relatively
high understanding of speech, which decreases as silent intervals become shorter (the
decline for shorter intervals is shown in Fig. 3F, Fig. S4B). We tested conditions with
different silence-to-speech rates (Fig. 3F), and for a value of 1.8, similar to the exper-
iments [2], the BRyBI model had its lowest performance. Furthermore, BRyBI shows
the same cross-shaped plot as in [2] for speech comprehension, depending on the dura-
tion of speech and silent intervals (Fig. 3G, Fig. S5). Maintaining silent intervals at
a consistent 200 msec while varying speech intervals reveals a decline in intelligibil-
ity for speech intervals ranging from 200 to 31 msec (Fig. 3G, blue line). Similarly,
when speech-interval duration is fixed at approximately 63 msec, increasing silent-
interval duration from 63 to 500 msec results in a decrease in intelligibility (Fig. 3G,
orange line). This aligns well with findings from the experimental study by Huggins
et al. [2]. The experiment underscores that the intelligibility of temporally segmented
speech hinges on the combined durations of speech and silent intervals. Reproducing
these outcomes, BRyBI offers insights into the potential mechanisms at play, that is,
a contextual support whose formation and transmission are controlled by the delta
rhythm.

We next turned to an experiment that we reasoned would allow us to test our main
mechanistic hypothesis: that the pattern of invariant speech recovery seen in humans
is critically dependent on the delta-modulated top-down inference of the semantic
context. In this experiment, speech was modulated by a combination of speech com-
pression and temporal segmentation [5]. The duration of the silences inserted between
segments varied between 0 and 160 msecs. The resulting errors showed a characteristic
U-shaped plot of errors in speech recognition depending on the insertion.

Figure 4 shows an example of the full BRyBI model performance. In the control
sentence, where no preprocessing was applied, BRyBI correctly reconstructs speech
(15% of word errors for 100 sentences). For compressed speech, the model parallels a
drop in human behavioral performance. Here, speech compression drives the frequency
of phrases in the sentence beyond the delta range. This in turn prevents the model
from providing the correct context to help with speech parsing (55% of word errors
for 100 sentences). Respacing the syllables with silences recovers the speech rhythm,
and thus leads to an improvement in speech intelligibility (Fig. 4A, Fig. 4C), repro-
ducing the experimental U-shaped curve [5]. The previous hypothesis states that the
insertion of silence intervals restores the syllabic rhythm, thereby restoring speech per-
ception. In fact, the insertion of silence between syllables does not necessarily support
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Fig. 4 (A) Example of speech recognition in a test sentence: “this tool can also be made with a
lathe ’. Correct/incorrect recognition is indicated by the green/red background, respectively. Top
panel: spectrogram; middle: reconstructed contextual candidates; bottom: reconstructed syllables;
Note the errors in syllable and word sequencing. “Spaced by syllables” for inter-syllable 100 ms silence
inserts; “Spaced by prosodic phrases” for inter-phrase 300 ms silence inserts. The control sentence,
with no preprocessing, is reconstructed correctly. Compression shortens the time window for context
formation and alternation, thus causing more errors. Respacing syllables and prosodic phrases by
inserting silent intervals restores speech rhythm and improves intelligibility. (B, C) Speech recognition
by BRyBI for temporally segmented compressed speech. Simulations do not only reproduce the U-
shaped curve in the Ghitza and Grinberg 2009 experiment [5] but also predict the same error pattern
when silent intervals are inserted between prosodic phrases. (D) Performance of AI models for speech
recognition. All models exhibit low error rates in natural speech recognition (2.9-5.7%, Table S1) but
face significant degradation in 3-time compressed speech (67.9-99.1%, Table S1). Segmentation of
speech by silent intervals does not enhance comprehension for any of the AI models. The difference
between AI models and human speech recognition suggests that hierarchical syntactic processing
alone is not enough; the critical missing element is the temporal structuring that BRyBI implements
utilizing brain rhythms.

this hypothesis, because speech perception may be restored due to the restoration of
the rhythm of phrases rather than that of syllables. This means that if there is silence
between syllables, not only the rhythm of the syllables, but also that of phrases and
words is retrieved. At this point the model results deviate from the previous hypoth-
esis and predict that restoring the rhythm of phrases (even without restoring that
of syllables, when silence is inserted only between phrases) enables speech percep-
tion restoration. The following experiment further supports this point. Figure 4A and
Figure 4C show that phrase recognition errors are bound to decrease when the natu-
ral rhythm of prosody is restored (Fig. 4B). BRyBI simulations thus suggest that the
delta rhythm predictively sets the temporal boundaries for speech integration, beyond
which speech becomes illegible.
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To demonstrate that the delta-rhythm-modulated context inference is necessary
to explain the brain mechanisms of human speech recognition patterns under modu-
lated speech, we subjected BRyBI to two ablations: a context-free model (Fig. S1A)
without the top layer and an arbitrary-timed context model (Fig. S1B) where the
top-layer was not rhythmically modulated. Neither the context-free model (Fig. S1A)
that only implements the bottom level, theta-gamma syllable code, nor the arbitrary-
timing context model, where top-level predictions can switch at any time, reproduces
the experimental results (Figures S1A,B). Interestingly, while the arbitrary context
model (Fig. S1B, bottom panel) does not produce the telltale U-shape performance,
it clearly demonstrates the benefits of context support since it yields low errors across
all experimental conditions. The experimentally observed U-shaped error dependency
on silence duration is reproduced by adding the delta-band temporal windowing for
context alteration in the full model model (Fig. 1A and Fig. S1C).

In order to further show the key role of rhythmically modulated active interfer-
ence in brain speech processing, we compared BRyBI performance with several LLMs
for speech recognition where, to the best of our knowledge, such temporal processes
are absent: Whisper (OpenAl) [72], Speech to text (Microsoft Azure), Speech to text
(Google), Deepgram, and Speechmatics. These models use the hierarchy of speech
organization and Bayesian inference, yet they do not include any notion of tempo-
ral windowing for the inference process. All models show low error rates in word
recognition for natural speech (2.9 - 5.7%, Table S1) and significant degradation for
compressed speech over two times (67.9 - 99.1%, Table S1). Respacing the speech
chunks (syllables or context units) by silences had no effect on improvement in speech
comprehension (Fig. 4D). From these simulations, we may speculate that even though
LLMs show high performance for natural speech, the mechanisms for invariant speech
recognition in LLMs and the human brain differ. Notably, hierarchical syntactic pro-
cessing alone is insufficient to allow behavioral experiments with temporally segmented
compressed speech to be reproducible. We believe that the key missing element is the
temporal structuring of the predictive coding of speech information by endogenous
brain rhythms.

3 Discussion

In this work, we provide a computational framework for understanding the role of
brain rhythms in predictive coding and highlight the importance of uncertainty and
surprise in this process. We show how an inferential theta-gamma code, together with
the descending predictive influence of delta rhythm, converse in a predictive genera-
tive entrance model to produce precise and efficient neural processing of speech. Our
model is able to address a three-part challenge. We show that BryBI can match pat-
terns of robust and invariant speech processing that are seen in human experiments.
Second, we suggest that the model does so in a biologically plausible manner, incorpo-
rating several mechanisms crucial to audio processing during speech perception. More
specifically, within a predictive coding model, we implemented a mechanistically plau-
sible hierarchical structure for syntax processing [6, 13| and oscillatory activity [17].
We note that predictive coding has recently received substantial support as a plausible
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framework for speech processing [49, 58|. Finally, by modeling the rhythm generation
and content formation phenomenologically, we were able to achieve the results with
a relatively low model complexity, despite its robustness to extraneous perturbations
of speech. This relatively low model complexity contrasts with the high complexity
of the prevalent AI models of speech recognition and their need for large-scale com-
puting resources, training data requirements, and energy consumption [73]. We note
that despite the phenomenological form of the model equations, the inherent model
structure emphasizes the biological plausibility of its component processes (rhythms,
representation formation, theta-gamma encoding of syllables).

A compelling hypothesis posits that the core mechanism underpinning speech pro-
cessing within the auditory cortex involves resolving a two-component optimization
task within the framework of predictive coding — minimization of uncertainty and
surprise [34, 49, 74]. Uncertainty and surprise in speech signals highlight the dynamic
and predictable nature of phoneme transitions, with uncertainty reflecting a general
lack of confidence in predicting the next phoneme and surprise denoting the occurrence
of an unexpected phoneme in the input. Recently, a study combining non-invasive
imaging and computational modeling with deep neural networks [49] demonstrated
that the reduction of uncertainty in words can be explained by an increase in surprise
(thus, updates in GM) and correlates with delta rhythm in aAC, while the uncertainty
of phonemes correlates with modulation of theta rhythm in pAC. The BRyBI model
shows how this hypothesis can be substantiated computationally through a synergy of
predictive coding and oscillatory activity with only a minimum number of layers. Repli-
cating the processes between the midbrain and the pAC, the bottom level is designed
to receive sensory input information, including spectrograms and modulation signals.
Using this bottom-up information, the model efficiently disentangles phonemes and
syllables by minimizing phonemic uncertainty in a way that is compatible with several
recently proposed feedforward models [5, 28, 29, 53|. In BRyBIl, a delta-modulated
top-down semantic context inference process guides this bottom-up information flow.

The present computational work shows that a top-down context inference and its
governance by the delta-rhythm is critical to account for the patterns of human speech
processing. In fact, when considering only feed-forward processes, the humanperfor-
mance patterns cannot be reproduced (i.e. the purely feed-forward context-free model
fails (Fig. S1A)). The experiments that we address specifically tested for invariance
to degradation, segmentation, and the recovery of performance under re-spacing of
audio signals. Critically, in the model allowing for the descending context-formation
process to run unfettered by a brain rhythm, we do not reproduce human-like perfor-
mance, showing that this degraded model is insensitive to speech manipulations(Fig
S1). On the other hand, the rhythmically-governed context formation model accounted
for both the patterns of invariance and the recovery of distorted speech.

BRyBI allows us to go beyond just reproducing the phenomenology of behavior,
but to understand in detail how the predictive coding computations combine with
oscillatory temporal governance to orchestrate the necessary brain computations. If
we track the computational process within our model, we see that at each time step,
the feed-forward module reproduces the dynamics of syllables predetermined for each
phrase in the correct order, as captured and governed by the delta module. When a
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critical discrepancy arises between the generated theta-gamma code and the incoming
sensory input, the encoding process at the bottom level deviates from the predicted
context. This conflict, in turn, triggers an update of contextual beliefs at the top level.
This update induces a sharp shift in the dynamic state of the context module, requiring
a transient increase in this module activity (see details in the section: Methods). In
essence, consistent with previous findings in [49, 75], the reaction to surprise increases
delta rhythm activity. Interestingly, this increase in corrective activity reproduces the
phenomenology of the ERP signal [34, 39, 76|, offering insights into the hypothetical
mechanisms underlying ERP in the brain.

Specifically, minimizing surprise during online speech recognition is associated with
the goal to select the most appropriate context. The judicious choice of context allows
the theta rhythm not to be perfectly synchronized with speech, according to the energy
minimization hypothesis [34, 50]. Should the context be erroneous, the model effec-
tively needs to update its corresponding state (i.e., the context of a phrase or word).
Such a switch requires a time-locked increase in activity at the context level. We can
surmise that such an increase underpins the Error-Related Potentials seen during com-
plex speech recognition tasks [48, 61]. As a result, the BRyBI model lends support to
the hypothesis that top-down predictive and bottom-up acoustic flows are dynamically
integrated, as proposed by several studies [38, 77, 78§].

Recent studies show a structural hierarchy in the processing of several speech
features? and highlight the relationship between this hierarchy and the organization
of rhythmic activity [63]. In particular, it has been discovered that the theta rhythm’s
entrainment is correlated with speech clarity and acoustic properties, whereas the delta
rhythm’s entrainment is correlated with higher-order speech comprehension. Based
on these findings, BRyBI suggests processing syntactic speech units in a sequential
manner, with phonemes and syllables processed at the bottom level and words and
phrases processed at the top level. In particular, phonemes and syllables are associated
with “fast” gamma and theta rhythms, respectively, whereas words and phrases are
associated with the slow delta rhythm. Within BRyBI, the level of syllables integrates
information from both the bottom-up acoustic signal and the top-down contextual
signal.

One of the strongest arguments for questioning rhythm-based speech parsing is that
theta-locking can vary significantly across different experiments [REFs|. For example,
[23] and [4] showed that theta was strongly locked, while other experiments found weak
locking despite good behavior performance [43, 79]. We can propose an explanation for
this ambiguous evidence using rhythm-based predictive coding for speech recognition.
According to our model, theta-locking is flexible: in clear contexts, it is floating; in
unclear contexts, the speech envelope needs to entrain the theta rhythm [28, 80].

Although BRyBI shows promising results, it leads to multiple avenues for exten-
sions and improvements through the implementation of more biological mechanisms for
rhythm generation, the incorporation of phase-amplitude coupling (PAC) mechanisms,
and considering the role of beta in the inference hierarchy [81].

Another future direction can be to expand and improve the linguistic part of the
model. For example, several models that propose the incorporation of compositional
mechanisms [74, 82-85] can extend the BRyBI model for the semantic part. Some of
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these models [74, 82| illustrate language representations processing using asynchrony
and inhibition. A biophysical version of BRyBI, e.g., where rhythms are implemented
with dynamical neural mass- or spiking-networks [17, 39, 86, 87|, could usefully inte-
grate these concepts and mechanisms. This would allow for direct comparisons with
electrophysiological experimental data that may aid not only in data-based model
identification but also reveal the fundamental theory of speech coding in the brain.

The practical implications of studies on neural oscillations and their ability to
partly synchronize with external stimuli are important for the treatment of a variety
of pathologies. For example, an experiment found a relationship between the syn-
chronization of delta- and gamma-band networks and semantic fluency in post-stroke
chronic aphasia [88]. Similarly, a study found tracking of theta rhythms but not delta
rhythms in the logopenic variant of primary progressive aphasia, which may indicate
ineffective top-down coding [89]. Dyslexia is another pathology that has been asso-
ciated with disturbances in low-frequency rhythm tracking [90-94]. According to the
rise-time theory of dyslexia, reading difficulties result from the complexity of track-
ing the amplitude modulation of external signals, which leads to difficulties in speech
perception, phonological processing, and, ultimately, reading [94]. For instance, chil-
dren with dyslexia have abnormal delta rhythm phase alignment when interpreting
rhythmic syllable sequences, which affects speech representation [95]. Likewise, chil-
dren with dyslexia showed impaired tapping to a metronome beat with a frequency of
2 Hz [96]. Another study compared neural responses to speech and non-speech sounds
in healthy people and those with dyslexia, revealing that healthy people had stronger
delta-band responses in the right hemisphere and gamma-band responses in the left
hemisphere [97]. In these experiments, difficulties in tracking low-frequency external
rhythms were correlated with phonetic perception problems. It is noteworthy that indi-
viduals with dyslexia can compensate for their phonological perception deficits with
semantic context, i.e., top-down compensatory mechanisms [98-100].

Taken together, these findings suggest that disturbances in low-frequency rhythm
synchronization may be a factor that affects the progression of aphasia and dyslexia.
Thus, the success of transcranial electrical stimulation in treating these conditions
may be partially explained by the synchronization of neural oscillations with external
stimuli [101-103]. Clearly, the practical application of such research must rely heavily
on a solid theoretical framework capable of predicting treatment effects, developing
hypotheses, and developing experimental and treatment protocols. The BRyBI model
can provide such a theoretical basis.

In summary, our results shed light on the intrinsic constraints and compensatory
mechanisms of human speech perception. At the same time they offer a potential
alternative and challenge to the prevalent AI NLP approaches to speech processing,
pointing out how brain mechanisms may allow for robust speech recognition with high
computational efficiency, even under conditions where LLMs appear to perform poorly.

4 Methods

Predictive coding implies two directions of information flow: top-down and bottom-up.
Top-down flow is provided by constructing the generative model (GM) and passing
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beliefs from higher abstract levels to the early sensory areas. Bottom-up flow propa-
gates updates in beliefs during the inference process provided by the DEM algorithm
[57].

GM is essentially a stochastic dynamical system that has a hierarchical structure.
Each level is formed by two types of variables: hidden and causal states. The hidden
states are ruled by differential equations. The causal states serve to transfer informa-
tion from the top to the bottom levels and represent beliefs inferred from the internal
model of the world. They are formed as nonlinear transformations of the hidden states.
Thus, GM maintains a top-down information flow. The BRyBI model consists of two
levels and is formalized as follows:

#0 = fO (0 @) 4 O
]/(1) = g(l)(x(l)7 ]/(2)) _|_ n(l)

Here z(V is the hidden state of i-level with a noise ¢, v is the corresponding
causal state with a noise (Y. The function f(*) determines a form of differen-
tial equations for the hidden state z(*. The function g(*) determines the nonlinear
transformation of z(¥) taking into account information from the level above.
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Fig. 5 (A) An example of rhythmic activity reconstructed by the model: delta rhythm (top), coupled
theta-gamma rhythm (middle), and ground-truth spectrum (bottom). Red dashed lines are ground-
truth word boundaries; blue dashed lines are ground-truth syllable boundaries. See the text for the
model’s notation. (B) A detailed structure of BRyBI.

The bottom and top levels in BRyBI model mimic speech processing in the pri-
mary auditory cortex (pAC) and the associative auditory cortex (aAC), respectively
(Fig. 5B). On the top level delta rhythm switches words. On the bottom level, coupled
theta and gamma rhythms code acoustic signal of speech.
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4.1 The top level

The top level is the level of context candidates that are alternating in delta rhythm.
Here we define a delta-timescale:

75 = In(1 4 exp(Ms)) + 65-?;), @)
M(; = —k5(M5 - M0)3 + 65\2,
where the delta-timescale 75 is phase modulated by Mgs. The parameter ks constrains
the timescale in the delta band. Ms potentially takes values from [—o0, co]. The func-
tion softplus(M;) = In(1 + exp(Ms)) maps the values to [0,4+o00]. When Ms = M
and the delta-wave does indeed have an average delta-rhythm frequency. In order to
change this state, it is necessary to increase / decrease the noise ¢*s. Thus, the more
the frequency differs from the delta rhythm, the more difficult it is to obtain the
corresponding My at the expense of noise.
Delta-waves are constructed as follows:

271,
5wavei - COS(’Uﬁ c TS — ﬁ)7 (3)

where vs = %, Qs = 2.9 Hz is the average frequency of delta rhythm.

Phrases are chosen from the language randomly. The relative probability of each
phrase accumulates in the variable w:

dw

i R (4)

On a certain phase of the delta rhythm trigger, T5 = softmax(dyaves) switches
phrases by abruptly increasing from 0 to 1.

On this level, hidden states are (75, M;) and w. Causal states are 1/5?) =75+ 775?,

1/](\2 = M; + 775?5 and word probabilities Vfuz) = softmax(w) + 777(1)2 ),

4.2 The bottom level

The theta-timescale defines a window of syllable coding. We use the same model as
for the delta-timescale:

. 5)
Ny =0+ ) (

Following the example of previous similar models [29, 60, 81], the GM splits each
syllable into 8 parts. It allows more flexibility in shaping the auditory spectrogram of
syllables and phonemes. The gamma waves are constructed as a nonlinear function of
79 and each gamma wave has a period equal to 1/8 of the period of a syllable:

{T'@ = In(1 + exp(Mp)) + €2V,

i = softmax(30 - sin(27 (19 — ¢;))), (6)

where ¢ = i/8, indexes i = 0..7.
Syllable selection is a crucial module in speech interpretation. In BRyBI, we want to
enter the context of a certain phrase for its constitutive syllables. A phrase is basically
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an ordered sequence of syllables. In this definition, it is convenient to represent it as
a matrix of syllables (Fig. 6):

Wi = |[WylliZim, (7)
where m is a whole number of syllables in the language. An element W;; = 1 if j-th
syllable follows the i-th syllable; otherwise, W;; = 0.

The context matrix is defined as the weighted sum of matrices of syllables: W =
>y fo )Wk, n is a number of words and phrases in the dictionary. If exactly one
word were chosen in the variable w, i.e., only one value in the vector was equal to 1,
and all the rest were equal to zero, then such a sum would choose from all matrices W
only the one corresponding to the current word. The matrix W changes dynamically
depending on the word/phrase probabilities at the top level.

word Ne2 predicted word = context

word Nel

0o 08

02

syllables
syllables
syllables

a 6 8 2 4 6
syllables syllables syllables

Fig. 6 Example of word representations and context construction as the sum of word matrices
normalized by probabilities from the top level.

Syllable transition frequency inside a word / phrase is in the theta-band,
whereas word switching frequency is in the delta-band. Hidden states of syllables are
determined as follows:

0= ra(WE=m)(1—c) = (n—my) - Ts + e,
E=r(Wn—€c—(E—€,) Ts+el,
_ exp(sin® (o)) (8)
~ exp(sin?(7g))+exp(cos?(7p))’
s=(1—-c¢n+ct
Here n and ¢ are two syllable pointers. The equations determine a gradual transition
from one syllable, that is pointed by &, to another syllable, that is pointed by 7, with a
speed k. These two pointers essentially follow their own theta wave. At the same time,
the expected syllable from the context is encoded in half of the cycle; in the second
half, it either occurs or it can knock out another syllable by error (if the context, for
example, was chosen incorrectly).
On the bottom level hidden states are the theta-timescale 7y, theta modulation
My, and syllable pointers £ and 7.
A theta-gamma code of an acoustic signal generates as a convolution of syllable
and gamma-units with predefined for each frequency band f tensors Pj.6:
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Generated auditory spectrogram c, delta Ms and theta My modulations are com-
pared with an input. The DEM-algorithm produces joint distributions for all hidden
and causal variables, which are used in the model to recognize syllables, words and
phrases.

4.3 The dataset

The extraction of syllable matrices is as follows. For each sentence, for each syllable
in the sentence:

1. A piece of the spectrum is extracted according to the boundaries of the syllable;

2. A piece of the spectrum is split into 8 equal segments;

3. Over time, each part is averaged. The result is eight 6-dimensional vectors, one for
each scale.
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